US20100054944A1 - Rotor assembly for an exhaust gas turbocharger - Google Patents

Rotor assembly for an exhaust gas turbocharger Download PDF

Info

Publication number
US20100054944A1
US20100054944A1 US12/584,994 US58499409A US2010054944A1 US 20100054944 A1 US20100054944 A1 US 20100054944A1 US 58499409 A US58499409 A US 58499409A US 2010054944 A1 US2010054944 A1 US 2010054944A1
Authority
US
United States
Prior art keywords
turbine wheel
shaft
wheel
rotor assembly
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/584,994
Inventor
Peter Fledersbacher
Paul Lõffler
Michael Scheydecker
Siegfried Sumser
Siegfried Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Assigned to DAIMLER AG reassignment DAIMLER AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FLEDERSBACHER, PETER, LOFFLER, PAUL, SCHEYDECKER, MICHAEL, SUMSER, SIEGFRIED, WEBER, SIEGFRIED
Publication of US20100054944A1 publication Critical patent/US20100054944A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/133Titanium

Definitions

  • the invention relates to a rotor assembly for an exhaust gas turbocharger including a compressor wheel and a turbine wheel mounted on a common shaft, wherein the turbine wheel consists of a metal aluminide or a high temperature-resistant titanium alloy.
  • DE 10 2005 015 947 B3 discloses a method for the connection of a first component of a metal aluminide or a high-melting Ti alloy with a second component of steel, wherein the connection is produced by a friction welding process.
  • the two components can be joined in a positive manner by means of a nickel-containing intermediate piece.
  • the presence of two joints is characteristic for the connection.
  • This method serves especially for the production of a rotor assembly of an exhaust gas turbocharger, which comprises a turbine wheel consisting of aluminide or of a high-melting Ti alloy and a shaft of steel.
  • the advantage of a turbine wheel of a metal aluminide or a high-melting Ti alloy resides in a lower weight and, consequently, a reduction of the moment of inertia of the turbine wheel, whereby the response-behavior of an exhaust gas turbocharger is considerably to be improved.
  • a rotor assembly for an exhaust gas turbocharger including a turbine wheel and a compressor wheel mounted on a common shaft for joint rotation wherein the turbine wheel consist of a metal aluminide or of a high-temperature resistant titanium alloy, the turbine wheel and the compressor wheel are disposed on the shaft in spaced relationship by way of a bearing sleeve via which the turbien wheel and the compressor wheel are axially firmly engaged by axial clamping structures associated with the common shaft.
  • an exhaust gas turbocharger having a reduced moment of inertia and thus an improved response behavior with high operational safety can be realized.
  • the rotationally fixed connection can be made by means of at least one tensioning element arranged at one end of the shaft.
  • a positive connection is thereby either provided between the other end of the shaft and the turbine wheel, or the other end comprises a further tensioning element for providing the axial engagement.
  • the other end itself may be used to form a tensioning element.
  • a secure positive connection between the compressor wheel and the turbine wheel can thus advantageously established by axial engagement which is not affected by the centrifugal forces and the high temperatures to which the turbine wheel is objected during high speed operation of the turbocharger.
  • FIG. 1 shows, in a longitudinal sectional view, a first embodiment of a rotor assembly according to the invention
  • FIG. 2 shows a second embodiment of the rotor assembly wherein the turbine wheel of the rotor assembly comprises an integral elongated collar
  • FIG. 3 shows a third embodiment of the rotor assembly in a third version, wherein the turbine wheel comprises a positive connection with a bearing sleeve,
  • FIG. 4 shows a fourth embodiment of the rotor assembly, wherein the turbine wheel comprises an insulating sleeve and an insulating disk, and
  • FIG. 5 shows a fifth embodiment of the rotor assembly in, wherein the shaft is positively installed in the turbine wheel in a positive manner.
  • FIG. 1 shows a first embodiment of the rotor assembly 1 in a longitudinal sectional view.
  • the rotor assembly 1 comprises a compressor wheel 2 for taking in and compressing combustion air, a turbine wheel 3 for the expansion of exhaust gas and a shaft 4 with a rotational axis 5 connecting the compressor wheel 2 with the turbine wheel 3 in a rotationally fixed manner.
  • the rotor assembly 1 is provided especially for an exhaust gas turbocharger, which comprises a housing receiving the rotor assembly 1 in a rotatable manner.
  • the housing comprises an air guide section, an exhaust gas guide section and a bearing section.
  • the compressor wheel 2 is disposed in the air guide section
  • the turbine wheel 3 is disposed in the exhaust guide section
  • the shaft 4 is rotatably supported in the bearing section.
  • the exhaust gas turbocharger serves for increasing the performance of an internal combustion engine.
  • the internal combustion engine usually has an combustion air intake duct, and an exhaust gas line, wherein the air guide section is arranged in the intake duct and the exhaust guide section in the exhaust gas line.
  • the turbine wheel 3 is rotated by the exhaust gas of the internal combustion engine, and the compressor wheel 2 is rotated by means of the shaft 4 , so that it takes in combustion air and compresses it.
  • the turbine wheel 3 is made of a metal aluminide or a high-temperature resistant titanium aluminum alloy.
  • the advantage of these materials is, in addition to a low heat expansion, is their favorable strength-density ratio, that is, they have a high strength with a low density.
  • the mass of the turbine wheel 3 is reduced by about half compared to a turbine wheel 3 consisting of for example the usual material Inconel 713 C.
  • the moment of inertia of the mass of the rotor assembly 1 which characterizes the response behavior of the exhaust gas turbocharger, can thus be reduced considerably.
  • the turbine wheel 3 as shown in FIG. 1 has an axial opening 6 which extends fully through the turbine wheel 3 and in which the shaft 4 is received.
  • the turbine wheel 3 were made of a usual material (e.g. Inconel 713 C), it would have a relatively low durability during operation with the arrangement according to the invention, as, due to the large mass the tensions occurring as a result of the centrifugal forces at the opening 6 would be so large, that the strength of the usual material would be too low for a continuous operation.
  • the centrifugal forces need to be accommodated in the radial direction and, at the same time, torsional forces need to be transmitted in the tangential direction, which are so high that, with a turbine wheel 3 made of a usual material, the operation of the exhaust gas turbocharger would result in early material failure of the rotor assembly 1 .
  • the shaft 4 is accommodated in the opening 6 , and the turbine wheel 3 is arranged adjacent an end head 7 of the shaft 4 and is connected to the shaft 4 for example by a press-fit.
  • the press-fit already constitutes a form of the positive connection, as the connection between the shaft 4 and the turbine wheel 3 is effected by means of frictional forces.
  • the compressor wheel 2 is positioned at an end 8 of the shaft 4 opposite the first end head 7 .
  • a sleeve 10 is arranged on the shaft 4 between the turbine wheel 3 and the compressor wheel 2 , which sleeve forms a low-friction bearing of the shaft 4 in the bearing section.
  • the shaft 4 comprises a tensioning element 9 arranged at the second end 8 for the rotationally fixed connection of the turbine wheel 3 with the compressor wheel 2 , wherein an axial force transmission is provided by means of a tensioning element 9 .
  • the shaft 4 includes the end head 7 in the shape of a nut, so that the first end 7 represents a tensioning engagement element which may also be in the form of a nut threaded onto the shaft 4 .
  • a tensioning engagement element which may also be in the form of a nut threaded onto the shaft 4 .
  • the sleeve 10 is in the form of a hollow cylinder and has a reinforcement at its end facing the turbine wheel 3 , in which an annular first recess 11 is arranged at the circumference of the sleeve 10 .
  • the recess 11 serves especially for the reception of sealing elements.
  • the turbine wheel 3 includes an axial collar 13 extending from its end face 12 , wherein the annular first recess 11 is arranged.
  • the sleeve 10 comprises a simple cylindrical structure without reinforcement.
  • the sleeve 10 has a small wall thickness W, so that only a small expansion of the sleeve 10 during the operation of the rotor assembly 1 as a result of heat generation can be expected during operation even at high rotational speed of the rotor assembly 1 . Additionally, temperature stresses at the collar 13 are smaller, so that an improved centering of the turbine wheel 3 on the shaft 4 is achieved.
  • annular carrier 14 in the form of a ring carrier with a U-profile is positioned in the first annular recess 11 , the manufacture of which can be integrated into a manufacture process for the turbine wheel 3 , for example by a casting method.
  • This ring carrier 14 is provided for the reduction of wear and consists of a corresponding material, for example ceramics.
  • the rotor assembly 1 For ensuring the operation of the exhaust gas turbocharger, the rotor assembly 1 needs to be balanced as well as possible, which can be achieved by maintaining the radial position of the turbine wheel 3 , the shaft 4 , the compressor wheel 2 and the sleeve 10 .
  • the corresponding centering may be obtained by a feature of a third embodiment as shown in FIG. 3 .
  • the turbine wheel 3 comprises a centering collar 15 at its collar 13 , by means of which the sleeve can be accurately fixed radially with respect to the turbine wheel 3 .
  • the sleeve 10 includes at its end facing the centering collar 15 a recess 16 , in which the centering collar 15 is accommodated.
  • the heat transport from the turbine wheel 3 to the shaft 4 or to the sleeve 10 has to be limited.
  • an air gap 19 is provided between a first surface 17 of the centering collar 15 facing away from the of the turbine wheel 3 and a second surface 18 of the second recess facing the turbine wheel 3 .
  • the end of the sleeve 10 facing the compressor wheel 2 is firmly connected to a bearing collar 25 of the compressor wheel 2 .
  • an insulating sleeve 20 in the shape of a hollow cylinder is arranged in, the opening 6 extending along the rotational axis 5 for the heat insulation and/or centering.
  • the insulating sleeve 20 is connected to the turbine wheel 3 in rotationally fixed manner by a press-fit.
  • the shaft 4 is accommodated in the insulating sleeve 20 .
  • annular insulating disk 21 between the collar 13 and the sleeve 10 provides for further thermal decoupling of the hot turbine wheel 3 and the sleeve 10 particularly with a suitable choice of materials.
  • the heat transfer between the turbine wheel 3 and the bearing locations in the bearing section to be kept cool can thereby be kept low.
  • the cooling of the bearing locations is especially important with a ball or air suspension bearings of the rotor assembly 1 due to very small bearing gaps.
  • a positive connection is provided between the turbine wheel 3 and the shaft 4 .
  • the shaft 4 comprises a thread 22 at its first end 7 , wherein the shaft 4 is preferably a tension bolt.
  • the opening 6 is formed only partially extending through the turbine wheel 3 starting from the collar 13 in the direction of the rotational axis 5 .
  • a mating thread 24 for the positive connection of the turbine wheel 3 to the shaft 4 is provided at the third end 23 of the opening 6 arranged opposite the collar 13 .

Abstract

In a rotor assembly for an exhaust gas turbocharger including a turbine wheel and a compressor wheel mounted on a common shaft for joint rotation wherein the turbine wheel consist of a metal aluminide or of a high-temperature resistant titanium alloy, the turbine wheel and the compressor wheel are disposed on the shaft in spaced relationship by way of a bearing sleeve via which the turbien wheel and the compressor wheel are axially firmly engaged by axial clamping structures associated with the common shaft.

Description

  • This is a Continuation-In-Part Application of pending International patent application PCT/EP2008/001996 filed Mar. 13, 2008 and claiming the priority of German patent application 10 2007 012 641.9 filed Mar. 10, 2007.
  • BACKGROUND OF THE INVENTION
  • The invention relates to a rotor assembly for an exhaust gas turbocharger including a compressor wheel and a turbine wheel mounted on a common shaft, wherein the turbine wheel consists of a metal aluminide or a high temperature-resistant titanium alloy.
  • DE 10 2005 015 947 B3 discloses a method for the connection of a first component of a metal aluminide or a high-melting Ti alloy with a second component of steel, wherein the connection is produced by a friction welding process. The two components can be joined in a positive manner by means of a nickel-containing intermediate piece. The presence of two joints is characteristic for the connection. This method serves especially for the production of a rotor assembly of an exhaust gas turbocharger, which comprises a turbine wheel consisting of aluminide or of a high-melting Ti alloy and a shaft of steel.
  • The advantage of a turbine wheel of a metal aluminide or a high-melting Ti alloy resides in a lower weight and, consequently, a reduction of the moment of inertia of the turbine wheel, whereby the response-behavior of an exhaust gas turbocharger is considerably to be improved.
  • It is the object of the present invention to provide a rotor assembly which comprises a reliable connection between a turbine wheel of a metal aluminide or a high-melting Ti alloy and a shaft of steel even at high temperature and high rotational speeds of the rotor assembly.
  • SUMMARY OF THE INVENTION
  • In a rotor assembly for an exhaust gas turbocharger including a turbine wheel and a compressor wheel mounted on a common shaft for joint rotation wherein the turbine wheel consist of a metal aluminide or of a high-temperature resistant titanium alloy, the turbine wheel and the compressor wheel are disposed on the shaft in spaced relationship by way of a bearing sleeve via which the turbien wheel and the compressor wheel are axially firmly engaged by axial clamping structures associated with the common shaft.
  • Due to the rotationally fixed connection between the turbine wheel and the compressor wheel via the shaft of the rotor assembly and a shaft sleeve disposed between the turbine wheel and the compressor wheel, an exhaust gas turbocharger having a reduced moment of inertia and thus an improved response behavior with high operational safety can be realized.
  • In one arrangement, the rotationally fixed connection can be made by means of at least one tensioning element arranged at one end of the shaft. A positive connection is thereby either provided between the other end of the shaft and the turbine wheel, or the other end comprises a further tensioning element for providing the axial engagement. Alternatively, the other end itself may be used to form a tensioning element. A secure positive connection between the compressor wheel and the turbine wheel can thus advantageously established by axial engagement which is not affected by the centrifugal forces and the high temperatures to which the turbine wheel is objected during high speed operation of the turbocharger.
  • The invention will become more readily apparent from the following description thereof on the basis of the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows, in a longitudinal sectional view, a first embodiment of a rotor assembly according to the invention,
  • FIG. 2 shows a second embodiment of the rotor assembly wherein the turbine wheel of the rotor assembly comprises an integral elongated collar,
  • FIG. 3 shows a third embodiment of the rotor assembly in a third version, wherein the turbine wheel comprises a positive connection with a bearing sleeve,
  • FIG. 4 shows a fourth embodiment of the rotor assembly, wherein the turbine wheel comprises an insulating sleeve and an insulating disk, and
  • FIG. 5 shows a fifth embodiment of the rotor assembly in, wherein the shaft is positively installed in the turbine wheel in a positive manner.
  • DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS
  • In the figures, the same or functionally equal components are provided with the same reference numerals.
  • FIG. 1 shows a first embodiment of the rotor assembly 1 in a longitudinal sectional view. The rotor assembly 1 comprises a compressor wheel 2 for taking in and compressing combustion air, a turbine wheel 3 for the expansion of exhaust gas and a shaft 4 with a rotational axis 5 connecting the compressor wheel 2 with the turbine wheel 3 in a rotationally fixed manner.
  • The rotor assembly 1 is provided especially for an exhaust gas turbocharger, which comprises a housing receiving the rotor assembly 1 in a rotatable manner. The housing comprises an air guide section, an exhaust gas guide section and a bearing section. The compressor wheel 2 is disposed in the air guide section, the turbine wheel 3 is disposed in the exhaust guide section, and the shaft 4 is rotatably supported in the bearing section.
  • The exhaust gas turbocharger serves for increasing the performance of an internal combustion engine. The internal combustion engine usually has an combustion air intake duct, and an exhaust gas line, wherein the air guide section is arranged in the intake duct and the exhaust guide section in the exhaust gas line. During the operation of the internal combustion engine, the turbine wheel 3 is rotated by the exhaust gas of the internal combustion engine, and the compressor wheel 2 is rotated by means of the shaft 4, so that it takes in combustion air and compresses it.
  • The turbine wheel 3 is made of a metal aluminide or a high-temperature resistant titanium aluminum alloy. The advantage of these materials is, in addition to a low heat expansion, is their favorable strength-density ratio, that is, they have a high strength with a low density. The mass of the turbine wheel 3 is reduced by about half compared to a turbine wheel 3 consisting of for example the usual material Inconel 713 C. The moment of inertia of the mass of the rotor assembly 1, which characterizes the response behavior of the exhaust gas turbocharger, can thus be reduced considerably. The turbine wheel 3 as shown in FIG. 1 has an axial opening 6 which extends fully through the turbine wheel 3 and in which the shaft 4 is received. Due to the opening 6, there are essentially no radial and centrifugal forces, which occur during operation of the exhaust gas turbocharger and which may lead, depending on their size, to deformation and finally to breakage of the turbine wheel 3, effective between the shaft and the turbine wheel 3 via the surface delimiting the opening 6 at its circumference.
  • If the turbine wheel 3 were made of a usual material (e.g. Inconel 713 C), it would have a relatively low durability during operation with the arrangement according to the invention, as, due to the large mass the tensions occurring as a result of the centrifugal forces at the opening 6 would be so large, that the strength of the usual material would be too low for a continuous operation. The centrifugal forces need to be accommodated in the radial direction and, at the same time, torsional forces need to be transmitted in the tangential direction, which are so high that, with a turbine wheel 3 made of a usual material, the operation of the exhaust gas turbocharger would result in early material failure of the rotor assembly 1.
  • The shaft 4 is accommodated in the opening 6, and the turbine wheel 3 is arranged adjacent an end head 7 of the shaft 4 and is connected to the shaft 4 for example by a press-fit. The press-fit already constitutes a form of the positive connection, as the connection between the shaft 4 and the turbine wheel 3 is effected by means of frictional forces.
  • The compressor wheel 2 is positioned at an end 8 of the shaft 4 opposite the first end head 7. A sleeve 10 is arranged on the shaft 4 between the turbine wheel 3 and the compressor wheel 2, which sleeve forms a low-friction bearing of the shaft 4 in the bearing section.
  • The shaft 4 comprises a tensioning element 9 arranged at the second end 8 for the rotationally fixed connection of the turbine wheel 3 with the compressor wheel 2, wherein an axial force transmission is provided by means of a tensioning element 9.
  • The shaft 4 includes the end head 7 in the shape of a nut, so that the first end 7 represents a tensioning engagement element which may also be in the form of a nut threaded onto the shaft 4. By the action of a force provided by the tensioning element 9, the rotationally fixed connection between the turbine wheel 3, the shaft 4, the sleeve 10 and the compressor wheel 2 can be established, whereby the connecting forces extend mostly in axial direction of the shaft 4.
  • The sleeve 10 is in the form of a hollow cylinder and has a reinforcement at its end facing the turbine wheel 3, in which an annular first recess 11 is arranged at the circumference of the sleeve 10. The recess 11 serves especially for the reception of sealing elements.
  • In a second version of the exhaust gas turbocharger according to FIG. 2, the turbine wheel 3 includes an axial collar 13 extending from its end face 12, wherein the annular first recess 11 is arranged. The sleeve 10 comprises a simple cylindrical structure without reinforcement.
  • It is an advantage of the second embodiment that the sleeve 10 has a small wall thickness W, so that only a small expansion of the sleeve 10 during the operation of the rotor assembly 1 as a result of heat generation can be expected during operation even at high rotational speed of the rotor assembly 1. Additionally, temperature stresses at the collar 13 are smaller, so that an improved centering of the turbine wheel 3 on the shaft 4 is achieved.
  • In a further embodiment, an annular carrier 14 in the form of a ring carrier with a U-profile is positioned in the first annular recess 11, the manufacture of which can be integrated into a manufacture process for the turbine wheel 3, for example by a casting method. This ring carrier 14 is provided for the reduction of wear and consists of a corresponding material, for example ceramics.
  • For ensuring the operation of the exhaust gas turbocharger, the rotor assembly 1 needs to be balanced as well as possible, which can be achieved by maintaining the radial position of the turbine wheel 3, the shaft 4, the compressor wheel 2 and the sleeve 10. The corresponding centering may be obtained by a feature of a third embodiment as shown in FIG. 3. The turbine wheel 3 comprises a centering collar 15 at its collar 13, by means of which the sleeve can be accurately fixed radially with respect to the turbine wheel 3. The sleeve 10 includes at its end facing the centering collar 15 a recess 16, in which the centering collar 15 is accommodated.
  • As the bearing locations in the bearing section have to be kept as cool as possible, the heat transport from the turbine wheel 3 to the shaft 4 or to the sleeve 10 has to be limited. For reducing the heat transport from the turbine wheel 3 to the sleeve 10, an air gap 19 is provided between a first surface 17 of the centering collar 15 facing away from the of the turbine wheel 3 and a second surface 18 of the second recess facing the turbine wheel 3.
  • In a further embodiment, the end of the sleeve 10 facing the compressor wheel 2 is firmly connected to a bearing collar 25 of the compressor wheel 2.
  • In a fourth version according to FIG. 4, an insulating sleeve 20 in the shape of a hollow cylinder is arranged in, the opening 6 extending along the rotational axis 5 for the heat insulation and/or centering. The insulating sleeve 20 is connected to the turbine wheel 3 in rotationally fixed manner by a press-fit. The shaft 4 is accommodated in the insulating sleeve 20.
  • The arrangement of an annular insulating disk 21 between the collar 13 and the sleeve 10 provides for further thermal decoupling of the hot turbine wheel 3 and the sleeve 10 particularly with a suitable choice of materials. The heat transfer between the turbine wheel 3 and the bearing locations in the bearing section to be kept cool can thereby be kept low. As the rotor assembly 1 according to the invention is suitable for a ball or air suspension in the exhaust gas turbocharger, the cooling of the bearing locations is especially important with a ball or air suspension bearings of the rotor assembly 1 due to very small bearing gaps.
  • In a fifth version according to FIG. 5, a positive connection is provided between the turbine wheel 3 and the shaft 4. The shaft 4 comprises a thread 22 at its first end 7, wherein the shaft 4 is preferably a tension bolt. The opening 6 is formed only partially extending through the turbine wheel 3 starting from the collar 13 in the direction of the rotational axis 5. A mating thread 24 for the positive connection of the turbine wheel 3 to the shaft 4 is provided at the third end 23 of the opening 6 arranged opposite the collar 13.
  • With the firm axial engagement between the turbine wheel 3 and the compressor wheel 2 via the sleeve 10 which also forms a bearing structure for the rotor assembly 1 the high temperatures and the high centrifugal forces to which the turbine wheel is subjected at high speeds do not affect the engagement between the turbine wheel and the compressor wheel via the sleeve 10.

Claims (11)

1. A rotor assembly for an exhaust gas turbocharger, comprising a shaft (4) rotatable about an axis of rotation (5), a turbine wheel (3) mounted on the shaft (11) for the expansion of a first gaseous medium, and a compressor wheel (2) mounted on the shaft (4) for the compression of a second gaseous medium, and the turbine wheel (3) consisting of a metal aluminide, or of a high-temperature resistant titanium alloy and being rotationally fixed with respect to the compressor wheel (2) by means of the shaft (4), and the turbine wheel (3) having an axial opening (6) at least partially extending through the turbine wheel (3) and receiving the shaft (4) with a rotationally fixed connection between the turbine wheel (3) and the shaft (4) and a sleeve (10) disposed around the shaft (4) and arranged between the turbine wheel (3) and the compressor wheel (2) in firm axial engagement with the turbine wheel (3) and the compressor wheel (2).
2. The rotor assembly according to claim 1, wherein the shaft (4) has a first end (7) firmly engaged with the turbine wheel (3) and a second end (8) provided with tensioning means (9) for axially engaging the compressor wheel (2) with the turbine wheel (3) via the intermediate sleeve (10).
3. Rotor assembly according to claim 2, wherein the shaft (4) extends fully through the compressor wheel (3) and the tensioning means is a nut (9) threaded onto the shaft (4) for axially engaging the turbine wheel (3) and the compressor wheel (2) via the bearing sleeve (10).
4. The rotor assembly according to claim 1, wherein the turbine wheel (3) comprises a collar (13) at an end face (12) of the wheel (12), provided with an annular first groove (11) for receiving sealing elements.
5. The rotor assembly according to claim 4, wherein an annular carrier (14) is disposed in the annular groove (11).
6. The rotor assembly according to claim 1, wherein a centering collar (15) is provided at an end face (12) of the turbine wheel (3) for engaging the sleeve (10).
7. The rotor assembly according to claim 6, wherein the centering collar (15) and the sleeve (10) are firmly connected to each another.
8. The rotor assembly according to claim 6, wherein an air gap is provided between a first surface (17) of the centering collar (15) facing away from the end face (12) of the turbine wheel (3) and a second surface (18) of the sleeve (10) facing the end face (12) of the turbine wheel (3).
9. The rotor assembly according to claim 6, wherein an insulation sleeve (20) is arranged in the axial opening (6) between the turbine wheel (3) and the shaft (4).
10. The rotor assembly according to claim 6, wherein an insulating disk (21) is provided between a collar (13) of the turbine wheel (3) and the sleeve (10).
11. The rotor assembly according to claim 6, wherein the compressor wheel (2) is provided with a bearing collar (25) which is positively connected to an end of the sleeve (10) facing the bearing collar (25) for engagement with the compressor wheel (2).
US12/584,994 2007-03-16 2009-09-15 Rotor assembly for an exhaust gas turbocharger Abandoned US20100054944A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007012641A DE102007012641A1 (en) 2007-03-16 2007-03-16 Tool for an exhaust gas turbocharger
DE102007012641.9 2007-03-16
PCT/EP2008/001996 WO2008113506A1 (en) 2007-03-16 2008-03-13 Rotor assembly for an exhaust gas turbocharger

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/001996 Continuation-In-Part WO2008113506A1 (en) 2007-03-16 2008-03-13 Rotor assembly for an exhaust gas turbocharger

Publications (1)

Publication Number Publication Date
US20100054944A1 true US20100054944A1 (en) 2010-03-04

Family

ID=39538000

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/584,994 Abandoned US20100054944A1 (en) 2007-03-16 2009-09-15 Rotor assembly for an exhaust gas turbocharger

Country Status (5)

Country Link
US (1) US20100054944A1 (en)
EP (1) EP2126284A1 (en)
JP (1) JP5192497B2 (en)
DE (1) DE102007012641A1 (en)
WO (1) WO2008113506A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100104457A1 (en) * 2008-10-25 2010-04-29 Bosch Mahle Turbo Systems Gmbh & Co.Kg Turbocharger
US20110033282A1 (en) * 2009-07-31 2011-02-10 Thomas Streich Charging device, more preferably exhaust gas turbocharger for a motor vehicle
WO2013165840A1 (en) * 2012-05-02 2013-11-07 Borgwarner Inc. A low stress turbocharger turbine wheel having a threaded through bore mount
CN103890345A (en) * 2011-11-23 2014-06-25 博格华纳公司 Exhaust-gas turbocharger
US20140369840A1 (en) * 2011-12-23 2014-12-18 Napier Turbochargers Limited Connector
US20190368370A1 (en) * 2018-06-05 2019-12-05 United Technologies Corporation Hybrid electric turbine engine
CN112360570A (en) * 2020-10-26 2021-02-12 北京动力机械研究所 Runoff impeller side-mounted high-speed thermoelectric conversion system rotating shaft and process thereof
US20220268291A1 (en) * 2021-02-25 2022-08-25 Mitsubishi Heavy Industries Compressor Corporation Rotary machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008059617A1 (en) * 2008-11-28 2010-06-02 Bosch Mahle Turbo Systems Gmbh & Co. Kg Rotor for exhaust-gas turbocharger of internal-combustion engine of motor vehicle, has bush radially connected inside shaft and outside turbine wheel, where bush is soldered or welded with shaft
DE102009031737A1 (en) * 2009-07-04 2011-07-21 MAN Diesel & Turbo SE, 86153 Impeller for a turbomachine
CN102767398A (en) * 2012-07-04 2012-11-07 联优机械(常熟)有限公司 Impeller and main shaft matched structure of turbo expander
DE102012106383A1 (en) 2012-07-16 2014-01-16 Ihi Charging Systems International Gmbh Rotor assembly for turbocharger, has internal thread that is provided for securing rotationally fixed connection of fixing element with frustum-shaped outer contour
DE102014200738A1 (en) 2014-01-16 2015-07-16 Bosch Mahle Turbo Systems Gmbh & Co. Kg turbine rotor
JP6754658B2 (en) * 2016-09-30 2020-09-16 ダイハツ工業株式会社 How to manufacture a turbine for an exhaust turbocharger
KR102002011B1 (en) * 2017-12-22 2019-07-22 (주)계양정밀 Turbocharger

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662725A (en) * 1950-02-23 1953-12-15 Kennametal Inc Turbine wheel assembly
US3850546A (en) * 1971-03-03 1974-11-26 Gen Motors Corp Turbomachine rotor
US3961867A (en) * 1973-04-06 1976-06-08 Holset Engineering Company Limited Rotatable assembly with rotor abraded by seal ring
US4659245A (en) * 1985-05-31 1987-04-21 Nissan Motor Co., Ltd. Gas turbine
US4778345A (en) * 1985-03-15 1988-10-18 Ngk Spark Plug Co., Ltd. Turbine rotor
US4991991A (en) * 1984-10-06 1991-02-12 Ngk Spark Co., Ltd. Joint structure between a ceramic shaft and a metallic shaft
US5163816A (en) * 1991-07-12 1992-11-17 General Motors Corporation Wheel lock, centering and drive means and turbocharger impeller combination
US5176497A (en) * 1991-01-22 1993-01-05 Allied-Signal Inc. Boreless hub compressor wheel assembly for a turbocharger
US20020001522A1 (en) * 2000-06-28 2002-01-03 Shankar Mukherjee Compressor wheel with prestressed hub and interference fit insert
US6896479B2 (en) * 2003-04-08 2005-05-24 General Motors Corporation Turbocharger rotor
US20060039791A1 (en) * 2004-08-20 2006-02-23 Samsung Techwin Co., Ltd. Radial-flow turbine wheel
US20060088407A1 (en) * 2004-10-25 2006-04-27 Allen John F Turbocharger with balancing features
US7156282B1 (en) * 2005-10-11 2007-01-02 Honeywell International, Inc. Titanium-aluminide turbine wheel and shaft assembly, and method for making same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB858190A (en) * 1957-05-22 1961-01-11 Havilland Propellers Ltd De Improvements relating to air turbines
JPS6041528U (en) * 1983-08-30 1985-03-23 トヨタ自動車株式会社 Turbocharger wheel shaft assembly
JPS63141U (en) * 1986-06-20 1988-01-05
JPH075201Y2 (en) * 1987-07-08 1995-02-08 石川島播磨重工業株式会社 Turbine shaft structure
JPH0197001U (en) * 1987-12-22 1989-06-28
JPH02112935U (en) * 1989-02-27 1990-09-10
JPH03260330A (en) * 1990-03-09 1991-11-20 Toyota Motor Corp Rotor of turbocharger
JPH03119502U (en) * 1990-03-22 1991-12-10
AU6863298A (en) * 1997-04-04 1998-10-30 Xuan Nguyen-Dinh Friction welding interlayer and method for joining gamma titanium aluminide to steel, and turbocharger components thereof
JP2002235547A (en) * 2001-02-09 2002-08-23 Shozo Shimizu Join method for turbine shaft for turbocharger
GB0224723D0 (en) * 2002-10-24 2002-12-04 Holset Engineering Co Compressor wheel assembly
US7052241B2 (en) * 2003-08-12 2006-05-30 Borgwarner Inc. Metal injection molded turbine rotor and metal shaft connection attachment thereto
DE102005015947B3 (en) 2005-04-07 2006-07-06 Daimlerchrysler Ag Method for connecting of first component to second component entails introducing intermediate piece of Ni-alloy between first and second component and then carrying out friction welding process

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662725A (en) * 1950-02-23 1953-12-15 Kennametal Inc Turbine wheel assembly
US3850546A (en) * 1971-03-03 1974-11-26 Gen Motors Corp Turbomachine rotor
US3961867A (en) * 1973-04-06 1976-06-08 Holset Engineering Company Limited Rotatable assembly with rotor abraded by seal ring
US4991991A (en) * 1984-10-06 1991-02-12 Ngk Spark Co., Ltd. Joint structure between a ceramic shaft and a metallic shaft
US4778345A (en) * 1985-03-15 1988-10-18 Ngk Spark Plug Co., Ltd. Turbine rotor
US4659245A (en) * 1985-05-31 1987-04-21 Nissan Motor Co., Ltd. Gas turbine
US5176497A (en) * 1991-01-22 1993-01-05 Allied-Signal Inc. Boreless hub compressor wheel assembly for a turbocharger
US5163816A (en) * 1991-07-12 1992-11-17 General Motors Corporation Wheel lock, centering and drive means and turbocharger impeller combination
US20020001522A1 (en) * 2000-06-28 2002-01-03 Shankar Mukherjee Compressor wheel with prestressed hub and interference fit insert
US6896479B2 (en) * 2003-04-08 2005-05-24 General Motors Corporation Turbocharger rotor
US20060039791A1 (en) * 2004-08-20 2006-02-23 Samsung Techwin Co., Ltd. Radial-flow turbine wheel
US20060088407A1 (en) * 2004-10-25 2006-04-27 Allen John F Turbocharger with balancing features
US7156282B1 (en) * 2005-10-11 2007-01-02 Honeywell International, Inc. Titanium-aluminide turbine wheel and shaft assembly, and method for making same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100104457A1 (en) * 2008-10-25 2010-04-29 Bosch Mahle Turbo Systems Gmbh & Co.Kg Turbocharger
US9631634B2 (en) * 2008-10-25 2017-04-25 Bosch Mahle Turbo Systems Gmbh & Co. Kg Turbocharger with friction-increasing coating
US20110033282A1 (en) * 2009-07-31 2011-02-10 Thomas Streich Charging device, more preferably exhaust gas turbocharger for a motor vehicle
US9850810B2 (en) * 2011-11-23 2017-12-26 Borgwarner Inc. Exhaust-gas turbocharger
CN103890345A (en) * 2011-11-23 2014-06-25 博格华纳公司 Exhaust-gas turbocharger
US20140322006A1 (en) * 2011-11-23 2014-10-30 Borgwarner Inc. Exhaust-gas turbocharger
US9074477B2 (en) * 2011-12-23 2015-07-07 Napier Turbochargers Limited Connector
US20140369840A1 (en) * 2011-12-23 2014-12-18 Napier Turbochargers Limited Connector
WO2013165840A1 (en) * 2012-05-02 2013-11-07 Borgwarner Inc. A low stress turbocharger turbine wheel having a threaded through bore mount
US20190368370A1 (en) * 2018-06-05 2019-12-05 United Technologies Corporation Hybrid electric turbine engine
US10641124B2 (en) * 2018-06-05 2020-05-05 United Technologies Corporation Hybrid electric turbine engine
CN112360570A (en) * 2020-10-26 2021-02-12 北京动力机械研究所 Runoff impeller side-mounted high-speed thermoelectric conversion system rotating shaft and process thereof
US20220268291A1 (en) * 2021-02-25 2022-08-25 Mitsubishi Heavy Industries Compressor Corporation Rotary machine
US11649828B2 (en) * 2021-02-25 2023-05-16 Mitsubishi Heavy Industries Compressor Corporation Rotary machine

Also Published As

Publication number Publication date
JP2010521608A (en) 2010-06-24
DE102007012641A1 (en) 2008-09-18
JP5192497B2 (en) 2013-05-08
EP2126284A1 (en) 2009-12-02
WO2008113506A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
US20100054944A1 (en) Rotor assembly for an exhaust gas turbocharger
US7527479B2 (en) Mechanical coupling for a rotor shaft assembly of dissimilar materials
US7677041B2 (en) Bearing systems for high-speed rotating machinery
EP1193370B1 (en) Turbocharger rotor with alignment couplings
KR960002024B1 (en) Impeller wheel lock in a drive assembly
US4749334A (en) Ceramic rotor-shaft attachment
JP6069380B2 (en) Exhaust gas turbocharger shaft assembly
US5174733A (en) Supercharger
JPH0351881B2 (en)
JP2008298284A (en) Bearing device for turbocharger
JP2006097585A (en) Mounting structure for air separator and gas turbine provided with the same
US10309300B2 (en) Electric rotor fit onto a turbomachine shaft
EP2601384B1 (en) Gas turbine engine comprising a tension stud
US20120076639A1 (en) Shaft and Turbine Wheel Assembly
US5129784A (en) Ceramic rotor and metal shaft assembly
US20150204202A1 (en) Turbine rotor of an exhaust-gas turbocharger
US9896967B2 (en) Turbocharger
US9482278B2 (en) Cost effective high thrust capacity turbocharger assembly
US11060453B2 (en) Turbocharger with predetermined breaking point for an internal combustion engine
EP2789807B1 (en) Turbocharger
JPH0352961Y2 (en)
JPH06170652A (en) Combined body of ceramic and metal
JPH0123653B2 (en)
KR101262478B1 (en) Turbomachine
GB2544033A (en) Mounting a component to a shaft

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIMLER AG,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FLEDERSBACHER, PETER;LOFFLER, PAUL;SCHEYDECKER, MICHAEL;AND OTHERS;REEL/FRAME:023511/0249

Effective date: 20090923

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION