US20090324446A1 - Apparatus for sensing nitroaromatics - Google Patents

Apparatus for sensing nitroaromatics Download PDF

Info

Publication number
US20090324446A1
US20090324446A1 US11/692,219 US69221907A US2009324446A1 US 20090324446 A1 US20090324446 A1 US 20090324446A1 US 69221907 A US69221907 A US 69221907A US 2009324446 A1 US2009324446 A1 US 2009324446A1
Authority
US
United States
Prior art keywords
bis
aryl substituted
substituted polyacetylene
luminescent
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/692,219
Inventor
Kirk S. Schanze
James M. Boncella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Florida Research Foundation Inc
Original Assignee
University of Florida Research Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Florida Research Foundation Inc filed Critical University of Florida Research Foundation Inc
Priority to US11/692,219 priority Critical patent/US20090324446A1/en
Publication of US20090324446A1 publication Critical patent/US20090324446A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing

Definitions

  • the subject invention was made with government support under a research project supported by Defense Advanced Research Projects Agency (grant # DAAD 19-00-1-0002).
  • Conjugated polymers have received considerable attention as the active materials in fluorescence-based chemical sensors because of their high sensitivity to a variety of solution- and vapor-phase analytes.
  • the response characteristics of a thin-film polymer fluorescence sensor depend strongly on a number of factors including the permeability of the analyte in the polymer, and the strength of the chemical (or physical) interaction between the analyte and the photoactive polymer, where permeability (P) is the product solubility (S) and diffusivity (D) of an analyte in a polymer, i.e., P ⁇ S*D.
  • the resulting increase in permeability of the pentiptycene-substituted poly(phenyleneethynylene) film can allow the analyte to quench the polymer's fluorescence more rapidly and efficiently compared to similar polymers that lack the sterically-demanding pentiptycene group.
  • Others have demonstrated that doping a surfactant into a film of a fluorescent conjugated polyelectrolyte considerably improves the film's response to neutral analyte molecules. The surfactant is believed to improve the fluorescence response by increasing the solubility (sorption) of the neutral analyte in the film.
  • the subject invention pertains to a method and apparatus for sensing nitroaromatics.
  • the subject invention can utilize luminescent, for example fluorescent and/or electroluminescent, aryl substituted polyacetylenes and/or other substituted polyacetylenes which are luminescent for sensing nitroaromatics.
  • the subject invention can utilize thin films of fluorescent and/or electroluminescent aryl substituted polyacetylenes and/or other substituted polyacetylenes which are fluorescent and/or electroluminescent.
  • the subject invention involves a method of using the disubstituted polyacetylene PTMSDPA to detect the presence of nitroaromatic vapors.
  • the subject invention also relates to nitroaromatic vapor sensors incorporating fluorescent and/or electroluminescent aryl substituted polyacetylenes and/or other substituted polyacetylenes which are fluorescent and or/electroluminescent.
  • the subject nitroaromatic sensor can utilize disubstituted polyacetylene PTMSDPA thin films.
  • the subject thin films can exhibit fluorescence that is strongly quenched by nitroaromatic vapors.
  • the subject thin films can exhibit electroluminescence created by the application of an electric field across the thin film. In this case, the electroluminescence can be quenched by exposure of the thin films to the target nitroaromatic compound.
  • the subject thin films can be used as the active material in a device, for example a diode type device, which produces an electrical signal, wherein exposure of the active material to the target nitroaromatic compound alters the electrical signal of the device.
  • a device for example a diode type device, which produces an electrical signal, wherein exposure of the active material to the target nitroaromatic compound alters the electrical signal of the device.
  • the electrodes of such a device would allow the ambient atmosphere to reach the active material.
  • porous electrodes, interdigitated electrodes, or electrodes having channels can be used.
  • particles of the fluorescent aryl substituted polyacetylenes or other fluorescent substituted polyacetylenes can be positioned in an environment to be tested and appropriate light shone on the particles such that particles located near a source of nitroaromatic compound, for example a landmine, would not fluoresce to the degree of particles not near such sources or nitroaromatic compounds.
  • the subject films or particles have thicknesses or mean diameters of less than 100 nm. The physical mechanism for the quenching process is believed to involve CT complexes that are formed, for example, between the nitroaromatic acceptors and the electron rich PTMSDPA polymer chain.
  • PTMSDPA has a unique combination of properties, including high vapor permeability and strong fluorescence, which are valuable for use in optical sensors. Sensors in accordance with the subject invention can detect the presence of nitroaromatic vapors upon the quenching of photoluminescence, for example fluorescence and/or electroluminescence produced by films or particles of disubstituted polyacetylene PTMSDPA.
  • FIG. 1A shows a fluorescence microscope image of a 7 nm thick PTMSDPA film having an image size of 385 ⁇ 308 ⁇ m, where white scale bar is 100 ⁇ m long and color scale ranges from 900-10,000 counts.
  • FIG. 1B shows an AFM image of a 7 nm thick PTMSDPA film having an image size of 450 nm ⁇ 450 nm.
  • FIG. 2 shows the fluorescence from a 7 nm thick PTMSDPA film at various times following introduction of solid 2,6-DNT to the fluorescence cuvette, where the inset shows the fluorescence intensity as a function of exposure time.
  • FIG. 3 shows PTMSDPA fluorescence intensity as a function of exposure time to 2,4-DNT vapor, where the legend indicates the thickness of the PTMSDPA films.
  • FIG. 4 illustrates fluorescence quenching (% decrease of the initial intensity) of 3 nm PTMSDPA films by various analytes, where quenching % was determined after the film was exposed to the analyte vapor for 20 min at 298 K.
  • FIG. 5 shows the structure of PTMSDPA.
  • FIG. 6 shows a schematic of a chemical explosives sensor based on PTMSP.
  • the subject invention pertains to a method and apparatus for detecting nitroaromatic compounds.
  • a specific embodiment of the subject invention can utilize changes in the luminescence emitted from luminescent aryl substituted polyacetylenes and/or other luminescent substituted polyacetylenes to detect the presence of nitroaromatics.
  • the subject invention can utilize changes in the luminescence emitted from fluorescent aryl substituted polyacetylenes and/or other fluorescent substituted polyacetylenes to detect the presence of nitroaromatics.
  • the subject invention can utilize changes in electroluminescence emitted from electroluminescent aryl substituted polyacetylenes and/or other electroluminescent substituted polyacetylenes to detect the presence of nitroaromatics. preferably, substituted polyacetylenes with large gas permeability are used.
  • polymers which can be utilized with the subject invention include poly-(1-trimethylsilylpropyne) (PTMSP) and poly-[1-phenyl-2-(4-trimethylsilylphenyl)ethyne] (PTMSDPA).
  • PTMSP has the highest fractional free volume (0.29) and gas permeability of all known polymers, while PTMSDPA displays exceptionally high permeability and high fractional free volume (0.26).
  • PTMSDPA is strongly fluorescent.
  • PTMSDPA can be used in the fabrication of a thin-film and/or particle based fluorescent sensor for vapors of neutral analytes. Nitroaromatic compounds are weakly volatile and are strong quenchers of the fluorescence of electron rich chromophores.
  • the detection of nitroaromatic vapors can include the detection of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), as these materials are the primary constituents of the explosives used in many land mines.
  • TNT 2,4,6-trinitrotoluene
  • DNT 2,4-dinitrotoluene
  • the luminescent aryl substituted polyacetylenes and/or other luminescent substituted polyacetylenes utilized in accordance with the subject invention can have a variety of shapes, such as thin films, particles, and/or fibers.
  • the thin films, particles, and/or fibers utilized in accordance with the subject invention can have thicknesses, mean diameters, and mean diameters of less than about 1 ⁇ m, respectively.
  • the thicknesses, mean diameters, and mean diameters of the thin films, particles, and/or fibers can be less than about 100 nm, respectively.
  • the thicknesses, mean diameters and mean diameters of the thin films, particles, and/or fibers can be less than about 10 nm, respectively.
  • excitation sources can be utilized to cause the photoluminescent aryl substituted polyacetylenes and/or other luminescent substituted polyacetylenes to luminesce, for example to fluoresce and/or electroluminesce.
  • excitation sources can include, for example, lasers, LED's, and electrodes to apply a voltage across the electroluminescent material, and/or other excitation sources known in the art.
  • Various means for monitoring the luminescence emitted from the luminescent aryl substituted polyacetylene and/or other luminescent substituted polyacetylense can be used, such as a human eye, photomultiplier, solid state detector, charge coupled device (CCD), or other photodetecting means known in the art.
  • a human eye photomultiplier, solid state detector, charge coupled device (CCD), or other photodetecting means known in the art.
  • CCD charge coupled device
  • polyacetylenes utilized in the methods and devices in the subject invention can be substituted, for example, with an aromatic or heteroaromatic moiety, or with a chemical group that contains an aromatic or heteroaromatic moiety.
  • the polyacetylenes utilized in accordance with the subject invention can be substituted, for example with a moiety selected from the group consisting of: aryloxycarbonyl arylcarbonyloxy, heteroaryl-oxycarbonyl, and heteroarylcarbonyloxy each of which is, optionally, substituted with C 1-10 alkyl, CN, COOH, NO 2 , NH 2 , SO 24 , C 1-20 heteroalkyl, C 2-20 alkenyl, alkynyl, akynyl-aryl, alkynyl-heteroaryl, aryl, C 1-20 alkyl-aryl, C 2-20 alkenyl-aryl, heteroaryl, C 1-20 alkyl-heteroaryl, C 2-20 alken
  • the substituted carboxylic group can be substituted with a moiety selected from the group consisting of C 1-10 alkyl, CN, COOH, NO 2 , NH 2 , SO 24 , C 1-20 heteroalkyl, C 2-20 alkenyl, alkynyl, akynyl-aryl, alkynyl-heteroaryl, aryl, C 1-20 alkyl-aryl, C 2-20 alkenyl-aryl, heteroaryl, C 1-20 alkyl-heteroaryl, C 2-20 alkenyl-heteroaryl, cycloalkyl, heterocycloalkyl, C 1-20 alkyl-heteroycloalkyl, and C 1-20 alkyl-cycloalkyl, any of which may be, optionally, substituted with a moiety selected from the group consisting of C 1-6 alkyl, halogen, OH, NH 2 , CN, NO 2 , COOH, or SO 24 .
  • heterocyclic groups include, but are not limited to, morpholine, triazole, imidazole, pyrrolidine, piperidine, piperazine, pyrrole, dihydropyridine, aziridine, thiazolidine, thiazoline, thiadiazolidine, and thiadiazoline.
  • Vapor-phase nitroaromatic compounds can quench the fluorescence of thin films of PTMSDPA when PTMSDPA thin films are exposed to such vapor-phase nitroaromatic compounds.
  • FIG. 4 illustrates the quenching results of a series of nitroaromatics which can quench the fluorescence of PTMSPDPA strongly and selectively.
  • the nitroaromatics addressed in FIG. 4 include 1,4-dinitrobenzene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, and 1,3-dinitrobenzene.
  • CT charge transfer
  • PTMSDPA can be produced by a variety of methods.
  • PTMSDPA can be, for example, synthesized by polymerization of 1-phenyl-2-(4-trimethylsilylphenyl)ethyne, which can be prepared according to the procedure described in Tsuchihara, K.; Masuda, T.; Higashimura, T. J. Am. Chem. Soc. 1991, 113, 8548-8549, which is incorporated herein by reference.
  • Polymerization can be carried out by use of a variety of catalysts, for example with a TaCl 5 /n-Bu 4 Sn catalyst as described in Tsuchihara, K.; Masuda, T.; Higashimura, T.
  • PTMSDPA can be synthesized by polymerization of 1-phenyl-2-(4-trimethylsilylphenyl)ethyne using a TaCl 5 /n-Bu 4 Sn catalyst in accordance with the Tsuchihara K.; Masuda T.; Higashimura, T. J. Am. Chem. Soc . (1991) 113, 8548-8549, and Tsuchihara, K.; Masuda, T.; Higashimura, T. Macromolecules 1992, 25, 5816-5820 (1992), which are herein incorporated by reference.
  • the molecular weight of PTMSDPA produced in this way was determined on a Rainin Dynamax HPLC that was equipped with two PLgel 5 ⁇ m Mixed-D size exclusion columns (300 ⁇ 7.5 mm, Polymer Labs) and a UV absorbance detector operating at 260 nm.
  • the GPC was calibrated using polystyrene standards (Polymer Laboratories).
  • Films of PTMSDPA were spin-cast from toluene solution onto borosilicate glass microscope cover slides at a spin rate of 2000 rpm. The films were dried under vacuum at room temperature overnight before the experiments were carried out. The concentration of the PTMSDPA/toluene solution was adjusted to vary the film thickness.
  • a concentration of 0.7 mg-mL ⁇ 1 produced a film of 3 nm thickness.
  • the thickness of the ultrathin films was estimated by measuring the film's absorbance at 425 nm.
  • the absorbance versus thickness calibration plot was constructed by measuring the absorbance of films of known thicknesses ranging from 50-100 nm. The thickness of these films was determined by profilometry on a Dektak 3030 profilometer.
  • Atomic Force Microscopy (AFM) was performed under ambient conditions with a Nanoscope III (Digital Instruments, Santa Barbara, Calif.) operating in tapping mode using silicon nitride tips.
  • the fluorescence microscope system consisted of an inverted microscope platform (Olympus, model IX 70) fitted with a 100 W Hg source (USH-102DH) and a CCD camera (Princeton, RTE 1300 ⁇ 1030) mounted to the side port. Fluorescence microscopy was conducted with a blue-violet modular filter cube (Chroma Technology, excitation 425 nm, 40 nm bandpass; 475 nm dichroic splitter). The fluorescence emission was imaged through a 475 nm long pass filter (Chroma Technology).
  • Fluorescence lifetimes were measured using a PRA time-correlated single photon counting instrument that used a 405 nm pulsed laser diode with 800 ps pulse width (nano-LED, IBH Co., Glascow, UK) as an excitation source and the fluorescence wavelength was selected by using a 550 nm (10 nm bandwidth) interference filter.
  • PTMSDPA can be synthesized by polymerization of 1-phenyl-2-(4-trimethylsilylphenyl)ethyne using a TaCl 5 /n-Bu 4 Sn catalyst.
  • the polymerization reaction is facile and proceeds in high yield making it possible to produce multi-gram quantities of PTMSDPA in one polymerization reaction.
  • the polymer has good solubility in THF, toluene and chlorinated hydrocarbons, and solutions can be cast to form films having outstanding mechanical properties (indeed, free-standing films of the material can be easily prepared).
  • FIG. 1A illustrates a fluorescence microscope image of a typical region of the film (385 ⁇ 308 ⁇ m).
  • the image is quite uniform—with the exception of a few point defects, the film features a very homogeneous fluorescence intensity.
  • the PTMSDPA films are uniform.
  • a typical AFM image of a PTMSDPA film is illustrated in FIG. 1B ; analysis of this image reveals that the surface exhibits an RMS roughness of 0.5 nm.
  • the AFM imaging experiments indicate that spin-coated films of PTMSDPA feature a continuous but somewhat “porous” structure having a length scale on the order of 10-20 nm.
  • the porous surface morphology that is imaged by AFM may reflect the relatively porous structure of the polymer bulk that is caused by the inability of the rigid polyacetylene chains to pack in the solid. This porous structure allows the bulk of the film to equilibrate rapidly with vapor-phase analytes (see below).
  • FIG. 2 illustrates fluorescence spectra of a 7 nm thick spin-cast PTMSDPA film as a function of time following the addition of a crystal of solid 2,6-dinitrotoluene (2,6-DNT) to the cuvette containing the film.
  • This data shows that the PTMSDPA fluorescence intensity decreases significantly with increasing time of exposure to the 2,6-DNT.
  • the fluorescence intensity drops quickly within the first 2 minutes after addition of 2,6-DNT and then it decreases more slowly until attaining stable value that is ⁇ 10% of the unquenched intensity.
  • the rate by which the film's fluorescence is quenched is apparently determined by the sublimation rate of the 2,6-DNT and/or by the rate at which the vapor of the analyte permeates into the polymer film.
  • the fluorescence maximum and bandshape is unchanged in the presence of the 2,4-DNT, which indicates that the interaction between the electron poor nitroaromatic and the electron rich polyacetylene does not afford emissive (exciplex) states.
  • the quenching is reversible, the fluorescence recovers more slowly than the quenching develops.
  • a 3 nm thick film that had been exposed to 2,6-DNT exhibited >90% recovery of the initial fluorescence intensity when it was allowed to stand in air for approximately 1 hr.
  • the recovery time can be decreased by purging with dry N 2 gas.
  • the 90% recovery time was decreased to approximately 10 min when the sample was placed in a vial that was being gently purged with dry N 2 gas.
  • FIG. 3 illustrates the influence of film thickness on the rate at which 2,4-DNT quenches the PTMSDPA fluorescence. It is clear that the rate of the quenching process increases with decreasing film thickness.
  • FIG. 5 shows the structure for PTMSDPA, which can be incorporated with specific embodiments of the subject invention.
  • FIG. 6 illustrates a specific embodiment of a detection apparatus in accordance with the subject invention.
  • a PTMSP sensor film is positioned to receive excitation illumination from an excitation source.
  • the excitation source is a GaN 430 nm, 100 mW LED and the PTMSP sensor film is positioned adjacent to the output of the LED.
  • the PTMSP sensor film is also positioned to be exposed to a volume of gaseous fluid in which one or more nitroaromatics may be present.
  • a forced gaseous flow of the volume of gaseous fluid in which one or more nitroaromatics may be present is delivered onto the surface of the PTMSP sensor film.
  • a detector is positioned to measure the luminescence emmitted from the PTMSP sensor film in a wavelength range corresponding to fluorescence from the PTMSP sensor film resulting from the excitation of the film by the LED.
  • the detector measures the luminescence emitted from the PTMSP sensor film which passes through a 550 nm bandpass filter, thus measuring the luminescence emitted by the film at wavelengths of about 550 nm. Detection of reduction in luminescence at wavelength of about 550 nm emitted from the film is an indication of the presence of one or more introaromatics in the volume of gaseous fluid.

Abstract

The subject invention pertains to a method and apparatus for sensing nitroaromatics. The subject invention can utilize luminescent, for example fluorescent and/or electroluminescent, aryl substituted polyacetylenes and/or other substituted polyacetylenes which are luminescent for sensing nitroaromatics. In a specific embodiment, the subject invention can utilize thin films of fluorescent and/or electroluminescent aryl substituted polyacetylenes and/or other substituted polyacetylenes which are fluorescent and/or electroluminescent. In a specific embodiment, the fluorescence from thin films of fluorescent, substituted polyacetylene, such as—poly-[1-phenyl-2-(4-trimethylsilylphenyl)ethyne] (PTMSDPA) is strongly quenched by the vapors of a variety of nitroaromatic compounds present at levels ranging from parts-per-million to parts-per-billion in air.

Description

  • The subject invention was made with government support under a research project supported by Defense Advanced Research Projects Agency (grant # DAAD 19-00-1-0002).
  • BACKGROUND OF INVENTION
  • Conjugated polymers have received considerable attention as the active materials in fluorescence-based chemical sensors because of their high sensitivity to a variety of solution- and vapor-phase analytes. The response characteristics of a thin-film polymer fluorescence sensor depend strongly on a number of factors including the permeability of the analyte in the polymer, and the strength of the chemical (or physical) interaction between the analyte and the photoactive polymer, where permeability (P) is the product solubility (S) and diffusivity (D) of an analyte in a polymer, i.e., P═S*D. Recently, it has been demonstrated that by using a sterically demanding pentiptycene moiety it is possible to increase the permeability of a highly fluorescent poly(phenyleneethynylene) film thereby increasing the response of the material to vapor-phase analytes. The bulky pentiptycene moiety is believed to create molecular-scale channels which provide pathways for the analyte molecules to diffuse into the polymer and readily interact with the electron-rich π-conjugated system. The resulting increase in permeability of the pentiptycene-substituted poly(phenyleneethynylene) film can allow the analyte to quench the polymer's fluorescence more rapidly and efficiently compared to similar polymers that lack the sterically-demanding pentiptycene group. Others have demonstrated that doping a surfactant into a film of a fluorescent conjugated polyelectrolyte considerably improves the film's response to neutral analyte molecules. The surfactant is believed to improve the fluorescence response by increasing the solubility (sorption) of the neutral analyte in the film.
  • BRIEF SUMMARY
  • The subject invention pertains to a method and apparatus for sensing nitroaromatics. The subject invention can utilize luminescent, for example fluorescent and/or electroluminescent, aryl substituted polyacetylenes and/or other substituted polyacetylenes which are luminescent for sensing nitroaromatics. In a specific embodiment, the subject invention can utilize thin films of fluorescent and/or electroluminescent aryl substituted polyacetylenes and/or other substituted polyacetylenes which are fluorescent and/or electroluminescent. In a specific embodiment, the subject invention involves a method of using the disubstituted polyacetylene PTMSDPA to detect the presence of nitroaromatic vapors. The subject invention also relates to nitroaromatic vapor sensors incorporating fluorescent and/or electroluminescent aryl substituted polyacetylenes and/or other substituted polyacetylenes which are fluorescent and or/electroluminescent. In a specific embodiment, the subject nitroaromatic sensor can utilize disubstituted polyacetylene PTMSDPA thin films. The subject thin films can exhibit fluorescence that is strongly quenched by nitroaromatic vapors. Alternatively, the subject thin films can exhibit electroluminescence created by the application of an electric field across the thin film. In this case, the electroluminescence can be quenched by exposure of the thin films to the target nitroaromatic compound.
  • In addition, the subject thin films can be used as the active material in a device, for example a diode type device, which produces an electrical signal, wherein exposure of the active material to the target nitroaromatic compound alters the electrical signal of the device. Preferably, the electrodes of such a device would allow the ambient atmosphere to reach the active material. For example, porous electrodes, interdigitated electrodes, or electrodes having channels can be used.
  • In another embodiment, particles of the fluorescent aryl substituted polyacetylenes or other fluorescent substituted polyacetylenes can be positioned in an environment to be tested and appropriate light shone on the particles such that particles located near a source of nitroaromatic compound, for example a landmine, would not fluoresce to the degree of particles not near such sources or nitroaromatic compounds. Preferably, the subject films or particles have thicknesses or mean diameters of less than 100 nm. The physical mechanism for the quenching process is believed to involve CT complexes that are formed, for example, between the nitroaromatic acceptors and the electron rich PTMSDPA polymer chain. PTMSDPA has a unique combination of properties, including high vapor permeability and strong fluorescence, which are valuable for use in optical sensors. Sensors in accordance with the subject invention can detect the presence of nitroaromatic vapors upon the quenching of photoluminescence, for example fluorescence and/or electroluminescence produced by films or particles of disubstituted polyacetylene PTMSDPA.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1A shows a fluorescence microscope image of a 7 nm thick PTMSDPA film having an image size of 385×308 μm, where white scale bar is 100 μm long and color scale ranges from 900-10,000 counts.
  • FIG. 1B shows an AFM image of a 7 nm thick PTMSDPA film having an image size of 450 nm×450 nm.
  • FIG. 2 shows the fluorescence from a 7 nm thick PTMSDPA film at various times following introduction of solid 2,6-DNT to the fluorescence cuvette, where the inset shows the fluorescence intensity as a function of exposure time.
  • FIG. 3 shows PTMSDPA fluorescence intensity as a function of exposure time to 2,4-DNT vapor, where the legend indicates the thickness of the PTMSDPA films.
  • FIG. 4 illustrates fluorescence quenching (% decrease of the initial intensity) of 3 nm PTMSDPA films by various analytes, where quenching % was determined after the film was exposed to the analyte vapor for 20 min at 298 K.
  • FIG. 5 shows the structure of PTMSDPA.
  • FIG. 6 shows a schematic of a chemical explosives sensor based on PTMSP.
  • DETAILED DISCLOSURE
  • The subject invention pertains to a method and apparatus for detecting nitroaromatic compounds. A specific embodiment of the subject invention can utilize changes in the luminescence emitted from luminescent aryl substituted polyacetylenes and/or other luminescent substituted polyacetylenes to detect the presence of nitroaromatics. In a further embodiment, the subject invention can utilize changes in the luminescence emitted from fluorescent aryl substituted polyacetylenes and/or other fluorescent substituted polyacetylenes to detect the presence of nitroaromatics. In another specific embodiment, the subject invention can utilize changes in electroluminescence emitted from electroluminescent aryl substituted polyacetylenes and/or other electroluminescent substituted polyacetylenes to detect the presence of nitroaromatics. preferably, substituted polyacetylenes with large gas permeability are used. Examples of polymers which can be utilized with the subject invention include poly-(1-trimethylsilylpropyne) (PTMSP) and poly-[1-phenyl-2-(4-trimethylsilylphenyl)ethyne] (PTMSDPA). PTMSP has the highest fractional free volume (0.29) and gas permeability of all known polymers, while PTMSDPA displays exceptionally high permeability and high fractional free volume (0.26). In addition to being highly permeable, like many other bis-aryl substituted polyacetylenes PTMSDPA is strongly fluorescent. In a specific embodiment, PTMSDPA can be used in the fabrication of a thin-film and/or particle based fluorescent sensor for vapors of neutral analytes. Nitroaromatic compounds are weakly volatile and are strong quenchers of the fluorescence of electron rich chromophores. The detection of nitroaromatic vapors can include the detection of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), as these materials are the primary constituents of the explosives used in many land mines.
  • The luminescent aryl substituted polyacetylenes and/or other luminescent substituted polyacetylenes utilized in accordance with the subject invention can have a variety of shapes, such as thin films, particles, and/or fibers. In specific embodiments, the thin films, particles, and/or fibers utilized in accordance with the subject invention can have thicknesses, mean diameters, and mean diameters of less than about 1 μm, respectively. In a further specific embodiment, the thicknesses, mean diameters, and mean diameters of the thin films, particles, and/or fibers can be less than about 100 nm, respectively. In a further specific embodiment, the thicknesses, mean diameters and mean diameters of the thin films, particles, and/or fibers, can be less than about 10 nm, respectively.
  • Various excitation sources can be utilized to cause the photoluminescent aryl substituted polyacetylenes and/or other luminescent substituted polyacetylenes to luminesce, for example to fluoresce and/or electroluminesce. Such excitation sources can include, for example, lasers, LED's, and electrodes to apply a voltage across the electroluminescent material, and/or other excitation sources known in the art.
  • Various means for monitoring the luminescence emitted from the luminescent aryl substituted polyacetylene and/or other luminescent substituted polyacetylense can be used, such as a human eye, photomultiplier, solid state detector, charge coupled device (CCD), or other photodetecting means known in the art.
  • The polyacetylenes utilized in the methods and devices in the subject invention can be substituted, for example, with an aromatic or heteroaromatic moiety, or with a chemical group that contains an aromatic or heteroaromatic moiety. In a specific embodiment, the polyacetylenes utilized in accordance with the subject invention can be substituted, for example with a moiety selected from the group consisting of: aryloxycarbonyl arylcarbonyloxy, heteroaryl-oxycarbonyl, and heteroarylcarbonyloxy each of which is, optionally, substituted with C1-10 alkyl, CN, COOH, NO2, NH2, SO24, C1-20 heteroalkyl, C2-20 alkenyl, alkynyl, akynyl-aryl, alkynyl-heteroaryl, aryl, C1-20 alkyl-aryl, C2-20 alkenyl-aryl, heteroaryl, C1-20 alkyl-heteroaryl, C2-20 alkenyl-heteroaryl, cycloalkyl, heterocycloalkyl, C1-20 alkyl-heteroycloalkyl, and C1-20 alkyl-cycloalkyl, any of which may be, optionally, substituted with a moiety selected from the group consisting of C1-6 alkyl, halogen, OH, NH2, CN, NO2, COOH, or SO2-4.
  • In other embodiments, the substituted carboxylic group can be substituted with a moiety selected from the group consisting of C1-10 alkyl, CN, COOH, NO2, NH2, SO24, C1-20 heteroalkyl, C2-20 alkenyl, alkynyl, akynyl-aryl, alkynyl-heteroaryl, aryl, C1-20 alkyl-aryl, C2-20 alkenyl-aryl, heteroaryl, C1-20 alkyl-heteroaryl, C2-20 alkenyl-heteroaryl, cycloalkyl, heterocycloalkyl, C1-20 alkyl-heteroycloalkyl, and C1-20 alkyl-cycloalkyl, any of which may be, optionally, substituted with a moiety selected from the group consisting of C1-6 alkyl, halogen, OH, NH2, CN, NO2, COOH, or SO24. Exemplary heterocyclic groups include, but are not limited to, morpholine, triazole, imidazole, pyrrolidine, piperidine, piperazine, pyrrole, dihydropyridine, aziridine, thiazolidine, thiazoline, thiadiazolidine, and thiadiazoline.
  • Vapor-phase nitroaromatic compounds can quench the fluorescence of thin films of PTMSDPA when PTMSDPA thin films are exposed to such vapor-phase nitroaromatic compounds. FIG. 4 illustrates the quenching results of a series of nitroaromatics which can quench the fluorescence of PTMSPDPA strongly and selectively. The nitroaromatics addressed in FIG. 4 include 1,4-dinitrobenzene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, and 1,3-dinitrobenzene. The nitroaromatic quenching phenomenon is believed to arise from charge transfer (CT) complex formation between the electron-rich PTMSDPA backbone and the electron poor nitroaromatic. The rapid response of the material is clearly related to its high permeability and fractional free volume which allows the vapor phase nitroaromatic molecules to penetrate into the film rapidly.
  • In a specific embodiment, PTMSDPA can be produced by a variety of methods. PTMSDPA can be, for example, synthesized by polymerization of 1-phenyl-2-(4-trimethylsilylphenyl)ethyne, which can be prepared according to the procedure described in Tsuchihara, K.; Masuda, T.; Higashimura, T. J. Am. Chem. Soc. 1991, 113, 8548-8549, which is incorporated herein by reference. Polymerization can be carried out by use of a variety of catalysts, for example with a TaCl5/n-Bu4Sn catalyst as described in Tsuchihara, K.; Masuda, T.; Higashimura, T. Macromolecules 1992, 25, 5816-5820; and in Teraguchi, M.; Masuda, T. J. Poly. Sci. A Poly. Chem. 1998, 36, 2721-2725, both of which are incorporated herein by reference.
  • PTMSDPA can be synthesized by polymerization of 1-phenyl-2-(4-trimethylsilylphenyl)ethyne using a TaCl5/n-Bu4Sn catalyst in accordance with the Tsuchihara K.; Masuda T.; Higashimura, T. J. Am. Chem. Soc. (1991) 113, 8548-8549, and Tsuchihara, K.; Masuda, T.; Higashimura, T. Macromolecules 1992, 25, 5816-5820 (1992), which are herein incorporated by reference. The molecular weight of PTMSDPA produced in this way was determined on a Rainin Dynamax HPLC that was equipped with two PLgel 5 μm Mixed-D size exclusion columns (300×7.5 mm, Polymer Labs) and a UV absorbance detector operating at 260 nm. The GPC was calibrated using polystyrene standards (Polymer Laboratories). Films of PTMSDPA were spin-cast from toluene solution onto borosilicate glass microscope cover slides at a spin rate of 2000 rpm. The films were dried under vacuum at room temperature overnight before the experiments were carried out. The concentration of the PTMSDPA/toluene solution was adjusted to vary the film thickness. A concentration of 0.7 mg-mL−1 produced a film of 3 nm thickness. The thickness of the ultrathin films was estimated by measuring the film's absorbance at 425 nm. The absorbance versus thickness calibration plot was constructed by measuring the absorbance of films of known thicknesses ranging from 50-100 nm. The thickness of these films was determined by profilometry on a Dektak 3030 profilometer. Atomic Force Microscopy (AFM) was performed under ambient conditions with a Nanoscope III (Digital Instruments, Santa Barbara, Calif.) operating in tapping mode using silicon nitride tips. The fluorescence microscope system consisted of an inverted microscope platform (Olympus, model IX 70) fitted with a 100 W Hg source (USH-102DH) and a CCD camera (Princeton, RTE 1300×1030) mounted to the side port. Fluorescence microscopy was conducted with a blue-violet modular filter cube (Chroma Technology, excitation 425 nm, 40 nm bandpass; 475 nm dichroic splitter). The fluorescence emission was imaged through a 475 nm long pass filter (Chroma Technology).
  • Fluorescence spectra were measured on a SPEX Fluorolog-2 or on a spectrometer consisting of an ISA-SPEX Triax 180 spectrograph equipped with a LN2 cooled CCD detector (Hamamatsu CCD, 1024×64 pixels). During fluorescence measurements the polymer films were contained in sealed quartz cuvettes. For quenching studies, the solid analyte was added at time=0 and then the cuvette was sealed to allow the solid-vapor equilibrium to be established. Fluorescence spectra were recorded at intervals after addition of the analyte. Absorption spectra were obtained on a Cary-100 UV-visible spectrometer. Fluorescence lifetimes were measured using a PRA time-correlated single photon counting instrument that used a 405 nm pulsed laser diode with 800 ps pulse width (nano-LED, IBH Co., Glascow, UK) as an excitation source and the fluorescence wavelength was selected by using a 550 nm (10 nm bandwidth) interference filter.
  • PTMSDPA can be synthesized by polymerization of 1-phenyl-2-(4-trimethylsilylphenyl)ethyne using a TaCl5/n-Bu4Sn catalyst. The polymerization reaction is facile and proceeds in high yield making it possible to produce multi-gram quantities of PTMSDPA in one polymerization reaction. GPC analysis of the PTMSDPA sample produced in this way indicate that the material has Mn=293,000 (PDI=1.6). The polymer has good solubility in THF, toluene and chlorinated hydrocarbons, and solutions can be cast to form films having outstanding mechanical properties (indeed, free-standing films of the material can be easily prepared).
  • As noted above, previous studies demonstrate that PTMSDPA is highly permeable to light gases (i.e., N2, O2 and H2) and hydrocarbon vapors. The high permeability has been ascribed to the polymer's large fractional free volume and interconnected “channels” that allow small molecules to rapidly diffuse within the matrix. In order to explore the morphology of ultrathin films of PTMSDPA similar to those used in the fluorescence sensor work described below, we used fluorescence microscopy and tapping-mode AFM to image the surface of 7 nm thick films of the polymer that were spin-coated from toluene. FIG. 1A illustrates a fluorescence microscope image of a typical region of the film (385×308 μm). The image is quite uniform—with the exception of a few point defects, the film features a very homogeneous fluorescence intensity. Thus, on the length scale accessible with optical microscopy the PTMSDPA films are uniform. In order to examine the film morphology with higher spatial resolution we examined the same film using tapping mode AFM. A typical AFM image of a PTMSDPA film is illustrated in FIG. 1B; analysis of this image reveals that the surface exhibits an RMS roughness of 0.5 nm. The AFM imaging experiments indicate that spin-coated films of PTMSDPA feature a continuous but somewhat “porous” structure having a length scale on the order of 10-20 nm. The porous surface morphology that is imaged by AFM may reflect the relatively porous structure of the polymer bulk that is caused by the inability of the rigid polyacetylene chains to pack in the solid. This porous structure allows the bulk of the film to equilibrate rapidly with vapor-phase analytes (see below).
  • In toluene solution PTMSDPA (c=50 μM) features absorption bands at 430 nm (ε=4630 M−1cm−1) and 370 nm (ε=4440 M−1cm−1, ε values computed based on repeat unit molecular mass) and a broad fluorescence band with λmax=520 nm. The polymer's fluorescence is relatively efficient (φ=0.25) and very short-lived (τ<50 ps). These features are very characteristic of bis-aryl substituted polyacetylenes. The low-energy absorption band of a 7 nm thick film of PTMSDPA is slightly blue-shifted from its solution value (λmax film=423 nm) and the fluorescence is slightly red-shifted (λmax film=533 nm). These features are consistent with the existence of interchain aggregates in the solid material. Nevertheless, the fluorescence from the polymer film is very strong and it is easily detected by eye when the material is illuminated with a 7 W near-UV handlamp.
  • FIG. 2 illustrates fluorescence spectra of a 7 nm thick spin-cast PTMSDPA film as a function of time following the addition of a crystal of solid 2,6-dinitrotoluene (2,6-DNT) to the cuvette containing the film. This data shows that the PTMSDPA fluorescence intensity decreases significantly with increasing time of exposure to the 2,6-DNT. As shown in the inset of FIG. 2, the fluorescence intensity drops quickly within the first 2 minutes after addition of 2,6-DNT and then it decreases more slowly until attaining stable value that is ≈10% of the unquenched intensity. The rate by which the film's fluorescence is quenched is apparently determined by the sublimation rate of the 2,6-DNT and/or by the rate at which the vapor of the analyte permeates into the polymer film. The fluorescence maximum and bandshape is unchanged in the presence of the 2,4-DNT, which indicates that the interaction between the electron poor nitroaromatic and the electron rich polyacetylene does not afford emissive (exciplex) states. Although the quenching is reversible, the fluorescence recovers more slowly than the quenching develops. For example, a 3 nm thick film that had been exposed to 2,6-DNT exhibited >90% recovery of the initial fluorescence intensity when it was allowed to stand in air for approximately 1 hr. The recovery time can be decreased by purging with dry N2 gas. For example, the 90% recovery time was decreased to approximately 10 min when the sample was placed in a vial that was being gently purged with dry N2 gas.
  • The fact that the rate by which the nitroaromatic permeates into the conjugated polymer film is important in determining the rate of the fluorescence quenching process is established by a study of the quenching of a series of PTMSP films of varying thickness by 2,4-dinitrotoluene (2,4-DNT). FIG. 3 illustrates the influence of film thickness on the rate at which 2,4-DNT quenches the PTMSDPA fluorescence. It is clear that the rate of the quenching process increases with decreasing film thickness. For an 80 nm thick film, the fluorescence decreases to 50% of its initial value in ≈200 S (i.e., t50%=200 s); however, for a 3 nm thick film the 50% quenching level is reached in less than 20 s (t50%=20 s). Assuming that the sublimation rate is the same in the four 2,4-DNT quenching rate measurements, then it appears that the parameter responsible for the observed difference in fluorescence quenching arises from the effect of film thickness on the rate by which the nitroaromatic permeates into the film. If diffusion of the nitroaromatic into the film is the rate determining step for fluorescence quenching, it is expected that a plot of (fluorescence intensity)−1 vs. (time)−1/2 will be linear. However, a such plot constructed using the data shown in FIG. 3 is not linear. The deviation from linearity may arise because the concentration of the nitroaromatic at the air-film interface is increasing during the timescale of the experiments.
  • Additional evidence that the permeation of the analyte in the PTMSDPA film is the most important parameter in determining the fluorescence quenching response time is provided by a study of the time dependence of the fluorescence intensity from a PTMSDPA film for a series of nitroaromatics. Table 1 summarizes the results of a series of experiments where the fluorescence intensity from a 3 nm thick spin-cast PTMSDPA film is monitored as a function of time after being exposed to the vapors of four different nitroaromatic compounds. This data shows that the t50% response time for the fluorescence quenching process decreases along the series 1,4-DNB >>2,6-DNT>1,3-DNB >>4-NT (see footnote to Table 1 for acronym definitions). Interestingly, the response time correlates strongly with the vapor pressure of the nitroaromatic, i.e., t50% decreases as the analyte's vapor pressure increases. A similar dependence of the quenching response time on analyte vapor pressure was reported by Yang and Swager in their study of pentiptycene-containing poly-(phenyleneethynylene)s in Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864-11873, who concluded that permeation of the nitroaromatic vapor into the film was important in establishing the response time of the sensor film.
  • TABLE 1
    Fluorescence Quenching Response Times a
    Quencher b Vapor Pressure/ppm in air c t50%/s d
    1,4-DNB 0.034 880
    2,6-DNT 0.74 48
    1,3-DNB 1.18 21
    4-NT 210 10
    a 3 nm PTMSDPA film.
    b 1,4-DNB = 1,4-dinitrobenzene; 2,6-DNT = 2,6-dinitrotoluene; 1,3-DNB = 1,3-dinitrobenzene; 4-NT = 4-nitrotoluene.
    c From ref. 31
    d t50% is the time required for the PTMSDPA fluorescence intensity to decrease by 50%.
  • While the response time of the PTMSDPA thin film fluorescence sensor varies strongly with analyte vapor pressure, in general the fluorescence response reaches equilibrium in less than 20 min. FIG. 4 shows the quenching response of 3 nm thick PTMSDPA films to various analytes at t=20 min after exposure to the analyte's vapor. This presentation shows that all of the nitroaromatic compounds tested elicit a significant quenching response from the PTMSDPA film. Interestingly, however, other aromatic compounds such as chloranil, 1,4-dimethoxybenzene (1,4-DMB) and 1,2-dimethoxybenzene (1,2-DMB) give rise to very little quenching (or in the case of 1,2-DMB lead to a slightly enhanced fluorescence intensity). These observations imply that PTMSDPA's quenching response is selective for nitroaromatic compounds. Furthermore, the data support the premise that the mechanism for the fluorescence quenching is charge transfer (CT) complex formation between the electron-rich PTMSDPA chains and the electron poor nitroaromatic residues. It is surprising that chloranil is a poor quencher, despite the fact that it has a relatively high vapor pressure and is a very good electron acceptor. This suggests that specific chemical interactions between the PTMSDPA and the nitroaromatics may be important in determining the strong fluorescence quenching response that is observed.
  • FIG. 5 shows the structure for PTMSDPA, which can be incorporated with specific embodiments of the subject invention.
  • FIG. 6 illustrates a specific embodiment of a detection apparatus in accordance with the subject invention. In this embodiment, a PTMSP sensor film is positioned to receive excitation illumination from an excitation source. In the embodiment shown in FIG. 6, the excitation source is a GaN 430 nm, 100 mW LED and the PTMSP sensor film is positioned adjacent to the output of the LED. The PTMSP sensor film is also positioned to be exposed to a volume of gaseous fluid in which one or more nitroaromatics may be present. In the embodiment, a forced gaseous flow of the volume of gaseous fluid in which one or more nitroaromatics may be present is delivered onto the surface of the PTMSP sensor film. A detector is positioned to measure the luminescence emmitted from the PTMSP sensor film in a wavelength range corresponding to fluorescence from the PTMSP sensor film resulting from the excitation of the film by the LED. In the embodiment, shown in FIG. 6, the detector measures the luminescence emitted from the PTMSP sensor film which passes through a 550 nm bandpass filter, thus measuring the luminescence emitted by the film at wavelengths of about 550 nm. Detection of reduction in luminescence at wavelength of about 550 nm emitted from the film is an indication of the presence of one or more introaromatics in the volume of gaseous fluid.

Claims (30)

1-30. (canceled)
31. An apparatus for detecting the presence of a nitroaromatic, comprising:
(a) a means for exposing a luminescent bis-aryl substituted polyacetylene to a volume of a gaseous fluid; and
(b) a means for monitoring the amount of luminescence emitted from the luminescent bis-aryl substituted polyacetylene, wherein a decrease in the luminescence emitted from the luminescent bis-aryl substituted polyacetylene indicates the presence of a nitroaromatic in the volume of gaseous fluid.
32. The apparatus according to claim 31, wherein the luminescent bis-aryl substituted polyacetylene is fluorescent.
33. The apparatus according to claim 31, wherein the luminescent bis-aryl substituted polyacetylene is electroluminescent.
34. The apparatus according to claim 32, wherein exposing the fluorescent bis-aryl substituted polyacetylene to the nitroaromatic causes a decrease in the luminescence emitted from the fluorescent bis-aryl substituted polyacetylene due to quenching of fluorescence of the fluorescent bis-aryl substituted polyacetylene.
35. The apparatus method according to claim 33, wherein exposing the electroluminescent bis-aryl substituted polyacetylene to the nitroaromatic causes a decrease in the luminescence emitted from the electroluminescent bis-aryl substituted polyacetylene due to quenching of electroluminescence of the electroluminescent bis-aryl substituted polyacetylene.
36. The apparatus according to claim 31, wherein the means monitoring the amount of luminescence emitted from the luminescent bis-aryl substituted polyacetylene comprises a means for monitoring the rate at which the amount of luminescence from the luminescent bis-aryl substituted polyacetylene changes as a function of time.
37. The apparatus according to claim 31, wherein the means monitoring the amount of luminescence emitted from the luminescent bis-aryl substituted polyacetylene allows a user to visually monitor the amount of luminescence emitted from the luminescent bis-aryl substituted polyacetylene.
38. The apparatus according to claim 34, further comprising:
a means for exposing the fluorescent bis-aryl substituted polyacetylene to excitation illumination of a wavelength which causes fluorescence from the fluorescent bis-aryl substituted polyacetylene, wherein said means for monitoring fluorescent substituted polyacetylene comprises a means for monitoring the amount of fluorescence emitted from the fluorescent bis-aryl substituted polyacetylene.
39. The apparatus according to claim 35, further comprising:
a means for exposing the electroluminescent bis-aryl substituted polyacetylene to an electric field which causes electroluminescence from the electroluminescent bis-aryl substituted polyacetylene wherein the means for monitoring the amount of luminescence emitted from the electroluminescent bis-aryl substituted polyacetylene comprises a means for monitoring the amount of electroluminescence emitted from the electroluminescent bis-aryl substituted polyacetylene.
40-41. (canceled)
42. The apparatus according to claim 31, wherein the luminescent bis-aryl substituted polyacetylene comprises poly-[1-phenyl-2-(4-trimethylsilylphenyl)ethyne].
43. The apparatus according to claim 32, wherein the fluorescent bis-aryl substituted polyacetylene comprises poly-[1-phenyl-2-(4-trimethylsilylphenyl)ethyne].
44. The apparatus according to claim 31, wherein the nitroaromatic is in the vapor-phase.
45. The apparatus according to claim 31, wherein the nitroaromatic is selected from the group consisting of 1,4-dinitrobenzene, 2,4-dinitrotoluene, 2,6-dinitroluene, 1,3-dinitrobenzene, 4-nitrotoluene, and 2,4,6-trinitrotoluene.
46. The apparatus according to claim 31, wherein the luminescent bis-aryl substituted polyacetylene is a polymer film comprising luminescent bis-aryl substituted polyacetylene.
47. The apparatus according to claim 46, wherein the polymer film is less than about 1 micron thick.
48. The apparatus according to claim 46, wherein the polymer film is less than about 100 nanometers thick.
49. The apparatus according to claim 46, wherein the thickness of the polymer film is within the range of about 3 nanometers to about 80 nanometers.
50. The apparatus according to claim 46, wherein the thickness of the polymer film is less than about 10 nanometers.
51. The apparatus according to claim 31, wherein the luminescent bis-aryl substituted polyacetylene is an active material in a device which produces an electrical signal, wherein the means for monitoring the amount of luminescence emitted from the luminescent bis-aryl substituted polyacetylene comprises a means for monitoring the electrical signal.
52. The apparatus according to claim 31, wherein the luminescent bis-aryl substituted polyacetylene is in a physical form selected from the group consisting of: particles and fibers
53. The apparatus according to claim 52, wherein the mean diameter of the particles is less than about 100 nm.
54. The apparatus according to claim 52, wherein the mean diameter of the fibers is less than about 100 nm.
55. The apparatus according to claim 31, wherein the means for monitoring the amount of luminescence emitted from the luminescent bis-aryl substituted polyacetylene comprises a means for monitoring the amount of luminescence emitted from the luminescent bis-aryl substituted polyacetylene selected from the group consisting of: an eye, a photomultiplier, a solid slate detector, and a charge-couple device (CCD).
56. The apparatus according to claim 38, wherein the means for exposing the fluorescent bis-aryl substituted polyacetylene to excitation illumination comprises a means for exposing the fluorescent bis-aryl substituted polyacetylene to excitation illumination comprising an illumination means selected from the group consisting of: laser and LED.
57. (canceled)
58. The apparatus according to claim 31, wherein the luminescent bis-aryl substituted polyacetylene is substituted with a heteroaromatic moiety.
59. (canceled)
60. The apparatus according to claim 31, wherein the luminescent bis-aryl substituted polyacetylene is substituted with a chemical group that contains a heteroaromatic moiety.
US11/692,219 2001-10-12 2007-03-28 Apparatus for sensing nitroaromatics Abandoned US20090324446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/692,219 US20090324446A1 (en) 2001-10-12 2007-03-28 Apparatus for sensing nitroaromatics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32907001P 2001-10-12 2001-10-12
US10/271,671 US7214543B2 (en) 2001-10-12 2002-10-15 Method and apparatus for sensing nitroaromatics
US11/692,219 US20090324446A1 (en) 2001-10-12 2007-03-28 Apparatus for sensing nitroaromatics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/271,671 Division US7214543B2 (en) 2001-10-12 2002-10-15 Method and apparatus for sensing nitroaromatics

Publications (1)

Publication Number Publication Date
US20090324446A1 true US20090324446A1 (en) 2009-12-31

Family

ID=23283728

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/271,671 Expired - Fee Related US7214543B2 (en) 2001-10-12 2002-10-15 Method and apparatus for sensing nitroaromatics
US11/692,219 Abandoned US20090324446A1 (en) 2001-10-12 2007-03-28 Apparatus for sensing nitroaromatics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/271,671 Expired - Fee Related US7214543B2 (en) 2001-10-12 2002-10-15 Method and apparatus for sensing nitroaromatics

Country Status (2)

Country Link
US (2) US7214543B2 (en)
WO (1) WO2003031953A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435797B2 (en) 2010-12-07 2013-05-07 The United States Of America As Represented By The Secretary Of The Army Electroluminescent diode sensor
US10605732B2 (en) 2016-01-13 2020-03-31 Institut Dr. Foerster Gmbh & Co. Kg Portable device for detecting explosive substances comprising a device for generating and measuring the emission of an indicator

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791081B1 (en) * 2002-03-27 2004-09-14 Advanced Micro Devices, Inc. Method for determining pore characteristics in porous materials
US6984524B2 (en) * 2002-09-12 2006-01-10 Control Screening, Llc Chemiluminescent detection of explosives, narcotics, and other chemical substances
US7927881B2 (en) * 2002-10-05 2011-04-19 The Regents Of The University Of California Inorganic polymers and use of inorganic polymers for detecting nitroaromatic compounds
WO2007024227A1 (en) * 2005-08-25 2007-03-01 The Regents Of The University Of California Inorganic polymers and use of inorganic polymers for detecting nitroaromatic compounds
EP1629269B1 (en) * 2003-05-27 2010-07-21 Alexander Menzel Method for detecting trace explosives using photoluminescence
JP2005043303A (en) * 2003-07-25 2005-02-17 Toyota Industries Corp Moisture/gas detection method, moisture/gas sensor, moisture/gas detecting apparatus using sensor, storage method and storage equipment for moisture/gas sensor and moisture/gas detecting apparatus
WO2007132430A2 (en) 2006-05-15 2007-11-22 Syddansk Universitet Porphyrinogen derivatives useful as explosives detection markers
GB2438423A (en) * 2006-05-24 2007-11-28 Univ Graz Tech Optical sensor for detecting an analyte
US8038946B1 (en) 2006-12-04 2011-10-18 Namadics, Inc. Discreet passive explosive detection through 2-sided waveguided fluorescence
US8323982B2 (en) 2007-01-11 2012-12-04 Valencell, Inc. Photoelectrocatalytic fluid analyte sensors and methods of fabricating and using same
WO2008140635A2 (en) * 2007-01-29 2008-11-20 The Regents Of The University Of California Fluorescence detection of nitrogen-containing explosives and blue organic led
WO2009011806A2 (en) * 2007-07-18 2009-01-22 The Regents Of The University Of California Fluorescence detection of nitrogen-containing explosives and blue organic led
KR101007535B1 (en) 2008-12-24 2011-01-14 경북대학교 산학협력단 A polymer film for fingerprint detection or identification and a detection or identification method using thereof
FR2951318B1 (en) * 2009-10-08 2012-02-24 Univ Troyes Technologie ACTIVE SUBSTRATE OPTICAL DETECTION SYSTEM, METHOD FOR MANUFACTURING SUCH A SYSTEM

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334880A (en) * 1980-10-20 1982-06-15 Malmros Mark K Analytical device having semiconductive polyacetylene element associated with analyte-binding substance
US5156810A (en) * 1989-06-15 1992-10-20 Biocircuits Corporation Biosensors employing electrical, optical and mechanical signals
US5247190A (en) * 1989-04-20 1993-09-21 Cambridge Research And Innovation Limited Electroluminescent devices
US5622872A (en) * 1989-06-15 1997-04-22 Biocircuits Corporation Analyte detection through observed optical modulation of polymerized lipid layers
US6025462A (en) * 1997-03-06 2000-02-15 Eic Laboratories, Inc. Reflective and conductive star polymers
US6251690B1 (en) * 1997-02-12 2001-06-26 Sakari Kulmala Electrical excitation of label substances at insulating film-coated conductors
US6331438B1 (en) * 1999-11-24 2001-12-18 Iowa State University Research Foundation, Inc. Optical sensors and multisensor arrays containing thin film electroluminescent devices
US6589731B1 (en) * 1999-05-05 2003-07-08 The Regents Of The University Of California Method for detecting biological agents
US6680206B1 (en) * 1998-07-16 2004-01-20 Board Of Regents, The University Of Texas System Sensor arrays for the measurement and identification of multiple analytes in solutions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057222A1 (en) * 1998-05-05 1999-11-11 Massachusetts Institute Of Technology Emissive polymers and devices incorporating these polymers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334880A (en) * 1980-10-20 1982-06-15 Malmros Mark K Analytical device having semiconductive polyacetylene element associated with analyte-binding substance
US5247190A (en) * 1989-04-20 1993-09-21 Cambridge Research And Innovation Limited Electroluminescent devices
US5156810A (en) * 1989-06-15 1992-10-20 Biocircuits Corporation Biosensors employing electrical, optical and mechanical signals
US5622872A (en) * 1989-06-15 1997-04-22 Biocircuits Corporation Analyte detection through observed optical modulation of polymerized lipid layers
US6251690B1 (en) * 1997-02-12 2001-06-26 Sakari Kulmala Electrical excitation of label substances at insulating film-coated conductors
US6025462A (en) * 1997-03-06 2000-02-15 Eic Laboratories, Inc. Reflective and conductive star polymers
US6680206B1 (en) * 1998-07-16 2004-01-20 Board Of Regents, The University Of Texas System Sensor arrays for the measurement and identification of multiple analytes in solutions
US6589731B1 (en) * 1999-05-05 2003-07-08 The Regents Of The University Of California Method for detecting biological agents
US6331438B1 (en) * 1999-11-24 2001-12-18 Iowa State University Research Foundation, Inc. Optical sensors and multisensor arrays containing thin film electroluminescent devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435797B2 (en) 2010-12-07 2013-05-07 The United States Of America As Represented By The Secretary Of The Army Electroluminescent diode sensor
US10605732B2 (en) 2016-01-13 2020-03-31 Institut Dr. Foerster Gmbh & Co. Kg Portable device for detecting explosive substances comprising a device for generating and measuring the emission of an indicator

Also Published As

Publication number Publication date
US20030100123A1 (en) 2003-05-29
WO2003031953A3 (en) 2003-08-07
WO2003031953A2 (en) 2003-04-17
US7214543B2 (en) 2007-05-08

Similar Documents

Publication Publication Date Title
US20090324446A1 (en) Apparatus for sensing nitroaromatics
Lee et al. Photostable optical oxygen sensing material: Platinumtetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene
Lee et al. Photoluminescent determination of oxygen using metalloporphyrin-polymer sensing systems
Liu et al. Fluorescent polyacetylene thin film sensor for nitroaromatics
Thomas III et al. Trace Hydrazine Detection with Fluorescent Conjugated Polymers: A Turn‐On Sensory Mechanism
von Bültzingslöwen et al. Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology
US5237631A (en) Method for the manufacture of a fluorescent chemical sensor for determining the concentration of gases, vapors or dissolved gases in a sample
US8153065B2 (en) Flourescent organic nanofibrils based on arylene-ethylene macrocycles as sensory materials for explosives detection
Amao et al. Platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polytrifluoroethylmethacrylate film as a photostable optical oxygen detection material
Amao et al. Optical oxygen sensing based on the luminescence change of metalloporphyrins immobilized in styrene–pentafluorostyrene copolymer film
Watkins et al. Portable, low-cost, solid-state luminescence-based O2 sensor
Shang et al. A high performance fluorescent arylamine sensor toward lung cancer sniffing
US20100112715A1 (en) Detection of explosives, toxins, and other compositions
Amao et al. Novel optical oxygen sensing material: platinum octaethylporphyrin immobilized in a copolymer film of isobutyl methacrylate and tetrafluoropropyl methacrylate
Amao et al. Optical oxygen detection based on luminescence change of metalloporphyrins immobilized in poly (isobutylmethacrylate-co-trifluoroethylmethacrylate) film
Johnson Energy migration and transfer in molecularly doped polymers
Bondarev et al. Stability of MEH-PPV: poly {[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylene] vinylene} in solutions exposed to air in the dark and at daylight at laboratory temperature
Amao et al. Metalloporphyrins immobilized in styrene–trifluoroethylmethacrylate copolymer film as an optical oxygen sensing probe
US7927881B2 (en) Inorganic polymers and use of inorganic polymers for detecting nitroaromatic compounds
Ferenczi et al. On the nature of the fluorenone-based emission in oxidized poly (dialkyl-fluorene) s
Amao et al. Novel optical oxygen sensing device: a thin film of a palladium porphyrin with a long alkyl chain on an alumina plate
áSheila Holmes-Smith Electropolymerised platinum porphyrin polymers for dissolved oxygen sensing
Furuki et al. Highly sensitive NO2 optical detector with squarylium dye Langmuir-Blodgett film containing J aggregate
Furuto et al. Oxygen sensing system using triplet–triplet reflectance of zinc porphyrin immobilized in polymer membrane studies by laser flash photolysis
Amao et al. Novel optical oxygen sensing material: platinum porphyrin–styrene–pentafluorostyrene copolymer film

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION