US20090315576A1 - Probe card assembly and test probes therein - Google Patents

Probe card assembly and test probes therein Download PDF

Info

Publication number
US20090315576A1
US20090315576A1 US12/199,828 US19982808A US2009315576A1 US 20090315576 A1 US20090315576 A1 US 20090315576A1 US 19982808 A US19982808 A US 19982808A US 2009315576 A1 US2009315576 A1 US 2009315576A1
Authority
US
United States
Prior art keywords
probe
test
main body
card assembly
middle section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/199,828
Other versions
US7629803B1 (en
Inventor
Cheng-Chin Ni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
King Yuan Electronics Co Ltd
Original Assignee
King Yuan Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Yuan Electronics Co Ltd filed Critical King Yuan Electronics Co Ltd
Assigned to KING YUAN ELECTRONICS CO., LTD reassignment KING YUAN ELECTRONICS CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NI, CHENG-CHIN
Application granted granted Critical
Publication of US7629803B1 publication Critical patent/US7629803B1/en
Publication of US20090315576A1 publication Critical patent/US20090315576A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes

Definitions

  • the present invention relates to a probe card assembly and test probes used therein. More particularly, the present invention relates to a probe card assembly and test probes therein for testing semiconductor wafers.
  • test equipments and probe cards are typically used for testing dies on the wafers.
  • Some prior arts such as U.S. Pat. Nos. 7,053,638, 6,515,358, 6,137,297, 5,670,889, 7,271,603, 7,304,488 and 6,478,596, have proposed related approaches.
  • a probe card has precise contacting means for contacting and electrifying each die on a wafer to test the dies and thereby ensure that the wafer is fabricated with electrical properties and performances answering to its design specifications.
  • the development of test equipments and probe cards tend toward high-frequency properties to adapt to the emerging semiconductor apparatuses capable of high-speed operation.
  • the present invention provides a probe card assembly and test probes therein.
  • the probe card assembly comprises a main body, a probe base provided at a center of the main body, and a plurality of test probes connecting the main body and the probe base.
  • each of the test probes has a tip extending out from the probe base for contacting and testing a wafer.
  • the test probes comprise at least one power probe, at least one grounding probe and a plurality of signal probes, wherein each of the test probes has a middle section between the main body and the probe base and contains therein a core that is wrapped by an insulation layer.
  • At least one of the test probes other than the grounding probe has an outer surface of its middle section wound by at least one conductive wire whose two ends are connected with a grounding end of the main body of the probe card assembly.
  • the conductive wire winding on the test probe has a length L 1 and a wound part of the middle section has a length L 2 while the insulation layer at the middle section of the test probe has an outer diameter D 1 , wherein for the probe card assembly to smoothly transmit high-frequency signals, it is preferred that L 1 , L 2 and D 1 are in a relation shown by the formula below:
  • a main objective of the present invention is to provide a probe card assembly for testing wafers with enhanced accuracy in high-frequency tests.
  • Another objective of the present invention is to provide a probe card assembly for testing wafers with significantly reduced noises during high-frequency tests.
  • Another objective of the present invention is to provide a probe card assembly for testing wafers, wherein inductance between a power probe and a grounding probe of the probe card assembly can be effectively reduced.
  • Another objective of the present invention is to provide test probes used in a probe card assembly for testing wafers with enhanced accuracy in high-frequency tests.
  • Still another objective of the present invention is to provide test probes used in a probe card assembly for testing wafers with significantly reduced noises during high-frequency tests.
  • Yet another objective of the present invention is to provide test probes used in a probe card assembly for testing wafers, wherein inductance between a power probe and a grounding probe of the probe card assembly can be effectively reduced.
  • FIG. 1 is a schematic drawing of a probe card assembly according to the present invention
  • FIG. 2 is a partial, cross-sectional view of the probe card assembly according to the present invention.
  • FIG. 3 is a cross-sectional view of a test probe according to the present invention.
  • FIG. 4 is a schematic drawing showing a conductive wire winding the test probe of the present invention at identical pitches.
  • FIG. 5 is another schematic drawing showing the conductive wire winding the test probe of the present invention at different pitches.
  • the present invention provides a probe card assembly and test probes used therein. Since the operational principles and basic functions of the probe card assembly are well known by people of ordinary skill in the art, a detailed description of such principles and functions will be omitted herein. Meantime, the accompanying drawings to which the following description refers are intended to illustrate structural features of the present invention only schematically and therefore are not, and need not be, drawn to scale.
  • the probe card assembly 100 primarily comprises a main body 1 , a probe base 2 provided at a center of the main body 1 , and a plurality of test probes 3 connecting the main body 1 and the probe base 2 .
  • the test probes 3 comprise at least one power probe 32 , at least one grounding probe 33 and a plurality of signal probes 34 .
  • Each of the test probes 3 has a middle section M between the main body 1 and the probe base 2 , as well as a tip 31 extending out from the probe base 2 for contacting a wafer (not shown) and testing electrical properties thereof.
  • each of the test probes 3 further contains therein a core 35 that is wrapped by an insulation layer 4 .
  • an outer surface of the middle section M of at least one of the test probes other than the grounding probe 33 is wound by at least one conductive wire 5 .
  • Two ends of the conductive wire 5 are connected to a grounding end of the main body 1 , namely connected to a grounding layer in a PCB of the main body 1 .
  • the conductive wire 5 winding on the signal probe 34 has a length L 1 and a part of the middle section M of the signal probe 34 wound by the conductive wire 5 has a length L 2 while the insulation layer 4 at the middle section M of the signal probe 34 has an outer diameter D 1 .
  • the L 1 , L 2 and D 1 are preferably in a relation shown by the formula: L 1 ⁇ L 2 +3.14 D 1 .
  • the conductive wire 5 preferably encircles the middle section M of the test probe 3 with at least one circle, so that related high-frequency noises can be led to the grounding end through the conductive wire 5 , thereby reducing inductance.
  • the test probes 3 are enabled to transmit high-frequency signals smoothly and perform high-frequency tests successfully.
  • the conductive wire 5 in the aforementioned embodiment can be implemented in a different number. That is, the test probe(s) 3 may be wound by a plurality of said conductive wires 5 . Meanwhile, the conductive wire 5 may encircle the test probe(s) 3 with more than one circle.
  • pitches 6 between the circles of the conductive wires 5 may be identical, as shown in FIG. 4 , or may be different, as shown in FIG. 5 . Therein, the identical pitches are easier to make and are therefore preferred.
  • the power probe 32 and the grounding probe 33 are located at two sides of the signal probes 34 . Since the power probe 32 transmits greater electric currents than the signal probes 34 do, the conductive wire 5 can be wound on the power probe 32 to achieve enhanced noise-eliminating effects with a simplified configuration, thereby significantly reducing inductance between the power probe 32 and the grounding probe 33 and stabilizing testing signals on the test probes.
  • a probe card assembly 100 primarily comprises a main body 1 , a probe base 2 provided at a center of the main body 1 , and a plurality of test probes 3 connecting the main body 1 and the probe base 2 .
  • the test probes 3 comprise at least one power probe 32 , at least one grounding probe 33 and a plurality of signal probes 34 .
  • Each of the test probes 3 has a middle section M between the main body 1 and the probe base 2 , as well as a tip 31 extending out from the probe base 2 for contacting a wafer (not shown) and testing electrical properties thereof.
  • each of the test probes 3 further contains therein a core 35 that is wrapped by an insulation layer 4 .
  • an outer surface of the middle section M of at least one said test probe 3 other than the grounding probe 33 is wound by at least one conductive wire 5 whose two ends are connected with the grounding end of the main body 1 , namely a grounding layer in a PCB of the main body 1 .
  • a diameter of circles formed by the conductive wire 5 winding on the signal probe 34 is D 2
  • a diameter of the core 35 is D 3
  • a characteristic impedance of the signal probe 34 is E.
  • D 2 , D 3 and E are preferably in a relation shown by the formula: 20*D 2 /D 3 ⁇ E ⁇ 25*D 2 /D 3 , so that the probe card assembly can transmit high-frequency signals successfully.
  • the value of D 2 /D 3 can be set at 2.2.
  • corresponding settings can be easily accomplished by setting the value of D 2 /D 3 .
  • the conductive wire 5 in the present embodiment can be implemented in a different number. That is, the test probe(s) 3 may be wound by a plurality of said conductive wires 5 . Meanwhile, the conductive wire 5 may encircle the test probe(s) 3 with more than one circle.
  • pitches 6 between the circles of the conductive wires 5 may be identical, as shown in FIG. 4 , or may be different, as shown in FIG. 5 . Therein, the identical pitches are easier to make and are therefore preferred. Since signal interference is mostly attributed to high-frequency noises, better effects can be attained when the conductive wire 5 is wound on high-frequency signal probes 36 than on the normal signal probes 34 .
  • the power probe 32 and the grounding probe 33 are located at two sides of the signal probes 34 . Since the power probe 32 transmits greater electric currents than the signal probes 34 do, the conductive wire 5 can be wound on the power probe 32 to achieve enhanced noise-eliminating effects with a simplified configuration, thereby significantly reducing inductance between the power probe 32 and the grounding probe 33 and stabilizing testing signals on the test probes.
  • the present invention further provides test probes 3 used in a probe card assembly 100 as a third preferred embodiment.
  • the probe card assembly 100 primarily comprises a main body 1 , a probe base 2 provided at a center of the main body 1 , and a plurality of said test probes 3 connecting the main body 1 and the probe base 2 .
  • Characteristics of the test probes 3 in the present embodiment are the same as those of the test probes 3 in the first preferred embodiment.
  • the present invention further provides test probes 3 used in a probe card assembly 100 as a third preferred embodiment.
  • the probe card assembly 100 primarily comprises a main body 1 , a probe base 2 provided at a center of the main body 1 , and a plurality of said test probes 3 connecting the main body 1 and the probe base 2 .
  • Characteristics of the test probes 3 in the present embodiment are the same as those of the test probes 3 in the second preferred embodiment.

Abstract

Disclosed are a probe card assembly and test probes used therein. The probe card assembly includes a main body, a probe base provided at a center of the main body, and a plurality of test probes connecting the main body and the probe base. Therein, each of the test probes has a tip extending out from the probe base for contacting and testing a wafer. The test probes include at least one power probe, at least one grounding probe and a plurality of signal probes, wherein each of the test probes has a middle section between the main body and contains therein a core that is wrapped by an insulation layer.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to a probe card assembly and test probes used therein. More particularly, the present invention relates to a probe card assembly and test probes therein for testing semiconductor wafers.
  • 2. Description of Related Art
  • In a process for manufacturing semiconductor wafers, test equipments and probe cards are typically used for testing dies on the wafers. Some prior arts, such as U.S. Pat. Nos. 7,053,638, 6,515,358, 6,137,297, 5,670,889, 7,271,603, 7,304,488 and 6,478,596, have proposed related approaches. A probe card has precise contacting means for contacting and electrifying each die on a wafer to test the dies and thereby ensure that the wafer is fabricated with electrical properties and performances answering to its design specifications. In recent years, the development of test equipments and probe cards tend toward high-frequency properties to adapt to the emerging semiconductor apparatuses capable of high-speed operation. However, when a traditional cantilever probe card having closely arranged test probes is used in high-frequency tests, noises brought by electromagnetic interference between the test probes can significantly affect the consistency of test results and additional repeated tests may be required, resulting in reduced productivity and testing efficiency. Hence, a need exists for a structural improvement in the traditional probe card to remedy the problem of the prior arts.
  • SUMMARY OF THE INVENTION
  • In an attempt to overcome the defects of the prior arts, the present invention provides a probe card assembly and test probes therein. The probe card assembly comprises a main body, a probe base provided at a center of the main body, and a plurality of test probes connecting the main body and the probe base. Therein, each of the test probes has a tip extending out from the probe base for contacting and testing a wafer. Besides, the test probes comprise at least one power probe, at least one grounding probe and a plurality of signal probes, wherein each of the test probes has a middle section between the main body and the probe base and contains therein a core that is wrapped by an insulation layer. Therein, at least one of the test probes other than the grounding probe has an outer surface of its middle section wound by at least one conductive wire whose two ends are connected with a grounding end of the main body of the probe card assembly. The conductive wire winding on the test probe has a length L1 and a wound part of the middle section has a length L2 while the insulation layer at the middle section of the test probe has an outer diameter D1, wherein for the probe card assembly to smoothly transmit high-frequency signals, it is preferred that L1, L2 and D1 are in a relation shown by the formula below:

  • L 1 ≧L 2+3.14 D 1.
  • Thus, a main objective of the present invention is to provide a probe card assembly for testing wafers with enhanced accuracy in high-frequency tests.
  • Another objective of the present invention is to provide a probe card assembly for testing wafers with significantly reduced noises during high-frequency tests.
  • Another objective of the present invention is to provide a probe card assembly for testing wafers, wherein inductance between a power probe and a grounding probe of the probe card assembly can be effectively reduced.
  • Another objective of the present invention is to provide test probes used in a probe card assembly for testing wafers with enhanced accuracy in high-frequency tests.
  • Still another objective of the present invention is to provide test probes used in a probe card assembly for testing wafers with significantly reduced noises during high-frequency tests.
  • Yet another objective of the present invention is to provide test probes used in a probe card assembly for testing wafers, wherein inductance between a power probe and a grounding probe of the probe card assembly can be effectively reduced.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention as well as a preferred mode of use, further objectives and advantages thereof will best be understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is a schematic drawing of a probe card assembly according to the present invention;
  • FIG. 2 is a partial, cross-sectional view of the probe card assembly according to the present invention;
  • FIG. 3 is a cross-sectional view of a test probe according to the present invention;
  • FIG. 4 is a schematic drawing showing a conductive wire winding the test probe of the present invention at identical pitches; and
  • FIG. 5 is another schematic drawing showing the conductive wire winding the test probe of the present invention at different pitches.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention provides a probe card assembly and test probes used therein. Since the operational principles and basic functions of the probe card assembly are well known by people of ordinary skill in the art, a detailed description of such principles and functions will be omitted herein. Meantime, the accompanying drawings to which the following description refers are intended to illustrate structural features of the present invention only schematically and therefore are not, and need not be, drawn to scale.
  • Please refer to FIGS. 1 through 3 for a probe card assembly 100 according to a first preferred embodiment of the present invention. The probe card assembly 100 primarily comprises a main body 1, a probe base 2 provided at a center of the main body 1, and a plurality of test probes 3 connecting the main body 1 and the probe base 2. The test probes 3 comprise at least one power probe 32, at least one grounding probe 33 and a plurality of signal probes 34. Each of the test probes 3 has a middle section M between the main body 1 and the probe base 2, as well as a tip 31 extending out from the probe base 2 for contacting a wafer (not shown) and testing electrical properties thereof. Besides, each of the test probes 3 further contains therein a core 35 that is wrapped by an insulation layer 4.
  • In view that the closely arranged test probes 3 tend to suffer from mutual signal interference and excessive inductance, according to the present embodiment of the present invention, an outer surface of the middle section M of at least one of the test probes other than the grounding probe 33 is wound by at least one conductive wire 5. Two ends of the conductive wire 5 are connected to a grounding end of the main body 1, namely connected to a grounding layer in a PCB of the main body 1. Taking the signal probe 34 depicted in FIG. 2 for example, the conductive wire 5 winding on the signal probe 34 has a length L1 and a part of the middle section M of the signal probe 34 wound by the conductive wire 5 has a length L2 while the insulation layer 4 at the middle section M of the signal probe 34 has an outer diameter D1. The L1, L2 and D1 are preferably in a relation shown by the formula: L1≧L2+3.14 D1. In other words, the conductive wire 5 preferably encircles the middle section M of the test probe 3 with at least one circle, so that related high-frequency noises can be led to the grounding end through the conductive wire 5, thereby reducing inductance. As signals on the test probes 3 are secured from loss and interference, the test probes 3 are enabled to transmit high-frequency signals smoothly and perform high-frequency tests successfully.
  • It is understood that the conductive wire 5 in the aforementioned embodiment can be implemented in a different number. That is, the test probe(s) 3 may be wound by a plurality of said conductive wires 5. Meanwhile, the conductive wire 5 may encircle the test probe(s) 3 with more than one circle. In addition, pitches 6 between the circles of the conductive wires 5 may be identical, as shown in FIG. 4, or may be different, as shown in FIG. 5. Therein, the identical pitches are easier to make and are therefore preferred.
  • Since signal interference is mostly attributed to high-frequency noises, better effects can be attained when the conductive wire 5 is wound on high-frequency signal test probes 36 than on the normal signal probes 34.
  • Typically, the power probe 32 and the grounding probe 33 are located at two sides of the signal probes 34. Since the power probe 32 transmits greater electric currents than the signal probes 34 do, the conductive wire 5 can be wound on the power probe 32 to achieve enhanced noise-eliminating effects with a simplified configuration, thereby significantly reducing inductance between the power probe 32 and the grounding probe 33 and stabilizing testing signals on the test probes.
  • Please refer to FIGS. 1 through 3 again for a second preferred embodiment of the present invention. Therein, a probe card assembly 100 primarily comprises a main body 1, a probe base 2 provided at a center of the main body 1, and a plurality of test probes 3 connecting the main body 1 and the probe base 2. The test probes 3 comprise at least one power probe 32, at least one grounding probe 33 and a plurality of signal probes 34. Each of the test probes 3 has a middle section M between the main body 1 and the probe base 2, as well as a tip 31 extending out from the probe base 2 for contacting a wafer (not shown) and testing electrical properties thereof. Besides, each of the test probes 3 further contains therein a core 35 that is wrapped by an insulation layer 4.
  • Seeing the problem that an undue distance between the test probes 3 and a grounding end of the main body 1 incurs increased inductance that causes uncontrollable characteristic impedance, in the present embodiment, an outer surface of the middle section M of at least one said test probe 3 other than the grounding probe 33 is wound by at least one conductive wire 5 whose two ends are connected with the grounding end of the main body 1, namely a grounding layer in a PCB of the main body 1. Taking the signal probe 34 depicted in FIG. 3 for example, a diameter of circles formed by the conductive wire 5 winding on the signal probe 34 is D2, a diameter of the core 35 is D3, and a characteristic impedance of the signal probe 34 is E. D2, D3 and E are preferably in a relation shown by the formula: 20*D2/D3≦E≦25*D2/D3, so that the probe card assembly can transmit high-frequency signals successfully. According to the above formula, when the demand of the characteristic impedance E is approximately 50 ohm, the value of D2/D3 can be set at 2.2. Thus, when it is necessary to set the characteristic impedance E at 75 or 100 ohms or any other impedance value so as to match the probe card assembly 100, corresponding settings can be easily accomplished by setting the value of D2/D3.
  • It is understood that, as in the case with the first preferred embodiment, the conductive wire 5 in the present embodiment can be implemented in a different number. That is, the test probe(s) 3 may be wound by a plurality of said conductive wires 5. Meanwhile, the conductive wire 5 may encircle the test probe(s) 3 with more than one circle. In addition, pitches 6 between the circles of the conductive wires 5 may be identical, as shown in FIG. 4, or may be different, as shown in FIG. 5. Therein, the identical pitches are easier to make and are therefore preferred. Since signal interference is mostly attributed to high-frequency noises, better effects can be attained when the conductive wire 5 is wound on high-frequency signal probes 36 than on the normal signal probes 34. Typically, the power probe 32 and the grounding probe 33 are located at two sides of the signal probes 34. Since the power probe 32 transmits greater electric currents than the signal probes 34 do, the conductive wire 5 can be wound on the power probe 32 to achieve enhanced noise-eliminating effects with a simplified configuration, thereby significantly reducing inductance between the power probe 32 and the grounding probe 33 and stabilizing testing signals on the test probes.
  • The present invention further provides test probes 3 used in a probe card assembly 100 as a third preferred embodiment. Therein, the probe card assembly 100 primarily comprises a main body 1, a probe base 2 provided at a center of the main body 1, and a plurality of said test probes 3 connecting the main body 1 and the probe base 2. Characteristics of the test probes 3 in the present embodiment are the same as those of the test probes 3 in the first preferred embodiment.
  • The present invention further provides test probes 3 used in a probe card assembly 100 as a third preferred embodiment. Therein, the probe card assembly 100 primarily comprises a main body 1, a probe base 2 provided at a center of the main body 1, and a plurality of said test probes 3 connecting the main body 1 and the probe base 2. Characteristics of the test probes 3 in the present embodiment are the same as those of the test probes 3 in the second preferred embodiment.
  • The present invention has been described with reference to preferred embodiments thereof and it is understood that the embodiments are not intended to limit the scope of the present invention. Moreover, as the contents disclosed herein should be readily understood and can be implemented by a person skilled in the art, all equivalent changes or modifications which do not depart from the spirit of the present invention should be encompassed by the appended claims.

Claims (19)

1. A probe card assembly, comprising a main body, a probe base provided at a center of the main body, and a plurality of test probes connecting the main body and the probe base, wherein each of the test probes has a tip extending out from the probe base for contacting a wafer to be tested, and the test probes comprise at least one power probe, at least one grounding probe and a plurality of signal probes, in which each of the test probes has a middle section between the main body and the probe base and contains therein a core that is wrapped by an insulation layer, the probe card assembly being characterized in that:
at least one of the test probes other than the grounding probe has an outer surface of the middle section thereof wound by at least one conductive wire whose two ends are connected to a grounding end of the main body of the probe card assembly, wherein a length L1 of the conductive wire winding on the middle section of the test probe, a length L2 of a part of the middle section of the test probe wound by the conductive wire and an outer diameter D1 of the insulation layer at the middle section of the test probe are in a relation of:

L 1 ≧L 2+3.14 D1.
2. The probe card assembly as claimed in claim 1, wherein the test probe whose middle section is wound, on the outer surface thereof, by the at least one conductive wire is the power probe.
3. The probe card assembly as claimed in claim 1, wherein the test probe whose middle section is wound, on the outer surface thereof, by the at least one conductive wire is one of the signal probes.
4. The probe card assembly as claimed in claim 3, wherein the test probe whose middle section is wound, on the outer surface thereof, by the at least one conductive wire is a high-frequency signal test probe.
5. The probe card assembly as claimed in claim 1, wherein pitches between circles formed by the conductive wire winding on the test probe are identical.
6. The probe card assembly as claimed in claim 1, wherein pitches between circles formed by the conductive wire winding on the test probe are different.
7. A probe card assembly, comprising a main body, a probe base provided at a center of the main body, and a plurality of test probes connecting the main body and the probe base, wherein each of the test probes has a tip extending out from the probe base for contacting a wafer to be tested, and the test probes comprise at least one power probe, at least one grounding probe and a plurality of signal probes, in which each of the test probes has a middle section between the main body and the probe base and contains therein a core that is wrapped by an insulation layer, the probe card assembly being characterized in that:
at least one of the test probes other than the grounding probe has an outer surface of the middle section thereof wound by at least one conductive wire whose two ends are connected to a grounding end of the main body of the probe card assembly, wherein a diameter D2 of circles formed by the conductive wire winding on the test probe, a diameter D3 of the core of the test probe and a characteristic impedance E of the test probe are in a relation of:

20*D 2 /D 3 ≦E≦25*D 2 /D 3.
8. The probe card assembly as claimed in claim 7, wherein the test probe whose middle section is wound, on the outer surface thereof, by the at least one conductive wire is the power probe.
9. The probe card assembly as claimed in claim 7, wherein the test probe whose middle section is wound, on the outer surface thereof, by the at least one conductive wire is one of the signal probes.
10. The probe card assembly as claimed in claim 9, wherein the test probe whose middle section is wound, on the outer surface thereof, by the at least one conductive wire is a high-frequency signal test probe.
11. The probe card assembly as claimed in claim 7, wherein the characteristic impedance E of the test probe is about 50 ohm when D2/D3=2.2.
12. A test probe for use in a probe card assembly, said probe card assembly comprising a main body, a probe base provided at a center of the main body, and plural said test probes connecting the main body and the probe base, wherein each of the test probes has a tip extending out from the probe base for contacting a wafer to be tested, in which each of the test probes has a middle section between the main body and the probe base and contains therein a core that is wrapped by an insulation layer, the test probe being characterized in that:
the test probe has an outer surface of the middle section thereof wound by at least one conductive wire whose two ends are connected to a grounding end of the main body of the probe card assembly, wherein a length L1 of the conductive wire winding on the middle section of the test probe, a length L2 of a part of the middle section of the test probe wound by the conductive wire and an outer diameter D1 of the insulation layer at the middle section of the test probe are in a relation of:

L 1 ≧L 2+3.14 D 1.
13. The test probe as claimed in claim 12, wherein the test probe is the power probe.
14. The test probe as claimed in claim 12, wherein the test probe is the signal probe.
15. The test probe as claimed in claim 14, wherein the test probe is a high-frequency signal test probe.
16. A test probe for use in a probe card assembly, said probe card assembly comprising a main body, a probe base provided at a center of the main body, and plural said test probes connecting the main body and the probe base, in which each of the test probes has a middle section between the main body and the probe base and contains therein a core that is wrapped by an insulation layer, the test probe being characterized in that:
the test probe has an outer surface of the middle section thereof wound by at least one conductive wire whose two ends are connected to a grounding end of the main body of the probe card assembly, wherein a diameter D2 of circles formed by the conductive wire winding on the test probe, a diameter D3 of the core of the test probe and a characteristic impedance E of the test probe are in a relation of:

20*D 2 /D 3 ≦E≦25*D 2 /D 3.
17. The test probe as claimed in claim 16, wherein the test probe is the power probe.
18. The test probe as claimed in claim 16, wherein the test probe is the signal probe.
19. The test probe as claimed in claim 18, wherein the test probe is a high-frequency signal test probe.
US12/199,828 2008-06-19 2008-08-28 Probe card assembly and test probes therein Active US7629803B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW097122940A TWI367331B (en) 2008-06-19 2008-06-19 Probe card assembly and probes therein
TW097122940 2008-06-19

Publications (2)

Publication Number Publication Date
US7629803B1 US7629803B1 (en) 2009-12-08
US20090315576A1 true US20090315576A1 (en) 2009-12-24

Family

ID=41394271

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/199,828 Active US7629803B1 (en) 2008-06-19 2008-08-28 Probe card assembly and test probes therein

Country Status (2)

Country Link
US (1) US7629803B1 (en)
TW (1) TWI367331B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315577A1 (en) * 2008-06-19 2009-12-24 Cheng-Chin Ni Probe card assembly
US20100109689A1 (en) * 2008-11-04 2010-05-06 Cheng-Chin Ni Probe card assembly and test probes therein

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425220B (en) * 2011-03-11 2014-02-01 Mpi Corp Cantilever probe card
TW201903418A (en) * 2013-12-31 2019-01-16 美商色拉頓系統公司 Probe apparatus for testing a device under test, probe core configured for use in a probe apparatus for testing a device under test and method for latching a probe core to a device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670889A (en) * 1994-10-17 1997-09-23 Nihon Denshizairyo Kabushiki Kaisha Probe card for maintaining the position of a probe in high temperature application
US6137297A (en) * 1999-01-06 2000-10-24 Vertest Systemsn Corp. Electronic test probe interface assembly and method of manufacture
US6478596B2 (en) * 1998-07-09 2002-11-12 Advantest Corporation Semiconductor component mounting apparatus
US6515358B1 (en) * 1997-09-30 2003-02-04 Intel Corporation Integrated passivation process, probe geometry and probing process
US7053638B2 (en) * 2004-05-14 2006-05-30 Via Technologies Inc. Surrounding structure for a probe card
US7271603B2 (en) * 2003-05-23 2007-09-18 Cascade Microtech, Inc. Shielded probe for testing a device under test
US7304488B2 (en) * 2002-05-23 2007-12-04 Cascade Microtech, Inc. Shielded probe for high-frequency testing of a device under test
US7451646B2 (en) * 2005-07-28 2008-11-18 The Regents Of The University Of California Device and method for resonant high-speed microscopic impedance probe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670889A (en) * 1994-10-17 1997-09-23 Nihon Denshizairyo Kabushiki Kaisha Probe card for maintaining the position of a probe in high temperature application
US6515358B1 (en) * 1997-09-30 2003-02-04 Intel Corporation Integrated passivation process, probe geometry and probing process
US6478596B2 (en) * 1998-07-09 2002-11-12 Advantest Corporation Semiconductor component mounting apparatus
US6137297A (en) * 1999-01-06 2000-10-24 Vertest Systemsn Corp. Electronic test probe interface assembly and method of manufacture
US7304488B2 (en) * 2002-05-23 2007-12-04 Cascade Microtech, Inc. Shielded probe for high-frequency testing of a device under test
US7271603B2 (en) * 2003-05-23 2007-09-18 Cascade Microtech, Inc. Shielded probe for testing a device under test
US7053638B2 (en) * 2004-05-14 2006-05-30 Via Technologies Inc. Surrounding structure for a probe card
US7451646B2 (en) * 2005-07-28 2008-11-18 The Regents Of The University Of California Device and method for resonant high-speed microscopic impedance probe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315577A1 (en) * 2008-06-19 2009-12-24 Cheng-Chin Ni Probe card assembly
US7710134B2 (en) * 2008-06-19 2010-05-04 King Yuan Electronics Co., Ltd Probe card assembly
US20100109689A1 (en) * 2008-11-04 2010-05-06 Cheng-Chin Ni Probe card assembly and test probes therein
US7786744B2 (en) * 2008-11-04 2010-08-31 King Yuan Electronics Co., Ltd. Probe card assembly and test probes therein

Also Published As

Publication number Publication date
US7629803B1 (en) 2009-12-08
TW201000913A (en) 2010-01-01
TWI367331B (en) 2012-07-01

Similar Documents

Publication Publication Date Title
JP4759577B2 (en) High frequency probe and probe card
KR950006472A (en) Probe card, coaxial probe beam for probe card and manufacturing method thereof
US9835651B2 (en) Cantilever type probe card for high frequency signal transmission
JP2002504995A (en) Wide area impedance matching probe
CN103000262A (en) Non-drain differential signal transmission cable and ground connection structure thereof
US7629803B1 (en) Probe card assembly and test probes therein
US7804315B2 (en) Probe card
TWI447397B (en) Probe card
US9316685B2 (en) Probe card of low power loss
US7710134B2 (en) Probe card assembly
KR101455540B1 (en) Probe card
KR101962529B1 (en) Vertical ultra-low leakage current probe card for dc parameter test
JPWO2005029099A1 (en) Current measuring device and test device, and coaxial cable and collective cable used therefor
US20140061314A1 (en) Rfid device for near-field communication
TWI741531B (en) Test device
JP2008045950A (en) Probe card
CN106796840B (en) High quality coil
KR101785636B1 (en) Coaxial probe needle device
WO2007097356A1 (en) Ultrafine coaxial line and ultrafine coaxial barrel and production method for them
TWI600274B (en) Network filtering module and method of making the same
JP5081613B2 (en) Probe pin
CN211719824U (en) Semi-rigid cable needle card
CN101788573A (en) Probe card
KR102598055B1 (en) Socket device for testing an IC
CN217404361U (en) Radio frequency probe

Legal Events

Date Code Title Description
AS Assignment

Owner name: KING YUAN ELECTRONICS CO., LTD, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NI, CHENG-CHIN;REEL/FRAME:021453/0367

Effective date: 20080728

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12