US20090228998A1 - Induction of exon skipping in eukaryotic cells - Google Patents

Induction of exon skipping in eukaryotic cells Download PDF

Info

Publication number
US20090228998A1
US20090228998A1 US12/383,897 US38389709A US2009228998A1 US 20090228998 A1 US20090228998 A1 US 20090228998A1 US 38389709 A US38389709 A US 38389709A US 2009228998 A1 US2009228998 A1 US 2009228998A1
Authority
US
United States
Prior art keywords
exon
mrna
cell
antisense
dystrophin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/383,897
Inventor
Garrit-Jan Boudewijn van Ommen
T. van Deutekom Judith Christina
Johannes Theodorus den Dunnen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leids Universitair Medisch Centrum LUMC
Original Assignee
Leids Universitair Medisch Centrum LUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8172043&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090228998(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Leids Universitair Medisch Centrum LUMC filed Critical Leids Universitair Medisch Centrum LUMC
Priority to US12/383,897 priority Critical patent/US20090228998A1/en
Assigned to ACADEMISCH ZIEKENHUIS LEIDEN reassignment ACADEMISCH ZIEKENHUIS LEIDEN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEN DUNNEN, JOHANNES T., VAN DEUTEKOM, JUDITH C. T., VAN OMMEN, GARRIT-JAN B.
Publication of US20090228998A1 publication Critical patent/US20090228998A1/en
Priority to US14/331,934 priority patent/US20140350076A1/en
Priority to US14/712,753 priority patent/US20150322434A1/en
Priority to US14/839,200 priority patent/US20150361424A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14142Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule

Definitions

  • the invention relates to the field of gene therapy.
  • the present invention addresses this problem by inducing so-called exon-skipping in cells.
  • Exon-skipping results in mature mRNA that does not contain the skipped exon and thus, when the exon codes for amino acids, can lead to the expression of an altered product.
  • Technology for exon-skipping is currently directed toward the use of so-called “Anti-sense Oligonucleotides” (AONs).
  • AONs Anti-sense Oligonucleotides
  • DMD Duchenne muscular dystrophy
  • the mdx mouse which carries a nonsense mutation in exon 23 of the dystrophin gene, has been used as an animal model of Duchenne muscular dystrophy.
  • mdx mutation which should preclude the synthesis of a functional dystrophin protein
  • rare, naturally occurring dystrophin-positive fibers have been observed in mdx muscle tissue. These dystrophin-positive fibers are thought to have arisen from an apparently naturally occurring exon-skipping mechanism, either due to somatic mutations or through alternative splicing.
  • AONs directed to, respectively, the 3′ and 5′ splice sites of introns 22 and 23 in dystrophin pre-mRNA have been shown to interfere with factors normally involved in removal of intron 23 so that exon 23 was also removed from the mRNA (Wilton, 1999).
  • Dunckley et al. (1998) showed that exon skipping using AONs directed to 3′ and 5′ splice sites can have unexpected results. They observed skipping of not only exon 23 but also of exons 24-29, thus resulting in an mRNA containing an exon 22-exon 30 junction.
  • the underlying mechanism for the appearance of the unexpected 22-30 splicing variant is not known. It could be due to the fact that splice sites contain consensus sequences leading to promiscuous hybridization of the oligos used to direct the exon skipping. Hybridization of the oligos to other splice sites than the sites of the exon to be skipped of course could easily interfere with the accuracy of the splicing process. On the other hand, the accuracy could be lacking due to the fact that two oligos (for the 5′ and the 3′ splice site) need to be used. Pre-mRNA containing one but not the other oligo could be prone to unexpected splicing variants.
  • the present invention provides a method for directing splicing of a pre-mRNA in a system capable of performing a splicing operation comprising contacting the pre-mRNA in the system with an agent capable of specifically inhibiting an exon inclusion signal of at least one exon in the pre-mRNA, the method further comprising allowing splicing of the pre-mRNA.
  • Interfering with an exon inclusion signal has the advantage that such elements are located within the exon.
  • EIS exon inclusion signal
  • the present invention does not interfere directly with the enzymatic process of the splicing machinery (the joining of the exons). It is thought that this allows the method to be more robust and reliable. It is thought that an EIS is a particular structure of an exon that allows splice acceptor and donor to assume a particular spatial conformation. In this concept, it is the particular spatial conformation that enables the splicing machinery to recognize the exon. However, the invention is certainly not limited to this model.
  • a preferred method of the invention further comprises allowing translation of mRNA produced from splicing of the pre-mRNA.
  • the mRNA encodes a functional protein.
  • the protein comprises two or more domains, wherein at least one of the domains is encoded by the mRNA as a result of skipping of at least part of an exon in the pre-mRNA.
  • Exon skipping will typically, though not necessarily, be of relevance for proteins in the wild-type configuration, having at least two functional domains that each performs a function, wherein the domains are generated from distinct parts of the primary amino acid sequence.
  • Examples are, for instance, transcription factors.
  • these factors comprise a DNA binding domain and a domain that interacts with other proteins in the cell.
  • Skipping of an exon that encodes a part of the primary amino acid sequence that lies between these two domains can lead to a shorter protein that comprises the same function, at least in part.
  • detrimental mutations in this intermediary region for instance, frame-shift or stop mutations
  • the contacting results in activation of a cryptic splice site in a contacted exon.
  • This embodiment broadens the potential for manipulation of the pre-mRNA leading to a functional protein.
  • the system comprises a cell.
  • the cell is cultured in vitro or in the organism in vivo.
  • the organism comprises a human or a mouse.
  • the invention provides a method for at least in part decreasing the production of an aberrant protein in a cell, the cell comprising pre-mRNA comprising exons coding for the protein, the method comprising providing the cell with an agent capable of specifically inhibiting an exon inclusion signal of at least one of the exons, the method further comprising allowing translation of mRNA produced from splicing of the pre-mRNA.
  • the agent comprises a nucleic acid or a functional equivalent thereof.
  • the nucleic acid is in single-stranded form.
  • Peptide nucleic acid and other molecules comprising the same nucleic acid binding characteristics in kind, but not necessarily in amount, are suitable equivalents.
  • Nucleic acid or an equivalent may comprise modifications to provide additional functionality. For instance, 2′-O-methyl oligoribonucleotides can be used. These ribonucleotides are more resistant to RNAse action than conventional oligonucleotides.
  • the exon inclusion signal is interfered with by an antisense nucleic acid directed to an exon recognition sequence (ERS).
  • ERS exon recognition sequence
  • These sequences are relatively purine-rich and can be distinguished by scrutinizing the sequence information of the exon to be skipped (Tanaka et al., 1994, Mol. Cell. Biol. 14, p. 1347-1354).
  • Exon recognition sequences are thought to aid inclusion into mRNA of so-called weak exons (Achsel et al., 1996, J. Biochem. 120, p. 53-60). These weak exons comprise, for instance, 5′ and or 3′ splice sites that are less efficiently recognized by the splicing machinery.
  • exon skipping can also be induced in so-called strong exons, i.e., exons which are normally efficiently recognized by the splicing machinery of the cell. From any given sequence, it is (almost) always possible to predict whether the sequence comprises putative exons and to determine whether these exons are strong or weak.
  • strong exons i.e., exons which are normally efficiently recognized by the splicing machinery of the cell.
  • a useful algorithm can be found on the NetGene2 splice site prediction server (Brunak, et al., 1991, J. Mol. Biol. 220, p. 49-65).
  • Exon skipping by a means of the invention can be induced in (almost) every exon, independent of whether the exon is a weak exon or a strong exon and also independent of whether the exon comprises an ERS.
  • an exon that is targeted for skipping is a strong exon.
  • an exon targeted for skipping does not comprise an ERS.
  • a method of the invention is used to at least in part decrease the production of an aberrant protein.
  • Such proteins can, for instance, be onco-proteins or viral proteins.
  • an onco-proteins or viral proteins In many tumors, not only the presence of an onco-protein but also its relative level of expression has been associated with the phenotype of the tumor cell.
  • viral proteins not only the presence of viral proteins but also the amount of viral protein in a cell determines the virulence of a particular virus.
  • the timing of expression in the life cycle and the balance in the amount of certain viral proteins in a cell determines whether viruses are efficiently or inefficiently produced.
  • it is possible to lower the amount of aberrant protein in a cell such that, for instance, a tumor cell becomes less tumorigenic (metastatic) and/or a virus-infected cell produces less virus.
  • a method of the invention is used to modify the aberrant protein into a functional protein.
  • the functional protein is capable of performing a function of a protein normally present in a cell but absent in the cells to be treated. Very often, even partial restoration of function results in significantly improved performance of the cell thus treated. Due to the better performance, such cells can also have a selective advantage over unmodified cells, thus aiding the efficacy of the treatment.
  • This aspect of the invention is particularly suited for the restoration of expression of defective genes. This is achieved by causing the specific skipping of targeted exons, thus bypassing or correcting deleterious mutations (typically stop-mutations or frame-shifting point mutations, single- or multi-exon deletions or insertions leading to translation termination).
  • deleterious mutations typically stop-mutations or frame-shifting point mutations, single- or multi-exon deletions or insertions leading to translation termination).
  • this novel form of splice-modulation gene therapy requires the administration of much smaller therapeutic reagents, typically, but not limited to, 14-40 nucleotides.
  • molecules of 14-25 nucleotides are used since these molecules are easier to produce and enter the cell more effectively.
  • the methods of the invention allow much more flexibility in the subsequent design of effective and safe administration systems.
  • An important additional advantage of this aspect of the invention is that it restores (at least some of) the activity of the endogenous gene, which still possesses most or all of its gene-regulatory circuitry, thus ensuring proper expression levels and the synthesis of tissue-specific isoforms.
  • This aspect of the invention can in principle be applied to any genetic disease or genetic predisposition to disease in which targeted skipping of specific exons would restore the translational reading frame when this has been disrupted by the original mutation, provided that translation of an internally slightly shorter protein is still fully or partly functional.
  • Preferred embodiments for which this application can be of therapeutic value are: predisposition to second hit mutations in tumor suppressor genes, e.g., those involved in breast cancer, colon cancer, tuberous sclerosis, neurofibromatosis etc., where (partial) restoration of activity would preclude the manifestation of nullosomy by second hit mutations and thus would protect against tumorigenesis.
  • Another preferred embodiment involves the (partial) restoration of defective gene products which have a direct disease causing effect, e.g., hemophilia A (clotting factor VIII deficiency), some forms of congenital hypothyroidism (due to thyroglobulin synthesis deficiency) and Duchenne muscular dystrophy (DMD), in which frame-shifting deletions, duplications and stop mutations in the X-linked dystrophin gene cause severe, progressive muscle degradation.
  • DMD is typically lethal in late adolescence or early adulthood, while non-frame-shifting deletions or duplications in the same gene cause the much milder Becker muscular dystrophy (BMD), compatible with a life expectancy between 35-40 years to normal.
  • the present invention enables exon skipping to extend an existing deletion (or alter the mRNA product of an existing duplication) by as many adjacent exons as required to restore the reading frame and generate an internally slightly shortened, but still functional, protein. Based on the much milder clinical symptoms of BMD patients with the equivalent of this induced deletion, the disease in the DMD patients would have a much milder course after AON-therapy.
  • dystrophin gene can lead to a dysfunctional protein.
  • Table 1 comprises a non-limiting list of exons that can be skipped and lists for the mentioned exons some of the more frequently occurring dystrophin gene mutations that have been observed in humans and that can be treated with a method of the invention. Skipping of the mentioned exon leads to a mutant dystrophin protein comprising at least the functionality of a Becker mutant.
  • the invention provides a method of the invention wherein the exon inclusion signal is present in exon numbers 2, 8, 19, 29, 43, 44, 45, 46, 50, 51, 52 or 53 of the human dystrophin gene.
  • the occurrence of certain deletion/insertion variations is more frequent than others.
  • By inducing skipping of exon 51 approximately 15% of DMD-deletion containing patients can be treated with a means or method of the invention. Such treatment will result in the patient having at least some dystrophin-positive fibers.
  • the exon exclusion signal is present in exon 46 or exon 51.
  • the agent comprises a nucleic acid sequence according to hAON#4, hAON#6, hAON#8, hAON#9, hAON#11 and/or one or more of hAON#21-30 or a functional part, derivative and/or analogue of the hAON.
  • a functional part, derivative and/or analogue of the hAON comprises the same exon skipping activity in kind, but not necessarily in amount, in a method of the invention.
  • a preferred but non-limiting example of such a case in the DMD deletion database is a 46-50 deletion. Patients comprising a 46-50 deletion do not produce functional dystrophin. However, an at least partially functional dystrophin can be generated by inducing skipping of both exon 45 and exon 51. Another preferred but non-limiting example is patients comprising a duplication of exon 2.
  • the invention therefore provides a method of the invention further comprising providing the cell with another agent capable of inhibiting an exon inclusion signal in another exon of the pre-mRNA.
  • another agent capable of inhibiting an exon inclusion signal in another exon of the pre-mRNA.
  • the invention provides a method for selecting the suitable agents for splice-therapy and their validation as specific exon-skipping agents in pilot experiments.
  • a method is provided for determining whether an agent is capable of specifically inhibiting an exon inclusion signal of an exon, comprising providing a cell having a pre-mRNA containing the exon with the agent, culturing the cell to allow the formation of an mRNA from the pre-mRNA and determining whether the exon is absent the mRNA.
  • the agent comprises a nucleic acid or a functional equivalent thereof, the nucleic acid comprising complementarity to a part of the exon. Agents capable of inducing specific exon skipping can be identified with a method of the invention.
  • RNA molecule it is possible to include a prescreen for agents by first identifying whether the agent is capable of binding with a relatively high affinity to an exon containing nucleic acid, preferably RNA.
  • a method for determining whether an agent is capable of specifically inhibiting an exon inclusion signal of an exon is provided, further comprising first determining in vitro the relative binding affinity of the nucleic acid or functional equivalent thereof to an RNA molecule comprising the exon.
  • an agent that is obtainable by a method of the invention.
  • the agent comprises a nucleic acid or a functional equivalent thereof.
  • the agent when used to induce exon skipping in a cell, is capable of at least in part reducing the amount of aberrant protein in the cell. More preferably, the exon skipping results in an mRNA encoding a protein that is capable of performing a function in the cell.
  • the pre-mRNA is derived from a dystrophin gene.
  • the functional protein comprises a mutant or normal dystrophin protein.
  • the mutant dystrophin protein comprises at least the functionality of a dystrophin protein in a Becker patient.
  • the agent comprises the nucleic acid sequence of hAON#4, hAON#6, hAON#8, hAON#9, hAON#11 and/or one or more of hAON#21-30 or a functional part, derivative and/or analogue of the hAON.
  • a functional part, derivative and/or analogue of the hAON comprises the same exon skipping activity in kind, but not necessarily in amount, in a method of the invention.
  • nucleic acid delivery methods have been widely developed. The artisan is well capable of determining whether a method of delivery is suitable for performing the present invention.
  • the method includes the packaging of an agent of the invention into liposomes, the liposomes being provided to cells comprising a target pre-mRNA. Liposomes are particularly suited for delivery of nucleic acid to cells.
  • Antisense molecules capable of inducing exon skipping can be produced in a cell upon delivery of nucleic acid containing a transcription unit to produce antisense RNA.
  • suitable transcription units are small nuclear RNA (SNRP) or tRNA transcription units.
  • the invention therefore, further provides a nucleic acid delivery vehicle comprising a nucleic acid or functional equivalent thereof of the invention capable of inhibiting an exon inclusion signal.
  • the delivery vehicle is capable of expressing the nucleic acid of the invention.
  • single-stranded viruses are used as a vehicle, it is entirely within the scope of the invention when such a virus comprises only the antisense sequence of an agent of the invention.
  • AONs of the invention are encoded by small nuclear RNA or tRNA transcription units on viral nucleic encapsulated by the virus as vehicle.
  • a preferred single-stranded virus is adeno-associated virus.
  • the invention provides the use of a nucleic acid or a nucleic acid delivery vehicle of the invention for the preparation of a medicament.
  • the medicament is used for the treatment of an inherited disease. More preferably, the medicament is used for the treatment of Duchenne Muscular Dystrophy.
  • FIG. 1 Deletion of exon 45 is one of the most frequent DMD-mutations. Due to this deletion, exon 44 is spliced to exon 46, the translational reading frame is interrupted, and a stop codon is created in exon 46 leading to a dystrophin deficiency. Our aim is to artificially induce the skipping of an additional exon, exon 46, in order to reestablish the reading frame and restore the synthesis of a slightly shorter, but largely functional, dystrophin protein as found in the much milder affected Becker muscular dystrophy patients affected by a deletion of both exons 45 and 46.
  • Exon 46 contains a purine-rich region that is hypothesized to have a potential role in the regulation of its splicing in the pre-mRNA.
  • a series of overlapping 2′O-methyl phosphorothioate antisense oligoribonucleotides (AONs) was designed directed at this purine-rich region in mouse dystrophin exon 46.
  • the AONs differ both in length and sequence. The chemical modifications render the AONs resistant to endonucleases and RNaseH inside the muscle cells.
  • the AONs contained a 5′ fluorescein group which allowed identification of AON-positive cells.
  • FIG. 3 To determine the binding affinity of the different AONs to the target exon 46 RNA, we performed gel mobility shift assays. In this figure, the five mAONs (mAON#4, 6, 8, 9, and 11) with highest affinity for the target RNA are shown. Upon binding of the AONs to the RNA, a complex is formed that exhibits a retarded gel mobility as can be determined by the band shift. The binding of the AONs to the target was sequence-specific. A random mAON, i.e. not specific for exon 46, did not generate a band shift.
  • FIGS. 4A and 4B The mouse- and human-specific AONs which showed the highest binding affinity in the gel mobility shift assays were transfected into mouse and human myotube cultures.
  • FIG. 4A RT-PCR analysis showed a truncated product, of which the size corresponded to exon 45 directly spliced to exon 47, in the mouse cell cultures upon transfection with the different mAONs#4, 6, 9, and 11. No exon 46 skipping was detected following transfection with a random AON.
  • FIG. 4B RT-PCR analysis in the human muscle cell cultures derived from one unaffected individual (C) and two unrelated DMD patients (P 1 and P 2 ) revealed truncated products upon transfection with hAON#4 and hAON#8. In the control, this product corresponded to exon 45 spliced to exon 47, while in the patients, the fragment size corresponded to exon 44 spliced to exon 47. No exon 46 skipping was detected in the non-transfected cell cultures or following transfection with a random hAON. Highest exon 46 skipping efficiencies were obtained with hAON#8.
  • FIG. 5 Sequence data from the RT-PCR products obtained from patient DL279.1 (corresponding to P 1 in FIG. 4 ), which confirmed the deletion of exon 45 in this patient (upper panel), and the additional skipping of exon 46 following transfection with hAON#8 (lower panel). The skipping of exon 46 was specific, and exon 44 was exactly spliced to exon 47, which reestablishes the translational reading frame.
  • FIG. 6 Immunohistochemical analysis of the muscle cell culture from patient DL279.1 upon transfection with hAON#8.
  • Cells were subject to two different dystrophin antibodies raised against different regions of the protein, located proximally (ManDys-1, ex. 31-32) and distally (Dys-2, ex. 77-79) from the targeted exon 46.
  • the lower panel shows the absence of a dystrophin protein in the myotubes, whereas the hAON#8-induced skipping of exon 46 clearly restored the synthesis of a dystrophin protein as detected by both antibodies (upper panel).
  • FIG. 7A RT-PCR analysis of RNA isolated from human control muscle cell cultures treated with hAON#23, #24, #27, #28, or #29. An additional aberrant splicing product was obtained in cells treated with hAON#28 and #29. Sequence analysis revealed the utilization of an in-frame cryptic splice site within exon 51 that is used at a low frequency upon AON treatment. The product generated included a partial exon 51, which also had a restored reading frame, thereby confirming further the therapeutic value.
  • FIG. 7B A truncated product, with a size corresponding to exon 50 spliced to exon 52, was detected in cells treated with hAON#23 and #28. Sequence analysis of these products confirmed the precise skipping of exon 51.
  • FIG. 8A Gel mobility shift assays were performed to determine the binding affinity of the different h29AON#'s for the exon 29 target RNA. When compared to non-hybridized RNA (none), h29AON#1, #2, #4, #6, #9, #10, and #11 generated complexes with lower gel mobilities, indicating their binding to the RNA. A random AON derived from dystrophin exon 19 did not generate a complex.
  • FIG. 8B RT-PCR analysis of RNA isolated from human control muscle cell cultures treated with h29AON#1, #2, #4, #6, #9, #10, or #11 revealed a truncated product of which the size corresponded to exon 28 spliced to exon 30.
  • exon 29 can specifically be skipped using AONs directed to sequences either within (h29AON#1, #2, #4, or #6) or outside (h29AON#9, #10, or #11) the hypothesized ERS in exon 29.
  • An additional aberrant splicing product was observed that resulted from skipping of both exon 28 and exon 29 (confirmed by sequence data not shown). Although this product was also present in non-treated cells, suggesting that this alternative skipping event may occur naturally, it was enhanced by the AON-treatment.
  • AON 19, derived from dystrophin exon 19 did not induce exon 29 skipping.
  • FIG. 8C The specific skipping of exon 29 was confirmed by sequence data from the truncated RT-PCR fragments. Shown here is the sequence obtained from the exon 29 skipping product in cells treated with h29AON#1.
  • FIG. 9A RT-PCR analysis of RNA isolated from mouse gastrocnemius muscles two days post-injection of 5, 10, or 20 ⁇ g of either mAON#4, #6, or #11. Truncated products, with a size corresponding to exon 45 spliced to exon 47, were detected in all treated muscles. The samples -RT, -RNA, AD-1, and AD-2 were analyzed as negative controls for the RT-PCR reactions.
  • FIG. 9B Sequence analysis of the truncated products generated by mAON#4 and #6 (and #11, not shown) confirmed the precise skipping of exon 46.
  • exon 45 is one of the most frequently deleted exons in DMD, we initially aimed at inducing the specific skipping of exon 46 ( FIG. 1 ). This would produce the shorter, largely functional dystrophin found in BMD patients carrying a deletion of exons 45 and 46.
  • the system was initially set up for modulation of dystrophin pre-mRNA splicing of the mouse dystrophin gene. We later aimed for the human dystrophin gene with the intention to restore the translational reading frame and dystrophin synthesis in muscle cells from DMD patients affected by a deletion of exon 45.
  • a series of mouse- and human-specific AONs was designed, directed at an internal part of exon 46 that contains a stretch of purine-rich sequences and is hypothesized to have a putative regulatory role in the splicing process of exon 46 ( FIG. 2 ).
  • mAONs and hAONs mouse- and human-specific AONs
  • RNA oligonucleotides are known to be resistant to endonucleases and RNaseH, and to bind to RNA with high affinity.
  • the sequences of those AONs that were eventually effective and applied in muscle cells in vitro are shown below.
  • the corresponding mouse and human-specific AONs are highly homologous but not completely identical.
  • mAON#2 5′ GCAATTGTTATCTGCTT (SEQ ID NO: 1) mAON#3: 5′ GTTATCTGCTTCTTCC (SEQ ID NO: 2) mAON#4: 5′ CTGCTTCTTCCAGCC (SEQ ID NO: 3) mAON#5: 5′ TCTGCTTCTTCCAGC (SEQ ID NO: 4) mAON#6: 5′ GTTATCTGCTTCTTCCAGCC (SEQ ID NO: 5) mAON#7: 5′ CTTTTAGCTGCTGCTC (SEQ ID NO: 6) mAON#8: 5′ GTTGTTCTTTTAGCTGCTGC (SEQ ID NO: 7) mAON#9: 5′ TTAGCTGCTGCTCAT (SEQ ID NO: 8) mAON#10: 5′ TTTAGCTGCTGCTCATCTCC (SEQ ID NO: 9) mAON#11: 5′ CTGCTGCTCATCTCC (SEQ ID NO: 10)
  • the efficacy of the AONs is determined by their binding affinity for the target sequence. Notwithstanding recent improvements in computer simulation programs for the prediction of RNA-folding, it is difficult to speculate which of the designed AONs would be capable of binding the target sequence with a relatively high affinity. Therefore, we performed gel mobility shift assays (according to protocols described by Bruice et al., 1997).
  • the exon 46 target RNA fragment was generated by in vitro T7-transcription from a PCR fragment (amplified from either murine or human muscle mRNA using a sense primer that contains the T7 promoter sequence) in the presence of 32P-CTP.
  • the binding affinity of the individual AONs (0.5 pmol) for the target transcript fragments was determined by hybridization at 37° C.
  • exon 46-specific AONs which showed the highest target binding affinity in gel mobility shift assays were selected for analysis of their efficacy in inducing the skipping in muscle cells in vitro.
  • a non-specific AON as a negative control for the specific skipping of exon 46.
  • the system was first set up in mouse muscle cells. We used both proliferating myoblasts and post-mitotic myotube cultures (expressing higher levels of dystrophin) derived from the mouse muscle cell line C2C12. For the subsequent experiments in human-derived muscle cell cultures, we used primary muscle cell cultures isolated from muscle biopsies from one unaffected individual and two unrelated DMD patients carrying a deletion of exon 45.
  • RNA was reverse transcribed using C. therm . polymerase (Roche) and an exon 48-specific reverse primer.
  • the cDNA was amplified by two rounds of PCR, including a nested amplification using primers in exons 44 and 47 (for the human system), or exons 45 and 47 (for the mouse system).
  • exons 44 and 47 for the human system
  • exons 45 and 47 for the mouse system.
  • Subsequent sequence analysis confirmed the specific skipping of exon 46 from these mouse dystrophin transcripts.
  • Exon 51 is an interesting target exon. The skipping of this exon is therapeutically applicable in patients carrying deletions spanning exon 50, exons 45-50, exons 48-50, exons 49-50, exon 52, and exons 52-63, which includes a total of 15% of patients from our Leiden database.
  • the RT-PCR and sequence analysis revealed that we were able to induce the specific skipping of exon 51 from the human dystrophin transcript.
  • hAON#21 5′ CCACAGGTTGTGTCACCAG (SEQ ID NO: 16)
  • hAON#22 5′ TTTCCTTAGTAACCACAGGTT
  • hAON#23 5′ TGGCATTTCTAGTTTGG
  • hAON#24 5′ CCAGAGCAGGTACCTCCAACATC
  • hAON#25 5′ GGTAAGTTCTGTCCAAGCCC
  • hAON#26 5′ TCACCCTCTGTGATTTTAT
  • hAON#27 5′ CCCTCTGTGATTTT
  • hAON#28 5′ TCACCCACCATCACCCT
  • SEQ ID NO: 23 hAON#29: 5′ TGATATCCTCAAGGTCACCC
  • hAON#30 5′ CTGCTTGATG
  • exon 46 or exon 51 restores the reading frame for a considerable number of different DMD mutations.
  • the range of mutations for which this strategy is applicable can be enlarged by the simultaneous skipping of more than one exon. For instance, in DMD patients with a deletion of exon 46 to exon 50, only the skipping of both the deletion-flanking exons 45 and 51 enables the reestablishment of the translational reading frame.
  • a mutation in exon 29 leads to the skipping of this exon in two Becker muscular dystrophy patients (Ginjaar at al., 2000, EJHG, vol. 8, p. 793-796).
  • the mutation is located in a purine-rich stretch that could be associated with ERS activity.
  • We designed a series of AONs (see below) directed to sequences both within (h29AON#1 to h29AON#6) and outside (h29AON#7 to h29AON#11) the hypothesized ERS.
  • Gel mobility shift assays were performed (as described) to identify those AONs with highest affinity for the target RNA ( FIG. 8 ).
  • h29AON#1, #2, #4, #6, #9, #10, and #11 were transfected into human control myotube cultures using the PEI transfection reagent.
  • RNA was isolated 24 hrs post-transfection, and cDNA was generated using an exon 31-specific reverse primer. PCR-amplification of the targeted region was performed using different primer combinations flanking exon 29.
  • This RT-PCR and subsequent sequence analysis revealed that we were able to induce the skipping of exon 29 from the human dystrophin transcript.
  • the AONs that facilitated this skipping were directed to sequences both within and outside the hypothesized ERS (h29AON#1, #2, #4, #6, #9, and #11).
  • h29AON#1 5′ TATCCTCTGAATGTCGCATC (SEQ ID NO: 26)
  • h29AON#2 5′ GGTTATCCTCTGAATGTCGC (SEQ ID NO: 27)
  • h29AON#3 5′ TCTGTTAGGGTCTGTGCC (SEQ ID NO: 28)
  • h29AON#4 5′ CCATCTGTTAGGGTCTGTG (SEQ ID NO: 29)
  • h29AON#5 5′ GTCTGTGCCAATATGCG (SEQ ID NO: 30)
  • h29AON#6 5′ TCTGTGCCAATATGCGAATC (SEQ ID NO: 31)
  • h29AON#7 5′ TGTCTCAAGTTCCTC
  • h29AON#8 5′ GAATTAAATGTCTCAAGTTC (SEQ ID NO: 33)
  • h29AON#9 5′ TTAAATGTCTCAAGTTCC (SEQ ID NO: 34)
  • mice dystrophin exon 46-specific AONs were tested in vivo by injecting them, linked to polyethylenimine (PEI), into the gastrocnemius muscles of control mice.
  • PEI polyethylenimine
  • mAON#4, #6, and #11 previously shown to be effective in mouse muscle cells in vitro, we were able to induce the skipping of exon 46 in muscle tissue in vivo as determined by both RT-PCR and sequence analysis ( FIG. 9 ).
  • the in vivo exon 46 skipping was dose-dependent with highest efficiencies (up to 10%) following injection of 20 ⁇ g per muscle per day for two subsequent days.

Abstract

The present invention provides a method for at least in part decreasing the production of an aberrant protein in a cell, the cell comprising pre-mRNA comprising exons coding for the protein, by inducing so-called exon skipping in the cell. Exon-skipping results in mature mRNA that does not contain the skipped exon, which leads to an altered product of the exon codes for amino acids. Exon skipping is performed by providing a cell with an agent capable of specifically inhibiting an exon inclusion signal, for instance, an exon recognition sequence, of the exon. The exon inclusion signal can be interfered with by a nucleic acid comprising complementarity to a part of the exon. The nucleic acid, which is also herewith provided, can be used for the preparation of a medicament, for instance, for the treatment of an inherited disease.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. patent application Ser. No. 10/395,031, filed Mar. 21, 2003, now U.S. Pat. No. ______, which is a continuation of International Application PCT/NL01/00697, filed Sep. 21, 2001, designating the United States, published in English Mar. 28, 2002, as WO 02/024906 A1 and subsequently published with corrections Jan. 23, 2003, as WO 02/024906 C2, the contents of the entirety of each of which are hereby incorporated herein by this reference.
  • TECHNICAL FIELD
  • The invention relates to the field of gene therapy.
  • BACKGROUND
  • Given the rapid advances of human genome research, professionals and the public expect that the near future will bring us, in addition to understanding of disease mechanisms and refined and reliable diagnostics, therapies for many devastating genetic diseases.
  • While it is hoped that for some (e.g., metabolic) diseases, the improved insights will bring easily administrable small-molecule therapies, it is likely that in most cases one or another form of gene therapy will ultimately be required, i.e., the correction, addition or replacement of the defective gene product.
  • In the past few years, research and development in this field have highlighted several technical difficulties which need to be overcome, e.g., related to the large size of many genes involved in genetic disease (limiting the choice of suitable systems to administer the therapeutic gene), the accessibility of the tissue in which the therapeutic gene should function (requiring the design of specific targeting techniques, either physically, by restricted injection, or biologically, by developing systems with tissue-specific affinities) and the safety to the patient of the administration system. These problems are to some extent interrelated, and it can be generally concluded that the smaller the therapeutic agent is, the easier it will become to develop efficient, targetable and safe administration systems.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention addresses this problem by inducing so-called exon-skipping in cells. Exon-skipping results in mature mRNA that does not contain the skipped exon and thus, when the exon codes for amino acids, can lead to the expression of an altered product. Technology for exon-skipping is currently directed toward the use of so-called “Anti-sense Oligonucleotides” (AONs).
  • Much of this work is done in the mdx mouse model for Duchenne muscular dystrophy (DMD). The mdx mouse, which carries a nonsense mutation in exon 23 of the dystrophin gene, has been used as an animal model of Duchenne muscular dystrophy. Despite the mdx mutation, which should preclude the synthesis of a functional dystrophin protein, rare, naturally occurring dystrophin-positive fibers have been observed in mdx muscle tissue. These dystrophin-positive fibers are thought to have arisen from an apparently naturally occurring exon-skipping mechanism, either due to somatic mutations or through alternative splicing.
  • AONs directed to, respectively, the 3′ and 5′ splice sites of introns 22 and 23 in dystrophin pre-mRNA have been shown to interfere with factors normally involved in removal of intron 23 so that exon 23 was also removed from the mRNA (Wilton, 1999). In a similar study, Dunckley et al. (1998) showed that exon skipping using AONs directed to 3′ and 5′ splice sites can have unexpected results. They observed skipping of not only exon 23 but also of exons 24-29, thus resulting in an mRNA containing an exon 22-exon 30 junction.
  • The underlying mechanism for the appearance of the unexpected 22-30 splicing variant is not known. It could be due to the fact that splice sites contain consensus sequences leading to promiscuous hybridization of the oligos used to direct the exon skipping. Hybridization of the oligos to other splice sites than the sites of the exon to be skipped of course could easily interfere with the accuracy of the splicing process. On the other hand, the accuracy could be lacking due to the fact that two oligos (for the 5′ and the 3′ splice site) need to be used. Pre-mRNA containing one but not the other oligo could be prone to unexpected splicing variants.
  • To overcome these and other problems, the present invention provides a method for directing splicing of a pre-mRNA in a system capable of performing a splicing operation comprising contacting the pre-mRNA in the system with an agent capable of specifically inhibiting an exon inclusion signal of at least one exon in the pre-mRNA, the method further comprising allowing splicing of the pre-mRNA. Interfering with an exon inclusion signal (EIS) has the advantage that such elements are located within the exon. By providing an antisense oligo for the interior of the exon to be skipped, it is possible to interfere with the exon inclusion signal, thereby effectively masking the exon from the splicing apparatus. The failure of the splicing apparatus to recognize the exon to be skipped thus leads to exclusion of the exon from the final mRNA.
  • The present invention does not interfere directly with the enzymatic process of the splicing machinery (the joining of the exons). It is thought that this allows the method to be more robust and reliable. It is thought that an EIS is a particular structure of an exon that allows splice acceptor and donor to assume a particular spatial conformation. In this concept, it is the particular spatial conformation that enables the splicing machinery to recognize the exon. However, the invention is certainly not limited to this model.
  • It has been found that agents capable of binding to an exon can inhibit an EIS. Agents may specifically contact the exon at any point and still be able to specifically inhibit the EIS. The mRNA may be useful in itself. For instance, production of an undesired protein can be at least in part reduced by inhibiting inclusion of a required exon into the mRNA. A preferred method of the invention further comprises allowing translation of mRNA produced from splicing of the pre-mRNA. Preferably, the mRNA encodes a functional protein. In a preferred embodiment, the protein comprises two or more domains, wherein at least one of the domains is encoded by the mRNA as a result of skipping of at least part of an exon in the pre-mRNA.
  • Exon skipping will typically, though not necessarily, be of relevance for proteins in the wild-type configuration, having at least two functional domains that each performs a function, wherein the domains are generated from distinct parts of the primary amino acid sequence. Examples are, for instance, transcription factors. Typically, these factors comprise a DNA binding domain and a domain that interacts with other proteins in the cell. Skipping of an exon that encodes a part of the primary amino acid sequence that lies between these two domains can lead to a shorter protein that comprises the same function, at least in part. Thus, detrimental mutations in this intermediary region (for instance, frame-shift or stop mutations) can be at least in part repaired by inducing exon skipping to allow synthesis of the shorter (partly) functional protein.
  • Using a method of the invention, it is also possible to induce partial skipping of the exon. In this embodiment, the contacting results in activation of a cryptic splice site in a contacted exon. This embodiment broadens the potential for manipulation of the pre-mRNA leading to a functional protein. Preferably, the system comprises a cell. Preferably, the cell is cultured in vitro or in the organism in vivo. Typically, though not necessarily, the organism comprises a human or a mouse.
  • In a preferred embodiment, the invention provides a method for at least in part decreasing the production of an aberrant protein in a cell, the cell comprising pre-mRNA comprising exons coding for the protein, the method comprising providing the cell with an agent capable of specifically inhibiting an exon inclusion signal of at least one of the exons, the method further comprising allowing translation of mRNA produced from splicing of the pre-mRNA.
  • Any agent capable of specifically inhibiting an exon exclusion signal can be used for the present invention. Preferably, the agent comprises a nucleic acid or a functional equivalent thereof. Preferably, but not necessarily, the nucleic acid is in single-stranded form. Peptide nucleic acid and other molecules comprising the same nucleic acid binding characteristics in kind, but not necessarily in amount, are suitable equivalents. Nucleic acid or an equivalent may comprise modifications to provide additional functionality. For instance, 2′-O-methyl oligoribonucleotides can be used. These ribonucleotides are more resistant to RNAse action than conventional oligonucleotides.
  • In a preferred embodiment of the invention, the exon inclusion signal is interfered with by an antisense nucleic acid directed to an exon recognition sequence (ERS). These sequences are relatively purine-rich and can be distinguished by scrutinizing the sequence information of the exon to be skipped (Tanaka et al., 1994, Mol. Cell. Biol. 14, p. 1347-1354). Exon recognition sequences are thought to aid inclusion into mRNA of so-called weak exons (Achsel et al., 1996, J. Biochem. 120, p. 53-60). These weak exons comprise, for instance, 5′ and or 3′ splice sites that are less efficiently recognized by the splicing machinery. In the present invention, it has been found that exon skipping can also be induced in so-called strong exons, i.e., exons which are normally efficiently recognized by the splicing machinery of the cell. From any given sequence, it is (almost) always possible to predict whether the sequence comprises putative exons and to determine whether these exons are strong or weak. Several algorithms for determining the strength of an exon exist. A useful algorithm can be found on the NetGene2 splice site prediction server (Brunak, et al., 1991, J. Mol. Biol. 220, p. 49-65). Exon skipping by a means of the invention can be induced in (almost) every exon, independent of whether the exon is a weak exon or a strong exon and also independent of whether the exon comprises an ERS. In a preferred embodiment, an exon that is targeted for skipping is a strong exon. In another preferred embodiment, an exon targeted for skipping does not comprise an ERS.
  • Methods of the invention can be used in many ways. In one embodiment, a method of the invention is used to at least in part decrease the production of an aberrant protein. Such proteins can, for instance, be onco-proteins or viral proteins. In many tumors, not only the presence of an onco-protein but also its relative level of expression has been associated with the phenotype of the tumor cell. Similarly, not only the presence of viral proteins but also the amount of viral protein in a cell determines the virulence of a particular virus. Moreover, for efficient multiplication and spread of a virus, the timing of expression in the life cycle and the balance in the amount of certain viral proteins in a cell determines whether viruses are efficiently or inefficiently produced. Using a method of the invention, it is possible to lower the amount of aberrant protein in a cell such that, for instance, a tumor cell becomes less tumorigenic (metastatic) and/or a virus-infected cell produces less virus.
  • In a preferred embodiment, a method of the invention is used to modify the aberrant protein into a functional protein. In one embodiment, the functional protein is capable of performing a function of a protein normally present in a cell but absent in the cells to be treated. Very often, even partial restoration of function results in significantly improved performance of the cell thus treated. Due to the better performance, such cells can also have a selective advantage over unmodified cells, thus aiding the efficacy of the treatment.
  • This aspect of the invention is particularly suited for the restoration of expression of defective genes. This is achieved by causing the specific skipping of targeted exons, thus bypassing or correcting deleterious mutations (typically stop-mutations or frame-shifting point mutations, single- or multi-exon deletions or insertions leading to translation termination).
  • Compared to gene-introduction strategies, this novel form of splice-modulation gene therapy requires the administration of much smaller therapeutic reagents, typically, but not limited to, 14-40 nucleotides. In a preferred embodiment, molecules of 14-25 nucleotides are used since these molecules are easier to produce and enter the cell more effectively. The methods of the invention allow much more flexibility in the subsequent design of effective and safe administration systems. An important additional advantage of this aspect of the invention is that it restores (at least some of) the activity of the endogenous gene, which still possesses most or all of its gene-regulatory circuitry, thus ensuring proper expression levels and the synthesis of tissue-specific isoforms.
  • This aspect of the invention can in principle be applied to any genetic disease or genetic predisposition to disease in which targeted skipping of specific exons would restore the translational reading frame when this has been disrupted by the original mutation, provided that translation of an internally slightly shorter protein is still fully or partly functional. Preferred embodiments for which this application can be of therapeutic value are: predisposition to second hit mutations in tumor suppressor genes, e.g., those involved in breast cancer, colon cancer, tuberous sclerosis, neurofibromatosis etc., where (partial) restoration of activity would preclude the manifestation of nullosomy by second hit mutations and thus would protect against tumorigenesis. Another preferred embodiment involves the (partial) restoration of defective gene products which have a direct disease causing effect, e.g., hemophilia A (clotting factor VIII deficiency), some forms of congenital hypothyroidism (due to thyroglobulin synthesis deficiency) and Duchenne muscular dystrophy (DMD), in which frame-shifting deletions, duplications and stop mutations in the X-linked dystrophin gene cause severe, progressive muscle degradation. DMD is typically lethal in late adolescence or early adulthood, while non-frame-shifting deletions or duplications in the same gene cause the much milder Becker muscular dystrophy (BMD), compatible with a life expectancy between 35-40 years to normal. In the embodiment as applied to DMD, the present invention enables exon skipping to extend an existing deletion (or alter the mRNA product of an existing duplication) by as many adjacent exons as required to restore the reading frame and generate an internally slightly shortened, but still functional, protein. Based on the much milder clinical symptoms of BMD patients with the equivalent of this induced deletion, the disease in the DMD patients would have a much milder course after AON-therapy.
  • Many different mutations in the dystrophin gene can lead to a dysfunctional protein. (For a comprehensive inventory see www.dmd.nl, the internationally accepted database for DMD and related disorders.) The precise exon to be skipped to generate a functional dystrophin protein varies from mutation to mutation. Table 1 comprises a non-limiting list of exons that can be skipped and lists for the mentioned exons some of the more frequently occurring dystrophin gene mutations that have been observed in humans and that can be treated with a method of the invention. Skipping of the mentioned exon leads to a mutant dystrophin protein comprising at least the functionality of a Becker mutant. Thus, in one embodiment, the invention provides a method of the invention wherein the exon inclusion signal is present in exon numbers 2, 8, 19, 29, 43, 44, 45, 46, 50, 51, 52 or 53 of the human dystrophin gene. The occurrence of certain deletion/insertion variations is more frequent than others. In the present invention, it was found that by inducing skipping of exon 46 with a means or a method of the invention, approximately 7% of DMD-deletion containing patients can be treated, resulting in the patients to comprise dystrophin-positive muscle fibers. By inducing skipping of exon 51, approximately 15% of DMD-deletion containing patients can be treated with a means or method of the invention. Such treatment will result in the patient having at least some dystrophin-positive fibers. Thus, with either skipping of exon 46 or 51 using a method of the invention, approximately 22% of the patients containing a deletion in the dystrophin gene can be treated. Thus, in a preferred embodiment of the invention, the exon exclusion signal is present in exon 46 or exon 51. In a particularly preferred embodiment, the agent comprises a nucleic acid sequence according to hAON#4, hAON#6, hAON#8, hAON#9, hAON#11 and/or one or more of hAON#21-30 or a functional part, derivative and/or analogue of the hAON. A functional part, derivative and/or analogue of the hAON comprises the same exon skipping activity in kind, but not necessarily in amount, in a method of the invention.
  • TABLE 1
    Therapeutic for DMD-deletions Frequency in
    Exon to be skipped (exons) www.dmd.nl (%)
    2 3-7 2
    8 3-7 4
    4-7
    5-7
    6-7
    43 44 5
    44-47
    44 35-43 8
    45
    45-54
    45 18-44 13
    46-47
    44
    46-48
    46-49
    46-51
    46-53
    46 45 7
    50 51 5
    51-55
    51 50 15
    45-50
    48-50
    49-50
    52
    52-63
    52 51 3
    53
    53-55
    53 45-52 9
    48-52
    49-52
    50-52
    52
  • It can be advantageous to induce exon skipping of more than one exon in the pre-mRNA. For instance, considering the wide variety of mutations and the fixed nature of exon lengths and amino acid sequence flanking such mutations, the situation can occur that for restoration of function more than one exon needs to be skipped. A preferred but non-limiting example of such a case in the DMD deletion database is a 46-50 deletion. Patients comprising a 46-50 deletion do not produce functional dystrophin. However, an at least partially functional dystrophin can be generated by inducing skipping of both exon 45 and exon 51. Another preferred but non-limiting example is patients comprising a duplication of exon 2. By providing one agent capable of inhibiting an EIS of exon 2, it is possible to partly skip either one or both exons 2, thereby regenerating the wild-type protein next to the truncated or double exon 2 skipped protein. Another preferred but non-limiting example is the skipping of exons 45 through 50. This generates an in-frame Becker-like variant. This Becker-like variant can be generated to cure any mutation localized in exons 45, 46, 47, 48, 49, and/or 50 or combinations thereof. In one aspect, the invention therefore provides a method of the invention further comprising providing the cell with another agent capable of inhibiting an exon inclusion signal in another exon of the pre-mRNA. Of course, it is completely within the scope of the invention to use two or more agents for the induction of exon skipping in pre-mRNA of two or more different genes.
  • In another aspect, the invention provides a method for selecting the suitable agents for splice-therapy and their validation as specific exon-skipping agents in pilot experiments. A method is provided for determining whether an agent is capable of specifically inhibiting an exon inclusion signal of an exon, comprising providing a cell having a pre-mRNA containing the exon with the agent, culturing the cell to allow the formation of an mRNA from the pre-mRNA and determining whether the exon is absent the mRNA. In a preferred embodiment, the agent comprises a nucleic acid or a functional equivalent thereof, the nucleic acid comprising complementarity to a part of the exon. Agents capable of inducing specific exon skipping can be identified with a method of the invention. It is possible to include a prescreen for agents by first identifying whether the agent is capable of binding with a relatively high affinity to an exon containing nucleic acid, preferably RNA. To this end, a method for determining whether an agent is capable of specifically inhibiting an exon inclusion signal of an exon is provided, further comprising first determining in vitro the relative binding affinity of the nucleic acid or functional equivalent thereof to an RNA molecule comprising the exon.
  • In yet another aspect, an agent is provided that is obtainable by a method of the invention. In a preferred embodiment, the agent comprises a nucleic acid or a functional equivalent thereof. Preferably the agent, when used to induce exon skipping in a cell, is capable of at least in part reducing the amount of aberrant protein in the cell. More preferably, the exon skipping results in an mRNA encoding a protein that is capable of performing a function in the cell. In a particularly preferred embodiment, the pre-mRNA is derived from a dystrophin gene. Preferably, the functional protein comprises a mutant or normal dystrophin protein. Preferably, the mutant dystrophin protein comprises at least the functionality of a dystrophin protein in a Becker patient. In a particularly preferred embodiment, the agent comprises the nucleic acid sequence of hAON#4, hAON#6, hAON#8, hAON#9, hAON#11 and/or one or more of hAON#21-30 or a functional part, derivative and/or analogue of the hAON. A functional part, derivative and/or analogue of the hAON comprises the same exon skipping activity in kind, but not necessarily in amount, in a method of the invention.
  • The art describes many ways to deliver agents to cells. Particularly, nucleic acid delivery methods have been widely developed. The artisan is well capable of determining whether a method of delivery is suitable for performing the present invention. In a non-limiting example, the method includes the packaging of an agent of the invention into liposomes, the liposomes being provided to cells comprising a target pre-mRNA. Liposomes are particularly suited for delivery of nucleic acid to cells. Antisense molecules capable of inducing exon skipping can be produced in a cell upon delivery of nucleic acid containing a transcription unit to produce antisense RNA. Non-limiting examples of suitable transcription units are small nuclear RNA (SNRP) or tRNA transcription units. The invention, therefore, further provides a nucleic acid delivery vehicle comprising a nucleic acid or functional equivalent thereof of the invention capable of inhibiting an exon inclusion signal. In one embodiment, the delivery vehicle is capable of expressing the nucleic acid of the invention. Of course, in case, for instance, single-stranded viruses are used as a vehicle, it is entirely within the scope of the invention when such a virus comprises only the antisense sequence of an agent of the invention. In another embodiment of single strand viruses, AONs of the invention are encoded by small nuclear RNA or tRNA transcription units on viral nucleic encapsulated by the virus as vehicle. A preferred single-stranded virus is adeno-associated virus.
  • In yet another embodiment, the invention provides the use of a nucleic acid or a nucleic acid delivery vehicle of the invention for the preparation of a medicament. In a preferred embodiment, the medicament is used for the treatment of an inherited disease. More preferably, the medicament is used for the treatment of Duchenne Muscular Dystrophy.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1. Deletion of exon 45 is one of the most frequent DMD-mutations. Due to this deletion, exon 44 is spliced to exon 46, the translational reading frame is interrupted, and a stop codon is created in exon 46 leading to a dystrophin deficiency. Our aim is to artificially induce the skipping of an additional exon, exon 46, in order to reestablish the reading frame and restore the synthesis of a slightly shorter, but largely functional, dystrophin protein as found in the much milder affected Becker muscular dystrophy patients affected by a deletion of both exons 45 and 46.
  • FIG. 2. Exon 46 contains a purine-rich region that is hypothesized to have a potential role in the regulation of its splicing in the pre-mRNA. A series of overlapping 2′O-methyl phosphorothioate antisense oligoribonucleotides (AONs) was designed directed at this purine-rich region in mouse dystrophin exon 46. The AONs differ both in length and sequence. The chemical modifications render the AONs resistant to endonucleases and RNaseH inside the muscle cells. To determine the transfection efficiency in our in vitro studies, the AONs contained a 5′ fluorescein group which allowed identification of AON-positive cells.
  • FIG. 3. To determine the binding affinity of the different AONs to the target exon 46 RNA, we performed gel mobility shift assays. In this figure, the five mAONs ( mAON# 4, 6, 8, 9, and 11) with highest affinity for the target RNA are shown. Upon binding of the AONs to the RNA, a complex is formed that exhibits a retarded gel mobility as can be determined by the band shift. The binding of the AONs to the target was sequence-specific. A random mAON, i.e. not specific for exon 46, did not generate a band shift.
  • FIGS. 4A and 4B. The mouse- and human-specific AONs which showed the highest binding affinity in the gel mobility shift assays were transfected into mouse and human myotube cultures.
  • FIG. 4A. RT-PCR analysis showed a truncated product, of which the size corresponded to exon 45 directly spliced to exon 47, in the mouse cell cultures upon transfection with the different mAONs# 4, 6, 9, and 11. No exon 46 skipping was detected following transfection with a random AON.
  • FIG. 4B. RT-PCR analysis in the human muscle cell cultures derived from one unaffected individual (C) and two unrelated DMD patients (P1 and P2) revealed truncated products upon transfection with hAON#4 and hAON#8. In the control, this product corresponded to exon 45 spliced to exon 47, while in the patients, the fragment size corresponded to exon 44 spliced to exon 47. No exon 46 skipping was detected in the non-transfected cell cultures or following transfection with a random hAON. Highest exon 46 skipping efficiencies were obtained with hAON#8.
  • FIG. 5. Sequence data from the RT-PCR products obtained from patient DL279.1 (corresponding to P1 in FIG. 4), which confirmed the deletion of exon 45 in this patient (upper panel), and the additional skipping of exon 46 following transfection with hAON#8 (lower panel). The skipping of exon 46 was specific, and exon 44 was exactly spliced to exon 47, which reestablishes the translational reading frame.
  • FIG. 6. Immunohistochemical analysis of the muscle cell culture from patient DL279.1 upon transfection with hAON#8. Cells were subject to two different dystrophin antibodies raised against different regions of the protein, located proximally (ManDys-1, ex. 31-32) and distally (Dys-2, ex. 77-79) from the targeted exon 46. The lower panel shows the absence of a dystrophin protein in the myotubes, whereas the hAON#8-induced skipping of exon 46 clearly restored the synthesis of a dystrophin protein as detected by both antibodies (upper panel).
  • FIG. 7A. RT-PCR analysis of RNA isolated from human control muscle cell cultures treated with hAON#23, #24, #27, #28, or #29. An additional aberrant splicing product was obtained in cells treated with hAON#28 and #29. Sequence analysis revealed the utilization of an in-frame cryptic splice site within exon 51 that is used at a low frequency upon AON treatment. The product generated included a partial exon 51, which also had a restored reading frame, thereby confirming further the therapeutic value.
  • FIG. 7B. A truncated product, with a size corresponding to exon 50 spliced to exon 52, was detected in cells treated with hAON#23 and #28. Sequence analysis of these products confirmed the precise skipping of exon 51.
  • FIG. 8A. Gel mobility shift assays were performed to determine the binding affinity of the different h29AON#'s for the exon 29 target RNA. When compared to non-hybridized RNA (none), h29AON#1, #2, #4, #6, #9, #10, and #11 generated complexes with lower gel mobilities, indicating their binding to the RNA. A random AON derived from dystrophin exon 19 did not generate a complex.
  • FIG. 8B. RT-PCR analysis of RNA isolated from human control muscle cell cultures treated with h29AON#1, #2, #4, #6, #9, #10, or #11 revealed a truncated product of which the size corresponded to exon 28 spliced to exon 30. These results indicate that exon 29 can specifically be skipped using AONs directed to sequences either within (h29AON#1, #2, #4, or #6) or outside (h29AON#9, #10, or #11) the hypothesized ERS in exon 29. An additional aberrant splicing product was observed that resulted from skipping of both exon 28 and exon 29 (confirmed by sequence data not shown). Although this product was also present in non-treated cells, suggesting that this alternative skipping event may occur naturally, it was enhanced by the AON-treatment. AON 19, derived from dystrophin exon 19, did not induce exon 29 skipping.
  • FIG. 8C. The specific skipping of exon 29 was confirmed by sequence data from the truncated RT-PCR fragments. Shown here is the sequence obtained from the exon 29 skipping product in cells treated with h29AON#1.
  • FIG. 9A. RT-PCR analysis of RNA isolated from mouse gastrocnemius muscles two days post-injection of 5, 10, or 20 μg of either mAON#4, #6, or #11. Truncated products, with a size corresponding to exon 45 spliced to exon 47, were detected in all treated muscles. The samples -RT, -RNA, AD-1, and AD-2 were analyzed as negative controls for the RT-PCR reactions.
  • FIG. 9B. Sequence analysis of the truncated products generated by mAON#4 and #6 (and #11, not shown) confirmed the precise skipping of exon 46.
  • DETAILED DESCRIPTION OF THE INVENTION Examples Example 1
  • Since exon 45 is one of the most frequently deleted exons in DMD, we initially aimed at inducing the specific skipping of exon 46 (FIG. 1). This would produce the shorter, largely functional dystrophin found in BMD patients carrying a deletion of exons 45 and 46. The system was initially set up for modulation of dystrophin pre-mRNA splicing of the mouse dystrophin gene. We later aimed for the human dystrophin gene with the intention to restore the translational reading frame and dystrophin synthesis in muscle cells from DMD patients affected by a deletion of exon 45.
  • Design of mAONs and hAONs
  • A series of mouse- and human-specific AONs (mAONs and hAONs) was designed, directed at an internal part of exon 46 that contains a stretch of purine-rich sequences and is hypothesized to have a putative regulatory role in the splicing process of exon 46 (FIG. 2). For the initial screening of the AONs in the gel mobility shift assays (see below), we used non-modified DNA-oligonucleotides (synthesized by EuroGentec, Belgium). For the actual transfection experiments in muscle cells, we used 2′-O-methyl-phosphorothioate oligoribonucleotides (also synthesized by EuroGentec, Belgium). These modified RNA oligonucleotides are known to be resistant to endonucleases and RNaseH, and to bind to RNA with high affinity. The sequences of those AONs that were eventually effective and applied in muscle cells in vitro are shown below. The corresponding mouse and human-specific AONs are highly homologous but not completely identical.
  • The listing below refers to the deoxy-form used for testing, in the finally used 2-O-methyl ribonucleotides all T's should be read as U's.
  • mAON#2: 5′ GCAATTGTTATCTGCTT (SEQ ID NO: 1)
    mAON#3: 5′ GTTATCTGCTTCTTCC (SEQ ID NO: 2)
    mAON#4: 5′ CTGCTTCTTCCAGCC (SEQ ID NO: 3)
    mAON#5: 5′ TCTGCTTCTTCCAGC (SEQ ID NO: 4)
    mAON#6: 5′ GTTATCTGCTTCTTCCAGCC (SEQ ID NO: 5)
    mAON#7: 5′ CTTTTAGCTGCTGCTC (SEQ ID NO: 6)
    mAON#8: 5′ GTTGTTCTTTTAGCTGCTGC (SEQ ID NO: 7)
    mAON#9: 5′ TTAGCTGCTGCTCAT (SEQ ID NO: 8)
    mAON#10: 5′ TTTAGCTGCTGCTCATCTCC (SEQ ID NO: 9)
    mAON#11: 5′ CTGCTGCTCATCTCC (SEQ ID NO: 10)
    hAON#4: 5′ CTGCTTCCTCCAACC (SEQ ID NO: 11)
    hAON#6: 5′ GTTATCTGCTTCCTCCAACC (SEQ ID NO: 12)
    hAON#8: 5′ GCTTTTCTTTTAGTTGCTGC (SEQ ID NO: 13)
    hAON#9: 5′ TTAGTTGCTGCTCTT (SEQ ID NO: 14)
    hAON#11: 5′ TTGCTGCTCTTTTCC (SEQ ID NO: 15)
  • Gel Mobility Shift Assays
  • The efficacy of the AONs is determined by their binding affinity for the target sequence. Notwithstanding recent improvements in computer simulation programs for the prediction of RNA-folding, it is difficult to speculate which of the designed AONs would be capable of binding the target sequence with a relatively high affinity. Therefore, we performed gel mobility shift assays (according to protocols described by Bruice et al., 1997). The exon 46 target RNA fragment was generated by in vitro T7-transcription from a PCR fragment (amplified from either murine or human muscle mRNA using a sense primer that contains the T7 promoter sequence) in the presence of 32P-CTP. The binding affinity of the individual AONs (0.5 pmol) for the target transcript fragments was determined by hybridization at 37° C. for 30 minutes and subsequent polyacrylamide (8%) gel electrophoresis. We performed these assays for the screening of both the mouse and human-specific AONs (FIG. 3). At least 5 different mouse-specific AONs ( mAON# 4, 6, 8, 9 and 11) and four corresponding human-specific AONs ( hAON# 4, 6, 8, and 9) generated a mobility shift, demonstrating their binding affinity for the target RNA.
  • Transfection into Muscle Cell Cultures
  • The exon 46-specific AONs which showed the highest target binding affinity in gel mobility shift assays were selected for analysis of their efficacy in inducing the skipping in muscle cells in vitro. In all transfection experiments, we included a non-specific AON as a negative control for the specific skipping of exon 46. As mentioned, the system was first set up in mouse muscle cells. We used both proliferating myoblasts and post-mitotic myotube cultures (expressing higher levels of dystrophin) derived from the mouse muscle cell line C2C12. For the subsequent experiments in human-derived muscle cell cultures, we used primary muscle cell cultures isolated from muscle biopsies from one unaffected individual and two unrelated DMD patients carrying a deletion of exon 45. These heterogeneous cultures contained approximately 20-40% myogenic cells. The different AONs (at a concentration of 1 μM) were transfected into the cells using the cationic polymer PEI (MBI Fermentas) at a ratio-equivalent of 3. The AONs transfected in these experiments contained a 5′ fluorescein group which allowed us to determine the transfection efficiencies by counting the number of fluorescent nuclei. Typically, more than 60% of cells showed specific nuclear uptake of the AONs. To facilitate RT-PCR analysis, RNA was isolated 24 hours post-transfection using RNAzol B (CamPro Scientific, The Netherlands).
  • RT-PCR and Sequence Analysis
  • RNA was reverse transcribed using C. therm. polymerase (Roche) and an exon 48-specific reverse primer. To facilitate the detection of skipping of dystrophin exon 46, the cDNA was amplified by two rounds of PCR, including a nested amplification using primers in exons 44 and 47 (for the human system), or exons 45 and 47 (for the mouse system). In the mouse myoblast and myotube cell cultures, we detected a truncated product of which the size corresponded to exon 45 directly spliced to exon 47 (FIG. 4). Subsequent sequence analysis confirmed the specific skipping of exon 46 from these mouse dystrophin transcripts. The efficiency of exon skipping was different for the individual AONs, with mAON#4 and #11 showing the highest efficiencies. Following these promising results, we focused on inducing a similar modulation of dystrophin splicing in the human-derived muscle cell cultures. Accordingly, we detected a truncated product in the control muscle cells, corresponding to exon 45 spliced to exon 47. Interestingly, in the patient-derived muscle cells, a shorter fragment was detected, which consisted of exon 44 spliced to exon 47. The specific skipping of exon 46 from the human dystrophin transcripts was confirmed by sequence data. This splicing modulation of both the mouse and human dystrophin transcript was neither observed in non-transfected cell cultures nor in cultures transfected with a non-specific AON.
  • Immunohistochemical Analysis
  • We intended to induce the skipping of exon 46 in muscle cells from patients carrying an exon 45 deletion in order to restore the translation and synthesis of a dystrophin protein. To detect a dystrophin product upon transfection with hAON#8, the two patient-derived muscle cell cultures were subject to immunocytochemistry using two different dystrophin monoclonal antibodies (Mandys-1 and Dys-2) raised against domains of the dystrophin protein located proximal and distal of the targeted region respectively. Fluorescent analysis revealed restoration of dystrophin synthesis in both patient-derived cell cultures (FIG. 5). Approximately at least 80% of the fibers stained positive for dystrophin in the treated samples.
  • Our results show, for the first time, the restoration of dystrophin synthesis from the endogenous DMD gene in muscle cells from DMD patients. This is a proof of principle of the feasibility of targeted modulation of dystrophin pre-mRNA splicing for therapeutic purposes.
  • Targeted Skipping of Exon 51 Simultaneous Skipping of Dystrophin Exons
  • The targeted skipping of exon 51. We demonstrated the feasibility of AON-mediated modulation of dystrophin exon 46 splicing, in mouse and human muscle cells in vitro. These findings warranted further studies to evaluate AONs as therapeutic agents for DMD. Since most DMD-causing deletions are clustered in two mutation hot spots, the targeted skipping of one particular exon can restore the reading frame in series of patients with different mutations (see Table 1). Exon 51 is an interesting target exon. The skipping of this exon is therapeutically applicable in patients carrying deletions spanning exon 50, exons 45-50, exons 48-50, exons 49-50, exon 52, and exons 52-63, which includes a total of 15% of patients from our Leiden database.
  • We designed a series of ten human-specific AONs (hAON#21-30, see below) directed at different purine-rich regions within dystrophin exon 51. These purine-rich stretches suggested the presence of a putative exon splicing regulatory element that we aimed to block in order to induce the elimination of that exon during the splicing process. All experiments were performed according to protocols as described for the skipping of exon 46 (see above). Gel mobility shift assays were performed to identify those hAONs with high binding affinity for the target RNA. We selected the five hAONs that showed the highest affinity. These hAONs were transfected into human control muscle cell cultures in order to test the feasibility of skipping exon 51 in vitro. RNA was isolated 24 hours post-transfection, and cDNA was generated using an exon 53- or 65-specific reverse primer. PCR-amplification of the targeted region was performed using different primer combinations flanking exon 51. The RT-PCR and sequence analysis revealed that we were able to induce the specific skipping of exon 51 from the human dystrophin transcript. We subsequently transfected two hAONs (#23 and #29) shown to be capable of inducing skipping of the exon into six different muscle cell cultures derived from DMD-patients carrying one of the mutations mentioned above. The skipping of exon 51 in these cultures was confirmed by RT-PCR and sequence analysis (FIG. 7). More importantly, immunohistochemical analysis, using multiple antibodies raised against different parts of the dystrophin protein, showed in all cases that, due to the skipping of exon 51, the synthesis of a dystrophin protein was restored.
  • Exon 51-specific hAONs:
  • hAON#21: 5′ CCACAGGTTGTGTCACCAG (SEQ ID NO: 16)
    hAON#22: 5′ TTTCCTTAGTAACCACAGGTT (SEQ ID NO: 17)
    hAON#23: 5′ TGGCATTTCTAGTTTGG (SEQ ID NO: 18)
    hAON#24: 5′ CCAGAGCAGGTACCTCCAACATC (SEQ ID NO: 19)
    hAON#25: 5′ GGTAAGTTCTGTCCAAGCCC (SEQ ID NO: 20)
    hAON#26: 5′ TCACCCTCTGTGATTTTAT (SEQ ID NO: 21)
    hAON#27: 5′ CCCTCTGTGATTTT (SEQ ID NO: 22)
    hAON#28: 5′ TCACCCACCATCACCCT (SEQ ID NO: 23)
    hAON#29: 5′ TGATATCCTCAAGGTCACCC (SEQ ID NO: 24)
    hAON#30: 5′ CTGCTTGATGATCATCTCGTT (SEQ ID NO: 25)
  • Simultaneous Skipping of Multiple Dystrophin Exons
  • The skipping of one additional exon, such as exon 46 or exon 51, restores the reading frame for a considerable number of different DMD mutations. The range of mutations for which this strategy is applicable can be enlarged by the simultaneous skipping of more than one exon. For instance, in DMD patients with a deletion of exon 46 to exon 50, only the skipping of both the deletion-flanking exons 45 and 51 enables the reestablishment of the translational reading frame.
  • ERS-Independent Exon Skipping
  • A mutation in exon 29 leads to the skipping of this exon in two Becker muscular dystrophy patients (Ginjaar at al., 2000, EJHG, vol. 8, p. 793-796). We studied the feasibility of directing the skipping of exon 29 through targeting the site of mutation by AONs. The mutation is located in a purine-rich stretch that could be associated with ERS activity. We designed a series of AONs (see below) directed to sequences both within (h29AON#1 to h29AON#6) and outside (h29AON#7 to h29AON#11) the hypothesized ERS. Gel mobility shift assays were performed (as described) to identify those AONs with highest affinity for the target RNA (FIG. 8). Subsequently, h29AON#1, #2, #4, #6, #9, #10, and #11 were transfected into human control myotube cultures using the PEI transfection reagent. RNA was isolated 24 hrs post-transfection, and cDNA was generated using an exon 31-specific reverse primer. PCR-amplification of the targeted region was performed using different primer combinations flanking exon 29. This RT-PCR and subsequent sequence analysis (FIGS. 8B and 8C) revealed that we were able to induce the skipping of exon 29 from the human dystrophin transcript. However, the AONs that facilitated this skipping were directed to sequences both within and outside the hypothesized ERS (h29AON#1, #2, #4, #6, #9, and #11). These results suggest that skipping of exon 29 occurs independent of whether or not exon 29 contains an ERS and that, therefore, the binding of the AONs to exon 29 more likely inactivated an exon inclusion signal rather than an ERS. This proof of ERS-independent exon skipping may extend the overall applicability of this therapy to exons without ERS's.
  • h29AON#1:
    5′ TATCCTCTGAATGTCGCATC (SEQ ID NO: 26)
    h29AON#2:
    5′ GGTTATCCTCTGAATGTCGC (SEQ ID NO: 27)
    h29AON#3:
    5′ TCTGTTAGGGTCTGTGCC (SEQ ID NO: 28)
    h29AON#4:
    5′ CCATCTGTTAGGGTCTGTG (SEQ ID NO: 29)
    h29AON#5:
    5′ GTCTGTGCCAATATGCG (SEQ ID NO: 30)
    h29AON#6:
    5′ TCTGTGCCAATATGCGAATC (SEQ ID NO: 31)
    h29AON#7:
    5′ TGTCTCAAGTTCCTC (SEQ ID NO: 32)
    h29AON#8:
    5′ GAATTAAATGTCTCAAGTTC (SEQ ID NO: 33)
    h29AON#9:
    5′ TTAAATGTCTCAAGTTCC (SEQ ID NO: 34)
    h29AON#10:
    5′ GTAGTTCCCTCCAACG (SEQ ID NO: 35)
    h29AON#11:
    5′ CATGTAGTTCCCTCC (SEQ ID NO: 36)
  • AON-Induced Exon 46 Skipping In Vivo in Murine Muscle Tissue.
  • Following the promising results in cultured muscle cells, we tested the different mouse dystrophin exon 46-specific AONs in vivo by injecting them, linked to polyethylenimine (PEI), into the gastrocnemius muscles of control mice. With mAON#4, #6, and #11, previously shown to be effective in mouse muscle cells in vitro, we were able to induce the skipping of exon 46 in muscle tissue in vivo as determined by both RT-PCR and sequence analysis (FIG. 9). The in vivo exon 46 skipping was dose-dependent with highest efficiencies (up to 10%) following injection of 20 μg per muscle per day for two subsequent days.
  • REFERENCES
    • Achsel et al., 1996, J. Biochem. 120, pp. 53-60.
    • Bruice T. W. and Lima, W. F., 1997, Biochemistry 36(16): pp. 5004-5019.
    • Brunak at al., 1991, J. Mol. Biol. 220, pp. 49-65.
    • Dunckley, M. G. et al., 1998, Human molecular genetics 7, pp. 1083-1090.
    • Ginjaar et al., 2000, EJHG, vol. 8, pp. 793-796.
    • Mann et al., 2001, PNAS vol. 98, pp. 42-47.
    • Tanaka et al., 1994 Mol. Cell. Biol. 14, pp. 1347-1354.
    • Wilton, S. D., et al., 1999, Neuromuscular disorders 9, pp. 330-338.
  • Details and background on Duchenne Muscular Dystrophy and related diseases can be found on website http://www.dmd.nl

Claims (49)

1-24. (canceled)
25. A method for directing splicing of a dystrophin pre-mRNA in a cell having dystrophin pre-mRNA, the method comprising:
contacting the dystrophin pre-mRNA in the cell with an antisense-oligonucleotide having between 14-40 nucleotides, capable of specifically inhibiting an exon inclusion signal of exon number 2, 8, 29, 43, 44, 45; 46, 50, 51, 52, or 53 in the pre-mRNA, and
allowing splicing of the pre-mRNA.
26. The method according to claim 25, wherein the cell is a cell from an individual suffering from Duchenne Muscular Dystrophy (DMD).
27. The method according to claim 26, wherein the dystrophin pre-mRNA comprises a DMD deletion of one or more exons selected from the groups consisting of exons 3-7, 4-7, 5-7, 6-7, 18-44, 35-43, 44, 44-47, 45, 45-54, 45-52, 50, 50-52, 45-50, 46-47, 46-48, 46 49, 46-51, 46-53, 48-52, 48-50, 49-50, 49-52, 52, 52-63, 51, 51-55, 53, and 53-55.
28. The method according to claim 25, wherein the antisense-oligonucleotide exhibiting the specific inhibition of an exon inclusion signal is obtainable by a method comprising:
providing a second cell with the antisense-oligonucleotide, the cell having pre-mRNA containing the exon,
culturing the second cell to form mRNA in the second cell from the pre-mRNA in the second cell, and
determining whether the exon is absent from the thus formed mRNA in the second cell.
29. The method according to claim 25, further comprising allowing translation of an mRNA produced from splicing of the dystrophin pre-mRNA.
30. The method according to claim 29, wherein the mRNA encodes a functional dystrophin protein.
31. The method according to claim 30, wherein the functional dystrophin protein comprises at least two domains, wherein at least one of the domains is encoded by the mRNA as a result of skipping of at least part of an exon in the dystrophin pre-mRNA.
32. The method according to claim 25, wherein contacting results in activation of a cryptic splice site in a contacted exon.
33. The method according to claim 25, wherein the exon inclusion signal is present in an exon comprising a strong splice donor/acceptor pair.
34. The method according to claim 29, wherein the translation results in a mutant dystrophin protein or a normal dystrophin protein.
35. The method according to claim 34, wherein the mutant dystrophin protein is equivalent to a dystrophin protein of a Becker patient.
36. The method according to claim 25, wherein the antisense-oligonucleotide is capable of specifically inhibiting an exon inclusion signal of exon number 51.
37. The method according to claim 25, wherein the antisense-oligonucleotide comprises a nucleic acid.
38. The method according to claim 37, wherein the nucleic acid comprises a 2′-O-methyl-oligoribonucleotide or a 2′-O-methyl-phosphorothioate.
39. The method according to claim 25, wherein the antisense-oligonucleotide contains between 15-25 nucleotides.
40. The method according to claim 25, further comprising:
providing the cell with another antisense-oligonucleotide capable of inhibiting an exon inclusion signal present in another exon of the dystrophin pre-mRNA.
41. A method for at least in part decreasing the production of an aberrant dystrophin protein in a cell, the cell comprising dystrophin pre-mRNA comprising exons coding for the aberrant dystrophin protein, the method comprising:
providing the cell with an antisense-oligonucleotide having between 14-40 nucleotides, capable of specifically inhibiting an exon inclusion signal of exon number 2, 8, 29, 43, 44, 45, 46, 50, 51, 52, or 53, and
allowing translation of mRNA produced from splicing of the dystrophin pre-mRNA.
42. The method according to claim 41, wherein the antisense-oligonucleotide exhibiting the specific inhibition of an exon inclusion signal is obtainable by a method comprising:
providing a second cell with the antisense-oligonucleotide, the cell having pre-mRNA containing the exon,
culturing the second cell to form mRNA in the second cell from the pre-mRNA in the second cell, and
determining whether the exon is absent from the thus formed mRNA in the second cell.
43. The method according to claim 41, wherein the antisense-oligonucleotide is capable of specifically inhibiting an exon inclusion signal of exon number 51.
44. The method according to claim 41, wherein the dystrophin pre-mRNA comprises a Duchenne Muscular Dystrophy (DMD) deletion of one or more exons selected from the groups consisting of exons 3-7, 4-7, 5-7, 6-7, 18-44, 35-43, 44, 44-47, 45, 45-54, 45-52, 50, 50-52, 45-50, 46-47, 46-48, 46-49, 46-51, 46-53, 48-52, 48-50, 49-50, 49-52, 52, 52-63, 51, 51 55, 53, and 53-55.
45. The method according to claim 41, wherein the antisense-oligonucleotide comprises a nucleic acid.
46. The method according to claim 21, wherein the nucleic acid comprises a 2′-O-methyl-oligoribonucleotide or a 2′-O-methyl-phosphorothioate oligoribonucleotide.
47. The method according to claim 45, wherein the antisense-oligonucleotide contains between 15-25 nucleotides.
48. The method according to claim 41, further comprising:
providing the cell with another antisense-oligonucleotide capable of inhibiting an exon inclusion signal present in another exon of the dystrophin pre-mRNA.
49. A method for determining whether a compound is able specifically inhibit an exon inclusion signal of an exon of a dystrophin pre-mRNA, the exon being selected from the group consisting of exon number 2, 8, 29, 43, 44, 45, 46, 50, 51, 52, or 53 and combinations thereof of the dystrophin pre-mRNA, wherein the compound has complementarity to a part of the selected exon, the method comprising:
providing a cell having a dystrophin pre-mRNA containing the exon with the compound,
culturing the cell to allow the formation of an mRNA from the dystrophin pre-mRNA, and
determining whether the exon is absent from the mRNA.
50. The method according to claim 49 further comprising determining in vitro the relative binding affinity of the compound to an RNA molecule comprising the exon.
51. A compound identified by the method according to claim 49.
52. A nucleic acid delivery vehicle comprising the compound of claim 51, or the complement thereof.
53. A nucleic acid delivery vehicle comprising the compound of claim 51.
54. A method for directing splicing of a dystrophin pre-mRNA in a subject, the method comprising:
administering to the subject the compound of claim 51.
55. A method for directing splicing of a dystrophin pre-mRNA in a subject, the method comprising administering to the subject the nucleic acid delivery vehicle of claim 52.
56. A method for directing splicing of a dystrophin pre-mRNA in a subject, the method comprising:
administering to the subject an antisense-oligonucleotide, having between 14-40 nucleotides, and having complementarity to an element located within an exon in the pre-mRNA, the exon being selected from the group consisting of exon number 2, 8, 29, 43, 44, 45, 46, 50, 51, 52, or 53 and combinations thereof of a dystrophin gene encoding an aberrant protein,
wherein the antisense-oligonucleotide specifically inhibits and interferes with an exon inclusion signal of the exon in the pre-mRNA, thus forming a final mRNA excluding the exon, but encoding a mutant dystrophin protein having Becker mutant's functionality.
57. The method according to claim 56, wherein the antisense-oligonucleotide that specifically inhibits and interferes with an exon inclusion signal of the exon in the pre-mRNA is obtainable by a method comprising:
providing a cell with the antisense-oligonucleotide, the cell having a pre-mRNA containing the exon, culturing the cell to form mRNA in the cell from the pre-mRNA in the cell, and determining whether the exon is absent from the thus formed mRNA in the cell.
58. The method according to claim 56, wherein the antisense-oligonucleotide contains between 15-25 nucleotides.
59. A non-human animal provided with the compound of claim 51.
60. The non-human animal of claim 59, further comprising a nucleic acid encoding a human protein.
61. The non-human animal of claim 60, further comprising a silencing mutation in a gene encoding an animal homologue of the human protein.
62. A composition comprising:
a nucleic acid or a functional equivalent thereof capable of inhibiting an exon inclusion signal in exon 2, 8, 29, 43, 44, 45, 46, 50, 51 or 53 of a dystrophin pre-mRNA, and having between 14-40 nucleotides.
63. The composition of claim 62, further comprising:
a further nucleic acid or a functional equivalent thereof capable of inhibiting an exon inclusion signal present in another exon of the dystrophin pre-mRNA.
64. The composition of claim 62, wherein the nucleic acid is an antisense-oligonucleotide containing between 15-25 nucleotides.
65. A nucleic acid delivery vehicle comprising:
an antisense-oligonucleotide capable of inhibiting an exon-inclusion signal in at least one of exons 2, 8, 29, 43, 44, 45, 50, 51, 52 or 53 of a dystrophin pre-mRNA, wherein the antisense-oligonucleotide contains between 14-40 nucleotides, or
the complement of said antisense-oligonucleotide.
66. The nucleic acid delivery vehicle of claim 65, wherein the antisense-oligonucleotide contains between 15-25 nucleotides.
67. An antisense-oligonucleotide comprising one a nucleic acid sequence selected from the group consisting of
hAON#4: 5′ CTGCTTCCTCCAACC, (SEQ ID NO: _) hAON#6: 5′ GTTATCTGCTTCCTCCAACC, (SEQ ID NO: _) hAON#8: 5′ GCTTTTCTTTTAGTTGCTGC, (SEQ ID NO: _) hAON#9: 5′ TTAGTTGCTGCTCTT, (SEQ ID NO: _) hAON#11: 5′ TTGCTGCTCTTTTCC, (SEQ ID NO: _) hAON#21: 5′ CCACAGGTTGTGTCACCAG, (SEQ ID NO: _) hAON#22: 5′ TTTCCTTAGTAACCACAGGTT, (SEQ ID NO: _) hAON#23: 5′ TGGCATTTCTAGTTTGG, (SEQ ID NO: _) hAON#24: 5′ CCAGAGCAGGTACCTCCAACATC, (SEQ ID NO: _) hAON#25: 5′ GGTAAGTTCTGTCCAAGCCC, (SEQ ID NO: _) hAON#26: 5′ TCACCCTCTGTGATTTTAT, (SEQ ID NO: _) hAON#27: 5′ CCCTCTGTGATTTT, (SEQ ID NO: _) hAON#28: 5′ TCACCCACCATCACCCT, (SEQ ID NO: _) hAON#29: 5′ TGATATCCTCAAGGTCACCC, (SEQ ID NO: _) hAON#30: 5′ CTGCTTGATGATCATCTCGTT, (SEQ ID NO: _)
a functional part of any thereof, derivative of any thereof, and analogue of any thereof having the same exon skipping activity in kind, but not necessarily in amount.
68. The antisense-oligonucleotide of claim 67, containing between 14-40 nucleotides.
69. A nucleic acid delivery vehicle capable of expressing the antisense-oligonucleotide of claim 67.
70. The nucleic acid delivery vehicle of claim 69, wherein the nucleic acid delivery vehicle is a single stranded virus.
71. The nucleic acid delivery vehicle of claim 70, wherein said single stranded virus comprises an adeno-associated virus.
72. A method for directing splicing of a dystrophin pre-mRNA in a subject, the method comprising administering to the subject the nucleic acid delivery vehicle of claim 53.
US12/383,897 2000-09-21 2009-03-30 Induction of exon skipping in eukaryotic cells Abandoned US20090228998A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/383,897 US20090228998A1 (en) 2000-09-21 2009-03-30 Induction of exon skipping in eukaryotic cells
US14/331,934 US20140350076A1 (en) 2000-09-21 2014-07-15 Induction of exon skipping in eukaryotic cells
US14/712,753 US20150322434A1 (en) 2000-09-21 2015-05-14 Induction of exon skipping in eukaryotic cells
US14/839,200 US20150361424A1 (en) 2000-09-21 2015-08-28 Induction of exon skipping in eukaryotic cells

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP00203283.7 2000-09-21
EP00203283A EP1191097A1 (en) 2000-09-21 2000-09-21 Induction of exon skipping in eukaryotic cells
PCT/NL2001/000697 WO2002024906A1 (en) 2000-09-21 2001-09-21 Induction of exon skipping in eukaryotic cells
US10/395,031 US7973015B2 (en) 2000-09-21 2003-03-21 Induction of exon skipping in eukaryotic cells
US12/383,897 US20090228998A1 (en) 2000-09-21 2009-03-30 Induction of exon skipping in eukaryotic cells

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/395,031 Continuation US7973015B2 (en) 2000-09-21 2003-03-21 Induction of exon skipping in eukaryotic cells
US11/982,285 Continuation US20080209581A1 (en) 2000-09-21 2007-10-31 Induction of exon skipping in eukaryotic cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/331,934 Continuation US20140350076A1 (en) 2000-09-21 2014-07-15 Induction of exon skipping in eukaryotic cells

Publications (1)

Publication Number Publication Date
US20090228998A1 true US20090228998A1 (en) 2009-09-10

Family

ID=8172043

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/395,031 Expired - Fee Related US7973015B2 (en) 2000-09-21 2003-03-21 Induction of exon skipping in eukaryotic cells
US11/982,285 Abandoned US20080209581A1 (en) 2000-09-21 2007-10-31 Induction of exon skipping in eukaryotic cells
US12/383,897 Abandoned US20090228998A1 (en) 2000-09-21 2009-03-30 Induction of exon skipping in eukaryotic cells
US14/331,934 Abandoned US20140350076A1 (en) 2000-09-21 2014-07-15 Induction of exon skipping in eukaryotic cells
US14/712,753 Abandoned US20150322434A1 (en) 2000-09-21 2015-05-14 Induction of exon skipping in eukaryotic cells
US14/839,200 Abandoned US20150361424A1 (en) 2000-09-21 2015-08-28 Induction of exon skipping in eukaryotic cells

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/395,031 Expired - Fee Related US7973015B2 (en) 2000-09-21 2003-03-21 Induction of exon skipping in eukaryotic cells
US11/982,285 Abandoned US20080209581A1 (en) 2000-09-21 2007-10-31 Induction of exon skipping in eukaryotic cells

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/331,934 Abandoned US20140350076A1 (en) 2000-09-21 2014-07-15 Induction of exon skipping in eukaryotic cells
US14/712,753 Abandoned US20150322434A1 (en) 2000-09-21 2015-05-14 Induction of exon skipping in eukaryotic cells
US14/839,200 Abandoned US20150361424A1 (en) 2000-09-21 2015-08-28 Induction of exon skipping in eukaryotic cells

Country Status (17)

Country Link
US (6) US7973015B2 (en)
EP (14) EP1191097A1 (en)
JP (7) JP4846965B2 (en)
AT (1) ATE409224T2 (en)
AU (4) AU1106202A (en)
CA (1) CA2423044C (en)
CY (10) CY1109601T1 (en)
DE (1) DE60135936D1 (en)
DK (10) DK2801618T3 (en)
ES (11) ES2315788T5 (en)
HK (8) HK1184819A1 (en)
LT (3) LT2284264T (en)
NZ (1) NZ524853A (en)
PT (7) PT2284264T (en)
SI (1) SI2801618T1 (en)
TR (1) TR201810606T4 (en)
WO (1) WO2002024906A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130591A1 (en) * 2008-10-24 2010-05-27 Peter Sazani Multiple exon skipping compositions for dmd
US20110015258A1 (en) * 2004-06-28 2011-01-20 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20110046360A1 (en) * 2002-11-25 2011-02-24 Masafumi Matsuo ENA NUCLEIC ACID DRUGS MODIFYING SPLICING IN mRNA PRECURSOR
US8637483B2 (en) 2009-11-12 2014-01-28 The University Of Western Australia Antisense molecules and methods for treating pathologies
EP2796425A1 (en) 2013-04-24 2014-10-29 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9217148B2 (en) 2013-03-14 2015-12-22 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US9506058B2 (en) 2013-03-15 2016-11-29 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
US9605019B2 (en) 2011-07-19 2017-03-28 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US9611471B2 (en) 2010-08-05 2017-04-04 Academisch Ziekenhuis Leiden Antisense oligonucleotide directed removal of proteolytic cleavage sites from proteins
US9617547B2 (en) 2012-07-13 2017-04-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant
US9695211B2 (en) 2008-12-02 2017-07-04 Wave Life Sciences Japan, Inc. Method for the synthesis of phosphorus atom modified nucleic acids
US9744183B2 (en) 2009-07-06 2017-08-29 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
US9890379B2 (en) 2006-08-11 2018-02-13 Biomarin Technologies B.V. Treatment of genetic disorders associated with DNA repeat instability
US9926544B2 (en) 2014-01-24 2018-03-27 Am-Pharma B.V. Chimeric alkaline phosphatase-like proteins
US9982257B2 (en) 2012-07-13 2018-05-29 Wave Life Sciences Ltd. Chiral control
US10144933B2 (en) 2014-01-15 2018-12-04 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator
US10149905B2 (en) 2014-01-15 2018-12-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having antitumor effect and antitumor agent
US10160969B2 (en) 2014-01-16 2018-12-25 Wave Life Sciences Ltd. Chiral design
US10167309B2 (en) 2012-07-13 2019-01-01 Wave Life Sciences Ltd. Asymmetric auxiliary group
US10179912B2 (en) 2012-01-27 2019-01-15 Biomarin Technologies B.V. RNA modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
US10246707B2 (en) 2008-05-14 2019-04-02 Biomarin Technologies B.V. Method for efficient exon (44) skipping in duchenne muscular dystrophy and associated means
US10322173B2 (en) 2014-01-15 2019-06-18 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US10450568B2 (en) 2015-10-09 2019-10-22 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof
US10570380B2 (en) 2014-01-24 2020-02-25 Am-Pharma B.V. Downstream processing of an alkaline phosphatase
US10876114B2 (en) 2007-10-26 2020-12-29 Biomarin Technologies B.V. Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53
USRE48960E1 (en) 2004-06-28 2022-03-08 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020097241A (en) 2000-05-04 2002-12-31 에이브이아이 바이오파마 인코포레이티드 Splice-region antisense composition and method
EP1191097A1 (en) 2000-09-21 2002-03-27 Leids Universitair Medisch Centrum Induction of exon skipping in eukaryotic cells
ITRM20020253A1 (en) * 2002-05-08 2003-11-10 Univ Roma SNRNA CHEMICAL MOLECULES WITH ANTISENSE SEQUENCES FOR SPLICING JUNCTIONS OF THE DYSTROPHINE GENE AND THERAPEUTIC APPLICATIONS.
CA2524255C (en) 2003-03-21 2014-02-11 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure
WO2004097017A2 (en) 2003-04-29 2004-11-11 Avi Biopharma, Inc. Compositions for enhancing transport and antisense efficacy of nucleic acid analog into cells
US20050288246A1 (en) 2004-05-24 2005-12-29 Iversen Patrick L Peptide conjugated, inosine-substituted antisense oligomer compound and method
FR2874384B1 (en) 2004-08-17 2010-07-30 Genethon ADENO-ASSOCIATED VIRAL VECTOR FOR PRODUCING EXON JUMP IN A GENE ENCODING A PROTEIN WITH DISPENSABLE DOMAINS
EP1855694B1 (en) 2005-02-09 2020-12-02 Sarepta Therapeutics, Inc. Antisense composition for treating muscle atrophy
WO2006112705A2 (en) * 2005-04-22 2006-10-26 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mrna by interfering with the binding of sr proteins and by interfering with secondary rna structure.
US8067571B2 (en) 2005-07-13 2011-11-29 Avi Biopharma, Inc. Antibacterial antisense oligonucleotide and method
US7785834B2 (en) * 2005-11-10 2010-08-31 Ercole Biotech, Inc. Soluble TNF receptors and their use in treatment of disease
AU2006315758A1 (en) * 2005-11-10 2007-05-24 Ercole Biotech, Inc. Splice switching oligomers for TNF superfamily receptors and their use in treatment of disease
WO2007123391A1 (en) 2006-04-20 2007-11-01 Academisch Ziekenhuis Leiden Therapeutic intervention in a genetic disease in an individual by modifying expression of an aberrantly expressed gene.
EP1857548A1 (en) 2006-05-19 2007-11-21 Academisch Ziekenhuis Leiden Means and method for inducing exon-skipping
US20090264353A1 (en) * 2007-10-19 2009-10-22 Santaris Pharma A/S Splice Switching Oligomers for TNF Superfamily Receptors and their Use in Treatment of Disease
CA2691673A1 (en) * 2007-06-29 2009-01-08 Avi Biopharma, Inc. Tissue specific peptide conjugates and methods
US20100016215A1 (en) 2007-06-29 2010-01-21 Avi Biopharma, Inc. Compound and method for treating myotonic dystrophy
EP2167135A2 (en) 2007-07-12 2010-03-31 Prosensa Technologies B.V. Molecules for targeting compounds to various selected organs, tissues or tumor cells
EP2167136B1 (en) 2007-07-12 2016-04-20 BioMarin Technologies B.V. Molecules for targeting compounds to various selected organs or tissues
USRE48468E1 (en) 2007-10-26 2021-03-16 Biomarin Technologies B.V. Means and methods for counteracting muscle disorders
AU2009210872A1 (en) 2008-02-08 2009-08-13 Prosensa Holding Bv Methods and means for treating DNA repeat instability associated genetic disorders
US8084601B2 (en) 2008-09-11 2011-12-27 Royal Holloway And Bedford New College Royal Holloway, University Of London Oligomers
JP2012524540A (en) 2009-04-24 2012-10-18 プロセンサ テクノロジーズ ビー.ブイ. Oligonucleotides containing inosine for treating DMD
US20110269665A1 (en) 2009-06-26 2011-11-03 Avi Biopharma, Inc. Compound and method for treating myotonic dystrophy
US20120270930A1 (en) 2009-10-29 2012-10-25 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Methods and compositions for dysferlin exon-skipping
ES2616561T3 (en) 2009-12-24 2017-06-13 Biomarin Technologies B.V. Molecule to treat an inflammatory disorder
TWI541024B (en) 2010-09-01 2016-07-11 日本新藥股份有限公司 Antisense nucleic acid
US20140088174A1 (en) 2011-04-05 2014-03-27 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Compounds and methods for altering activin receptor-like kinase signaling
US9161948B2 (en) 2011-05-05 2015-10-20 Sarepta Therapeutics, Inc. Peptide oligonucleotide conjugates
EP2750715B1 (en) 2011-08-30 2018-10-31 The Regents of The University of California Identification of small molecules that enhance therapeutic exon skipping
BR112014004895B1 (en) 2011-09-05 2022-07-05 Stichting Radboud Universitair Medisch Centrum ANTISENSE OLIGONUCLEOTIDES FOR THE TREATMENT OF LEBER'S CONGENITAL AMAUROSIS
US20130085139A1 (en) 2011-10-04 2013-04-04 Royal Holloway And Bedford New College Oligomers
JP6141770B2 (en) * 2011-12-28 2017-06-07 日本新薬株式会社 Antisense nucleic acid
DE102012103041A1 (en) 2012-04-10 2013-10-10 Eberhard-Karls-Universität Tübingen Universitätsklinikum New isolated antisense-oligonucleotide comprising sequence that is hybridized to messenger RNA-splicing-sequence of mutation-bearing exons of pre-messenger RNA of titin-gene and induces skipping of exons, used to treat heart disease
CN110257379B (en) * 2012-07-03 2023-08-11 马林生物科技有限公司 Oligonucleotides for treating patients with muscular dystrophy
US9873739B2 (en) 2012-08-01 2018-01-23 Ikaika Therapeutics, Llc Mitigating tissue damage and fibrosis via latent transforming growth factor beta binding protein (LTBP4)
DK3118311T3 (en) * 2014-03-12 2019-03-11 Nippon Shinyaku Co Ltd Antisense nucleic acid
WO2015171918A2 (en) 2014-05-07 2015-11-12 Louisiana State University And Agricultural And Mechanical College Compositions and uses for treatment thereof
AU2015286663B2 (en) 2014-07-10 2021-09-23 Stichting Radboud Universitair Medisch Centrum Antisense oligonucleotides for the treatment of usher syndrome type 2
EP3180034B1 (en) * 2014-08-11 2022-04-20 The Board of Regents of The University of Texas System Prevention of muscular dystrophy by crispr/cas9-mediated gene editing
BR112017001470A2 (en) 2014-09-07 2018-02-20 Selecta Biosciences Inc methods and compositions for attenuating the immune responses of the gene therapy antiviral transfer vector
US20170266320A1 (en) * 2014-12-01 2017-09-21 President And Fellows Of Harvard College RNA-Guided Systems for In Vivo Gene Editing
GB201504124D0 (en) 2015-03-11 2015-04-22 Proqr Therapeutics B V Oligonucleotides
MA41795A (en) 2015-03-18 2018-01-23 Sarepta Therapeutics Inc EXCLUSION OF AN EXON INDUCED BY ANTISENSE COMPOUNDS IN MYOSTATIN
EP3302489A4 (en) 2015-06-04 2019-02-06 Sarepta Therapeutics, Inc. Methods and compounds for treatment of lymphocyte-related diseases and conditions
BR112018004970A2 (en) 2015-09-15 2018-10-09 Nippon Shinyaku Co., Ltd. Antisense nucleic acid
WO2017062835A2 (en) 2015-10-09 2017-04-13 Sarepta Therapeutics, Inc. Compositions and methods for treating duchenne muscular dystrophy and related disorders
WO2017136435A1 (en) 2016-02-01 2017-08-10 The Usa, As Represented By The Secretary, Department Of Health And Human Services Office Of Technology Transfer National Institute Of Health Compounds for modulating fc-epsilon-ri-beta expression and uses thereof
US10617707B2 (en) 2016-04-25 2020-04-14 Proqr Therapeutics Ii B.V. Oligonucleotides to treat eye disease
CA3025575A1 (en) 2016-06-30 2018-01-04 Sarepta Therapeutics, Inc. Exon skipping oligomers for muscular dystrophy
SG10201607303YA (en) 2016-09-01 2018-04-27 Agency Science Tech & Res Antisense oligonucleotides to induce exon skipping
GB201616202D0 (en) 2016-09-23 2016-11-09 Proqr Therapeutics Ii Bv Antisense oligonucleotides for the treatment of eye deisease
EP3555291A1 (en) 2016-12-13 2019-10-23 Stichting Katholieke Universiteit Antisense oligonucleotides for the treatment of stargardt disease
CA3047010A1 (en) 2016-12-19 2018-06-28 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
EP4122497B1 (en) 2016-12-19 2024-04-10 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
LT3554553T (en) 2016-12-19 2022-08-25 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
US10961537B2 (en) 2017-07-18 2021-03-30 Csl Behring Gene Therapy, Inc. Compositions and methods for treating beta-hemoglobinopathies
GB201711809D0 (en) 2017-07-21 2017-09-06 Governors Of The Univ Of Alberta Antisense oligonucleotide
WO2019028440A1 (en) 2017-08-04 2019-02-07 Skyhawk Therapeutics, Inc. Methods and compositions for modulating splicing
EP3665304A4 (en) * 2017-08-11 2021-04-28 Agency for Science, Technology and Research Method for screening splicing variants or events
EA201991450A1 (en) 2017-09-22 2019-12-30 Сарепта Терапьютикс, Инк. OLIGOMER CONJUGATES FOR EXONISM SKIP IN MUSCULAR DYSTROPHY
EP3687547A1 (en) 2017-09-28 2020-08-05 Sarepta Therapeutics, Inc. Combination therapies for treating muscular dystrophy
MX2020003838A (en) 2017-10-13 2020-08-06 Selecta Biosciences Inc Methods and compositions for attenuating anti-viral transfer vector igm responses.
GB201803010D0 (en) 2018-02-26 2018-04-11 Royal Holloway & Bedford New College Neurodegenerative disorders
US10765760B2 (en) 2018-05-29 2020-09-08 Sarepta Therapeutics, Inc. Exon skipping oligomer conjugates for muscular dystrophy
WO2020015959A1 (en) 2018-07-19 2020-01-23 Stichting Katholieke Universiteit Antisense oligonucleotides rescue aberrant splicing of abca4.
KR20210081322A (en) 2018-08-02 2021-07-01 다인 세라퓨틱스, 인크. Muscle targeting complexes and their use for treating dystrophinopathy
JP2021533200A (en) 2018-08-02 2021-12-02 ダイン セラピューティクス, インコーポレーテッドDyne Therapeutics, Inc. Muscle-targeted complexes and their use for treating facial, scapular, and brachial muscular dystrophy
US11168141B2 (en) 2018-08-02 2021-11-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
JP2022510673A (en) 2018-12-04 2022-01-27 スティッチング カソリーケ ウニベルシテイト Antisense oligonucleotide rescues abnormal splicing of ABCA4
KR20210118402A (en) 2018-12-23 2021-09-30 씨에스엘 베링 엘엘씨 Hematopoietic stem cell-gene therapy for Wiskott-Aldrich syndrome
CA3123045A1 (en) 2018-12-23 2020-07-02 Csl Behring L.L.C. Donor t-cells with kill switch
WO2020148400A1 (en) 2019-01-16 2020-07-23 Stichting Katholieke Universiteit Antisense oligonucleotides for use in the treatment of crpc
CA3126371A1 (en) 2019-01-28 2020-08-06 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for the treatment of leber's congenital amaurosis
WO2020163405A1 (en) 2019-02-05 2020-08-13 Skyhawk Therapeutics, Inc. Methods and compositions for modulating splicing
KR20210135507A (en) 2019-02-06 2021-11-15 스카이호크 테라퓨틱스, 인코포레이티드 Methods and compositions for controlling splicing
WO2020201144A1 (en) 2019-04-02 2020-10-08 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for immunotherapy
WO2020212567A1 (en) 2019-04-18 2020-10-22 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for the treatment of usher syndrome
BR112021023594A2 (en) 2019-05-28 2022-02-08 Selecta Biosciences Inc Methods and compositions for attenuated antiviral transfer vector immune response
WO2020254249A1 (en) 2019-06-21 2020-12-24 Proqr Therapeutics Ii B.V. Delivery of nucleic acids for the treatment of auditory disorders
EP4010475A1 (en) 2019-08-08 2022-06-15 UCL Business Ltd Antisense oligonucleotides rescue aberrant splicing of abca4
US20220389432A1 (en) 2019-10-31 2022-12-08 Stichting Radboud Universitair Medisch Centrum Allele-specific silencing therapy for DFNA9 using antisense oligonucleotides
KR20220145865A (en) 2020-02-28 2022-10-31 니뽄 신야쿠 가부시키가이샤 Antisense nucleic acid that induces skipping of exon 51
US20230134677A1 (en) 2020-03-04 2023-05-04 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for use in the treatment of usher syndrome
AU2021294317A1 (en) 2020-06-26 2023-02-23 Csl Behring Llc Donor T-cells with kill switch
WO2022090256A1 (en) 2020-10-26 2022-05-05 Proqr Therapeutics Ii B.V. Antisense oligonucleotides for the treatment of stargardt disease
CN112430645A (en) * 2020-12-09 2021-03-02 北京华瑞康源生物科技发展有限公司 Relative quantitative method and kit for detecting human DMD gene copy number by multiple real-time fluorescence PCR method
KR20240012425A (en) 2021-05-10 2024-01-29 엔트라다 테라퓨틱스, 인크. Compositions and methods for intracellular therapeutics
WO2022271818A1 (en) 2021-06-23 2022-12-29 Entrada Therapeutics, Inc. Antisense compounds and methods for targeting cug repeats
WO2022269016A1 (en) 2021-06-25 2022-12-29 Stichting Radboud Universitair Medisch Centrum Allele-specific silencing therapy for dfna21 using antisense oligonucleotides
US11638761B2 (en) 2021-07-09 2023-05-02 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating Facioscapulohumeral muscular dystrophy
US11771776B2 (en) 2021-07-09 2023-10-03 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
WO2023064367A1 (en) 2021-10-12 2023-04-20 Selecta Biosciences, Inc. Methods and compositions for attenuating anti-viral transfer vector igm responses
EP4215614A1 (en) 2022-01-24 2023-07-26 Dynacure Combination therapy for dystrophin-related diseases
WO2023172624A1 (en) 2022-03-09 2023-09-14 Selecta Biosciences, Inc. Immunosuppressants in combination with anti-igm agents and related dosing
DE102022124232A1 (en) 2022-09-21 2024-03-21 Carl von Ossietzky Universität Oldenburg, Körperschaft des öffentlichen Rechts Antisense oligonucleotides for the treatment of Joubert syndrome
WO2024074670A1 (en) 2022-10-06 2024-04-11 Stichting Radboud Universitair Medisch Centrum Antisense oligonucleotides for treatment of usher 2a. exon 68
WO2024074668A1 (en) 2022-10-06 2024-04-11 Stichting Radboud Universitair Medisch Centrum Antisense oligonucleotides for treatment of usher 2a. exons 30-31

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034506A (en) * 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5418139A (en) * 1993-02-10 1995-05-23 University Of Iowa Research Foundation Method for screening for cardiomyopathy
US5541308A (en) * 1986-11-24 1996-07-30 Gen-Probe Incorporated Nucleic acid probes for detection and/or quantitation of non-viral organisms
US5593974A (en) * 1991-06-28 1997-01-14 Massachusetts Institute Of Technology Localized oligonucleotide therapy
US5608046A (en) * 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5624803A (en) * 1993-10-14 1997-04-29 The Regents Of The University Of California In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom
US5627263A (en) * 1993-11-24 1997-05-06 La Jolla Cancer Research Foundation Integrin-binding peptides
US5658764A (en) * 1992-01-28 1997-08-19 North Shore University Hospital Research Corp. Method and kits for detection of fragile X specific, GC-rich DNA sequences
US5741645A (en) * 1993-06-29 1998-04-21 Regents Of The University Of Minnesota Gene sequence for spinocerebellar ataxia type 1 and method for diagnosis
US5766847A (en) * 1988-10-11 1998-06-16 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Process for analyzing length polymorphisms in DNA regions
US5853995A (en) * 1997-01-07 1998-12-29 Research Development Foundation Large scale genotyping of diseases and a diagnostic test for spinocerebellar ataxia type 6
US5869252A (en) * 1992-03-31 1999-02-09 Abbott Laboratories Method of multiplex ligase chain reaction
US5916808A (en) * 1993-05-11 1999-06-29 The University Of North Carolina At Chapel Hill Antisense oligonucleotides which combat aberrant splicing and methods of using the same
US5962332A (en) * 1994-03-17 1999-10-05 University Of Massachusetts Detection of trinucleotide repeats by in situ hybridization
US5968909A (en) * 1995-08-04 1999-10-19 Hybridon, Inc. Method of modulating gene expression with reduced immunostimulatory response
US6172216B1 (en) * 1998-10-07 2001-01-09 Isis Pharmaceuticals Inc. Antisense modulation of BCL-X expression
US6329501B1 (en) * 1997-05-29 2001-12-11 Auburn University Methods and compositions for targeting compounds to muscle
US20010056077A1 (en) * 1999-05-21 2001-12-27 Jcr Pharmaceuticals Co., Ltd Pharmaceutical composition for treatment of duchenne muscular dystrophy
US20020049173A1 (en) * 1999-03-26 2002-04-25 Bennett C. Frank Alteration of cellular behavior by antisense modulation of mRNA processing
US6379698B1 (en) * 1999-04-06 2002-04-30 Isis Pharmaceuticals, Inc. Fusogenic lipids and vesicles
US20020055481A1 (en) * 2000-08-25 2002-05-09 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition for treatment of Duchenne muscular dystrophy
US6653467B1 (en) * 2000-04-26 2003-11-25 Jcr Pharmaceutical Co., Ltd. Medicament for treatment of Duchenne muscular dystrophy
US20030235845A1 (en) * 2000-09-21 2003-12-25 Van Ommen Garrit-Jan Boudewijn Induction of exon skipping in eukaryotic cells
US7034009B2 (en) * 1995-10-26 2006-04-25 Sirna Therapeutics, Inc. Enzymatic nucleic acid-mediated treatment of ocular diseases or conditions related to levels of vascular endothelial growth factor receptor (VEGF-R)
US20080200409A1 (en) * 2004-06-28 2008-08-21 Stephen Donald Wilson Antisense Oligonucleotides For Inducing Exon Skipping and Methods of Use Thereof
US7534879B2 (en) * 2003-03-21 2009-05-19 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mRNA by interfering with the secondary RNA structure
US8084601B2 (en) * 2008-09-11 2011-12-27 Royal Holloway And Bedford New College Royal Holloway, University Of London Oligomers

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867195B1 (en) * 1989-03-21 2005-03-15 Vical Incorporated Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected
FR2675803B1 (en) * 1991-04-25 1996-09-06 Genset Sa CLOSED, ANTISENSE AND SENSE OLIGONUCLEOTIDES AND THEIR APPLICATIONS.
WO1993001286A2 (en) 1991-06-28 1993-01-21 Massachusetts Institute Of Technology Localized oligonucleotide therapy
US6172208B1 (en) * 1992-07-06 2001-01-09 Genzyme Corporation Oligonucleotides modified with conjugate groups
US5854223A (en) 1995-10-06 1998-12-29 The Trustees Of Columbia University In The City Of New York S-DC28 as an antirestenosis agent after balloon injury
US6300060B1 (en) * 1995-11-09 2001-10-09 Dana-Farber Cancer Institute, Inc. Method for predicting the risk of prostate cancer morbidity and mortality
AU725262B2 (en) 1996-02-14 2000-10-12 Isis Pharmaceuticals, Inc. Sugar-modified gapped oligonucleotides
US6251589B1 (en) * 1996-07-18 2001-06-26 Srl, Inc. Method for diagnosing spinocerebellar ataxia type 2 and primers therefor
US20020137890A1 (en) * 1997-03-31 2002-09-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US6514755B1 (en) * 1998-08-18 2003-02-04 Regents Of The University Of Minnesota SCA7 gene and methods of use
US6280938B1 (en) * 1997-08-19 2001-08-28 Regents Of The University Of Minnesota SCA7 gene and method of use
US6794499B2 (en) * 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
US6130207A (en) * 1997-11-05 2000-10-10 South Alabama Medical Science Foundation Cell-specific molecule and method for importing DNA into a nucleus
JP3012923B2 (en) * 1998-01-26 2000-02-28 新潟大学長 Drug for treating CAG repeat disease
KR100280219B1 (en) * 1998-02-26 2001-04-02 이수빈 Diagnostic Method and Diagnostic Reagent of Neuropsychiatric Disease Using Trinucleic Acid Repeat Sequence
US6322978B1 (en) * 1998-04-20 2001-11-27 Joslin Diabetes Center, Inc. Repeat polymorphism in the frataxin gene and uses therefore
EP1089764B1 (en) * 1998-06-10 2004-09-01 Biognostik Gesellschaft für biomolekulare Diagnostik mbH Stimulating the immune system
US20030096955A1 (en) * 1998-09-01 2003-05-22 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
AU6059099A (en) * 1998-09-25 2000-04-17 Children's Medical Center Corporation Short peptides which selectively modulate the activity of protein kinases
US6210892B1 (en) * 1998-10-07 2001-04-03 Isis Pharmaceuticals, Inc. Alteration of cellular behavior by antisense modulation of mRNA processing
JP2000125448A (en) 1998-10-14 2000-04-28 Yazaki Corp Electrical junction box
US6399575B1 (en) * 1998-11-10 2002-06-04 Auburn University Methods and compositions for targeting compounds to the central nervous system
US6133031A (en) * 1999-08-19 2000-10-17 Isis Pharmaceuticals Inc. Antisense inhibition of focal adhesion kinase expression
US20040226056A1 (en) * 1998-12-22 2004-11-11 Myriad Genetics, Incorporated Compositions and methods for treating neurological disorders and diseases
JP2000256547A (en) 1999-03-10 2000-09-19 Sumitomo Dow Ltd Resin composition for heat-resistant card
US20030236214A1 (en) * 1999-06-09 2003-12-25 Wolff Jon A. Charge reversal of polyion complexes and treatment of peripheral occlusive disease
WO2000078813A2 (en) * 1999-06-18 2000-12-28 Emory University Huntington disease cellular model: stably transfected pc12 cells expressing mutant huntingtin
EP1133993A1 (en) 2000-03-10 2001-09-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Substances for the treatment of spinal muscular atrophy
US20020013287A1 (en) * 2000-05-09 2002-01-31 Reliable Biopharmaceuticals, Inc. St Louis Missouri Polymeric compounds useful as prodrugs
US20030124523A1 (en) * 2000-06-22 2003-07-03 Asselbergs Fredericus Alphonsus Maria Organic compounds
US6794192B2 (en) * 2000-06-29 2004-09-21 Pfizer Inc. Target
JP4836366B2 (en) * 2000-08-25 2011-12-14 雅文 松尾 Duchenne muscular dystrophy treatment
JP3995996B2 (en) * 2002-06-21 2007-10-24 エスアイアイ・プリンテック株式会社 Ink jet head and ink jet recording apparatus
WO2009054725A2 (en) * 2007-10-26 2009-04-30 Academisch Ziekenhuis Leiden Means and methods for counteracting muscle disorders
ES2616561T3 (en) * 2009-12-24 2017-06-13 Biomarin Technologies B.V. Molecule to treat an inflammatory disorder
WO2013112053A1 (en) * 2012-01-27 2013-08-01 Prosensa Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
JP5794194B2 (en) 2012-04-19 2015-10-14 東京エレクトロン株式会社 Substrate processing equipment

Patent Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034506A (en) * 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5541308A (en) * 1986-11-24 1996-07-30 Gen-Probe Incorporated Nucleic acid probes for detection and/or quantitation of non-viral organisms
US5766847A (en) * 1988-10-11 1998-06-16 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Process for analyzing length polymorphisms in DNA regions
US5608046A (en) * 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5593974A (en) * 1991-06-28 1997-01-14 Massachusetts Institute Of Technology Localized oligonucleotide therapy
US5658764A (en) * 1992-01-28 1997-08-19 North Shore University Hospital Research Corp. Method and kits for detection of fragile X specific, GC-rich DNA sequences
US5869252A (en) * 1992-03-31 1999-02-09 Abbott Laboratories Method of multiplex ligase chain reaction
US5418139A (en) * 1993-02-10 1995-05-23 University Of Iowa Research Foundation Method for screening for cardiomyopathy
US5976879A (en) * 1993-05-11 1999-11-02 The University Of North Carolina At Chapel Hill Antisense oligonucleotides which combat aberrant splicing and methods of using the same
US5916808A (en) * 1993-05-11 1999-06-29 The University Of North Carolina At Chapel Hill Antisense oligonucleotides which combat aberrant splicing and methods of using the same
US5741645A (en) * 1993-06-29 1998-04-21 Regents Of The University Of Minnesota Gene sequence for spinocerebellar ataxia type 1 and method for diagnosis
US5624803A (en) * 1993-10-14 1997-04-29 The Regents Of The University Of California In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom
US5627263A (en) * 1993-11-24 1997-05-06 La Jolla Cancer Research Foundation Integrin-binding peptides
US5962332A (en) * 1994-03-17 1999-10-05 University Of Massachusetts Detection of trinucleotide repeats by in situ hybridization
US5968909A (en) * 1995-08-04 1999-10-19 Hybridon, Inc. Method of modulating gene expression with reduced immunostimulatory response
US7034009B2 (en) * 1995-10-26 2006-04-25 Sirna Therapeutics, Inc. Enzymatic nucleic acid-mediated treatment of ocular diseases or conditions related to levels of vascular endothelial growth factor receptor (VEGF-R)
US5853995A (en) * 1997-01-07 1998-12-29 Research Development Foundation Large scale genotyping of diseases and a diagnostic test for spinocerebellar ataxia type 6
US6329501B1 (en) * 1997-05-29 2001-12-11 Auburn University Methods and compositions for targeting compounds to muscle
US6172216B1 (en) * 1998-10-07 2001-01-09 Isis Pharmaceuticals Inc. Antisense modulation of BCL-X expression
US20020049173A1 (en) * 1999-03-26 2002-04-25 Bennett C. Frank Alteration of cellular behavior by antisense modulation of mRNA processing
US6379698B1 (en) * 1999-04-06 2002-04-30 Isis Pharmaceuticals, Inc. Fusogenic lipids and vesicles
US20010056077A1 (en) * 1999-05-21 2001-12-27 Jcr Pharmaceuticals Co., Ltd Pharmaceutical composition for treatment of duchenne muscular dystrophy
US6653466B2 (en) * 1999-05-21 2003-11-25 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition for treatment of duchenne muscular dystrophy
US6653467B1 (en) * 2000-04-26 2003-11-25 Jcr Pharmaceutical Co., Ltd. Medicament for treatment of Duchenne muscular dystrophy
US20020055481A1 (en) * 2000-08-25 2002-05-09 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition for treatment of Duchenne muscular dystrophy
US6727355B2 (en) * 2000-08-25 2004-04-27 Jcr Pharmaceuticals Co., Ltd. Pharmaceutical composition for treatment of Duchenne muscular dystrophy
US20030235845A1 (en) * 2000-09-21 2003-12-25 Van Ommen Garrit-Jan Boudewijn Induction of exon skipping in eukaryotic cells
US7534879B2 (en) * 2003-03-21 2009-05-19 Academisch Ziekenhuis Leiden Modulation of exon recognition in pre-mRNA by interfering with the secondary RNA structure
US20080200409A1 (en) * 2004-06-28 2008-08-21 Stephen Donald Wilson Antisense Oligonucleotides For Inducing Exon Skipping and Methods of Use Thereof
US8455635B2 (en) * 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20110015258A1 (en) * 2004-06-28 2011-01-20 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20110015253A1 (en) * 2004-06-28 2011-01-20 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20110046203A1 (en) * 2004-06-28 2011-02-24 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US7960541B2 (en) * 2004-06-28 2011-06-14 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20110263686A1 (en) * 2004-06-28 2011-10-27 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20130274313A1 (en) * 2004-06-28 2013-10-17 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20120022145A1 (en) * 2004-06-28 2012-01-26 The University Of Western Australia Antisense Oligonucleotides for Inducing Exon Skipping and Methods of Use Thereof
US20120022144A1 (en) * 2004-06-28 2012-01-26 The University Of Western Australia Antisense Oligonucleotides for Inducing Exon Skipping and Methods of Use Thereof
US20120029058A1 (en) * 2004-06-28 2012-02-02 The University Of Western Australia Antisense Oligonucleotides for Inducing Exon Skipping and Methods of Use Thereof
US20120029059A1 (en) * 2004-06-28 2012-02-02 The University Of Western Australia Antisense Oligonucleotides for Inducing Exon Skipping and Methods of Use Thereof
US20120029060A1 (en) * 2004-06-28 2012-02-02 The University Of Western Australia Antisense Oligonucleotides for Inducing Exon Skipping and Methods of Use Thereof
US20120029057A1 (en) * 2004-06-28 2012-02-02 The University Of Western Australia Antisense Oligonucleotides for Inducing Exon Skipping and Methods of Use Thereof
US20120041050A1 (en) * 2004-06-28 2012-02-16 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8232384B2 (en) * 2004-06-28 2012-07-31 University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20130116310A1 (en) * 2004-06-28 2013-05-09 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8450474B2 (en) * 2004-06-28 2013-05-28 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8455636B2 (en) * 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US7807816B2 (en) * 2004-06-28 2010-10-05 University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8455634B2 (en) * 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8476423B2 (en) * 2004-06-28 2013-07-02 The University of Western Austrailia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8486907B2 (en) * 2004-06-28 2013-07-16 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20130217755A1 (en) * 2004-06-28 2013-08-22 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8524880B2 (en) * 2004-06-28 2013-09-03 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20130253180A1 (en) * 2004-06-28 2013-09-26 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20130253033A1 (en) * 2004-06-28 2013-09-26 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8084601B2 (en) * 2008-09-11 2011-12-27 Royal Holloway And Bedford New College Royal Holloway, University Of London Oligomers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Habara et al (J Med Genet 2009;46:542-547) *
Jou et al (HUMAN MUTATION 5:86-93 (1995)) *
Sertic et al (Coll. Atropol. 21: 151-156, 1997) *
Yu et al (Proc. Nat. Acad. Sci. USA 90: 6340-6344, 1993) *

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8624019B2 (en) 2002-11-25 2014-01-07 Masafumi Matsuo ENA nucleic acid drugs modifying splicing in mRNA precursor
US9657050B2 (en) 2002-11-25 2017-05-23 Masafumi Matsuo ENA nucleic acid pharmaceuticals capable of modifying splicing of mRNA precursors
US20110046360A1 (en) * 2002-11-25 2011-02-24 Masafumi Matsuo ENA NUCLEIC ACID DRUGS MODIFYING SPLICING IN mRNA PRECURSOR
US9657049B2 (en) 2002-11-25 2017-05-23 Masafumi Matsuo ENA nucleic acid pharmaceuticals capable of modifying splicing of mRNA precursors
US9243026B2 (en) 2002-11-25 2016-01-26 Daiichi Sankyo Company, Limited ENA nucleic acid pharmaceuticals capable of modifying splicing of mRNA precursors
US10781451B2 (en) 2004-06-28 2020-09-22 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10421966B2 (en) 2004-06-28 2019-09-24 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8476423B2 (en) 2004-06-28 2013-07-02 The University of Western Austrailia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8486907B2 (en) 2004-06-28 2013-07-16 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8524880B2 (en) 2004-06-28 2013-09-03 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8455635B2 (en) 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9605262B2 (en) 2004-06-28 2017-03-28 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
USRE47691E1 (en) 2004-06-28 2019-11-05 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
USRE47751E1 (en) 2004-06-28 2019-12-03 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10266827B2 (en) 2004-06-28 2019-04-23 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9018368B2 (en) 2004-06-28 2015-04-28 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9024007B2 (en) 2004-06-28 2015-05-05 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9035040B2 (en) 2004-06-28 2015-05-19 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9175286B2 (en) 2004-06-28 2015-11-03 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10227590B2 (en) 2004-06-28 2019-03-12 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
USRE47769E1 (en) 2004-06-28 2019-12-17 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8455636B2 (en) 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8455634B2 (en) 2004-06-28 2013-06-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9249416B2 (en) 2004-06-28 2016-02-02 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9422555B2 (en) 2004-06-28 2016-08-23 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9994851B2 (en) 2004-06-28 2018-06-12 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9441229B2 (en) 2004-06-28 2016-09-13 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
USRE48960E1 (en) 2004-06-28 2022-03-08 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US20110015258A1 (en) * 2004-06-28 2011-01-20 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US8450474B2 (en) 2004-06-28 2013-05-28 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10995337B2 (en) 2004-06-28 2021-05-04 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9447415B2 (en) 2004-06-28 2016-09-20 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US10968450B2 (en) 2004-06-28 2021-04-06 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
US9890379B2 (en) 2006-08-11 2018-02-13 Biomarin Technologies B.V. Treatment of genetic disorders associated with DNA repeat instability
US10689646B2 (en) 2006-08-11 2020-06-23 Biomarin Technologies B.V. Treatment of genetic disorders associated with DNA repeat instability
US11274299B2 (en) 2006-08-11 2022-03-15 Vico Therapeutics B.V. Methods and means for treating DNA repeat instability associated genetic disorders
US11427820B2 (en) 2007-10-26 2022-08-30 Biomarin Technologies B.V. Methods and means for efficient skipping of exon 45 in Duchenne muscular dystrophy pre-mRNA
US10876114B2 (en) 2007-10-26 2020-12-29 Biomarin Technologies B.V. Methods and means for efficient skipping of at least one of the following exons of the human Duchenne muscular dystrophy gene: 43, 46, 50-53
US10246707B2 (en) 2008-05-14 2019-04-02 Biomarin Technologies B.V. Method for efficient exon (44) skipping in duchenne muscular dystrophy and associated means
US9447416B2 (en) 2008-10-24 2016-09-20 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US20100130591A1 (en) * 2008-10-24 2010-05-27 Peter Sazani Multiple exon skipping compositions for dmd
US9234198B1 (en) 2008-10-24 2016-01-12 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US8865883B2 (en) 2008-10-24 2014-10-21 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US8871918B2 (en) 2008-10-24 2014-10-28 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US9447417B2 (en) 2008-10-24 2016-09-20 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US9453225B2 (en) 2008-10-24 2016-09-27 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US9434948B2 (en) 2008-10-24 2016-09-06 Sarepta Therapeutics, Inc. Multiple exon skipping compositions for DMD
US10329318B2 (en) 2008-12-02 2019-06-25 Wave Life Sciences Ltd. Method for the synthesis of phosphorus atom modified nucleic acids
US9695211B2 (en) 2008-12-02 2017-07-04 Wave Life Sciences Japan, Inc. Method for the synthesis of phosphorus atom modified nucleic acids
US9744183B2 (en) 2009-07-06 2017-08-29 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
US10307434B2 (en) 2009-07-06 2019-06-04 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
US9228187B2 (en) 2009-11-12 2016-01-05 The University Of Western Australia Antisense molecules and methods for treating pathologies
US11447776B2 (en) 2009-11-12 2022-09-20 The University Of Western Australia Antisense molecules and methods for treating pathologies
US8637483B2 (en) 2009-11-12 2014-01-28 The University Of Western Australia Antisense molecules and methods for treating pathologies
US10287586B2 (en) 2009-11-12 2019-05-14 The University Of Western Australia Antisense molecules and methods for treating pathologies
US10781450B2 (en) 2009-11-12 2020-09-22 Sarepta Therapeutics, Inc. Antisense molecules and methods for treating pathologies
US9758783B2 (en) 2009-11-12 2017-09-12 The University Of Western Australia Antisense molecules and methods for treating pathologies
US10590421B2 (en) 2010-08-05 2020-03-17 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Antisense oligonucleotide directed removal of proteolytic cleavage sites, the HCHWA-D mutation, and trinucleotide repeat expansions
US10364432B2 (en) 2010-08-05 2019-07-30 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Antisense oligonucleotide directed removal of proteolytic cleavage sites from proteins
US9611471B2 (en) 2010-08-05 2017-04-04 Academisch Ziekenhuis Leiden Antisense oligonucleotide directed removal of proteolytic cleavage sites from proteins
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US10280192B2 (en) 2011-07-19 2019-05-07 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US9605019B2 (en) 2011-07-19 2017-03-28 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US10913946B2 (en) 2012-01-27 2021-02-09 Biomarin Technologies B.V. RNA modulating oligonucleotides with improved characteristics for the treatment of Duchenne and Becker muscular dystrophy
US10179912B2 (en) 2012-01-27 2019-01-15 Biomarin Technologies B.V. RNA modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
US10167309B2 (en) 2012-07-13 2019-01-01 Wave Life Sciences Ltd. Asymmetric auxiliary group
US9982257B2 (en) 2012-07-13 2018-05-29 Wave Life Sciences Ltd. Chiral control
US9617547B2 (en) 2012-07-13 2017-04-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant
US10590413B2 (en) 2012-07-13 2020-03-17 Wave Life Sciences Ltd. Chiral control
US9217148B2 (en) 2013-03-14 2015-12-22 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US11932851B2 (en) 2013-03-14 2024-03-19 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US10907154B2 (en) 2013-03-14 2021-02-02 Sarepta Therapeutics, Inc. Exon skipping compositions for treating muscular dystrophy
US9506058B2 (en) 2013-03-15 2016-11-29 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
US10364431B2 (en) 2013-03-15 2019-07-30 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
US10337003B2 (en) 2013-03-15 2019-07-02 Sarepta Therapeutics, Inc. Compositions for treating muscular dystrophy
EP2796425A1 (en) 2013-04-24 2014-10-29 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US10144933B2 (en) 2014-01-15 2018-12-04 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator
US10149905B2 (en) 2014-01-15 2018-12-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having antitumor effect and antitumor agent
US10322173B2 (en) 2014-01-15 2019-06-18 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent
US10160969B2 (en) 2014-01-16 2018-12-25 Wave Life Sciences Ltd. Chiral design
US10570380B2 (en) 2014-01-24 2020-02-25 Am-Pharma B.V. Downstream processing of an alkaline phosphatase
US9926544B2 (en) 2014-01-24 2018-03-27 Am-Pharma B.V. Chimeric alkaline phosphatase-like proteins
US10822597B2 (en) 2014-01-24 2020-11-03 Am-Pharma B.V. Chimeric alkaline phosphatase-like proteins
US11746340B2 (en) 2014-01-24 2023-09-05 Am-Pharma B.V. Chimeric alkaline phosphatase-like proteins
US10450568B2 (en) 2015-10-09 2019-10-22 Wave Life Sciences Ltd. Oligonucleotide compositions and methods thereof

Also Published As

Publication number Publication date
ES2610568T3 (en) 2017-04-28
DK1619249T3 (en) 2009-02-02
SI2801618T1 (en) 2017-07-31
HK1188250A1 (en) 2014-04-25
HK1203554A1 (en) 2015-10-30
JP6425775B2 (en) 2018-11-21
EP2284264B1 (en) 2016-12-14
JP2004509622A (en) 2004-04-02
ES2629747T3 (en) 2017-08-14
EP2636741B1 (en) 2016-04-27
AU1106202A (en) 2002-04-02
PT2940139T (en) 2018-10-15
EP2636742A1 (en) 2013-09-11
ES2628349T3 (en) 2017-08-02
US7973015B2 (en) 2011-07-05
EP2636740A1 (en) 2013-09-11
EP1619249B1 (en) 2008-09-24
AU2002211062B2 (en) 2007-11-29
CY1119026T1 (en) 2018-01-10
AU2007234488B2 (en) 2011-02-17
CY1109601T1 (en) 2014-08-13
CY1118972T1 (en) 2018-01-10
DK2602322T3 (en) 2016-04-18
JP2019073555A (en) 2019-05-16
HK1184819A1 (en) 2014-01-30
JP6126983B2 (en) 2017-05-10
US20030235845A1 (en) 2003-12-25
EP2940139A1 (en) 2015-11-04
CY1117522T1 (en) 2017-04-26
NZ524853A (en) 2004-11-26
ES2567417T3 (en) 2016-04-22
CY1121139T1 (en) 2020-05-29
ATE409224T2 (en) 2008-10-15
DK1619249T4 (en) 2020-04-06
CY1117852T1 (en) 2017-05-17
JP6511124B2 (en) 2019-05-15
EP2636740B1 (en) 2016-11-09
JP2016104795A (en) 2016-06-09
JP2018052981A (en) 2018-04-05
TR201810606T4 (en) 2018-08-27
PT2636742T (en) 2017-06-02
EP2594640B1 (en) 2015-12-30
JP6250078B2 (en) 2017-12-20
PT1619249E (en) 2009-01-07
DK2636742T3 (en) 2017-07-24
DK2940139T3 (en) 2018-10-08
HK1184821A1 (en) 2014-01-30
EP2636741A1 (en) 2013-09-11
CA2423044C (en) 2016-08-23
AU2007234488A1 (en) 2007-12-06
LT2284264T (en) 2017-03-10
HK1184820A1 (en) 2014-01-30
EP2940139B1 (en) 2018-07-04
ES2561294T3 (en) 2016-02-25
WO2002024906A9 (en) 2003-01-23
ES2315788T5 (en) 2020-09-17
EP2801618A1 (en) 2014-11-12
ES2561293T3 (en) 2016-02-25
US20150361424A1 (en) 2015-12-17
EP1191097A1 (en) 2002-03-27
EP1320597A2 (en) 2003-06-25
DK2594640T3 (en) 2016-03-21
US20150322434A1 (en) 2015-11-12
EP3382021A1 (en) 2018-10-03
PT2801618T (en) 2017-07-25
AU2002211062C1 (en) 2011-02-03
LT2801618T (en) 2017-09-11
CY1117318T1 (en) 2017-04-26
EP2594640A1 (en) 2013-05-22
EP2594642B1 (en) 2015-12-30
US20140350076A1 (en) 2014-11-27
HK1188249A1 (en) 2014-04-25
DK2801618T3 (en) 2017-07-24
EP2602322A1 (en) 2013-06-12
HK1184818A1 (en) 2014-01-30
AU2011201325A1 (en) 2011-04-14
JP2017200952A (en) 2017-11-09
EP2594641B1 (en) 2015-12-30
DK2594641T3 (en) 2016-03-21
DK2594642T3 (en) 2016-03-21
PT2284264T (en) 2017-03-06
LT2940139T (en) 2018-09-10
ES2561292T3 (en) 2016-02-25
ES2690049T3 (en) 2018-11-19
CA2423044A1 (en) 2002-03-28
JP4846965B2 (en) 2011-12-28
ES2581285T3 (en) 2016-09-05
EP2801618B1 (en) 2017-04-19
PT2594640E (en) 2016-03-11
DK2284264T3 (en) 2017-03-13
DK2636741T3 (en) 2016-07-04
EP2594642A1 (en) 2013-05-22
JP2014065733A (en) 2014-04-17
HK1216906A1 (en) 2016-12-09
EP2602322B1 (en) 2016-03-02
EP1619249B2 (en) 2020-01-08
ES2609421T3 (en) 2017-04-20
CY1117521T1 (en) 2017-04-26
US20080209581A1 (en) 2008-08-28
PT2636741E (en) 2016-06-09
DE60135936D1 (en) 2008-11-06
JP2011200235A (en) 2011-10-13
ES2315788T3 (en) 2009-04-01
CY1117887T1 (en) 2017-05-17
AU2011201325B2 (en) 2011-12-22
EP2284264A1 (en) 2011-02-16
EP2594641A1 (en) 2013-05-22
EP2636742B1 (en) 2017-04-19
WO2002024906A1 (en) 2002-03-28
EP1619249A1 (en) 2006-01-25
CY1119088T1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
US7973015B2 (en) Induction of exon skipping in eukaryotic cells
AU2002211062A1 (en) Induction of exon skipping in eukaryotic cells
AU2012200761B2 (en) Induction of exon skipping in eukaryotic cells

Legal Events

Date Code Title Description
AS Assignment

Owner name: ACADEMISCH ZIEKENHUIS LEIDEN, NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN OMMEN, GARRIT-JAN B.;VAN DEUTEKOM, JUDITH C. T.;DEN DUNNEN, JOHANNES T.;REEL/FRAME:022533/0844

Effective date: 20030414

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION