Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20090255996 A1
Publication typeApplication
Application numberUS 12/489,662
Publication date15 Oct 2009
Filing date23 Jun 2009
Priority date17 Dec 2003
Also published asEP1714237A2, EP1714237A4, US7044394, US7246752, US20050133606, US20060192006, WO2005059691A2, WO2005059691A3
Publication number12489662, 489662, US 2009/0255996 A1, US 2009/255996 A1, US 20090255996 A1, US 20090255996A1, US 2009255996 A1, US 2009255996A1, US-A1-20090255996, US-A1-2009255996, US2009/0255996A1, US2009/255996A1, US20090255996 A1, US20090255996A1, US2009255996 A1, US2009255996A1
InventorsKerry D. Brown, Daniel Chatelain
Original AssigneeBrown Kerry D, Daniel Chatelain
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Three-legacy mode payment card with parametric authentication and data input elements
US 20090255996 A1
Abstract
A payment card comprises a plastic card and operates with three different legacy payment systems. A magnetic stripe with user account data allows card use in traditional point-of-sale magnetic card readers. A dual-input crypto-processor embedded in the card provides for contact/contactless smart card operation. A user input provides for user authentication by the crypto-processor. Internal to the plastic card, and behind the magnetic stripe, a magnetic array includes a number of fixed-position magnetic write heads that allow the user account data to be automatically modified by the crypto-processor.
Images(5)
Previous page
Next page
Claims(17)
1. A three-mode payment card configured in a standardized credit card format equivalent to ISO/IEC-7810, and having:
a plastic card body in which all the other elements are disposed;
a contact interface with surface contacts and providing for communication of encoded bank and user information with a contact-type smartcard reader in a first mode;
a wireless interface with an antenna and providing for contactless communication of encoded bank and user information with a contactless-type smartcard reader in a second mode;
a dual-input crypto-processor for supporting contact-type smart card communication equivalent to ISO/IEC-7816 through the contact interface, and for also supporting contactless-type smart card communication equivalent to ISO/IEC-14443 through the wireless interface;
and characterized by:
a magnetic stripe with a magnetic array interfaced to the dual-input crypto-processor, and that provide for magnetic presentations in parallel that mimic a conventional legacy magnetic stripe encoded with bank and user information to a magnetic card reader in a third mode;
a magnetic recording serially accessible to a longitudinally moving read head on a front side of the magnetic stripe that includes at least one dynamic data bit controlled by said magnetic array;
a data generator and a data receptor for receiving an initial programming of personalization data from a card issuer, bank agency or manufacturer, and for outputting through the magnetic array a number of programmable data bits that are combined in a string with a number of permanent data bits;
a programmable interface controller (PIC) interfaced to the dual-input crypto-processor through the contact interface;
an input device for accepting information solicited from a user and providing it to the PIC; and
an electronic display connected to present text messages from the PIC to said user.
2. The payment card of claim 1, further comprising:
a component providing for user authentication based in-part on said information entered through the input device;
3. The payment card of claim 1, wherein:
the input device includes a biometric sensor for collecting physical characteristics of a user that are thereafter useful by the PIC in an authentication of said user.
4. The payment card of claim 1, wherein:
the input device includes a biometric sensor for collecting at least one of a fingerprint or signature of a user that are thereafter useful by the PIC in an authentication of said user.
5. The payment card of claim 1, further comprising:
an algorithm with data unique to said user and embedded in the dual-input crypto-processor, wherein a new unique transaction encoding is transmittable through the wireless, contact, and magnetic interfaces that permits a transaction infrastructure and server to derive a unique user data that is useful in validating and approving point-of-sale financial transactions involving the payment card.
6. The payment card of claim 1, wherein:
the PIC does not store more than one digit of a user password at a time, and sends each digit as it is received on to the contact interface and the dual-input crypto-processor for verification.
7. The payment card of claim 6, wherein:
the PIC does not store a whole user password at any time.
8. The payment card of claim 1, wherein:
a portion of a complete financial account number of the user is encoded with said permanent data bits.
9. The payment card of claim 1, wherein:
the data generator provides for a subsequent obfuscation of a financial account number being presented in whole by rewriting said at least one dynamic data bit controlled by said magnetic array.
10. The payment card of claim 1, further comprising:
a predictive algorithm that includes personal information about the user in some of its factors, and that generates a unique number that is not sequential and cannot be predicted without knowing the algorithm and the seed value, and wherein a payment processing center will not authorize transaction requests that come out of sequence.
11. The payment card of claim 10, further comprising:
detectors connected to signal the PIC when a reading of bank and user information in the magnetic recording has occurred.
12. The payment card of claim 1, further comprising:
an on-board electrical generator connected to power the payment card as needed.
13. The payment card of claim 1, further comprising:
a piezoelectric generator connected to charge a battery that powers the payment card as needed.
14. A three-mode payment card having:
means for providing communication of encoded bank and user information with a contact-type smartcard reader in a first mode;
means for providing communication of encoded bank and user information with a contactless-type smartcard reader in a second mode;
and characterized by:
means for providing magnetic presentations in parallel that mimic a conventional legacy magnetic stripe encoded with bank and user information to a magnetic card reader in a third mode;
means for providing a magnetic recording serially accessible to a longitudinally moving read head on a front side of the magnetic stripe that includes at least one dynamic data bit controlled by said magnetic array;
means for receiving an initial programming of personalization data from a card issuer, bank agency or manufacturer, and for outputting a number of programmable data bits that are combined in a string with a number of permanent data bits;
means for accepting information solicited from a user; and
means for presenting text messages from to said user.
15. A payment card configured in a standardized credit card format equivalent to ISO/IEC-7810, and having:
a plastic card body in which all the other elements are disposed;
at least one of a contact interface with contact-type smart card communication equivalent to ISO/IEC-7816, and a wireless interface with an antenna providing for contactless-type smart card communication equivalent to ISO/IEC-14443;
a crypto-processor for supporting smartcard communication through either of said contact and wireless interfaces;
and characterized by:
a data generator and a data receptor for receiving an initial programming of personalization data from a card issuer, bank agency or manufacturer, and for encoding bank and user information for output by either of said contact and wireless interfaces with sequenced portions that can be expected by the card issuer;
a programmable interface controller (PIC) interfaced to the crypto-processor; and
an electronic display connected to present text messages from the PIC and the crypto-processor to said user.
16. The payment card of claim 15, further comprising:
a device for automatically incrementing a value in a sequence that can be forwarded in an approval request message to a validation processing center, wherein changing values used in transactions must belong to an expected sequence in order to be valid.
17. The payment card of claim 15, further comprising:
a magnetic stripe with a magnetic array interfaced to the crypto-processor, and that provide for magnetic presentations in parallel that mimic a conventional legacy magnetic stripe encoded with bank and user information to a magnetic card reader in a third mode; and
a magnetic recording serially accessible to a longitudinally moving read head on a front side of the magnetic stripe that includes at least one dynamic data bit controlled by said magnetic array;
wherein, the data generator and data receptor further provide for outputting through the magnetic array a number of programmable data bits that are combined in a string with a permanent data bits.
Description
    RELATED APPLICATION
  • [0001]
    This Application is a Divisional of U.S. patent application Ser. No. 10/800,821, filed Mar. 15, 2004, by the present inventor, Kerry D. BROWN, and titled PAYMENT CARD WITH PARTIAL DYNAMIC MAGNETIC ACCOUNT DATA AND TIMEOUT. Such was, in turn, a Continuation-In-Part of an Application that is now U.S. Pat. No. 7,044,394, issued May 16, 2006, titled PROGRAMMABLE MAGNETIC DATA STORAGE CARD. These are incorporated by reference as if fully set forth herein.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates to a payment card, and more particularly to payment cards with contact/contactless smartcard interfaces, and an internally writeable magnetic data stripe readable by legacy card readers.
  • [0004]
    2. Description of Related Art
  • [0005]
    Credit card and debit card use and systems have become ubiquitous throughout the world. Originally, credit cards simply carried raised numbers that were transferred to a carbon copy with a card-swiping machine. The merchant simply accepted any card presented. Spending limits and printed lists of lost/stolen cards were ineffective in preventing fraud and other financial losses. So merchants were required to telephone a transaction authorization center to get pre-approval of the transaction. These pre-approvals were initially required only for purchases above a certain threshold, but as time went on the amounts needing authorization dropped lower and lower. The volume of telephone traffic grew too great, and more automated authorization systems allowed faster, easier, and verified transactions. Magnetic stripes on the backs of these payment cards started to appear and that allowed computers to be used at both ends of the call.
  • [0006]
    The magnetic data on the stripe on the back of payment cards now contains a standardized format and encoding. The raised letters and numbers on the plastic cards are now rarely used or even read. This then gave rise to “skimming” devices that could be used by some unscrupulous merchant employees to electronically scan and save the information from many customers' cards. Reproducing an embossed card complete with photos is then rather easy.
  • [0007]
    Smartcards were first introduced around 1994 with embedded single-chip cryptoprocessors and contact interfaces. These required a new reader that could probe the smartcard's contact pad and electronically interrogate the card. Cards could be authenticated this way, but the contact interfaces proved to be troublesome. Such cards have not gained wide acceptance because new readers needed to be installed.
  • [0008]
    Dual interface smartcards started to appear around 2000. Such supported both contact (e.g., ISO/IEC-7816) and contactless (e.g., ISO/IEC-14443) interfaces, and used two completely independent cryptoprocessors and interfaces. They are therefore relatively expensive, because of the duplication. The independence of the two cryptoprocessors and interfaces meant that each had to be updated individually, the two may not talk to one another.
  • [0009]
    Typical dual interface smart cards support both contact and Type-A and/or Type-B antenna structures and the corresponding operating frequencies. Type A has a range of about 10 cm, and type B has a range of about 5 cm. Type B supports a higher data rate, but has proven to be the less popular because of the shorter range.
  • [0010]
    Dual-input smartcard cryptoprocessors started to become available in 2004, e.g., Philips Semiconductors family of 8-bit MIFAREŽ PROX dual interface smart card controllers. These use one IC with a crypto co-processor that has both contact and contactless interfaces. Updating the data through either interface is effective for both interfaces. The total cost of a smartcard using dual-input devices is much closer to the original single-chip cryptoprocessors with contact interfaces.
  • [0011]
    The proliferation of magnetic, contact, and contactless technologies is causing chaos, and the huge installed base of magnetic point-of-sale readers in the United States has been inhibiting the transition to smartcards, a USA cost, estimated by American Express in 2002, of approximately $4-14 billion dollars. What is needed is a transitional payment card that can continue to support magnetic reading while also being able to respond to smartcard readers. It further would be advantageous to have a payment card that can self-authenticate its users. Additionally, a card with EMV (Europay-MasterCard-Visa) security features of a smartcard and the transaction communications features compatible with magnetic stripe transaction acceptance systems and processing infrastructure.
  • SUMMARY OF THE INVENTION
  • [0012]
    Briefly, a payment card embodiment of the present invention comprises electronic components disposed in a plastic card base needed to operate with magnetic reader, contact, and contactless legacy card payment systems. A magnetic stripe with user account data allows card use in traditional point-of-sale magnetic card readers. A dual-input crypto-processor embedded in the card provides for contact/contactless smart card operation. A user input provides for user authentication by the crypto-processor. Internal to the plastic card, and behind the magnetic stripe, a magnetic array includes a number of fixed-position magnetic write heads that allow the user account data to be automatically modified by the crypto-processor and support circuitry.
  • [0013]
    The above and still further objects, features, and advantages of the present invention will become apparent upon consideration of the following detailed description of specific embodiments thereof, especially when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    FIG. 1 is a functional block diagram of a payment card embodiment of the present invention;
  • [0015]
    FIG. 2 is a functional block diagram of a legacy magnetic card and reader embodiment of the present invention;
  • [0016]
    FIG. 3 is a state diagram of a card authentication process embodiment of the present invention; and
  • [0017]
    FIG. 4 is a perspective diagram of a magnetic array embodiment of the present invention as can be used in the devices of FIGS. 1-3.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0018]
    FIG. 1 illustrates a payment card embodiment of the present invention, and is referred to herein by the general reference numeral 100. Payment card 100 operates in any of three ways, e.g., (a) as a typical magnetic stripe card, (b) as a typical contact-mode smart card, and (c) as a typical wireless (proximity) smart card. It is implemented in the familiar credit/debit card format as a plastic wallet card with a magnetic stripe on its back. For example, in the ISO/IEC-7810 format. The payment card 100 comprises a dual-input crypto-processor 102 with a contact interface 104, e.g., ISO/IEC-7816. For example, a Philips Semiconductor type P8RF6016 triple-DES secure dual interface smart card IC could be used. Surface contacts on the card provide a conventional legacy contact 106 that can be used by traditional contact-mode card readers. A magnetic array 108 is arranged on the back of the card and presents what appears to be an ordinary magnetic stripe 109 encoded with appropriate bank and user information for a conventional magnetic card reader. Such readers are ubiquitous throughout the world at point-of-sale terminals. An antenna 110 provides wireless interface to conventional wireless smart card readers, e.g., ISO/IEC-14443-2 which operates at 13.56 MHz.
  • [0019]
    Particular details on the construction and operation of the magnetic array are included in a parent of the present application, U.S. Pat. No. 7,044,394, issued May 16, 2006, titled PROGRAMMABLE MAGNETIC DATA STORAGE CARD. Data sent to the magnetic array 108 can be withheld until the user authenticates themselves to the smartcard 100. And such data will only be readable by a magnetic reader or smartcard reader for only a limited time or limited number of swipes or contact/contactless transactions.
  • [0020]
    An economic way of implementing payment card 100 is to use commercially available dual-input crypto-processors for processor 102 because they inherently come with the contact interface 104. This then can be easily interfaced to a low-power microcontroller 112, e.g., a Microchip programmable interface controller (PIC). In one embodiment, the payment card 100 includes a biometric sensor 114 that can sense some physical attribute about the user. For example, a fingerprint or signature input through a scanner or pressure sensor array. In other embodiments, the payment card 100 includes a keypad 116 with which a user can select a card personality and enter a personal identification number (PIN), password, or other data. Such personality selection can, e.g., be a choice amongst VISA, MasterCard, American Express, etc., so the payment card 100 presents the corresponding account and user numbers in the required formats for the particular bank and payment processor. A liquid crystal display (LCD) 118 in its simplest form presents a blinking indication that keypad input has been accepted, the card is awake and active, etc. A more complex LCD 118 can be used to display text message to the user in alternative embodiments of the present invention.
  • [0021]
    The communication between PIC 112 and dual-input crypto-processor 102 is such that each digit of a PIN entered is forwarded as it is entered. The whole PIN is not sent essentially in parallel. Such strategy makes the hacking of the card and access to user data more difficult. The PIC 112 does not store the PIN, only individual digits and only long enough to receive them from the keypad 116 and forward them on.
  • [0022]
    An embedded power source is needed by payment card 100 that can last for the needed service life of a typical smartcard, e.g., about eighteen months to four years. A battery 120 is included. In more complex embodiments, a piezoelectric generator 122 and charger 124 can be used that converts incidental temperature excursions and mechanical flexing of the card into electrical power that can charge a storage capacitor or help maintain battery 120. The piezoelectric generator 122 comprises a piezoelectric crystal arranged, e.g., to receive mechanical energy from card flexing and/or keypad use. The charger 124 converts the alternating current (AC) received into direct current (DC) and steps it up to a voltage that will charge the battery. Alternative embodiments can include embedded photovoltaic cells to power the card or charge the battery.
  • [0023]
    FIG. 2 illustrates a payment card embodiment of the present invention, and is referred to herein by the general reference numeral 200. In particular, FIG. 2 details the way magnetic array 108 and the legacy magnetic interface 109 can operate in the context of FIG. 1.
  • [0024]
    A conventional, “legacy”, merchant point-of-sale magnetic-stripe card reader 201 is used to read user account data recorded on a magnetic stripe 202 on the payment card 200. Such is used by a merchant in a traditional way, the payment card 200 appears and functions equivalent to an ordinary debit, credit, loyalty, prepay, and similar cards with a magnetic stripe on the back.
  • [0025]
    User account data is recorded on the magnetic stripe 202 using industry-standard formats and encoding. For example, ISO/IEC-7810, ISO/IEC-7811(-1:6), and ISO/IEC-7813, available from American National Standards Institute (NYC, N.Y.). These standards specify the physical characteristics of the cards, embossing, low-coercivity magnetic stripe media characteristics, location of embossed characters, location of data tracks 2-3, high-coercivity magnetic stripe media characteristics, and financial transaction cards. A typical Track-1, as defined by the International Air Transport Association (IATA), is seventy-nine alphanumeric characters recorded at 210-bits-per-inch (bpi) with 7-bit encoding. A typical Track-2, as defined by the American Bankers Association (ABA), is forty numeric characters at 75-bpi with 5-bit encoding, and Track-3 (ISO/IEC-4909) is typically one hundred and seven numeric characters at 210-bpi with 5-bit encoding. Each track has starting and ending sentinels, and a longitudinal redundancy check character (LRC). The Track-1 format includes user primary account information, user name, expiration date, service code, and discretionary data. These tracks conform to the ISO/IEC/IEC Standards 7810, 7811-1-6, and 7813, or other suitable formats.
  • [0026]
    The magnetic stripe 202 is located on the back surface of payment card 200. A data generator 204, e.g., implemented with a microprocessor, receives its initial programming and personalization data from a data receptor 205. For example, such data receptor 205 can be implemented as a serial inductor placed under the magnetic stripe which is excited by a standard magnetic card writer. Additionally, the data may be installed at the card issuer, bank agency, or manufacturer by existing legacy methods. The data received is stored in non-volatile memory. Alternatively, the data receptor 205 can be a radio frequency antenna and receiver, typical to ISO/IEC/IEC Specifications 24443 and 25693. The data generator 204 may be part of a secure processor that can do cryptographic processing, similar to Europay-Mastercard-Visa (EMV) cryptoprocessors used in prior art “smart cards”.
  • [0027]
    Card-swipes generate detection sensing signals from one or a pair of detectors 206 and 208. These are embedded at one or each end of magnetic stripe 202 and can sense the typical pressure applied by a magnetic read head in a scanner. A first set of magnetic-transducer write heads 210-212 are located immediately under bit positions d0-d2 of magnetic stripe 202. The data values of these bits can be controlled by data generator 204. Therefore, bit positions d0-d2 are programmable.
  • [0028]
    Such set of magnetic-transducer write heads 210-212 constitutes an array that can be fabricated as a single device and applied in many other applications besides payment cards. Embodiments of the present invention combine parallel fixed-position write heads on one side of a thin, planar magnetic media, and a moving serial read head on the opposite side. Such operation resembles a parallel-in, serial-out shift register.
  • [0029]
    A next set of bit positions 213-216 (d3-d6) of magnetic stripe 202 are fixed, and not programmable by data generator 204. A conventional card programmer is used by the card issuer to program these data bits. A second set of magnetic write heads 217-221 are located under bit positions d7-d11 of magnetic stripe 202. The data values of these bits can also be controlled by data generator 204 and are therefore programmable. A last set of bit positions 222-225 (d12-d15) of magnetic stripe 202 are fixed, and not programmable by data generator 204. In alternative embodiments of the present invention, as few as one bit is programmable with a corresponding write head connected to data generator 204, or as many as all of the bits in all of the tracks.
  • [0030]
    The legacy card reader 201 is a conventional commercial unit as are already typically deployed throughout the world, but especially in the United States. Such deployment in the United States is so deep and widespread, that conversion to contact and contactless smartcard systems has been inhibited by merchant reluctance for more purchases, employee training, counter space, and other concerns.
  • [0031]
    It is an important aspect of the present invention that the outward use of the payment card 200 not require any modification of the behavior of the user, nor require any special types of card readers 201. Such is a distinguishing characteristic and a principle reason that embodiments of the present invention would be commercially successful. The card reader 201 has a magnetic-transducer read head 230 that is manually translated along the length of data stripe 202. It serially reads data bits d0-d15 and these are converted to parallel digital data by a register 232.
  • [0032]
    The magnetic-transducer write heads 210-212 and 217-221 must be very thin and small, as they must fit within the relatively thin body of a plastic payment card, and be packed dense enough to conform to the standard recording bit densities. Integrated combinations of micro-electro-mechanical systems (MEMS) nanotechnology, and longitudinal and perpendicular ferromagnetics are therefore useful in implementations that use standard semiconductor and magnetic recording thin-film technologies.
  • [0033]
    FIG. 3 represents a card authentication process embodiment of the present invention, and is referred to herein by the general reference numeral 300. Such process details the way that the processor 102 (FIG. 1) interacts with keypad 116 and LCD 118 in one embodiment of the present invention. Here, the keypad includes digits 0-9, CLEAR, and ENTER keys.
  • [0034]
    Process 300 comprises a power_up state 302 that passes through an “always” condition 304 to a sleep state 306. A “wake timeout” condition 308 occurs when a wake-up timer times out. A wake_test state 310 checks battery condition and the CLEAR key. A condition 312 causes a loop back if the battery is within proper operating voltage range and the CLEAR key is inactive. If the battery is in range and the CLEAR key is inactive, a condition 314 returns to sleep state 306. But if the user has pressed the CLEAR key, a condition 316 passes to a card_entry state 318. The LCD is caused to blink at 1.0 Hz. A time-out for waiting for another key to be pressed, or an invalid key being entered, causes a condition 320 to return to sleep process 306.
  • [0035]
    If a CARD key is entered, a condition 322 passes to a pin_entry state 324. If CLEAR key was entered, a condition 326 returns to card_entry state 318. The LCD is caused to blink at 1.0 Hz. A PIN entry condition 328 processes each entry. If the user takes too long to enter the PIN, a time-out condition 330 returns to sleep state 306. If the ENTER key is pressed too soon, e.g., not enough PIN digits have been entered, a condition 332 returns to sleep state 306. If a proper number of PIN digit entries have been made, and that was followed by the ENTER key, a condition 334 passes to a pin_validate state 336.
  • [0036]
    If the PIN entered is invalid or a time-out has occurred, a condition 338 returns to sleep state 306. Otherwise, a valid-response condition 340 passes to a transaction_wait state 342. The LCD is caused to blink at 0.5 Hz. A transaction timer or CLEAR key entered condition 344 passes to a pin_invalidate state 346. Any key being pressed or a time-out in a condition 348 passes to the sleep state 306. This process may be used in conjunction with a smart card cryptoprocessor to unlock encrypted card data to be released for legacy transaction processes described herein and typical for magnetic stripe and smart cards.
  • [0037]
    FIG. 4 illustrates a magnetic data storage array embodiment of the present invention, and is referred to by the general reference numeral 400. The magnetic data storage array 400 includes a magnetic stripe 402 that mimics those commonly found on the backs of credit cards, debit cards, access cards, and drivers licenses. In alternative embodiments of the present invention, array 400 can be a two-dimensional array, and not just a single track.
  • [0038]
    Here in FIG. 4, magnetic data bits d0-d2 are arranged in a single track. A set of fixed-position write heads 404, 406, and 408 respectively write and rewrite magnetic data bits d0-d2. A moving, scanning read head 410 in a legacy magnetic card reader is used to read out the data written.
  • [0039]
    Parts of magnetic data storage array 400 can be implemented with MEMS technology. In general, MEMS is the integration of mechanical elements, sensors, actuators, and electronics on a common substrate using microfabrication technology. Electronics devices are typically fabricated with CMOS, bipolar, or BICMOS integrated circuit processes. Micromechanical components can be fabricated using compatible “micromachining” processes that selectively etch away parts of a processing wafer, or add new structural layers to form mechanical and electro-mechanical devices.
  • [0040]
    In the present case, MEMS technology can be used to fabricate coils that wind around Permalloy magnetic cores with gaps to produce very tiny magnetic transducer write heads. For example, a magnetic transducer write head that would be useful in the payment card 100 of FIG. 1 would have a gap length of 1-50 microns, a core length of 100-250 microns, a write track width of 1000-2500 microns, and a read track width of 1000 microns. Nickel-iron core media permeability would be greater than 2000, and cobalt-platinum or gamma ferric oxide media permeability would be greater than 2.0, and the media coercivity would be a minimum of 300 Oe.
  • [0041]
    A parallel array static MEMS (S-MEMS) device is a magnetic transducer which will allow information to be written in-situ on the data tracks of a standard form factor magnetic stripe card. In a practical application, an array of twenty-five individual magnetic bit cells can be located at one end of an ISO/IEC/IEC 7811 standard magnetic media. Such a stripe includes some permanent encoding, as well as a region in which data patterns can be written by arrays of magnetic heads attached to a low-coercivity magnetic stripe.
  • [0042]
    Each cell of such parallel array is independently electronically addressed. Write transducer current may flow in one direction or the other, depending on the desired polarity of the magnetic data bits. The magnetic stripe transaction reader operates by detection of magnetic domain transitions within an F2F scheme typical of such cards and, therefore, magnetic domain reversal is not necessary. A prototype write head included a high permeability NiFe core with electroplated windings of copper wires. For example, a useful write head has a z-dimension (track width) of 1000-2500 microns, a width of 100 microns in the x-direction, and a height in the y-direction of approximately 20 microns. There are four coil turns around each pole piece, for a total of eight. The cross sectional area of the coil was estimated at four microns square, with a three micron spacing. Total length in the x-direction, including core and coils, was 150 microns, and about a ten micron spacing between adjacent magnetic cells.
  • [0043]
    Transaction process embodiments of the present invention embed an algorithm with unique user data in a cryptoprocessor. For example, a method for a transaction process embeds an algorithm that encodes unique user data in a cryptoprocessor. It requests a new unique transaction encoding to be issued by using the cryptoprocessor to process the algorithm and to generate a data suited to a card-acceptance system pre-processing requirements. A conventional transaction infrastructure and server can then be used to derive from the number the unique user data. The new unique transaction encoding can be communicated to the conventional transaction infrastructure and server by a smart card contact or proximity connection. The new unique transaction encoding can be communicated to the conventional transaction infrastructure and server by a reprogrammable magnetic stripe on a card read by a reader. Such is useful in validating and approving point-of-sale financial transactions.
  • [0044]
    The following several paragraphs are repeated here for convenience from parent case, U.S. Pat. No. 7,044,394, issued May 16, 2006, titled PROGRAMMABLE MAGNETIC DATA STORAGE CARD.
  • [0045]
    In general, a predictive algorithm is used that includes personal information about the user as some of its factors. This then generates a unique number that is not sequential and cannot be guessed. For example, such can be included as a card validation code value now in common use. A payment processing center keeps track of this usage-counter data field, and will not authorize transaction requests that come out of sequence. For example, as can occur from a magnetic clone of a card that has been skimmed and tried later. A card-swipe detector embedded in the plastic card detects each use in a POS terminal, and it signals an internal microcomputer which changes data bits sent to the write heads. Once scanned by the POS terminal or other reader, the payment card can also disable any reading of the user account data for a short fixed period of time.
  • [0046]
    In some embodiments of the present invention, the payment card 100, 200 is constructed to provide an automatically incrementing usage-number that can be forwarded in an approval request message to a validation processing center. The validation processing center stores the last incrementing usage-number used in a valid transaction and any new usage-number used must be greater. If it is not, an out-of-sequence transaction has been detected that is probably the result of card skimming and fraud. The transaction request is subsequently denied.
  • [0047]
    Alternatively, such dynamic number may be a unique algorithm composed of two or more factors that may include the user's billing address numbers and social security number or card numbers that provide unpredictable results not in a sequential manner. The Assignee refers to such commercial analysis methods and devices with its trademark, Dynamic Numerical Analysis (DNA™).
  • [0048]
    One way to implement a user validation test is with a dynamic numerical analysis (DNA). An algorithm is implemented that fetches a last used valid number from a private database, and compares this with the sequence number now being attempted.
  • [0049]
    In other embodiments of the present invention, the payment card 100, 200 is constructed to provide a sort of PIN value that can be forwarded in an approval request message to a validation processing center. In one instance, unique-number generator 204 internal to the card is used to supply a value in a discretionary field of Track-2, or the card validation code (CVC) field. Such unique number is generated by an algorithm that uses as its factors the user's social security number, the user's billing address, etc.
  • [0050]
    The payment card 100, 200 can also be constructed to provide user account data for only limited times. For example, a PIN pad integrated on the payment card 100, 200 can require a user PIN number to be entered before card magnetic data 202 will present itself for swiping in the card reader 201. A lack of card magnetic data 202 simply looks to card reader 201 as a defective card, and denies the transaction. No hardware or software changes are needed in the card reader 201 to work with payment card 100, 200. Therefore, card reader 201 can be an already preexisting conventional device.
  • [0051]
    The card reader 201 performs various magnetic data operations and checks on the card magnetic data 202. For example, a longitudinal redundancy code (LRC) check that helps assure a valid read of all the data has been made. Once the card reader 201 has determined the card magnetic data 202 is good, an approval request message is sent to a card acquirer. Such message includes the user account number, dollar amount of the transaction, and merchant identification (ID). It further contains special transaction serializing information to detect skimming and other fraud.
  • [0052]
    A validation processing center provides regional high-speed network servers that are often operated by third parties and not the issuing banks. The validation processing center checks to see if the user card 100, 200 is not stolen or lost, and other first level account validation. It may also have cached some information from an issuing bank about this user account if the account has been processed before very recently. A card acquirer approval message is sent to an issuing bank. It also includes the user account number, dollar amount of the transaction, and merchant identification (ID). The user account is checked to see if adequate funds are available, and if so, sends an authorization message. A reconciliation of the user account is made and the merchant's account is credited with a day or two. The card acquirer records the issuing-bank authorization and forwards an approval message. The merchant point-of-sale card reader displays the approval and an authorization code, and the transaction is completed.
  • [0053]
    Although particular embodiments of the present invention have been described and illustrated, such is not intended to limit the invention. Modifications and changes will no doubt become apparent to those skilled in the art, and it is intended that the invention only be limited by the scope of the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5280527 *14 Apr 199218 Jan 1994Kamahira Safe Co., Inc.Biometric token for authorizing access to a host system
US5771446 *23 Jun 199523 Jun 1998Audiovox CorporationAnti-fraud cellular security system
US6068193 *30 Jan 199630 May 2000Angewandte Digital Elektronik GmbhProcess for exchanging energy and data between a read/write terminal and a chip card with contactless connections and/or contact connections as well as a device for this purpose
US6338435 *31 Aug 199915 Jan 2002Todd CarperSmart card patch manager
US6466780 *3 Sep 199715 Oct 2002Interlok Technologies, LlcMethod and apparatus for securing digital communications
US6592044 *15 May 200015 Jul 2003Jacob Y. WongAnonymous electronic card for generating personal coupons useful in commercial and security transactions
US20020032657 *10 Jan 200114 Mar 2002Singh Kunwar C.Credit card duplication prevention system and method
US20030019942 *24 Jul 200230 Jan 2003Blossom George W.System and method for electronically readable card having power source
US20050109841 *16 Nov 200426 May 2005Ryan Dennis J.Multi-interface compact personal token apparatus and methods of use
Non-Patent Citations
Reference
1 *1977 Catalog, MicroElectronics, General Instruments Corp., Section 10C.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US778468719 Dec 200831 Aug 2010Dynamics Inc.Payment cards and devices with displays, chips, RFIDS, magnetic emulators, magnetic decoders, and other components
US77938519 May 200614 Sep 2010Dynamics Inc.Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US782822030 Oct 20079 Nov 2010Dynamics Inc.Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US793119529 Oct 200726 Apr 2011Dynamics Inc.Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US795470529 Oct 20077 Jun 2011Dynamics Inc.Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US801157719 Dec 20086 Sep 2011Dynamics Inc.Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US802077519 Dec 200820 Sep 2011Dynamics Inc.Payment cards and devices with enhanced magnetic emulators
US806619122 Feb 201029 Nov 2011Dynamics Inc.Cards and assemblies with user interfaces
US807487719 Dec 200813 Dec 2011Dynamics Inc.Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US817214822 Feb 20108 May 2012Dynamics Inc.Cards and assemblies with user interfaces
US822600123 Jun 201024 Jul 2012Fiteq, Inc.Method for broadcasting a magnetic stripe data packet from an electronic smart card
US82310636 May 201131 Jul 2012Privasys Inc.Electronic card and methods for making same
US82659987 Jul 200911 Sep 2012Chenot Richard HSystems and methods for per-transaction financial card enabled personal financial management
US828200722 Feb 20109 Oct 2012Dynamics Inc.Laminated cards with manual input interfaces
US828687620 Jul 201116 Oct 2012Dynamics Inc.Cards and devices with magnetic emulators and magnetic reader read-head detectors
US828688923 Apr 201216 Oct 2012Privasys, IncElectronic financial transaction cards and methods
US82908687 Jul 200916 Oct 2012Chenot Richard HFinancial cards and methods for per-transaction personal financial management
US830287116 Apr 20126 Nov 2012Privasys, IncMethod for conducting a transaction between a magnetic stripe reader and an electronic card
US830287220 Jul 20116 Nov 2012Dynamics Inc.Advanced dynamic credit cards
US831710311 Nov 201027 Nov 2012FiTeqMethod for broadcasting a magnetic stripe data packet from an electronic smart card
US832262326 Jul 20114 Dec 2012Dynamics Inc.Systems and methods for advanced card printing
US83481722 Mar 20118 Jan 2013Dynamics Inc.Systems and methods for detection mechanisms for magnetic cards and devices
US836033216 Apr 201229 Jan 2013PrivasysElectronic card
US838200019 Dec 200826 Feb 2013Dynamics Inc.Payment cards and devices with enhanced magnetic emulators
US839354522 Jun 201012 Mar 2013Dynamics Inc.Cards deployed with inactivated products for activation
US839354625 Oct 201012 Mar 2013Dynamics Inc.Games, prizes, and entertainment for powered cards and devices
US841389219 Dec 20089 Apr 2013Dynamics Inc.Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic encoders, and other components
US842477320 Jul 201123 Apr 2013Dynamics Inc.Payment cards and devices with enhanced magnetic emulators
US84392746 Nov 200914 May 2013Richard H ChenotFinancial card with a per-transaction user definable magnetic strip portion
US845954820 Jul 201111 Jun 2013Dynamics Inc.Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US848000216 Apr 20129 Jul 2013Mark PoidomaniConducting a transaction with an electronic card
US848543720 Jul 201116 Jul 2013Dynamics Inc.Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US848544628 Mar 201216 Jul 2013Dynamics Inc.Shielded magnetic stripe for magnetic cards and devices
US850001916 Apr 20126 Aug 2013Mark PoidomaniElectronic cards and methods for making same
US851157417 Aug 201020 Aug 2013Dynamics Inc.Advanced loyalty applications for powered cards and devices
US851581511 Sep 201220 Aug 2013Richard H. ChenotManagement system and method for personal per-card use subaccount transaction financial management
US851727619 Dec 200827 Aug 2013Dynamics Inc.Cards and devices with multifunction magnetic emulators and methods for using same
US852305920 Oct 20103 Sep 2013Dynamics Inc.Advanced payment options for powered cards and devices
US85401653 Apr 201224 Sep 2013Privasys, Inc.Laminated electronic card assembly
US856189420 Oct 201122 Oct 2013Dynamics Inc.Powered cards and devices designed, programmed, and deployed from a kiosk
US856767923 Jan 201229 Oct 2013Dynamics Inc.Cards and devices with embedded holograms
US857350325 Sep 20125 Nov 2013Dynamics Inc.Systems and methods for detection mechanisms for magnetic cards and devices
US857920323 Nov 201112 Nov 2013Dynamics Inc.Electronic magnetic recorded media emulators in magnetic card devices
US859079622 Feb 201026 Nov 2013Dynamics Inc.Cards having dynamic magnetic stripe communication devices fabricated from multiple boards
US860231216 Feb 201110 Dec 2013Dynamics Inc.Systems and methods for drive circuits for dynamic magnetic stripe communications devices
US860808320 Jul 201117 Dec 2013Dynamics Inc.Cards and devices with magnetic emulators with zoning control and advanced interiors
US86223095 Apr 20107 Jan 2014Dynamics Inc.Payment cards and devices with budgets, parental controls, and virtual accounts
US862802223 May 201214 Jan 2014Dynamics Inc.Systems and methods for sensor mechanisms for magnetic cards and devices
US866814320 Jul 201111 Mar 2014Dynamics Inc.Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US86842673 Apr 20121 Apr 2014PrivasysMethod for broadcasting a magnetic stripe data packet from an electronic smart card
US87020077 Jan 201022 Apr 2014Powered Card Solutions, LlcOn card display of data from secured chip
US872721912 Oct 201020 May 2014Dynamics Inc.Magnetic stripe track signal having multiple communications channels
US873363820 Jul 201127 May 2014Dynamics Inc.Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magentic decoders, and other components
US87465791 Jul 201310 Jun 2014Dynamics Inc.Systems and methods for detection mechanisms for magnetic cards and devices
US87574838 Feb 201324 Jun 2014Dynamics Inc.Cards deployed with inactivated products for activation
US875749910 Sep 201224 Jun 2014Dynamics Inc.Laminated cards with manual input interfaces
US881405026 Mar 201326 Aug 2014Dynamics Inc.Advanced payment options for powered cards and devices
US882715317 Jul 20129 Sep 2014Dynamics Inc.Systems and methods for waveform generation for dynamic magnetic stripe communications devices
US885602425 Oct 20117 Oct 2014Cubic CorporationDetermining companion and joint cards in transit
US887599929 Apr 20134 Nov 2014Dynamics Inc.Payment cards and devices with gift card, global integration, and magnetic stripe reader communication functionality
US888198920 Jul 201111 Nov 2014Dynamics Inc.Cards and devices with magnetic emulators with zoning control and advanced interiors
US888800913 Feb 201318 Nov 2014Dynamics Inc.Systems and methods for extended stripe mechanisms for magnetic cards and devices
US893170316 Mar 201013 Jan 2015Dynamics Inc.Payment cards and devices for displaying barcodes
US894267711 Sep 201227 Jan 2015Cubic CorporationTransit account management with mobile device messaging
US894433318 Sep 20133 Feb 2015Dynamics Inc.Cards and devices with embedded holograms
US896054516 Nov 201224 Feb 2015Dynamics Inc.Data modification for magnetic cards and devices
US897382419 Dec 200810 Mar 2015Dynamics Inc.Cards and devices with magnetic emulators with zoning control and advanced interiors
US89916998 Sep 201031 Mar 2015Cubic CorporationAssociation of contactless payment card primary account number
US9003516 *13 Sep 20127 Apr 2015Blackberry LimitedSystem and method for encrypted smart card pin entry
US900436820 Jul 201114 Apr 2015Dynamics Inc.Payment cards and devices with enhanced magnetic emulators
US901063019 Dec 200821 Apr 2015Dynamics Inc.Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US90106444 Nov 201321 Apr 2015Dynamics Inc.Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US901064719 Feb 201321 Apr 2015Dynamics Inc.Multiple sensor detector systems and detection methods of magnetic cards and devices
US903321814 May 201319 May 2015Dynamics Inc.Cards, devices, systems, methods and dynamic security codes
US9053398 *12 Aug 20119 Jun 2015Dynamics Inc.Passive detection mechanisms for magnetic cards and devices
US90533993 Apr 20129 Jun 2015PrivasysMethod for broadcasting a magnetic stripe data packet from an electronic smart card
US906419519 Feb 201323 Jun 2015Dynamics Inc.Multiple layer card circuit boards
US90642559 May 201423 Jun 2015Dynamics Inc.Cards deployed with inactivated products for activation
US929284321 Jul 201422 Mar 2016Dynamics Inc.Advanced payment options for powered cards and devices
US930666624 Sep 20105 Apr 2016Dynamics Inc.Programming protocols for powered cards and devices
US93296192 Mar 20103 May 2016Dynamics Inc.Cards with power management
US934908910 Dec 201324 May 2016Dynamics Inc.Systems and methods for sensor mechanisms for magnetic cards and devices
US936156919 Dec 20087 Jun 2016Dynamics, Inc.Cards with serial magnetic emulators
US937306925 Oct 201321 Jun 2016Dynamics Inc.Systems and methods for drive circuits for dynamic magnetic stripe communications devices
US938443820 Jul 20115 Jul 2016Dynamics, Inc.Cards with serial magnetic emulators
US954781625 Jul 201217 Jan 2017Dynamics Inc.Cards and devices with multifunction magnetic emulators and methods for using same
US961974120 Nov 201211 Apr 2017Dynamics Inc.Systems and methods for synchronization mechanisms for magnetic cards and devices
US963979619 Dec 20082 May 2017Dynamics Inc.Cards and devices with magnetic emulators with zoning control and advanced interiors
US96462404 Nov 20119 May 2017Dynamics Inc.Locking features for powered cards and devices
US964675017 Mar 20159 May 2017Dynamics Inc.Dynamic magnetic stripe communications device with stepped magnetic material for magnetic cards and devices
US96524368 Feb 201316 May 2017Dynamics Inc.Games, prizes, and entertainment for powered cards and devices
US96592464 Nov 201323 May 2017Dynamics Inc.Dynamic magnetic stripe communications device with beveled magnetic material for magnetic cards and devices
US968486119 Dec 200820 Jun 2017Dynamics Inc.Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic decoders, and other components
US969745429 Feb 20164 Jul 2017Dynamics Inc.Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic encoders, and other components
US970408820 Jul 201111 Jul 2017Dynamics Inc.Cards and devices with multifunction magnetic emulators and methods for using same
US97040898 Mar 201511 Jul 2017Dynamics Inc.Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US97107458 Feb 201318 Jul 2017Dynamics Inc.Systems and methods for automated assembly of dynamic magnetic stripe communications devices
US972120120 Dec 20141 Aug 2017Dynamics Inc.Cards and devices with embedded holograms
US972781320 Jul 20118 Aug 2017Dynamics Inc.Credit, security, debit cards and the like with buttons
US97346692 Apr 201315 Aug 2017Dynamics Inc.Cards, devices, systems, and methods for advanced payment game of skill and game of chance functionality
US979896526 Feb 201424 Oct 2017Powered Card Solutions, LlcOn card display of data from secured chip
US980529720 Jul 201131 Oct 2017Dynamics Inc.Systems and methods for programmable payment cards and devices with loyalty-based payment applications
US20090159682 *19 Dec 200825 Jun 2009Dynamics Inc.Cards and devices with multi-function magnetic emulators and methods for using same
US20110010253 *7 Jul 200913 Jan 2011Chenot Richard HSystems and methods for per-transaction financial card enabled personal financial management
US20110010254 *7 Jul 200913 Jan 2011Chenot Richard HTransaction processing systems and methods for per-transaction personal financial management
US20110166914 *9 Jul 20107 Jul 2011Cubic CorporationReloadable prepaid card distribution, reload, and registration in transit
US20110166936 *9 Jul 20107 Jul 2011Cubic CorporationPredictive techniques in transit alerting
US20110166997 *9 Jul 20107 Jul 2011Cubic CorporationProxy-based payment system
US20120312879 *5 Jan 201213 Dec 2012John RolinPCB Design and Card Assembly for an Active RFID Tag in Credit Card Form Factor
US20130019102 *13 Sep 201217 Jan 2013Research In Motion LimitedSystem and method for encrypted smart card pin entry
USD6430639 Jul 20109 Aug 2011Dynamics Inc.Interactive electronic card with display
USD6512379 Jul 201027 Dec 2011Dynamics Inc.Interactive electronic card with display
USD6512389 Jul 201027 Dec 2011Dynamics Inc.Interactive electronic card with display
USD6516449 Jul 20103 Jan 2012Dynamics Inc.Interactive electronic card with display
USD6520752 Jul 201010 Jan 2012Dynamics Inc.Multiple button interactive electronic card
USD6520769 Jul 201010 Jan 2012Dynamics Inc.Multiple button interactive electronic card with display
USD6524482 Jul 201017 Jan 2012Dynamics Inc.Multiple button interactive electronic card
USD6524492 Jul 201017 Jan 2012Dynamics Inc.Multiple button interactive electronic card
USD6524509 Jul 201017 Jan 2012Dynamics Inc.Multiple button interactive electronic card
USD6528672 Jul 201024 Jan 2012Dynamics Inc.Multiple button interactive electronic card
USD6532889 Jul 201031 Jan 2012Dynamics Inc.Multiple button interactive electronic card
USD6650229 Jul 20107 Aug 2012Dynamics Inc.Multiple button interactive electronic card with light source
USD6654479 Jul 201014 Aug 2012Dynamics Inc.Multiple button interactive electronic card with light source and display
USD67032912 May 20116 Nov 2012Dynamics Inc.Interactive display card
USD67033012 May 20116 Nov 2012Dynamics Inc.Interactive card
USD67033112 May 20116 Nov 2012Dynamics Inc.Interactive display card
USD67033212 May 20116 Nov 2012Dynamics Inc.Interactive card
USD6707592 Jul 201013 Nov 2012Dynamics Inc.Multiple button interactive electronic card with light sources
USD6723892 Jul 201011 Dec 2012Dynamics Inc.Multiple button interactive electronic card with light sources
USD67360627 Aug 20121 Jan 2013Dynamics Inc.Interactive electronic card with display and buttons
USD6740132 Jul 20108 Jan 2013Dynamics Inc.Multiple button interactive electronic card with light sources
USD67525627 Aug 201229 Jan 2013Dynamics Inc.Interactive electronic card with display and button
USD67648727 Aug 201219 Feb 2013Dynamics Inc.Interactive electronic card with display and buttons
USD67690412 May 201126 Feb 2013Dynamics Inc.Interactive display card
USD6870942 Jul 201030 Jul 2013Dynamics Inc.Multiple button interactive electronic card with light sources
USD68709527 Aug 201230 Jul 2013Dynamics Inc.Interactive electronic card with buttons
USD68748727 Aug 20126 Aug 2013Dynamics Inc.Interactive electronic card with display and button
USD68748827 Aug 20126 Aug 2013Dynamics Inc.Interactive electronic card with buttons
USD68748927 Aug 20126 Aug 2013Dynamics Inc.Interactive electronic card with buttons
USD68749027 Aug 20126 Aug 2013Dynamics Inc.Interactive electronic card with display and button
USD68788727 Aug 201213 Aug 2013Dynamics Inc.Interactive electronic card with buttons
USD68874427 Aug 201227 Aug 2013Dynamics Inc.Interactive electronic card with display and button
USD69205327 Aug 201222 Oct 2013Dynamics Inc.Interactive electronic card with display and button
USD69432227 Aug 201226 Nov 2013Dynamics Inc.Interactive electronic card with display buttons
USD69563627 Aug 201217 Dec 2013Dynamics Inc.Interactive electronic card with display and buttons
USD72986927 Aug 201219 May 2015Dynamics Inc.Interactive electronic card with display and button
USD72987027 Aug 201219 May 2015Dynamics Inc.Interactive electronic card with display and button
USD72987127 Aug 201219 May 2015Dynamics Inc.Interactive electronic card with display and buttons
USD73043827 Aug 201226 May 2015Dynamics Inc.Interactive electronic card with display and button
USD73043927 Aug 201226 May 2015Dynamics Inc.Interactive electronic card with buttons
USD73737310 Sep 201325 Aug 2015Dynamics Inc.Interactive electronic card with contact connector
USD7501664 Mar 201323 Feb 2016Dynamics Inc.Interactive electronic card with display and buttons
USD7501674 Mar 201323 Feb 2016Dynamics Inc.Interactive electronic card with buttons
USD7501684 Mar 201323 Feb 2016Dynamics Inc.Interactive electronic card with display and button
USD7516394 Mar 201315 Mar 2016Dynamics Inc.Interactive electronic card with display and button
USD7516404 Mar 201315 Mar 2016Dynamics Inc.Interactive electronic card with display and button
USD7645844 Mar 201323 Aug 2016Dynamics Inc.Interactive electronic card with buttons
USD7651734 Mar 201330 Aug 2016Dynamics Inc.Interactive electronic card with display and button
USD7651744 Mar 201330 Aug 2016Dynamics Inc.Interactive electronic card with button
USD76702410 Sep 201320 Sep 2016Dynamics Inc.Interactive electronic card with contact connector
USD7772524 Mar 201324 Jan 2017Dynamics Inc.Interactive electronic card with buttons
USD7925119 Jul 201018 Jul 2017Dynamics Inc.Display with font
USD7925129 Jul 201018 Jul 2017Dynamics Inc.Display with font
USD7925139 Jul 201018 Jul 2017Dynamics Inc.Display with font
CN103297392A *27 Feb 201211 Sep 2013深圳市嘉乐祥珠宝饰品有限公司指纹身份认证系统及认证方法
WO2015085137A1 *5 Dec 201411 Jun 2015Mastercard International IncorporatedMethod and system for split-hashed payment account processing
WO2017024011A1 *3 Aug 20169 Feb 2017Capital One Services, LlcSystems and methods for item-based transaction authentication
Classifications
U.S. Classification235/493
International ClassificationG06F, G06K19/06
Cooperative ClassificationG07F7/1008, G06Q20/354, G07F7/082, G06Q20/343, G06K19/07, G06K19/0723, G06Q20/341, G06K19/06187, G06K19/06196
European ClassificationG06Q20/341, G07F7/08A2B, G06Q20/354, G06Q20/343, G06K19/06M2, G06K19/06M, G06K19/07, G06K19/07T, G07F7/10D
Legal Events
DateCodeEventDescription
14 Dec 2011ASAssignment
Owner name: QSECURE, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHATELAIN, DANIEL, MR.;REEL/FRAME:027381/0754
Effective date: 20111212
Owner name: QSECURE, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROWN, KERRY D, MR.;REEL/FRAME:027386/0037
Effective date: 20111212
4 Apr 2014ASAssignment
Owner name: COIN, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QSECURE, INC.;REEL/FRAME:032609/0559
Effective date: 20140326
30 Jan 2017ASAssignment
Owner name: FITBIT, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COIN, INC.;REEL/FRAME:041126/0364
Effective date: 20170130