US20100019932A1 - Driver Initiated Vehicle-to-Vehicle Anonymous Warning Device - Google Patents

Driver Initiated Vehicle-to-Vehicle Anonymous Warning Device Download PDF

Info

Publication number
US20100019932A1
US20100019932A1 US12/179,424 US17942408A US2010019932A1 US 20100019932 A1 US20100019932 A1 US 20100019932A1 US 17942408 A US17942408 A US 17942408A US 2010019932 A1 US2010019932 A1 US 2010019932A1
Authority
US
United States
Prior art keywords
vehicle
message
event
driver
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/179,424
Inventor
Cecil Wayne Hilton Goodwin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TomTom North America Inc
Original Assignee
Tele Atlas North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tele Atlas North America Inc filed Critical Tele Atlas North America Inc
Priority to US12/179,424 priority Critical patent/US20100019932A1/en
Assigned to TELE ATLAS NORTH AMERICA, INC. reassignment TELE ATLAS NORTH AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOODWIN, CECIL WAYNE HILTON
Priority to PCT/US2009/051489 priority patent/WO2010011806A1/en
Priority to ES09800986.3T priority patent/ES2594231T3/en
Priority to RU2011103457/11A priority patent/RU2011103457A/en
Priority to EP09800986.3A priority patent/EP2307980B1/en
Priority to CA2725830A priority patent/CA2725830A1/en
Priority to CN200980118040.3A priority patent/CN102037458B/en
Priority to BRPI0913025A priority patent/BRPI0913025A2/en
Priority to JP2011520185A priority patent/JP5456039B2/en
Priority to KR1020107028474A priority patent/KR20110043535A/en
Priority to PCT/US2009/051490 priority patent/WO2010011807A1/en
Priority to AU2009273977A priority patent/AU2009273977A1/en
Priority to TW098125153A priority patent/TW201009761A/en
Publication of US20100019932A1 publication Critical patent/US20100019932A1/en
Priority to US13/474,852 priority patent/US9269267B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/162Decentralised systems, e.g. inter-vehicle communication event-triggered

Definitions

  • the current invention relates generally to vehicles and communications and more particularly to communicating driver-initiated electronic warning messages between moving vehicles.
  • CB radio citizen's band
  • flashing headlights to warn oncoming drivers of the presence of hazards in the road (e.g. broken-down vehicles or emergency vehicles).
  • CB radio citizen's band
  • flashing headlights to warn oncoming drivers of the presence of hazards in the road (e.g. broken-down vehicles or emergency vehicles).
  • CB radio citizen's band
  • the flashing headlights fail to specify anything about the hazardous event, such as its description, location, importance and other information.
  • the driver may be able to provide some verbal instructions, however this is often too imprecise and too time-consuming to provide any significant benefit, in addition to being cumbersome to use.
  • most drivers do not carry CB radios and do not wish to continuously listen for various transmissions while driving the vehicle. As such, another approach is needed.
  • DSRC Dedicated Short Range Communications
  • FIG. 1 is a high level illustration of the driver-initiated warning device inside of an automobile, in accordance with various embodiments.
  • FIG. 2 is a system-level illustration of the driver-initiated vehicle-to-vehicle warning device, in accordance with various embodiments.
  • FIG. 3 is an overhead view of a traffic situation involving a vehicle equipped with a driver-initiated warning device, in accordance with various embodiments.
  • FIG. 4 is an overhead view of a traffic situation showing the relaying capability of vehicles equipped with the driver-initiated warning device, in accordance with various embodiments.
  • FIG. 5 is an overhead view of risk warning messages being transferred in a situation of lower traffic density, in accordance with various embodiments.
  • FIGS. 6A and 6B illustrate a possible set of menu options for a navigation system implementing the driver-initiated vehicle-to-vehicle warning system, in accordance with various embodiments.
  • FIG. 7 illustrates the possible high level in-vehicle hardware components for the driver-initiated warning device, in accordance with various embodiments.
  • FIG. 8 is an illustration of the flow of inputs and outputs between the various components of the device during message transmission, in accordance with various embodiments.
  • FIG. 9 is an illustration of the flow of inputs and outputs between the various components of the device during message reception and relay, in accordance with various embodiments.
  • FIG. 10 is an exemplary logical flow chart diagram of the process for sending and receiving driver-initiated vehicle-to-vehicle warnings, in accordance with various embodiments.
  • FIG. 11 is an exemplary logical flow chart diagram of the process for receiving, analyzing and relaying driver-initiated vehicle-to-vehicle warnings, in accordance with various embodiments.
  • the embodiments of the present invention provide systems, methods and devices for providing driver-initiated vehicle-to-vehicle warnings and messages.
  • the device can be deployed in a vehicle (e.g. automobile) as a stand-alone appliance or integrated with various computing systems of the vehicle.
  • the device includes a driver input interface for receiving input from the driver or passenger of the vehicle.
  • the interface can be a graphical user interface (GUI), such as a touch screen, a button-based interface, or a voice recognition-based interface or any other type of interface available in the art.
  • GUI graphical user interface
  • the driver input interface is used to receive information regarding an event occurring within a visually observable vicinity of the vehicle.
  • the event can be any event of potential interest to the driver of the vehicle and/or other drivers of other vehicles in the area.
  • common road hazards or blocks, emergency vehicles, accidents, stranded motorists, debris, dense traffic situations and other observable situations can constitute events that are described by using the interface of the warning device.
  • the events can also include moving events, such as hit and runs, amber alerts and other situations that continuously change locations.
  • a vehicle-to-vehicle communications component of the device can generate an anonymous message and transmit the message to one or more other vehicles within the communications range of the initiating vehicle.
  • the message can be based on the DSRC protocol and can contain embedded electronic data that describes the event.
  • the message contains the specific location information of the event obtained by consulting the vehicle's global positioning system(s) (GPS) and/or map database(s). GPS systems are well known in the art and can be used to calculate the position of the vehicle by communicating with a satellite. The position of the vehicle, along with any input from the driver/passenger can be used to calculate the specific location of the event.
  • GPS global positioning system
  • This location can then be used to generate warnings in the receiving vehicle depending on the applicability of the event to the receiving vehicle.
  • the event is a road condition that only affects automobiles traveling in one lane or direction
  • the message can generate warnings in other vehicles which will be traveling in the same direction.
  • Receiving vehicles which are traveling in other direction(s) or lane(s), can filter out and ignore the messages as being inapplicable.
  • the message is anonymous with respect to the identity of any sender, receiver or vehicle. This eliminates the need for drivers to know or to enter contact information of the receiving vehicles.
  • the message can be broadcast (multicast) to multiple automobiles, requiring no guarantee of reception.
  • the digital location information, along with any other data embedded in the messages can then be used to filter and determine the applicability of the messages to each receiving vehicle.
  • the receiving vehicle can relay the message to other vehicles within its range of communication. This causes the effective range of the warning to increase because the receiving vehicle can travel a certain distance before relaying the message to another vehicle.
  • the warning message can potentially cover distances substantially greater than that maximum, due to the relaying capabilities of the moving vehicles.
  • DSRC can be used to broadcast short messages within a range up to 1000 meters, initiated by the alerting vehicle's driver (or other occupant). Depending on the message header, each vehicle receiving such a message can ignore or relay the message to others nearby.
  • Such communications can be filtered in vehicles to prevent the same message being received and/or processed twice.
  • the messages can also be transferred in sparse density traffic situations if the communications are confined to approaching vehicles by filtering in receiving vehicles based on direction of travel for sender and receiver. In this situation, one vehicle may warn multiple other vehicles, in succession, traveling counter to its direction of travel, or a warned vehicle may pass warnings to others behind it and traveling in its direction of travel if in range.
  • the warning device can optimize information diffusion to maximize the number of other vehicles receiving the warning messages, or may minimize or otherwise tailor warnings depending on parameters set by the receiving driver.
  • location information can be included in the warning and used by the embodiments to make logical decisions about warning applicability in terms of function and spatial extent based on location of sender and receiver.
  • information about an event noticed by a driver is broadcast to all similarly equipped vehicles in order to alert the receiving devices and drivers to the presence of the sensed event.
  • the information sent includes the event's location and other parameters according to sending driver intent and device logic.
  • Location information may be sent in a map-agnostic way such as the AGORA-C location referencing standard.
  • AGORA-C is a method known in the art for map-based on-the-fly location referencing, which supports machine-to-machine location descriptions.
  • the information sent can include information about a moving vehicle, such as license plate and description.
  • the location information of moving events can be dynamically changing based on time, estimated speed and starting location of the event, input from other vehicles, and the like.
  • the moving event can be tracked by the various vehicles on the road until it is intercepted by the law enforcement or other authorities.
  • the sending device responds to driver intent by any means, including but not limited to: pushing an appropriate hardware button for a situation; selecting a menu option on a navigation system or other special purpose device.
  • the driver can specify side of road for the event, his/her lane or oncoming lane for event, or other such detailed information concerning the event or event location.
  • the various events can also include self-initiated events, which are automatically transmitted/relayed to other vehicles within immediate range. For example, the deployment of an airbag within one vehicle may cause the warning device to automatically broadcast a high priority warning message to all vehicles within range. The oncoming drivers can then be warned of the potential accident and injuries.
  • location of the event or incident is obtained in the sending vehicle by consulting an in-vehicle digital map matched with on-board GPS location, or by other automatic techniques, such as devices reading roadside linear reference markers, or by manual observations spoken by the driver such as “one mile south of exit 127”.
  • the sent message can contain location in raw and map-matched form, and in several location referencing modes, such as linear referencing or AGORA-C location referencing.
  • the driver-initiated vehicle-to-vehicle communications device can further include a warning notification component that issues a warning to the driver of the receiving vehicle if the message is deemed applicable.
  • Receiving vehicles in the communications range equipped with the warning component can receive the message, read the header, and, based on its content and parameters set by the driver previously, can alert the driver to the occurrence and its location or ignore it.
  • the message may be passed on (relayed) to all other vehicles in range.
  • each message is given a unique identifier (ID) by the original sending vehicle so that any equipped vehicle may ignore any message it has previously received, or relay it further.
  • the notification of the event occurrence and location can include any human machine interface (HMI) such as display monitors, artificial speech and/or sound, visual map indications, alarm buttons/signals and other notifications.
  • HMI human machine interface
  • the vehicles can comprise mobile nodes in a mesh-type network, which do not require any central server to maintain communications.
  • the vehicles can function as independent units, warning one another of various road hazards, emergencies and other events perceived by the drivers.
  • the warnings can be picked up by various central sources, such as law enforcement or emergency aid authorities.
  • FIG. 1 is a high level illustration of the driver-initiated warning device inside of an automobile, in accordance with various embodiments.
  • this diagram depicts the interface as having certain components, such depiction is merely for illustrative purposes. It will be apparent to those skilled in the art that the components portrayed in this figure can be arbitrarily combined, divided, rearranged or removed entirely from the interface. Furthermore, it will also be apparent to those skilled in the art that additional components can be included in the interface, without departing from the scope of the various embodiments.
  • any standard automobile can be equipped with an interface 104 for receiving input that describes an event observable by a driver or passenger.
  • the interface can be placed on the control panel, center console or other section inside the vehicle, or can be integrated into a standard GPS screen interface.
  • the observed event is a broken tree branch 100 which may block the road or cause damage to other automobiles traveling on road 102 .
  • the interface provides means for entering a description of the event and for initiating transmission of the message.
  • the user is able to specify a description, a relative location with respect to the side of the road/vehicle and the urgency of the event to other drivers traveling on the same roadway. This information can then be used by receiving vehicles in order to automatically warn the drivers of the road hazard.
  • the interface for receiving driver input need not necessarily be a graphical interface and other technologies, such as voice recognition, can also be used.
  • FIG. 2 is a system-level illustration of the driver-initiated vehicle-to-vehicle warning device, in accordance with various embodiments.
  • this diagram depicts components as logically separate, such depiction is merely for illustrative purposes. It will be apparent to those skilled in the art that the components portrayed in this figure can be arbitrarily combined or divided into separate software, firmware and/or hardware. Furthermore, it will also be apparent to those skilled in the art that such components, regardless of how they are combined or divided, can execute on the same computing device or can be distributed among different computing devices connected by one or more suitable communication means.
  • the warning device includes an On-Board Computer Unit 200 .
  • the onboard computer 200 can include one or more processors and computer memory programmed with instructions for performing the various functions of the embodiments.
  • the computer can include a risk filter application 202 and a navigation application 204 .
  • the navigation application 204 provides location information to the risk filter application 202 in response to queries.
  • the queries from the risk filter application 202 can specify that a single point location, or that all road network features within an area specified by spatial extents, are needed for calculating the location information of the event.
  • selected road network features can be specified according to parameters given in the query, partly in response to driver inputs from the risk interface 220 within the driver input interface 218 .
  • the driver input interface 218 may also perform other navigation input functions for the navigation application 204 . These are beyond the risk interface 220 driver inputs and can include the various direction lookups, traffic information and other related data.
  • the navigation application 204 consults the on-board map database 206 and integrates GPS signals from the GPS Unit 216 in order to generate location information. The location information can then be included in the warning message.
  • the location information of the receiving vehicle can be computed and compared with the location information of the event contained in the message in order to determine the applicability of the message to the receiving vehicle.
  • the vehicle's own location and requested network features can be provided to the risk filter application 202 in geographic coordinate, street address, and linear reference forms, or in any other requested formats.
  • the risk filter application 202 can determine whether driver warnings should be issued via the warning unit 208 by the driver warning interface 212 , and if warnings are to be provided to other vehicles via the message unit 210 and the vehicle-to-vehicle communications unit 214 . Accordingly, the location information can be used for both warning other vehicles and for determining the applicability of warnings to the recipient vehicle.
  • warnings to other vehicles may take into account a number of factors. For example, traffic density information on either side of a divided highway can be considered, as obtained from the GPS component 216 or by some other means. Similarly, the device can determine whether or not a particular risk event, for example the presence of an icy spot, is applicable to one side of the highway or to both sides. Because in the preferred embodiment, the vehicle-to-vehicle communications mode is “broadcast,” the warning may not be selective to a receiving vehicle position. However, sufficient information can be included in the warning message such that a receiver can decide if a particular warning is relevant. In one embodiment, the on-board map database 206 is sufficiently detailed to permit data rich messages to be transmitted.
  • the message unit 210 and the vehicle-to-vehicle communications unit 214 can be responsible for both sending and receiving messages to and from other vehicles.
  • the vehicle-to-vehicle communications unit can receive warnings relayed from other vehicles and convey them to the risk filter application 202 .
  • the risk filter application can then interpret the information in the warning message, query the navigation application 204 for current location information and routing information for the own-vehicle, and decide if a warning should be issued to the own-vehicle driver and/or relayed to other vehicles in the vicinity. In one embodiment, this decision can be made by comparing the location of the receiving vehicle with the location of the event obtained from the incoming message. If the comparison of these locations is logically related in some way (e.g.
  • the warning can be issued.
  • the location and heading information can be used to determine whether to relay the message. For example, if the location of the message origin has traveled too far (or too long) because of information diffusion, no more relaying may be necessary. In that instance, the onboard computer can decide to ignore the incoming message.
  • the factors used to determine message applicability and relay decisions can be made configurable.
  • the event message has a lifetime once it is first sent.
  • This lifetime can be independent of the original sender.
  • the message can persist depending on traffic density and circumstances due to automatic relaying by receivers, and according to parameters set by the device itself or by the driver or any receiver. In cases where traffic is very slight, messages would not be repeated often, and low-priority messages would be expected to decay rapidly because of lack of relay receivers. In dense traffic, or for very important messages such as ice slicks on the road, messages could persist for a long time. In this manner, the lifetime and applicability of warnings can be dynamically modified according to the preferences, driving behavior and routines of the various travelers on the road.
  • the driver-initiated vehicle-to-vehicle warning device is deployed in mobile vehicles and can function without the need for any dedicated roadside infrastructure equipment.
  • the device can also be mounted or otherwise integrated into certain roadside equipment, such as emergency call boxes and the like.
  • the roadside equipment can essentially function as a non-moving vehicle node and can relay the warning message to other vehicles that pass by.
  • the roadside callbox having the warning device can relay the message to other vehicles which come into the range of communication based on motion sensing technology or some other technology.
  • FIG. 3 is an overhead view of a traffic situation involving a vehicle equipped with a driver-initiated warning device, in accordance with various embodiments.
  • the vehicle 302 equipped with the warning device has approached an event 300 observable by the driver.
  • the event is an emergency vehicle 300 parked partially in the right lane of the freeway.
  • the driver of the vehicle can thus initiate a message for other drivers on the road, warning them of the emergency vehicle.
  • the initiating vehicle 302 can have a certain maximum range 304 of communication, such as 1000 meters. Accordingly, the driver of vehicle 302 broadcasts the warning message in all directions, which extends to the maximum range.
  • a certain maximum range 304 of communication such as 1000 meters. Accordingly, the driver of vehicle 302 broadcasts the warning message in all directions, which extends to the maximum range.
  • the maximum range 304 , the freeway and the various automobiles depicted in this figure are provided purely for purposes of illustration and are not drawn to scale. It will be apparent to one of ordinary skill in the art that the particular distances of communication can be implemented according to various protocols and/or preferences and the present embodiments are not limited to any particular implementation.
  • FIG. 4 is an overhead view of a traffic situation showing the relaying capability of vehicles equipped with the driver-initiated warning device, in accordance with various embodiments.
  • the vehicle 402 equipped with a warning device has approached the emergency vehicle 404 parked on the side of the road, or partially blocking one side of the road.
  • the vehicle's 402 driver can initiate a warning message to be sent to other vehicles.
  • vehicle 402 can broadcast message to other cars 406 , 408 , 416 and 420 , which are within its immediate range of communication.
  • Each of the receiving vehicles can then formulate a decision on whether to relay the incoming message to other automobiles. In one embodiment, the decision can be made based on parameters configured on the receiving vehicle.
  • the vehicle may choose to relay only urgent messages for events within a specified distance (e.g. 2000 meters), while other vehicles/embodiments can relay all messages which have a lifetime of less than a certain time period (e.g. 1 hour).
  • a specified distance e.g. 2000 meters
  • other vehicles/embodiments can relay all messages which have a lifetime of less than a certain time period (e.g. 1 hour).
  • time period e.g. 1 hour
  • a standard protocol may also be developed covering all cars and conditions.
  • some of the receiving vehicles 406 , 408 , 410 may relay the message, while other vehicles 412 , 414 , 416 , 418 , 420 , 422 , 424 , 426 can decide not to relay.
  • the driver of the initiating vehicle 402 can initially set a high priority on the message, which will be relayed to other drivers within range.
  • Other drivers who later pass the event location may note that the emergency vehicle 404 has left the road and that the event itself is over. In this case they can issue an ‘event over’ message that will cause the warning device in other vehicles to remove the priority and to cease relaying.
  • some message types may be sent having an event lifetime which, when exceeded, will result in the purging of the original message.
  • the logic of message handling including prioritization and event lifetimes and all other handling logic, can be implemented in the risk filter application 202 (illustrated in FIG. 2 ).
  • FIG. 5 is an overhead view of risk warning messages being transferred in a situation of lower traffic density, in accordance with various embodiments.
  • vehicle 500 is traveling in the opposite direction from vehicle 504 , and therefore vehicle 500 is not in a risky situation 510 in the divided highway case.
  • Vehicle 504 thus simply relays the message to vehicle 506 , which receives the warning. If vehicles 504 and 506 are not equipped with the warning device, perhaps vehicle 508 may be.
  • all vehicles equipped with the driver-initiated warning device would issue warnings for a predetermined period or for a period algorithmically determined based on traffic density and parameters set by the device and/or the initiating driver or any receiving driver.
  • the traffic density information can be obtained from the vehicle's GPS system, or via communications with other vehicles in the vicinity, or by some other means. Diffusion of the message can be more circuitous than in the case of the illustrated figures, but under most traffic densities many warnings would diffuse to other vehicles over time.
  • the maximum range 502 of the initiating vehicle can be enlarged as a result of the movement and relaying by the equipped vehicles.
  • the maximum range 512 of the relaying vehicle has different coverage with respect to the initiating vehicle.
  • a larger area is effectively covered by adding the relay transmissions.
  • This enlarging effect can be further magnified by delaying the relay of the message for a period of time, while the vehicle 504 is moving. This period of delay before relaying can be computed based on vehicle speed, traffic density and distance, or specified in some other manner.
  • FIGS. 6A and 6B illustrate a possible set of menu options for a navigation system implementing the driver-initiated vehicle-to-vehicle warning system, in accordance with various embodiments.
  • this diagram depicts components of the menu in one logical layout, such depiction is merely for illustrative purposes. It will be apparent to those skilled in the art that the components portrayed in this figure can be arbitrarily combined, divided or rearranged into separate menu options and buttons. Furthermore, it will also be apparent that additional display options, buttons and other selection components can be included in the menu.
  • a touch-screen area entitled “SEND WARNING” 602 on the navigation system display 600 ( FIG. 6A ) leads to a sub-menu ( FIG. 6B ) with multiple options ( 604 , 606 , 608 , 610 , 612 , 614 , 616 , 618 , 620 , 622 , 624 , 626 , 628 , 630 ) for entering the description of the event noted, its priority and location. For example, a priority “MAKE URGENT” 604 is shown, while the default priority is not-urgent or normal.
  • the user is also given the option to specify the side of the road where the event is occurring, in order to better filter the applicability of warning to the recipient vehicles.
  • any combination of menu choices can be selected; touching the “DONE” choice would end the selection process and broadcast the message to vehicles within the vicinity.
  • FIG. 7 illustrates the possible high level in-vehicle hardware components for the driver-initiated warning device, in accordance with various embodiments.
  • this diagram depicts the hardware components as logically separate, such depiction is merely for illustrative purposes. It will be apparent to those skilled in the art that the components portrayed in this figure can be arbitrarily combined or divided into separate hardware.
  • the hardware components of the device include a GPS receiver 702 and antenna 710 , a processing computer such as a navigation system 700 , a driver interface device for inputs from the driver and to give warnings to the driver (typically part of the navigation system human-machine interface 704 , as shown), and a vehicle-to-vehicle communications device, shown as a stand-alone DSRC receiver/transmitter 706 and antenna 712 .
  • the system can be connected to a sound output 708 device in the vehicle, such as a set of audio speakers.
  • FIG. 8 is an illustration of the flow of inputs and outputs between the various components of the device during message transmission, in accordance with various embodiments.
  • flow of data is illustrated in a particular sequence, it is not limited to this particular order.
  • the input and output of flow of data can be rearranged into a different sequence, within the scope of the present embodiments.
  • the driver can observe an event and input the event description, priority and/or other parameters 802 via the touch screen menu 800 into the memory of the warning device.
  • the message unit within the risk filter application 804 can receive this information and combine it with location information 810 received from the GPS system 808 and the digital map 814 integrated by the map matching program 812 .
  • the event message 806 produced by combining this information can then be sent to the vehicle-to-vehicle communications unit 816 which can broadcast the message to other vehicles in the vicinity.
  • FIG. 9 is an illustration of the flow of inputs and outputs between the various components of the device during message reception and relay, in accordance with various embodiments.
  • flow of data is illustrated in a particular sequence, it is not limited to this particular order.
  • the input and output of flow of data can be rearranged into a different sequence, within the scope of the present embodiments.
  • a vehicle equipped with the warning system can receive an event message 902 via the vehicle-to-vehicle communications unit 900 .
  • the event message 902 can be passed to the message unit within the risk filter application 904 , where its identifier can be compared with a local table of other event messages previously received by the vehicle. In one embodiment, if the same message has been received previously, no further action is taken.
  • the risk filter application 904 can compare the incoming message parameters (including location and priority) with the recipient vehicle's own situation and parameters set by the driver. For example, the risk filter application can receive information from the GPS 906 , including the location data 908 and digital map 912 matched by the mapping application 910 .
  • This recipient vehicle's information is then compared with the location, priority and/or description of the event embedded in the incoming message. Based on the comparison, the risk filter application can determine the applicability of the event to the receiving vehicle and can decide to issue a warning to the driver through the driver warning interface 914 . The risk filter application may also decide to relay the message to other drivers via the vehicle-to-vehicle communications unit. Furthermore, the receiving vehicle can also initiate new messages, such as the “EVENT OVER” message by using the touch screen interface menu 916 .
  • FIG. 10 is an exemplary logical flow chart diagram of the process for sending and receiving driver-initiated vehicle-to-vehicle warnings, in accordance with various embodiments.
  • FIG. 10 depicts functional steps in a particular sequence for purposes of illustration, the process is not necessarily limited to this particular order or steps.
  • One skilled in the art will appreciate that the various steps portrayed in this figure can be changed, omitted, rearranged, performed in parallel or adapted in various ways.
  • step 1000 input can be received from a user in a first vehicle.
  • the input can describe a particular event and can be entered by way of a touch screen or other interface.
  • a message is generated, which is anonymous with respect to the identity of the receiver.
  • the message is independent of any identity information of the sender, receiver, or any other vehicle.
  • the message can also contain embedded electronic data regarding the event.
  • the message can contain digital mapping coordinates of the event's location.
  • the message is generated, it is transmitted to at least one recipient vehicle, as shown in step 1104 .
  • the receiving vehicles can then receive the messages (step 1106 ) and automatically filter the messages at the second vehicle based on the electronic data embedded in the message, as shown in step 1108 .
  • the recipient vehicle can determine whether to issue a warning to the driver based on the location of the event.
  • FIG. 11 is an exemplary logical flow chart diagram of the process for receiving, analyzing and relaying driver-initiated vehicle-to-vehicle warnings, in accordance with various embodiments.
  • FIG. 11 depicts functional steps in a particular sequence for purposes of illustration, the process is not necessarily limited to this particular order or steps.
  • One skilled in the art will appreciate that the various steps portrayed in this figure can be changed, omitted, rearranged, performed in parallel or adapted in various ways.
  • the process begins in step 1100 when the recipient vehicle receives a broadcast warning message from another vehicle.
  • the message is a DSRC message, having a heading and other information regarding an event.
  • the receiving warning device can determine whether it has previously received the same warning. In one embodiment, this can be accomplished by assigning a unique identifier to each message and by maintaining a table of recently received messages in memory. If the message has been previously received and processed, the device can simply ignore the message, as shown in step 1104 .
  • the same message can be received multiple times by the same vehicle due to the relay capability of the device. For example, if the initiating vehicle and a second relaying vehicle are both within communications range of the recipient, the recipient would receive both the initial message, as well as the relay of that message.
  • the message can be processed and the information read, as shown in step 1106 .
  • the information in the message includes mapping coordinates of a specific event.
  • the warning device can also obtain the location information of the recipient vehicle by consulting the on-board GPS system. Additionally, the device can also retrieve any preferences and configuration information used to determine the applicability of events.
  • the event mapping coordinates can be compared with the location of the recipient vehicle to determine whether the event is pertinent to the vehicle. For example, if the recipient vehicle is traveling on a divided freeway and the event is a road hazard affecting only the other side of the divided freeway, the event may not be applicable to this particular vehicle. Similarly, if the vehicle is making a turn and the event's location is straight ahead, it may not be relevant. In some embodiments, the driver's preferences can also be considered when determining event relevance. For example, if the particular driver only wishes to be alerted of urgent messages, all non-urgent incoming messages can be deemed inapplicable.
  • step 1112 the event can be analyzed for applicability to the receiving vehicle. If the event is applicable, a warning can be issued to the driver of the receiving vehicle, as shown in step 1114 . If the event is not applicable, the process can continue.
  • the device can determine whether to relay the message to any other vehicles.
  • a multitude of information can be considered when making this determination. For example, as shown in step 1116 , the device may consider the message priority, its lifetime, the event's location, the distance between the receiving vehicle and the event's location, default device preferences, any previously received “event over” messages, and other information. For example, if a particular message has been continuously relayed for more than a specified time period (e.g. several hours), it can be deemed stale and would not be relayed. Similarly, if the distance between the event and the vehicle is greater than a certain threshold, it may not be relayed. Furthermore, if the recipient vehicle has previously received an “event over” message from a different vehicle, it would likely decide not to relay the initial message.
  • the message can be relayed to other vehicles, as shown in step 1120 .
  • this can be done by waiting a certain time period (e.g. a number of seconds) before re-broadcasting the message by the recipient vehicle.
  • the time period can vary depending on traffic density, vehicle current speed and other parameters. For example, if the vehicle is traveling at a high rate of speed on the highway, the waiting period between relays should be shorter than vehicles traveling slow in rush hour traffic.
  • the various embodiments described above include a computer program product which is a storage medium (media) having instructions stored thereon/in which can be used to program a specialized computing processor(s)/device(s) to perform any of the features and processes presented herein.
  • the storage medium can include, but is not limited to, one or more of the following: any type of physical media including floppy disks, optical discs, DVDs, CD-ROMs, micro drives, magneto-optical disks, holographic storage, ROMs, RAMs, PRAMS, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs); paper or paper-based media; and any type of media or device suitable for storing instructions and/or information.
  • Various embodiments also include a computer program product that can be transmitted in whole or in parts and over one or more public and/or private networks wherein the transmission includes instructions which can be used by one or more processors to perform any of the features presented herein.
  • the transmission may include a plurality of separate transmissions.
  • the present disclosure includes software for controlling both the hardware of computing device(s) and/or processor(s), and for enabling the computer(s) and/or processor(s) to interact with a human user or other mechanism utilizing the results of the present invention.
  • software may include, but is not limited to, device drivers, operating systems, execution environments/containers, user interfaces and applications.

Abstract

A driver-initiated warning device is described for communicating descriptive vehicle-to-vehicle warning messages. The device can be deployed within an automobile and can include an interface that receives input from a driver or passenger of a vehicle. The device also includes a vehicle-to-vehicle communications component that generates anonymous messages upon having received the input and broadcasts the anonymous messages to other vehicles within range. The anonymous messages have embedded electronic data regarding an event observed by the driver or passenger, such as location information of a road hazard. Based on receiving the messages, the device can make decisions as to whether to alert the driver of any upcoming dangers or other events. The location information contained in the messages can be used to filter the messages based on relevance. The messages can also be relayed to other vehicles in order to optimize information diffusion between moving automobiles.

Description

    COPYRIGHT NOTICE
  • A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
  • FIELD OF THE INVENTION
  • The current invention relates generally to vehicles and communications and more particularly to communicating driver-initiated electronic warning messages between moving vehicles.
  • BACKGROUND
  • In recent years, automobiles and other vehicles have become increasingly integrated with onboard computing systems, software and other related technologies. Virtually every feature in today's standard automobile has become reliant on one form of computer or another. From computer-controlled engine timing and emission technologies, to global positioning and navigation systems, the automobile is quickly becoming a collection of software and hardware systems that provide a wide variety of features to drivers and passengers.
  • Much research has gone into providing driver assistance and auto driving capabilities in the automobile. For example, advanced parking guidance systems have surfaced, which aid the driver in parallel parking the automobile and in other similar situations. Some manufacturers have also implemented on-board emergency response systems, such as Onstar, in case of accidents or automobile collisions. However, there is still much room for improvement by way of automated assistance during everyday driving.
  • In daily driving situations, hazardous conditions or events often occur which require quick response on the part of a driver of an automobile. For example, a flooded area of a road, the presence of an emergency vehicle or an accident may occur rapidly on the road network. Communication of warnings regarding such events and their respective locations would often be helpful and facilitate a quick response on the part of warned drivers. Most of today's standard non-broadcast communication methods, such as cellular telephones, are not well suited for such uses because they generally require some kind of identity (e.g. phone number) of the person intended to be warned, which is not readily available in most emergency situations. In addition, the time taken to use a cell phone, radio or other device is excessively long since the warned vehicle may have very little time to adjust speed or change lanes before encountering the hazardous or otherwise risky situation. Even though identifiers are not needed for broadcast technologies, time and bandwidth limitations still apply.
  • In the past, drivers have given independent and anonymous warnings to other drivers of significant events or locations of things by direct short-range broadcast communications, such as citizen's band (CB) radio, or by flashing headlights to warn oncoming drivers of the presence of hazards in the road (e.g. broken-down vehicles or emergency vehicles). However, these types of warnings are severely limited in many ways. For example, the flashing headlights fail to specify anything about the hazardous event, such as its description, location, importance and other information. By using CB radio, the driver may be able to provide some verbal instructions, however this is often too imprecise and too time-consuming to provide any significant benefit, in addition to being cumbersome to use. Furthermore, most drivers do not carry CB radios and do not wish to continuously listen for various transmissions while driving the vehicle. As such, another approach is needed.
  • Recently, the Dedicated Short Range Communications (DSRC) protocol has been created to specifically address communications within the context of automotive use. DSRC is a wireless RFID-based technology, mainly used for communications between automobiles and roadside equipment, such as automatic toll collection machinery and the like. DSRC has also been proposed for use between automobiles for various purposes.
  • Generally, it is undesirable for communications to require extensive dedicated infrastructure, such as road-side transmitting equipment, since such equipment is likely to be concentrated spatially and not be pervasive across a road network. A method is needed to spread anonymous location-dependent information quickly within a local area at the will of a driver or other vehicle occupant and without requiring extensive infrastructure. Furthermore, it is desirable that the information spread quickly and efficiently, without requiring knowledge of driver and automobile identity or other dedicated information. Applicant has identified the foregoing, as well as other shortcomings and needs which currently exist in the art in coming to conceive the subject matter of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a high level illustration of the driver-initiated warning device inside of an automobile, in accordance with various embodiments.
  • FIG. 2 is a system-level illustration of the driver-initiated vehicle-to-vehicle warning device, in accordance with various embodiments.
  • FIG. 3 is an overhead view of a traffic situation involving a vehicle equipped with a driver-initiated warning device, in accordance with various embodiments.
  • FIG. 4 is an overhead view of a traffic situation showing the relaying capability of vehicles equipped with the driver-initiated warning device, in accordance with various embodiments.
  • FIG. 5 is an overhead view of risk warning messages being transferred in a situation of lower traffic density, in accordance with various embodiments.
  • FIGS. 6A and 6B illustrate a possible set of menu options for a navigation system implementing the driver-initiated vehicle-to-vehicle warning system, in accordance with various embodiments.
  • FIG. 7 illustrates the possible high level in-vehicle hardware components for the driver-initiated warning device, in accordance with various embodiments.
  • FIG. 8 is an illustration of the flow of inputs and outputs between the various components of the device during message transmission, in accordance with various embodiments.
  • FIG. 9 is an illustration of the flow of inputs and outputs between the various components of the device during message reception and relay, in accordance with various embodiments.
  • FIG. 10 is an exemplary logical flow chart diagram of the process for sending and receiving driver-initiated vehicle-to-vehicle warnings, in accordance with various embodiments.
  • FIG. 11 is an exemplary logical flow chart diagram of the process for receiving, analyzing and relaying driver-initiated vehicle-to-vehicle warnings, in accordance with various embodiments.
  • DETAILED DESCRIPTION
  • The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. References to embodiments in this disclosure are not necessarily to the same embodiment, and such references mean at least one. While specific implementations are discussed, it is understood that this is done for illustrative purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without departing from the scope and spirit of the invention.
  • In the following description, numerous specific details are set forth to provide a thorough description of the invention. However, it will be apparent to those skilled in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail so as not to obscure the invention.
  • The embodiments of the present invention provide systems, methods and devices for providing driver-initiated vehicle-to-vehicle warnings and messages. The device can be deployed in a vehicle (e.g. automobile) as a stand-alone appliance or integrated with various computing systems of the vehicle. In one embodiment, the device includes a driver input interface for receiving input from the driver or passenger of the vehicle. The interface can be a graphical user interface (GUI), such as a touch screen, a button-based interface, or a voice recognition-based interface or any other type of interface available in the art. The driver input interface is used to receive information regarding an event occurring within a visually observable vicinity of the vehicle. The event can be any event of potential interest to the driver of the vehicle and/or other drivers of other vehicles in the area. For example, common road hazards or blocks, emergency vehicles, accidents, stranded motorists, debris, dense traffic situations and other observable situations can constitute events that are described by using the interface of the warning device. In addition, the events can also include moving events, such as hit and runs, amber alerts and other situations that continuously change locations.
  • Once input is received regarding an event, a vehicle-to-vehicle communications component of the device can generate an anonymous message and transmit the message to one or more other vehicles within the communications range of the initiating vehicle. The message can be based on the DSRC protocol and can contain embedded electronic data that describes the event. In one embodiment, the message contains the specific location information of the event obtained by consulting the vehicle's global positioning system(s) (GPS) and/or map database(s). GPS systems are well known in the art and can be used to calculate the position of the vehicle by communicating with a satellite. The position of the vehicle, along with any input from the driver/passenger can be used to calculate the specific location of the event. This location can then be used to generate warnings in the receiving vehicle depending on the applicability of the event to the receiving vehicle. As an illustration, if the event is a road condition that only affects automobiles traveling in one lane or direction, the message can generate warnings in other vehicles which will be traveling in the same direction. Receiving vehicles which are traveling in other direction(s) or lane(s), can filter out and ignore the messages as being inapplicable.
  • In one embodiment, the message is anonymous with respect to the identity of any sender, receiver or vehicle. This eliminates the need for drivers to know or to enter contact information of the receiving vehicles. In one embodiment, the message can be broadcast (multicast) to multiple automobiles, requiring no guarantee of reception. The digital location information, along with any other data embedded in the messages can then be used to filter and determine the applicability of the messages to each receiving vehicle.
  • In various embodiments, the receiving vehicle can relay the message to other vehicles within its range of communication. This causes the effective range of the warning to increase because the receiving vehicle can travel a certain distance before relaying the message to another vehicle. Thus, while the initiating vehicle's maximum range of communications can be limited, the warning message can potentially cover distances substantially greater than that maximum, due to the relaying capabilities of the moving vehicles. For example, DSRC can be used to broadcast short messages within a range up to 1000 meters, initiated by the alerting vehicle's driver (or other occupant). Depending on the message header, each vehicle receiving such a message can ignore or relay the message to others nearby. In situations of dense traffic, a diffusion process can occur, resulting in the information being carried rapidly to others, potentially over distances far exceeding the range of vehicle-to-vehicle communications component itself. Such communications can be filtered in vehicles to prevent the same message being received and/or processed twice. The messages can also be transferred in sparse density traffic situations if the communications are confined to approaching vehicles by filtering in receiving vehicles based on direction of travel for sender and receiver. In this situation, one vehicle may warn multiple other vehicles, in succession, traveling counter to its direction of travel, or a warned vehicle may pass warnings to others behind it and traveling in its direction of travel if in range. In one embodiment, the warning device can optimize information diffusion to maximize the number of other vehicles receiving the warning messages, or may minimize or otherwise tailor warnings depending on parameters set by the receiving driver. By using a digital map in both sending and receiving vehicles, location information can be included in the warning and used by the embodiments to make logical decisions about warning applicability in terms of function and spatial extent based on location of sender and receiver.
  • In accordance with the preferred embodiment, information about an event noticed by a driver, such as a hazardous road condition or the presence of an emergency vehicle, is broadcast to all similarly equipped vehicles in order to alert the receiving devices and drivers to the presence of the sensed event. The information sent includes the event's location and other parameters according to sending driver intent and device logic. Location information may be sent in a map-agnostic way such as the AGORA-C location referencing standard. In various embodiments, AGORA-C is a method known in the art for map-based on-the-fly location referencing, which supports machine-to-machine location descriptions.
  • In the case of moving events, the information sent can include information about a moving vehicle, such as license plate and description. Furthermore, the location information of moving events can be dynamically changing based on time, estimated speed and starting location of the event, input from other vehicles, and the like. By using the relay process, the moving event can be tracked by the various vehicles on the road until it is intercepted by the law enforcement or other authorities.
  • In various embodiments, the sending device responds to driver intent by any means, including but not limited to: pushing an appropriate hardware button for a situation; selecting a menu option on a navigation system or other special purpose device. In the latter case, the driver can specify side of road for the event, his/her lane or oncoming lane for event, or other such detailed information concerning the event or event location.
  • In some embodiments, the various events can also include self-initiated events, which are automatically transmitted/relayed to other vehicles within immediate range. For example, the deployment of an airbag within one vehicle may cause the warning device to automatically broadcast a high priority warning message to all vehicles within range. The oncoming drivers can then be warned of the potential accident and injuries.
  • In one embodiment, location of the event or incident is obtained in the sending vehicle by consulting an in-vehicle digital map matched with on-board GPS location, or by other automatic techniques, such as devices reading roadside linear reference markers, or by manual observations spoken by the driver such as “one mile south of exit 127”. The sent message can contain location in raw and map-matched form, and in several location referencing modes, such as linear referencing or AGORA-C location referencing.
  • In various embodiments, the driver-initiated vehicle-to-vehicle communications device can further include a warning notification component that issues a warning to the driver of the receiving vehicle if the message is deemed applicable. Receiving vehicles in the communications range equipped with the warning component can receive the message, read the header, and, based on its content and parameters set by the driver previously, can alert the driver to the occurrence and its location or ignore it. In addition, the message may be passed on (relayed) to all other vehicles in range. In one embodiment, each message is given a unique identifier (ID) by the original sending vehicle so that any equipped vehicle may ignore any message it has previously received, or relay it further. The notification of the event occurrence and location can include any human machine interface (HMI) such as display monitors, artificial speech and/or sound, visual map indications, alarm buttons/signals and other notifications.
  • In some of the embodiments, the vehicles can comprise mobile nodes in a mesh-type network, which do not require any central server to maintain communications. As such, the vehicles can function as independent units, warning one another of various road hazards, emergencies and other events perceived by the drivers. In some alternative embodiments, however, the warnings can be picked up by various central sources, such as law enforcement or emergency aid authorities.
  • FIG. 1 is a high level illustration of the driver-initiated warning device inside of an automobile, in accordance with various embodiments. Although this diagram depicts the interface as having certain components, such depiction is merely for illustrative purposes. It will be apparent to those skilled in the art that the components portrayed in this figure can be arbitrarily combined, divided, rearranged or removed entirely from the interface. Furthermore, it will also be apparent to those skilled in the art that additional components can be included in the interface, without departing from the scope of the various embodiments.
  • Any standard automobile can be equipped with an interface 104 for receiving input that describes an event observable by a driver or passenger. The interface can be placed on the control panel, center console or other section inside the vehicle, or can be integrated into a standard GPS screen interface. In this illustration, the observed event is a broken tree branch 100 which may block the road or cause damage to other automobiles traveling on road 102. Accordingly, the interface provides means for entering a description of the event and for initiating transmission of the message. For example, by using the interface 104, the user is able to specify a description, a relative location with respect to the side of the road/vehicle and the urgency of the event to other drivers traveling on the same roadway. This information can then be used by receiving vehicles in order to automatically warn the drivers of the road hazard. It should be noted that the interface for receiving driver input need not necessarily be a graphical interface and other technologies, such as voice recognition, can also be used.
  • FIG. 2 is a system-level illustration of the driver-initiated vehicle-to-vehicle warning device, in accordance with various embodiments. Although this diagram depicts components as logically separate, such depiction is merely for illustrative purposes. It will be apparent to those skilled in the art that the components portrayed in this figure can be arbitrarily combined or divided into separate software, firmware and/or hardware. Furthermore, it will also be apparent to those skilled in the art that such components, regardless of how they are combined or divided, can execute on the same computing device or can be distributed among different computing devices connected by one or more suitable communication means.
  • As illustrated, the warning device includes an On-Board Computer Unit 200. The onboard computer 200 can include one or more processors and computer memory programmed with instructions for performing the various functions of the embodiments. For example, the computer can include a risk filter application 202 and a navigation application 204. The navigation application 204 provides location information to the risk filter application 202 in response to queries. The queries from the risk filter application 202 can specify that a single point location, or that all road network features within an area specified by spatial extents, are needed for calculating the location information of the event. Alternatively, selected road network features can be specified according to parameters given in the query, partly in response to driver inputs from the risk interface 220 within the driver input interface 218. The driver input interface 218 may also perform other navigation input functions for the navigation application 204. These are beyond the risk interface 220 driver inputs and can include the various direction lookups, traffic information and other related data.
  • In one embodiment, the navigation application 204 consults the on-board map database 206 and integrates GPS signals from the GPS Unit 216 in order to generate location information. The location information can then be included in the warning message. In addition, the location information of the receiving vehicle can be computed and compared with the location information of the event contained in the message in order to determine the applicability of the message to the receiving vehicle. In various embodiments, the vehicle's own location and requested network features can be provided to the risk filter application 202 in geographic coordinate, street address, and linear reference forms, or in any other requested formats. Based on internal parameter sets and driver input provided via the risk interface 220, the risk filter application 202 can determine whether driver warnings should be issued via the warning unit 208 by the driver warning interface 212, and if warnings are to be provided to other vehicles via the message unit 210 and the vehicle-to-vehicle communications unit 214. Accordingly, the location information can be used for both warning other vehicles and for determining the applicability of warnings to the recipient vehicle.
  • In various embodiments, warnings to other vehicles may take into account a number of factors. For example, traffic density information on either side of a divided highway can be considered, as obtained from the GPS component 216 or by some other means. Similarly, the device can determine whether or not a particular risk event, for example the presence of an icy spot, is applicable to one side of the highway or to both sides. Because in the preferred embodiment, the vehicle-to-vehicle communications mode is “broadcast,” the warning may not be selective to a receiving vehicle position. However, sufficient information can be included in the warning message such that a receiver can decide if a particular warning is relevant. In one embodiment, the on-board map database 206 is sufficiently detailed to permit data rich messages to be transmitted.
  • In one embodiment, the message unit 210 and the vehicle-to-vehicle communications unit 214 can be responsible for both sending and receiving messages to and from other vehicles. For example, the vehicle-to-vehicle communications unit can receive warnings relayed from other vehicles and convey them to the risk filter application 202. The risk filter application can then interpret the information in the warning message, query the navigation application 204 for current location information and routing information for the own-vehicle, and decide if a warning should be issued to the own-vehicle driver and/or relayed to other vehicles in the vicinity. In one embodiment, this decision can be made by comparing the location of the receiving vehicle with the location of the event obtained from the incoming message. If the comparison of these locations is logically related in some way (e.g. if they are both on the same side of the road, direction of travel, etc.), the warning can be issued. Similarly, the location and heading information can be used to determine whether to relay the message. For example, if the location of the message origin has traveled too far (or too long) because of information diffusion, no more relaying may be necessary. In that instance, the onboard computer can decide to ignore the incoming message. In the various embodiments, the factors used to determine message applicability and relay decisions can be made configurable.
  • In various embodiments, the event message has a lifetime once it is first sent. This lifetime can be independent of the original sender. For example, the message can persist depending on traffic density and circumstances due to automatic relaying by receivers, and according to parameters set by the device itself or by the driver or any receiver. In cases where traffic is very slight, messages would not be repeated often, and low-priority messages would be expected to decay rapidly because of lack of relay receivers. In dense traffic, or for very important messages such as ice slicks on the road, messages could persist for a long time. In this manner, the lifetime and applicability of warnings can be dynamically modified according to the preferences, driving behavior and routines of the various travelers on the road.
  • In one embodiment, the driver-initiated vehicle-to-vehicle warning device is deployed in mobile vehicles and can function without the need for any dedicated roadside infrastructure equipment. In alternative embodiments, the device can also be mounted or otherwise integrated into certain roadside equipment, such as emergency call boxes and the like. In these embodiments, the roadside equipment can essentially function as a non-moving vehicle node and can relay the warning message to other vehicles that pass by. For example, the roadside callbox having the warning device can relay the message to other vehicles which come into the range of communication based on motion sensing technology or some other technology.
  • FIG. 3 is an overhead view of a traffic situation involving a vehicle equipped with a driver-initiated warning device, in accordance with various embodiments. As illustrated, the vehicle 302 equipped with the warning device has approached an event 300 observable by the driver. In this depiction, the event is an emergency vehicle 300 parked partially in the right lane of the freeway. The driver of the vehicle can thus initiate a message for other drivers on the road, warning them of the emergency vehicle.
  • As further illustrated, the initiating vehicle 302 can have a certain maximum range 304 of communication, such as 1000 meters. Accordingly, the driver of vehicle 302 broadcasts the warning message in all directions, which extends to the maximum range. It should be noted that the maximum range 304, the freeway and the various automobiles depicted in this figure are provided purely for purposes of illustration and are not drawn to scale. It will be apparent to one of ordinary skill in the art that the particular distances of communication can be implemented according to various protocols and/or preferences and the present embodiments are not limited to any particular implementation.
  • FIG. 4 is an overhead view of a traffic situation showing the relaying capability of vehicles equipped with the driver-initiated warning device, in accordance with various embodiments. Similarly to FIG. 3, the vehicle 402 equipped with a warning device has approached the emergency vehicle 404 parked on the side of the road, or partially blocking one side of the road. As illustrated, the vehicle's 402 driver can initiate a warning message to be sent to other vehicles. Accordingly, vehicle 402 can broadcast message to other cars 406, 408, 416 and 420, which are within its immediate range of communication. Each of the receiving vehicles can then formulate a decision on whether to relay the incoming message to other automobiles. In one embodiment, the decision can be made based on parameters configured on the receiving vehicle. For example, in some embodiments, the vehicle may choose to relay only urgent messages for events within a specified distance (e.g. 2000 meters), while other vehicles/embodiments can relay all messages which have a lifetime of less than a certain time period (e.g. 1 hour). Many other such parameters are possible as will be evident to one of ordinary skill in the art. A standard protocol may also be developed covering all cars and conditions.
  • As illustrated in the figure, some of the receiving vehicles 406, 408, 410 may relay the message, while other vehicles 412, 414, 416, 418, 420, 422, 424, 426 can decide not to relay. In one embodiment, the driver of the initiating vehicle 402 can initially set a high priority on the message, which will be relayed to other drivers within range. Other drivers who later pass the event location may note that the emergency vehicle 404 has left the road and that the event itself is over. In this case they can issue an ‘event over’ message that will cause the warning device in other vehicles to remove the priority and to cease relaying. Alternatively, some message types may be sent having an event lifetime which, when exceeded, will result in the purging of the original message. The logic of message handling, including prioritization and event lifetimes and all other handling logic, can be implemented in the risk filter application 202 (illustrated in FIG. 2).
  • As shown, because of the traffic density, other vehicles equipped with the invention can relay the warning, thereby causing an effective range 400 to be greater than the original maximum communications range 304 of the initiating vehicle (illustrated in FIG. 3). This enables the warning to travel for potentially greater distances than would otherwise be possible without the relaying capability. It should be noted, however, that the relaying in FIG. 4 is shown arbitrarily for purposes of simplicity only and does not necessarily depict the actual way that messages would get transmitted and relayed. In various embodiments, the specifics of when and how messages are actually relayed or purged by each vehicle will depend on the implementation selected and/or any configuration of the warning device.
  • FIG. 5 is an overhead view of risk warning messages being transferred in a situation of lower traffic density, in accordance with various embodiments. As shown in this figure, vehicle 500 is traveling in the opposite direction from vehicle 504, and therefore vehicle 500 is not in a risky situation 510 in the divided highway case. Vehicle 504 thus simply relays the message to vehicle 506, which receives the warning. If vehicles 504 and 506 are not equipped with the warning device, perhaps vehicle 508 may be. In one embodiment, all vehicles equipped with the driver-initiated warning device would issue warnings for a predetermined period or for a period algorithmically determined based on traffic density and parameters set by the device and/or the initiating driver or any receiving driver. In various embodiments, the traffic density information can be obtained from the vehicle's GPS system, or via communications with other vehicles in the vicinity, or by some other means. Diffusion of the message can be more circuitous than in the case of the illustrated figures, but under most traffic densities many warnings would diffuse to other vehicles over time.
  • As illustrated, even in light traffic situations, the maximum range 502 of the initiating vehicle can be enlarged as a result of the movement and relaying by the equipped vehicles. For example, the maximum range 512 of the relaying vehicle has different coverage with respect to the initiating vehicle. As such, a larger area is effectively covered by adding the relay transmissions. This enlarging effect can be further magnified by delaying the relay of the message for a period of time, while the vehicle 504 is moving. This period of delay before relaying can be computed based on vehicle speed, traffic density and distance, or specified in some other manner.
  • FIGS. 6A and 6B illustrate a possible set of menu options for a navigation system implementing the driver-initiated vehicle-to-vehicle warning system, in accordance with various embodiments. Although this diagram depicts components of the menu in one logical layout, such depiction is merely for illustrative purposes. It will be apparent to those skilled in the art that the components portrayed in this figure can be arbitrarily combined, divided or rearranged into separate menu options and buttons. Furthermore, it will also be apparent that additional display options, buttons and other selection components can be included in the menu.
  • This illustration shows a simple touch-screen system although voice-actuated systems are also possible. A touch-screen area entitled “SEND WARNING” 602 on the navigation system display 600 (FIG. 6A) leads to a sub-menu (FIG. 6B) with multiple options (604, 606, 608, 610, 612, 614, 616, 618, 620, 622, 624, 626, 628, 630) for entering the description of the event noted, its priority and location. For example, a priority “MAKE URGENT” 604 is shown, while the default priority is not-urgent or normal. The user is also given the option to specify the side of the road where the event is occurring, in order to better filter the applicability of warning to the recipient vehicles. On the submenu, any combination of menu choices can be selected; touching the “DONE” choice would end the selection process and broadcast the message to vehicles within the vicinity.
  • FIG. 7 illustrates the possible high level in-vehicle hardware components for the driver-initiated warning device, in accordance with various embodiments. Although this diagram depicts the hardware components as logically separate, such depiction is merely for illustrative purposes. It will be apparent to those skilled in the art that the components portrayed in this figure can be arbitrarily combined or divided into separate hardware.
  • In various embodiments, the hardware components of the device include a GPS receiver 702 and antenna 710, a processing computer such as a navigation system 700, a driver interface device for inputs from the driver and to give warnings to the driver (typically part of the navigation system human-machine interface 704, as shown), and a vehicle-to-vehicle communications device, shown as a stand-alone DSRC receiver/transmitter 706 and antenna 712. Furthermore, the system can be connected to a sound output 708 device in the vehicle, such as a set of audio speakers.
  • FIG. 8 is an illustration of the flow of inputs and outputs between the various components of the device during message transmission, in accordance with various embodiments. Although the flow of data is illustrated in a particular sequence, it is not limited to this particular order. The input and output of flow of data can be rearranged into a different sequence, within the scope of the present embodiments.
  • As illustrated, the driver can observe an event and input the event description, priority and/or other parameters 802 via the touch screen menu 800 into the memory of the warning device. In one embodiment, the message unit within the risk filter application 804 can receive this information and combine it with location information 810 received from the GPS system 808 and the digital map 814 integrated by the map matching program 812. The event message 806 produced by combining this information can then be sent to the vehicle-to-vehicle communications unit 816 which can broadcast the message to other vehicles in the vicinity.
  • FIG. 9 is an illustration of the flow of inputs and outputs between the various components of the device during message reception and relay, in accordance with various embodiments. Although the flow of data is illustrated in a particular sequence, it is not limited to this particular order. The input and output of flow of data can be rearranged into a different sequence, within the scope of the present embodiments.
  • As illustrated, a vehicle equipped with the warning system can receive an event message 902 via the vehicle-to-vehicle communications unit 900. The event message 902 can be passed to the message unit within the risk filter application 904, where its identifier can be compared with a local table of other event messages previously received by the vehicle. In one embodiment, if the same message has been received previously, no further action is taken. If the message is being received for the first time, the risk filter application 904 can compare the incoming message parameters (including location and priority) with the recipient vehicle's own situation and parameters set by the driver. For example, the risk filter application can receive information from the GPS 906, including the location data 908 and digital map 912 matched by the mapping application 910. This recipient vehicle's information is then compared with the location, priority and/or description of the event embedded in the incoming message. Based on the comparison, the risk filter application can determine the applicability of the event to the receiving vehicle and can decide to issue a warning to the driver through the driver warning interface 914. The risk filter application may also decide to relay the message to other drivers via the vehicle-to-vehicle communications unit. Furthermore, the receiving vehicle can also initiate new messages, such as the “EVENT OVER” message by using the touch screen interface menu 916.
  • FIG. 10 is an exemplary logical flow chart diagram of the process for sending and receiving driver-initiated vehicle-to-vehicle warnings, in accordance with various embodiments. Although this figure depicts functional steps in a particular sequence for purposes of illustration, the process is not necessarily limited to this particular order or steps. One skilled in the art will appreciate that the various steps portrayed in this figure can be changed, omitted, rearranged, performed in parallel or adapted in various ways.
  • As shown in step 1000, input can be received from a user in a first vehicle. The input can describe a particular event and can be entered by way of a touch screen or other interface. In step 1002, a message is generated, which is anonymous with respect to the identity of the receiver. In one embodiment, the message is independent of any identity information of the sender, receiver, or any other vehicle. The message can also contain embedded electronic data regarding the event. For example, the message can contain digital mapping coordinates of the event's location. Once the message is generated, it is transmitted to at least one recipient vehicle, as shown in step 1104. The receiving vehicles can then receive the messages (step 1106) and automatically filter the messages at the second vehicle based on the electronic data embedded in the message, as shown in step 1108. For example, the recipient vehicle can determine whether to issue a warning to the driver based on the location of the event.
  • FIG. 11 is an exemplary logical flow chart diagram of the process for receiving, analyzing and relaying driver-initiated vehicle-to-vehicle warnings, in accordance with various embodiments. Although this figure depicts functional steps in a particular sequence for purposes of illustration, the process is not necessarily limited to this particular order or steps. One skilled in the art will appreciate that the various steps portrayed in this figure can be changed, omitted, rearranged, performed in parallel or adapted in various ways.
  • As illustrated, the process begins in step 1100 when the recipient vehicle receives a broadcast warning message from another vehicle. In one embodiment, the message is a DSRC message, having a heading and other information regarding an event. In step 1102, the receiving warning device can determine whether it has previously received the same warning. In one embodiment, this can be accomplished by assigning a unique identifier to each message and by maintaining a table of recently received messages in memory. If the message has been previously received and processed, the device can simply ignore the message, as shown in step 1104. The same message can be received multiple times by the same vehicle due to the relay capability of the device. For example, if the initiating vehicle and a second relaying vehicle are both within communications range of the recipient, the recipient would receive both the initial message, as well as the relay of that message.
  • If the message is a new incoming message (i.e. it has not been received previously), the message can be processed and the information read, as shown in step 1106. In one embodiment, the information in the message includes mapping coordinates of a specific event. In step 1108, the warning device can also obtain the location information of the recipient vehicle by consulting the on-board GPS system. Additionally, the device can also retrieve any preferences and configuration information used to determine the applicability of events.
  • In step 1110, the event mapping coordinates can be compared with the location of the recipient vehicle to determine whether the event is pertinent to the vehicle. For example, if the recipient vehicle is traveling on a divided freeway and the event is a road hazard affecting only the other side of the divided freeway, the event may not be applicable to this particular vehicle. Similarly, if the vehicle is making a turn and the event's location is straight ahead, it may not be relevant. In some embodiments, the driver's preferences can also be considered when determining event relevance. For example, if the particular driver only wishes to be alerted of urgent messages, all non-urgent incoming messages can be deemed inapplicable.
  • Thus, in step 1112, the event can be analyzed for applicability to the receiving vehicle. If the event is applicable, a warning can be issued to the driver of the receiving vehicle, as shown in step 1114. If the event is not applicable, the process can continue.
  • In step 1116 and 1118, the device can determine whether to relay the message to any other vehicles. In various embodiments, a multitude of information can be considered when making this determination. For example, as shown in step 1116, the device may consider the message priority, its lifetime, the event's location, the distance between the receiving vehicle and the event's location, default device preferences, any previously received “event over” messages, and other information. For example, if a particular message has been continuously relayed for more than a specified time period (e.g. several hours), it can be deemed stale and would not be relayed. Similarly, if the distance between the event and the vehicle is greater than a certain threshold, it may not be relayed. Furthermore, if the recipient vehicle has previously received an “event over” message from a different vehicle, it would likely decide not to relay the initial message.
  • If in step 1118, the analysis yields a decision that the message should be relayed, the message can be relayed to other vehicles, as shown in step 1120. In one embodiment, this can be done by waiting a certain time period (e.g. a number of seconds) before re-broadcasting the message by the recipient vehicle. In one embodiment, the time period can vary depending on traffic density, vehicle current speed and other parameters. For example, if the vehicle is traveling at a high rate of speed on the highway, the waiting period between relays should be shorter than vehicles traveling slow in rush hour traffic.
  • The various embodiments described above include a computer program product which is a storage medium (media) having instructions stored thereon/in which can be used to program a specialized computing processor(s)/device(s) to perform any of the features and processes presented herein. The storage medium can include, but is not limited to, one or more of the following: any type of physical media including floppy disks, optical discs, DVDs, CD-ROMs, micro drives, magneto-optical disks, holographic storage, ROMs, RAMs, PRAMS, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs); paper or paper-based media; and any type of media or device suitable for storing instructions and/or information.
  • Various embodiments also include a computer program product that can be transmitted in whole or in parts and over one or more public and/or private networks wherein the transmission includes instructions which can be used by one or more processors to perform any of the features presented herein. In various embodiments, the transmission may include a plurality of separate transmissions.
  • Stored one or more of the computer readable medium (media), the present disclosure includes software for controlling both the hardware of computing device(s) and/or processor(s), and for enabling the computer(s) and/or processor(s) to interact with a human user or other mechanism utilizing the results of the present invention. Such software may include, but is not limited to, device drivers, operating systems, execution environments/containers, user interfaces and applications.
  • The foregoing description of the preferred embodiments of the present invention has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations can be apparent to the practitioner skilled in the art. Embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the relevant art to understand the invention. It is intended that the scope of the invention be defined by the following claims and their equivalents.

Claims (24)

1. An apparatus for providing driver initiated vehicle-to-vehicle warnings, said apparatus comprising:
a driver input interface that receives input from a user in a first vehicle; and
a vehicle-to-vehicle communications component that generates a message upon having received the input from the driver input interface and transmits said message from the first vehicle to at least one second vehicle, said message having embedded electronic data regarding an event observed by said user.
2. The apparatus of claim 1, wherein said message is anonymous with respect to any identity information of said first vehicle and said second vehicle.
3. The apparatus of claim 1, further comprising:
a global positioning system deployed in said first vehicle, the global positioning system tracking a location of said first vehicle, wherein information provided by the global positioning system is embedded into said message in order to specify the location of the event.
4. The apparatus of claim 1, further comprising:
a map database that stores location information regarding said event, wherein the location information is transmitted with said message by the vehicle-to-vehicle communications component.
5. The apparatus of claim 1, further comprising:
a risk filter component that receives one or more incoming messages from other vehicles by way of the vehicle-to-vehicle communications component, wherein said risk filter component determines whether the incoming messages received from other vehicles are applicable to said first vehicle based on location information embedded in said incoming messages.
6. The apparatus of claim 5, further comprising:
a warning component that issues a warning to the user in said first vehicle upon having received one or more messages from other vehicles if said one or more messages are determined to be applicable to said first vehicle by the risk filter component.
7. The apparatus of claim 1, wherein the vehicle-to-vehicle communications component receives an incoming message and relays said incoming message to one or more other vehicles.
8. The apparatus of claim 7, wherein relaying said incoming message to one or more other vehicles causes information diffusion such that information is carried over a distance that exceeds a range of said vehicle-to-vehicle communications component.
9. The apparatus of claim 1, wherein said second vehicle further includes:
a second vehicle-to-vehicle communications component that receives said message transmitted from the vehicle-to-vehicle communications component of the first vehicle.
10. The apparatus of claim 1, wherein the driver input interface further includes:
a description input means for receiving information regarding the description of said event.
11. The apparatus of claim 1, wherein said event is a moving event that changes location or heading over time such that subsequent messages transmitted by the vehicle-to-vehicle communications component update the location or heading associated with said event.
12. A method for providing driver initiated vehicle-to-vehicle warnings, said method comprising:
receiving input from a user in a first vehicle;
generating a message that is anonymous with respect to identity of any sender or recipient, said message containing embedded electronic data associated with an event occurring within a localized vicinity of said first vehicle;
transmitting the message from the first vehicle to at least one second vehicle;
receiving said message at the second vehicle; and
automatically filtering said message at the second vehicle based on the electronic data embedded in said message.
13. The method of claim 12, further comprising:
determining whether to relay said message based on the electronic data embedded in said message; and
relaying said message to one or more additional vehicles from said second vehicle.
14. The method of claim 13, wherein relaying said message causes the effective range of communication of said message to be increased.
15. The method of claim 13, wherein determining whether to relay said message further includes:
determining that the message specifies an end of said event; and
discontinuing relaying of said message to other vehicles.
16. The method of claim 13, wherein determining whether to relay said message further is based on one or more of the following:
lifetime of said message;
priority of said message; and
distance between the event and the second vehicle.
17. The method of claim 13, wherein relaying said message to one or more additional vehicles further includes:
waiting for a period of time prior to relaying the message, said period of time being based on one or more of the following: traffic density, vehicle speed and distance between the event and the second vehicle.
18. The method of claim 12, further comprising:
obtaining location information of said event by way of at least one of the following:
a global positioning system (GPS);
user input;
a digital map; and
a map referencing system; and
embedding said location information into the message prior to transmitting the message to the second vehicle.
19. The method of claim 12, further comprising:
automatically determining, based on the embedded location information, whether the message is applicable to the second vehicle; and
generating a warning in the second vehicle if said message is determined to be applicable, otherwise ignoring said warning.
20. The method of claim 12, wherein receiving said input from the user in the first vehicle further includes:
providing a selection mechanism for sensed events according to a preset classification system on an in-vehicle interface.
21. The method of claim 12, further comprising:
receiving a set of parameters that govern one or more of the following:
transmission of the message from the first vehicle to the second vehicle;
reception of the message at the second vehicle; and
automatic filtering of the message.
22. The method of claim 12, wherein automatically filtering the message at the second vehicle further includes:
determining whether the message has been previously received from at least one third vehicle; and
ignoring the message if said message is determined to have been previously received.
23. The method of claim 22 wherein determining whether the message has been previously received is based on a unique identifier associated with said message.
24. A computer readable medium carrying one or more sequences of instructions for providing driver-initiated vehicle-to-vehicle warnings, which instructions, when executed by one or more processors, cause the one or more processors to carry out the steps of:
receiving input from a user in a first vehicle;
generating a message that is anonymous with respect to identity of any sender or recipient, said message containing embedded electronic data associated with an event occurring within a localized vicinity of said first vehicle;
transmitting the message from the first vehicle to at least one second vehicle;
receiving said message at the second vehicle; and
automatically filtering said message at the second vehicle based on the electronic data embedded in said message.
US12/179,424 2008-07-24 2008-07-24 Driver Initiated Vehicle-to-Vehicle Anonymous Warning Device Abandoned US20100019932A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US12/179,424 US20100019932A1 (en) 2008-07-24 2008-07-24 Driver Initiated Vehicle-to-Vehicle Anonymous Warning Device
AU2009273977A AU2009273977A1 (en) 2008-07-24 2009-07-23 Driver initiated vehicle-to-vehicle anonymous warning device
CN200980118040.3A CN102037458B (en) 2008-07-24 2009-07-23 The initial vehicles of driver are to vehicles anonymous warning device
JP2011520185A JP5456039B2 (en) 2008-07-24 2009-07-23 Vehicle-to-vehicle anonymous warning device started by driver
RU2011103457/11A RU2011103457A (en) 2008-07-24 2009-07-23 DEVICE OF THE ANONYMOUS WARNINGS BETWEEN THE VEHICLES DRIVED BY THE DRIVER BETWEEN THE VEHICLES
EP09800986.3A EP2307980B1 (en) 2008-07-24 2009-07-23 Driver initiated vehicle-to-vehicle anonymous warning device
CA2725830A CA2725830A1 (en) 2008-07-24 2009-07-23 Driver initiated vehicle-to-vehicle anonymous warning device
PCT/US2009/051489 WO2010011806A1 (en) 2008-07-24 2009-07-23 System and method for evaluating and improving driving performance based on statistical feedback
BRPI0913025A BRPI0913025A2 (en) 2008-07-24 2009-07-23 driver-initiated anonymous vehicle-to-vehicle alert device
ES09800986.3T ES2594231T3 (en) 2008-07-24 2009-07-23 Device for anonymous alert from vehicle to vehicle initiated by driver
KR1020107028474A KR20110043535A (en) 2008-07-24 2009-07-23 Driver initiated vehicle-to-vehicle anonymous warning device
PCT/US2009/051490 WO2010011807A1 (en) 2008-07-24 2009-07-23 Driver initiated vehicle-to-vehicle anonymous warning device
TW098125153A TW201009761A (en) 2008-07-24 2009-07-24 Driver initiated vehicle-to-vehicle anonymous warning device
US13/474,852 US9269267B2 (en) 2008-07-24 2012-05-18 Driver initiated vehicle-to-vehicle anonymous warning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/179,424 US20100019932A1 (en) 2008-07-24 2008-07-24 Driver Initiated Vehicle-to-Vehicle Anonymous Warning Device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/474,852 Continuation US9269267B2 (en) 2008-07-24 2012-05-18 Driver initiated vehicle-to-vehicle anonymous warning device

Publications (1)

Publication Number Publication Date
US20100019932A1 true US20100019932A1 (en) 2010-01-28

Family

ID=41568143

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/179,424 Abandoned US20100019932A1 (en) 2008-07-24 2008-07-24 Driver Initiated Vehicle-to-Vehicle Anonymous Warning Device
US13/474,852 Active US9269267B2 (en) 2008-07-24 2012-05-18 Driver initiated vehicle-to-vehicle anonymous warning device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/474,852 Active US9269267B2 (en) 2008-07-24 2012-05-18 Driver initiated vehicle-to-vehicle anonymous warning device

Country Status (2)

Country Link
US (2) US20100019932A1 (en)
TW (1) TW201009761A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100194558A1 (en) * 2009-02-04 2010-08-05 Chai Keong Toh Method and System for Disseminating Witness Information in Multi-Hop Broadcast Network
US20110248868A1 (en) * 2010-04-08 2011-10-13 James Jacob Free Traffic density based safety shutoff mechanism for compression or converging traffic management system
DE102010030867A1 (en) * 2010-07-02 2012-01-05 Robert Bosch Gmbh Method for providing communication between two vehicles, involves evaluating relevance of message for rider of vehicle, and displaying message to rider of vehicle according to relevance of message by driver formation system
US20120136536A1 (en) * 2010-11-29 2012-05-31 Bayerische Motoren Werke Aktiengesellschaft Vehicle With at Least One Environment Detection System
US20130116908A1 (en) * 2011-11-07 2013-05-09 Hyundai Motor Company Method and system for controlling relative position between vehicles using a mobile base station
US20130131918A1 (en) * 2011-11-10 2013-05-23 GM Global Technology Operations LLC System and method for an information and entertainment system of a motor vehicle
US8923147B2 (en) 2011-10-03 2014-12-30 Qualcomm Incorporated Method and apparatus for filtering and processing received vehicle peer transmissions based on reliability information
WO2015009221A1 (en) * 2013-07-18 2015-01-22 Scania Cv Ab Method and sensor for transferring information between vehicles
DE102013220310A1 (en) * 2013-10-08 2015-04-23 Volkswagen Aktiengesellschaft Method and device for an emergency vehicle
US20150200983A1 (en) * 2014-01-15 2015-07-16 Cisco Technology, Inc. Cloud Based Multimedia Services Utilizing a Locus to Manage Real-Time Communications Between Participants
US20150243167A1 (en) * 2012-09-21 2015-08-27 Continental Automotive Gmbh Method and device for vehicle communication
US20150264538A1 (en) * 2012-09-25 2015-09-17 Telefonaktiebolaget L M Ericsson (Publ) Message transmission for vehicle-to-vehicle communication enabled devices
US20160019492A1 (en) * 2014-07-18 2016-01-21 EV Connect, Inc. Charge station queue management
US9293045B2 (en) 2014-07-11 2016-03-22 International Business Machines Corporation Vehicle to vehicle communication
US20160210858A1 (en) * 2015-01-20 2016-07-21 Ginny Foster Systems and methods for alerting drivers of approaching emergency vehicles
KR20160112551A (en) * 2015-03-19 2016-09-28 현대자동차주식회사 Vehicle, communicating method thereof and wireless communication apparatus therein
US9514651B2 (en) 2014-08-19 2016-12-06 Here Global B.V. Optimal warning distance
US20180160374A1 (en) * 2015-04-24 2018-06-07 Beijing Zhigu Rui Tuo Tech Co., Ltd. Information transmission method and apparatus for mobile terminal
EP3365195A4 (en) * 2015-10-25 2018-10-24 Paulo Roberto Jannotti Newlands Multifunctional airbag triggering system
US20180365993A1 (en) * 2015-12-08 2018-12-20 Ford Global Technologies, Llc Extended range vehicle horn
US10171953B2 (en) * 2016-12-15 2019-01-01 At&T Mobility Ii Llc Vehicle event notification via cell broadcast
US10173674B2 (en) 2016-06-15 2019-01-08 Ford Global Technologies, Llc Traction based systems and methods
US10328874B2 (en) * 2015-01-20 2019-06-25 Panasonic Intellectual Property Corporation Of America Method for handling case of detecting unauthorized frame transmitted over onboard network
US10346389B2 (en) 2013-09-24 2019-07-09 At&T Intellectual Property I, L.P. Facilitating determination of reliability of crowd sourced information
US10349246B1 (en) * 2018-05-08 2019-07-09 BaiJie Teng Technology Corporation Method and system for vehicle-to-vehicle identification and detection
US10410515B2 (en) * 2017-03-31 2019-09-10 Jose Muro-Calderon Emergency vehicle alert system
US10440587B2 (en) 2015-03-19 2019-10-08 Hyundai Motor Company Vehicle, communication method thereof, and wireless communication device therein
CN110796853A (en) * 2018-08-03 2020-02-14 丰田自动车工程及制造北美公司 Intermediate vehicle transponder for out-of-range vehicles
US20200092262A1 (en) * 2017-03-31 2020-03-19 Zzgulu Llc System and devices for enabling anonymous communication based on motor vehicle identifiers
EP3182388B1 (en) * 2015-11-30 2020-06-10 Fluke Corporation Detector-to-detector alerts
US20200184814A1 (en) * 2018-09-11 2020-06-11 Toyota Research Institute, Inc. Self-driving infrastructure
US10759442B2 (en) 2014-05-30 2020-09-01 Here Global B.V. Dangerous driving event reporting
US10813001B1 (en) * 2018-06-19 2020-10-20 Synapse Wireless, Inc. Multicast messaging based on distance estimation of network devices
US11006264B1 (en) * 2019-11-25 2021-05-11 Verizon Patent And Licensing Inc. Systems and methods for controlling vehicle-to-everything personal safety message transmission
US20210215830A1 (en) * 2018-05-19 2021-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism to trigger adaptive transmission for vulnerable road users (vru)
US20210245739A1 (en) * 2020-02-11 2021-08-12 International Business Machines Corporation Analytics and risk assessment for situational awareness
US11176825B1 (en) * 2020-11-17 2021-11-16 Ford Global Technologies, Llc Systems and methods for vehicle backup warning notification
US11230242B2 (en) * 2015-07-14 2022-01-25 Ford Global Technologies, Llc Vehicle emergency broadcast
US11265701B2 (en) 2019-05-10 2022-03-01 Volkswagen Aktiengesellschaft Apparatus and method for addressing road users in wireless communications
US11458889B1 (en) 2021-04-23 2022-10-04 Curdy F. Angrand Vehicle alert system
US20220406174A1 (en) * 2021-06-17 2022-12-22 Verizon Patent And Licensing Inc. Systems and methods for providing anonymous vehicle-to-vehicle communications associated with traffic incidents
US11574543B2 (en) * 2020-03-23 2023-02-07 Toyota Motor North America, Inc. Transport dangerous location warning
US11718288B2 (en) 2020-03-23 2023-08-08 Toyota Motor North America, Inc. Consensus-based transport event severity
US11830367B2 (en) 2015-01-20 2023-11-28 Panasonic Intellectual Property Corporation Of America Method for handling case of detecting unauthorized frame transmitted over onboard network

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478119B (en) * 2012-10-29 2015-03-21 A warning communication system
US9792817B2 (en) 2013-12-24 2017-10-17 Intel Corporation Road hazard communication
US10692370B2 (en) * 2014-03-03 2020-06-23 Inrix, Inc. Traffic obstruction detection
US20160009222A1 (en) * 2014-07-09 2016-01-14 Eugene Taylor Emergency alert audio interception
US10031522B2 (en) 2015-05-27 2018-07-24 Dov Moran Alerting predicted accidents between driverless cars
EP3304520B1 (en) * 2015-05-27 2023-09-20 Dov Moran Alerting predicted accidents between driverless cars
US9841762B2 (en) 2015-05-27 2017-12-12 Comigo Ltd. Alerting predicted accidents between driverless cars
CN105898815A (en) * 2015-10-22 2016-08-24 乐卡汽车智能科技(北京)有限公司 WAVE-based vehicle-mounted self-organizing network routing method, device and system
CN109070888A (en) * 2016-03-21 2018-12-21 福特全球技术公司 Propagate the alarm about traffic events
US9672734B1 (en) * 2016-04-08 2017-06-06 Sivalogeswaran Ratnasingam Traffic aware lane determination for human driver and autonomous vehicle driving system
US10032374B2 (en) 2016-07-14 2018-07-24 Toyota Motor Engineering & Manufacturing North America Inc. Vehicle systems and methods for presenting penetration metric information on a route
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
JP7119984B2 (en) * 2018-12-21 2022-08-17 トヨタ自動車株式会社 Driving support device, vehicle, information providing device, driving support system, and driving support method
JP7176398B2 (en) 2018-12-21 2022-11-22 トヨタ自動車株式会社 CONTROL DEVICE, VEHICLE, IMAGE DISPLAY SYSTEM, AND IMAGE DISPLAY METHOD
US20230107920A1 (en) * 2021-10-04 2023-04-06 Ford Global Technologies, Llc Identifying nearby vehicles for connected vehicles

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030611A1 (en) * 2000-08-22 2002-03-14 Rene Nuesser Method for transmitting data packets between motor vehicles
US20020198660A1 (en) * 2001-06-26 2002-12-26 Medius, Inc. Method and apparatus for transferring information between vehicles
US20030141990A1 (en) * 2002-01-30 2003-07-31 Coon Bradley S. Method and system for communicating alert information to a vehicle
US6708107B2 (en) * 2002-04-02 2004-03-16 Lockheed Martin Corporation Real-time ad hoc traffic alert distribution
US6765495B1 (en) * 2000-06-07 2004-07-20 Hrl Laboratories, Llc Inter vehicle communication system
US20050222715A1 (en) * 2004-04-05 2005-10-06 John Ruhnke System for determining overall heating and cooling system efficienies
US7046168B2 (en) * 2003-06-19 2006-05-16 Alpine Electronics, Inc. Inter-vehicle communication method and device
US7188026B2 (en) * 2003-05-12 2007-03-06 Dash Navigation, Inc. Hierarchical floating car data network
US7212134B2 (en) * 2002-03-07 2007-05-01 Taylor Lance G Intelligent selectively-targeted communications systems and methods
US20070096892A1 (en) * 2005-10-31 2007-05-03 Lear Corporation Method and system of alerting hazards
US20070162550A1 (en) * 2006-01-06 2007-07-12 Outland Research, Llc Vehicle-to-vehicle instant messaging with locative addressing
US7330103B2 (en) * 2005-07-21 2008-02-12 International Business Machines Corporation Vehicle collision avoidance system enhancement using in-car air bag deployment system
US7657373B2 (en) * 2004-05-06 2010-02-02 Panasonic Corporation Vehicle-mounted information processing apparatus
US7720060B2 (en) * 2006-07-03 2010-05-18 Palo Alto Research Center Incorporated Information dissemination system having an information layer

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9417600D0 (en) 1994-09-01 1994-10-19 British Telecomm Navigation information system
CN1124858A (en) 1994-12-12 1996-06-19 黄金富 Positioning, auto-navigating and collision preventing system for moving device in running
JP3472896B2 (en) 1994-12-28 2003-12-02 オムロン株式会社 Traffic information system
US20020150050A1 (en) * 1999-06-17 2002-10-17 Nathanson Martin D. Automotive telemetry protocol
JP2001283381A (en) 2000-03-30 2001-10-12 Toshiba Corp Inter-vehicle communication system
US6650252B2 (en) 2001-08-28 2003-11-18 Delphi Technologies, Inc. Vehicle warning system and method
JP3943472B2 (en) 2002-09-27 2007-07-11 アルパイン株式会社 Emergency information communication equipment
JP4066777B2 (en) 2002-10-21 2008-03-26 日産自動車株式会社 Emergency call device
JP4031347B2 (en) 2002-10-25 2008-01-09 アルパイン株式会社 Emergency call device
DE10302053A1 (en) 2003-01-21 2004-07-29 Robert Bosch Gmbh Process for the transmission of information between mobile stations
JP4074549B2 (en) 2003-05-16 2008-04-09 アルパイン株式会社 Car terminal
US7352291B2 (en) * 2003-08-19 2008-04-01 Koninklijke Philips Electronics, N.V. Method of receiving messages transmitted from vehicle to vehicle
US7373243B2 (en) 2004-03-31 2008-05-13 Nissan Technical Center North America, Inc. Method and system for providing traffic information
US7689230B2 (en) * 2004-04-01 2010-03-30 Bosch Rexroth Corporation Intelligent transportation system
US7567562B2 (en) * 2005-03-02 2009-07-28 Panasonic Corporation Content based secure rendezvous chaotic routing system for ultra high speed mobile communications in ad hoc network environment
CN100574481C (en) 2005-07-25 2009-12-23 索尼株式会社 Information processor and method
JP2007104568A (en) 2005-10-07 2007-04-19 Pioneer Electronic Corp Communication terminal, data transmitting method, data receiving method, data transmitting program, data receiving program, and recording medium
EP1788749B1 (en) * 2005-11-18 2011-03-23 Hitachi, Ltd. Method and apparatus for vehicle-to-vehicle multi-hop broadcast communication
JP2007248425A (en) 2006-03-20 2007-09-27 Clarion Co Ltd Navigation system and device, and control method and program thereof
US8410956B2 (en) * 2007-08-16 2013-04-02 GM Global Technology Operations LLC Message management protocol persistent geocast routing
WO2010003440A1 (en) 2008-07-11 2010-01-14 Elektrobit Automotive Software Gmbh Method for transferring a message to a target destination via vehicle-to-vehicle communication

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765495B1 (en) * 2000-06-07 2004-07-20 Hrl Laboratories, Llc Inter vehicle communication system
US20020030611A1 (en) * 2000-08-22 2002-03-14 Rene Nuesser Method for transmitting data packets between motor vehicles
US20020198660A1 (en) * 2001-06-26 2002-12-26 Medius, Inc. Method and apparatus for transferring information between vehicles
US20030141990A1 (en) * 2002-01-30 2003-07-31 Coon Bradley S. Method and system for communicating alert information to a vehicle
US7212134B2 (en) * 2002-03-07 2007-05-01 Taylor Lance G Intelligent selectively-targeted communications systems and methods
US6708107B2 (en) * 2002-04-02 2004-03-16 Lockheed Martin Corporation Real-time ad hoc traffic alert distribution
US7188026B2 (en) * 2003-05-12 2007-03-06 Dash Navigation, Inc. Hierarchical floating car data network
US7046168B2 (en) * 2003-06-19 2006-05-16 Alpine Electronics, Inc. Inter-vehicle communication method and device
US20050222715A1 (en) * 2004-04-05 2005-10-06 John Ruhnke System for determining overall heating and cooling system efficienies
US7657373B2 (en) * 2004-05-06 2010-02-02 Panasonic Corporation Vehicle-mounted information processing apparatus
US7330103B2 (en) * 2005-07-21 2008-02-12 International Business Machines Corporation Vehicle collision avoidance system enhancement using in-car air bag deployment system
US20070096892A1 (en) * 2005-10-31 2007-05-03 Lear Corporation Method and system of alerting hazards
US20070162550A1 (en) * 2006-01-06 2007-07-12 Outland Research, Llc Vehicle-to-vehicle instant messaging with locative addressing
US7720060B2 (en) * 2006-07-03 2010-05-18 Palo Alto Research Center Incorporated Information dissemination system having an information layer

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068016B2 (en) * 2009-02-04 2011-11-29 Mitsubishi Electric Research Laboratories, Inc. Method and system for disseminating witness information in multi-hop broadcast network
US20100194558A1 (en) * 2009-02-04 2010-08-05 Chai Keong Toh Method and System for Disseminating Witness Information in Multi-Hop Broadcast Network
US20110248868A1 (en) * 2010-04-08 2011-10-13 James Jacob Free Traffic density based safety shutoff mechanism for compression or converging traffic management system
DE102010030867A1 (en) * 2010-07-02 2012-01-05 Robert Bosch Gmbh Method for providing communication between two vehicles, involves evaluating relevance of message for rider of vehicle, and displaying message to rider of vehicle according to relevance of message by driver formation system
US9111452B2 (en) * 2010-11-29 2015-08-18 Bayerische Motoren Werke Aktiengesellschaft Vehicle with at least one environment detection system
US20120136536A1 (en) * 2010-11-29 2012-05-31 Bayerische Motoren Werke Aktiengesellschaft Vehicle With at Least One Environment Detection System
US8923147B2 (en) 2011-10-03 2014-12-30 Qualcomm Incorporated Method and apparatus for filtering and processing received vehicle peer transmissions based on reliability information
US20130116908A1 (en) * 2011-11-07 2013-05-09 Hyundai Motor Company Method and system for controlling relative position between vehicles using a mobile base station
US20130131918A1 (en) * 2011-11-10 2013-05-23 GM Global Technology Operations LLC System and method for an information and entertainment system of a motor vehicle
US20150243167A1 (en) * 2012-09-21 2015-08-27 Continental Automotive Gmbh Method and device for vehicle communication
US10055987B2 (en) * 2012-09-21 2018-08-21 Continental Automotive Gmbh Method and device for vehicle communication
US20150264538A1 (en) * 2012-09-25 2015-09-17 Telefonaktiebolaget L M Ericsson (Publ) Message transmission for vehicle-to-vehicle communication enabled devices
US9820113B2 (en) * 2012-09-25 2017-11-14 Telefonaktiebolaget L M Ericsson (Publ) Message transmission for vehicle-to-vehicle communication enabled devices
WO2015009221A1 (en) * 2013-07-18 2015-01-22 Scania Cv Ab Method and sensor for transferring information between vehicles
US10346389B2 (en) 2013-09-24 2019-07-09 At&T Intellectual Property I, L.P. Facilitating determination of reliability of crowd sourced information
US11468036B2 (en) 2013-09-24 2022-10-11 At&T Intellectual Property I, L.P. Facilitating determination of reliability of crowd sourced information
DE102013220310A1 (en) * 2013-10-08 2015-04-23 Volkswagen Aktiengesellschaft Method and device for an emergency vehicle
US20150200983A1 (en) * 2014-01-15 2015-07-16 Cisco Technology, Inc. Cloud Based Multimedia Services Utilizing a Locus to Manage Real-Time Communications Between Participants
US11572075B2 (en) 2014-05-30 2023-02-07 Here Global B.V. Dangerous driving event reporting
US10759442B2 (en) 2014-05-30 2020-09-01 Here Global B.V. Dangerous driving event reporting
US9723430B2 (en) 2014-07-11 2017-08-01 International Business Machines Corporation Vehicle to vehicle communication
US9293045B2 (en) 2014-07-11 2016-03-22 International Business Machines Corporation Vehicle to vehicle communication
US20160019492A1 (en) * 2014-07-18 2016-01-21 EV Connect, Inc. Charge station queue management
US10043393B2 (en) 2014-08-19 2018-08-07 Here Global B.V. Optimal warning distance
US10366612B2 (en) 2014-08-19 2019-07-30 Here Global B.V. Optimal warning distance
US9514651B2 (en) 2014-08-19 2016-12-06 Here Global B.V. Optimal warning distance
US10896616B2 (en) 2015-01-20 2021-01-19 Panasonic Intellectual Property Corporation Of America Method for handling case of detecting unauthorized frame transmitted over onboard network
US10891858B2 (en) * 2015-01-20 2021-01-12 Invent F&W, Llc Systems and methods for alerting drivers to alert zones
US10127813B2 (en) * 2015-01-20 2018-11-13 Invent F&W, Llc Systems and methods for alerting drivers of approaching emergency vehicles
US20160210858A1 (en) * 2015-01-20 2016-07-21 Ginny Foster Systems and methods for alerting drivers of approaching emergency vehicles
WO2016118575A1 (en) * 2015-01-20 2016-07-28 Foster Ginny Systems and methods for alerting drivers of approaching emergency vehicles
US11538344B2 (en) 2015-01-20 2022-12-27 Panasonic Intellectual Property Corporation Of America Method for handling case of detecting unauthorized frame transmitted over onboard network
US20190080598A1 (en) * 2015-01-20 2019-03-14 Invent F&W, Llc Systems and methods for alerting drivers to alert zones
US10328874B2 (en) * 2015-01-20 2019-06-25 Panasonic Intellectual Property Corporation Of America Method for handling case of detecting unauthorized frame transmitted over onboard network
US20230298465A1 (en) * 2015-01-20 2023-09-21 Invent F & W, LLC Systems and methods for alerting drivers of approaching emergency vehicles
US11830367B2 (en) 2015-01-20 2023-11-28 Panasonic Intellectual Property Corporation Of America Method for handling case of detecting unauthorized frame transmitted over onboard network
US10433310B2 (en) 2015-03-19 2019-10-01 Hyundai Motor Company Vehicle, communication method thereof, and wireless communication device therein
KR102034722B1 (en) * 2015-03-19 2019-10-21 현대자동차주식회사 Vehicle, communicating method thereof and wireless communication apparatus therein
US10440587B2 (en) 2015-03-19 2019-10-08 Hyundai Motor Company Vehicle, communication method thereof, and wireless communication device therein
KR20160112551A (en) * 2015-03-19 2016-09-28 현대자동차주식회사 Vehicle, communicating method thereof and wireless communication apparatus therein
US11503550B2 (en) * 2015-04-24 2022-11-15 Beijing Zhigu Rui Tuo Tech Co., Ltd Information transmission method and apparatus for mobile terminal
US20180160374A1 (en) * 2015-04-24 2018-06-07 Beijing Zhigu Rui Tuo Tech Co., Ltd. Information transmission method and apparatus for mobile terminal
US11230242B2 (en) * 2015-07-14 2022-01-25 Ford Global Technologies, Llc Vehicle emergency broadcast
EP3365195A4 (en) * 2015-10-25 2018-10-24 Paulo Roberto Jannotti Newlands Multifunctional airbag triggering system
EP3182388B1 (en) * 2015-11-30 2020-06-10 Fluke Corporation Detector-to-detector alerts
RU2711094C2 (en) * 2015-12-08 2020-01-15 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Vehicle driver attention system and method
US20180365993A1 (en) * 2015-12-08 2018-12-20 Ford Global Technologies, Llc Extended range vehicle horn
US10490072B2 (en) * 2015-12-08 2019-11-26 Ford Global Technologies, Llc Extended range vehicle horn
US10173674B2 (en) 2016-06-15 2019-01-08 Ford Global Technologies, Llc Traction based systems and methods
US10171953B2 (en) * 2016-12-15 2019-01-01 At&T Mobility Ii Llc Vehicle event notification via cell broadcast
US10410515B2 (en) * 2017-03-31 2019-09-10 Jose Muro-Calderon Emergency vehicle alert system
US10708235B2 (en) * 2017-03-31 2020-07-07 Zzgulu Llc System and devices for enabling anonymous communication based on motor vehicle identifiers
US20200092262A1 (en) * 2017-03-31 2020-03-19 Zzgulu Llc System and devices for enabling anonymous communication based on motor vehicle identifiers
US10349246B1 (en) * 2018-05-08 2019-07-09 BaiJie Teng Technology Corporation Method and system for vehicle-to-vehicle identification and detection
US20210215830A1 (en) * 2018-05-19 2021-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism to trigger adaptive transmission for vulnerable road users (vru)
US11585947B2 (en) * 2018-05-19 2023-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism to trigger adaptive transmission for vulnerable road users (VRU)
US10813001B1 (en) * 2018-06-19 2020-10-20 Synapse Wireless, Inc. Multicast messaging based on distance estimation of network devices
CN110796853A (en) * 2018-08-03 2020-02-14 丰田自动车工程及制造北美公司 Intermediate vehicle transponder for out-of-range vehicles
US10803748B2 (en) * 2018-09-11 2020-10-13 Toyota Research Institute, Inc. Self-driving infrastructure
US20200184814A1 (en) * 2018-09-11 2020-06-11 Toyota Research Institute, Inc. Self-driving infrastructure
US11265701B2 (en) 2019-05-10 2022-03-01 Volkswagen Aktiengesellschaft Apparatus and method for addressing road users in wireless communications
US11006264B1 (en) * 2019-11-25 2021-05-11 Verizon Patent And Licensing Inc. Systems and methods for controlling vehicle-to-everything personal safety message transmission
US11595802B2 (en) 2019-11-25 2023-02-28 Verizon Patent And Licensing Inc. Systems and methods for controlling vehicle-to-everything personal safety message transmission
US20210245739A1 (en) * 2020-02-11 2021-08-12 International Business Machines Corporation Analytics and risk assessment for situational awareness
US11574543B2 (en) * 2020-03-23 2023-02-07 Toyota Motor North America, Inc. Transport dangerous location warning
US11718288B2 (en) 2020-03-23 2023-08-08 Toyota Motor North America, Inc. Consensus-based transport event severity
US11176825B1 (en) * 2020-11-17 2021-11-16 Ford Global Technologies, Llc Systems and methods for vehicle backup warning notification
US11458889B1 (en) 2021-04-23 2022-10-04 Curdy F. Angrand Vehicle alert system
US20220406174A1 (en) * 2021-06-17 2022-12-22 Verizon Patent And Licensing Inc. Systems and methods for providing anonymous vehicle-to-vehicle communications associated with traffic incidents

Also Published As

Publication number Publication date
US20120229301A1 (en) 2012-09-13
US9269267B2 (en) 2016-02-23
TW201009761A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
US9269267B2 (en) Driver initiated vehicle-to-vehicle anonymous warning device
EP2307980B1 (en) Driver initiated vehicle-to-vehicle anonymous warning device
US8842021B2 (en) Methods and systems for early warning detection of emergency vehicles
US6853849B1 (en) Location/status-addressed radio/radiotelephone
KR101500472B1 (en) Method and apparatus for transmitting vehicle-related information in and out of a vehicle
EP1224647B1 (en) Information system
US6895332B2 (en) GPS-based vehicle warning and location system and method
US20050192746A1 (en) GPS-based vehicle warning and location system & method
CN113498017A (en) Device and method for supporting vehicle-to-anything communication and system comprising the device
CN111572554A (en) Vehicle detection system and method
JP2008059171A (en) Vehicle drive support device and drive support system
JP2003272095A (en) Vehicular communication device
WO2016024384A1 (en) Information-processing system, terminal device, program, handheld terminal device, and non-transitory, tangible, computer-readable recording medium
EP1684250A2 (en) Information system
KR101025333B1 (en) Apparatus capable of generating driving scenario adaptively and method thereof
JP2008164505A (en) Device for providing information
US20240046789A1 (en) CHAYCE-IT Emergency Vehicle Warning System
US20210314755A1 (en) Control method, communication terminal, and communication system
Motsinger et al. Technical Report: CVEL-07-003—A Review of Vehicle-to-Vehicle and Vehicle-to-Infrastructure Initiatives
KR100999992B1 (en) Method for selectively providing TPEG message based on user location information in Personal Navigation Device
KR20130123265A (en) Communication system between vehicles and communication method therebetween
KR20210050290A (en) Event relay device and control method thereof
WO2014060978A2 (en) Proximity alerting

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELE ATLAS NORTH AMERICA, INC., NEW HAMPSHIRE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOODWIN, CECIL WAYNE HILTON;REEL/FRAME:021306/0517

Effective date: 20080724

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION