US20090306520A1 - Quantitative methods for obtaining tissue characteristics from optical coherence tomography images - Google Patents

Quantitative methods for obtaining tissue characteristics from optical coherence tomography images Download PDF

Info

Publication number
US20090306520A1
US20090306520A1 US12/455,523 US45552309A US2009306520A1 US 20090306520 A1 US20090306520 A1 US 20090306520A1 US 45552309 A US45552309 A US 45552309A US 2009306520 A1 US2009306520 A1 US 2009306520A1
Authority
US
United States
Prior art keywords
tissue
oct
attenuation
data
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/455,523
Inventor
Joseph M. Schmitt
Chenyang Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LightLab Imaging Inc
Original Assignee
LightLab Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40933590&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090306520(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LightLab Imaging Inc filed Critical LightLab Imaging Inc
Priority to US12/455,523 priority Critical patent/US20090306520A1/en
Assigned to LIGHTLAB IMAGING, INC. reassignment LIGHTLAB IMAGING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHMITT, JOSEPH M., XU, CHENYANG
Publication of US20090306520A1 publication Critical patent/US20090306520A1/en
Priority to US15/913,300 priority patent/US11793462B2/en
Priority to US18/367,588 priority patent/US20230414176A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems

Definitions

  • This invention provides methods for tissue characterization using optical coherence tomography. Specifically, in part, such characterization can be performed by measuring a tissue's optical and image properties.
  • OCT optical coherence tomography
  • TD-OCT time domain
  • OFDI optical frequency domain imaging
  • OCT imaging of portions of a patient's body provides a useful tool for doctors to determine the best type and course of treatment.
  • imaging of coronary arteries by intravascular OCT may reveal the location of a stenosis, the presence of vulnerable plaques, or the type of atherosclerotic plaque.
  • drug therapy e.g., cholesterol-lowering medication
  • a catheter-based therapy like angioplasty and stenting
  • an invasive surgical procedure like coronary bypass surgery.
  • OCT is also very useful for drug development in animal and clinical trials.
  • intima has a consistent layered structure consisting of intima, media and adventia.
  • the intima becomes pathologically thickened and may contain plaques composed of different types of tissues, including fiber, proteoglycans, lipid and calcium, as well as macrophages and other inflammatory cells.
  • tissue types have different optical properties that can be measured by OCT.
  • the plaques that are believed to be most pathologically significant are the so-called vulnerable plaques that have a fibrous cap with an underlying lipid pool.
  • an optical probe mounted on a catheter is carefully maneuvered to a point of interest such as within a coronary blood vessel.
  • the optical beams are then transmitted and the backscattered signals are received through coherent detection using an interferometer.
  • An image (2D or 3D) is then reconstructed using well-known techniques. This image is then analyzed visually by a cardiologist to assess pathological features, such as vessel wall thickening and plaque composition.
  • tissue type is identified by its appearance on the screen, errors may occur in the analysis because certain information (such as tissue type) cannot be readily discerned.
  • the standard OCT image only contains the intensity information of the OCT signals. Small changes in the optical properties that influence the OCT signals cannot be readily discerned. Thus, it would be advantageous to have an OCT system and method to measure the optical properties and use them to aid scientists and clinicians. The present invention addresses this need.
  • the invention relates to a method and apparatus for determining properties of a tissue or tissues imaged by OCT.
  • the backscatter and attenuation of the OCT optical beam is measured and based on these measurements an indicium, such as color, is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion.
  • the image is then displayed with the indicia and a user can then determine the tissue characteristics.
  • the tissue characteristics can be classified automatically by a program given the combination of backscatter and attenuation values.
  • the invention relates to a method for identifying tissue components in situ.
  • the method comprises the steps of: taking an OCT image of a tissue in situ; measuring the attenuation and backscatter at a point in the OCT image; and determining the composition of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter.
  • the method further comprises mapping a pair of coordinates in backscatter-attenuation space to an indicium of the value of the pair of coordinates in the backscatter-attenuation space.
  • the indicium is a color.
  • the method further comprises displaying the indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
  • the invention in another aspect relates to a system for identifying tissue components in situ.
  • the system comprises an OCT subsystem for taking an OCT image of a tissue in situ; a processor in communication with the OCT subsystem for measuring the attenuation and backscatter at a point in the OCT image and determining the composition of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter; and a display for displaying the OCT image and an indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
  • the invention in another aspect, relates to a processor-implemented method for identifying tissue components in situ.
  • the method includes the steps of (a) collecting an OCT dataset of a tissue sample in situ using a probe; (b) measuring an attenuation value and a backscattering value at a point in the tissue sample; and (c) determining a tissue characteristic at a location in the tissue sample corresponding to an image location in an OCT image formed from the OCT dataset in response to the measured attenuation value and backscattering value.
  • the method can include the further step of mapping a pair of coordinates in backscatter-attenuation space to an indicium of the value of the pair of coordinates in the backscatter-attenuation space.
  • the method can include the further step of displaying the indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
  • the tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycans.
  • the indicium can be, for example, a color.
  • the indicium can also be selected from the group consisting of an over-lay, a colormap, a texture map, and text.
  • the method can include the further step of classifying tissue type using a property selected from the group consisting of backscattering, attenuation, edge sharpness, and texture measurements.
  • the method can include the further step of correcting a focusing effect to improve tissue type classification.
  • the method can include the further step of applying angular intensity correction to account for an attenuation effect, such as, for example, a blood-related attenuation effect.
  • the method can include the further step of determining a tissue characteristic using a technique selected from the group consisting of boundary detection, lumen location, and OCT location depth.
  • the invention in another aspect, relates to a system for identifying tissue components in situ.
  • the system includes (a) an OCT subsystem for taking an OCT image of a tissue in situ; (b) a processor in communication with the OCT subsystem for measuring the attenuation and backscatter at a point in the OCT image and determining a tissue characteristic of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter; and (c) a display for displaying the OCT image and an indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
  • the tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycans.
  • the invention in another aspect relates to an optical coherence tomography system for identifying tissue characteristics of a sample.
  • the computer system includes a detector configured to receive an optical interference signal generated from scanning a sample and converting the optical interference signal to an electrical signal; an electronic memory device and an electronic processor in communication with the memory device and the detector.
  • the memory device can include instructions that, when executed by the processor, cause the processor to: analyze the electrical signal and generate a plurality of datasets corresponding to the sample, wherein one of the plurality of datasets comprises backscattering data; compare the backscattering data to a first threshold, the backscattering data mapping to a first location in the sample; and if the backscattering data exceeds the first threshold, characterize the first location in the sample as having a first tissue characteristic.
  • the processor is further caused to generate an OCT image of the sample such that the first tissue characteristic is identified and displayed relative to the first location.
  • the first tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycan.
  • at least one of the plurality of datasets includes OCT scan data, attenuation data, edge sharpness data, texture parameters, or interferometric data.
  • FIG. 1 is a schematic view of a generalized OCT data acquisition system in accordance with an embodiment of the invention.
  • FIG. 2 is a schematic view of a cross-section of a lumen with an imaging probe disposed therein with a semi-transparent layer according to an embodiment of the invention.
  • FIG. 3A shows optical properties, geometric information and parameters for a beam of electromagnetic waves used to collect OCT data.
  • FIGS. 3B and 3C show plots of relative intensity and gain, respectively, as a function of beam distance from the probe tip used to perform OCT data collection according to an embodiment of the invention.
  • FIG. 4A shows a cross-section of a lumen with an imaging probe disposed therein according to an embodiment of the invention.
  • FIG. 4B shows an exemplary angular intensity profile with respect to rotational angle of the probe according to an embodiment of the invention.
  • FIGS. 5A-5B illustrates the results from the application of an exemplary method of OCT image denoising according to an illustrative embodiment of the invention.
  • FIG. 5A shows the image before denoising and
  • FIG. 5B shows the same OCT image after the application of the denoising method.
  • FIG. 6A illustrates OCT scan data being processed using a window as part of a method for optical property extraction according to an embodiment of the invention.
  • FIG. 6B illustrates OCT scan data being processed to define a region of interest according to an embodiment of the invention.
  • FIG. 6C is data plot with a linear portion used to model certain optical properties from a set of OCT data according to an embodiment of the invention.
  • FIG. 7 illustrates a lumen cross-section and demonstrates the automatic detection of a lumen surface and an OCT penetration limit of interest according to an embodiment of the invention.
  • FIG. 8 illustrates a plotted OCT dataset suitable for performing tissue boundary localization using piece-wise regression on a one-dimensional OCT axial scan according to an embodiment of the invention.
  • FIG. 9 illustrates a two-dimensional cross-section of a lumen obtained using an OCT scan such that the tissue boundary localization was generated using Canny's edge detector method.
  • FIG. 10A is a diagram of a section of lumen wall showing the interaction of the beam at two locations with the various tissues in the wall.
  • FIGS. 10B and 10C are schematic diagrams that illustrate the dimensions and variables used in a method of extracting attenuation/backscattering coefficients from a multi-layered tissue object shown in FIG. 10A according to an embodiment of the invention.
  • FIG. 11A includes four image data plots showing exemplary tissue characterization coefficients relating to backscattering and attenuation data according to an embodiment of the invention.
  • FIG. 11B shows a color-map plot of attenuation and backscattering data suitable for implementing a method for distinguishing different tissue properties according to an embodiment of the invention.
  • FIG. 11C shows two exemplary OCT images depicting different tissue properties that have been enhanced using the color-map shown in FIG. 11B .
  • FIGS. 11D-11E show hatched versions of FIGS. 11B and 11C .
  • FIGS. 12A and 12B illustrate, respectively, methods of tissue characterization by histological preparation and OCT data processing in accordance with embodiments of present invention.
  • FIG. 13A shows an example histology image with mapped tissue types according to an embodiment of the invention.
  • FIG. 13B shows an OCT image in which the tissue types and data identified in FIG. 13A have been mapped and identified with boundaries according to an embodiment of the invention.
  • FIG. 14 shows a plot of attenuation data versus backscattering data with respect to certain tissue properties obtained from real human atherosclerosis plaques using methods described in FIGS. 12A-12B .
  • FIG. 15A shows a plot of attenuation data versus backscattering data suitable for use with a tissue characterization discriminant method that compares the tissue properties of region of interest to the tissue properties populated in a database.
  • FIG. 15B illustrates an exemplary OCT tissue characterization image in which a computer texture overlay is used to describe regions of interest according to an embodiment of the invention.
  • FIG. 16A is a plot depicting the backscattering vs. attenuation data shown in FIG. 14 according to an embodiment of the invention.
  • FIGS. 16B-16C are plots depicting edge sharpness and texture, respectively, as measured for a boundary of interest according to an embodiment of the invention.
  • the invention relates to methods for tissue characterization of vessel walls using optical methods based on what is generally termed low coherence interferometry (LCI), such as, but not limited to optical coherence tomography (OCT) whether in the time or Fourier domain.
  • LCI low coherence interferometry
  • OCT optical coherence tomography
  • the methods described herein solve the problems encountered in semi-automatic or automatic tissue characterization application such as optical calibration, artifact removal, generating accurate optical and spatial parameter measurement from regions of interests, tissue segmentations, and statistical discriminant analysis of tissue types.
  • discriminant analysis refers to classifying images or data into different classes.
  • the present invention provides methods for analyzing OCT data and images to characterize biological tissues. Although methods described herein may pertain specifically to vascular tissues, the methods also apply to tissues in other organs of the body, including tissues in the gastrointestinal, pulmonary, and reproductive tracts. Embodiments of the present invention operate in conjunction with an OCT system and a computing device that include characterization software and a decision database as discussed below with respect to FIG. 1 .
  • the OCT console and OCT probe are used to acquire raw OCT data and demodulated data from a blood vessel.
  • demodulated data refers to OCT images, such as grayscale images, or the underlying data associate with such images.
  • the OCT data is received by the computing device such as a processor and used to create an OCT image on which numerical, text or graphical information about tissue characteristics are displayed.
  • embodiments of the invention are used to evaluate the walls of certain lumens and tissues accessible by an OCT probe.
  • tissue images or tissue data sets can include, but are not limited to plaques, lipid pools, and stent placement zones.
  • histology images of a sample are used to automate an OCT data-based characterization of the same and unrelated samples.
  • reference data e.g., normal tissue type data from histology reviewed samples
  • the characterization software implements some or all of the steps shown in FIG. 12A . However, this software can implement other methods as appropriate and discussed herein.
  • one embodiment of the characterization software is based on manual selection of regions-of-interest in a histology image.
  • the actual histology data is evaluated to identify different tissue types.
  • these identified tissue evaluations are be compared to OCT images obtained with respect to the same sample tissue.
  • training sets are created to allow some of the software and programming logic described herein to automatically characterize tissue types and structures in an OCT image. For example, if tissue layer A is identified in the histology image, the same region of interest A′ can be identified in the corresponding OCT image. This process can be repeated to build a database of information used to locate different tissues in an OCT image. Backscattering and attenuation data can be used as outlined below to facilitate this process.
  • Other embodiments of the methods described herein also include image preprocessing steps (such as focus correction), and optical property measurement.
  • one or more tissue samples are first interrogated using OCT such that OCT scan data is collected. Once the scan data is processed, the resulting OCT images relating to the tissue samples are calibrated and corrected for imaging artifacts. Next, the tissue sample is cross-sectioned to create a histology image designating different parts of the image as composed of different elements or features. The tissue samples are processed using a histological method (such as dye staining), and digitized to create a histology image or histology data set.
  • OCT OCT scan data
  • the resulting OCT images relating to the tissue samples are calibrated and corrected for imaging artifacts.
  • the tissue sample is cross-sectioned to create a histology image designating different parts of the image as composed of different elements or features.
  • the tissue samples are processed using a histological method (such as dye staining), and digitized to create a histology image or histology data set.
  • the OCT images are image mappings of the backscattered signal that reaches the OCT probe after being reflected from the OCT scan of the sample.
  • the histology images are digitized microscopic images of real tissue sample undergone dye staining, i.e., the histology images are color images showing the dye distribution. Since the dyes bind to certain molecules and tissue types preferentially, the histology images map the molecules/tissue types in a tissue sample.
  • a histology image typically includes data regarding tissue or a tissue structure or the image created from such underlying data.
  • the histology image allows operators to identify tissue types (or characterizations) and regions of interest (ROIs).
  • the OCT images are matched or mapped to the histology image. In one embodiment, the mapping is done manually.
  • the characterization software then identifies a corresponding region on the OCT image.
  • the characterization software then calculates at least one of the tissue optical properties or spatial features, the result of which is stored in the database.
  • Statistical analysis is then applied to form a discriminant analysis method using both the OCT data and the tissue types identified in histology.
  • FIG. 1 is a schematic illustration of a generalized view of an OCT imaging system 10 .
  • the imaging system typically includes an interferometer 12 and an optical source 14 , for example, a broadband light source, or a wavelength-swept source that provides optical beam to both sample arm 16 and reference arm 18 .
  • the sample arm 16 delivers the optical beam to tissue through an optional scanning apparatus such as an OCT probe.
  • the optical scanning apparatus is a rotational transducer attached to the end of the sample arm and is carefully maneuvered through the patient's body to the region of interest.
  • the scanning probe provides a substantially collimated beam to the vessel walls.
  • the reference arm has a built-in known reflector, which may be located either at a separate optical path or at a common path as sample arm but at a slightly different location. The backscattered light signals from both the sample arm and the reference arm are recombined at the optical interferometer 12 .
  • the combined optical interference signal is converted to electrical signal by the optical detector (or detector arrays) 20 .
  • the signal is then used to construct images.
  • the detector is in electrical communication with a processing and analysis subsystem 21 in one embodiment.
  • the subsystem can include a processor 22 , a data acquisition module 24 , and an analysis software application 26 .
  • the processor 22 is a portion of a computer system or other processor-based device executes various software programs or program logic such as data acquisition 24 and data analysis modules 26 .
  • the acquisition and analysis system elements are hardware modules.
  • the software includes characterization software and graphic user interface for displaying regions of interest as described below.
  • the processor 22 is in communication with memory (not shown) and a database 28 .
  • the database is used to store all types of data and participate in various processing phases and stages as outlined below.
  • OCT is currently the most widespread variant of this group of imaging systems.
  • the sample arm of commercially available OCT system has many configurations, including microscope, forward-looking endoscope and side-looking endoscope.
  • OCT with side-looking endoscope is used as a non-limiting example for describing this invention below.
  • an optical probe is mounted in an endoscopic catheter at the sample arm 16 .
  • the substantially collimated beam exits from the optical probe mounted on the side.
  • the catheter and the probe are rotated to generate 2D scan and can also be pulled or advanced while rotating to generate 3D scan.
  • the OCT signal can be described as the light collected from a discrete light imaging volume. Signals from discrete locations within the sample include the image data set. The signal detected from any location is determined by the scattering element's size, refractive indices, density, geometrical arrangement, in addition to characteristics of the optical imaging system. Since different tissues have different chemical composition and microscopic structure, their appearances differ in OCT images. Qualitative differences in appearance have been used clinically for identifying and characterizing plaques. However, this qualitative approach requires extensive experience and is prone to instrumental and human errors. To assist in tissue characterization, the present invention provides various means to incorporate quantitative measurements. In some embodiments, this tissue characterization is performed automatically using the processor 22 and characterization software.
  • the characterization software inputs the OCT data, calibrates the signal strength, enhances data quality via filtering, corrects imaging artifacts, and calculates parameters for all tissue regions or specific regions of interest identified by operators, and uses the parameters stored in database to identify tissue type or characterization.
  • the characterization software identifies at least one of the tissue optical properties or spatial features from OCT data. The tissue optical properties are calculated and displayed. The individual tissue optical properties are displayed either individually or in combination.
  • the optical parameters of the tissue can be extracted by fitting the data based on single-scatterer theory.
  • the optical parameters can be extracted by models, such as the extended Huygens-Fresnel (ELF) theory that include multiple-scatterer effect.
  • ELF extended Huygens-Fresnel
  • P(z) is the power of OCT signal received.
  • the OCT signal power P(z) collected from a homogeneous sample, from depth z 0 to z 1 is described by:
  • z is the depth into the sample
  • K is the delivered incident power
  • A(z, ⁇ ) is the optical system efficiency
  • T(z 0 ) is the optical transmission efficiency from tissue surface to depth z 0
  • ⁇ b is the tissue backscattering coefficient
  • ⁇ a is the tissue attenuation coefficient.
  • the angular dependence ⁇ arises from varying beam delivering efficiency caused by catheter rotation and blood attenuation.
  • the z dependence is caused by factors such as the divergent beam focusing profile.
  • the tissue back-scattering coefficients and the attenuation coefficients are characteristic of tissue types and are the principal optical parameters used in certain embodiments to determine the tissue characteristics.
  • the K value and A(z, ⁇ ) value are constant.
  • the T(z 0 ) is also a constant.
  • a linear relationship between log [P(z)] and the depth z is a reasonable assumption. Accordingly, a line can be fit to the data describing the relationship between scan depth and the signal received by the OCT system.
  • This linear model has various uses. For example, based on this linear model, the attenuation coefficient can be calculated from the slope of the fitted line; while the backscattering coefficient can be calculated from the offset of the fitted line.
  • the z dependence is illustrated by FIGS. 3A and 3B as discussed below.
  • the z-dependence can be resolved using a model fit to the data shown in FIG. 3C .
  • the ⁇ dependence has many influencing factors that can be addressed using certain techniques.
  • the ⁇ dependence is resolved using a model fit to the data of FIG. 4B as described below.
  • the OCT imaging machine and sample arm beam delivery device has various optical efficiencies. To ensure the accurate measurement of tissue optical properties, in addition to noise subtraction and filtering, the imaging system must be carefully calibrated and various artifacts must be removed. As shown in FIG. 2 , to calibrate the light intensity exiting the sample probe, one embodiment of this calibration method places a semi-transparent layer of materials 30 , having a known backscattering coefficient, around the optical probe 32 . In the figure shown, both are disposed in a lumen of interest 34 .
  • the OCT intensity from this layer 30 is proportional to light intensity exiting the probe, thereby providing a calibrated optical reference.
  • This semi-transparent layer 30 can be in the form of outer sheath of the catheter, a layer between the outmost sheath and the optical fiber probe, or a specific semi-transparent coating on the optical fiber, the catheter sheath or other structural layers in between that has calibrated reflection coefficients. In order to consider this embodiment in more detail, it is useful to review the components of an exemplary OCT probe.
  • the OCT probe is composed of the rotating optical fiber 32 surrounded by one or more layers of plastic or glass. These constitute a substantially stationary protective sheath.
  • the partial reflector can be either layer 30 (which is a part of the sheath), or an interface inside the optical fiber or GRIN lens assembly.
  • the advantage of using layer 30 is that the intensity of layer 30 is generally visible in the OCT images.
  • the disadvantage of layer 30 is that it is a larger and more complex structure. This greater size and complexity may be non-uniform and the overall layer may have a rotational dependence.
  • One advantage of using the interface as the reflector is that it rotates together with the fiber. Hence, it does not suffer potential rotational dependence.
  • the disadvantage of the interface is that it may lie outside the normal OCT scan range (i.e. proximal to the fiber tip, where the normal OCT image range begins just distal to the fiber tip) requiring the OCT scan range to adjusted inward to capture this interface and losing a commensurate portion of the outer scan region.
  • the partial reflector 30 is used to calibrate the delivered incident light intensity (K). Partial reflecting layer 30 can be calibrated by injecting a laser of known intensity and recording the reflected signal strength.
  • FIG. 3A An electromagnetic beam such as an opti c al beam suitable for performing OCT scans is shown in FIG. 3A , where w 0 is the beam waist and z 0 is the Rayleigh range. Due to finite wavelength, the optical beam used in the imaging is a Gaussian beam which is divergent from the beam waist. It produces a beam focusing profile that can be described by the Lorentzian function.
  • A(z) is light intensity at depth z
  • z o is the Rayleigh range
  • f is the focal length of the lens assembly.
  • the divergent beam profile produces an OCT intensity pattern that peaks at the focal plane, and rolls off from either side, as shown in FIG. 3B .
  • the focal length of the imaging probe is measured and the inverse of equation (1.2) is applied to OCT signal P(z).
  • the amplification factor is limited far from the focusing point as shown in FIG. 3C .
  • a probe 50 suitable for collecting OCT data is shown in the cross-section.
  • the light beam travels through many catheter sheath layers and liquid layers (such as saline or flushing agent) before arriving at the vessel walls. These layers may introduce a certain amount of attenuation that cannot be well predicted. If the light impinges onto the tissue at an oblique angle, part of its intensity may be lost in the surface reflection.
  • a lumen boundary 53 is shown relative to a superficial layer 55 .
  • the superficial layer 55 includes tissue a few coherence lengths away from the lumen boundary in the depth dimension is segmented.
  • the region between the lumen boundary (the inner solid line) and the dotted line is the “superficial layer”.
  • is the rotational angle of the probe.
  • the superficial layer 55 and other biological samples are composed of a homogeneous layer of fibrous tissue beneath the lumen boundary, it is reasonable to use the superficial layer 55 as a calibration basis for the ⁇ dependence in A(z, ⁇ ).
  • the boundary 53 between the lumen and the vessel is found either by manual selection or by an automatic program.
  • the OCT intensity in the region is then averaged over the depth to give the angular-dependent intensity profile shown in FIG. 4B .
  • FIG. 4B shows the angular-dependent intensity profile as a function of ⁇ obtained from the superficial layer.
  • the inverse of this profile shown in FIG. 4B is applied to OCT signal.
  • the application of the inverse profile corrects the rotation-dependent intensity variation and non-uniform blood attenuation in the lumen.
  • applying such an inverse profile to an OCT image would yield the image shown in FIG. 4A .
  • various profiles and models are used to improve OCT image quality as described herein.
  • Another problem with tissue characterization arises due to unwanted noise which makes it more challenging to distinguish tissue boundaries and distinguish other regions of interest.
  • OCT image noise has several components: shot noise, laser noise and electrical noise. OCT images are also degraded by speckles. The speckle effect is inherent to coherent imaging and can reduce the accuracy of measurements of optical properties. To maintain high-resolution accuracy, denoising procedures that remove noise without degrading spatial resolution are performed.
  • FIG. 5A shows a “before” image while FIG. 5B shows an improved “after” image following the application of the denoising procedures. Suitable denoising techniques and algorithms are known to those skilled in the art.
  • a window W of image data of an appropriate size is taken.
  • This window can be moved as shown in FIG. 6A to select different regions of interest over time (see FIG. 6B , ROI A ).
  • the window W can be resized.
  • a window refers to a one, two, or three-dimensional point, region, or volume of a specified size.
  • This window W is sized such that the enclosed region offers sufficient amount of data for reliable model-fittings while maintaining sufficient spatial resolution.
  • the axial lines (points, planes, or other elements) in the window W are averaged to produce a depth profile (or other profile) for that window.
  • Model fitting is applied to the depth profile to obtain optical properties corresponding to that data window. For example, if a single-scattering model is employed, the depth profile is scaled as logarithmic as shown in FIG. 6C to facilitate a linear model fit. Then a line fitting is applied to the profile. Based on Equation (1.1) the offset of the line fitting offers a measurement of the backscatter coefficient, while the slope offers a measurement of the attenuation coefficient.
  • region of interest (such as ROI A for example) are drawn either by a human operator or by a processor-based computer program or other software module.
  • An exemplary region of interest ROI A is shown in FIG. 6B .
  • OCT data inside a region of interest, such as that shown in FIG. 6B is averaged to produce a depth profile.
  • the optical properties for the regions of interest are obtained by model fitting such as the linear data fitting shown in FIG. 6C .
  • the wall of certain lumens, such as an artery, is a layered structure that includes different tissue components.
  • the linear model fitting shown in FIG. 6C is only accurate for a single lumen layer.
  • the lumen surface and the extent of the OCT penetration limit are first found by processing the OCT image or optical properties obtained from the OCT image. In one embodiment, this is performed by an automated computer program.
  • the outer boundary B OCT shows the penetration limit of the OCT system.
  • the inner boundary of the lumen is show by the inner boundary B Lum .
  • a cross-section of the imaging probe P cs is also shown. As shown, the visibility of the outer boundary B OCT has been enhanced by the automated computer program.
  • the tissue boundary detection is obtained by analyzing a single depth scan.
  • An example of such boundary detection can be understood using the illustrative OCT data plot and linear curve fitting model in FIG. 8 .
  • the depth profile is fitted with piece-wise model.
  • different linear portions P 1 -P 3
  • the discontinuities or break-points denote the tissue boundaries, while each line segment denotes one tissue type.
  • P 1 represents or corresponds to the fiber tissue
  • P 2 represents or corresponds to calcification tissue
  • P 3 represents or corresponds to lipid tissue.
  • the discontinuity between P 1 and P 2 shows a tissue boundary between the fiber tissue and the calcification tissue.
  • tissue boundary detection is obtained by analyzing 2D or 3D OCT images, either by a human operator or an automatic algorithm.
  • An example of such boundary detection is illustrated in FIG. 9 .
  • a two-dimensional OCT image of a lumen is shown.
  • the lumen L and calcification C boundaries are detected with automatic edge-detection methods, e.g., edge detection algorithm.
  • tissue boundary detection is complete, corrected optical properties are retrieved by computational models.
  • One example of such a model compensates for backscattering by the amount of cumulative attenuation due to any layers between the region being scanned and the imaging catheter.
  • the tissue region Y is segmented by methods outlined above, which has different optical properties from the surrounding tissue region X.
  • the intensity profile of S 1 and S 2 are shown in FIGS. 10B and 10C , respectively.
  • the slope S x, i and S Y, i of the intensity profile S 1 and S 2 are calculated in their respective regions, where subscript i denotes the different scan lines.
  • the attenuation coefficients of tissue X and Y are then calculated as the average of the slopes of all scan lines.
  • the backscattering coefficient of tissue X is calculated as the offset of the intensity profile between A i and B i .
  • the backscattering coefficients of tissue Y can not be calculated simply by the offset of the intensity profile between B i and C i .
  • Another approach is used. Specifically, the effect on the offset by the attenuation due to the tissue X on top of tissue Y can be compensated using the following equation:
  • the O y,i is the offset of the line fitting of tissue Y
  • S x,i is calculated from the line fitting of tissue X
  • d i is the thickness of tissue X.
  • the O′ y,i and O y,i are the compensated and the original offset of the line fitting at tissue Y, respectively.
  • S x,i is the slope of the line fitting at tissue X and d i is the depth spanned by scan line inside tissue X.
  • the backscattering coefficients of tissue X and Y are then calculated as the average of the compensated offsets of all scan lines, Although in the above example the hypothetical image has only two tissue layers, the method can be extended to multiple-layers OCT image by compensating the offsets of bottom layer iteratively from the top.
  • Another embodiment of this invention relates to the extraction of image features associated with specific tissue types based on 2D or 3D images. These features are not extracted solely from a depth-dependent scanning line, but rather rely on analysis of the patterns of neighboring scans.
  • One example is differentiating calcium tissue and lipid tissue. In OCT, both tissue types appear to be signal poor while the surrounding fibrous or ground tissues appear to be signal rich. However, the boundary between calcium tissue and fibrous tissue is usually sharp, while the boundary between lipid tissue and fibrous tissue in OCT usually appears diffusive. The boundary sharpness can be quantified by measuring the derivative of the image brightness (edge acutance). Other quantifiable local image features include texture and shape information.
  • One semi-automatic method for measuring boundary sharpness requires the operator to roughly preselect an edge line or a small area enclosing the edge line.
  • Edge detection algorithms such as Canny's edge detector or region-growing methods
  • the gray-level variance across the edge line yields a measure of the edge acutance.
  • the edge acutance value is calculated by quantifying the inside-to-outside differences between the signals of the plaque and the surrounding tissue.
  • texture usually refers to patterns of local variations in brightness.
  • texture is closely related to the speckle formation, which is influenced by the density and size distribution of scattering elements or structures.
  • vessel imaging under similar focusing conditions, the texture is observed to be correlated to tissue type. For example, large and densely packed macrophage foam cells form large speckles and exhibit a “solid” texture; while loosely packed proteoglycan molecules with smaller scattering elements form small speckles and exhibit a “gel” texture.
  • intensity statistics e.g., intensity statistics, local pattern analysis (e.g., spatial gray-level co-occurrence matrices), or spectral analysis.
  • the foam cells usually form ribbon-like features on the shoulders of large lipid pool.
  • the media appears like annulus around the vessel, etc.
  • shape information is currently used in qualitative assessment of OCT images. In computerized shape analysis, compactness, Fourier descriptors, central invariant moment, and chord-length distributions are the most commonly used methods. It should be appreciated that shape information can be either 2D shape, 3D shape or both.
  • optical backscattering coefficient, optical attenuation coefficient, image edge sharpness, image texture, image shape are described in detail above as tissue parameters, the present invention is not limited to these parameters. Thus, other parameters (such as optical anisotropic factor) are within the scope of this invention. It should also be appreciated that while models and calculation methods to derive the parameters described above are possible methods, there are other physical models or calculation methods that are within the scope of this invention.
  • a quantitative measurement of optical tissue and image properties can be displayed to an OCT operator to assist in clinical interpretation.
  • the tissue properties are displayed individually.
  • multiple tissue properties are displayed together using a combination display method.
  • FIG. 11A there are two tissue cross-sections shown in FIG. 11A .
  • the attenuation coefficients and backscattering coefficients are shown individually using a grayscale mapping.
  • FIG. 11B shows a combination display method where the color map is devised to combine the backscattering and attenuation measurements.
  • Letter “C”, “F”, and “L” denote the positions of average backscattering and attenuation coefficients for calcification, fibrous and lipid tissue, respectively.
  • FIG. 11C shows the images combining backscattering and attenuation measurements in FIG. 11A using the color-map defined in FIG. 11B . Because the figures are published in black-and-white, FIG. 11D and FIG. 11E are shown by replacing the color-map in Fig. B and C with hatched texture maps. Improved contrast enhancement can be obtained using this approach to visualize plaques. It should be noted that instead of texture map, color-map or symbol encoded map using true colors or symbols can also be used and often generates improved visualizations.
  • the characterization software analyzes the OCT data and measured tissue optical properties to generate image segmentations, define tissue boundaries, and identify tissue elements in samples of interest.
  • the tissue parameters are calculated for each tissue sample or element thereof and compared to the parameters stored in a database. Based on these results, the tissue type or characterization is assigned to the tissue sample of element thereof according to univariate or multivariate discriminant analysis or classification.
  • the calculated tissue parameters are displayed as numbers or color-coded images (e.g., discrete colors, grayscale, etc.).
  • the derived tissue types are displayed to the user as texts or color-coded images (e.g., discrete colors, grayscale, etc.).
  • FIGS. 12A and 12B Another method of generating and analyzing quantitative measurement of tissue optical and image properties is shown in FIGS. 12A and 12B .
  • the first phase is an analysis and database populating phase and the second phase is a tissue characterization phase for a patient. These phases can be performed using the database and software shown in FIG. 1 .
  • the vessel samples are excised and prepared (step 101 ) and OCT data is collected from a portion of the vessel.
  • the histology data (step 103 ) and OCT data (step 104 ) are collected in parallel as shown.
  • the OCT data is calibrated and the artifacts removed to generate consistent measurement.
  • data-preprocessing steps step 108 ) are performed.
  • the data-preprocessing steps can include, but are not limited to calibrating the system power, correcting a focusing effect, correcting angular dependence, and de-noising steps described in text above and in FIGS. 2 , 3 , 4 , 5 .
  • the interrogated portion of the vessel is sectioned and processed by standard histology processing. Regions of interest encompassing specific tissue type (or vessel characterization) are identified by operator or a machine using certain criteria (Step 112 ). The regions of interest are mapped (step 114 ) to the OCT image data or processor-generated OCT image. Optical properties and spatial feature extraction (step 118 ) can also be performed. Finally, any resolved tissue properties can be stored (step 122 ) in a database for future analysis.
  • FIG. 12B shows a method of identifying tissue type in situ.
  • This method includes the step of collecting OCT data (step 126 ). Once collected, this OCT data is used to generate an OCT image (step 130 ) with respect to the scanned lumen or other sample of interest. In one embodiment, the OCT image is then subjected to the data-preprocessing steps (step 134 ). Optical properties and spatial feature extraction (step 138 ) can then be performed as outlined above. Tissue type identifiers or signatures are generated (step 142 ) as discussed above. Next, any suitable tissue type identifiers or signatures are stored (step 146 ) in the relevant database. At this point, various types of statistical analysis (step 150 ) as described herein can be performed to identify a particular tissue type in the OCT image using the stored tissue type identifiers or signatures.
  • tissue types are identified and mapped on the histology images. These tissue identifiers or signatures that are stored can be used in the future to automatically identify tissue elements and types of interest for new OCT scans.
  • the corresponding regions are also identified in the OCT data or image.
  • An example of such mapped histology images is shown in FIG. 13A where tissue types (e.g., fibers (“F”), calcification (“Ca”), etc) were identified.
  • the corresponding mapped OCT image is shown in 13 B.
  • At least one optical property and other image features are extracted and stored in a tissue property database. The above-described process is repeated for each tissue types and each characterization as many times as desired to increase the accuracy of the quantitative measurement of parameters.
  • FIG. 14 An example of suitable data for use in the database is shown in FIG. 14 , where the attenuation and backscattering coefficients for three tissue types are plotted. As shown in the plot, the calcification, fiber and lipid tissue forms clusters that are distinguishable by their positions in attenuation/backscatter space, which is the basis for the tissue characterization.
  • the tissue characterization phase the vessel to be interrogated is imaged with OCT. The image is calibrated and the artifacts are removed. Then regions of interest are generated either by operator input or by automatic segmentation algorithm. The optical properties and other image features are extracted from the regions of interest. The quantitative measurements are compared to the tissue property database generated in the first phase.
  • the discriminant analysis method (or classification analysis method) is used to identify tissue types based on the tissue properties. For example, different tissue types have different the optical backscattering ⁇ b and the attenuation coefficient ⁇ a . For any ROI to be examined, both parameters are measured. Hence, during the database population phase, the ( ⁇ b , ⁇ a ) pairs of different tissue types are obtained.
  • the ( ⁇ b , ⁇ a ) pair of the tissue ROI is obtained, and the Mahalanobis distance is calculated between those of new acquired ROI and those values from the database. From the calculation, a decision is made to find the best match. For example, as shown in FIG. 15A , the distance is shortest between the ROI to the fibers in the database, and the ROI is characterized as fibrous tissue with a certain amount of confidence.
  • the characterization results can be displayed as color-coded image or displayed using text legends describing the possible tissue characterization.
  • FIG. 15B is an example of such characterization, where the overall gray dotted region represents the fibrous region, while the bottom “-” dotted region represents the lipid region.
  • tissue regions and the associated coded legends include but are not limited to a fiber, lipid pool, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, proteoglycan, and others.
  • FIG. 15B and FIG. 11C are related, but different. In FIG. 15B the tissue types are pre-classified for the clinicians, while in FIG. 11C , a contrast-enhanced image is displayed, but the decision of tissue type is made by clinicians when interpreting the image.
  • the optical properties and image features for such discriminant or classification analysis are not limited to backscattering coefficients and attenuation coefficients, but include, although not limited to edge sharpness, texture parameters, plaque geometrical shape etc.
  • the algorithms for performing such analysis are not limited to Mahalanobis distance analysis, but include a variety of statistical methods.
  • Biological tissues are complex. There are many tissue types and sub-types that possibly could not be distinguished by only combining the backscattering and attenuation measurements. For example, the foam cell tissue, and the lipid both have high backscattering and attenuation. Calcification and certain loose connective tissue both have low backscattering and low attenuation.
  • FIG. 16A is a plot summarizing the backscattering vs. attenuation plot shown in FIG. 14 .
  • the lipid tissue and foam cell tissue also have similar properties. Therefore, a discriminant method based on this plot alone is not sufficient to distinguish these tissue types with high accuracy.
  • FIG. 16B shows a plot of edge sharpness measured for the boundary formed by the calcification tissue and fibrous tissue, and the boundary formed by the calcification tissue and lipid tissue. Significant difference was found for the edge transition width between these two types of boundaries. Hence, FIG. 16B could be used to further refine the tissue classification.
  • foam cells are also an important indicator of disease state.
  • the foam cells are usually enlarged macrophage or smooth muscle cells that are filled with lipid droplets. Because of the presence of these lipid droplets, it is often difficult to distinguish them from some lipid tissues. However, because foam cells are large cells and are often clustered into groups of various size, they tend have different texture appearance from lipid tissues, which are usually composed of extracellular lipid.
  • FIG. 16C shows a texture parameter, gray-level co-occurrence matrix for lipid and macrophage tissue.
  • the gray-level co-occurrence matrix calculation is available in many standard commercial image processing software, such as Matlab (MathWorks, Natick, Mass.). Although there are still some overlap between the lipid and foam cells in terms of texture measurements, the additional information helps to improve tissue characterization accuracy.
  • the above analysis is to analyze edge sharpness and texture measurements after analyzing backscattering and attenuation. In other embodiments all of the analysis and comparison can be performed in parallel or in a combination serial/parallel steps.
  • the data and decision shown in FIG. 16 is an example and additional parameters and threshold can be used with an OCT system trained using histology data as discussed above to identify any suitable tissue of interest.
  • the present invention may be embodied in may different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device, (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof.
  • a processor e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer
  • programmable logic for use with a programmable logic device, (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • some or all of the processing of the data collected using an OCT probe and the processor-based system is implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a microprocessor under the control of an operating system.
  • query response and input data are transformed into processor understandable instructions suitable for generating OCT data, histology images, OCT images, ROIs, overlays, signal processing, artifact removal, and other features and embodiments described above.
  • Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments.
  • the source code may define and use various data structures and communication messages.
  • the source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
  • the computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device.
  • a semiconductor memory device e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM
  • a magnetic memory device e.g., a diskette or fixed disk
  • an optical memory device e.g., a CD-ROM
  • PC card e.g., PCMCIA card
  • the computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies.
  • the computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
  • Hardware logic including programmable logic for use with a programmable logic device
  • implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).
  • CAD Computer Aided Design
  • a hardware description language e.g., VHDL or AHDL
  • PLD programming language e.g., PALASM, ABEL, or CUPL
  • Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device.
  • a semiconductor memory device e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM
  • a magnetic memory device e.g., a diskette or fixed disk
  • an optical memory device e.g., a CD-ROM
  • the programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies.
  • the programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
  • printed or electronic documentation e.g., shrink-wrapped software
  • a computer system e.g., on system ROM or fixed disk
  • server or electronic bulletin board e.g., the Internet or World Wide Web
  • a module refers to software, hardware, or firmware suitable for performing a specific data processing or data transmission task.
  • a module refers to a software routine, program, or other memory resident application suitable for receiving, transforming, routing and processing instructions, or various types of data such as OCT scan data, interferometer signal data, clock signals, region of interest types, formulas, and other information of interest.
  • Computers and computer systems described herein may include operatively associated computer-readable media such as memory for storing software applications used in obtaining, processing, storing and/or communicating data. It can be appreciated that such memory can be internal, external, remote or local with respect to its operatively associated computer or computer system.
  • Memory may also include any means for storing software or other instructions including, for example and without limitation, a hard disk, an optical disk, floppy disk, DVD (digital versatile disc), CD (compact disc), memory stick, flash memory, ROM (read only memory), RAM (random access memory), DRAM (dynamic random access memory), PROM (programmable ROM), EEPROM (extended erasable PROM), and/or other like computer-readable media.
  • a hard disk an optical disk, floppy disk, DVD (digital versatile disc), CD (compact disc), memory stick, flash memory, ROM (read only memory), RAM (random access memory), DRAM (dynamic random access memory), PROM (programmable ROM), EEPROM (extended erasable PROM), and/or other like computer-readable media.
  • computer-readable memory media applied in association with embodiments of the invention described herein may include any memory medium capable of storing instructions executed by a programmable apparatus. Where applicable, method steps described herein may be embodied or executed as instructions stored on a computer-readable memory medium or memory media. These instructions may be software embodied in various programming languages such as C++, C, Java, and/or a variety of other kinds of software programming languages that may be applied to create instructions in accordance with embodiments of the invention.
  • a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to provide an element or structure or to perform a given function or functions. Except where such substitution would not be operative to practice certain embodiments of the invention, such substitution is considered within the scope of the invention.

Abstract

A method and apparatus for determining properties of a tissue or tissues imaged by optical coherence tomography (OCT). In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements and indicium such as color is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. In an alternative embodiment the tissue characteristics is classified automatically by a program given the combination of backscatter and attenuation values.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application 61/058,077 filed on Jun. 2, 2008, the disclosure of which is herein incorporated by reference in its entirety.
  • FIELD OF INVENTION
  • This invention provides methods for tissue characterization using optical coherence tomography. Specifically, in part, such characterization can be performed by measuring a tissue's optical and image properties.
  • BACKGROUND
  • Optical coherence tomography (OCT) is an interferometric imaging technique with widespread applications in ophthalmology, cardiology, gastroenterology and other fields of medicine. The ability to view subsurface structures with high resolution (2-15 μm) through small-diameter fiber-optic probes makes OCT especially useful for minimally invasive imaging of internal tissues and organs. OCT systems can generate images up to 100 frames per second, making it possible to image coronary arteries in the beating heart artery within a few seconds. OCT can be implemented in both time domain (TD-OCT) and frequency domain (Fourier domain OCT or optical frequency domain imaging, OFDI).
  • OCT imaging of portions of a patient's body provides a useful tool for doctors to determine the best type and course of treatment. For example, imaging of coronary arteries by intravascular OCT may reveal the location of a stenosis, the presence of vulnerable plaques, or the type of atherosclerotic plaque. This information helps cardiologists choose which treatment would best serve the patient—drug therapy (e.g., cholesterol-lowering medication), a catheter-based therapy like angioplasty and stenting, or an invasive surgical procedure like coronary bypass surgery. In addition to its applications in clinical medicine, OCT is also very useful for drug development in animal and clinical trials.
  • Normal arteries have a consistent layered structure consisting of intima, media and adventia. As a result of the process of atherosclerosis, the intima becomes pathologically thickened and may contain plaques composed of different types of tissues, including fiber, proteoglycans, lipid and calcium, as well as macrophages and other inflammatory cells. These tissue types have different optical properties that can be measured by OCT. The plaques that are believed to be most pathologically significant are the so-called vulnerable plaques that have a fibrous cap with an underlying lipid pool.
  • In a typical OCT imaging system, an optical probe mounted on a catheter is carefully maneuvered to a point of interest such as within a coronary blood vessel. The optical beams are then transmitted and the backscattered signals are received through coherent detection using an interferometer. As the probe is scanned through a predetermined line or area, many data lines can be collected. An image (2D or 3D) is then reconstructed using well-known techniques. This image is then analyzed visually by a cardiologist to assess pathological features, such as vessel wall thickening and plaque composition.
  • Since tissue type is identified by its appearance on the screen, errors may occur in the analysis because certain information (such as tissue type) cannot be readily discerned. The standard OCT image only contains the intensity information of the OCT signals. Small changes in the optical properties that influence the OCT signals cannot be readily discerned. Thus, it would be advantageous to have an OCT system and method to measure the optical properties and use them to aid scientists and clinicians. The present invention addresses this need.
  • SUMMARY OF THE INVENTION
  • The methods are explained through the following description, drawings, and claims.
  • In general the invention relates to a method and apparatus for determining properties of a tissue or tissues imaged by OCT. In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements an indicium, such as color, is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. Alternatively, the tissue characteristics can be classified automatically by a program given the combination of backscatter and attenuation values.
  • In one aspect the invention relates to a method for identifying tissue components in situ. In one embodiment the method comprises the steps of: taking an OCT image of a tissue in situ; measuring the attenuation and backscatter at a point in the OCT image; and determining the composition of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter. In another embodiment the method further comprises mapping a pair of coordinates in backscatter-attenuation space to an indicium of the value of the pair of coordinates in the backscatter-attenuation space. In one embodiment the indicium is a color. In another embodiment the method further comprises displaying the indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
  • In another aspect the invention relates to a system for identifying tissue components in situ. In one embodiment the system comprises an OCT subsystem for taking an OCT image of a tissue in situ; a processor in communication with the OCT subsystem for measuring the attenuation and backscatter at a point in the OCT image and determining the composition of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter; and a display for displaying the OCT image and an indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
  • In another aspect the invention relates to a processor-implemented method for identifying tissue components in situ. In one embodiment, the method includes the steps of (a) collecting an OCT dataset of a tissue sample in situ using a probe; (b) measuring an attenuation value and a backscattering value at a point in the tissue sample; and (c) determining a tissue characteristic at a location in the tissue sample corresponding to an image location in an OCT image formed from the OCT dataset in response to the measured attenuation value and backscattering value. The method can include the further step of mapping a pair of coordinates in backscatter-attenuation space to an indicium of the value of the pair of coordinates in the backscatter-attenuation space. The method can include the further step of displaying the indicium corresponding to the measured attenuation and backscatter at the point in the OCT image. The tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycans. The indicium can be, for example, a color. The indicium can also be selected from the group consisting of an over-lay, a colormap, a texture map, and text. The method can include the further step of classifying tissue type using a property selected from the group consisting of backscattering, attenuation, edge sharpness, and texture measurements. The method can include the further step of correcting a focusing effect to improve tissue type classification. The method can include the further step of applying angular intensity correction to account for an attenuation effect, such as, for example, a blood-related attenuation effect. The method can include the further step of determining a tissue characteristic using a technique selected from the group consisting of boundary detection, lumen location, and OCT location depth.
  • In another aspect the invention relates to a system for identifying tissue components in situ. In one embodiment, the system includes (a) an OCT subsystem for taking an OCT image of a tissue in situ; (b) a processor in communication with the OCT subsystem for measuring the attenuation and backscatter at a point in the OCT image and determining a tissue characteristic of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter; and (c) a display for displaying the OCT image and an indicium corresponding to the measured attenuation and backscatter at the point in the OCT image. The tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycans.
  • In another aspect the invention relates to an optical coherence tomography system for identifying tissue characteristics of a sample. In one embodiment the computer system includes a detector configured to receive an optical interference signal generated from scanning a sample and converting the optical interference signal to an electrical signal; an electronic memory device and an electronic processor in communication with the memory device and the detector. The memory device can include instructions that, when executed by the processor, cause the processor to: analyze the electrical signal and generate a plurality of datasets corresponding to the sample, wherein one of the plurality of datasets comprises backscattering data; compare the backscattering data to a first threshold, the backscattering data mapping to a first location in the sample; and if the backscattering data exceeds the first threshold, characterize the first location in the sample as having a first tissue characteristic. In some embodiments, the processor is further caused to generate an OCT image of the sample such that the first tissue characteristic is identified and displayed relative to the first location. The first tissue characteristic can be selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycan. In some embodiments, at least one of the plurality of datasets includes OCT scan data, attenuation data, edge sharpness data, texture parameters, or interferometric data.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
  • The objects and features of the invention can be better understood with reference to the drawings described below, and the claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, numerals are used to indicate specific parts throughout the various views. The drawings associated with the disclosure are addressed on an individual basis within the disclosure as they are introduced.
  • FIG. 1 is a schematic view of a generalized OCT data acquisition system in accordance with an embodiment of the invention.
  • FIG. 2 is a schematic view of a cross-section of a lumen with an imaging probe disposed therein with a semi-transparent layer according to an embodiment of the invention.
  • FIG. 3A shows optical properties, geometric information and parameters for a beam of electromagnetic waves used to collect OCT data.
  • FIGS. 3B and 3C show plots of relative intensity and gain, respectively, as a function of beam distance from the probe tip used to perform OCT data collection according to an embodiment of the invention.
  • FIG. 4A shows a cross-section of a lumen with an imaging probe disposed therein according to an embodiment of the invention.
  • FIG. 4B shows an exemplary angular intensity profile with respect to rotational angle of the probe according to an embodiment of the invention.
  • FIGS. 5A-5B illustrates the results from the application of an exemplary method of OCT image denoising according to an illustrative embodiment of the invention. FIG. 5A shows the image before denoising and FIG. 5B shows the same OCT image after the application of the denoising method.
  • FIG. 6A illustrates OCT scan data being processed using a window as part of a method for optical property extraction according to an embodiment of the invention.
  • FIG. 6B illustrates OCT scan data being processed to define a region of interest according to an embodiment of the invention.
  • FIG. 6C is data plot with a linear portion used to model certain optical properties from a set of OCT data according to an embodiment of the invention.
  • FIG. 7 illustrates a lumen cross-section and demonstrates the automatic detection of a lumen surface and an OCT penetration limit of interest according to an embodiment of the invention.
  • FIG. 8 illustrates a plotted OCT dataset suitable for performing tissue boundary localization using piece-wise regression on a one-dimensional OCT axial scan according to an embodiment of the invention.
  • FIG. 9 illustrates a two-dimensional cross-section of a lumen obtained using an OCT scan such that the tissue boundary localization was generated using Canny's edge detector method.
  • FIG. 10A is a diagram of a section of lumen wall showing the interaction of the beam at two locations with the various tissues in the wall.
  • FIGS. 10B and 10C are schematic diagrams that illustrate the dimensions and variables used in a method of extracting attenuation/backscattering coefficients from a multi-layered tissue object shown in FIG. 10A according to an embodiment of the invention.
  • FIG. 11A includes four image data plots showing exemplary tissue characterization coefficients relating to backscattering and attenuation data according to an embodiment of the invention.
  • FIG. 11B shows a color-map plot of attenuation and backscattering data suitable for implementing a method for distinguishing different tissue properties according to an embodiment of the invention.
  • FIG. 11C shows two exemplary OCT images depicting different tissue properties that have been enhanced using the color-map shown in FIG. 11B.
  • FIGS. 11D-11E show hatched versions of FIGS. 11B and 11C.
  • FIGS. 12A and 12B illustrate, respectively, methods of tissue characterization by histological preparation and OCT data processing in accordance with embodiments of present invention.
  • FIG. 13A shows an example histology image with mapped tissue types according to an embodiment of the invention.
  • FIG. 13B shows an OCT image in which the tissue types and data identified in FIG. 13A have been mapped and identified with boundaries according to an embodiment of the invention.
  • FIG. 14 shows a plot of attenuation data versus backscattering data with respect to certain tissue properties obtained from real human atherosclerosis plaques using methods described in FIGS. 12A-12B.
  • FIG. 15A shows a plot of attenuation data versus backscattering data suitable for use with a tissue characterization discriminant method that compares the tissue properties of region of interest to the tissue properties populated in a database.
  • FIG. 15B illustrates an exemplary OCT tissue characterization image in which a computer texture overlay is used to describe regions of interest according to an embodiment of the invention.
  • FIG. 16A is a plot depicting the backscattering vs. attenuation data shown in FIG. 14 according to an embodiment of the invention.
  • FIGS. 16B-16C are plots depicting edge sharpness and texture, respectively, as measured for a boundary of interest according to an embodiment of the invention.
  • DETAILED DESCRIPTION
  • The following description refers to the accompanying drawings that illustrate certain embodiments of the invention. Other embodiments are possible and modifications may be made to the embodiments without departing from the spirit and scope of the invention. Therefore, the following detailed description is not meant to limit the invention. Rather, the scope of the invention is defined by the appended claims.
  • In general, the invention relates to methods for tissue characterization of vessel walls using optical methods based on what is generally termed low coherence interferometry (LCI), such as, but not limited to optical coherence tomography (OCT) whether in the time or Fourier domain. The methods described herein solve the problems encountered in semi-automatic or automatic tissue characterization application such as optical calibration, artifact removal, generating accurate optical and spatial parameter measurement from regions of interests, tissue segmentations, and statistical discriminant analysis of tissue types. As used herein discriminant analysis refers to classifying images or data into different classes.
  • The present invention provides methods for analyzing OCT data and images to characterize biological tissues. Although methods described herein may pertain specifically to vascular tissues, the methods also apply to tissues in other organs of the body, including tissues in the gastrointestinal, pulmonary, and reproductive tracts. Embodiments of the present invention operate in conjunction with an OCT system and a computing device that include characterization software and a decision database as discussed below with respect to FIG. 1. Specifically, the OCT console and OCT probe are used to acquire raw OCT data and demodulated data from a blood vessel. In this context, demodulated data refers to OCT images, such as grayscale images, or the underlying data associate with such images. The OCT data is received by the computing device such as a processor and used to create an OCT image on which numerical, text or graphical information about tissue characteristics are displayed.
  • In part, embodiments of the invention are used to evaluate the walls of certain lumens and tissues accessible by an OCT probe. Exemplary tissue images or tissue data sets can include, but are not limited to plaques, lipid pools, and stent placement zones. Typically, histology images of a sample are used to automate an OCT data-based characterization of the same and unrelated samples. In one embodiment of the present invention, reference data (e.g., normal tissue type data from histology reviewed samples) are characterized or generated using software comparisons with data stored in a database. In one embodiment, the characterization software implements some or all of the steps shown in FIG. 12A. However, this software can implement other methods as appropriate and discussed herein.
  • In general, one embodiment of the characterization software is based on manual selection of regions-of-interest in a histology image. The actual histology data is evaluated to identify different tissue types. In turn, these identified tissue evaluations are be compared to OCT images obtained with respect to the same sample tissue. By comparing the manually identified tissues and structures of interest in the histology images, training sets are created to allow some of the software and programming logic described herein to automatically characterize tissue types and structures in an OCT image. For example, if tissue layer A is identified in the histology image, the same region of interest A′ can be identified in the corresponding OCT image. This process can be repeated to build a database of information used to locate different tissues in an OCT image. Backscattering and attenuation data can be used as outlined below to facilitate this process. Other embodiments of the methods described herein also include image preprocessing steps (such as focus correction), and optical property measurement.
  • As part of an exemplary sample measurement session, one or more tissue samples are first interrogated using OCT such that OCT scan data is collected. Once the scan data is processed, the resulting OCT images relating to the tissue samples are calibrated and corrected for imaging artifacts. Next, the tissue sample is cross-sectioned to create a histology image designating different parts of the image as composed of different elements or features. The tissue samples are processed using a histological method (such as dye staining), and digitized to create a histology image or histology data set.
  • In one embodiment, the OCT images are image mappings of the backscattered signal that reaches the OCT probe after being reflected from the OCT scan of the sample. In one embodiment, the histology images are digitized microscopic images of real tissue sample undergone dye staining, i.e., the histology images are color images showing the dye distribution. Since the dyes bind to certain molecules and tissue types preferentially, the histology images map the molecules/tissue types in a tissue sample. As used herein, a histology image typically includes data regarding tissue or a tissue structure or the image created from such underlying data.
  • The histology image allows operators to identify tissue types (or characterizations) and regions of interest (ROIs). The OCT images are matched or mapped to the histology image. In one embodiment, the mapping is done manually. Next, the characterization software then identifies a corresponding region on the OCT image. The characterization software then calculates at least one of the tissue optical properties or spatial features, the result of which is stored in the database. Statistical analysis is then applied to form a discriminant analysis method using both the OCT data and the tissue types identified in histology.
  • FIG. 1 is a schematic illustration of a generalized view of an OCT imaging system 10. The imaging system typically includes an interferometer 12 and an optical source 14, for example, a broadband light source, or a wavelength-swept source that provides optical beam to both sample arm 16 and reference arm 18. The sample arm 16 delivers the optical beam to tissue through an optional scanning apparatus such as an OCT probe. In one embodiment, the optical scanning apparatus is a rotational transducer attached to the end of the sample arm and is carefully maneuvered through the patient's body to the region of interest. The scanning probe provides a substantially collimated beam to the vessel walls. The reference arm has a built-in known reflector, which may be located either at a separate optical path or at a common path as sample arm but at a slightly different location. The backscattered light signals from both the sample arm and the reference arm are recombined at the optical interferometer 12.
  • The combined optical interference signal is converted to electrical signal by the optical detector (or detector arrays) 20. The signal is then used to construct images. The detector is in electrical communication with a processing and analysis subsystem 21 in one embodiment. The subsystem can include a processor 22, a data acquisition module 24, and an analysis software application 26.
  • The processor 22 is a portion of a computer system or other processor-based device executes various software programs or program logic such as data acquisition 24 and data analysis modules 26. In other embodiments the acquisition and analysis system elements are hardware modules. In one embodiment, the software includes characterization software and graphic user interface for displaying regions of interest as described below. Typically, the processor 22 is in communication with memory (not shown) and a database 28. The database is used to store all types of data and participate in various processing phases and stages as outlined below.
  • OCT is currently the most widespread variant of this group of imaging systems. The sample arm of commercially available OCT system has many configurations, including microscope, forward-looking endoscope and side-looking endoscope. To simplify description without loss of generalization, OCT with side-looking endoscope is used as a non-limiting example for describing this invention below. In this configuration, an optical probe is mounted in an endoscopic catheter at the sample arm 16. The substantially collimated beam exits from the optical probe mounted on the side. Typically the catheter and the probe are rotated to generate 2D scan and can also be pulled or advanced while rotating to generate 3D scan.
  • The OCT signal can be described as the light collected from a discrete light imaging volume. Signals from discrete locations within the sample include the image data set. The signal detected from any location is determined by the scattering element's size, refractive indices, density, geometrical arrangement, in addition to characteristics of the optical imaging system. Since different tissues have different chemical composition and microscopic structure, their appearances differ in OCT images. Qualitative differences in appearance have been used clinically for identifying and characterizing plaques. However, this qualitative approach requires extensive experience and is prone to instrumental and human errors. To assist in tissue characterization, the present invention provides various means to incorporate quantitative measurements. In some embodiments, this tissue characterization is performed automatically using the processor 22 and characterization software.
  • In one embodiment of the invention, the characterization software inputs the OCT data, calibrates the signal strength, enhances data quality via filtering, corrects imaging artifacts, and calculates parameters for all tissue regions or specific regions of interest identified by operators, and uses the parameters stored in database to identify tissue type or characterization. In this embodiment, the characterization software identifies at least one of the tissue optical properties or spatial features from OCT data. The tissue optical properties are calculated and displayed. The individual tissue optical properties are displayed either individually or in combination.
  • To calculate the optical parameters of the tissue, many optical models can be used. In one embodiment of the present invention, the optical parameters of the tissue can be extracted by fitting the data based on single-scatterer theory. In another embodiment of the present invention, the optical parameters can be extracted by models, such as the extended Huygens-Fresnel (ELF) theory that include multiple-scatterer effect.
  • In one the embodiment, discussed below, P(z) is the power of OCT signal received. According to single-scattering theory, the OCT signal power P(z) collected from a homogeneous sample, from depth z0 to z1 is described by:

  • P(z)=KA(z,φ)T(z 0bexp(−2μa z), z0<z<z1

  • log [P(z)]=log [KA(z,φ)T(z 0)]+log(μb)−2μa z, z0<z<z1  (1.1)
  • where z is the depth into the sample, K is the delivered incident power, A(z, φ) is the optical system efficiency, T(z0) is the optical transmission efficiency from tissue surface to depth z0, μb is the tissue backscattering coefficient, and μa is the tissue attenuation coefficient. In A(z, φ), the angular dependence φ arises from varying beam delivering efficiency caused by catheter rotation and blood attenuation. The z dependence is caused by factors such as the divergent beam focusing profile. The tissue back-scattering coefficients and the attenuation coefficients are characteristic of tissue types and are the principal optical parameters used in certain embodiments to determine the tissue characteristics. For a specific imaging setting, the K value and A(z, φ) value are constant. For a specific region of interest, the T(z0) is also a constant. However, there can be variations from these constants in some embodiments. Given a substantially constant behavior for the different parameters discussed above, a linear relationship between log [P(z)] and the depth z is a reasonable assumption. Accordingly, a line can be fit to the data describing the relationship between scan depth and the signal received by the OCT system. This linear model has various uses. For example, based on this linear model, the attenuation coefficient can be calculated from the slope of the fitted line; while the backscattering coefficient can be calculated from the offset of the fitted line.
  • With respect to the depth parameter, the z dependence is illustrated by FIGS. 3A and 3B as discussed below. In turn, the z-dependence can be resolved using a model fit to the data shown in FIG. 3C. The φ dependence has many influencing factors that can be addressed using certain techniques. In one embodiment, the φ dependence is resolved using a model fit to the data of FIG. 4B as described below.
  • The OCT imaging machine and sample arm beam delivery device has various optical efficiencies. To ensure the accurate measurement of tissue optical properties, in addition to noise subtraction and filtering, the imaging system must be carefully calibrated and various artifacts must be removed. As shown in FIG. 2, to calibrate the light intensity exiting the sample probe, one embodiment of this calibration method places a semi-transparent layer of materials 30, having a known backscattering coefficient, around the optical probe 32. In the figure shown, both are disposed in a lumen of interest 34.
  • The OCT intensity from this layer 30 is proportional to light intensity exiting the probe, thereby providing a calibrated optical reference. This semi-transparent layer 30 can be in the form of outer sheath of the catheter, a layer between the outmost sheath and the optical fiber probe, or a specific semi-transparent coating on the optical fiber, the catheter sheath or other structural layers in between that has calibrated reflection coefficients. In order to consider this embodiment in more detail, it is useful to review the components of an exemplary OCT probe.
  • In one embodiment, the OCT probe is composed of the rotating optical fiber 32 surrounded by one or more layers of plastic or glass. These constitute a substantially stationary protective sheath. The partial reflector can be either layer 30 (which is a part of the sheath), or an interface inside the optical fiber or GRIN lens assembly. The advantage of using layer 30 is that the intensity of layer 30 is generally visible in the OCT images. The disadvantage of layer 30 is that it is a larger and more complex structure. This greater size and complexity may be non-uniform and the overall layer may have a rotational dependence. One advantage of using the interface as the reflector is that it rotates together with the fiber. Hence, it does not suffer potential rotational dependence. The disadvantage of the interface is that it may lie outside the normal OCT scan range (i.e. proximal to the fiber tip, where the normal OCT image range begins just distal to the fiber tip) requiring the OCT scan range to adjusted inward to capture this interface and losing a commensurate portion of the outer scan region.
  • The partial reflector 30 is used to calibrate the delivered incident light intensity (K). Partial reflecting layer 30 can be calibrated by injecting a laser of known intensity and recording the reflected signal strength.
  • An electromagnetic beam such as an optical beam suitable for performing OCT scans is shown in FIG. 3A, where w0 is the beam waist and z0 is the Rayleigh range. Due to finite wavelength, the optical beam used in the imaging is a Gaussian beam which is divergent from the beam waist. It produces a beam focusing profile that can be described by the Lorentzian function.
  • A ( z ) z 0 2 z 0 2 + ( z - f ) 2 ( 1.2 )
  • In equation 1.2, A(z) is light intensity at depth z, zo is the Rayleigh range, and f is the focal length of the lens assembly. In a homogeneous media, the divergent beam profile produces an OCT intensity pattern that peaks at the focal plane, and rolls off from either side, as shown in FIG. 3B. To correct for the loss of intensity due to defocus, the focal length of the imaging probe is measured and the inverse of equation (1.2) is applied to OCT signal P(z). To suppress excessive boosting of noise in regions far away from the focus plane, the amplification factor is limited far from the focusing point as shown in FIG. 3C.
  • As shown in FIG. 4A, a probe 50 suitable for collecting OCT data is shown in the cross-section. During in vivo OCT imaging, the light beam travels through many catheter sheath layers and liquid layers (such as saline or flushing agent) before arriving at the vessel walls. These layers may introduce a certain amount of attenuation that cannot be well predicted. If the light impinges onto the tissue at an oblique angle, part of its intensity may be lost in the surface reflection. As shown in the figure, a lumen boundary 53 is shown relative to a superficial layer 55. The superficial layer 55 includes tissue a few coherence lengths away from the lumen boundary in the depth dimension is segmented. The region between the lumen boundary (the inner solid line) and the dotted line is the “superficial layer”. φ is the rotational angle of the probe.
  • To correct for these effects, if the superficial layer 55 and other biological samples are composed of a homogeneous layer of fibrous tissue beneath the lumen boundary, it is reasonable to use the superficial layer 55 as a calibration basis for the φ dependence in A(z,φ). To do this, the boundary 53 between the lumen and the vessel is found either by manual selection or by an automatic program. The OCT intensity in the region is then averaged over the depth to give the angular-dependent intensity profile shown in FIG. 4B. In addition, FIG. 4B shows the angular-dependent intensity profile as a function of φ obtained from the superficial layer.
  • The inverse of this profile shown in FIG. 4B is applied to OCT signal. The application of the inverse profile corrects the rotation-dependent intensity variation and non-uniform blood attenuation in the lumen. For example, applying such an inverse profile to an OCT image would yield the image shown in FIG. 4A. In general various profiles and models are used to improve OCT image quality as described herein. Another problem with tissue characterization arises due to unwanted noise which makes it more challenging to distinguish tissue boundaries and distinguish other regions of interest.
  • OCT image noise has several components: shot noise, laser noise and electrical noise. OCT images are also degraded by speckles. The speckle effect is inherent to coherent imaging and can reduce the accuracy of measurements of optical properties. To maintain high-resolution accuracy, denoising procedures that remove noise without degrading spatial resolution are performed. FIG. 5A shows a “before” image while FIG. 5B shows an improved “after” image following the application of the denoising procedures. Suitable denoising techniques and algorithms are known to those skilled in the art.
  • As shown in FIG. 6A, in one embodiment of this invention, a window W of image data of an appropriate size is taken. This window can be moved as shown in FIG. 6A to select different regions of interest over time (see FIG. 6B, ROIA). Alternatively, the window W can be resized. In one embodiment, where no human interaction or automatic segmentation method is required, a window refers to a one, two, or three-dimensional point, region, or volume of a specified size. This window W is sized such that the enclosed region offers sufficient amount of data for reliable model-fittings while maintaining sufficient spatial resolution. The axial lines (points, planes, or other elements) in the window W are averaged to produce a depth profile (or other profile) for that window. Model fitting is applied to the depth profile to obtain optical properties corresponding to that data window. For example, if a single-scattering model is employed, the depth profile is scaled as logarithmic as shown in FIG. 6C to facilitate a linear model fit. Then a line fitting is applied to the profile. Based on Equation (1.1) the offset of the line fitting offers a measurement of the backscatter coefficient, while the slope offers a measurement of the attenuation coefficient.
  • Once an initial data set as been collected, the window W is then moved inside the OCT image to obtain optical properties at different locations in the image (see arrows shown in FIG. 6A showing possible directions of window movement). In another embodiment, region of interest (such as ROIA for example) are drawn either by a human operator or by a processor-based computer program or other software module. An exemplary region of interest ROIA is shown in FIG. 6B. OCT data inside a region of interest, such as that shown in FIG. 6B, is averaged to produce a depth profile. In turn, the optical properties for the regions of interest are obtained by model fitting such as the linear data fitting shown in FIG. 6C.
  • The wall of certain lumens, such as an artery, is a layered structure that includes different tissue components. In some embodiments, the linear model fitting shown in FIG. 6C is only accurate for a single lumen layer. Accordingly, to obtaining optical properties for regions of interest in a multi-layered structure, the lumen surface and the extent of the OCT penetration limit are first found by processing the OCT image or optical properties obtained from the OCT image. In one embodiment, this is performed by an automated computer program. In FIG. 7, the outer boundary BOCT shows the penetration limit of the OCT system. In contrast, the inner boundary of the lumen is show by the inner boundary BLum. A cross-section of the imaging probe Pcs is also shown. As shown, the visibility of the outer boundary BOCT has been enhanced by the automated computer program.
  • In addition to analyzing a multi-layered structure and obtaining optical property data, the boundaries between different tissue types are also of interest. In one embodiment of this invention, the tissue boundary detection is obtained by analyzing a single depth scan. An example of such boundary detection can be understood using the illustrative OCT data plot and linear curve fitting model in FIG. 8. The depth profile is fitted with piece-wise model. As shown, although non-limiting, different linear portions (P1-P3) are shown. Once the piece-wise linearization is complete, such as shown in FIG. 8, the discontinuities or break-points denote the tissue boundaries, while each line segment denotes one tissue type. For example, in FIG. 8, P1 represents or corresponds to the fiber tissue, P2 represents or corresponds to calcification tissue, and P3 represents or corresponds to lipid tissue. The discontinuity between P1 and P2 shows a tissue boundary between the fiber tissue and the calcification tissue.
  • In another embodiment of this invention, tissue boundary detection is obtained by analyzing 2D or 3D OCT images, either by a human operator or an automatic algorithm. An example of such boundary detection is illustrated in FIG. 9. As shown, a two-dimensional OCT image of a lumen is shown. The lumen L and calcification C boundaries are detected with automatic edge-detection methods, e.g., edge detection algorithm.
  • Once tissue boundary detection is complete, corrected optical properties are retrieved by computational models. One example of such a model compensates for backscattering by the amount of cumulative attenuation due to any layers between the region being scanned and the imaging catheter. For the hypothetical OCT image shown in FIG. 10A, first the tissue region Y is segmented by methods outlined above, which has different optical properties from the surrounding tissue region X. There may be up to N scan lines in the OCT images. Without loss of generality, two scan lines S1 and S2 can be considered. These two scan lines intersect with the lumen surface, the top boundary of tissue Y, and the bottom boundary of the tissue Y at A1, B1, C1 and A2, B2, C2, respectively. If the length of segment A1B1 and A2B2 is d1, and d2, respectively, the intensity profile of S1 and S2 are shown in FIGS. 10B and 10C, respectively. The slope Sx, i and SY, i of the intensity profile S1 and S2 are calculated in their respective regions, where subscript i denotes the different scan lines.
  • To reduce the effect of noise and speckle, the attenuation coefficients of tissue X and Y are then calculated as the average of the slopes of all scan lines. The backscattering coefficient of tissue X is calculated as the offset of the intensity profile between Ai and Bi. However, because the attenuation effect of tissue X, the backscattering coefficients of tissue Y can not be calculated simply by the offset of the intensity profile between Bi and Ci. Another approach is used. Specifically, the effect on the offset by the attenuation due to the tissue X on top of tissue Y can be compensated using the following equation:

  • O′ y,i =O y,i +S x,i d i i=1, 2,
  • In the equation above, the Oy,i is the offset of the line fitting of tissue Y, Sx,i is calculated from the line fitting of tissue X, di is the thickness of tissue X. The O′y,i and Oy,i are the compensated and the original offset of the line fitting at tissue Y, respectively. Sx,i is the slope of the line fitting at tissue X and di is the depth spanned by scan line inside tissue X.
  • To reduce the effect of noise and speckle, the backscattering coefficients of tissue X and Y are then calculated as the average of the compensated offsets of all scan lines, Although in the above example the hypothetical image has only two tissue layers, the method can be extended to multiple-layers OCT image by compensating the offsets of bottom layer iteratively from the top.
  • Another embodiment of this invention relates to the extraction of image features associated with specific tissue types based on 2D or 3D images. These features are not extracted solely from a depth-dependent scanning line, but rather rely on analysis of the patterns of neighboring scans. One example is differentiating calcium tissue and lipid tissue. In OCT, both tissue types appear to be signal poor while the surrounding fibrous or ground tissues appear to be signal rich. However, the boundary between calcium tissue and fibrous tissue is usually sharp, while the boundary between lipid tissue and fibrous tissue in OCT usually appears diffusive. The boundary sharpness can be quantified by measuring the derivative of the image brightness (edge acutance). Other quantifiable local image features include texture and shape information.
  • One semi-automatic method for measuring boundary sharpness requires the operator to roughly preselect an edge line or a small area enclosing the edge line. Edge detection algorithms (such as Canny's edge detector or region-growing methods) are then used to detect the precise location of the edges. The gray-level variance across the edge line yields a measure of the edge acutance. The edge acutance value is calculated by quantifying the inside-to-outside differences between the signals of the plaque and the surrounding tissue.
  • In computer vision, texture usually refers to patterns of local variations in brightness. In an OCT image, texture is closely related to the speckle formation, which is influenced by the density and size distribution of scattering elements or structures. In vessel imaging, under similar focusing conditions, the texture is observed to be correlated to tissue type. For example, large and densely packed macrophage foam cells form large speckles and exhibit a “solid” texture; while loosely packed proteoglycan molecules with smaller scattering elements form small speckles and exhibit a “gel” texture. There are numerous ways to quantify texture information in computer vision, including methods based on intensity statistics (histogram or variance), local pattern analysis (e.g., spatial gray-level co-occurrence matrices), or spectral analysis.
  • Different atherosclerosis plaques have different geometrical shapes. For example, the foam cells usually form ribbon-like features on the shoulders of large lipid pool. In turn, the media appears like annulus around the vessel, etc. The shape information is currently used in qualitative assessment of OCT images. In computerized shape analysis, compactness, Fourier descriptors, central invariant moment, and chord-length distributions are the most commonly used methods. It should be appreciated that shape information can be either 2D shape, 3D shape or both.
  • It should be appreciated that while optical backscattering coefficient, optical attenuation coefficient, image edge sharpness, image texture, image shape are described in detail above as tissue parameters, the present invention is not limited to these parameters. Thus, other parameters (such as optical anisotropic factor) are within the scope of this invention. It should also be appreciated that while models and calculation methods to derive the parameters described above are possible methods, there are other physical models or calculation methods that are within the scope of this invention.
  • A quantitative measurement of optical tissue and image properties can be displayed to an OCT operator to assist in clinical interpretation. In one embodiment, the tissue properties are displayed individually. In another embodiment, multiple tissue properties are displayed together using a combination display method. For example, there are two tissue cross-sections shown in FIG. 11A. The attenuation coefficients and backscattering coefficients are shown individually using a grayscale mapping. FIG. 11B shows a combination display method where the color map is devised to combine the backscattering and attenuation measurements. Letter “C”, “F”, and “L” denote the positions of average backscattering and attenuation coefficients for calcification, fibrous and lipid tissue, respectively. FIG. 11C shows the images combining backscattering and attenuation measurements in FIG. 11A using the color-map defined in FIG. 11B. Because the figures are published in black-and-white, FIG. 11D and FIG. 11E are shown by replacing the color-map in Fig. B and C with hatched texture maps. Improved contrast enhancement can be obtained using this approach to visualize plaques. It should be noted that instead of texture map, color-map or symbol encoded map using true colors or symbols can also be used and often generates improved visualizations.
  • In the another embodiment of the present invention, the characterization software analyzes the OCT data and measured tissue optical properties to generate image segmentations, define tissue boundaries, and identify tissue elements in samples of interest. The tissue parameters are calculated for each tissue sample or element thereof and compared to the parameters stored in a database. Based on these results, the tissue type or characterization is assigned to the tissue sample of element thereof according to univariate or multivariate discriminant analysis or classification. In one embodiment, the calculated tissue parameters are displayed as numbers or color-coded images (e.g., discrete colors, grayscale, etc.). In another embodiment, the derived tissue types are displayed to the user as texts or color-coded images (e.g., discrete colors, grayscale, etc.). These features are described below in more detail.
  • Another method of generating and analyzing quantitative measurement of tissue optical and image properties is shown in FIGS. 12A and 12B. In one embodiment, two major phases can be used. The first phase is an analysis and database populating phase and the second phase is a tissue characterization phase for a patient. These phases can be performed using the database and software shown in FIG. 1.
  • As shown in FIG. 12A, in the database populating phase, the vessel samples are excised and prepared (step 101) and OCT data is collected from a portion of the vessel. The histology data (step 103) and OCT data (step 104) are collected in parallel as shown. In one embodiment, the OCT data is calibrated and the artifacts removed to generate consistent measurement. In one embodiment, data-preprocessing steps (step 108) are performed. The data-preprocessing steps can include, but are not limited to calibrating the system power, correcting a focusing effect, correcting angular dependence, and de-noising steps described in text above and in FIGS. 2, 3, 4, 5. The interrogated portion of the vessel is sectioned and processed by standard histology processing. Regions of interest encompassing specific tissue type (or vessel characterization) are identified by operator or a machine using certain criteria (Step 112). The regions of interest are mapped (step 114) to the OCT image data or processor-generated OCT image. Optical properties and spatial feature extraction (step 118) can also be performed. Finally, any resolved tissue properties can be stored (step 122) in a database for future analysis.
  • Similarly, FIG. 12B shows a method of identifying tissue type in situ. This method includes the step of collecting OCT data (step 126). Once collected, this OCT data is used to generate an OCT image (step 130) with respect to the scanned lumen or other sample of interest. In one embodiment, the OCT image is then subjected to the data-preprocessing steps (step 134). Optical properties and spatial feature extraction (step 138) can then be performed as outlined above. Tissue type identifiers or signatures are generated (step 142) as discussed above. Next, any suitable tissue type identifiers or signatures are stored (step 146) in the relevant database. At this point, various types of statistical analysis (step 150) as described herein can be performed to identify a particular tissue type in the OCT image using the stored tissue type identifiers or signatures.
  • During database population phase, different tissue types are identified and mapped on the histology images. These tissue identifiers or signatures that are stored can be used in the future to automatically identify tissue elements and types of interest for new OCT scans. The corresponding regions are also identified in the OCT data or image. An example of such mapped histology images is shown in FIG. 13A where tissue types (e.g., fibers (“F”), calcification (“Ca”), etc) were identified. The corresponding mapped OCT image is shown in 13B. At least one optical property and other image features are extracted and stored in a tissue property database. The above-described process is repeated for each tissue types and each characterization as many times as desired to increase the accuracy of the quantitative measurement of parameters.
  • An example of suitable data for use in the database is shown in FIG. 14, where the attenuation and backscattering coefficients for three tissue types are plotted. As shown in the plot, the calcification, fiber and lipid tissue forms clusters that are distinguishable by their positions in attenuation/backscatter space, which is the basis for the tissue characterization. In the tissue characterization phase, the vessel to be interrogated is imaged with OCT. The image is calibrated and the artifacts are removed. Then regions of interest are generated either by operator input or by automatic segmentation algorithm. The optical properties and other image features are extracted from the regions of interest. The quantitative measurements are compared to the tissue property database generated in the first phase.
  • There are many statistical methods to compare the tissue properties of a ROI to the database and to assign the tissue type. In one embodiment of this invention the discriminant analysis method (or classification analysis method) is used to identify tissue types based on the tissue properties. For example, different tissue types have different the optical backscattering μb and the attenuation coefficient μa. For any ROI to be examined, both parameters are measured. Hence, during the database population phase, the (μb, μa) pairs of different tissue types are obtained.
  • During characterization phase, the (μb, μa) pair of the tissue ROI is obtained, and the Mahalanobis distance is calculated between those of new acquired ROI and those values from the database. From the calculation, a decision is made to find the best match. For example, as shown in FIG. 15A, the distance is shortest between the ROI to the fibers in the database, and the ROI is characterized as fibrous tissue with a certain amount of confidence. The characterization results can be displayed as color-coded image or displayed using text legends describing the possible tissue characterization. FIG. 15B is an example of such characterization, where the overall gray dotted region represents the fibrous region, while the bottom “-” dotted region represents the lipid region. The different color-coded or selectively marked tissue regions and the associated coded legends, include but are not limited to a fiber, lipid pool, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, proteoglycan, and others. FIG. 15B and FIG. 11C are related, but different. In FIG. 15B the tissue types are pre-classified for the clinicians, while in FIG. 11C, a contrast-enhanced image is displayed, but the decision of tissue type is made by clinicians when interpreting the image.
  • It should also be noted that the optical properties and image features for such discriminant or classification analysis are not limited to backscattering coefficients and attenuation coefficients, but include, although not limited to edge sharpness, texture parameters, plaque geometrical shape etc. In addition, the algorithms for performing such analysis are not limited to Mahalanobis distance analysis, but include a variety of statistical methods. Biological tissues are complex. There are many tissue types and sub-types that possibly could not be distinguished by only combining the backscattering and attenuation measurements. For example, the foam cell tissue, and the lipid both have high backscattering and attenuation. Calcification and certain loose connective tissue both have low backscattering and low attenuation. In addition, there are often some overlaps for backscattering and attenuation measurements between different tissue types. For example, some large calcified plaques have small lipid or fibrous tissue pockets embedded inside, hence having higher backscattering coefficients. In these cases, it is often necessary to make additional optical or image parameters to assist or refine tissue characterization.
  • Additional parameters may be used for assisting and refining tissue characterization. In FIG. 16A is a plot summarizing the backscattering vs. attenuation plot shown in FIG. 14. There are significant overlaps between calcification to the lipid/foam cells tissue. The lipid tissue and foam cell tissue also have similar properties. Therefore, a discriminant method based on this plot alone is not sufficient to distinguish these tissue types with high accuracy.
  • FIG. 16B shows a plot of edge sharpness measured for the boundary formed by the calcification tissue and fibrous tissue, and the boundary formed by the calcification tissue and lipid tissue. Significant difference was found for the edge transition width between these two types of boundaries. Hence, FIG. 16B could be used to further refine the tissue classification.
  • In OCT coronary artery imaging, foam cells are also an important indicator of disease state. The foam cells are usually enlarged macrophage or smooth muscle cells that are filled with lipid droplets. Because of the presence of these lipid droplets, it is often difficult to distinguish them from some lipid tissues. However, because foam cells are large cells and are often clustered into groups of various size, they tend have different texture appearance from lipid tissues, which are usually composed of extracellular lipid.
  • FIG. 16C shows a texture parameter, gray-level co-occurrence matrix for lipid and macrophage tissue. The gray-level co-occurrence matrix calculation is available in many standard commercial image processing software, such as Matlab (MathWorks, Natick, Mass.). Although there are still some overlap between the lipid and foam cells in terms of texture measurements, the additional information helps to improve tissue characterization accuracy.
  • The above analysis is to analyze edge sharpness and texture measurements after analyzing backscattering and attenuation. In other embodiments all of the analysis and comparison can be performed in parallel or in a combination serial/parallel steps. The data and decision shown in FIG. 16 is an example and additional parameters and threshold can be used with an OCT system trained using histology data as discussed above to identify any suitable tissue of interest.
  • Non-Limiting Software Features and Embodiments for Implementing OCT Methods and Systems
  • The present invention may be embodied in may different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device, (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof. In a typical embodiment of the present invention, some or all of the processing of the data collected using an OCT probe and the processor-based system is implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a microprocessor under the control of an operating system. Thus, query response and input data are transformed into processor understandable instructions suitable for generating OCT data, histology images, OCT images, ROIs, overlays, signal processing, artifact removal, and other features and embodiments described above.
  • Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
  • The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
  • Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).
  • Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
  • Various examples of suitable processing modules are discussed below in more detail. As used herein a module refers to software, hardware, or firmware suitable for performing a specific data processing or data transmission task. Typically, in a preferred embodiment a module refers to a software routine, program, or other memory resident application suitable for receiving, transforming, routing and processing instructions, or various types of data such as OCT scan data, interferometer signal data, clock signals, region of interest types, formulas, and other information of interest.
  • Computers and computer systems described herein may include operatively associated computer-readable media such as memory for storing software applications used in obtaining, processing, storing and/or communicating data. It can be appreciated that such memory can be internal, external, remote or local with respect to its operatively associated computer or computer system.
  • Memory may also include any means for storing software or other instructions including, for example and without limitation, a hard disk, an optical disk, floppy disk, DVD (digital versatile disc), CD (compact disc), memory stick, flash memory, ROM (read only memory), RAM (random access memory), DRAM (dynamic random access memory), PROM (programmable ROM), EEPROM (extended erasable PROM), and/or other like computer-readable media.
  • In general, computer-readable memory media applied in association with embodiments of the invention described herein may include any memory medium capable of storing instructions executed by a programmable apparatus. Where applicable, method steps described herein may be embodied or executed as instructions stored on a computer-readable memory medium or memory media. These instructions may be software embodied in various programming languages such as C++, C, Java, and/or a variety of other kinds of software programming languages that may be applied to create instructions in accordance with embodiments of the invention.
  • It is to be understood that the figures and descriptions of the invention have been simplified to illustrate elements that are relevant for a clear understanding of the invention, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the invention, a discussion of such elements is not provided herein. It should be appreciated that the figures are presented for illustrative purposes and not as construction drawings. Omitted details and modifications or alternative embodiments are within the purview of persons of ordinary skill in the art.
  • It can be appreciated that, in certain aspects of the invention, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to provide an element or structure or to perform a given function or functions. Except where such substitution would not be operative to practice certain embodiments of the invention, such substitution is considered within the scope of the invention.
  • The examples presented herein are intended to illustrate potential and specific implementations of the invention. It can be appreciated that the examples are intended primarily for purposes of illustration of the invention for those skilled in the art. There may be variations to these diagrams or the operations described herein without departing from the spirit of the invention. For instance, in certain cases, method steps or operations may be performed or executed in differing order, or operations may be added, deleted or modified.
  • Furthermore, whereas particular embodiments of the invention have been described herein for the purpose of illustrating the invention and not for the purpose of limiting the same, it will be appreciated by those of ordinary skill in the art that numerous variations of the details, materials and arrangement of elements, steps, structures, and/or parts may be made within the principle and scope of the invention without departing from the invention as described in the claims.

Claims (17)

1. A processor-implemented method for identifying tissue components in situ comprising the steps of:
a. collecting an OCT dataset of a tissue sample in situ using a probe;
b. measuring an attenuation value and a backscattering value at a point in the tissue sample; and
c. determining a tissue characteristic at a location in the tissue sample corresponding to an image location in an OCT image formed from the OCT dataset in response to the measured attenuation value and backscattering value.
2. The method of claim 1 further comprising mapping a pair of coordinates in backscatter-attenuation space to an indicium of the value of the pair of coordinates in the backscatter-attenuation space.
3. The method of claim 2 wherein the indicium is a color.
4. The method of claim 2 further comprising displaying the indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
5. The method of claim 1 wherein the tissue characteristic is selected from the group consisting of cholesterol, fiber, lipid pool, fibrofatty, calcification, red thrombus, white thrombus, foam cells, and proteoglycan.
6. The method of claim 1 wherein the indicium is selected from the group consisting of an over-lay, a colormap, a texture map, and text.
7. The method of claim 1 further comprising the step of classifying tissue type using a property selected from the group consisting of backscattering, attenuation, edge sharpness and texture measurements.
8. The method of claim 1 further comprising the step of correcting a focusing effect to improve tissue type classification.
9. The method of claim 1 further comprising the step of applying angular intensity correction to account for an attenuation effect.
10. The method of claim 9 wherein the attenuation effect is blood related.
11. The method of claim 1 further comprising the step of determining a tissue characteristic using a technique selected from the group consisting of boundary detection, lumen location, and OCT location depth determination.
12. A system for identifying tissue components in situ comprising:
a. an OCT subsystem for taking an OCT image of a tissue in situ;
b. a processor in communication with the OCT subsystem for measuring the attenuation and backscatter at a point in the OCT image and determining a tissue characteristic of the tissue at a location in the tissue corresponding to the point in the OCT image in response to the measured attenuation and backscatter; and
c. a display for displaying the OCT image and an indicium corresponding to the measured attenuation and backscatter at the point in the OCT image.
13. The system of claim 12 wherein the tissue characteristic is selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycan.
14. An optical coherence tomography system for identifying tissue characteristics of a sample, the computer system comprising:
a detector configured to receive an optical interference signal generated from scanning a sample and converting the optical interference signal to an electrical signal;
an electronic memory device and
an electronic processor in communication with the memory device and the detector, wherein the memory device comprises instructions that when executed by the processor cause the processor to:
analyze the electrical signal and generate a plurality of datasets corresponding to the sample, wherein one of the plurality of datasets comprises backscattering data;
compare the backscattering data to a first threshold, the backscattering data mapping to a first location in the sample; and
if the backscattering data exceeds the first threshold, characterize the first location in the sample as having a first tissue characteristic.
15. The system of claim 14 wherein the first tissue characteristic is selected from the group consisting of cholesterol, fiber, fibrous, lipid pool, lipid, fibrofatty, calcium nodule, calcium plate, calcium speckled, thrombus, foam cells, and proteoglycan.
16. The system of claim 14 wherein the processor is further caused to generate an OCT image of the sample such that the first tissue characteristic is identified and displayed relative to the first location.
17. The system of claim 14 wherein one of the plurality of datasets comprises OCT scan data, attenuation data, edge sharpness data, texture parameters, and interferometric data.
US12/455,523 2008-06-02 2009-06-02 Quantitative methods for obtaining tissue characteristics from optical coherence tomography images Abandoned US20090306520A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/455,523 US20090306520A1 (en) 2008-06-02 2009-06-02 Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
US15/913,300 US11793462B2 (en) 2008-06-02 2018-03-06 Intravascular measurement and data collection systems, apparatus and methods
US18/367,588 US20230414176A1 (en) 2008-06-02 2023-09-13 Intravascular Measurement And Data Collections Systems, Apparatus And Methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5807708P 2008-06-02 2008-06-02
US12/455,523 US20090306520A1 (en) 2008-06-02 2009-06-02 Quantitative methods for obtaining tissue characteristics from optical coherence tomography images

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/913,300 Continuation US11793462B2 (en) 2008-06-02 2018-03-06 Intravascular measurement and data collection systems, apparatus and methods

Publications (1)

Publication Number Publication Date
US20090306520A1 true US20090306520A1 (en) 2009-12-10

Family

ID=40933590

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/455,523 Abandoned US20090306520A1 (en) 2008-06-02 2009-06-02 Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
US15/913,300 Active 2030-10-06 US11793462B2 (en) 2008-06-02 2018-03-06 Intravascular measurement and data collection systems, apparatus and methods
US18/367,588 Pending US20230414176A1 (en) 2008-06-02 2023-09-13 Intravascular Measurement And Data Collections Systems, Apparatus And Methods

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/913,300 Active 2030-10-06 US11793462B2 (en) 2008-06-02 2018-03-06 Intravascular measurement and data collection systems, apparatus and methods
US18/367,588 Pending US20230414176A1 (en) 2008-06-02 2023-09-13 Intravascular Measurement And Data Collections Systems, Apparatus And Methods

Country Status (6)

Country Link
US (3) US20090306520A1 (en)
EP (1) EP2293714B1 (en)
JP (3) JP2011521747A (en)
CN (1) CN102046071B (en)
ES (1) ES2517915T3 (en)
WO (1) WO2009149131A1 (en)

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110071405A1 (en) * 2009-09-23 2011-03-24 Lightlab Imaging, Inc. Apparatus, Systems, and Methods of in-vivo Blood Clearing in a Lumen
US20110071404A1 (en) * 2009-09-23 2011-03-24 Lightlab Imaging, Inc. Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods
WO2011072068A2 (en) 2009-12-08 2011-06-16 Avinger, Inc. Devices and methods for predicting and preventing restenosis
US20110151980A1 (en) * 2009-12-22 2011-06-23 Lightlab Imaging, Inc. Torque limiter for an oct catheter
US20110228280A1 (en) * 2010-03-17 2011-09-22 Lightlab Imaging, Inc. Intensity Noise Reduction Methods and Apparatus for Interferometric Sensing and Imaging Systems
US20110245683A1 (en) * 2010-03-30 2011-10-06 Terumo Kabushiki Kaisha Optical imaging diagnostic apparatus and the display control method thereof
US20110245684A1 (en) * 2010-03-30 2011-10-06 Terumo Kabushiki Kaisha Optical imaging diagnostic apparatus and the display control method thereof
US20120075638A1 (en) * 2010-08-02 2012-03-29 Case Western Reserve University Segmentation and quantification for intravascular optical coherence tomography images
US20120203117A1 (en) * 2009-08-06 2012-08-09 Agency For Science, Technology And Research Vital signs detecting device and a method for detecting vital signs
US20120213704A1 (en) * 2009-06-18 2012-08-23 Awdeh Richard M System and method for molecular in vivo imaging and theranostics
US8358461B2 (en) 2008-09-03 2013-01-22 Lightlab Imaging Inc. Wavelength-tunable light source
US20130044330A1 (en) * 2011-08-15 2013-02-21 The Johns Hopkins University Optical coherence tomography system having real-time artifact and saturation correction
US8449468B2 (en) 2006-11-08 2013-05-28 Lightlab Imaging, Inc. Opto-acoustic imaging devices and methods
WO2013106760A1 (en) * 2012-01-12 2013-07-18 The General Hospital Corporation Systems, methods and computer-readable medium for determining depth-resolved physical and/or optical properties of scattering media by analyzing measured data over a range of depths
US8526472B2 (en) 2009-09-03 2013-09-03 Axsun Technologies, Inc. ASE swept source with self-tracking filter for OCT medical imaging
US20130242313A1 (en) * 2010-11-05 2013-09-19 Peter Tomlins Scanning methods and apparatus
US8582619B2 (en) 2011-03-15 2013-11-12 Lightlab Imaging, Inc. Methods, systems, and devices for timing control in electromagnetic radiation sources
US8582109B1 (en) 2011-08-01 2013-11-12 Lightlab Imaging, Inc. Swept mode-hopping laser system, methods, and devices for frequency-domain optical coherence tomography
US8670129B2 (en) 2009-09-03 2014-03-11 Axsun Technologies, Inc. Filtered ASE swept source for OCT medical imaging
JP2014516646A (en) * 2011-04-29 2014-07-17 ザ ジェネラル ホスピタル コーポレイション Method for determining depth-resolved physical and / or optical properties of a scattering medium
US8831321B1 (en) 2011-11-07 2014-09-09 Lightlab Imaging, Inc. Side branch detection methods, systems and devices
US8926590B2 (en) 2009-12-22 2015-01-06 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
US8953911B1 (en) 2011-10-28 2015-02-10 Lightlab Imaging, Inc. Spectroscopic imaging probes, devices, and methods
US9007696B2 (en) 2007-11-12 2015-04-14 Lightlab Imaging, Inc. Imaging catheter with integrated reference reflector
US9069396B2 (en) 2013-03-12 2015-06-30 Lightlab Imaging, Inc. Controller and user interface device, systems, and methods
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9164240B2 (en) 2011-03-31 2015-10-20 Lightlab Imaging, Inc. Optical buffering methods, apparatus, and systems for increasing the repetition rate of tunable light sources
US9173591B2 (en) 2013-03-08 2015-11-03 Lightlab Imaging, Inc. Stent visualization and malapposition detection systems, devices, and methods
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
JP2016011935A (en) * 2014-06-30 2016-01-21 株式会社トプコン Skin property evaluation system
JP2016508750A (en) * 2012-12-12 2016-03-24 ライトラボ・イメージング・インコーポレーテッド Method and apparatus for automated determination of vessel lumen contour
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US9351698B2 (en) 2013-03-12 2016-05-31 Lightlab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
EP2903533A4 (en) * 2012-10-05 2016-06-22 Elizabeth Begin Systems for indicating parameters in an imaging data set and methods of use
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US20160270766A1 (en) * 2015-03-20 2016-09-22 Terumo Kabushiki Kaisha Diagnostic imaging apparatus, control method, program, and computer-readable storage medium
CN105996999A (en) * 2016-05-19 2016-10-12 南京航空航天大学 Method and system for measuring depth resolution attenuation coefficient of sample based on OCT
US9468379B2 (en) 2010-04-21 2016-10-18 Koninklijke Philips N.V. Determination of a lipid water ratio
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US9610064B2 (en) 2011-05-31 2017-04-04 Desmond Adler Multimodal imaging system, apparatus, and methods
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9677869B2 (en) 2012-12-05 2017-06-13 Perimeter Medical Imaging, Inc. System and method for generating a wide-field OCT image of a portion of a sample
US9702762B2 (en) 2013-03-15 2017-07-11 Lightlab Imaging, Inc. Calibration and image processing devices, methods, and systems
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US9833221B2 (en) 2013-03-15 2017-12-05 Lightlab Imaging, Inc. Apparatus and method of image registration
WO2017214421A1 (en) * 2016-06-08 2017-12-14 Research Development Foundation Systems and methods for automated coronary plaque characterization and risk assessment using intravascular optical coherence tomography
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9892507B2 (en) 2013-07-02 2018-02-13 Michelson Diagnostics Ltd. Processing optical coherence tomography scans of a subjects skin
US9928590B2 (en) 2012-04-23 2018-03-27 Olympus Corporation Image processing apparatus, image processing method, and computer-readable recording device for determining whether candidate region is abnormality or residue
US9940723B2 (en) 2014-12-12 2018-04-10 Lightlab Imaging, Inc. Systems and methods to detect and display endovascular features
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US9996921B2 (en) 2015-05-17 2018-06-12 LIGHTLAB IMAGING, lNC. Detection of metal stent struts
US10028725B2 (en) 2013-03-11 2018-07-24 Lightlab Imaging, Inc. Friction torque limiter for an imaging catheter
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10089755B2 (en) 2015-07-25 2018-10-02 Lightlab Imaging, Inc. Guidewire detection systems, methods, and apparatuses
US10109058B2 (en) 2015-05-17 2018-10-23 Lightlab Imaging, Inc. Intravascular imaging system interfaces and stent detection methods
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10140712B2 (en) 2015-05-17 2018-11-27 Lightlab Imaging, Inc. Detection of stent struts relative to side branches
US10172582B2 (en) 2015-11-18 2019-01-08 Lightlab Imaging, Inc. X-ray image feature detection and registration systems and methods
US10222956B2 (en) 2015-05-17 2019-03-05 Lightlab Imaging, Inc. Intravascular imaging user interface systems and methods
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US10307070B2 (en) 2014-04-04 2019-06-04 St. Jude Medical Coordination Center Bvba Intravascular pressure and flow data diagnostic systems, devices, and methods
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10338795B2 (en) * 2015-07-25 2019-07-02 Lightlab Imaging, Inc. Intravascular data visualization and interface systems and methods
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US10453196B2 (en) 2015-11-18 2019-10-22 Lightlab Imaging, Inc. Detection of stent struts relative to side branches
US10453190B2 (en) 2015-11-23 2019-10-22 Lightlab Imaging, Inc. Detection of and validation of shadows in intravascular images
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US10499813B2 (en) 2014-09-12 2019-12-10 Lightlab Imaging, Inc. Methods, systems and apparatus for temporal calibration of an intravascular imaging system
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10577573B2 (en) 2017-07-18 2020-03-03 Perimeter Medical Imaging, Inc. Sample container for stabilizing and aligning excised biological tissue samples for ex vivo analysis
US10593037B2 (en) 2016-04-14 2020-03-17 Lightlab Imaging, Inc. Method, apparatus, and system to identify branches of a blood vessel
US10631754B2 (en) 2016-05-16 2020-04-28 Lightlab Imaging, Inc. Intravascular absorbable stent detection and diagnostic methods and systems
US10631718B2 (en) 2015-08-31 2020-04-28 Gentuity, Llc Imaging system includes imaging probe and delivery devices
US10646198B2 (en) 2015-05-17 2020-05-12 Lightlab Imaging, Inc. Intravascular imaging and guide catheter detection methods and systems
US10648918B2 (en) 2011-08-03 2020-05-12 Lightlab Imaging, Inc. Systems, methods and apparatus for determining a fractional flow reserve (FFR) based on the minimum lumen area (MLA) and the constant
US10722292B2 (en) 2013-05-31 2020-07-28 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10792012B2 (en) 2012-11-19 2020-10-06 Lightlab Imaging, Inc. Interface devices, systems and methods for multimodal probes
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US11058346B2 (en) 2017-10-30 2021-07-13 Wenzhou Medical University Optical imaging method based on mapping of layered structure
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11166668B2 (en) 2014-07-24 2021-11-09 Lightlab Imaging, Inc. Pre and post stent planning along with vessel visualization and diagnostic systems, devices, and methods for automatically identifying stent expansion profile
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
CN113876357A (en) * 2020-11-04 2022-01-04 科特有限责任公司 Imaging and pressure sensing device and probe with slidable sleeve
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11234751B2 (en) 2009-07-31 2022-02-01 Case Western Reserve University Characterizing ablation lesions using optical coherence tomography (OCT)
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11278206B2 (en) 2015-04-16 2022-03-22 Gentuity, Llc Micro-optic probes for neurology
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11311200B1 (en) 2014-08-27 2022-04-26 Lightlab Imaging, Inc. Systems and methods to measure physiological flow in coronary arteries
WO2022087378A1 (en) * 2020-10-23 2022-04-28 Arizona Board Of Regents On Behalf Of The University Of Arizona Data acquisition and measurement of characteristic functionals in biology and medicine
CN114489151A (en) * 2021-12-13 2022-05-13 中国地质科学院矿产资源研究所 Laser output power control device and control method thereof
US11331142B2 (en) 2020-01-13 2022-05-17 Medlumics S.L. Methods, devices, and support structures for assembling optical fibers in catheter tips
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11344373B2 (en) 2018-05-29 2022-05-31 Lightlab Imaging, Inc. Stent expansion display, systems, and methods
US11350832B2 (en) 2014-08-27 2022-06-07 St. Jude Medical Coordination Center Bvba Cardiac cycle-based diagnostic systems and methods
US11357569B2 (en) 2020-01-13 2022-06-14 Medlumics S.L. Optical-guided ablation system for use with pulsed fields or other energy sources
US11357403B2 (en) 2016-10-28 2022-06-14 Fujifilm Corporation Optical coherence tomography apparatus and measurement method
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
CN114820605A (en) * 2022-06-28 2022-07-29 广州永士达医疗科技有限责任公司 Eustachian tube OCT image recognition processing method and device
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US11464412B2 (en) 2017-12-27 2022-10-11 Medlumics S.L. Bi-refringence compensated waveguides
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US11517199B2 (en) 2014-08-08 2022-12-06 Medlumics S.L. Crossing coronary occlusions
US11523740B2 (en) 2020-01-13 2022-12-13 Medlumics S.L. Systems and methods for optical analysis and lesion prediction using ablation catheters
US11684242B2 (en) 2017-11-28 2023-06-27 Gentuity, Llc Imaging system
WO2023183420A1 (en) * 2022-03-22 2023-09-28 Case Western Reserve University Methods, systems and apparatuses for transseptal procedures
US11779220B2 (en) 2018-12-14 2023-10-10 Research Development Foundation Multi-channel orthogonal convolutional neural networks
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US11883107B2 (en) 2016-09-28 2024-01-30 Lightlab Imaging, Inc. Stent planning systems and methods using vessel representation obtained via intravascular probe by determining stent effectiveness score and fractional flow reserve
US11957376B2 (en) 2022-08-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2293714B1 (en) 2008-06-02 2014-08-13 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
KR20130135660A (en) * 2012-06-01 2013-12-11 삼성전자주식회사 Apparatus and method for generating tomography image
CN102783938A (en) * 2012-09-04 2012-11-21 上海师范大学 OCT (Optical Coherence Tomography) image analyzing method based on speckle contrast
CN106030608A (en) * 2013-11-06 2016-10-12 理海大学 Diagnostic system and method for biological tissue analysis
JP2015104582A (en) * 2013-11-29 2015-06-08 株式会社ニデック Optical tomographic imaging device and optical tomographic imaging program
EP3289565B1 (en) * 2015-04-29 2020-08-12 AIBILI - Associacao para Investigacao Biomedica e Inovacao em Luz e Imagem Method and device for the non-invasive indirect identification of sites of alterations of the blood-retinal barrier
WO2017005838A1 (en) * 2015-07-09 2017-01-12 Agfa Healthcare Non-invasive biological tissue examination based on full field high definition optical coherence tomography imaging
US10426346B2 (en) * 2015-11-26 2019-10-01 National Yang-Ming University Optical tomography digital impression imaging system and method for use thereof
CN105825488B (en) * 2016-05-30 2018-08-21 天津大学 It is a kind of angiocarpy in optical coherence tomography image enchancing method
CN106332713B (en) * 2016-08-16 2019-06-11 浙江科技学院 A kind of loquat early stage bruise discrimination method of SD-OCT image
GB201702098D0 (en) * 2017-02-08 2017-03-22 Michelson Diagnostics Ltd Processing optical coherence tomography (OCT) scans
EP3589925A4 (en) * 2017-02-28 2021-04-14 Photonicare, Inc. Image based handheld imager system and methods of use
CN106974622B (en) * 2017-04-06 2021-08-24 上海交通大学 Plaque stability measuring system based on optical coherence tomography
JP6989870B2 (en) * 2017-09-29 2022-01-12 株式会社 資生堂 Devices, methods and programs for visualizing the vascular network of the skin
US11443464B2 (en) 2017-10-11 2022-09-13 OncoRes Medical Pty Ltd Method of volumetric imaging of a sample
US10517681B2 (en) 2018-02-27 2019-12-31 NavLab, Inc. Artificial intelligence guidance system for robotic surgery
CA3103538A1 (en) * 2018-06-11 2019-12-19 Socovar, Societe En Commandite System and method for determining coronal artery tissue type based on an oct image and using trained engines
CN111915564B (en) * 2020-07-02 2022-04-22 西安交通大学 Frozen meat product optical characteristic detection method combining machine vision and OCT technology
CN112057044A (en) * 2020-08-25 2020-12-11 南京沃福曼医疗科技有限公司 OCT image reflection and attenuation coefficient extraction method
KR20240039440A (en) * 2022-09-19 2024-03-26 부산대학교 산학협력단 Spectroscopic Endoscope OCT System for Analyzing Components of Atherosclerotic Plaque using NIR Source and Method for Controlling the Same

Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054492A (en) * 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5321501A (en) * 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US5465147A (en) * 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US5488674A (en) * 1992-05-15 1996-01-30 David Sarnoff Research Center, Inc. Method for fusing images and apparatus therefor
US5509093A (en) * 1993-10-13 1996-04-16 Micron Optics, Inc. Temperature compensated fiber fabry-perot filters
US5531227A (en) * 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
US5662109A (en) * 1990-12-14 1997-09-02 Hutson; William H. Method and system for multi-dimensional imaging and analysis for early detection of diseased tissue
US5748598A (en) * 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US5771895A (en) * 1996-02-12 1998-06-30 Slager; Cornelis J. Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall
US5784352A (en) * 1995-07-21 1998-07-21 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
US5797849A (en) * 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5920390A (en) * 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US5956355A (en) * 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US5989189A (en) * 1997-10-24 1999-11-23 Mentor Corporation Ophthalmic ultrasound imaging
US5999588A (en) * 1998-04-17 1999-12-07 Adac Laboratories Deadtime correction in a nuclear medicine imaging system
US6013033A (en) * 1995-02-01 2000-01-11 Centre National De La Recherche Scientifique Intracavitary echographic imaging catheter
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6134003A (en) * 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6148095A (en) * 1997-09-08 2000-11-14 University Of Iowa Research Foundation Apparatus and method for determining three-dimensional representations of tortuous vessels
US6191862B1 (en) * 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6208883B1 (en) * 1995-07-26 2001-03-27 Associates Of The Joint Center For Radiation Therapy, Inc. Ultrasound localization and image fusion for the treatment of prostate cancer
US20020115931A1 (en) * 2001-02-21 2002-08-22 Strauss H. William Localizing intravascular lesions on anatomic images
US6445939B1 (en) * 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6501551B1 (en) * 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US20030028100A1 (en) * 2001-05-01 2003-02-06 Tearney Guillermo J. Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
US6552796B2 (en) * 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US6564087B1 (en) * 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6570659B2 (en) * 2001-03-16 2003-05-27 Lightlab Imaging, Llc Broadband light source system and method and light source combiner
US6608717B1 (en) * 1999-01-29 2003-08-19 Colorado State University Research Foundation Optical coherence microscope and methods of use for rapid in vivo three-dimensional visualization of biological function
US20040215166A1 (en) * 2003-04-25 2004-10-28 Michael Atlas Flush catheter with flow directing sheath
US6879851B2 (en) * 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
US6891984B2 (en) * 2002-07-25 2005-05-10 Lightlab Imaging, Llc Scanning miniature optical probes with optical distortion correction and rotational control
US20050238067A1 (en) * 2004-04-26 2005-10-27 Choi Youngmin A Simple fiber optic cavity
US20060095065A1 (en) * 2004-09-24 2006-05-04 Tetsuaki Tanimura Fluid occluding devices and methods
US7061622B2 (en) * 2001-08-03 2006-06-13 Case Western Reserve University Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
US20060165270A1 (en) * 2003-02-25 2006-07-27 Jorn Borgert Intravascular imaging
US20060187537A1 (en) * 2005-01-20 2006-08-24 Robert Huber Mode locking methods and apparatus
US20060203859A1 (en) * 2005-01-24 2006-09-14 Cable Alex E Compact multimode laser with rapid wavelength scanning
US20060241465A1 (en) * 2005-01-11 2006-10-26 Volcano Corporation Vascular image co-registration
US20060241461A1 (en) * 2005-04-01 2006-10-26 White Chris A System and method for 3-D visualization of vascular structures using ultrasound
US20060241503A1 (en) * 2005-02-10 2006-10-26 Lightlab Imaging, Inc. Optical coherence tomography apparatus and methods
US20060244973A1 (en) * 2003-10-27 2006-11-02 Seok-Hyun Yun Method and apparatus for performing optical imaging using frequency-domain interferometry
US7148970B2 (en) * 2001-10-16 2006-12-12 The General Hospital Corporation Systems and methods for imaging a sample
US20070081236A1 (en) * 2005-09-29 2007-04-12 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US7208333B2 (en) * 2001-03-12 2007-04-24 Axsun Technologies, Inc. Process for fabricating MEMS membrane with integral mirror/lens
US20070115481A1 (en) * 2005-11-18 2007-05-24 Duke University Method and system of coregistrating optical coherence tomography (OCT) with other clinical tests
US20070123771A1 (en) * 2005-11-04 2007-05-31 Thomas Redel Three-dimensional co-registration between intravascular and angiographic data
US20080100612A1 (en) * 2006-10-27 2008-05-01 Dastmalchi Shahram S User interface for efficiently displaying relevant oct imaging data
US20080161696A1 (en) * 2006-11-08 2008-07-03 Lightlab Imaging, Inc. Opto-acoustic imaging devices and methods
US20080165366A1 (en) * 2007-01-10 2008-07-10 Lightlab Imaging, Inc. Methods and apparatus for swept-source optical coherence tomography
US20080177183A1 (en) * 2007-01-19 2008-07-24 Brian Courtney Imaging probe with combined ultrasounds and optical means of imaging
US7415049B2 (en) * 2005-03-28 2008-08-19 Axsun Technologies, Inc. Laser with tilted multi spatial mode resonator tuning element
US20090079993A1 (en) * 2005-11-22 2009-03-26 Shofu Inc. Dental Optical Coherence Tomograph
US7787129B2 (en) * 2006-01-31 2010-08-31 The Board Of Trustees Of The University Of Illinois Method and apparatus for measurement of optical properties in tissue
US8983580B2 (en) * 2008-01-18 2015-03-17 The Board Of Trustees Of The University Of Illinois Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162070B2 (en) 1990-11-22 2001-04-25 オリンパス光学工業株式会社 Subject internal information observation device
JPH0970404A (en) 1995-09-07 1997-03-18 Akira Itabashi Device and method for analyzing bone tissue
JP3771364B2 (en) * 1997-12-12 2006-04-26 浜松ホトニクス株式会社 Optical CT apparatus and image reconstruction method
US6228076B1 (en) 1999-01-09 2001-05-08 Intraluminal Therapeutics, Inc. System and method for controlling tissue ablation
US6706004B2 (en) 2001-05-31 2004-03-16 Infraredx, Inc. Balloon catheter
US7072047B2 (en) * 2002-07-12 2006-07-04 Case Western Reserve University Method and system for quantitative image correction for optical coherence tomography
US7074188B2 (en) * 2002-08-26 2006-07-11 The Cleveland Clinic Foundation System and method of characterizing vascular tissue
EP2319405B1 (en) 2003-01-24 2013-09-18 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
JP4790231B2 (en) 2004-06-17 2011-10-12 花王株式会社 Skin analysis method
US8208995B2 (en) 2004-08-24 2012-06-26 The General Hospital Corporation Method and apparatus for imaging of vessel segments
RU2339341C2 (en) 2005-04-05 2008-11-27 Алькон, Инк. Intraocular lens
JP2008543511A (en) 2005-06-24 2008-12-04 ヴォルケイノウ・コーポレーション Vascular image preparation method
JP4691657B2 (en) 2005-07-28 2011-06-01 国立大学法人山口大学 Intra-articular cartilage evaluation probe and intra-articular cartilage evaluation apparatus capable of inserting a flexible optical fiber into the joint
GB0515758D0 (en) * 2005-07-30 2005-09-07 Univ Hospital Of North Staffor Improvements in and relating to optical coherence tomography
US7668342B2 (en) * 2005-09-09 2010-02-23 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
US7801343B2 (en) * 2005-11-29 2010-09-21 Siemens Medical Solutions Usa, Inc. Method and apparatus for inner wall extraction and stent strut detection using intravascular optical coherence tomography imaging
US20080058593A1 (en) 2006-08-21 2008-03-06 Sti Medical Systems, Llc Computer aided diagnosis using video from endoscopes
JP2008069107A (en) 2006-09-14 2008-03-27 Pentax Corp Agent for fluorescent dyeing of tissue for endoscope
EP2293714B1 (en) 2008-06-02 2014-08-13 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
JP5778579B2 (en) 2008-10-14 2015-09-16 ライトラボ・イメージング・インコーポレーテッド Stent strut detection using optical coherence tomography and related methods for measurement and display
JP5579464B2 (en) 2010-02-24 2014-08-27 株式会社クラレ Adhesive for polyvinyl alcohol polymer film
US8953911B1 (en) 2011-10-28 2015-02-10 Lightlab Imaging, Inc. Spectroscopic imaging probes, devices, and methods
US10596041B2 (en) 2014-08-28 2020-03-24 Ascension Texas Apparatuses and methods for minimizing wound dehiscence, scar spread, and/or the like
CN106377229B (en) 2016-10-18 2019-04-09 全景恒升(北京)科学技术有限公司 A kind of rotary acoustics and optics merge imaging system
CN106361295A (en) 2016-12-06 2017-02-01 全景恒升(北京)科学技术有限公司 Optical and acoustic mixed imaging conduit
CN107730540B (en) 2017-10-09 2020-11-17 全景恒升(北京)科学技术有限公司 Coronary parameter calculation method based on high-precision matching model

Patent Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662109A (en) * 1990-12-14 1997-09-02 Hutson; William H. Method and system for multi-dimensional imaging and analysis for early detection of diseased tissue
US5054492A (en) * 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US6134003A (en) * 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6282011B1 (en) * 1991-04-29 2001-08-28 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6501551B1 (en) * 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US5459570A (en) * 1991-04-29 1995-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements
US5321501A (en) * 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US6421164B2 (en) * 1991-04-29 2002-07-16 Massachusetts Institute Of Technology Interferometeric imaging with a grating based phase control optical delay line
US5465147A (en) * 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US6564087B1 (en) * 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6160826A (en) * 1991-04-29 2000-12-12 Massachusetts Institute Of Technology Method and apparatus for performing optical frequency domain reflectometry
US6111645A (en) * 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US5956355A (en) * 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US5488674A (en) * 1992-05-15 1996-01-30 David Sarnoff Research Center, Inc. Method for fusing images and apparatus therefor
US5509093A (en) * 1993-10-13 1996-04-16 Micron Optics, Inc. Temperature compensated fiber fabry-perot filters
US5531227A (en) * 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
US6013033A (en) * 1995-02-01 2000-01-11 Centre National De La Recherche Scientifique Intracavitary echographic imaging catheter
US5797849A (en) * 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5784352A (en) * 1995-07-21 1998-07-21 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
US6208883B1 (en) * 1995-07-26 2001-03-27 Associates Of The Joint Center For Radiation Therapy, Inc. Ultrasound localization and image fusion for the treatment of prostate cancer
US5748598A (en) * 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US5771895A (en) * 1996-02-12 1998-06-30 Slager; Cornelis J. Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall
US5920390A (en) * 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US6148095A (en) * 1997-09-08 2000-11-14 University Of Iowa Research Foundation Apparatus and method for determining three-dimensional representations of tortuous vessels
US5989189A (en) * 1997-10-24 1999-11-23 Mentor Corporation Ophthalmic ultrasound imaging
US5999588A (en) * 1998-04-17 1999-12-07 Adac Laboratories Deadtime correction in a nuclear medicine imaging system
US6191862B1 (en) * 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6608717B1 (en) * 1999-01-29 2003-08-19 Colorado State University Research Foundation Optical coherence microscope and methods of use for rapid in vivo three-dimensional visualization of biological function
US6445939B1 (en) * 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US20020115931A1 (en) * 2001-02-21 2002-08-22 Strauss H. William Localizing intravascular lesions on anatomic images
US7208333B2 (en) * 2001-03-12 2007-04-24 Axsun Technologies, Inc. Process for fabricating MEMS membrane with integral mirror/lens
US6570659B2 (en) * 2001-03-16 2003-05-27 Lightlab Imaging, Llc Broadband light source system and method and light source combiner
US6552796B2 (en) * 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US7865231B2 (en) * 2001-05-01 2011-01-04 The General Hospital Corporation Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
US20030028100A1 (en) * 2001-05-01 2003-02-06 Tearney Guillermo J. Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties
US6879851B2 (en) * 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
US7061622B2 (en) * 2001-08-03 2006-06-13 Case Western Reserve University Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
US7148970B2 (en) * 2001-10-16 2006-12-12 The General Hospital Corporation Systems and methods for imaging a sample
US20050201662A1 (en) * 2002-07-25 2005-09-15 Petersen Christopher L. Scanning miniature optical probes with optical distortion correction and rotational control
US6891984B2 (en) * 2002-07-25 2005-05-10 Lightlab Imaging, Llc Scanning miniature optical probes with optical distortion correction and rotational control
US20060165270A1 (en) * 2003-02-25 2006-07-27 Jorn Borgert Intravascular imaging
US20070260198A1 (en) * 2003-04-25 2007-11-08 Lightlab Imaging, Llc Flush catheter with flow directing sheath
US7241286B2 (en) * 2003-04-25 2007-07-10 Lightlab Imaging, Llc Flush catheter with flow directing sheath
US20040215166A1 (en) * 2003-04-25 2004-10-28 Michael Atlas Flush catheter with flow directing sheath
US20060244973A1 (en) * 2003-10-27 2006-11-02 Seok-Hyun Yun Method and apparatus for performing optical imaging using frequency-domain interferometry
US20050238067A1 (en) * 2004-04-26 2005-10-27 Choi Youngmin A Simple fiber optic cavity
US20060095065A1 (en) * 2004-09-24 2006-05-04 Tetsuaki Tanimura Fluid occluding devices and methods
US20060241465A1 (en) * 2005-01-11 2006-10-26 Volcano Corporation Vascular image co-registration
US20060187537A1 (en) * 2005-01-20 2006-08-24 Robert Huber Mode locking methods and apparatus
US7414779B2 (en) * 2005-01-20 2008-08-19 Massachusetts Institute Of Technology Mode locking methods and apparatus
US20060203859A1 (en) * 2005-01-24 2006-09-14 Cable Alex E Compact multimode laser with rapid wavelength scanning
US20060241503A1 (en) * 2005-02-10 2006-10-26 Lightlab Imaging, Inc. Optical coherence tomography apparatus and methods
US7415049B2 (en) * 2005-03-28 2008-08-19 Axsun Technologies, Inc. Laser with tilted multi spatial mode resonator tuning element
US20060241461A1 (en) * 2005-04-01 2006-10-26 White Chris A System and method for 3-D visualization of vascular structures using ultrasound
US20070081236A1 (en) * 2005-09-29 2007-04-12 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US20070123771A1 (en) * 2005-11-04 2007-05-31 Thomas Redel Three-dimensional co-registration between intravascular and angiographic data
US7729746B2 (en) * 2005-11-04 2010-06-01 Siemens Aktiengesellschaft Three-dimensional co-registration between intravascular and angiographic data
US7593559B2 (en) * 2005-11-18 2009-09-22 Duke University Method and system of coregistrating optical coherence tomography (OCT) with other clinical tests
US20070115481A1 (en) * 2005-11-18 2007-05-24 Duke University Method and system of coregistrating optical coherence tomography (OCT) with other clinical tests
US20090079993A1 (en) * 2005-11-22 2009-03-26 Shofu Inc. Dental Optical Coherence Tomograph
US7787129B2 (en) * 2006-01-31 2010-08-31 The Board Of Trustees Of The University Of Illinois Method and apparatus for measurement of optical properties in tissue
US20080100612A1 (en) * 2006-10-27 2008-05-01 Dastmalchi Shahram S User interface for efficiently displaying relevant oct imaging data
US20080161696A1 (en) * 2006-11-08 2008-07-03 Lightlab Imaging, Inc. Opto-acoustic imaging devices and methods
US20080165366A1 (en) * 2007-01-10 2008-07-10 Lightlab Imaging, Inc. Methods and apparatus for swept-source optical coherence tomography
US20080177183A1 (en) * 2007-01-19 2008-07-24 Brian Courtney Imaging probe with combined ultrasounds and optical means of imaging
US8983580B2 (en) * 2008-01-18 2015-03-17 The Board Of Trustees Of The University Of Illinois Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FJ van der Meer, DJ Faber, DMB Sassoon, MC Aalders, G Pasterkamp, and TG van Leeuwen, "Localized Measurement of Optical Attenuation Coefficients of Atherosclerotic Plaque Constituents by Quantitative Optical Coherence Tomography," 2005, IEEE Transactions on Medical Imaging, vol. 24, no. 10, pp. 1369-1376 *
FJ van der Meer, DJ Faber, DMB Sassoon, MC Aalders, G Pasterkamp, TG van Leeuwen, "Localized Measurement of Optical Attenuation Coefficients of Atherosclerotic Plaque Constituents by Quantitative Optical Coherence Tomography", 2005, IEEE Transactions on Medical Imaging, vol. 24, no. 10, pp. 1369-1376 *
K Mehrotra, CK Mohan, S Ranka, “Elements of Artificial Neural Networks”, 1997, Massachusetts Institute of Technology, pp. 25-27 *
P Gatenby, "Neural Networks, Part I: Feedforward Hardlimited Networks", 2002, http://www.hpcc.org/datafile/V21N1/neural1.html *

Cited By (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US8753281B2 (en) 2006-11-08 2014-06-17 Lightlab Imaging Inc. Opto-acoustic imaging devices and methods
US8449468B2 (en) 2006-11-08 2013-05-28 Lightlab Imaging, Inc. Opto-acoustic imaging devices and methods
US9007696B2 (en) 2007-11-12 2015-04-14 Lightlab Imaging, Inc. Imaging catheter with integrated reference reflector
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US8358461B2 (en) 2008-09-03 2013-01-22 Lightlab Imaging Inc. Wavelength-tunable light source
US8810901B2 (en) 2008-09-03 2014-08-19 Lightlab Imaging, Inc. Wavelength-tunable light source
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US11076773B2 (en) 2009-04-28 2021-08-03 Avinger, Inc. Guidewire positioning catheter
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US10342491B2 (en) 2009-05-28 2019-07-09 Avinger, Inc. Optical coherence tomography for biological imaging
US11839493B2 (en) 2009-05-28 2023-12-12 Avinger, Inc. Optical coherence tomography for biological imaging
US11284839B2 (en) 2009-05-28 2022-03-29 Avinger, Inc. Optical coherence tomography for biological imaging
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US20120213704A1 (en) * 2009-06-18 2012-08-23 Awdeh Richard M System and method for molecular in vivo imaging and theranostics
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US11717314B2 (en) 2009-07-01 2023-08-08 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US11234751B2 (en) 2009-07-31 2022-02-01 Case Western Reserve University Characterizing ablation lesions using optical coherence tomography (OCT)
US10555691B2 (en) * 2009-08-06 2020-02-11 Agency For Science Technology And Research Vital signs detecting device and a method for detecting vital signs
US20120203117A1 (en) * 2009-08-06 2012-08-09 Agency For Science, Technology And Research Vital signs detecting device and a method for detecting vital signs
US8670129B2 (en) 2009-09-03 2014-03-11 Axsun Technologies, Inc. Filtered ASE swept source for OCT medical imaging
US8526472B2 (en) 2009-09-03 2013-09-03 Axsun Technologies, Inc. ASE swept source with self-tracking filter for OCT medical imaging
US9041936B2 (en) 2009-09-03 2015-05-26 Axsun Technologies, Inc. ASE swept source with self-tracking filter for OCT medical imaging
US9696471B2 (en) 2009-09-03 2017-07-04 Axsun Technologies Llc Filtered ASE swept source for OCT medical imaging
US20110071405A1 (en) * 2009-09-23 2011-03-24 Lightlab Imaging, Inc. Apparatus, Systems, and Methods of in-vivo Blood Clearing in a Lumen
US20110071404A1 (en) * 2009-09-23 2011-03-24 Lightlab Imaging, Inc. Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods
US9526424B2 (en) 2009-09-23 2016-12-27 Lightlab Imaging, Inc. Apparatus, systems, and methods of in-vivo blood clearing in a lumen
US8412312B2 (en) 2009-09-23 2013-04-02 Lightlab Imaging, Inc. Apparatus, systems, and methods of in-vivo blood clearing in a lumen
US9572495B2 (en) 2009-09-23 2017-02-21 Lightlab Imaging, Inc. Optical coherence tomography lumen morphology and vascular resistance measurements methods for blood vessel evaluations
US9138147B2 (en) 2009-09-23 2015-09-22 Lightlab Imaging, Inc. Lumen morphology image reconstruction based on the scan line data of OCT
EP2509498A4 (en) * 2009-12-08 2015-01-21 Avinger Inc Devices and methods for predicting and preventing restenosis
WO2011072068A2 (en) 2009-12-08 2011-06-16 Avinger, Inc. Devices and methods for predicting and preventing restenosis
EP2509498A2 (en) * 2009-12-08 2012-10-17 Avinger, Inc. Devices and methods for predicting and preventing restenosis
US8206377B2 (en) 2009-12-22 2012-06-26 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
US20110151980A1 (en) * 2009-12-22 2011-06-23 Lightlab Imaging, Inc. Torque limiter for an oct catheter
US8926590B2 (en) 2009-12-22 2015-01-06 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
US20110228280A1 (en) * 2010-03-17 2011-09-22 Lightlab Imaging, Inc. Intensity Noise Reduction Methods and Apparatus for Interferometric Sensing and Imaging Systems
US8948613B2 (en) 2010-03-17 2015-02-03 Lightlab Imaging, Inc. Intensity noise reduction methods and apparatus for interferometric sensing and imaging systems
US10006753B2 (en) 2010-03-17 2018-06-26 Lightlab Imaging, Inc. Intensity noise reduction methods and apparatus for interferometric sensing and imaging systems
US20110245684A1 (en) * 2010-03-30 2011-10-06 Terumo Kabushiki Kaisha Optical imaging diagnostic apparatus and the display control method thereof
US20110245683A1 (en) * 2010-03-30 2011-10-06 Terumo Kabushiki Kaisha Optical imaging diagnostic apparatus and the display control method thereof
US8868159B2 (en) * 2010-03-30 2014-10-21 Terumo Kabushiki Kaisha Optical imaging diagnostic apparatus and the display control method thereof
US9468379B2 (en) 2010-04-21 2016-10-18 Koninklijke Philips N.V. Determination of a lipid water ratio
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US8750615B2 (en) * 2010-08-02 2014-06-10 Case Western Reserve University Segmentation and quantification for intravascular optical coherence tomography images
US20120075638A1 (en) * 2010-08-02 2012-03-29 Case Western Reserve University Segmentation and quantification for intravascular optical coherence tomography images
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US20130242313A1 (en) * 2010-11-05 2013-09-19 Peter Tomlins Scanning methods and apparatus
US8948228B2 (en) 2011-03-15 2015-02-03 Lightlab Imaging, Inc. Methods, systems, and devices for timing control in electromagnetic radiation sources
US8582619B2 (en) 2011-03-15 2013-11-12 Lightlab Imaging, Inc. Methods, systems, and devices for timing control in electromagnetic radiation sources
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US10952763B2 (en) 2011-03-28 2021-03-23 Avinger, Inc. Occlusion-crossing devices
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11903677B2 (en) 2011-03-28 2024-02-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9983356B2 (en) 2011-03-31 2018-05-29 Lightlab Imaging, Inc. Optical buffer-based apparatus for increasing light source repetition rate
US9164240B2 (en) 2011-03-31 2015-10-20 Lightlab Imaging, Inc. Optical buffering methods, apparatus, and systems for increasing the repetition rate of tunable light sources
JP2014516646A (en) * 2011-04-29 2014-07-17 ザ ジェネラル ホスピタル コーポレイション Method for determining depth-resolved physical and / or optical properties of a scattering medium
US11241154B2 (en) 2011-05-31 2022-02-08 Lightlab Imaging, Inc. Multimodal imaging system, apparatus, and methods
US9610064B2 (en) 2011-05-31 2017-04-04 Desmond Adler Multimodal imaging system, apparatus, and methods
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US8582109B1 (en) 2011-08-01 2013-11-12 Lightlab Imaging, Inc. Swept mode-hopping laser system, methods, and devices for frequency-domain optical coherence tomography
US9488464B1 (en) 2011-08-01 2016-11-08 Lightlab Imaging, Inc. Swept mode-hopping laser system, methods, and devices for frequency-domain optical coherence tomography
US10648918B2 (en) 2011-08-03 2020-05-12 Lightlab Imaging, Inc. Systems, methods and apparatus for determining a fractional flow reserve (FFR) based on the minimum lumen area (MLA) and the constant
US9250060B2 (en) * 2011-08-15 2016-02-02 The Johns Hopkins University Optical coherence tomography system having real-time artifact and saturation correction
US20130044330A1 (en) * 2011-08-15 2013-02-21 The Johns Hopkins University Optical coherence tomography system having real-time artifact and saturation correction
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9435956B1 (en) 2011-10-28 2016-09-06 Lightlab Imaging, Inc. Spectroscopic imaging probes, devices, and methods
US8953911B1 (en) 2011-10-28 2015-02-10 Lightlab Imaging, Inc. Spectroscopic imaging probes, devices, and methods
US8831321B1 (en) 2011-11-07 2014-09-09 Lightlab Imaging, Inc. Side branch detection methods, systems and devices
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
WO2013106760A1 (en) * 2012-01-12 2013-07-18 The General Hospital Corporation Systems, methods and computer-readable medium for determining depth-resolved physical and/or optical properties of scattering media by analyzing measured data over a range of depths
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9928590B2 (en) 2012-04-23 2018-03-27 Olympus Corporation Image processing apparatus, image processing method, and computer-readable recording device for determining whether candidate region is abnormality or residue
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11206975B2 (en) 2012-05-14 2021-12-28 Avinger, Inc. Atherectomy catheter drive assemblies
US11647905B2 (en) 2012-05-14 2023-05-16 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US11510632B2 (en) 2012-10-05 2022-11-29 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
EP2903533A4 (en) * 2012-10-05 2016-06-22 Elizabeth Begin Systems for indicating parameters in an imaging data set and methods of use
US11890117B2 (en) 2012-10-05 2024-02-06 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US10792012B2 (en) 2012-11-19 2020-10-06 Lightlab Imaging, Inc. Interface devices, systems and methods for multimodal probes
US11701089B2 (en) 2012-11-19 2023-07-18 Lightlab Imaging, Inc. Multimodal imaging systems, probes and methods
US10359271B2 (en) 2012-12-05 2019-07-23 Perimeter Medical Imaging, Inc. System and method for tissue differentiation in imaging
US9677869B2 (en) 2012-12-05 2017-06-13 Perimeter Medical Imaging, Inc. System and method for generating a wide-field OCT image of a portion of a sample
US11923067B2 (en) 2012-12-12 2024-03-05 Lightlab Imaging, Inc. Method and apparatus for automated determination of stent landing zones based on a maximum diameter of a segmented blood vessel data obtained by intravascular device
JP2016508750A (en) * 2012-12-12 2016-03-24 ライトラボ・イメージング・インコーポレーテッド Method and apparatus for automated determination of vessel lumen contour
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US9173591B2 (en) 2013-03-08 2015-11-03 Lightlab Imaging, Inc. Stent visualization and malapposition detection systems, devices, and methods
US10028725B2 (en) 2013-03-11 2018-07-24 Lightlab Imaging, Inc. Friction torque limiter for an imaging catheter
US10331099B2 (en) 2013-03-12 2019-06-25 Lightlab Imaging, Inc. Controller and user interface device, systems, and methods
US9989945B2 (en) 2013-03-12 2018-06-05 Lightlab Imaging, Inc. Controller and user interface device, systems, and methods
US9907527B2 (en) 2013-03-12 2018-03-06 Lightlab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
US9351698B2 (en) 2013-03-12 2016-05-31 Lightlab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
US10687777B2 (en) 2013-03-12 2020-06-23 Lightlab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
US9069396B2 (en) 2013-03-12 2015-06-30 Lightlab Imaging, Inc. Controller and user interface device, systems, and methods
US10551251B2 (en) 2013-03-15 2020-02-04 Lightlab Imaging, Inc. Calibration and image processing devices, methods, and systems
US11435233B2 (en) 2013-03-15 2022-09-06 Lightlab Imaging, Inc. Calibration and image processing devices, methods, and systems
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11723538B2 (en) 2013-03-15 2023-08-15 Avinger, Inc. Optical pressure sensor assembly
US9833221B2 (en) 2013-03-15 2017-12-05 Lightlab Imaging, Inc. Apparatus and method of image registration
US11890076B2 (en) 2013-03-15 2024-02-06 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US9702762B2 (en) 2013-03-15 2017-07-11 Lightlab Imaging, Inc. Calibration and image processing devices, methods, and systems
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US10722121B2 (en) 2013-03-15 2020-07-28 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US10722292B2 (en) 2013-05-31 2020-07-28 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US11166760B2 (en) 2013-05-31 2021-11-09 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
US9892507B2 (en) 2013-07-02 2018-02-13 Michelson Diagnostics Ltd. Processing optical coherence tomography scans of a subjects skin
US11944342B2 (en) 2013-07-08 2024-04-02 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10806484B2 (en) 2013-07-08 2020-10-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US11559218B2 (en) 2014-04-04 2023-01-24 St. Jude Medical Coordination Center Bvba Intravascular pressure and flow data diagnostic systems, devices, and methods
US10307070B2 (en) 2014-04-04 2019-06-04 St. Jude Medical Coordination Center Bvba Intravascular pressure and flow data diagnostic systems, devices, and methods
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
JP2016011935A (en) * 2014-06-30 2016-01-21 株式会社トプコン Skin property evaluation system
US11931061B2 (en) 2014-07-08 2024-03-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US11147583B2 (en) 2014-07-08 2021-10-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US11166668B2 (en) 2014-07-24 2021-11-09 Lightlab Imaging, Inc. Pre and post stent planning along with vessel visualization and diagnostic systems, devices, and methods for automatically identifying stent expansion profile
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US11517199B2 (en) 2014-08-08 2022-12-06 Medlumics S.L. Crossing coronary occlusions
US11883138B2 (en) 2014-08-27 2024-01-30 St. Jude Medical Coordination Center Bvba Cardiac cycle-based diagnostic systems and methods
US11350832B2 (en) 2014-08-27 2022-06-07 St. Jude Medical Coordination Center Bvba Cardiac cycle-based diagnostic systems and methods
US11311200B1 (en) 2014-08-27 2022-04-26 Lightlab Imaging, Inc. Systems and methods to measure physiological flow in coronary arteries
US10499813B2 (en) 2014-09-12 2019-12-10 Lightlab Imaging, Inc. Methods, systems and apparatus for temporal calibration of an intravascular imaging system
US11461902B2 (en) 2014-12-12 2022-10-04 Lightlab Imaging, Inc. Systems and methods to detect and display endovascular features
US9940723B2 (en) 2014-12-12 2018-04-10 Lightlab Imaging, Inc. Systems and methods to detect and display endovascular features
US10878572B2 (en) 2014-12-12 2020-12-29 Lightlab Imaging, Inc. Systems and methods to detect and display endovascular features
US10485518B2 (en) * 2015-03-20 2019-11-26 Terumo Kabushiki Kaisha Diagnostic imaging apparatus, control method, program, and computer-readable storage medium
US20160270766A1 (en) * 2015-03-20 2016-09-22 Terumo Kabushiki Kaisha Diagnostic imaging apparatus, control method, program, and computer-readable storage medium
US11278206B2 (en) 2015-04-16 2022-03-22 Gentuity, Llc Micro-optic probes for neurology
US10902599B2 (en) 2015-05-17 2021-01-26 Lightlab Imaging, Inc. Stent detection methods and imaging system interfaces
US10109058B2 (en) 2015-05-17 2018-10-23 Lightlab Imaging, Inc. Intravascular imaging system interfaces and stent detection methods
US10140712B2 (en) 2015-05-17 2018-11-27 Lightlab Imaging, Inc. Detection of stent struts relative to side branches
US10222956B2 (en) 2015-05-17 2019-03-05 Lightlab Imaging, Inc. Intravascular imaging user interface systems and methods
US11532087B2 (en) 2015-05-17 2022-12-20 Lightlab Imaging, Inc. Stent detection methods and imaging system interfaces
US9996921B2 (en) 2015-05-17 2018-06-12 LIGHTLAB IMAGING, lNC. Detection of metal stent struts
US10713786B2 (en) 2015-05-17 2020-07-14 Lightlab Imaging, Inc. Detection of metal stent struts
US11367186B2 (en) 2015-05-17 2022-06-21 Lightlab Imaging, Inc. Detection of metal stent struts
US10646198B2 (en) 2015-05-17 2020-05-12 Lightlab Imaging, Inc. Intravascular imaging and guide catheter detection methods and systems
US11627881B2 (en) 2015-07-13 2023-04-18 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11033190B2 (en) 2015-07-13 2021-06-15 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11768593B2 (en) * 2015-07-25 2023-09-26 Lightlab Imaging, Inc. Intravascular data visualization and interface systems and methods
US10089755B2 (en) 2015-07-25 2018-10-02 Lightlab Imaging, Inc. Guidewire detection systems, methods, and apparatuses
US20220244841A1 (en) * 2015-07-25 2022-08-04 Lightlab Imaging, Inc. Intravascular Data Visualization And Interface Systems And Methods
US10529093B2 (en) 2015-07-25 2020-01-07 Lightlab Imaging, Inc. Guidewire detection systems, methods, and apparatuses
US10338795B2 (en) * 2015-07-25 2019-07-02 Lightlab Imaging, Inc. Intravascular data visualization and interface systems and methods
US11287961B2 (en) * 2015-07-25 2022-03-29 Lightlab Imaging, Inc. Intravascular data visualization and interface systems and methods
US11583172B2 (en) 2015-08-31 2023-02-21 Gentuity, Llc Imaging system includes imaging probe and delivery devices
US11064873B2 (en) 2015-08-31 2021-07-20 Gentuity, Llc Imaging system includes imaging probe and delivery devices
US11937786B2 (en) 2015-08-31 2024-03-26 Gentuity, Llc Imaging system includes imaging probe and delivery devices
US10631718B2 (en) 2015-08-31 2020-04-28 Gentuity, Llc Imaging system includes imaging probe and delivery devices
US10453196B2 (en) 2015-11-18 2019-10-22 Lightlab Imaging, Inc. Detection of stent struts relative to side branches
US11633167B2 (en) 2015-11-18 2023-04-25 Lightlab Imaging, Inc. X-ray image feature detection and registration systems and methods
US10172582B2 (en) 2015-11-18 2019-01-08 Lightlab Imaging, Inc. X-ray image feature detection and registration systems and methods
US10342502B2 (en) 2015-11-18 2019-07-09 Lightlab Imaging, Inc. X-ray image feature detection and registration systems and methods
US11020078B2 (en) 2015-11-18 2021-06-01 Lightlab Imaging, Inc. X-ray image feature detection and registration systems and methods
US10327726B2 (en) 2015-11-18 2019-06-25 Lightlab Imaging, Inc. X-ray image feature detection and registration systems and methods
US11850089B2 (en) 2015-11-19 2023-12-26 Lightlab Imaging, Inc. Intravascular imaging and guide catheter detection methods and systems
US10453190B2 (en) 2015-11-23 2019-10-22 Lightlab Imaging, Inc. Detection of and validation of shadows in intravascular images
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11475560B2 (en) 2016-04-14 2022-10-18 Lightlab Imaging, Inc. Method, apparatus, and system to identify branches of a blood vessel
US10593037B2 (en) 2016-04-14 2020-03-17 Lightlab Imaging, Inc. Method, apparatus, and system to identify branches of a blood vessel
US10631754B2 (en) 2016-05-16 2020-04-28 Lightlab Imaging, Inc. Intravascular absorbable stent detection and diagnostic methods and systems
CN105996999A (en) * 2016-05-19 2016-10-12 南京航空航天大学 Method and system for measuring depth resolution attenuation coefficient of sample based on OCT
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
KR20190015546A (en) * 2016-06-08 2019-02-13 리서치 디벨럽먼트 파운데이션 Systems and methods for automated coronary artery sclerosis characterization and risk assessment using intravascular optical coherence tomography
JP2022095854A (en) * 2016-06-08 2022-06-28 リサーチ ディヴェロプメント ファウンデーション System and method for automatic feature analysis of coronary artery plaque and risk evaluation using intravascular optical coherence tomography
KR102531819B1 (en) * 2016-06-08 2023-05-16 리서치 디벨럽먼트 파운데이션 Systems and methods for automated coronary plaque characterization and risk assessment using endovascular optical coherence tomography
JP7383070B2 (en) 2016-06-08 2023-11-17 リサーチ ディヴェロプメント ファウンデーション System and method for automated characterization and risk assessment of coronary artery plaque using intravascular optical coherence tomography
WO2017214421A1 (en) * 2016-06-08 2017-12-14 Research Development Foundation Systems and methods for automated coronary plaque characterization and risk assessment using intravascular optical coherence tomography
AU2017277784B2 (en) * 2016-06-08 2022-06-30 Research Development Foundation Systems and methods for automated coronary plaque characterization and risk assessment using intravascular optical coherence tomography
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11883107B2 (en) 2016-09-28 2024-01-30 Lightlab Imaging, Inc. Stent planning systems and methods using vessel representation obtained via intravascular probe by determining stent effectiveness score and fractional flow reserve
US11357403B2 (en) 2016-10-28 2022-06-14 Fujifilm Corporation Optical coherence tomography apparatus and measurement method
US10894939B2 (en) 2017-07-18 2021-01-19 Perimeter Medical Imaging, Inc. Sample container for stabilizing and aligning excised biological tissue samples for ex vivo analysis
US10577573B2 (en) 2017-07-18 2020-03-03 Perimeter Medical Imaging, Inc. Sample container for stabilizing and aligning excised biological tissue samples for ex vivo analysis
US11058346B2 (en) 2017-10-30 2021-07-13 Wenzhou Medical University Optical imaging method based on mapping of layered structure
US11684242B2 (en) 2017-11-28 2023-06-27 Gentuity, Llc Imaging system
US11464412B2 (en) 2017-12-27 2022-10-11 Medlumics S.L. Bi-refringence compensated waveguides
US11344373B2 (en) 2018-05-29 2022-05-31 Lightlab Imaging, Inc. Stent expansion display, systems, and methods
US11779220B2 (en) 2018-12-14 2023-10-10 Research Development Foundation Multi-channel orthogonal convolutional neural networks
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices
US11331142B2 (en) 2020-01-13 2022-05-17 Medlumics S.L. Methods, devices, and support structures for assembling optical fibers in catheter tips
US11357569B2 (en) 2020-01-13 2022-06-14 Medlumics S.L. Optical-guided ablation system for use with pulsed fields or other energy sources
US11523740B2 (en) 2020-01-13 2022-12-13 Medlumics S.L. Systems and methods for optical analysis and lesion prediction using ablation catheters
WO2022087378A1 (en) * 2020-10-23 2022-04-28 Arizona Board Of Regents On Behalf Of The University Of Arizona Data acquisition and measurement of characteristic functionals in biology and medicine
CN113876357A (en) * 2020-11-04 2022-01-04 科特有限责任公司 Imaging and pressure sensing device and probe with slidable sleeve
CN114489151A (en) * 2021-12-13 2022-05-13 中国地质科学院矿产资源研究所 Laser output power control device and control method thereof
WO2023183420A1 (en) * 2022-03-22 2023-09-28 Case Western Reserve University Methods, systems and apparatuses for transseptal procedures
CN114820605A (en) * 2022-06-28 2022-07-29 广州永士达医疗科技有限责任公司 Eustachian tube OCT image recognition processing method and device
US11957376B2 (en) 2022-08-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter

Also Published As

Publication number Publication date
CN102046071B (en) 2013-11-06
JP2015231526A (en) 2015-12-24
US20180192957A1 (en) 2018-07-12
EP2293714B1 (en) 2014-08-13
WO2009149131A1 (en) 2009-12-10
ES2517915T3 (en) 2014-11-04
JP2011521747A (en) 2011-07-28
CN102046071A (en) 2011-05-04
US11793462B2 (en) 2023-10-24
EP2293714A1 (en) 2011-03-16
JP2014097417A (en) 2014-05-29
US20230414176A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
US20230414176A1 (en) Intravascular Measurement And Data Collections Systems, Apparatus And Methods
US11510632B2 (en) Systems for indicating parameters in an imaging data set and methods of use
US11461902B2 (en) Systems and methods to detect and display endovascular features
US11532087B2 (en) Stent detection methods and imaging system interfaces
US10335039B2 (en) Methods for stent strut detection and related measurement and display using optical coherence tomography
EP3297532B1 (en) Intravascular imaging system interfaces and stent detection methods
US9858668B2 (en) Guidewire artifact removal in images
AU2016265949A1 (en) Intravascular imaging system interfaces and shadow detection methods
EP2903513A2 (en) Automatic stent detection
JP2014516646A (en) Method for determining depth-resolved physical and / or optical properties of a scattering medium
Zahnd et al. Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming
EP2964089A1 (en) Stent visualization and malapposition detection systems, devices, and methods
EP3865050A1 (en) Image processing apparatus, method and storage medium to determine longitudinal orientation

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIGHTLAB IMAGING, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMITT, JOSEPH M.;XU, CHENYANG;REEL/FRAME:023124/0667

Effective date: 20090806

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION