US20090234214A1 - Multi-reservoir device and method for transdermal sensing - Google Patents

Multi-reservoir device and method for transdermal sensing Download PDF

Info

Publication number
US20090234214A1
US20090234214A1 US12/471,973 US47197309A US2009234214A1 US 20090234214 A1 US20090234214 A1 US 20090234214A1 US 47197309 A US47197309 A US 47197309A US 2009234214 A1 US2009234214 A1 US 2009234214A1
Authority
US
United States
Prior art keywords
reservoir
drug
skin
reservoirs
transporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/471,973
Inventor
John T. Santini, Jr.
Mark A. Staples
Stephen J. Herman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dare MB inc
Original Assignee
Microchips Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microchips Inc filed Critical Microchips Inc
Priority to US12/471,973 priority Critical patent/US20090234214A1/en
Publication of US20090234214A1 publication Critical patent/US20090234214A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0097Micromachined devices; Microelectromechanical systems [MEMS]; Devices obtained by lithographic treatment of silicon; Devices comprising chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7084Transdermal patches having a drug layer or reservoir, and one or more separate drug-free skin-adhesive layers, e.g. between drug reservoir and skin, or surrounding the drug reservoir; Liquid-filled reservoir patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7092Transdermal patches having multiple drug layers or reservoirs, e.g. for obtaining a specific release pattern, or for combining different drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00544Plasters form or structure
    • A61F2013/00642Plasters form or structure soluble, e.g. in water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles

Definitions

  • This invention is generally in the field of devices and methods for the transdermal drug delivery and analyte sensing.
  • Transdermal drug delivery systems generally rely on diffusion of drug across the skin.
  • the transdermal drug delivery system is in the form of a multi-layered patch that includes a backing or cover layer, a drug matrix/reservoir, a diffusion control membrane, and an adhesive layer for attaching the system to the surface of the skin.
  • drugs delivered with such systems include scopolamine (Trasderm-ScopTM), nicotine, nitroglycerin (Nitro-DurTM), estradiol (EstradermTM), and testosterone.
  • transdermal patches generally are unsuitable for delivery of macromolecules.
  • transdermal and other drug delivery systems it is generally desirable to store and protect the drug formulation until the time it is to be delivered to a patient, because exposure to environmental components (e.g., oxygen, humidity) may damage or prematurely degrade the pharmaceutical agent.
  • environmental components e.g., oxygen, humidity
  • the entire drug formulation is contained in a single reservoir, such that is it not possible to protect or isolate individual doses. It would be desirable to be able to do so, particularly for relatively fragile pharmaceutical agent molecules.
  • the device includes a substrate, a plurality of discrete reservoirs in the substrate, one or more pharmaceutical agents stored in the reservoirs, discrete reservoir caps that prevent the pharmaceutical agent from passing out from the reservoirs, control means for actuating release of the pharmaceutical agent from one or more of the reservoirs by disintegrating or permeabilizing the reservoir caps, means for securing the device to the skin of the patient, and means for transporting to the skin the one or more pharmaceutical agents following release from the one or more of the reservoir.
  • the device includes a housing which contains the substrate, reservoirs, control means, and a power source.
  • the device further includes a removably attachable electronics portion which comprises the power source and at least a portion of the control means.
  • the reservoir cap is formed of an electrically conductive material and the control means comprises an electrical input lead connected to said reservoir cap, an electrical output lead connected to said reservoir cap, wherein the reservoir cap is disintegrated by application of an electrical current through the reservoir cap via the input lead and output lead.
  • the device may further include a source of electric power, such as a battery or capacitor, for applying the electrical current.
  • the reservoirs are microreservoirs.
  • the reservoir cap comprises a metal film.
  • the means for securing the device comprises a pressure sensitive adhesive. In one embodiment, the means for securing comprises an adhesive layer that is permeable to the pharmaceutical agent or analyte.
  • the means for transporting includes a transport medium disposed between the reservoir caps and the skin.
  • the transport medium can include a permeable body through which the pharmaceutical agent released from the reservoirs can diffuse.
  • the transport medium comprises a reservoir containing a liquid, gel, or semi-solid permeation material.
  • the means for transporting comprises a plurality of microneedles.
  • the means for transporting comprises one or more chemical penetration enhancers.
  • the means for transporting comprises means for effecting iontophoresis, electroosmosis, or electroporation.
  • the means for transporting comprises an ultrasound generator.
  • the means for transporting comprises a heating element.
  • the means for transporting comprises a flexible or rigid member having media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution.
  • the one or more pharmaceutical agents include a drug selected from among androgen, estrogen, non-steroidal anti-inflammatory agents, anti-hypertensive agents, analgesic agents, anti-depressants, antibiotics, anti-cancer agents, local anesthetics, antiemetics, anti-infectants, contraceptives, anti-diabetic agents, steroids, anti-allergy agents, anti-migraine agents, agents for smoking cessation, anti-obesity agents, nicotine, testosterone, estradiol, nitroglycerin, clonidine, dexamethasone, wintergreen oil, tetracaine, lidocaine, fentanyl, sufentanil, progestrone, insulin, Vitamin A, Vitamin C, Vitamin E, prilocaine, bupivacaine, sumatriptan, dihydroergotamine, and combinations thereof.
  • a drug selected from among androgen, estrogen, non-steroidal anti-inflammatory agents, anti-hypertensive agents, anal
  • a medical device for transdermal administration of one or more pharmaceutical agents to a patient in need thereof, which includes a substrate, a plurality of discrete reservoirs in the substrate, one or more pharmaceutical agents stored in the reservoirs, discrete reservoir caps which prevent the one or more pharmaceutical agents from passing out from the reservoirs, control means for actuating release of the one or more pharmaceutical agents from one or more of the reservoirs by disintegrating or permeabilizing the reservoir caps, an adhesive or strap material for securing the device to the skin of the patient, and a body defining a transport medium reservoir disposed between the reservoir caps and the skin of the patient, the body and reservoir facilitating transport of the pharmaceutical agent to the skin following its release from one or more of the reservoir.
  • the transport medium reservoir contains a liquid, gel, or semi-solid permeation material.
  • the transport medium reservoir comprises a single pool of a biocompatible transport fluid into which the pharmaceutical agent is diluted prior to delivery to the skin.
  • the transport medium reservoir comprises individual channels for delivery of the pharmaceutical agent with no or minimal dilution prior to delivery to the skin.
  • a device for sensing an analyte in a human or other animal.
  • the device includes a substrate; a plurality of discrete reservoirs in the substrate, the reservoirs having at least one opening; one or more sensors or diagnostic agents stored in the reservoirs; discrete reservoir caps which cover said at least one opening; control means for disintegrating or permeabilizing the reservoir caps; means for securing the device to the skin of the patient; and means for transporting an analyte from the skin to the one or more sensors or for transporting the one or more diagnostic agents to the skin following release of said diagnostic agents from the one or more of the reservoir.
  • FIG. 1 is a cross-sectional view of one embodiment of the medical device for transdermal drug delivery or analyte sensing described herein.
  • FIGS. 2A and 2B are a perspective view ( FIG. 2A ) and a cross-sectional view ( FIG. 2B ) of another embodiment of the medical device for transdermal drug delivery or analyte sensing described herein.
  • FIG. 3 is a perspective, cross-sectional view of one embodiment of the reservoir and body portion of the drug delivery or sensing device described herein.
  • FIG. 4 is a schematic of the operation of one embodiment of the control means for the medical device for transdermal drug delivery or analyte sensing described herein.
  • FIG. 5 is a cross-sectional view of one portion of one embodiment of the device shown in FIG. 1 , showing one reservoir pre-actuation and one reservoir post-actuation.
  • FIG. 6 is a cross-sectional view of one embodiment of the medical device for transdermal drug delivery or analyte sensing that includes microneedles.
  • Medical devices have been developed for the transdermal administration of one or more pharmaceutical agents to patient in need thereof, or for analyte sensing/diagnostics.
  • the devices isolate each dose or portions of a dose of the pharmaceutical agent within multiple individual (discrete) reservoirs, which typically are arrayed in/across a body portion of the device.
  • the isolated doses or partial doses are protected from environmental components that may damage or prematurely degrade the pharmaceutical agent or other reservoir contents, until the desired time for release or exposure of the pharmaceutical agent or other reservoir contents.
  • the Medical Device The Medical Device
  • the device comprises a substrate; a plurality of discrete reservoirs in the substrate; one or more pharmaceutical agents stored in the reservoirs; discrete reservoir caps that prevent the one or more pharmaceutical agents from passing out from the reservoirs; control means for actuating release of the pharmaceutical agents from one or more of the reservoirs by disintegrating or permeabilizing the reservoir caps; means for securing the device to the skin of the patient; and means for transporting the pharmaceutical agent to the skin following release from one or more of the reservoirs.
  • the device is used to deliver a diagnostic agent into the skin.
  • the agent could be a small molecule metabolite reporter, used in glucose detecting.
  • the device is not used to deliver something but to contain a plurality of sensors for selective exposure.
  • the device could be adapted to sense an analyte withdrawn, either by passive or active mechanisms, from or through the skin.
  • the device comprises a substrate, i.e., a body portion, that includes the plurality of discrete reservoirs, e.g., in the form of a two-dimensional array of selectively spaced reservoirs—located in discrete positions—across at least one surface of the body portion.
  • a reservoir is a well, a recess, a hole or a cavity, located in a solid structure and suitable for containing a quantity of another material and/or a secondary device.
  • the body portion comprises silicon, a metal, a ceramic, a polymer, or a combination thereof.
  • suitable substrate materials include metals, ceramics, semiconductors, glasses, and degradable and non-degradable polymers.
  • each reservoir is formed of hermetic materials (e.g., metals, silicon, glasses, ceramics) and is hermetically sealed by at least one reservoir cap. In one case, if the reservoir has a second opening, distal the reservoir cap-sealed opening, then a hermetic seal can be formed at that distal opening as well, in order for the reservoir contents to be hermetically isolated within the reservoir.
  • each can be covered by a reservoir cap which can be opened for release or exposure of the reservoir contents.
  • a reservoir can have two or more separate openings on the same side of the reservoir, which can be covered by one or two or more discrete reservoir caps.
  • the reservoirs can be in essentially any shape, and typically are shaped to facilitate reservoir manufacture and loading of contents, as well as packing of reservoirs into the substrate.
  • the substrate can have a variety of shapes, or shaped surfaces. It can, for example, have a release side (i.e., an area having reservoir caps) that is planar or curved.
  • the substrate may, for example, be in a shape selected from circular, square, or ovoid disks.
  • the release side can be shaped to conform to a curved tissue surface.
  • the device body can be flexible or rigid. In one embodiment, the device flexibly conforms to a tissue surface as taught in U.S. Patent Application Publication No. 2002/0099359 to Santini et al., which is incorporated herein by reference.
  • the substrate may consist of only one material, or may be a composite or multi-laminate structure, that is, composed of several layers of the same or different substrate materials bonded or fused together.
  • the substrate comprises layers of silicon and Pyrex bonded together.
  • the substrate comprises multiple silicon wafers bonded together.
  • the substrate comprises a low-temperature co-fired ceramic (LTCC).
  • LTCC low-temperature co-fired ceramic
  • the body portion is the substrate of a microchip device. In one example, this substrate is formed of silicon.
  • the substrate is formed from one or more polymers, copolymers, or blends thereof.
  • the reservoirs need not be defined/enclosed by hermetic materials, particularly where the time the reservoir contents are isolated is relatively short, for example, when the transdermal device is used only for a period of a few days (e.g., less than 2 days, less than 3 days).
  • polymeric substrates may be preferred, particularly because they can be less costly to manufacture than some silicon or ceramic substrate devices.
  • the polymeric substrate can be easily made to conform to a particular skin surface area of the human or animal body.
  • the reservoirs are microreservoirs.
  • microreservoir refers to a discrete hole or concave-shaped space in a solid structure suitable for releasably containing a material.
  • the structure is of a size and shape suitable for filling with a microquantity of the material, which comprises a drug.
  • the microreservoir has a volume equal to or less than 500 ⁇ L (e.g., less than 250 ⁇ L, less than 100 ⁇ L, less than 50 ⁇ L, less than 25 ⁇ L, less than 10 ⁇ L, etc.) and greater than about 1 nL (e.g., greater than 5 nL, greater than 10 nL, greater than about 25 nL, greater than about 50 nL, greater than about 1 ⁇ L, etc.).
  • the shape and dimensions of the microreservoir can be selected to maximize or minimize contact area between the drug material and the surrounding surface of the microreservoir.
  • the term “microquantity” refers to small volumes between 1 nL and 500 ⁇ L. In one embodiment, the microquantity is between 1 nL and 1 ⁇ L. In another embodiment, the microquantity is between 10 nL and 500 nL.
  • Microreservoirs can be fabricated in a structural body portion using fabrication techniques known in the art.
  • Representative fabrication techniques include MEMS fabrication processes or other micromachining processes, various drilling techniques (e.g., laser, mechanical, and ultrasonic drilling, electrical discharge machining (EDM)), and build-up techniques, such as LTCC (low temperature co-fired ceramics), punch- or embossing-type processes, thin film or tape processes.
  • the surface of the microreservoir optionally can be treated or coated to alter one or more properties of the surface. Examples of such properties include hydrophilicity/hydrophobicity, wetting properties (surface energies, contact angles, etc.), surface roughness, electrical charge, release characteristics, biocompatibility, and the like.
  • the coating material also can be selected to affect biostability or tissue interactions with the device or with the reservoir contents.
  • Other fabrication processes particularly ones useful with polymeric substrates, can be used, including injection molding, thermal compression molding, extrusion, embossing, solvent casting, and other polymer forming techniques known in the art. See also U.S. Patent Application Publication No. 2002/0107470 A1 to Richards, et al., which is incorporated herein by reference.
  • the reservoirs are larger than microreservoirs and can contain a quantity of drug formulation larger than a microquantity.
  • the volume of each reservoir can be greater than 10 ⁇ L (e.g., at least 20 ⁇ L, at least 50 ⁇ L, at least 100 ⁇ L, at least 250 ⁇ L, etc.) and less than 10 mL (e.g., less than 5 mL, less than 1000 ⁇ L, less than 500 ⁇ L, less than 300 ⁇ L, etc.).
  • macro-reservoirs and macro-quantities respectively.
  • the term “reservoir” is intended to include both.
  • Total substrate thickness and reservoir volume can be increased by bonding or attaching wafers or layers of substrate materials together.
  • the device thickness may affect the volume of each reservoir and/or may affect the maximum number of reservoirs that can be incorporated onto a substrate.
  • the size and number of substrates and reservoirs can be selected to accommodate the quantity and volume of reservoir contents needed for a particular application, manufacturing limitations, and/or total device size limitations suitable for reasonably comfortable attachment to a patient's skin.
  • Different device thicknesses may be chosen, depending for example of the type of application. For example, in sensing/diagnostic applications, the thickness may impact analyte transport and thus sensor response. Accordingly, it may be useful to provide a relatively thin substrate for certain sensing devices. As another example, in drug delivery applications, thicker substrates may be desired in order to increase reservoir depth and volume to contain more drug formulation, enabling increased dosage loading.
  • the substrate has at least two, or preferably many, discrete reservoirs. In various embodiments, tens, hundreds, or thousands of reservoirs are arrayed across the substrate.
  • the device could include between 50 and 250 reservoirs, where each reservoir contains a single dose of a drug for release, which for example could be released hourly or daily over a period of several days.
  • the present multi-reservoir devices can readily store and delivery different drug formulations from a single device. For example, different reservoirs could contain different drugs, or different reservoirs could contain different dosages or concentrations of the same drug.
  • the device comprises a microchip chemical delivery device, as taught in U.S. Pat. No. 5,7979,898, which is incorporated herein by reference.
  • the device could include polymeric chips or devices, as well other devices containing arrays of reservoirs, composed of non-silicon based materials that might not be referred to as “microchips.”
  • any pharmaceutical agent i.e., therapeutic or prophylactic agent (e.g., an active pharmaceutical ingredient or API), suitable for transdermal administration can be used with the device described herein.
  • the present devices would be particularly useful for the storage and delivery of drugs that currently are not suitable for use with conventional transdermal systems due to instability issues associated with the drug.
  • a drug or drug formulation that is easily degradable could be protected until needed using the multiple reservoirs, each of which can be hermetically sealed until ruptured when needed to release the drug contained therein. In this way, only the quantity of the drug needed at a particular time is exposed; the remaining drug remains stored and protected.
  • the device can deliver a single pharmaceutical agent or a combination of pharmaceutical agents, which can be stored together in the same reservoir or stored in separate reservoirs.
  • the device and formulation may be tailored to deliver the active ingredient locally or systemically.
  • the pharmaceutical agent (also referred to herein as a drug) can be provided in the reservoirs in a solid, liquid, semi-solid, solution, or suspension, or emulsion formulation. It can be in a pure form or combined with one or more excipient materials.
  • pure form of the drug includes the API, residual moisture, and any chemical species combined with the API in a specific molar ratio that is isolated with the API during preparation of the API (for instance, a counter-ion) and which has not been added as an excipient.
  • the drug is formulated in a matrix form, comprising a matrix material in which the drug is contained or dispersed.
  • the matrix material further controls release of the drug by controlling dissolution and/or diffusion of the drug from the reservoir, and may enhance stability of the drug molecule while stored in the reservoir.
  • the drug is formulated with an excipient material that is useful for accelerating release, e.g., a water-swellable material that can aid in pushing the drug out of the reservoir and through any tissue capsule over the reservoir.
  • excipient material that is useful for accelerating release
  • examples include hydrogels and osmotic pressure generating agents known in the art.
  • the drug is formulated with a penetration enhancer(s).
  • the penetration enhancer(s) further controls release of the drug by facilitating transport of the drug across the skin into the local administration site or systemic delivery.
  • the drug can comprise small molecules, large (i.e., macro-) molecules, or a combination thereof.
  • the large molecule drug is a protein or a peptide.
  • the drug can be selected from amino acids, vaccines, antiviral agents, gene delivery vectors, interleukin inhibitors, immunomodulators, neurotropic factors, neuroprotective agents, antineoplastic agents, chemotherapeutic agents, polysaccharides, anti-coagulants (e.g., LMWH, pentasaccharides), antibiotics (e.g., immunosuppressants), analgesic agents, and vitamins.
  • the drug is a protein.
  • suitable types of proteins include glycoproteins, enzymes (e.g., proteolytic enzymes), hormones or other analogs (e.g., LHRH, steroids, corticosteroids, growth factors), antibodies (e.g., anti-VEGF antibodies, tumor necrosis factor inhibitors), cytokines (e.g., ⁇ -, ⁇ -, or ⁇ -interferons), interleukins (e.g., IL-2, IL-10), and diabetes/obesity-related therapeutics (e.g., insulin, exenatide, PYY, GLP-1 and its analogs).
  • enzymes e.g., proteolytic enzymes
  • hormones or other analogs e.g., LHRH, steroids, corticosteroids, growth factors
  • antibodies e.g., anti-VEGF antibodies, tumor necrosis factor inhibitors
  • cytokines e.g., ⁇ -, ⁇ -, or ⁇ -interferons
  • the drug is a gonadotropin-releasing (LHRH) hormone analog, such as leuprolide.
  • the drug comprises parathyroid hormone, such as a human parathyroid hormone or its analogs, e.g., hPTH(1-84) or hPTH(1-34).
  • the drug is selected from nucleosides, nucleotides, and analogs and conjugates thereof.
  • the drug comprises a peptide with natriuretic activity, such as atrial natriuretic peptide (ANP), B-type (or brain) natriuretic peptide (BNP), C-type natriuretic peptide (CNP), or dendroaspis natriuretic peptide (DNP).
  • the drug is selected from diuretics, vasodilators, inotropic agents, anti-arrhythmic agents, Ca + channel blocking agents, anti-adrenergics/sympatholytics, and renin angiotensin system antagonists.
  • the drug is a VEGF inhibitor, VEGF antibody, VEGF antibody fragment, or another anti-angiogenic agent.
  • VEGF inhibitor VEGF antibody
  • VEGF antibody fragment VEGF antibody fragment
  • another anti-angiogenic agent examples include an aptamer, such as MACUGENTM (Pfizer/Eyetech) (pegaptanib sodium)) or LUCENTISTM (Genetech/Novartis) (rhuFab VEGF, or ranibizumab), which could be used in the prevention of choroidal neovascularization.
  • the drug is a prostaglandin, a prostacyclin, or another drug effective in the treatment of peripheral vascular disease.
  • the device delivers one or more drugs known in the art for use in pain management.
  • drugs include lidocaine and fentanyl.
  • the drug is an anti-inflammatory, such as dexamethasone.
  • the drug is an anti-emetic, such as a 5HT-5 antagonist.
  • the drug is a NSAID, such as ketaprofen.
  • the drug is an anti-anxiety drug, such as benzodiazepines.
  • the drug is a dipeptidyl peptidase 4 inhibitor (DPP-4 inhibitor).
  • the drug is an anticoagulant, such as warfarin, heparin, LMWH, oligo-asaccharides such as idraparinux and fondaparinux, and ximelagatran.
  • the drug is an angiogenic agent, such as VEGF.
  • a device includes both angiogenic agents and anti-inflammatory agents.
  • the drug is a bone morphogenic protein, a growth factor, or a growth or differentiation factor.
  • the reservoirs in one device can include a single drug or a combination of two or more drugs, and can further include one or more pharmaceutically acceptable carriers. Two or more can be stored together and released from the same one or more reservoirs or they can each be stored in and released from different reservoirs.
  • oligonucleotide drugs may be delivered with the aid of iontophoresis or electroporation.
  • Drugs that may be delivered using the devices and methods described herein include those listed in Table 1 below.
  • the drug can be dispersed in a matrix material, to further control the rate of release of drug.
  • This matrix material can be a “release system,” as described in U.S. Pat. No. 5,797,898, the degradation, dissolution, or diffusion properties of which can provide a method for controlling the release rate of the chemical molecules.
  • the release system may provide a temporally modulated release profile (e.g., pulsatile release) when time variation in plasma levels is desired or a more continuous or consistent release profile when a constant plasma level as needed to enhance a therapeutic effect, for example.
  • Pulsatile release can be achieved from an individual reservoir, from a plurality of reservoirs, or a combination thereof. For example, where each reservoir provides only a single pulse, multiple pulses (i.e., pulsatile release) are achieved by temporally staggering the single pulse release from each of several reservoirs. Alternatively, multiple pulses can be achieved from a single reservoir by incorporating several layers of a release system and other materials into a single reservoir.
  • Continuous release can be achieved by incorporating a release system that degrades, dissolves, or allows diffusion of molecules through it over an extended period.
  • continuous release can be approximated by releasing several pulses of molecules in rapid succession (“digital” release).
  • the active release systems described herein can be used alone or on combination with passive release systems, for example, as described in U.S. Pat. No. 5,797,898.
  • the reservoir cap can be removed by active means to expose a passive release system, or a given substrate can include both passive and active release reservoirs.
  • the drug formulation within a reservoir comprises layers of drug and non-drug material. After the active release mechanism has exposed the reservoir contents, the multiple layers provide multiple pulses of drug release due to intervening layers of non-drug. In another variation, the same layering system could be used in device operating by passive release.
  • the pharmaceutical agent can be formulated with one or more pharmaceutically acceptable excipients.
  • Representative examples include bulking agents, wetting agents, stabilizers, crystal growth inhibitors, antioxidants, antimicrobials, preservatives, buffering agents (e.g., acids, bases), surfactants, desiccants, dispersants, osmotic agents, binders (e.g., starch, gelatin), disintegrants (e.g., celluloses), glidants (e.g., talc), diluents (e.g., lactose, dicalcium phosphate), color agents, lubricants (e.g., magnesium stearate, hydrogenated vegetable oils) and combinations thereof.
  • buffering agents e.g., acids, bases
  • surfactants desiccants
  • dispersants e.g., osmotic agents
  • binders e.g., starch, gelatin
  • disintegrants e.g., celluloses
  • the excipient is a wax or a polymer.
  • the polymer comprises polyethylene glycol (PEG), e.g., typically one having a molecular weight between about 100 and 10,000 Daltons (e.g., PEG 200, PEG 1450).
  • the polymer comprises poly lactic acid (PLA), poly glycolic acid (PGA), copolymers thereof (PLGA), or ethyl-vinyl acetate (EVA) polymers.
  • the excipient material comprises a pharmaceutically acceptable oil (e.g., sesame oil).
  • the excipient material includes a saturated drug solution. That is, the excipient material comprises a liquid solution formed of the drug dissolved in a solvent for the drug. The solution is saturated so that the solvent does not dissolve the solid matrix form of the drug. The saturated solution acts as a non-solvent excipient material, substantially filling pores and voids in the solid matrix.
  • the excipient material comprises a pharmaceutically-acceptable perhalohydrocarbon or unsubstituted saturated hydrocarbon.
  • a pharmaceutically-acceptable perhalohydrocarbon or unsubstituted saturated hydrocarbon See, for example, U.S. Pat. No. 6,264,990 to Knepp et al., which describes anhydrous, aprotic, hydrophobic, non-polar liquids, such as biocompatible perhalohydrocarbons or unsubstituted saturated hydrocarbons, such as perfluorodecalin, perflurobutylamine, perfluorotripropylamine, perfluoro-N-methyldecahydroquindine, perfluoro-octohydro quinolidine, perfluoro-N-cyclohexylpyrilidine, perfluoro-N,N-dimethylcyclohexyl methylamine, perfluoro-dimethyl-adamantane, perfluorotri-methylbicyclo (3.3.1) non
  • the pharmaceutically acceptable excipient material comprises dimethyl sulfoxide (DMSO), glycerol, or ethanol.
  • the excipient material can be one that would not ordinarily be considered as ingredient in a dosage form.
  • the implantable drug delivery device comprises one or more discrete reservoirs of small volume, e.g., microreservoirs
  • organic solvents that are not possible to use in large amounts, for example due to toxicity concerns.
  • the solvents listed in Table 2 can be used as the excipient material if the device reservoir volumes are small enough to ensure that the daily exposure to the excipient cannot exceed predetermined limits, for example described in ICH Guideline Q 3 C: Impurities: Residual Solvents.
  • the device includes structural components for controlling the time at which release of the pharmaceutical agent from the reservoir is initiated. These components include reservoir caps and reservoir control means.
  • the control means includes control circuitry, which includes the hardware, electrical components, and software needed to control and deliver electric energy from a power source to selected reservoir(s) for actuation, e.g., reservoir opening.
  • the term “reservoir cap” includes a membrane or other structure suitable for separating the contents of a reservoir from the environment outside of the reservoir. It generally is self-supporting across the reservoir opening, although caps having additional structures to provide mechanical support to the cap can be fabricated. See, e.g., U.S. Patent Application Publication Nos. 2002/0183721 A1, which is incorporated herein by reference. Selectively removing the reservoir cap or making it permeable will then “expose” the contents of the reservoir to the environment (or selected components thereof) surrounding the reservoir. In preferred embodiments, the reservoir cap is selectively disintegrated.
  • the term “disintegrate” includes degrading, dissolving, rupturing, fracturing or some other form of mechanical failure, as well as a loss of structural integrity due to a chemical reaction (e.g., electrochemical degradation) or phase change (e.g., melting) in response to a change in temperature, unless a specific one of these mechanisms is indicated.
  • the “disintegration” is by an electrochemical activation technique, such as described in U.S. Pat. No. 5,797,898.
  • the “disintegration” is by an electro-thermal ablation technique, as described in U.S. Patent Application Publication No. 2004/0121486 A1 to Uhland et al., which is incorporated herein by reference in its entirety.
  • the reservoir cap is a thin metal film and is impermeable to the surrounding environment (e.g., body fluids or another chloride containing solution).
  • a particular electric potential is applied to the metal reservoir cap, which is then oxidized and disintegrated by an electrochemical reaction, to release the drug from the reservoir.
  • suitable reservoir cap materials include gold, silver, copper, and zinc.
  • the reservoir cap is heated (e.g., using resistive heating) to cause the reservoir cap to melt and be displaced from the reservoir to open it. See U.S. Pat. No. 6,527,762, which is incorporated herein by reference.
  • This latter variation could be used, for example, with reservoir caps formed of a metal or a non-metal material, e.g., a polymer.
  • the reservoir cap is formed of a polymer or other material that undergoes a temperature-dependent change in permeability such that upon heating to a pre-selected temperature, the reservoir is rendered permeable to the drug and bodily fluids to permit the drug to be released from the reservoir through the reservoir cap.
  • the reservoir cap is formed of a conductive material, such as a metal film, through which an electrical current can be passed to electrothermally ablate it, as described in U.S. Patent Application Publication No. 2004/0121486 A1 to Uhland et al.
  • suitable reservoir cap materials include gold, copper, aluminum, silver, platinum, titanium, palladium, various alloys (e.g., Au—Si, Au—Ge, Pt—Ir, Ni—Ti, Pt—Si, SS 304, SS 316), and silicon doped with an impurity to modulate the conductivity/resistivity because one can use the impurity to increase or decrease the conductivity or resistivity of the silicon, as known in the art.
  • the reservoir cap is in the form of a thin metal film.
  • the reservoir cap is part of a multiple layer structure, for example, the reservoir cap can be made of multiple metal layers, such as a multi-layer/laminate structure of platinum/titanium/platinum.
  • the reservoir cap is operably (i.e., electrically) connected to an electrical input lead and to an electrical output lead, to facilitate flow of an electrical current through the reservoir cap.
  • an effective amount of an electrical current is applied through the leads and reservoir cap, the temperature of the reservoir cap is locally increased due to resistive heating, and the heat generated within the reservoir cap increases the temperature sufficiently to cause the reservoir cap to be electrothermally ablated and ruptured.
  • the reservoir cap is formed of an electrically conductive material and the control circuitry comprises an electrical input lead connected to said reservoir cap, an electrical output lead connected to said reservoir cap, wherein the reservoir cap is ruptured by application of an electrical current through the reservoir cap via the input lead and output lead.
  • the control circuitry further comprises a source of electric power for applying the electrical current.
  • the reservoir opening is closed by a reservoir cap comprising a dielectric or ceramic film layer and the actuation means comprises (i) a electrically conductive (e.g., metal) layer on top of the dielectric or ceramic film layer, and (ii) power source and control circuitry for delivering an electric current through the electrically conductive layer in an amount effective to rupture the dielectric or ceramic film layer, wherein the rupture is due to thermal expansion-induces stress on the dielectric or ceramic film layer.
  • the electrically conductive layer and the actuation means can be designed thermally ablate the electrically conductive layer or the electrically conductive layer could remain, in whole or in part, after rupturing the dielectric or ceramic film layer, depending on the particular design for opening/actuation the release of drug from the reservoir.
  • the reservoir cap is formed from a material or mixture of materials that degrade, dissolve, or disintegrate over time, or that do not degrade, dissolve, or disintegrate, but are permeable or become permeable to molecules or energy.
  • Representative examples of reservoir cap materials include polymeric materials, and non-polymeric materials such as porous forms of metals, semiconductors, and ceramics.
  • Passive semiconductor reservoir cap materials include nanoporous or microporous silicon membranes. Characteristics can be different for each reservoir cap to provide different times of release of drug formulation. For example, any combination of polymer, degree of crosslinking, or polymer thickness can be modified to obtain a specific release time or rate.
  • a combination of passive and/or active release reservoir cap can be present in a single delivery device.
  • the reservoir cap can be removed by electrothermal ablation to expose a passive release system that only begins its passive release after the reservoir cap has been actively removed.
  • a given device can include both passive and active release reservoirs.
  • release can be controlled from the substrate reservoirs using passive control means, such as a biodegradable matrix material or layering of drug material with non-drug material, without the use of reservoir caps.
  • passive control means such as a biodegradable matrix material or layering of drug material with non-drug material
  • reservoir caps are provided prior to device use, i.e., prior to application of (adhering) the device to the skin, and then immediately before application to the skin all of these reservoir caps are (manually) removed. For instance, these caps could be part of a protective layer that is removed just prior to adhering the patch to the skin.
  • each reservoir includes a single, discrete reservoir cap, covering a single opening that can be opened.
  • each reservoir includes two or more openings that can be covered by two or more discrete reservoir caps, where each reservoir cap can, but need not, be independently disintegrated to open the reservoir.
  • the reservoir control means can provide intermittent or effectively continuous release of the drug formulation.
  • the particular features of the control means depend on the mechanism of reservoir cap activation described herein.
  • the control means can include an input source, a microprocessor, a timer, a demultiplexer (or multiplexer), and a power source.
  • the power source provides energy to activate the selected reservoir, e.g., to trigger release of the drug formulation from the particular reservoir desired for a given dose. See FIG. 4 .
  • the operation of the reservoir opening system can be controlled by an on-board microprocessor.
  • the microprocessor can be programmed to initiate the disintegration or permeabilization of the reservoir cap at a pre-selected time or in response to one or more of signals or measured parameters, including receipt of a signal from another device (for example by remote control or wireless methods) or detection of a particular condition using a sensor such as a biosensor.
  • a simple state machine is used, as it typically is simpler, smaller, and/or uses less power than a microprocessor.
  • the device can also be activated or powered using wireless means, for example, as described in U.S. 2002/0072784 A1 to Sheppard et al., which is incorporated herein by reference.
  • the device includes a substrate having a two-dimensional array of reservoirs arranged therein, a drug formulation contained in the reservoirs, anode reservoir caps covering a semi-permeable membrane for each of the reservoirs, cathodes positioned on the substrate near the anodes, and means for actively controlling disintegration of the reservoir caps.
  • the means includes a power source and circuitry to control and deliver an electrical potential; the energy drives a reaction between selected anodes and cathodes.
  • electrons pass from the anode to the cathode through the external circuit causing the anode material (reservoir cap) to oxidize and dissolve into the surrounding fluids, exposing and releasing the drug formulation.
  • the microprocessor directs power to specific electrode pairs through a demultiplexer as directed by an EPROM, remote control, or biosensor.
  • the activation energy initiates a thermally driven rupturing or permeabilization process, for example, as described in U.S. Pat. No. 6,527,762.
  • the means for controlling release can actively disintegrate or permeabilize a reservoir cap using a resistive heater.
  • the resistive heater can cause the reservoir cap to undergo a phase change or fracture, for example, as a result of thermal expansion of the reservoir cap or release system, thereby rupturing the reservoir cap and releasing the drug from the selected reservoir.
  • the application of electric current to the resistor can be delivered and controlled using components as described above for use in the electrochemical disintegration embodiment.
  • a microprocessor can direct current to select reservoirs at desired intervals.
  • control means controls electro-thermal ablation of the reservoir cap.
  • the drug delivery device could include a reservoir cap formed of an electrically conductive material; an electrical input lead connected to the reservoir cap; an electrical output lead connected to the reservoir cap; and a control means to deliver an effective amount of electrical current through the reservoir cap, via the input lead and output lead, to locally heat and rupture the reservoir cap, for example to release the drug formulation or expose the sensor located therein.
  • the reservoir cap and conductive leads are formed of the same material, where the temperature of the reservoir cap increases locally under applied current because the reservoir cap is suspended in a medium that is less thermally conductive than the substrate.
  • the reservoir cap and conductive leads are formed of the same material, and the reservoir cap has a smaller cross-sectional area in the direction of electric current flow, where the increase in current density through the reservoir cap causes an increase in localized heating.
  • the reservoir cap alternatively can be formed of a material that is different from the material forming the leads, wherein the material forming the reservoir cap has a different electrical resistivity, thermal diffusivity, thermal conductivity, and/or a lower melting temperature than the material forming the leads.
  • control means includes a microprocessor, a timer, a demultiplexer (or multiplexer), and an input source (for example, a memory source, a signal receiver, or a biosensor), and a power source.
  • the timer and demultiplexer circuitry can be designed and incorporated directly onto the surface of the microchip during electrode fabrication, or may be incorporated in a separate microchip.
  • the microprocessor translates the output from memory sources, signal receivers, or biosensors into an address for the direction of power through the demultiplexer to a specific reservoir on the device.
  • a source of input to the microprocessor such as memory sources, signal receivers, or biosensors depends on the microchip device's particular application and whether device operation is preprogrammed, controlled by remote means, or controlled by feedback from its environment (i.e., biofeedback).
  • a microprocessor can be used in conjunction with a source of memory such as erasable programmable read only memory (EPROM), a timer, a demultiplexer, and a power source such as a battery or a biofuel cell.
  • EPROM erasable programmable read only memory
  • a programmed sequence of events including the time a reservoir is to be opened and the location or address of the reservoir is stored into the EPROM by the user.
  • the microprocessor When the time for exposure or release has been reached as indicated by the timer, the microprocessor sends a signal corresponding to the address (location) of a particular reservoir to the demultiplexer.
  • the demultiplexer routes an input, such as an electric potential or current, to the reservoir addressed by the microprocessor.
  • the electronics are included on the substrate/chip itself, for example, where the electronics are based on diode or transistor technology known in the art.
  • the electronics are separable from the transdermal drug delivery device, such that they are reusable with multiple transdermal drug delivery devices.
  • FIG. 2 One example of such a system is shown in FIG. 2 .
  • the cost to use a transdermal system like this would be significantly less than a system where the electronics were not separable and only could be used once.
  • the securing means can include one or more biocompatible adhesives, straps, or elastic bands.
  • the securing means is provided along the periphery of a housing of the device.
  • Adhesive securing means can be, or can be readily adapted from, those known in the art for securing transdermal patches, such as those currently used in commercially available transdermal patches. See, e.g., U.S. Pat. No. 6,632,906.
  • the adhesive is provided on a thin permeable material, such as a porous polymer layer, or a woven or non-woven fabric layer, which is adjacent the reservoir caps or the transport means.
  • the adhesive layer is permeable to the one or more pharmaceutical agents.
  • the polymer layer comprises a hydrogel.
  • the securing means comprises a pressure sensitive bioadhesive, as known in the art.
  • transport means or “means for transporting” refers to any devices or materials for transferring the pharmaceutical agent that has been released from the reservoirs from the opening of the reservoir to the surface of or into the skin of the patient.
  • transport mechanism(s) is at least partially dependent on the drug molecule selected for delivery.
  • these delivery mechanisms are characterized as follows: (1) passive, (2) chemical penetration enhancers, (3) ultrasonography, (4) iontophoresis, (5) electroosmosis, (6) electroporation, (7) heat, and (8) microneedles.
  • passive mechanisms a therapeutic dose is achievable without enhancement because of high potency and desirable physiochemical characteristics, which is typically associated with small lipophilic molecules.
  • Chemical penetration enhancers can be added to the drug formulation to increase flux through the skin or mucosal surface.
  • Examples include phosphate buffered saline, PEG 200 dilaurate, isopropyl myristate, glycerol trioleate, 50% ethanol/50% phosphate buffered saline, linoleic acid in 1/1 ethanol/phosphate buffered saline.
  • ultrasonography low-frequency ultrasound is applied prior to or simultaneously with drug delivery, particularly for low- and high-molecular weight drugs.
  • iontophoresis a continuous low current is applied to enhance delivery of a charged molecular species.
  • electroosmosis enhancement is by entrainment of bulk liquid by charged ions moving in an electric field, which can be used to deliver neutral and charged species.
  • Electroporation utilizes a high voltage pulse to help deliver large (proteins, oligonucleotides) and small molecules. Heat is another mechanism, where controlled exothermic reaction is used to generate heat to drive transport across skin.
  • Microneedles which are used to create pathways through the stratum corneum, can take a variety of forms, including an array of titanium microprojections, such as the MACROFLUXTM (Alza Corp.).
  • the device can include, or be used with, devices and means for application of acoustic energy (see, e.g., U.S. Patent Application Publication No. 2002/0082527 A1; U.S. Patent Application Publication No. 2002/0045850 A1), sonophoresis/ultrasound (see, e.g., U.S. Pat. No. 6,620,123, U.S. Pat. No. 6,491,657), electroporation, iontophoresis (see, e.g., U.S. Pat. No. 6,629,968, U.S. Pat. No. 6,377,847, U.S. Patent Application Publication No.
  • acoustic energy see, e.g., U.S. Patent Application Publication No. 2002/0082527 A1; U.S. Patent Application Publication No. 2002/0045850 A1
  • sonophoresis/ultrasound see, e.g., U.S. Pat. No. 6,620,123,
  • the transport means comprises a transport medium reservoir disposed between the reservoir caps and the skin.
  • the transport medium can include a permeable body through which the one or more pharmaceutical agents can diffuse following their release from the reservoir, or through which an analyte from the patient's skin can diffuse toward sensors disposed in the reservoirs.
  • the transport medium can comprise a reservoir containing a liquid, gel, or semi-solid permeation material (also referred to in the art as a rate-limiting membrane).
  • suitable permeation materials include various polymers and hydrogels known in the art, which preferably are non-reactive with the drug formulation or skin.
  • the transport means includes one or more permeation enhancers, as for example, described in U.S. Pat. No. 6,673,363, which is incorporated herein by reference.
  • the means for transporting comprises one or more microneedles.
  • microneedles suitable for transdermal drug delivery and analyte sensing are described in U.S. Pat. No. 6,743,211, U.S. Pat. No. 6,661,707, U.S. Pat. No. 6,503,231, and U.S. Pat. No. 6,334,856, all to Prausnitz et al., and in U.S. Pat. No. 6,230,051 and U.S. Pat. No. 6,219,574, both to Cormier et al.
  • the device includes positive displacement mechanisms for driving the one or more pharmaceutical agents out of the reservoirs.
  • an osmotic pressure generating material or other swellable material drives a piston to force a drug formulation out of the reservoir.
  • the device includes features for the positive displacement and/or accelerated release techniques described in U.S. Patent Application Publication No. 2004/0106914 to Coppeta et al.
  • the transdermal device includes a patch comprising a secondary reservoir for receiving the drug released from each reservoir in the substrate.
  • the secondary reservoir may be a single pool into which the dose is diluted, or the pool space may be divided into individual channels for delivery of each dose with minimal dilution.
  • the drug diffuses into and through the secondary reservoir and then out of the patch and into the patient's skin. See FIG. 5 .
  • the secondary reservoir is replaced with a layer of substrate that has media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution.
  • the device includes a rigid or flexible housing that contains the substrate, as well as the control means and power source. When the drug enters the secondary reservoir, it may distribute itself homogeneously throughout the secondary reservoir, such that diffusion is substantially uniform across the entire surface area interfacing the skin.
  • the secondary reservoir optionally can include a permeable or semi-permeable adhesive layer at this interface.
  • FIG. 1 shows device 10 which includes substrate 12 having reservoirs 14 which contain one or more pharmaceutical agents.
  • the device 10 further includes fluid reservoir 16 and a permeable adhesive layer 18 for securing the device to the patient's skin.
  • the device 10 further includes microprocessor-based or remote control means 20 and battery or other power supply 22 .
  • the portion of the device comprising the control mans and power supply is flexible.
  • the device includes an optional housing or outer covering 24 .
  • fluid reservoir 16 is replaced with a layer of substrate that has media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution.
  • FIG. 6 shows an alternate version of device 10 , wherein the means for transporting further comprises a plurality of microneedles 27 , which may be solid, hollow, or porous.
  • a plurality of microneedles 27 which may be solid, hollow, or porous.
  • U.S. Pat. No. 6,230,051 to Cormier et al. (Alza Corporation) discloses needle-like protrusions, barbs, or blades that puncture the stratum corneum, and diffusion of drug proceeds along the pathway between the outer surface of the needle and the skin/tissue circumscribing the needle.
  • the fluid reservoir is replaced with a layer of substrate that has media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution.
  • the microneedles can be spaced to match the reservoir openings.
  • the device electronics optionally can be located in a separate package.
  • the device includes a removably attachable electronics portion that comprises the power source and at least a portion of the control circuitry.
  • This electronics portion can be re-used many times and can be re-programmed wirelessly, which advantageously could improve cost effectiveness.
  • FIGS. 2A-B show device 50 which includes substrate 52 having reservoirs 54 which contain the drug.
  • the device 50 further includes fluid reservoir 56 and an adhesive layer 66 for securing the device to the patient's skin.
  • the control means for selective releasing the drug includes an electronics interface portion 58 , and removable power and electronics portion 60 .
  • the removable power and electronics portion 60 and the electronics interface portion 58 are can be selectively attached together by matingly engaging male connector posts 62 with female receptacles 64 .
  • the device is sealed or packaged in a protective material 68 .
  • the protective material can be a polymeric coating or laminate composite structure.
  • fluid reservoir 56 is replaced with a layer of substrate that has media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution.
  • FIG. 3 shows device 70 (shown only in part) which comprises body portion 72 , which includes a first substrate portion 78 and a second substrate portion 76 .
  • Reservoirs 74 are defined in the body portion. (Two are located in the body portion in this illustration, but only one can be seen from the cut-away of part of the first substrate portion.)
  • the release opening of the reservoirs are covered by reservoir caps 80 a and 80 b.
  • Metal conductors 82 a and 82 b are electrically connected to the reservoir caps, for delivering electric current to the reservoir caps.
  • Dielectric layer 85 is provided on the outer surface of the first substrate portion and is underneath the conductors.
  • the device can be used to delivery a wide variety of drugs or drug combinations to a patient in need thereof.
  • the device can be tailored to delivery the drug or drugs over an extended period of time, with a range of controlled release profiles, for example, to provide a relatively constant or a varied plasma drug levels.
  • the device may be removed periodically, provided it does not undesirably interrupt delivery of the drug.
  • the drug formulation and device may also be tailored for systemic (bioavailability goal 100%) or topical (bioavailability goal 0%) delivery.
  • the medical device is used for transdermal delivery of parathyroid hormone (PTH).
  • PTH parathyroid hormone
  • PTH is released from the reservoirs in a manner to intermittently deliver a pharmaceutically effective amount of the PTH through the skin for systemic administration.
  • the delivery optionally can be facilitated by one or more transport acceleration means as described above.
  • kits for treating breakthrough pain in cancer patients.
  • the devices can be used to deliver drugs for joint pain, anti-emetic applications, migraine treatments, fertility treatments, and Parkinson's medications.
  • the device is used in sensing applications.
  • the micro-reservoirs could contain sensors for measuring an analyte that can be drawn from the skin.
  • the device could operate not remove fluid but, rather, to place small quantities of solution containing low concentrations of Small Molecule Metabolite Reporters (SMMRs) into the skin for direct reading of the SMMR fluorescence spectral characteristics as an indication of both epidermal skin and blood glucose levels, as known in the art.
  • SMMRs Small Molecule Metabolite Reporters

Abstract

Devices and methods are provided for transdermal diagnostic sensing, alone or in combination with transdermal drug delivery. The device includes a substrate having a plurality of discrete reservoirs, each reservoir having at least one opening; contents disposed in the reservoirs, the contents of each reservoir including a diagnostic agent or a sensor for measuring an analyte; at least one discrete reservoir cap which cover said at least one opening; control means for disintegrating or permeabilizing the reservoir cap; means for transporting an analyte from the skin to said sensors and/or for transporting said diagnostic agent to the skin following release of said diagnostic agents from said reservoir; and means for securing the device to the skin of a patient.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a divisional of U.S. application Ser. No. 11/194,157, filed Aug. 1, 2005, which claims the benefit of U.S. Provisional Application No. 60/592,537, filed Jul. 30, 2004. The applications are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • This invention is generally in the field of devices and methods for the transdermal drug delivery and analyte sensing.
  • Transdermal drug delivery systems generally rely on diffusion of drug across the skin. In a typical conventional technology, the transdermal drug delivery system is in the form of a multi-layered patch that includes a backing or cover layer, a drug matrix/reservoir, a diffusion control membrane, and an adhesive layer for attaching the system to the surface of the skin. Examples of drugs delivered with such systems include scopolamine (Trasderm-Scop™), nicotine, nitroglycerin (Nitro-Dur™), estradiol (Estraderm™), and testosterone. However, transdermal patches generally are unsuitable for delivery of macromolecules. Others have sought to improve transdermal delivery of drug molecules, particularly where the size and hydrophilicity of the drug molecules significantly hinders diffusion through the stratum corneum, over that obtained with passive diffusion alone, by including with the transdermal drug delivery systems an active mechanism, such as iontophoresis, electroporation, ultrasound, or heat, or by disrupting the stratum corneum with microneedles or the like.
  • In transdermal and other drug delivery systems, it is generally desirable to store and protect the drug formulation until the time it is to be delivered to a patient, because exposure to environmental components (e.g., oxygen, humidity) may damage or prematurely degrade the pharmaceutical agent. However, in various conventional transdermal drug delivery systems which contain several days worth of doses of the drug, the entire drug formulation is contained in a single reservoir, such that is it not possible to protect or isolate individual doses. It would be desirable to be able to do so, particularly for relatively fragile pharmaceutical agent molecules.
  • In addition, with a conventional patch-type drug delivery system, it generally is not possible to change or fine-tune the rate of administration of drug once the patch is applied to the patient. It would be desirable to provide new and improved methods and devices for the controlled delivery of one or more drugs to a patient by transdermal administration. For example, it would be advantageous to be able to store and transdermally administer multiple discrete doses of a drug formulation, using a device which the physician can easily vary or fine tune the time and rate of drug administration.
  • SUMMARY OF THE INVENTION
  • Devices and methods have been developed for transdermal administration of one or more pharmaceutical agents to a patient in need thereof. In one aspect, the device includes a substrate, a plurality of discrete reservoirs in the substrate, one or more pharmaceutical agents stored in the reservoirs, discrete reservoir caps that prevent the pharmaceutical agent from passing out from the reservoirs, control means for actuating release of the pharmaceutical agent from one or more of the reservoirs by disintegrating or permeabilizing the reservoir caps, means for securing the device to the skin of the patient, and means for transporting to the skin the one or more pharmaceutical agents following release from the one or more of the reservoir. In one embodiment, the device includes a housing which contains the substrate, reservoirs, control means, and a power source. In one embodiment, the device further includes a removably attachable electronics portion which comprises the power source and at least a portion of the control means.
  • In one embodiment, the reservoir cap is formed of an electrically conductive material and the control means comprises an electrical input lead connected to said reservoir cap, an electrical output lead connected to said reservoir cap, wherein the reservoir cap is disintegrated by application of an electrical current through the reservoir cap via the input lead and output lead. The device may further include a source of electric power, such as a battery or capacitor, for applying the electrical current.
  • In one embodiment, the reservoirs are microreservoirs. In one embodiment, the reservoir cap comprises a metal film.
  • In one embodiment, the means for securing the device comprises a pressure sensitive adhesive. In one embodiment, the means for securing comprises an adhesive layer that is permeable to the pharmaceutical agent or analyte.
  • In one embodiment, the means for transporting includes a transport medium disposed between the reservoir caps and the skin. For example, the transport medium can include a permeable body through which the pharmaceutical agent released from the reservoirs can diffuse. In one embodiment, the transport medium comprises a reservoir containing a liquid, gel, or semi-solid permeation material. In another embodiment, the means for transporting comprises a plurality of microneedles. In still another embodiment, the means for transporting comprises one or more chemical penetration enhancers. In various embodiments, the means for transporting comprises means for effecting iontophoresis, electroosmosis, or electroporation. In one embodiment, the means for transporting comprises an ultrasound generator. In a further embodiment, the means for transporting comprises a heating element. In one embodiment, the means for transporting comprises a flexible or rigid member having media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution.
  • In various specific embodiments, the one or more pharmaceutical agents include a drug selected from among androgen, estrogen, non-steroidal anti-inflammatory agents, anti-hypertensive agents, analgesic agents, anti-depressants, antibiotics, anti-cancer agents, local anesthetics, antiemetics, anti-infectants, contraceptives, anti-diabetic agents, steroids, anti-allergy agents, anti-migraine agents, agents for smoking cessation, anti-obesity agents, nicotine, testosterone, estradiol, nitroglycerin, clonidine, dexamethasone, wintergreen oil, tetracaine, lidocaine, fentanyl, sufentanil, progestrone, insulin, Vitamin A, Vitamin C, Vitamin E, prilocaine, bupivacaine, sumatriptan, dihydroergotamine, and combinations thereof.
  • In another aspect, a medical device is provided for transdermal administration of one or more pharmaceutical agents to a patient in need thereof, which includes a substrate, a plurality of discrete reservoirs in the substrate, one or more pharmaceutical agents stored in the reservoirs, discrete reservoir caps which prevent the one or more pharmaceutical agents from passing out from the reservoirs, control means for actuating release of the one or more pharmaceutical agents from one or more of the reservoirs by disintegrating or permeabilizing the reservoir caps, an adhesive or strap material for securing the device to the skin of the patient, and a body defining a transport medium reservoir disposed between the reservoir caps and the skin of the patient, the body and reservoir facilitating transport of the pharmaceutical agent to the skin following its release from one or more of the reservoir. In one embodiment, the transport medium reservoir contains a liquid, gel, or semi-solid permeation material. In one embodiment, the transport medium reservoir comprises a single pool of a biocompatible transport fluid into which the pharmaceutical agent is diluted prior to delivery to the skin. In another embodiment, the transport medium reservoir comprises individual channels for delivery of the pharmaceutical agent with no or minimal dilution prior to delivery to the skin.
  • In another aspect, a device is provided for sensing an analyte in a human or other animal. In one embodiment, the device includes a substrate; a plurality of discrete reservoirs in the substrate, the reservoirs having at least one opening; one or more sensors or diagnostic agents stored in the reservoirs; discrete reservoir caps which cover said at least one opening; control means for disintegrating or permeabilizing the reservoir caps; means for securing the device to the skin of the patient; and means for transporting an analyte from the skin to the one or more sensors or for transporting the one or more diagnostic agents to the skin following release of said diagnostic agents from the one or more of the reservoir.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view of one embodiment of the medical device for transdermal drug delivery or analyte sensing described herein.
  • FIGS. 2A and 2B are a perspective view (FIG. 2A) and a cross-sectional view (FIG. 2B) of another embodiment of the medical device for transdermal drug delivery or analyte sensing described herein.
  • FIG. 3 is a perspective, cross-sectional view of one embodiment of the reservoir and body portion of the drug delivery or sensing device described herein.
  • FIG. 4 is a schematic of the operation of one embodiment of the control means for the medical device for transdermal drug delivery or analyte sensing described herein.
  • FIG. 5 is a cross-sectional view of one portion of one embodiment of the device shown in FIG. 1, showing one reservoir pre-actuation and one reservoir post-actuation.
  • FIG. 6 is a cross-sectional view of one embodiment of the medical device for transdermal drug delivery or analyte sensing that includes microneedles.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Medical devices have been developed for the transdermal administration of one or more pharmaceutical agents to patient in need thereof, or for analyte sensing/diagnostics. In a preferred embodiment, the devices isolate each dose or portions of a dose of the pharmaceutical agent within multiple individual (discrete) reservoirs, which typically are arrayed in/across a body portion of the device. Advantageously, the isolated doses or partial doses are protected from environmental components that may damage or prematurely degrade the pharmaceutical agent or other reservoir contents, until the desired time for release or exposure of the pharmaceutical agent or other reservoir contents.
  • As used herein, the terms “comprise,” “comprising,” “include,” and “including” are intended to be open, non-limiting terms, unless the contrary is expressly indicated.
  • The Medical Device
  • In one aspect, the device comprises a substrate; a plurality of discrete reservoirs in the substrate; one or more pharmaceutical agents stored in the reservoirs; discrete reservoir caps that prevent the one or more pharmaceutical agents from passing out from the reservoirs; control means for actuating release of the pharmaceutical agents from one or more of the reservoirs by disintegrating or permeabilizing the reservoir caps; means for securing the device to the skin of the patient; and means for transporting the pharmaceutical agent to the skin following release from one or more of the reservoirs.
  • In another aspect, the device is used to deliver a diagnostic agent into the skin. For instance, the agent could be a small molecule metabolite reporter, used in glucose detecting.
  • In still another aspect, the device is not used to deliver something but to contain a plurality of sensors for selective exposure. For example, the device could be adapted to sense an analyte withdrawn, either by passive or active mechanisms, from or through the skin.
  • Substrate/Reservoirs
  • The device comprises a substrate, i.e., a body portion, that includes the plurality of discrete reservoirs, e.g., in the form of a two-dimensional array of selectively spaced reservoirs—located in discrete positions—across at least one surface of the body portion. A reservoir is a well, a recess, a hole or a cavity, located in a solid structure and suitable for containing a quantity of another material and/or a secondary device.
  • In various embodiments, the body portion comprises silicon, a metal, a ceramic, a polymer, or a combination thereof. Examples of suitable substrate materials include metals, ceramics, semiconductors, glasses, and degradable and non-degradable polymers. In one embodiment, each reservoir is formed of hermetic materials (e.g., metals, silicon, glasses, ceramics) and is hermetically sealed by at least one reservoir cap. In one case, if the reservoir has a second opening, distal the reservoir cap-sealed opening, then a hermetic seal can be formed at that distal opening as well, in order for the reservoir contents to be hermetically isolated within the reservoir. Alternatively, where the reservoir has two opposed openings, each can be covered by a reservoir cap which can be opened for release or exposure of the reservoir contents. In still another case, a reservoir can have two or more separate openings on the same side of the reservoir, which can be covered by one or two or more discrete reservoir caps. The reservoirs can be in essentially any shape, and typically are shaped to facilitate reservoir manufacture and loading of contents, as well as packing of reservoirs into the substrate.
  • The substrate can have a variety of shapes, or shaped surfaces. It can, for example, have a release side (i.e., an area having reservoir caps) that is planar or curved. The substrate may, for example, be in a shape selected from circular, square, or ovoid disks. In one embodiment, the release side can be shaped to conform to a curved tissue surface.
  • The device body can be flexible or rigid. In one embodiment, the device flexibly conforms to a tissue surface as taught in U.S. Patent Application Publication No. 2002/0099359 to Santini et al., which is incorporated herein by reference.
  • The substrate may consist of only one material, or may be a composite or multi-laminate structure, that is, composed of several layers of the same or different substrate materials bonded or fused together. In one embodiment, the substrate comprises layers of silicon and Pyrex bonded together. In another embodiment, the substrate comprises multiple silicon wafers bonded together. In yet another embodiment, the substrate comprises a low-temperature co-fired ceramic (LTCC). In one embodiment, the body portion is the substrate of a microchip device. In one example, this substrate is formed of silicon.
  • In one embodiment, the substrate is formed from one or more polymers, copolymers, or blends thereof. For some transdermal applications, the reservoirs need not be defined/enclosed by hermetic materials, particularly where the time the reservoir contents are isolated is relatively short, for example, when the transdermal device is used only for a period of a few days (e.g., less than 2 days, less than 3 days). In such cases, polymeric substrates may be preferred, particularly because they can be less costly to manufacture than some silicon or ceramic substrate devices. In addition, the polymeric substrate can be easily made to conform to a particular skin surface area of the human or animal body.
  • In a preferred embodiment, the reservoirs are microreservoirs. As used herein, the term “microreservoir” refers to a discrete hole or concave-shaped space in a solid structure suitable for releasably containing a material. The structure is of a size and shape suitable for filling with a microquantity of the material, which comprises a drug. In one embodiment, the microreservoir has a volume equal to or less than 500 μL (e.g., less than 250 μL, less than 100 μL, less than 50 μL, less than 25 μL, less than 10 μL, etc.) and greater than about 1 nL (e.g., greater than 5 nL, greater than 10 nL, greater than about 25 nL, greater than about 50 nL, greater than about 1 μL, etc.). The shape and dimensions of the microreservoir can be selected to maximize or minimize contact area between the drug material and the surrounding surface of the microreservoir. As used herein, the term “microquantity” refers to small volumes between 1 nL and 500 μL. In one embodiment, the microquantity is between 1 nL and 1 μL. In another embodiment, the microquantity is between 10 nL and 500 nL.
  • Microreservoirs can be fabricated in a structural body portion using fabrication techniques known in the art. Representative fabrication techniques include MEMS fabrication processes or other micromachining processes, various drilling techniques (e.g., laser, mechanical, and ultrasonic drilling, electrical discharge machining (EDM)), and build-up techniques, such as LTCC (low temperature co-fired ceramics), punch- or embossing-type processes, thin film or tape processes. The surface of the microreservoir optionally can be treated or coated to alter one or more properties of the surface. Examples of such properties include hydrophilicity/hydrophobicity, wetting properties (surface energies, contact angles, etc.), surface roughness, electrical charge, release characteristics, biocompatibility, and the like. The coating material also can be selected to affect biostability or tissue interactions with the device or with the reservoir contents. Other fabrication processes, particularly ones useful with polymeric substrates, can be used, including injection molding, thermal compression molding, extrusion, embossing, solvent casting, and other polymer forming techniques known in the art. See also U.S. Patent Application Publication No. 2002/0107470 A1 to Richards, et al., which is incorporated herein by reference.
  • In other embodiments, the reservoirs are larger than microreservoirs and can contain a quantity of drug formulation larger than a microquantity. For example, the volume of each reservoir can be greater than 10 μL (e.g., at least 20 μL, at least 50 μL, at least 100 μL, at least 250 μL, etc.) and less than 10 mL (e.g., less than 5 mL, less than 1000 μL, less than 500 μL, less than 300 μL, etc.). These may be referred to as macro-reservoirs and macro-quantities, respectively. Unless explicitly indicated to be limited to either micro- or macro-scale volumes/quantities, the term “reservoir” is intended to include both.
  • Total substrate thickness and reservoir volume can be increased by bonding or attaching wafers or layers of substrate materials together. The device thickness may affect the volume of each reservoir and/or may affect the maximum number of reservoirs that can be incorporated onto a substrate. The size and number of substrates and reservoirs can be selected to accommodate the quantity and volume of reservoir contents needed for a particular application, manufacturing limitations, and/or total device size limitations suitable for reasonably comfortable attachment to a patient's skin.
  • Different device thicknesses may be chosen, depending for example of the type of application. For example, in sensing/diagnostic applications, the thickness may impact analyte transport and thus sensor response. Accordingly, it may be useful to provide a relatively thin substrate for certain sensing devices. As another example, in drug delivery applications, thicker substrates may be desired in order to increase reservoir depth and volume to contain more drug formulation, enabling increased dosage loading.
  • The substrate has at least two, or preferably many, discrete reservoirs. In various embodiments, tens, hundreds, or thousands of reservoirs are arrayed across the substrate. For instance, the device could include between 50 and 250 reservoirs, where each reservoir contains a single dose of a drug for release, which for example could be released hourly or daily over a period of several days. Unlike a typical conventional transdermal device, the present multi-reservoir devices can readily store and delivery different drug formulations from a single device. For example, different reservoirs could contain different drugs, or different reservoirs could contain different dosages or concentrations of the same drug.
  • In a preferred embodiment, the device comprises a microchip chemical delivery device, as taught in U.S. Pat. No. 5,7979,898, which is incorporated herein by reference. In other embodiments, the device could include polymeric chips or devices, as well other devices containing arrays of reservoirs, composed of non-silicon based materials that might not be referred to as “microchips.”
  • Pharmaceutical Agent/Formulation
  • Essentially any pharmaceutical agent, i.e., therapeutic or prophylactic agent (e.g., an active pharmaceutical ingredient or API), suitable for transdermal administration can be used with the device described herein. The present devices would be particularly useful for the storage and delivery of drugs that currently are not suitable for use with conventional transdermal systems due to instability issues associated with the drug. For example, a drug or drug formulation that is easily degradable could be protected until needed using the multiple reservoirs, each of which can be hermetically sealed until ruptured when needed to release the drug contained therein. In this way, only the quantity of the drug needed at a particular time is exposed; the remaining drug remains stored and protected. The device can deliver a single pharmaceutical agent or a combination of pharmaceutical agents, which can be stored together in the same reservoir or stored in separate reservoirs. Depending on the application, the device and formulation may be tailored to deliver the active ingredient locally or systemically.
  • The pharmaceutical agent (also referred to herein as a drug) can be provided in the reservoirs in a solid, liquid, semi-solid, solution, or suspension, or emulsion formulation. It can be in a pure form or combined with one or more excipient materials. As used herein, “pure form” of the drug includes the API, residual moisture, and any chemical species combined with the API in a specific molar ratio that is isolated with the API during preparation of the API (for instance, a counter-ion) and which has not been added as an excipient.
  • In one embodiment, the drug is formulated in a matrix form, comprising a matrix material in which the drug is contained or dispersed. The matrix material further controls release of the drug by controlling dissolution and/or diffusion of the drug from the reservoir, and may enhance stability of the drug molecule while stored in the reservoir.
  • In one embodiment, the drug is formulated with an excipient material that is useful for accelerating release, e.g., a water-swellable material that can aid in pushing the drug out of the reservoir and through any tissue capsule over the reservoir. Examples include hydrogels and osmotic pressure generating agents known in the art.
  • In another embodiment, the drug is formulated with a penetration enhancer(s). The penetration enhancer(s) further controls release of the drug by facilitating transport of the drug across the skin into the local administration site or systemic delivery.
  • Pharmaceutical Agent
  • The drug can comprise small molecules, large (i.e., macro-) molecules, or a combination thereof. In one embodiment, the large molecule drug is a protein or a peptide. In various other embodiments, the drug can be selected from amino acids, vaccines, antiviral agents, gene delivery vectors, interleukin inhibitors, immunomodulators, neurotropic factors, neuroprotective agents, antineoplastic agents, chemotherapeutic agents, polysaccharides, anti-coagulants (e.g., LMWH, pentasaccharides), antibiotics (e.g., immunosuppressants), analgesic agents, and vitamins.
  • In one embodiment, the drug is a protein. Examples of suitable types of proteins include glycoproteins, enzymes (e.g., proteolytic enzymes), hormones or other analogs (e.g., LHRH, steroids, corticosteroids, growth factors), antibodies (e.g., anti-VEGF antibodies, tumor necrosis factor inhibitors), cytokines (e.g., α-, β-, or γ-interferons), interleukins (e.g., IL-2, IL-10), and diabetes/obesity-related therapeutics (e.g., insulin, exenatide, PYY, GLP-1 and its analogs). In one embodiment, the drug is a gonadotropin-releasing (LHRH) hormone analog, such as leuprolide. In another exemplary embodiment, the drug comprises parathyroid hormone, such as a human parathyroid hormone or its analogs, e.g., hPTH(1-84) or hPTH(1-34). In a further embodiment, the drug is selected from nucleosides, nucleotides, and analogs and conjugates thereof. In yet another embodiment, the drug comprises a peptide with natriuretic activity, such as atrial natriuretic peptide (ANP), B-type (or brain) natriuretic peptide (BNP), C-type natriuretic peptide (CNP), or dendroaspis natriuretic peptide (DNP). In still another embodiment, the drug is selected from diuretics, vasodilators, inotropic agents, anti-arrhythmic agents, Ca+ channel blocking agents, anti-adrenergics/sympatholytics, and renin angiotensin system antagonists. In one embodiment, the drug is a VEGF inhibitor, VEGF antibody, VEGF antibody fragment, or another anti-angiogenic agent. Examples include an aptamer, such as MACUGEN™ (Pfizer/Eyetech) (pegaptanib sodium)) or LUCENTIS™ (Genetech/Novartis) (rhuFab VEGF, or ranibizumab), which could be used in the prevention of choroidal neovascularization. In yet a further embodiment, the drug is a prostaglandin, a prostacyclin, or another drug effective in the treatment of peripheral vascular disease.
  • In one embodiment, the device delivers one or more drugs known in the art for use in pain management. Examples include lidocaine and fentanyl. In a further embodiment, the drug is an anti-inflammatory, such as dexamethasone.
  • In another embodiment, the drug is an anti-emetic, such as a 5HT-5 antagonist. In yet another embodiment, the drug is a NSAID, such as ketaprofen. In another embodiment, the drug is an anti-anxiety drug, such as benzodiazepines. In still another embodiment, the drug is a dipeptidyl peptidase 4 inhibitor (DPP-4 inhibitor). In a further embodiment, the drug is an anticoagulant, such as warfarin, heparin, LMWH, oligo-asaccharides such as idraparinux and fondaparinux, and ximelagatran. In still another embodiment, the drug is an angiogenic agent, such as VEGF. In one embodiment, a device includes both angiogenic agents and anti-inflammatory agents. In various embodiments, the drug is a bone morphogenic protein, a growth factor, or a growth or differentiation factor.
  • The reservoirs in one device can include a single drug or a combination of two or more drugs, and can further include one or more pharmaceutically acceptable carriers. Two or more can be stored together and released from the same one or more reservoirs or they can each be stored in and released from different reservoirs.
  • The device is useful to delivery a variety of drugs, either passively or with the aid of some acceleration means. For example, oligonucleotide drugs may be delivered with the aid of iontophoresis or electroporation.
  • Drugs that may be delivered using the devices and methods described herein include those listed in Table 1 below.
  • TABLE 1
    Transdermal Drug Delivery Compounds
    Current Delivery
    Existing Drug Name Mechanism(s) Notes
    Clonidine Passive Marketed
    Estradiol Passive Marketed
    Fentanyl Passive, Iontophoresis Marketed
    Nicotine Passive Marketed
    Nitroglycerin Passive Marketed
    Scopolamine Passive Marketed
    Testosterone Passive Marketed
    Lidocaine Iontophoresis Marketed
    Epinephrine Iontophoresis Research
    Corticosteroids Iontophoresis Research
    Pilocarpine Iontophoresis Marketed; cystic fibrosis diagnosis
    Nafarelin Iontophoresis Research; Pharm Res 13, 798
    Leuprolide Iontophoresis Research; J. Control. Release 31, 41
    Vasopressin Iontophoresis Research
    Salmon calcitonin Iontophoresis Research; Pharm. Res. 14, 63
    Insulin Iontophoresis Research; Electrically Assisted Transdermal &
    Topical Drug Delivery 1998
    LHRH Iontophoresis Research; J. Phar. Sci. 87, 462
    Parathyroid hormone Iontophoresis Research
    Desmopressin Iontophoresis Research; Biol. Pharm. Bull. 21, 268
    δ-sleep-inducing peptide Iontophoresis Research; Drug. Dev. Ind. Pharm. 24, 431
  • Excipients and Matrix Materials
  • The drug can be dispersed in a matrix material, to further control the rate of release of drug. This matrix material can be a “release system,” as described in U.S. Pat. No. 5,797,898, the degradation, dissolution, or diffusion properties of which can provide a method for controlling the release rate of the chemical molecules.
  • The release system may provide a temporally modulated release profile (e.g., pulsatile release) when time variation in plasma levels is desired or a more continuous or consistent release profile when a constant plasma level as needed to enhance a therapeutic effect, for example. Pulsatile release can be achieved from an individual reservoir, from a plurality of reservoirs, or a combination thereof. For example, where each reservoir provides only a single pulse, multiple pulses (i.e., pulsatile release) are achieved by temporally staggering the single pulse release from each of several reservoirs. Alternatively, multiple pulses can be achieved from a single reservoir by incorporating several layers of a release system and other materials into a single reservoir. Continuous release can be achieved by incorporating a release system that degrades, dissolves, or allows diffusion of molecules through it over an extended period. In addition, continuous release can be approximated by releasing several pulses of molecules in rapid succession (“digital” release). The active release systems described herein can be used alone or on combination with passive release systems, for example, as described in U.S. Pat. No. 5,797,898. For example, the reservoir cap can be removed by active means to expose a passive release system, or a given substrate can include both passive and active release reservoirs.
  • In one embodiment, the drug formulation within a reservoir comprises layers of drug and non-drug material. After the active release mechanism has exposed the reservoir contents, the multiple layers provide multiple pulses of drug release due to intervening layers of non-drug. In another variation, the same layering system could be used in device operating by passive release.
  • The pharmaceutical agent can be formulated with one or more pharmaceutically acceptable excipients. Representative examples include bulking agents, wetting agents, stabilizers, crystal growth inhibitors, antioxidants, antimicrobials, preservatives, buffering agents (e.g., acids, bases), surfactants, desiccants, dispersants, osmotic agents, binders (e.g., starch, gelatin), disintegrants (e.g., celluloses), glidants (e.g., talc), diluents (e.g., lactose, dicalcium phosphate), color agents, lubricants (e.g., magnesium stearate, hydrogenated vegetable oils) and combinations thereof. In some embodiments, the excipient is a wax or a polymer. In one embodiment, the polymer comprises polyethylene glycol (PEG), e.g., typically one having a molecular weight between about 100 and 10,000 Daltons (e.g., PEG 200, PEG 1450). In another embodiment, the polymer comprises poly lactic acid (PLA), poly glycolic acid (PGA), copolymers thereof (PLGA), or ethyl-vinyl acetate (EVA) polymers. In yet another embodiment, the excipient material comprises a pharmaceutically acceptable oil (e.g., sesame oil).
  • In one embodiment, the excipient material includes a saturated drug solution. That is, the excipient material comprises a liquid solution formed of the drug dissolved in a solvent for the drug. The solution is saturated so that the solvent does not dissolve the solid matrix form of the drug. The saturated solution acts as a non-solvent excipient material, substantially filling pores and voids in the solid matrix.
  • In another embodiment, the excipient material comprises a pharmaceutically-acceptable perhalohydrocarbon or unsubstituted saturated hydrocarbon. See, for example, U.S. Pat. No. 6,264,990 to Knepp et al., which describes anhydrous, aprotic, hydrophobic, non-polar liquids, such as biocompatible perhalohydrocarbons or unsubstituted saturated hydrocarbons, such as perfluorodecalin, perflurobutylamine, perfluorotripropylamine, perfluoro-N-methyldecahydroquindine, perfluoro-octohydro quinolidine, perfluoro-N-cyclohexylpyrilidine, perfluoro-N,N-dimethylcyclohexyl methylamine, perfluoro-dimethyl-adamantane, perfluorotri-methylbicyclo (3.3.1) nonane, bis(perfluorohexyl) ethene, bis(perfluorobutyl) ethene, perfluoro-1-butyl-2-hexyl ethene, tetradecane, methoxyflurane and mineral oil.).
  • In one embodiment, the pharmaceutically acceptable excipient material comprises dimethyl sulfoxide (DMSO), glycerol, or ethanol.
  • In certain embodiments, the excipient material can be one that would not ordinarily be considered as ingredient in a dosage form. Where the implantable drug delivery device comprises one or more discrete reservoirs of small volume, e.g., microreservoirs, then it may be desirable to use organic solvents that are not possible to use in large amounts, for example due to toxicity concerns. In various embodiments, the solvents listed in Table 2 can be used as the excipient material if the device reservoir volumes are small enough to ensure that the daily exposure to the excipient cannot exceed predetermined limits, for example described in ICH Guideline Q3C: Impurities: Residual Solvents.
  • TABLE 2
    Excipient Materials and Exposure Limits
    Excipient Daily limit (mg)
    Benzene 0.02
    Carbon tetrachloride 0.04
    1,2-Dichloroethane 0.05
    1,1-Dichloroethene 0.08
    1,1,1-Trichloroethane 15
    Acetonitrile 4.1
    Chlorobenzene 3.6
    Chloroform 0.6
    Cyclohexane 38.8
    1,2-Dichloroethene 18.7
    Dichloromethane 6.0
    1,2-Dimethoxyethane 1.0
    N,N-Dimethylacetamide 10.9
    N,N-Dimethylformamide 8.8
    1,4-Dioxane 3.8
    2-Ethoxyethanol 1.6
    Ethyleneglycol 6.2
    Formamide 2.2
    Hexane 2.9
    Methanol 30.0
    2-Methoxyethanol 0.5
    Methylbutyl ketone 0.5
    Methylcyclohexane 11.8
    N-Methylpyrrolidone 5.3
    Nitromethane 0.5
    Pyridine 2.0
    Sulfolane 1.6
    Tetrahydrofuran 7.2
    Tetralin 1.0
    Toluene 8.9
    1,1,2-Trichloroethene 0.8
    Xylene 21.7
    Acetic acid 50
    Acetone 50
    Anisole 50
    1-Butanol 50
    2-Butanol 50
    Butyl acetate 50
    tert-Butylmethyl ether 50
    Cumene 50
    Dimethyl sulfoxide 50
    Ethanol 50
    Ethyl acetate 50
    Ethyl ether 50
    Ethyl formate 50
    Formic acid 50
    Heptane 50
    Isobutyl acetate 50
    Isopropyl acetate 50
    Methyl acetate 50
    3-Methyl-1-butanol 50
    Methylethyl ketone 50
    Methylisobutyl ketone 50
    2-Methyl-1-propanol 50
    Pentane 50
    1-Pentanol 50
    1-Propanol 50
    2-Propanol 50
    Propyl acetate 50
  • Reservoir Caps/Control Means
  • The device includes structural components for controlling the time at which release of the pharmaceutical agent from the reservoir is initiated. These components include reservoir caps and reservoir control means. In one embodiment, the control means includes control circuitry, which includes the hardware, electrical components, and software needed to control and deliver electric energy from a power source to selected reservoir(s) for actuation, e.g., reservoir opening.
  • Reservoir Caps
  • As used herein, the term “reservoir cap” includes a membrane or other structure suitable for separating the contents of a reservoir from the environment outside of the reservoir. It generally is self-supporting across the reservoir opening, although caps having additional structures to provide mechanical support to the cap can be fabricated. See, e.g., U.S. Patent Application Publication Nos. 2002/0183721 A1, which is incorporated herein by reference. Selectively removing the reservoir cap or making it permeable will then “expose” the contents of the reservoir to the environment (or selected components thereof) surrounding the reservoir. In preferred embodiments, the reservoir cap is selectively disintegrated. As used herein, the term “disintegrate” includes degrading, dissolving, rupturing, fracturing or some other form of mechanical failure, as well as a loss of structural integrity due to a chemical reaction (e.g., electrochemical degradation) or phase change (e.g., melting) in response to a change in temperature, unless a specific one of these mechanisms is indicated. In one specific embodiment, the “disintegration” is by an electrochemical activation technique, such as described in U.S. Pat. No. 5,797,898. In another specific embodiment, the “disintegration” is by an electro-thermal ablation technique, as described in U.S. Patent Application Publication No. 2004/0121486 A1 to Uhland et al., which is incorporated herein by reference in its entirety.
  • In one embodiment, the reservoir cap is a thin metal film and is impermeable to the surrounding environment (e.g., body fluids or another chloride containing solution). In one variation, a particular electric potential is applied to the metal reservoir cap, which is then oxidized and disintegrated by an electrochemical reaction, to release the drug from the reservoir. Examples of suitable reservoir cap materials include gold, silver, copper, and zinc.
  • In another variation, the reservoir cap is heated (e.g., using resistive heating) to cause the reservoir cap to melt and be displaced from the reservoir to open it. See U.S. Pat. No. 6,527,762, which is incorporated herein by reference. This latter variation could be used, for example, with reservoir caps formed of a metal or a non-metal material, e.g., a polymer. In yet another variation, the reservoir cap is formed of a polymer or other material that undergoes a temperature-dependent change in permeability such that upon heating to a pre-selected temperature, the reservoir is rendered permeable to the drug and bodily fluids to permit the drug to be released from the reservoir through the reservoir cap.
  • In still another embodiment, the reservoir cap is formed of a conductive material, such as a metal film, through which an electrical current can be passed to electrothermally ablate it, as described in U.S. Patent Application Publication No. 2004/0121486 A1 to Uhland et al. Representative examples of suitable reservoir cap materials include gold, copper, aluminum, silver, platinum, titanium, palladium, various alloys (e.g., Au—Si, Au—Ge, Pt—Ir, Ni—Ti, Pt—Si, SS 304, SS 316), and silicon doped with an impurity to modulate the conductivity/resistivity because one can use the impurity to increase or decrease the conductivity or resistivity of the silicon, as known in the art. In one embodiment, the reservoir cap is in the form of a thin metal film. In one embodiment, the reservoir cap is part of a multiple layer structure, for example, the reservoir cap can be made of multiple metal layers, such as a multi-layer/laminate structure of platinum/titanium/platinum. The reservoir cap is operably (i.e., electrically) connected to an electrical input lead and to an electrical output lead, to facilitate flow of an electrical current through the reservoir cap. When an effective amount of an electrical current is applied through the leads and reservoir cap, the temperature of the reservoir cap is locally increased due to resistive heating, and the heat generated within the reservoir cap increases the temperature sufficiently to cause the reservoir cap to be electrothermally ablated and ruptured. In this embodiment, the reservoir cap is formed of an electrically conductive material and the control circuitry comprises an electrical input lead connected to said reservoir cap, an electrical output lead connected to said reservoir cap, wherein the reservoir cap is ruptured by application of an electrical current through the reservoir cap via the input lead and output lead. Preferably, the control circuitry further comprises a source of electric power for applying the electrical current.
  • In yet another embodiment, the reservoir opening is closed by a reservoir cap comprising a dielectric or ceramic film layer and the actuation means comprises (i) a electrically conductive (e.g., metal) layer on top of the dielectric or ceramic film layer, and (ii) power source and control circuitry for delivering an electric current through the electrically conductive layer in an amount effective to rupture the dielectric or ceramic film layer, wherein the rupture is due to thermal expansion-induces stress on the dielectric or ceramic film layer. The electrically conductive layer and the actuation means can be designed thermally ablate the electrically conductive layer or the electrically conductive layer could remain, in whole or in part, after rupturing the dielectric or ceramic film layer, depending on the particular design for opening/actuation the release of drug from the reservoir.
  • In passive release devices, the reservoir cap is formed from a material or mixture of materials that degrade, dissolve, or disintegrate over time, or that do not degrade, dissolve, or disintegrate, but are permeable or become permeable to molecules or energy. Representative examples of reservoir cap materials include polymeric materials, and non-polymeric materials such as porous forms of metals, semiconductors, and ceramics. Passive semiconductor reservoir cap materials include nanoporous or microporous silicon membranes. Characteristics can be different for each reservoir cap to provide different times of release of drug formulation. For example, any combination of polymer, degree of crosslinking, or polymer thickness can be modified to obtain a specific release time or rate.
  • A combination of passive and/or active release reservoir cap can be present in a single delivery device. For example, the reservoir cap can be removed by electrothermal ablation to expose a passive release system that only begins its passive release after the reservoir cap has been actively removed. Alternatively, a given device can include both passive and active release reservoirs.
  • In still another embodiment, release can be controlled from the substrate reservoirs using passive control means, such as a biodegradable matrix material or layering of drug material with non-drug material, without the use of reservoir caps. In one variation of this “no cap” approach, reservoir caps are provided prior to device use, i.e., prior to application of (adhering) the device to the skin, and then immediately before application to the skin all of these reservoir caps are (manually) removed. For instance, these caps could be part of a protective layer that is removed just prior to adhering the patch to the skin.
  • In one embodiment, each reservoir includes a single, discrete reservoir cap, covering a single opening that can be opened. In another embodiment, each reservoir includes two or more openings that can be covered by two or more discrete reservoir caps, where each reservoir cap can, but need not, be independently disintegrated to open the reservoir. There can be a one-to-one correspondence between the number of reservoir openings and the number of reservoir caps; however, in various embodiments, it is possible that a single discrete reservoir can cover more than one reservoir opening.
  • Control Means
  • The reservoir control means can provide intermittent or effectively continuous release of the drug formulation. The particular features of the control means depend on the mechanism of reservoir cap activation described herein. For example, the control means can include an input source, a microprocessor, a timer, a demultiplexer (or multiplexer), and a power source. The power source provides energy to activate the selected reservoir, e.g., to trigger release of the drug formulation from the particular reservoir desired for a given dose. See FIG. 4. For example, the operation of the reservoir opening system can be controlled by an on-board microprocessor. The microprocessor can be programmed to initiate the disintegration or permeabilization of the reservoir cap at a pre-selected time or in response to one or more of signals or measured parameters, including receipt of a signal from another device (for example by remote control or wireless methods) or detection of a particular condition using a sensor such as a biosensor. In another embodiment, a simple state machine is used, as it typically is simpler, smaller, and/or uses less power than a microprocessor. The device can also be activated or powered using wireless means, for example, as described in U.S. 2002/0072784 A1 to Sheppard et al., which is incorporated herein by reference.
  • In one embodiment, the device includes a substrate having a two-dimensional array of reservoirs arranged therein, a drug formulation contained in the reservoirs, anode reservoir caps covering a semi-permeable membrane for each of the reservoirs, cathodes positioned on the substrate near the anodes, and means for actively controlling disintegration of the reservoir caps. The means includes a power source and circuitry to control and deliver an electrical potential; the energy drives a reaction between selected anodes and cathodes. Upon application of a potential between the electrodes, electrons pass from the anode to the cathode through the external circuit causing the anode material (reservoir cap) to oxidize and dissolve into the surrounding fluids, exposing and releasing the drug formulation. The microprocessor directs power to specific electrode pairs through a demultiplexer as directed by an EPROM, remote control, or biosensor.
  • In another embodiment, the activation energy initiates a thermally driven rupturing or permeabilization process, for example, as described in U.S. Pat. No. 6,527,762. For example, the means for controlling release can actively disintegrate or permeabilize a reservoir cap using a resistive heater. The resistive heater can cause the reservoir cap to undergo a phase change or fracture, for example, as a result of thermal expansion of the reservoir cap or release system, thereby rupturing the reservoir cap and releasing the drug from the selected reservoir. The application of electric current to the resistor can be delivered and controlled using components as described above for use in the electrochemical disintegration embodiment. For example, a microprocessor can direct current to select reservoirs at desired intervals.
  • In a preferred embodiment, control means controls electro-thermal ablation of the reservoir cap. For example, the drug delivery device could include a reservoir cap formed of an electrically conductive material; an electrical input lead connected to the reservoir cap; an electrical output lead connected to the reservoir cap; and a control means to deliver an effective amount of electrical current through the reservoir cap, via the input lead and output lead, to locally heat and rupture the reservoir cap, for example to release the drug formulation or expose the sensor located therein. In one embodiment, the reservoir cap and conductive leads are formed of the same material, where the temperature of the reservoir cap increases locally under applied current because the reservoir cap is suspended in a medium that is less thermally conductive than the substrate. Alternatively, the reservoir cap and conductive leads are formed of the same material, and the reservoir cap has a smaller cross-sectional area in the direction of electric current flow, where the increase in current density through the reservoir cap causes an increase in localized heating. The reservoir cap alternatively can be formed of a material that is different from the material forming the leads, wherein the material forming the reservoir cap has a different electrical resistivity, thermal diffusivity, thermal conductivity, and/or a lower melting temperature than the material forming the leads. Various combinations of these embodiments can be employed as described in U.S. Patent Application Publication No. 2004/0121486 A1 to Uhland et al.
  • In one embodiment, the control means includes a microprocessor, a timer, a demultiplexer (or multiplexer), and an input source (for example, a memory source, a signal receiver, or a biosensor), and a power source. The timer and demultiplexer circuitry can be designed and incorporated directly onto the surface of the microchip during electrode fabrication, or may be incorporated in a separate microchip. The microprocessor translates the output from memory sources, signal receivers, or biosensors into an address for the direction of power through the demultiplexer to a specific reservoir on the device. Selection of a source of input to the microprocessor such as memory sources, signal receivers, or biosensors depends on the microchip device's particular application and whether device operation is preprogrammed, controlled by remote means, or controlled by feedback from its environment (i.e., biofeedback). For example, a microprocessor can be used in conjunction with a source of memory such as erasable programmable read only memory (EPROM), a timer, a demultiplexer, and a power source such as a battery or a biofuel cell. A programmed sequence of events including the time a reservoir is to be opened and the location or address of the reservoir is stored into the EPROM by the user. When the time for exposure or release has been reached as indicated by the timer, the microprocessor sends a signal corresponding to the address (location) of a particular reservoir to the demultiplexer. The demultiplexer routes an input, such as an electric potential or current, to the reservoir addressed by the microprocessor. In another embodiment, the electronics are included on the substrate/chip itself, for example, where the electronics are based on diode or transistor technology known in the art.
  • In one preferred embodiment, the electronics are separable from the transdermal drug delivery device, such that they are reusable with multiple transdermal drug delivery devices. One example of such a system is shown in FIG. 2. The cost to use a transdermal system like this would be significantly less than a system where the electronics were not separable and only could be used once.
  • Other methods and multi-reservoir devices for controlled release of drug are described in U.S. Patent Application Publications Nos. 2002/0072784 A1, 2002/0099359 A1, 2002/0187260 A1, 2003/0010808 A1, 2004/0082937 A1, 2004/016914 A1; and U.S. Pat. Nos. 6,808,522, 6,730,072, 6,773,429, 6,123,861, all of which are incorporated by reference herein.
  • Securing Means
  • Essentially any device known in the art for securing objects to the skin of a human or other mammalian animal can be used. For example, the securing means can include one or more biocompatible adhesives, straps, or elastic bands. In one embodiment, the securing means is provided along the periphery of a housing of the device. Adhesive securing means can be, or can be readily adapted from, those known in the art for securing transdermal patches, such as those currently used in commercially available transdermal patches. See, e.g., U.S. Pat. No. 6,632,906.
  • In one embodiment, the adhesive is provided on a thin permeable material, such as a porous polymer layer, or a woven or non-woven fabric layer, which is adjacent the reservoir caps or the transport means. In one embodiment, the adhesive layer is permeable to the one or more pharmaceutical agents. In one embodiment, the polymer layer comprises a hydrogel.
  • In a preferred embodiment, the securing means comprises a pressure sensitive bioadhesive, as known in the art.
  • Transport Means
  • As used herein, “transport means” or “means for transporting” refers to any devices or materials for transferring the pharmaceutical agent that has been released from the reservoirs from the opening of the reservoir to the surface of or into the skin of the patient.
  • The choice of transport mechanism(s) is at least partially dependent on the drug molecule selected for delivery. Generally, these delivery mechanisms are characterized as follows: (1) passive, (2) chemical penetration enhancers, (3) ultrasonography, (4) iontophoresis, (5) electroosmosis, (6) electroporation, (7) heat, and (8) microneedles. For passive mechanisms, a therapeutic dose is achievable without enhancement because of high potency and desirable physiochemical characteristics, which is typically associated with small lipophilic molecules. Chemical penetration enhancers can be added to the drug formulation to increase flux through the skin or mucosal surface. Examples include phosphate buffered saline, PEG 200 dilaurate, isopropyl myristate, glycerol trioleate, 50% ethanol/50% phosphate buffered saline, linoleic acid in 1/1 ethanol/phosphate buffered saline. With ultrasonography, low-frequency ultrasound is applied prior to or simultaneously with drug delivery, particularly for low- and high-molecular weight drugs. With iontophoresis, a continuous low current is applied to enhance delivery of a charged molecular species. With electroosmosis, enhancement is by entrainment of bulk liquid by charged ions moving in an electric field, which can be used to deliver neutral and charged species. Electroporation utilizes a high voltage pulse to help deliver large (proteins, oligonucleotides) and small molecules. Heat is another mechanism, where controlled exothermic reaction is used to generate heat to drive transport across skin. Microneedles, which are used to create pathways through the stratum corneum, can take a variety of forms, including an array of titanium microprojections, such as the MACROFLUX™ (Alza Corp.).
  • The device can include, or be used with, devices and means for application of acoustic energy (see, e.g., U.S. Patent Application Publication No. 2002/0082527 A1; U.S. Patent Application Publication No. 2002/0045850 A1), sonophoresis/ultrasound (see, e.g., U.S. Pat. No. 6,620,123, U.S. Pat. No. 6,491,657), electroporation, iontophoresis (see, e.g., U.S. Pat. No. 6,629,968, U.S. Pat. No. 6,377,847, U.S. Patent Application Publication No. 2001/0056255 A1), heat (see, e.g., U.S. Pat. No. 6,756,053, U.S. Pat. No. 6,488,959) or other means known in the art for enhancing transdermal administration of drugs or transdermal diagnostics (e.g., glucose sensing).
  • In one embodiment, the transport means comprises a transport medium reservoir disposed between the reservoir caps and the skin. For example, the transport medium can include a permeable body through which the one or more pharmaceutical agents can diffuse following their release from the reservoir, or through which an analyte from the patient's skin can diffuse toward sensors disposed in the reservoirs. The transport medium can comprise a reservoir containing a liquid, gel, or semi-solid permeation material (also referred to in the art as a rate-limiting membrane). Representative examples of suitable permeation materials include various polymers and hydrogels known in the art, which preferably are non-reactive with the drug formulation or skin.
  • In one embodiment, the transport means includes one or more permeation enhancers, as for example, described in U.S. Pat. No. 6,673,363, which is incorporated herein by reference.
  • In one embodiment, the means for transporting comprises one or more microneedles. Examples of microneedles suitable for transdermal drug delivery and analyte sensing are described in U.S. Pat. No. 6,743,211, U.S. Pat. No. 6,661,707, U.S. Pat. No. 6,503,231, and U.S. Pat. No. 6,334,856, all to Prausnitz et al., and in U.S. Pat. No. 6,230,051 and U.S. Pat. No. 6,219,574, both to Cormier et al.
  • In one embodiment, the device includes positive displacement mechanisms for driving the one or more pharmaceutical agents out of the reservoirs. In one embodiment, an osmotic pressure generating material or other swellable material drives a piston to force a drug formulation out of the reservoir. In another embodiment, the device includes features for the positive displacement and/or accelerated release techniques described in U.S. Patent Application Publication No. 2004/0106914 to Coppeta et al.
  • Illustrative Embodiments
  • In one embodiment, the transdermal device includes a patch comprising a secondary reservoir for receiving the drug released from each reservoir in the substrate. The secondary reservoir may be a single pool into which the dose is diluted, or the pool space may be divided into individual channels for delivery of each dose with minimal dilution. Upon release from the substrate reservoir, the drug diffuses into and through the secondary reservoir and then out of the patch and into the patient's skin. See FIG. 5. In an alternative embodiment (not shown) the secondary reservoir is replaced with a layer of substrate that has media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution. In one embodiment, the device includes a rigid or flexible housing that contains the substrate, as well as the control means and power source. When the drug enters the secondary reservoir, it may distribute itself homogeneously throughout the secondary reservoir, such that diffusion is substantially uniform across the entire surface area interfacing the skin. The secondary reservoir optionally can include a permeable or semi-permeable adhesive layer at this interface.
  • FIG. 1 shows device 10 which includes substrate 12 having reservoirs 14 which contain one or more pharmaceutical agents. The device 10 further includes fluid reservoir 16 and a permeable adhesive layer 18 for securing the device to the patient's skin. The device 10 further includes microprocessor-based or remote control means 20 and battery or other power supply 22. Preferably, the portion of the device comprising the control mans and power supply is flexible. The device includes an optional housing or outer covering 24. In an alternative embodiment (not shown) fluid reservoir 16 is replaced with a layer of substrate that has media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution.
  • FIG. 6 shows an alternate version of device 10, wherein the means for transporting further comprises a plurality of microneedles 27, which may be solid, hollow, or porous. For example, U.S. Pat. No. 6,230,051 to Cormier et al. (Alza Corporation) discloses needle-like protrusions, barbs, or blades that puncture the stratum corneum, and diffusion of drug proceeds along the pathway between the outer surface of the needle and the skin/tissue circumscribing the needle. In an alternative embodiment, the fluid reservoir is replaced with a layer of substrate that has media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution. That is, the microneedles can be spaced to match the reservoir openings. In use, one can apply the solid microneedles first, then remove them, and then apply the drug delivery patch, or one can use hollow microneedles matched to the spacing of the reservoir openings attached to the patch.
  • The device electronics optionally can be located in a separate package. In one embodiment, the device includes a removably attachable electronics portion that comprises the power source and at least a portion of the control circuitry. This electronics portion can be re-used many times and can be re-programmed wirelessly, which advantageously could improve cost effectiveness. One embodiment of such a device is illustrated in FIGS. 2A-B. These Figures show device 50 which includes substrate 52 having reservoirs 54 which contain the drug. The device 50 further includes fluid reservoir 56 and an adhesive layer 66 for securing the device to the patient's skin. The control means for selective releasing the drug includes an electronics interface portion 58, and removable power and electronics portion 60. The removable power and electronics portion 60 and the electronics interface portion 58 are can be selectively attached together by matingly engaging male connector posts 62 with female receptacles 64. The device is sealed or packaged in a protective material 68. For example, the protective material can be a polymeric coating or laminate composite structure. In an alternative embodiment (not shown) fluid reservoir 56 is replaced with a layer of substrate that has media-filled holes with spacing corresponding to reservoir membrane openings, which allows release of reservoir contents without dilution.
  • FIG. 3 shows device 70 (shown only in part) which comprises body portion 72, which includes a first substrate portion 78 and a second substrate portion 76. Reservoirs 74 are defined in the body portion. (Two are located in the body portion in this illustration, but only one can be seen from the cut-away of part of the first substrate portion.) The release opening of the reservoirs are covered by reservoir caps 80 a and 80 b. Metal conductors 82 a and 82 b are electrically connected to the reservoir caps, for delivering electric current to the reservoir caps. Dielectric layer 85 is provided on the outer surface of the first substrate portion and is underneath the conductors.
  • Use of the Medical Device
  • In preferred embodiments, the device can be used to delivery a wide variety of drugs or drug combinations to a patient in need thereof. The device can be tailored to delivery the drug or drugs over an extended period of time, with a range of controlled release profiles, for example, to provide a relatively constant or a varied plasma drug levels. The device may be removed periodically, provided it does not undesirably interrupt delivery of the drug. The drug formulation and device may also be tailored for systemic (bioavailability goal 100%) or topical (bioavailability goal 0%) delivery.
  • In one embodiment, the medical device is used for transdermal delivery of parathyroid hormone (PTH). PTH is released from the reservoirs in a manner to intermittently deliver a pharmaceutically effective amount of the PTH through the skin for systemic administration. The delivery optionally can be facilitated by one or more transport acceleration means as described above.
  • Other applications include the delivery of pain medications. Examples include lidocaine, for needle sticks, IV insertion, or other dermatological procedures, or the delivery of more potent pain medications, such as fentanyl, for greater pain relief, such as for treating breakthrough pain in cancer patients. In still other applications, the devices can be used to deliver drugs for joint pain, anti-emetic applications, migraine treatments, fertility treatments, and Parkinson's medications.
  • In still other applications, the device is used in sensing applications. For example, the micro-reservoirs could contain sensors for measuring an analyte that can be drawn from the skin. Alternatively, the device could operate not remove fluid but, rather, to place small quantities of solution containing low concentrations of Small Molecule Metabolite Reporters (SMMRs) into the skin for direct reading of the SMMR fluorescence spectral characteristics as an indication of both epidermal skin and blood glucose levels, as known in the art.
  • Publications cited herein and the materials for which they are cited are specifically incorporated by reference. Modifications and variations of the methods and devices described herein will be obvious to those skilled in the art from the foregoing detailed description. Such modifications and variations are intended to come within the scope of the appended claims.

Claims (20)

1. A device for sensing an analyte in a human or other animal comprising:
a substrate having a plurality of discrete reservoirs, each reservoir having at least one opening;
contents disposed in the reservoirs, the contents of each reservoir comprising a diagnostic agent or a sensor for measuring an analyte;
at least one discrete reservoir cap which cover said at least one opening;
control means for disintegrating or permeabilizing the reservoir cap;
means for transporting an analyte from the skin to said sensors and/or for transporting said diagnostic agent to the skin following release of said diagnostic agents from said reservoir; and
means for securing the device to the skin of a patient.
2. The device of claim 1, wherein the reservoir cap is formed of an electrically conductive material and the circuitry comprises an electrical input lead connected to said reservoir cap, an electrical output lead connected to said reservoir cap, wherein the reservoir cap is ruptured by application of an electrical current through the reservoir cap via the input lead and output lead.
3. The device of claim 1, wherein the reservoir cap comprises a metal film.
4. The device of claim 1, wherein the means for transporting comprises a transport medium disposed between the reservoir caps and the skin.
5. The device of claim 4, wherein the transport medium comprises a permeable body through which the one or more diagnostic agents released from the reservoirs can diffuse.
6. The device of claim 4, wherein the transport medium comprises a reservoir containing a liquid, gel, or semi-solid permeation material.
7. The device of claim 1, wherein the means for transporting comprises a flexible or rigid member having media-filled holes with spacing corresponding to reservoir membrane openings.
8. The device of claim 6, wherein the transport medium reservoir comprises a single pool of a biocompatible transport fluid into which the one or more diagnostic agents are diluted prior to delivery to the skin.
9. The device of claim 6, wherein the transport medium reservoir comprises individual channels for delivery of the one or more diagnostic agents with no or minimal dilution prior to delivery to the skin.
10. The device of claim 1, further comprising a housing which contains the substrate and control means.
11. The device of claim 1, comprising a removably attachable electronics portion which comprises a power source and at least a portion of the control means.
12. The device of claim 1, wherein the means for transporting comprises a plurality of microneedles.
13. The device of claim 1, wherein the means for transporting comprises one or more chemical penetration enhancers.
14. The device of claim 1, wherein the means for transporting comprises an ultrasound generator.
15. The device of claim 1, wherein the means for transporting comprises means for effecting iontophoresis, electroosmosis, or electroporation.
16. The device of claim 1, wherein the means for transporting comprises a heating element.
17. The device of claim 1, wherein the reservoirs are microreservoirs.
18. The device of claim 1, wherein the means for securing comprises a pressure sensitive adhesive, an adhesive layer which is permeable to the one or more diagnostic agents, or a combination thereof.
19. The device of claim 1, wherein the diagnostic agent comprises a Small Molecule Metabolite Reporter.
20. The device of claim 1, wherein the sensor can measure the epidermal skin or blood glucose level in a patient.
US12/471,973 2004-07-30 2009-05-26 Multi-reservoir device and method for transdermal sensing Abandoned US20090234214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/471,973 US20090234214A1 (en) 2004-07-30 2009-05-26 Multi-reservoir device and method for transdermal sensing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US59253704P 2004-07-30 2004-07-30
US11/194,157 US7537590B2 (en) 2004-07-30 2005-08-01 Multi-reservoir device for transdermal drug delivery and sensing
US12/471,973 US20090234214A1 (en) 2004-07-30 2009-05-26 Multi-reservoir device and method for transdermal sensing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/194,157 Division US7537590B2 (en) 2004-07-30 2005-08-01 Multi-reservoir device for transdermal drug delivery and sensing

Publications (1)

Publication Number Publication Date
US20090234214A1 true US20090234214A1 (en) 2009-09-17

Family

ID=35539550

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/194,157 Expired - Fee Related US7537590B2 (en) 2004-07-30 2005-08-01 Multi-reservoir device for transdermal drug delivery and sensing
US12/471,973 Abandoned US20090234214A1 (en) 2004-07-30 2009-05-26 Multi-reservoir device and method for transdermal sensing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/194,157 Expired - Fee Related US7537590B2 (en) 2004-07-30 2005-08-01 Multi-reservoir device for transdermal drug delivery and sensing

Country Status (2)

Country Link
US (2) US7537590B2 (en)
WO (1) WO2006015299A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120123401A1 (en) * 2009-07-27 2012-05-17 Nova-b Ltd. Methods and devices for tissue ablation
US9024394B2 (en) 2013-05-22 2015-05-05 Transient Electronics, Inc. Controlled transformation of non-transient electronics
WO2017079758A1 (en) * 2015-11-06 2017-05-11 Bkr Ip Holdco Llc Modified transdermal delivery device or patch and method of delivering insulin from said modified transdermal delivery device
US9798886B2 (en) 2015-07-08 2017-10-24 International Business Machines Corporation Bio-medical sensing platform
EP3321899A1 (en) * 2016-11-10 2018-05-16 Therasolve NV Electronic communication unit for an adhesive patch
EP3421080A1 (en) * 2017-06-28 2019-01-02 Fundación Tecnalia Research & Innovation Device and method for controlled and monitored transdermal delivery of active agents and use thereof
WO2019099323A1 (en) * 2017-11-14 2019-05-23 E Ink California, Llc Microcell systems for delivering hydrophilic active molecules
US20200032925A1 (en) * 2017-07-21 2020-01-30 International Business Machines Corporation Fluid delivery device with hydrophobic surface
US10620151B2 (en) 2016-08-30 2020-04-14 Analog Devices Global Electrochemical sensor, and a method of forming an electrochemical sensor
US10646454B2 (en) 2017-03-24 2020-05-12 E Ink California, Llc Microcell delivery systems including charged or magnetic particles for regulating rate of administration of actives
US10702328B2 (en) 2013-12-18 2020-07-07 Novoxel Ltd. Devices and methods for tissue vaporization
US10933029B2 (en) 2017-03-24 2021-03-02 E Ink California, Llc Microcell systems for delivering active molecules
US11022579B2 (en) 2018-02-05 2021-06-01 Analog Devices International Unlimited Company Retaining cap
US11083515B2 (en) 2013-12-18 2021-08-10 Novoxel Ltd. Methods and devices for thermal tissue vaporization and compression
US11266832B2 (en) 2017-11-14 2022-03-08 E Ink California, Llc Electrophoretic active delivery system including porous conductive electrode layer
US11268927B2 (en) 2016-08-30 2022-03-08 Analog Devices International Unlimited Company Electrochemical sensor, and a method of forming an electrochemical sensor
US11648215B2 (en) 2020-10-29 2023-05-16 E Ink California, Llc Microcell systems for delivering hydrophilic active molecules
US11896723B2 (en) 2020-10-29 2024-02-13 E Ink Corporation Microcell systems for delivering benefit agents
US11938214B2 (en) 2019-11-27 2024-03-26 E Ink Corporation Benefit agent delivery system comprising microcells having an electrically eroding sealing layer

Families Citing this family (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010959A1 (en) * 2000-03-06 2001-09-20 Eppendorf Geraetebau Netheler Transferring material through cell membranes, useful e.g. in genetic engineering or hydride production, using aqueous solution containing trehalose, increases cell survival
US7787923B2 (en) * 2003-11-26 2010-08-31 Becton, Dickinson And Company Fiber optic device for sensing analytes and method of making same
EP1802258A4 (en) 2004-09-13 2015-09-23 Chrono Therapeutics Inc Biosynchronous transdermal drug delivery
US8252321B2 (en) 2004-09-13 2012-08-28 Chrono Therapeutics, Inc. Biosynchronous transdermal drug delivery for longevity, anti-aging, fatigue management, obesity, weight loss, weight management, delivery of nutraceuticals, and the treatment of hyperglycemia, alzheimer's disease, sleep disorders, parkinson's disease, aids, epilepsy, attention deficit disorder, nicotine addiction, cancer, headache and pain control, asthma, angina, hypertension, depression, cold, flu and the like
US7459469B2 (en) 2004-11-10 2008-12-02 Targacept, Inc. Hydroxybenzoate salts of metanicotine compounds
CA2789262C (en) 2005-04-28 2016-10-04 Proteus Digital Health, Inc. Pharma-informatics system
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8372040B2 (en) 2005-05-24 2013-02-12 Chrono Therapeutics, Inc. Portable drug delivery device including a detachable and replaceable administration or dosing element
TWI419717B (en) * 2005-06-17 2013-12-21 Altea Therapeutics Corp Permeant delivery system and methods for use thereof
JPWO2007010900A1 (en) * 2005-07-15 2009-01-29 Tti・エルビュー株式会社 Patch for percutaneous absorption with ion position display function and iontophoresis device
JP2007037868A (en) * 2005-08-05 2007-02-15 Transcutaneous Technologies Inc Transdermal administration device and its controlling method
US20100016781A1 (en) * 2005-08-29 2010-01-21 Mizuo Nakayama Iontophoresis device selecting drug to be administered on the basis of information form sensor
EP1924364A1 (en) * 2005-09-12 2008-05-28 Alza Corporation Coatable transdermal delivery microprojection assembly
WO2007032423A1 (en) * 2005-09-16 2007-03-22 Tti Ellebeau, Inc. Catheter type iontophoresis apparatus
US20070071807A1 (en) * 2005-09-28 2007-03-29 Hidero Akiyama Capsule-type drug-releasing device and capsule-type drug-releasing device system
US20090299265A1 (en) * 2005-09-30 2009-12-03 Tti Ellebeau, Inc. Electrode Assembly for Iontophoresis Having Shape-Memory Separator and Iontophoresis Device Using the Same
US20070093787A1 (en) * 2005-09-30 2007-04-26 Transcutaneous Technologies Inc. Iontophoresis device to deliver multiple active agents to biological interfaces
EP1928539A1 (en) * 2005-09-30 2008-06-11 Tti Ellebeau, Inc. Functionalized microneedles transdermal drug delivery systems, devices, and methods
US20070078445A1 (en) * 2005-09-30 2007-04-05 Curt Malloy Synchronization apparatus and method for iontophoresis device to deliver active agents to biological interfaces
US20070197955A1 (en) * 2005-10-12 2007-08-23 Transcutaneous Technologies Inc. Mucous membrane adhesion-type iontophoresis device
US20080033338A1 (en) * 2005-12-28 2008-02-07 Smith Gregory A Electroosmotic pump apparatus and method to deliver active agents to biological interfaces
WO2007079193A2 (en) 2005-12-30 2007-07-12 Tti Ellebeau, Inc. Iontophoretic systems, devices, and methods of delivery of active agents to biological interface
CN101426550B (en) * 2006-03-03 2012-10-31 基因特伦尼克斯公司 Method and device for treating microscopic residual tumors remaining in tissues following surgical resection
ATE497797T1 (en) 2006-03-14 2011-02-15 Univ Southern California MEMS DEVICE FOR DRUG RELEASE
US20080004564A1 (en) * 2006-03-30 2008-01-03 Transcutaneous Technologies Inc. Controlled release membrane and methods of use
AU2007238685B2 (en) * 2006-04-13 2012-09-13 Teva Pharmaceuticals International Gmbh Transdermal methods and systems for the delivery of anti-migraine compounds
US8425583B2 (en) 2006-04-20 2013-04-23 University of Pittsburgh—of the Commonwealth System of Higher Education Methods, devices and systems for treating insomnia by inducing frontal cerebral hypothermia
US9492313B2 (en) 2006-04-20 2016-11-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Method and apparatus of noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US11684510B2 (en) 2006-04-20 2023-06-27 University of Pittsburgh—of the Commonwealth System of Higher Education Noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US9211212B2 (en) 2006-04-20 2015-12-15 Cerêve, Inc. Apparatus and method for modulating sleep
WO2007122552A2 (en) * 2006-04-26 2007-11-01 Koninklijke Philips Electronics N. V. Device for the controlled release of a substance and method of releasing a substance
WO2007134038A2 (en) * 2006-05-09 2007-11-22 Astrazeneca Ab Salt forms of (2s)-(4e)-n-methyl-5-[3-(5-isopropoxypyridin)yl]-4-penten-2-amine
TWI389889B (en) * 2006-05-09 2013-03-21 Targacept Inc Novel polymorph forms of (2s)-(4e)-n-methyl-5-[3-(5-isopropoxypyridin)yl]-4-penten-2-amine
BRPI0713327A2 (en) * 2006-07-05 2012-03-13 Tti Ellebeau, Inc. RELEASE DEVICE HAVING SELF-MOTING DENDRITIC POLYMERS AND METHOD OF USE OF THIS
WO2008008281A2 (en) 2006-07-07 2008-01-17 Proteus Biomedical, Inc. Smart parenteral administration system
US20080015494A1 (en) * 2006-07-11 2008-01-17 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
WO2008016331A1 (en) * 2006-08-01 2008-02-07 Agency For Science, Technology And Research Ultrasonic enhanced microneedles
KR20090060272A (en) * 2006-09-05 2009-06-11 티티아이 엘뷰 가부시키가이샤 Impedance systems, devices, and methods for evaluating iontophoretic properties of compounds
CN101528300A (en) * 2006-09-05 2009-09-09 Tti优而美株式会社 Transdermal drug delivery systems, devices, and methods using inductive power supplies
CA2671069A1 (en) 2006-12-01 2008-06-12 Tti Ellebeau, Inc. Systems, devices, and methods for powering and/or controlling devices, for instance transdermal delivery devices
WO2008087884A1 (en) * 2007-01-16 2008-07-24 Tti Ellebeau, Inc. Method for predicting medicament dose and program therefor
EP2112923A1 (en) * 2007-01-22 2009-11-04 Targacept Inc. Intranasal, buccal, and sublingual administration of metanicotine analogs
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
CA2686093C (en) 2007-04-16 2018-05-08 Corium International, Inc. Solvent-cast microneedle arrays containing active
AU2014200648B2 (en) * 2007-04-16 2015-09-24 Corium Pharma Solutions, Inc. Solvent-cast microneedle arrays containing active
US7998110B2 (en) * 2007-04-25 2011-08-16 Hong Kong Polytechnic University Medical device for delivering drug and/or performing physical therapy
US7853320B1 (en) 2007-05-31 2010-12-14 Purdue Pharma L.P. Transdermal device having mechanical assist for porator-to-skin contact
US8095213B1 (en) * 2007-05-31 2012-01-10 Purdue Pharma L.P. Transdermal patch
DE102007030710A1 (en) * 2007-07-02 2009-01-08 Robert Bosch Gmbh Device for the storage and administration of active substances and a method for the administration of active substances by means of such a device
US8047399B1 (en) 2007-07-05 2011-11-01 Purdue Pharma L.P. Dispenser for transdermal devices
NZ582826A (en) * 2007-07-31 2011-10-28 Targacept Inc Transdermal composition comprising (2S)-(4E)-N-methyl-5-(5-isopropoxy-pyridin-3-yl)-4-penten-2-amine
SG183726A1 (en) * 2007-08-14 2012-09-27 Hutchinson Fred Cancer Res Needle array assembly and method for delivering therapeutic agents
US7945320B2 (en) * 2007-08-17 2011-05-17 Isis Biopolymer, Inc. Iontophoretic drug delivery system
WO2009048607A1 (en) 2007-10-10 2009-04-16 Corium International, Inc. Vaccine delivery via microneedle arrays
US20090247984A1 (en) * 2007-10-24 2009-10-01 Masimo Laboratories, Inc. Use of microneedles for small molecule metabolite reporter delivery
WO2009055733A1 (en) 2007-10-25 2009-04-30 Proteus Biomedical, Inc. Fluid transfer port information system
WO2009067463A1 (en) 2007-11-19 2009-05-28 Proteus Biomedical, Inc. Body-associated fluid transport structure evaluation devices
US20100298808A1 (en) 2007-11-28 2010-11-25 Janisys Limited Method and a delivery device for administering an active substance to a subject
MX364408B (en) 2007-12-20 2019-04-25 Univ Southern California APPARATUS and METHODS FOR DELIVERING THERAPEUTIC AGENTS.
MX2010012213A (en) 2008-05-08 2011-05-03 Minipumps Llc Implantable pumps and cannulas therefor.
US9849238B2 (en) 2008-05-08 2017-12-26 Minipumps, Llc Drug-delivery pump with intelligent control
CN102202708B (en) 2008-05-08 2015-01-21 迷你泵有限责任公司 Drug-delivery pumps and methods of manufacture
US20100022494A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method, device, and kit for maintaining physiological levels of steroid hormone in a subject
US20100022497A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for treating or preventing a cardiovascular disease or condition utilizing estrogen receptor modulators based on APOE allelic profile of a mammalian subject
US20100061976A1 (en) * 2008-07-24 2010-03-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for treating or preventing osteoporosis by reducing follicle stimulating hormone to cyclic physiological levels in a mammalian subject
US20100022487A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method, device, and kit for maintaining physiological levels of steroid hormone in a subject
US20110190201A1 (en) * 2008-07-24 2011-08-04 Searete Llc Method, device, and kit for maintaining physiological levels of steroid hormone in a subject
CN104382598A (en) 2008-08-13 2015-03-04 普罗透斯数字保健公司 Method of producing a recognizer
US20100069877A1 (en) * 2008-09-10 2010-03-18 Smith Gregory A Apparatus and method to dispense hpc-based viscous liquids into porous substrates, e.g., continuous web-based process
US20100068235A1 (en) * 2008-09-16 2010-03-18 Searete LLC, a limited liability corporation of Deleware Individualizable dosage form
US20100069887A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Multiple chamber ex vivo adjustable-release final dosage form
US20100068278A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liablity Corporation Of The State Of Delaware Ex vivo modifiable medicament release-associations
US20100068275A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Personalizable dosage form
US20100068153A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo activatable final dosage form
US20100069821A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo modifiable medicament release-sites final dosage form
US20100068233A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Modifiable dosage form
US20100068152A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo modifiable particle or polymeric based final dosage form
US20100068254A1 (en) * 2008-09-16 2010-03-18 Mahalaxmi Gita Bangera Modifying a medicament availability state of a final dosage form
KR101258336B1 (en) * 2008-10-02 2013-04-25 밀란 인크. Method of making a multilayer adhesive laminate
US7838715B2 (en) * 2009-01-21 2010-11-23 Palo Alto Research Center Incorporated Drug deactivation system and method of deactivating a drug using the same
US8236238B2 (en) * 2009-01-21 2012-08-07 Palo Alto Research Center Incorporated Drug deactivation system
US9480795B2 (en) * 2009-01-21 2016-11-01 Palo Alto Research Center Incorporated Sensor system for drug delivery device, drug delivery device having the same and method of using the same
US8663538B2 (en) 2009-02-12 2014-03-04 Picolife Technologies, Llc Method of making a membrane for use with a flow control system for a micropump
US9033898B2 (en) 2010-06-23 2015-05-19 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
JP6078230B2 (en) 2009-03-02 2017-02-08 セブンス センス バイオシステムズ,インコーポレーテッド Techniques and devices related to blood sampling
US9295417B2 (en) 2011-04-29 2016-03-29 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US9041541B2 (en) 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US20110105951A1 (en) * 2009-10-30 2011-05-05 Seventh Sense Biosystems, Inc. Systems and methods for treating, sanitizing, and/or shielding the skin or devices applied to the skin
US9119578B2 (en) 2011-04-29 2015-09-01 Seventh Sense Biosystems, Inc. Plasma or serum production and removal of fluids under reduced pressure
AU2010219449B2 (en) 2009-03-04 2014-12-18 Orexo Ab Abuse resistant formulation
WO2010111403A2 (en) 2009-03-25 2010-09-30 Proteus Biomedical, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US20110006458A1 (en) * 2009-04-24 2011-01-13 Corium International, Inc. Methods for manufacturing microprojection arrays
NZ619375A (en) 2009-04-28 2015-03-27 Proteus Digital Health Inc Highly reliable ingestible event markers and methods for using the same
US20100286590A1 (en) * 2009-05-08 2010-11-11 Isis Biopolymer Llc Iontophoretic device with improved counterelectrode
US20110092881A1 (en) * 2009-05-08 2011-04-21 Isis Biopolymer Inc. Iontophoretic device with contact sensor
CA2761000C (en) 2009-05-08 2018-05-29 Orexo Ab Composition for sustained drug delivery comprising geopolymeric binder
WO2010132331A2 (en) 2009-05-12 2010-11-18 Proteus Biomedical, Inc. Ingestible event markers comprising an ingestible component
MX2012002063A (en) 2009-08-18 2012-08-01 Minipumps Llc Electrolytic drug-delivery pump with adaptive control.
US20130018279A1 (en) * 2009-09-01 2013-01-17 Pathway Genomics "blood sample collection apparatus and kits"
EP2473226A1 (en) * 2009-09-04 2012-07-11 Minipumps LLC Adhesive skin patch with pump for subcutaneous drug delivery
US9014799B2 (en) * 2009-10-08 2015-04-21 Palo Alto Research Center Incorporated Transmucosal drug delivery device and method including electrically-actuated permeation enhancement
US9017310B2 (en) * 2009-10-08 2015-04-28 Palo Alto Research Center Incorporated Transmucosal drug delivery device and method including microneedles
US8882748B2 (en) 2009-10-08 2014-11-11 Palo Alto Research Center Incorporated Transmucosal drug delivery device and method including chemical permeation enhancers
KR101032298B1 (en) 2009-10-27 2011-05-06 (주)유 바이오메드 Micro needle apparatus for injecting various kinds of fluid
US8894630B2 (en) 2009-11-13 2014-11-25 The Invention Science Fund I, Llc Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
US8439896B2 (en) * 2009-11-13 2013-05-14 The Invention Science Fund I, Llc Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
US8784368B2 (en) * 2009-11-13 2014-07-22 The Invention Science Fund I, Llc Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
EP2531099B1 (en) 2010-02-01 2018-12-12 Proteus Digital Health, Inc. Data gathering system
CN102905612A (en) 2010-02-01 2013-01-30 普罗秋斯数字健康公司 Two-wrist data gathering system
RU2012143791A (en) 2010-04-07 2014-05-20 Проутьюс Диджитал Хэлс, Инк. MINIATURE INGESTED DEVICE
AU2011311255B2 (en) 2010-04-28 2015-10-08 Sorrento Therapeutics, Inc. Method for increasing permeability of an epithelial barrier
MX343238B (en) 2010-04-28 2016-10-27 Kimberly-Clark Worldwide Incorporated Composite microneedle array including nanostructures thereon.
CA2797205C (en) 2010-04-28 2019-04-16 Kimberly-Clark Worldwide, Inc. Medical devices for delivery of sirna
WO2011135530A2 (en) 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. Device for delivery of rheumatoid arthritis medication
AU2011248108B2 (en) 2010-05-04 2016-05-26 Corium Pharma Solutions, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
BR112012029326A2 (en) 2010-05-20 2017-08-08 Astrazeneca Ab process for the preparation of aryl-substituted olefinic animals
ES2545411T3 (en) 2010-06-07 2015-09-10 Amgen Inc. Drug administration device
US20130158482A1 (en) 2010-07-26 2013-06-20 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
US20130223028A1 (en) * 2010-07-29 2013-08-29 Proteus Digital Health, Inc. Hybrid housing for implantable medical device
WO2012019083A2 (en) 2010-08-06 2012-02-09 Microchips, Inc. Biosensor membrane composition, biosensor, and methods for making same
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
KR102084571B1 (en) * 2010-09-07 2020-03-04 엠플리큐어 아베 A transdermal drug administration device
EP2992827B1 (en) 2010-11-09 2017-04-19 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
JP2014504902A (en) 2010-11-22 2014-02-27 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible device with medicinal product
CA2816883A1 (en) * 2010-11-23 2012-05-31 Presage Biosciences, Inc. Therapeutic methods and compositions for solid delivery
US20130280755A1 (en) * 2010-11-23 2013-10-24 Fred Hutchinson Cancer Research Center Therapeutic methods for solid delivery
US8696637B2 (en) 2011-02-28 2014-04-15 Kimberly-Clark Worldwide Transdermal patch containing microneedles
EP2701600B1 (en) 2011-04-29 2016-06-08 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
US8636696B2 (en) 2011-06-10 2014-01-28 Kimberly-Clark Worldwide, Inc. Transdermal device containing microneedles
US20130017259A1 (en) 2011-07-06 2013-01-17 The Parkinson's Institute Compositions and Methods for Treatment of Symptoms in Parkinson's Disease Patients
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
PT2747642T (en) 2011-08-25 2021-07-27 Microchips Biotech Inc Space-efficient containment devices and method of making same
US10427153B2 (en) 2011-08-25 2019-10-01 Microchips Biotech, Inc. Systems and methods for sealing a plurality of reservoirs of a microchip element with a sealing grid
US20130090633A1 (en) * 2011-10-07 2013-04-11 University Of Southern California Osmotic patch pump
US20170246439A9 (en) 2011-10-27 2017-08-31 Kimberly-Clark Worldwide, Inc. Increased Bioavailability of Transdermally Delivered Agents
US11110066B2 (en) 2011-10-27 2021-09-07 Sorrento Therapeutics, Inc. Implantable devices for delivery of bioactive agents
EP3574950B1 (en) 2011-10-27 2021-02-17 Sorrento Therapeutics, Inc. Transdermal delivery of high viscosity bioactive agents
JP2014534864A (en) 2011-10-28 2014-12-25 プレサージュ バイオサイエンシズ,インコーポレイテッド Drug delivery method
US8771229B2 (en) 2011-12-01 2014-07-08 Picolife Technologies, Llc Cartridge system for delivery of medicament
US8790307B2 (en) 2011-12-01 2014-07-29 Picolife Technologies, Llc Drug delivery device and methods therefor
FR2986156B1 (en) * 2012-01-30 2014-07-04 Rhenovia Pharma TRANSDERMIC DEVICE FOR CONTROLLED ADMINISTRATION TO A PATIENT OF AT LEAST ONE ACTIVE INGREDIENT
US10130759B2 (en) 2012-03-09 2018-11-20 Picolife Technologies, Llc Multi-ported drug delivery device having multi-reservoir cartridge system
WO2013151766A1 (en) * 2012-04-02 2013-10-10 Medtronic, Inc. Therapy for kidney disease and/or heart failure by intradermal infusion
US9883834B2 (en) 2012-04-16 2018-02-06 Farid Amirouche Medication delivery device with multi-reservoir cartridge system and related methods of use
US10245420B2 (en) 2012-06-26 2019-04-02 PicoLife Technologies Medicament distribution systems and related methods of use
US10016164B2 (en) * 2012-07-10 2018-07-10 The General Hospital Corporation System and method for monitoring and treating a surface of a subject
KR20150038038A (en) 2012-07-23 2015-04-08 프로테우스 디지털 헬스, 인코포레이티드 Techniques for manufacturing ingestible event markers comprising an ingestible component
US20150217002A1 (en) * 2012-08-10 2015-08-06 The Research Foundation For The State University Of New York Near-infrared spectroscopy and optical reporter
US9999720B2 (en) 2012-09-27 2018-06-19 Palo Alto Research Center Incorporated Drug reconstitution and delivery device and methods
US9005108B2 (en) 2012-09-27 2015-04-14 Palo Alto Research Center Incorporated Multiple reservoir drug delivery device and methods
US20140088345A1 (en) * 2012-09-27 2014-03-27 Palo Alto Research Center Incorporated Single channel, multiple drug delivery device and methods
DK2910013T3 (en) 2012-10-18 2018-08-06 Proteus Digital Health Inc Apparatus, system and method for adaptive optimization for power output and transmit power in a power source for a communication device
US9694050B2 (en) 2012-10-21 2017-07-04 University Of Rochester THY1 (CD90) as a novel therapy to control adipose tissue accumulation
RU2698095C2 (en) 2012-12-21 2019-08-22 Кориум Интернэшнл, Инк. Microarray for therapeutic agent delivery and methods of using
EP2934289B1 (en) * 2012-12-21 2018-04-25 Microchips Biotech, Inc. Implantable medical device for minimally-invasive insertion
EP2941292B1 (en) 2013-01-02 2021-02-24 EBB Therapeutics, Inc. Systems for enhancing sleep
US9505737B2 (en) 2013-01-11 2016-11-29 Corsair Pharma, Inc. Treprostinil derivative compounds and methods of using same
WO2014110491A1 (en) 2013-01-11 2014-07-17 Theratrophix Llc Prodrugs of treprostinil
US9744341B2 (en) 2013-01-15 2017-08-29 Palo Alto Research Center Incorporated Devices and methods for intraluminal retention and drug delivery
US20140207047A1 (en) * 2013-01-22 2014-07-24 Chrono Therapeutics, Inc. Transdermal drug delivery system and method
US10105487B2 (en) 2013-01-24 2018-10-23 Chrono Therapeutics Inc. Optimized bio-synchronous bioactive agent delivery system
WO2014120669A1 (en) 2013-01-29 2014-08-07 Proteus Digital Health, Inc. Highly-swellable polymeric films and compositions comprising the same
KR102295456B1 (en) 2013-02-28 2021-08-27 소렌토 쎄라퓨틱스, 인코포레이티드 Transdermal drug delivery device
EP2961466B1 (en) 2013-02-28 2018-12-19 Microchips Biotech, Inc. Implantable medical device for minimally-invasive insertion
WO2014132239A1 (en) 2013-02-28 2014-09-04 Kimberly-Clark Worldwide, Inc. Drug delivery device
CN105142711B (en) 2013-03-12 2019-01-22 考里安国际公司 Micro-protuberance applicator
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
CA2903459C (en) 2013-03-15 2024-02-20 Corium International, Inc. Multiple impact microprojection applicators and methods of use
JP6700170B2 (en) 2013-03-15 2020-05-27 コリウム, インコーポレイテッド Microarrays for delivery of therapeutic agents and methods of use
EP2968116A1 (en) 2013-03-15 2016-01-20 Corium International, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
WO2014152639A1 (en) * 2013-03-15 2014-09-25 Kirsch Adam A System, method, and product for an adhesive strip configured to selectively dispense a fluid
ES2761580T3 (en) 2013-03-15 2020-05-20 Corium Inc Microarrays for therapeutic agent delivery, methods of use and manufacturing methods
JP6715761B2 (en) * 2013-03-15 2020-07-01 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company High performance adapter for injection devices
EP3030286B1 (en) 2013-08-05 2019-10-09 Cam Med LLC Conformable patch pump
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
FR3014321B1 (en) * 2013-12-11 2018-03-23 Albea Services TREATMENT MODULE, IN PARTICULAR FOR A COSMETIC AND / OR PHARMACEUTICAL PRODUCT AND A COSMETIC SYSTEM COMPRISING SUCH A TREATMENT MODULE
US9297083B2 (en) 2013-12-16 2016-03-29 Palo Alto Research Center Incorporated Electrolytic gas generating devices, actuators, and methods
FI127226B (en) 2013-12-20 2018-01-31 Teknologian Tutkimuskeskus Vtt Oy METHOD AND APPARATUS FOR SKIN TREATMENT
KR101967133B1 (en) * 2014-04-22 2019-04-10 한국과학기술원 Method for manufacturing a flexible drug delivery device and the flexible drug delivery device manufactured by the same
JP6566964B2 (en) 2014-04-30 2019-08-28 ソレント・セラピューティクス・インコーポレイテッド Transdermal drug delivery device and method
EP3137151B1 (en) 2014-04-30 2019-08-28 Sorrento Therapeutics, Inc. Controller portion of transdermal drug delivery apparatus
CA3160375A1 (en) 2014-04-30 2015-11-05 Sorrento Therapeutics, Inc. Receptacle portion of transdermal drug delivery apparatus and methods
US9801660B2 (en) 2014-07-31 2017-10-31 Palo Alto Research Center Incorporated Implantable fluid delivery devices, systems, and methods
US10278675B2 (en) 2014-07-31 2019-05-07 Palo Alto Research Center Incorporated Implantable estrus detection devices, systems, and methods
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US9937124B2 (en) * 2014-09-11 2018-04-10 International Business Machines Corporation Microchip substance delivery devices having low-power electromechanical release mechanisms
AU2016211528A1 (en) * 2015-01-27 2017-05-18 Ebb Therapeutics, Inc. Method and apparatuses for modulating sleep by chemical activation of temperature receptors
US10213586B2 (en) 2015-01-28 2019-02-26 Chrono Therapeutics Inc. Drug delivery methods and systems
CA2977814A1 (en) 2015-03-12 2016-09-15 Chrono Therapeutics Inc. Craving input and support system
US9643911B2 (en) 2015-06-17 2017-05-09 Corsair Pharma, Inc. Treprostinil derivatives and compositions and uses thereof
US9394227B1 (en) 2015-06-17 2016-07-19 Corsair Pharma, Inc. Treprostinil derivatives and compositions and uses thereof
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
WO2017006958A1 (en) * 2015-07-07 2017-01-12 凸版印刷株式会社 Percutaneous administration device
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
WO2017053872A1 (en) * 2015-09-25 2017-03-30 Steven Craig Anderson Apparatus and method for adhesion
US10493049B2 (en) 2016-02-10 2019-12-03 Niracle LLC Applicator-based transdermal drug delivery system for administration of drugs in combination with topical formulations
BR112019000861B1 (en) 2016-07-22 2020-10-27 Proteus Digital Health, Inc electronic device
US10821297B2 (en) * 2016-09-30 2020-11-03 Johnson & Johnson Consumer Inc. Kit and method for topical delivery of benefits
TWI735689B (en) 2016-10-26 2021-08-11 日商大塚製藥股份有限公司 Methods for manufacturing capsules with ingestible event markers
WO2018093218A1 (en) * 2016-11-18 2018-05-24 연세대학교 산학협력단 Microneedle array with composite formulation, and method for manufacturing same
US11219721B2 (en) 2016-12-16 2022-01-11 Sorrento Therapeutics, Inc. Attachment band for a fluid delivery apparatus and method of use
JP2020518325A (en) * 2016-12-29 2020-06-25 ピュア レイシオス ホールディングス, インコーポレイテッド Modular transdermal delivery system and related methods of manufacture and use
CA3049529A1 (en) 2017-01-06 2018-07-12 Chrono Therapeutics Inc. Transdermal drug delivery devices and methods
KR101832750B1 (en) * 2017-04-13 2018-02-27 주식회사 톡톡코리아 Micro needle devices of injecting medicine
US10737090B2 (en) 2017-07-11 2020-08-11 Medtronic, Inc. External defibrillation electrode conductive electrolyte dispersal pad
US11532389B1 (en) 2017-09-07 2022-12-20 Massachusetts Mutual Life Insurance Company System and method for personalized transdermal drug delivery
CA3074777A1 (en) * 2017-09-12 2019-03-21 Lts Lohmann Therapie-Systeme Ag Iontophoretic microneedle device
US11251635B2 (en) 2017-12-19 2022-02-15 Welch Allyn, Inc. Vital signs monitor with a removable and dischargable battery
CN108403297A (en) * 2018-03-12 2018-08-17 南京理工大学 A kind of intelligence dressing and preparation method thereof
US11583633B2 (en) 2018-04-03 2023-02-21 Amgen Inc. Systems and methods for delayed drug delivery
CA3101966A1 (en) 2018-05-29 2019-12-05 Morningside Venture Investments Limited Drug delivery methods and systems
US11213667B2 (en) 2018-07-11 2022-01-04 Santa Clara University 3D printed microneedles for microencapsulated mammalian cell extrusion
US11844753B2 (en) 2021-11-08 2023-12-19 Weiyong Li Transdermal drug delivery system for delivering a drug to a patient
CN114305868A (en) * 2021-12-30 2022-04-12 康宇辰 Epoxy sterilization wound dressing

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692027A (en) * 1971-04-23 1972-09-19 Everett H Ellinwood Jr Implanted medication dispensing device and method
US3952741A (en) * 1975-01-09 1976-04-27 Bend Research Inc. Controlled release delivery system by an osmotic bursting mechanism
US3964482A (en) * 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
US4003379A (en) * 1974-04-23 1977-01-18 Ellinwood Jr Everett H Apparatus and method for implanted self-powered medication dispensing
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US4507115A (en) * 1981-04-01 1985-03-26 Olympus Optical Co., Ltd. Medical capsule device
US4585652A (en) * 1984-11-19 1986-04-29 Regents Of The University Of Minnesota Electrochemical controlled release drug delivery system
US4731049A (en) * 1987-01-30 1988-03-15 Ionics, Incorporated Cell for electrically controlled transdermal drug delivery
US4731051A (en) * 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4994023A (en) * 1989-08-08 1991-02-19 Wellinghoff Stephen T Electrochemical drug release and article
US5041107A (en) * 1989-10-06 1991-08-20 Cardiac Pacemakers, Inc. Electrically controllable, non-occluding, body implantable drug delivery system
US5042975A (en) * 1986-07-25 1991-08-27 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
US5045059A (en) * 1989-02-15 1991-09-03 Alza Corporation Intravenous system for delivering a beneficial agent
US5147297A (en) * 1990-05-07 1992-09-15 Alza Corporation Iontophoretic delivery device
US5196002A (en) * 1990-10-09 1993-03-23 University Of Utah Research Foundation Implantable drug delivery system with piston acutation
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5202018A (en) * 1990-07-12 1993-04-13 Semilab Felvezeto Fizikai Labortorium Rt. Process for electrochemical dissolution of semiconductors
US5252294A (en) * 1988-06-01 1993-10-12 Messerschmitt-Bolkow-Blohm Gmbh Micromechanical structure
US5254081A (en) * 1991-02-01 1993-10-19 Empi, Inc. Multiple site drug iontophoresis electronic device and method
US5279607A (en) * 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US5288504A (en) * 1988-09-09 1994-02-22 The Ronald T. Dodge Company Pharmaceuticals microencapsulated by vapor deposited polymers and method
US5318557A (en) * 1992-07-13 1994-06-07 Elan Medical Technologies Limited Medication administering device
US5336213A (en) * 1992-04-08 1994-08-09 International Medical Associates, Inc. Selectable dosage transdermal delivery system
US5386419A (en) * 1992-08-20 1995-01-31 U.S. Philips Corporation Multiplexer for at least two independently operating signal sources
US5427585A (en) * 1993-03-29 1995-06-27 Bettinger; David S. On-demand iontophoretic system
US5429822A (en) * 1992-03-13 1995-07-04 Cambridge Scientific, Inc. Biodegradable bursting release system
US5443508A (en) * 1993-03-01 1995-08-22 Giampapa; Vincent C. Subcutaneous implantable multiple agent delivery system
US5490962A (en) * 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US5533995A (en) * 1991-11-13 1996-07-09 Elan Corporation, Plc Passive transdermal device with controlled drug delivery
US5605662A (en) * 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5782799A (en) * 1997-02-07 1998-07-21 Sarcos, Inc. Method for automatic dosing of drugs
US5797898A (en) * 1996-07-02 1998-08-25 Massachusetts Institute Of Technology Microchip drug delivery devices
US5824204A (en) * 1996-06-27 1998-10-20 Ic Sensors, Inc. Micromachined capillary electrophoresis device
US5860957A (en) * 1997-02-07 1999-01-19 Sarcos, Inc. Multipathway electronically-controlled drug delivery system
US5925069A (en) * 1997-11-07 1999-07-20 Sulzer Intermedics Inc. Method for preparing a high definition window in a conformally coated medical device
US5957579A (en) * 1997-10-09 1999-09-28 Caliper Technologies Corp. Microfluidic systems incorporating varied channel dimensions
US5972027A (en) * 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US6066163A (en) * 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
US6068752A (en) * 1997-04-25 2000-05-30 Caliper Technologies Corp. Microfluidic devices incorporating improved channel geometries
US6083763A (en) * 1996-12-31 2000-07-04 Genometrix Inc. Multiplexed molecular analysis apparatus and method
US6096656A (en) * 1999-06-24 2000-08-01 Sandia Corporation Formation of microchannels from low-temperature plasma-deposited silicon oxynitride
US6114658A (en) * 1996-03-15 2000-09-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Device for the encapsulated reception of a material
US6171850B1 (en) * 1999-03-08 2001-01-09 Caliper Technologies Corp. Integrated devices and systems for performing temperature controlled reactions and analyses
US6219574B1 (en) * 1996-06-18 2001-04-17 Alza Corporation Device and method for enchancing transdermal sampling
US6232150B1 (en) * 1998-12-03 2001-05-15 The Regents Of The University Of Michigan Process for making microstructures and microstructures made thereby
US6243608B1 (en) * 1998-06-12 2001-06-05 Intermedics Inc. Implantable device with optical telemetry
US6261584B1 (en) * 1996-02-02 2001-07-17 Alza Corporation Sustained delivery of an active agent using an implantable system
US6264990B1 (en) * 1996-10-16 2001-07-24 Alza Corporation Stable protein and nucleic acid formulations using non-aqueous, anhydrous, aprotic, hydrophobic, non-polar vehicles with low reactivity.
US6303420B1 (en) * 1999-08-13 2001-10-16 Texas Instruments Incorporated Integrated bipolar junction transistor for mixed signal circuits
US6334856B1 (en) * 1998-06-10 2002-01-01 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
US6349232B1 (en) * 1997-07-11 2002-02-19 Pets 'n People Ltd. Apparatus and method for dispensing pet care substances
US20020022826A1 (en) * 2000-08-14 2002-02-21 Reynolds John R. Burst electrode
US6366794B1 (en) * 1998-11-20 2002-04-02 The University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US6377847B1 (en) * 1993-09-30 2002-04-23 Vyteris, Inc. Iontophoretic drug delivery device and reservoir and method of making same
US20020072784A1 (en) * 2000-10-10 2002-06-13 Sheppard Norman F. Microchip reservoir devices using wireless transmission of power and data
US20020082527A1 (en) * 1998-01-12 2002-06-27 Jin Liu Assessment and control of acoustic tissue effects
US20020099359A1 (en) * 2001-01-09 2002-07-25 Santini John T. Flexible microchip devices for ophthalmic and other applications
US20020119176A1 (en) * 2001-02-28 2002-08-29 Greenberg Robert J. Implantable microfluidic delivery system using ultra-nanocrystalline diamond coating
US20020121486A1 (en) * 2000-07-17 2002-09-05 Verdegaal Russell J. Method of treating agricultural equipment, alleys and lagoons in confined animal feeding operations
US20020161352A1 (en) * 2001-04-25 2002-10-31 Lin Chen Hai Vaginal ring preparation and application
US6517864B1 (en) * 1998-08-27 2003-02-11 Pharmacia Ab Transdermally administered tolterodine as anti-muscarinic agent for the treatment of overactive bladder
US6527762B1 (en) * 1999-08-18 2003-03-04 Microchips, Inc. Thermally-activated microchip chemical delivery devices
US6537250B1 (en) * 1997-08-27 2003-03-25 Science, Incorporated Fluid delivery device with electrically activated energy source
US6537256B2 (en) * 1999-11-17 2003-03-25 Microchips, Inc. Microfabricated devices for the delivery of molecules into a carrier fluid
US20030069560A1 (en) * 2001-05-03 2003-04-10 Massachusetts Eye And Ear Infirmary Implantable drug delivery device and use thereof
US6551838B2 (en) * 2000-03-02 2003-04-22 Microchips, Inc. Microfabricated devices for the storage and selective exposure of chemicals and devices
US6558321B1 (en) * 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US6571125B2 (en) * 2001-02-12 2003-05-27 Medtronic, Inc. Drug delivery device
US6620123B1 (en) * 1999-12-17 2003-09-16 Sontra Medical, Inc. Method and apparatus for producing homogenous cavitation to enhance transdermal transport
US20030176854A1 (en) * 2002-03-11 2003-09-18 Alcon, Inc. Implantable drug delivery system
US6676363B1 (en) * 1999-01-05 2004-01-13 Jean-Pierre Solignac Manipulator robot and installation comprising same
US20040043042A1 (en) * 2001-12-03 2004-03-04 Johnson Audrey M. Microscale lyophilization and drying methods for the stabilization of molecules
US6702857B2 (en) * 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US6723077B2 (en) * 2001-09-28 2004-04-20 Hewlett-Packard Development Company, L.P. Cutaneous administration system
US20040082937A1 (en) * 2002-09-04 2004-04-29 Dennis Ausiello Method and device for the controlled delivery of parathyroid hormone
US6730072B2 (en) * 2000-05-30 2004-05-04 Massachusetts Institute Of Technology Methods and devices for sealing microchip reservoir devices
US6741877B1 (en) * 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US6743211B1 (en) * 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US20040106953A1 (en) * 2002-10-04 2004-06-03 Yomtov Barry M. Medical device for controlled drug delivery and cardiac monitoring and/or stimulation
US20040106904A1 (en) * 2002-10-07 2004-06-03 Gonnelli Robert R. Microneedle array patch
US20040106914A1 (en) * 2002-09-23 2004-06-03 Coppeta Jonathan R. Micro-reservoir osmotic release systems and microtube array device
US20040121486A1 (en) * 2002-08-16 2004-06-24 Uhland Scott A. Controlled release device and method using electrothermal ablation
US6756053B2 (en) * 1995-07-28 2004-06-29 Zars, Inc. Controlled heat induced rapid delivery of pharmaceuticals from skin depot
US20040127942A1 (en) * 2002-10-04 2004-07-01 Yomtov Barry M. Medical device for neural stimulation and controlled drug delivery
US6773429B2 (en) * 2000-10-11 2004-08-10 Microchips, Inc. Microchip reservoir devices and facilitated corrosion of electrodes
US20040166140A1 (en) * 1996-07-02 2004-08-26 Santini John T. Implantable device for controlled release of drug
US20050055014A1 (en) * 2003-08-04 2005-03-10 Coppeta Jonathan R. Methods for accelerated release of material from a reservoir device
US20050050859A1 (en) * 2003-07-17 2005-03-10 Coppeta Jonathan R. Low temperature methods for hermetically sealing reservoir devices
US6875208B2 (en) * 2001-05-31 2005-04-05 Massachusetts Institute Of Technology Microchip devices with improved reservoir opening
US20050077584A1 (en) * 2001-06-28 2005-04-14 Uhland Scott A. Hermetically sealed microchip reservoir devices
US20050096587A1 (en) * 2003-11-03 2005-05-05 Santini John T.Jr. Medical device for sensing glucose
US20050100937A1 (en) * 2003-09-11 2005-05-12 Holmes Elizabeth A. Medical device for analyte monitoring and drug delivery
US20050267440A1 (en) * 2004-06-01 2005-12-01 Herman Stephen J Devices and methods for measuring and enhancing drug or analyte transport to/from medical implant
US7004928B2 (en) * 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2295792A1 (en) * 1974-12-24 1976-07-23 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF COMPOUND SEMICONDUCTORS
US4360019A (en) 1979-02-28 1982-11-23 Andros Incorporated Implantable infusion device
US4856188A (en) 1984-10-12 1989-08-15 Drug Delivery Systems Inc. Method for making disposable and/or replenishable transdermal drug applicators
GB8422876D0 (en) 1984-09-11 1984-10-17 Secr Defence Silicon implant devices
US5387419A (en) 1988-03-31 1995-02-07 The University Of Michigan System for controlled release of antiarrhythmic agents
US5170801A (en) 1990-10-02 1992-12-15 Glaxo Inc. Medical capsule device actuated by radio-frequency (rf) signal
US5167625A (en) 1990-10-09 1992-12-01 Sarcos Group Multiple vesicle implantable drug delivery system
US5368588A (en) 1993-02-26 1994-11-29 Bettinger; David S. Parenteral fluid medication reservoir pump
US5366454A (en) 1993-03-17 1994-11-22 La Corporation De L'ecole Polytechnique Implantable medication dispensing device
US5474527A (en) 1993-03-29 1995-12-12 Bettinger; David S. Positive displacement transdermal system
US5368704A (en) 1993-08-06 1994-11-29 Teknekron Corporation Micro-electrochemical valves and method
WO1995011755A1 (en) 1993-10-28 1995-05-04 Houston Advanced Research Center Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
US5837276A (en) 1994-09-02 1998-11-17 Delab Apparatus for the delivery of elongate solid drug compositions
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5992769A (en) 1995-06-09 1999-11-30 The Regents Of The University Of Michigan Microchannel system for fluid delivery
US6041253A (en) 1995-12-18 2000-03-21 Massachusetts Institute Of Technology Effect of electric field and ultrasound for transdermal drug delivery
JP2002515786A (en) 1996-06-28 2002-05-28 ソントラ メディカル,エル.ピー. Ultrasound enhancement of transdermal delivery
US6001090A (en) 1998-02-09 1999-12-14 Lenhart; Douglas Thermal pharmaceutical delivery system
EP1235560B1 (en) 1999-12-10 2006-04-19 Massachusetts Institute Of Technology Microchip devices for delivery of molecules and methods of fabrication thereof
US6261595B1 (en) 2000-02-29 2001-07-17 Zars, Inc. Transdermal drug patch with attached pocket for controlled heating device
US6632606B1 (en) 2000-06-12 2003-10-14 Aclara Biosciences, Inc. Methods for single nucleotide polymorphism detection
US6629968B1 (en) 2000-06-30 2003-10-07 Vyteris, Inc. Shelf storage stable iontophoresis reservoir-electrode and iontophoretic system incorporating the reservoir-electrode
KR100463194B1 (en) 2001-02-16 2004-12-23 삼성전자주식회사 Method for programming a nand-type flash memory
US6663615B1 (en) 2001-09-04 2003-12-16 The Ohio State University Dual stage microvalve and method of use

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692027A (en) * 1971-04-23 1972-09-19 Everett H Ellinwood Jr Implanted medication dispensing device and method
US3964482A (en) * 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
US4003379A (en) * 1974-04-23 1977-01-18 Ellinwood Jr Everett H Apparatus and method for implanted self-powered medication dispensing
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US3952741A (en) * 1975-01-09 1976-04-27 Bend Research Inc. Controlled release delivery system by an osmotic bursting mechanism
US3952741B1 (en) * 1975-01-09 1983-01-18
US4731051A (en) * 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4507115A (en) * 1981-04-01 1985-03-26 Olympus Optical Co., Ltd. Medical capsule device
US4585652A (en) * 1984-11-19 1986-04-29 Regents Of The University Of Minnesota Electrochemical controlled release drug delivery system
US5042975A (en) * 1986-07-25 1991-08-27 Rutgers, The State University Of New Jersey Iontotherapeutic device and process and iontotherapeutic unit dose
US4731049A (en) * 1987-01-30 1988-03-15 Ionics, Incorporated Cell for electrically controlled transdermal drug delivery
US5252294A (en) * 1988-06-01 1993-10-12 Messerschmitt-Bolkow-Blohm Gmbh Micromechanical structure
US5288504A (en) * 1988-09-09 1994-02-22 The Ronald T. Dodge Company Pharmaceuticals microencapsulated by vapor deposited polymers and method
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5045059A (en) * 1989-02-15 1991-09-03 Alza Corporation Intravenous system for delivering a beneficial agent
US4994023A (en) * 1989-08-08 1991-02-19 Wellinghoff Stephen T Electrochemical drug release and article
US5041107A (en) * 1989-10-06 1991-08-20 Cardiac Pacemakers, Inc. Electrically controllable, non-occluding, body implantable drug delivery system
US5147297A (en) * 1990-05-07 1992-09-15 Alza Corporation Iontophoretic delivery device
US5202018A (en) * 1990-07-12 1993-04-13 Semilab Felvezeto Fizikai Labortorium Rt. Process for electrochemical dissolution of semiconductors
US5196002A (en) * 1990-10-09 1993-03-23 University Of Utah Research Foundation Implantable drug delivery system with piston acutation
US5254081A (en) * 1991-02-01 1993-10-19 Empi, Inc. Multiple site drug iontophoresis electronic device and method
US5279607A (en) * 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US5533995A (en) * 1991-11-13 1996-07-09 Elan Corporation, Plc Passive transdermal device with controlled drug delivery
US5429822A (en) * 1992-03-13 1995-07-04 Cambridge Scientific, Inc. Biodegradable bursting release system
US5336213A (en) * 1992-04-08 1994-08-09 International Medical Associates, Inc. Selectable dosage transdermal delivery system
US5318557A (en) * 1992-07-13 1994-06-07 Elan Medical Technologies Limited Medication administering device
US5386419A (en) * 1992-08-20 1995-01-31 U.S. Philips Corporation Multiplexer for at least two independently operating signal sources
US5443508A (en) * 1993-03-01 1995-08-22 Giampapa; Vincent C. Subcutaneous implantable multiple agent delivery system
US5427585A (en) * 1993-03-29 1995-06-27 Bettinger; David S. On-demand iontophoretic system
US6377847B1 (en) * 1993-09-30 2002-04-23 Vyteris, Inc. Iontophoretic drug delivery device and reservoir and method of making same
US5490962A (en) * 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US5605662A (en) * 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US6756053B2 (en) * 1995-07-28 2004-06-29 Zars, Inc. Controlled heat induced rapid delivery of pharmaceuticals from skin depot
US6261584B1 (en) * 1996-02-02 2001-07-17 Alza Corporation Sustained delivery of an active agent using an implantable system
US6066163A (en) * 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
US6114658A (en) * 1996-03-15 2000-09-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Device for the encapsulated reception of a material
US6230051B1 (en) * 1996-06-18 2001-05-08 Alza Corporation Device for enhancing transdermal agent delivery or sampling
US6219574B1 (en) * 1996-06-18 2001-04-17 Alza Corporation Device and method for enchancing transdermal sampling
US5824204A (en) * 1996-06-27 1998-10-20 Ic Sensors, Inc. Micromachined capillary electrophoresis device
US5797898A (en) * 1996-07-02 1998-08-25 Massachusetts Institute Of Technology Microchip drug delivery devices
US20040166140A1 (en) * 1996-07-02 2004-08-26 Santini John T. Implantable device for controlled release of drug
US6123861A (en) * 1996-07-02 2000-09-26 Massachusetts Institute Of Technology Fabrication of microchip drug delivery devices
US6264990B1 (en) * 1996-10-16 2001-07-24 Alza Corporation Stable protein and nucleic acid formulations using non-aqueous, anhydrous, aprotic, hydrophobic, non-polar vehicles with low reactivity.
US6083763A (en) * 1996-12-31 2000-07-04 Genometrix Inc. Multiplexed molecular analysis apparatus and method
US5782799A (en) * 1997-02-07 1998-07-21 Sarcos, Inc. Method for automatic dosing of drugs
US5860957A (en) * 1997-02-07 1999-01-19 Sarcos, Inc. Multipathway electronically-controlled drug delivery system
US6558321B1 (en) * 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US6741877B1 (en) * 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US6068752A (en) * 1997-04-25 2000-05-30 Caliper Technologies Corp. Microfluidic devices incorporating improved channel geometries
US6349232B1 (en) * 1997-07-11 2002-02-19 Pets 'n People Ltd. Apparatus and method for dispensing pet care substances
US6537250B1 (en) * 1997-08-27 2003-03-25 Science, Incorporated Fluid delivery device with electrically activated energy source
US5972027A (en) * 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US5957579A (en) * 1997-10-09 1999-09-28 Caliper Technologies Corp. Microfluidic systems incorporating varied channel dimensions
US5925069A (en) * 1997-11-07 1999-07-20 Sulzer Intermedics Inc. Method for preparing a high definition window in a conformally coated medical device
US20020082527A1 (en) * 1998-01-12 2002-06-27 Jin Liu Assessment and control of acoustic tissue effects
US6334856B1 (en) * 1998-06-10 2002-01-01 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
US6503231B1 (en) * 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US6243608B1 (en) * 1998-06-12 2001-06-05 Intermedics Inc. Implantable device with optical telemetry
US6517864B1 (en) * 1998-08-27 2003-02-11 Pharmacia Ab Transdermally administered tolterodine as anti-muscarinic agent for the treatment of overactive bladder
US6366794B1 (en) * 1998-11-20 2002-04-02 The University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US6232150B1 (en) * 1998-12-03 2001-05-15 The Regents Of The University Of Michigan Process for making microstructures and microstructures made thereby
US6676363B1 (en) * 1999-01-05 2004-01-13 Jean-Pierre Solignac Manipulator robot and installation comprising same
US6171850B1 (en) * 1999-03-08 2001-01-09 Caliper Technologies Corp. Integrated devices and systems for performing temperature controlled reactions and analyses
US6096656A (en) * 1999-06-24 2000-08-01 Sandia Corporation Formation of microchannels from low-temperature plasma-deposited silicon oxynitride
US6303420B1 (en) * 1999-08-13 2001-10-16 Texas Instruments Incorporated Integrated bipolar junction transistor for mixed signal circuits
US20030105455A1 (en) * 1999-08-18 2003-06-05 Santini John T. Thermally-activated microchip chemical delivery devices
US6527762B1 (en) * 1999-08-18 2003-03-04 Microchips, Inc. Thermally-activated microchip chemical delivery devices
US6537256B2 (en) * 1999-11-17 2003-03-25 Microchips, Inc. Microfabricated devices for the delivery of molecules into a carrier fluid
US6743211B1 (en) * 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6620123B1 (en) * 1999-12-17 2003-09-16 Sontra Medical, Inc. Method and apparatus for producing homogenous cavitation to enhance transdermal transport
US6849463B2 (en) * 2000-03-02 2005-02-01 Microchips, Inc. Microfabricated devices for the storage and selective exposure of chemicals and devices
US6551838B2 (en) * 2000-03-02 2003-04-22 Microchips, Inc. Microfabricated devices for the storage and selective exposure of chemicals and devices
US6730072B2 (en) * 2000-05-30 2004-05-04 Massachusetts Institute Of Technology Methods and devices for sealing microchip reservoir devices
US20020121486A1 (en) * 2000-07-17 2002-09-05 Verdegaal Russell J. Method of treating agricultural equipment, alleys and lagoons in confined animal feeding operations
US20020022826A1 (en) * 2000-08-14 2002-02-21 Reynolds John R. Burst electrode
US20020072784A1 (en) * 2000-10-10 2002-06-13 Sheppard Norman F. Microchip reservoir devices using wireless transmission of power and data
US6773429B2 (en) * 2000-10-11 2004-08-10 Microchips, Inc. Microchip reservoir devices and facilitated corrosion of electrodes
US20020099359A1 (en) * 2001-01-09 2002-07-25 Santini John T. Flexible microchip devices for ophthalmic and other applications
US6571125B2 (en) * 2001-02-12 2003-05-27 Medtronic, Inc. Drug delivery device
US20020119176A1 (en) * 2001-02-28 2002-08-29 Greenberg Robert J. Implantable microfluidic delivery system using ultra-nanocrystalline diamond coating
US20020161352A1 (en) * 2001-04-25 2002-10-31 Lin Chen Hai Vaginal ring preparation and application
US20030069560A1 (en) * 2001-05-03 2003-04-10 Massachusetts Eye And Ear Infirmary Implantable drug delivery device and use thereof
US20050143715A1 (en) * 2001-05-31 2005-06-30 Cima Michael J. Device for controlled reservoir opening with reinforced reservoir caps
US6875208B2 (en) * 2001-05-31 2005-04-05 Massachusetts Institute Of Technology Microchip devices with improved reservoir opening
US20050077584A1 (en) * 2001-06-28 2005-04-14 Uhland Scott A. Hermetically sealed microchip reservoir devices
US6702857B2 (en) * 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US6723077B2 (en) * 2001-09-28 2004-04-20 Hewlett-Packard Development Company, L.P. Cutaneous administration system
US20040043042A1 (en) * 2001-12-03 2004-03-04 Johnson Audrey M. Microscale lyophilization and drying methods for the stabilization of molecules
US7004928B2 (en) * 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
US20030176854A1 (en) * 2002-03-11 2003-09-18 Alcon, Inc. Implantable drug delivery system
US20040121486A1 (en) * 2002-08-16 2004-06-24 Uhland Scott A. Controlled release device and method using electrothermal ablation
US20040082937A1 (en) * 2002-09-04 2004-04-29 Dennis Ausiello Method and device for the controlled delivery of parathyroid hormone
US20040106914A1 (en) * 2002-09-23 2004-06-03 Coppeta Jonathan R. Micro-reservoir osmotic release systems and microtube array device
US20040106953A1 (en) * 2002-10-04 2004-06-03 Yomtov Barry M. Medical device for controlled drug delivery and cardiac monitoring and/or stimulation
US20040127942A1 (en) * 2002-10-04 2004-07-01 Yomtov Barry M. Medical device for neural stimulation and controlled drug delivery
US20040106904A1 (en) * 2002-10-07 2004-06-03 Gonnelli Robert R. Microneedle array patch
US20050050859A1 (en) * 2003-07-17 2005-03-10 Coppeta Jonathan R. Low temperature methods for hermetically sealing reservoir devices
US20050055014A1 (en) * 2003-08-04 2005-03-10 Coppeta Jonathan R. Methods for accelerated release of material from a reservoir device
US20050100937A1 (en) * 2003-09-11 2005-05-12 Holmes Elizabeth A. Medical device for analyte monitoring and drug delivery
US20050096587A1 (en) * 2003-11-03 2005-05-05 Santini John T.Jr. Medical device for sensing glucose
US20050267440A1 (en) * 2004-06-01 2005-12-01 Herman Stephen J Devices and methods for measuring and enhancing drug or analyte transport to/from medical implant

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402678B2 (en) * 2009-07-27 2016-08-02 Novoxel Ltd. Methods and devices for tissue ablation
US20120123401A1 (en) * 2009-07-27 2012-05-17 Nova-b Ltd. Methods and devices for tissue ablation
US10327832B2 (en) 2009-07-27 2019-06-25 Novoxel Ltd. Methods and devices for tissue ablation
US9024394B2 (en) 2013-05-22 2015-05-05 Transient Electronics, Inc. Controlled transformation of non-transient electronics
US10702328B2 (en) 2013-12-18 2020-07-07 Novoxel Ltd. Devices and methods for tissue vaporization
US11291498B2 (en) 2013-12-18 2022-04-05 Novoxel Ltd. Methods and devices for thermal tissue vaporization and compression
US11083515B2 (en) 2013-12-18 2021-08-10 Novoxel Ltd. Methods and devices for thermal tissue vaporization and compression
US9798886B2 (en) 2015-07-08 2017-10-24 International Business Machines Corporation Bio-medical sensing platform
WO2017079758A1 (en) * 2015-11-06 2017-05-11 Bkr Ip Holdco Llc Modified transdermal delivery device or patch and method of delivering insulin from said modified transdermal delivery device
US11268927B2 (en) 2016-08-30 2022-03-08 Analog Devices International Unlimited Company Electrochemical sensor, and a method of forming an electrochemical sensor
US10620151B2 (en) 2016-08-30 2020-04-14 Analog Devices Global Electrochemical sensor, and a method of forming an electrochemical sensor
EP3321899A1 (en) * 2016-11-10 2018-05-16 Therasolve NV Electronic communication unit for an adhesive patch
US10933029B2 (en) 2017-03-24 2021-03-02 E Ink California, Llc Microcell systems for delivering active molecules
US10646454B2 (en) 2017-03-24 2020-05-12 E Ink California, Llc Microcell delivery systems including charged or magnetic particles for regulating rate of administration of actives
EP3421080A1 (en) * 2017-06-28 2019-01-02 Fundación Tecnalia Research & Innovation Device and method for controlled and monitored transdermal delivery of active agents and use thereof
JP2020527411A (en) * 2017-07-21 2020-09-10 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Liquid delivery device and method of delivering liquid
US20200032925A1 (en) * 2017-07-21 2020-01-30 International Business Machines Corporation Fluid delivery device with hydrophobic surface
JP7146319B2 (en) 2017-07-21 2022-10-04 インターナショナル・ビジネス・マシーンズ・コーポレーション Liquid delivery device and method of delivering liquid
US11534585B2 (en) * 2017-07-21 2022-12-27 International Business Machines Corporation Fluid delivery device with hydrophobic surface
WO2019099323A1 (en) * 2017-11-14 2019-05-23 E Ink California, Llc Microcell systems for delivering hydrophilic active molecules
US11266832B2 (en) 2017-11-14 2022-03-08 E Ink California, Llc Electrophoretic active delivery system including porous conductive electrode layer
US11022579B2 (en) 2018-02-05 2021-06-01 Analog Devices International Unlimited Company Retaining cap
US11938214B2 (en) 2019-11-27 2024-03-26 E Ink Corporation Benefit agent delivery system comprising microcells having an electrically eroding sealing layer
US11938215B2 (en) 2019-11-27 2024-03-26 E Ink Corporation Method for operating a benefit agent delivery system comprising microcells having an electrically eroding sealing layer
US11648215B2 (en) 2020-10-29 2023-05-16 E Ink California, Llc Microcell systems for delivering hydrophilic active molecules
US11896723B2 (en) 2020-10-29 2024-02-13 E Ink Corporation Microcell systems for delivering benefit agents

Also Published As

Publication number Publication date
US20060024358A1 (en) 2006-02-02
WO2006015299A9 (en) 2006-06-15
WO2006015299A2 (en) 2006-02-09
WO2006015299A3 (en) 2006-05-04
US7537590B2 (en) 2009-05-26

Similar Documents

Publication Publication Date Title
US7537590B2 (en) Multi-reservoir device for transdermal drug delivery and sensing
US20210169822A1 (en) Transdermal drug delivery method and system
US7534241B2 (en) Micro-reservoir osmotic release systems and microtube array device
CA2258898C (en) Microchip drug delivery devices
JP5460538B2 (en) Transdermal drug delivery patch system, method of making the system and method of using the system
US7070590B1 (en) Microchip drug delivery devices
US8673346B2 (en) Transdermal drug delivery method and system
US6132755A (en) Transcorneal drug-release system
US20050267440A1 (en) Devices and methods for measuring and enhancing drug or analyte transport to/from medical implant
US20050055014A1 (en) Methods for accelerated release of material from a reservoir device
Gurman et al. Clinical applications of biomedical microdevices for controlled drug delivery
Garg et al. Microchip: A ubiquitous technique for drug delivery

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION