US20090163961A1 - Offset multiaxial or polyaxial screw, system and assembly - Google Patents

Offset multiaxial or polyaxial screw, system and assembly Download PDF

Info

Publication number
US20090163961A1
US20090163961A1 US11/960,119 US96011907A US2009163961A1 US 20090163961 A1 US20090163961 A1 US 20090163961A1 US 96011907 A US96011907 A US 96011907A US 2009163961 A1 US2009163961 A1 US 2009163961A1
Authority
US
United States
Prior art keywords
screw
retainer
axis
head
multiaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/960,119
Other versions
US8029539B2 (en
Inventor
David Louis Kirschman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
X Spine Systems Inc
Original Assignee
X Spine Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by X Spine Systems Inc filed Critical X Spine Systems Inc
Priority to US11/960,119 priority Critical patent/US8029539B2/en
Assigned to X-SPINE SYSTEMS, INC. reassignment X-SPINE SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIRSCHMAN, DAVID LOUIS
Publication of US20090163961A1 publication Critical patent/US20090163961A1/en
Priority to US13/214,428 priority patent/US8480714B2/en
Application granted granted Critical
Publication of US8029539B2 publication Critical patent/US8029539B2/en
Priority to US13/935,601 priority patent/US9198691B2/en
Assigned to ROS ACQUISITION OFFSHORE, LP reassignment ROS ACQUISITION OFFSHORE, LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BACTERIN INTERNATIONAL, INC., X-SPINE SYSTEMS, INC.
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY AGREEMENT Assignors: BACTERIN INTERNATIONAL, INC., X-SPINE SYSTEMS, INC., XTANT MEDICAL HOLDINGS, INC., XTANT MEDICAL, INC.
Assigned to BACTERIN INTERNATIONAL, INC., X-SPINE SYSTEMS, INC. reassignment BACTERIN INTERNATIONAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ROS ACQUISITION OFFSHORE LP
Assigned to MIDCAP FINANCIAL TRUST reassignment MIDCAP FINANCIAL TRUST SECURITY INTEREST (REVOLVING) Assignors: BACTERIN INTERNATIONAL, INC., X-SPINE SYSTEMS, INC., XTANT MEDICAL HOLDINGS, INC., XTANT MEDICAL, INC.
Assigned to MIDCAP FINANCIAL TRUST reassignment MIDCAP FINANCIAL TRUST SECURITY INTEREST (TERM) Assignors: BACTERIN INTERNATIONAL, INC., X-SPINE SYSTEMS, INC., XTANT MEDICAL HOLDINGS, INC., XTANT MEDICAL, INC.
Assigned to BACTERIN INTERNATIONAL, INC., X-SPINE SYSTEMS, INC., XTANT MEDICAL HOLDINGS, INC., XTANT MEDICAL, INC. reassignment BACTERIN INTERNATIONAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Assigned to BACTERIN INTERNATIONAL, INC., X-SPINE SYSTEMS, INC. reassignment BACTERIN INTERNATIONAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ROS ACQUISITION OFFSHORE LP
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7037Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7038Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other to a different extent in different directions, e.g. within one plane only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7076Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
    • A61B17/7082Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for driving, i.e. rotating, screws or screw parts specially adapted for spinal fixation, e.g. for driving polyaxial or tulip-headed screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8605Heads, i.e. proximal ends projecting from bone
    • A61B17/861Heads, i.e. proximal ends projecting from bone specially shaped for gripping driver

Definitions

  • the present invention relates generally to a screw having an offset head and to a multiaxial or polyaxial screw for use with a bone fixation system and, in particular, to a multiaxial or polyaxial screw which permits a greater range of pivotability in at least one direction.
  • spinal abnormalities may be correctable using a pair of posterior spinal fixation rods attached to the vertebrae using pedicle screws and the like.
  • the pair of elongated rods often include cross connecting devices.
  • the cross connecting devices typically traverse the spinal column and couple to each of the elongated rods.
  • the cross connecting devices are perpendicular or substantially perpendicular to the spinal column.
  • bone screws with a polyaxial head are commonly used in spine surgery today. They are used chiefly in the lumbar spine and screwed into bone (pedicle) posteriorly.
  • the head of the screw is attached to the shaft of the screw.
  • the head of the screw is machined into a ball, and the head may be provided with a receiver or socket into which the ball fits.
  • One typical prior art system further contains a receiver for receiving a separate rod.
  • the rod is fastened to the screw head receiver via a threaded cap.
  • the rod is then fastened to screws placed in adjacent vertebrae thus providing stabilization.
  • the polyaxial head allows the rod to be placed in a variety of angles with respect to the screw allowing conformance to local anatomy.
  • Exemplary bone screws are disclosed in the following patents: U.S. Pat. No. 5,466,237 to Bird et al.; U.S. Pat. No. 4,946,458 to Harms; U.S. Pat. No. 5,207,678 to Harms et al.; U.S. Pat. No. 5,474,555 to Puno et al.; and U.S. Pat. No. 6,869,433 to Glascott. It will be appreciated from the prior art, however, that multiaxial screws involve the ability to pivot symmetrically or the same amount in each direction.
  • the retainer it is desired for the retainer to be moved or pivoted about the screw head more in a certain direction than in another, whereby greater maneuverability of the rod attached to the retainer may be accommodated. It was difficult to get a “favorable angle” of the retainer relative to the screw head.
  • FIGS. 1-3B show a prior art system wherein a retainer having an angled or canted surface that permits movement between a predetermined angle A ( FIG. 2 ) and a different smaller angle B ( FIG. 3A ) when the retainer is moved between a first direction C and a second direction D, respectively.
  • a multiaxial screw assembly to be developed for use with a spinal fixation system which permits non-symmetrical pivoting and that is capable of use with a variety of retainers, including those with non-canted surfaces. It would also be desirable for a multiaxial screw assembly to be developed in which simple modification of existing components enables the desired pivoting action.
  • an object of the invention to provide a polyaxial screw having a head that provides a greater range of mobility.
  • one embodiment comprises a multiaxial screw fixation assembly, comprising a screw having a threaded portion and a screw head portion positioned at one end thereof, and a retainer having a first end, a second end opposite said first end, and a bore for receiving said threaded portion so that said screw head portion may be seated therein, wherein said screw is adapted such that said retainer is able to pivot about said screw head portion in a non-symmetrical manner.
  • another embodiment comprises a multiaxial screw fixation assembly, comprising a screw, further comprising a threaded portion having a centerline axis extending therethrough, and a head portion positioned at one end of said threaded portion, said head portion having a centerline axis extending therethrough, wherein said screw head portion is not aligned with said screw threaded portion, and a retainer having a first end, a second end opposite said first end, a centerline axis extending therethrough, and a bore for receiving said screw threaded portion so that said screw head portion is seated therein axis, wherein said retainer is able to pivot about said screw head portion in a non-symmetrical manner.
  • another embodiment comprises a retainer for use in a spinal fixation procedure, said retainer comprising a retainer body having a first end for receiving a rod, said retainer also comprising a bore for receiving a shank of a screw having a screw head, said retainer body having a second end adapted to permit said retainer to pivot or move in a first direction a first predetermined angle and further adapted to permit the retainer to pivot or move in a second direction a second predetermined angle, wherein said second predetermined angle is less than said first predetermined angle.
  • another embodiment comprises a polyaxial screw for use during a spinal procedure, said polyaxial screw comprising a threaded shank having a shank axis, and a head integral with said threaded shank, said head being adapted to permit a retainer to pivot or move about a head axis, said head axis being offset from said shank axis.
  • FIG. 1 is a front elevation view of a prior art retainer having a centered bottom edge
  • FIG. 2 is a front elevation view of a prior art retainer, wherein the retainer associated therewith is shown in a first pivoted position;
  • FIG. 3A is a front elevation view of the prior art retainer assembly depicted in FIGS. 1 and 2 , wherein the retainer associated therewith is shown in a second pivoted position;
  • FIG. 3B is a top view of the prior art retainer taken along the line 3 B- 3 B in FIG. 1 ;
  • FIG. 4 is an exploded perspective view of the polyaxial screw assembly having an offset head, wherein a compression member and a rod for engagement with the compression member are also shown;
  • FIG. 5 is an exploded side view of the polyaxial screw assembly depicted in FIG. 4 ;
  • FIG. 6 is a top view of the polyaxial screw assembly depicted in FIGS. 4 and 5 taken along line 6 - 6 in FIG. 5 ;
  • FIG. 7 is a top sectional view of the polyaxial screw assembly depicted in FIGS. 4-6 taken along line 7 - 7 in FIG. 5 ;
  • FIG. 8 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIGS. 4 and 5 , wherein a tool is shown as interfacing with a head portion thereof to position it within the retainer;
  • FIG. 9 is a top sectional view of the polyaxial screw assembly with the head portion thereof positioned within the retainer, as depicted in FIG. 8 , taken along line 9 - 9 of FIG. 8 ;
  • FIG. 10 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 8 , wherein the compression member and rod engaged therewith are included and the retainer has been pivoted to a maximum degree in a first direction;
  • FIGS. 11A and 11B are enlarged, partial sectional views of the polyaxial screw assembly depicted in FIG. 8 , wherein the compression member and rod in unlocked and locked positions and the retainer has been pivoted to a maximum degree in a second direction;
  • FIG. 12 is an exploded perspective view of a polyaxial screw assembly having a first alternative configuration, wherein a compression member and a rod for engagement with the compression member are also shown;
  • FIG. 13 is an exploded side view of the polyaxial screw assembly depicted in FIG. 12 ;
  • FIG. 14 is a top view of the polyaxial screw assembly depicted in FIGS. 12 and 13 taken along line 14 - 14 in FIG. 13 ,
  • FIG. 15 is a top sectional view of the polyaxial screw assembly depicted in FIGS. 12 and 13 taken along line 15 - 15 in FIG. 13 ;
  • FIG. 16 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIGS. 12 and 13 , wherein a tool is shown as interfacing with a head portion thereof to position it within the retainer;
  • FIG. 17 is a top section view of the polyaxial screw assembly with the head portion thereof positioned within the retainer, as depicted in FIG. 26 , taken along line 17 - 17 of FIG. 16 ;
  • FIG. 18 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 16 , wherein the compression member and rod engaged therewith are included and the retainer has been pivoted to a maximum degree in a first direction;
  • FIGS. 19A and 19B are enlarged, partial sectional views of the polyaxial screw assembly depicted in FIG. 16 , wherein the compression member and rod in unlocked and locked positions and the retainer has been pivoted to a maximum degree in a second direction;
  • FIG. 20 is an exploded perspective view of a polyaxial screw assembly having a second alternative configuration, wherein a compression member and a rod for engagement with the compression member are also shown;
  • FIG. 21 is an exploded side view of the polyaxial screw assembly depicted in FIG. 20 ;
  • FIG. 22 is a top view of the polyaxial screw assembly depicted in FIGS. 20 and 21 taken along line 22 - 22 in FIG. 21 ,
  • FIG. 23 is a top sectional view of the polyaxial screw assembly depicted in FIGS. 20 and 21 taken along line 23 - 23 in FIG. 21 ;
  • FIG. 24 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIGS. 20 and 21 , wherein a tool is shown as interfacing with a head portion thereof to position it within the retainer;
  • FIG. 25 is a top section view of the polyaxial screw assembly with the head portion thereof positioned within the retainer, as depicted in FIG. 24 , taken along line 25 - 25 of FIG. 24 ;
  • FIG. 26 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 24 , wherein the compression member and rod engaged therewith are included and the retainer has been pivoted to a maximum degree in a first direction;
  • FIGS. 27A and 27B are enlarged, partial sectional views of the polyaxial screw assembly depicted in FIG. 24 , wherein the compression member and rod in unlocked and locked positions;
  • FIG. 28 is an exploded perspective view of a polyaxial screw assembly having a third alternative configuration, wherein a compression member and a rod for engagement with the compression member are also shown;
  • FIG. 29 is an exploded side view of the polyaxial screw assembly depicted in FIG. 28 ;
  • FIG. 30 is a top view of the polyaxial screw assembly depicted in FIGS. 28 and 29 taken along line 30 - 30 in FIG. 29 ,
  • FIG. 31 is a top sectional view of the polyaxial screw assembly depicted in FIGS. 28 and 29 taken along line 31 - 31 in FIG. 29 ;
  • FIG. 32 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIGS. 28 and 29 , wherein a tool is shown as interfacing with a head portion thereof to position it within the retainer;
  • FIG. 33 is a top sectional view of the polyaxial screw assembly with the head portion thereof positioned within the retainer, as depicted in FIG. 32 , taken along line 33 - 33 of FIG. 32 ;
  • FIG. 34 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 32 , wherein the compression member and rod engaged therewith are included and the retainer has been pivoted to a maximum degree in a first direction;
  • FIGS. 35A and 35B are enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 32 , wherein the compression member and rod engaged therewith in unlocked and locked positions;
  • FIG. 36 is an exploded view of another embodiment of the invention illustrating the polyaxial screw assembly used in combination with a retainer that utilizes a cap, such as a thread cap;
  • FIG. 37 is a sectional exploded view of the embodiment shown in FIG. 36 ;
  • FIG. 38 is a view of another embodiment of the invention wherein a screw head has a common or coaxial axis with the shank;
  • FIG. 39 is a sectional view of the embodiment shown in FIG. 38 ;
  • FIG. 40 is a sectional view taken along the line 40 - 40 in FIG. 39 ;
  • FIG. 41 is a fragmentary sectional view of the embodiment shown in FIG. 39 illustrating the use of a tool that becomes coaxial with the axes and shank;
  • FIG. 42 is a sectional view taken along the line 42 - 42 in FIG. 41 ;
  • FIG. 43 is a fragmentary sectional view of the embodiment shown in FIG. 38 illustrating the pivotal movement of the retainer relative to the head, with the retainer being in an unlocked position;
  • FIG. 44 is another fragmentary sectional view of the embodiment shown in FIG. 38 illustrating the pivotal movement of the head in a direction that is different from the direction shown in FIG. 43 , but illustrating a greater degree of pivoting;
  • FIG. 45 is a sectional view of an intermediate portion showing its eccentricity and non-symmetry about an axis.
  • FIGS. 4-35B depict various embodiments of a multi-axial screw and spinal fixation assembly 10 .
  • Spinal fixation assembly 10 includes a screw 12 having a threaded portion 14 and a screw head 16 that preferably has a rounded, arcuate, spherical or curved profile.
  • Spinal fixation assembly 10 further includes a retainer 18 , which preferably has a generally cylindrical configuration.
  • the retainer 18 is capless, but the retainer 18 could be non-capless, such as is illustrated in FIGS. 36 and 37 below.
  • retainer 18 includes an aperture or bore 15 therethrough along a centerline axis 20 ( FIG. 4 ). Accordingly, the bore 15 that receives a threaded portion 14 of the screw 12 until screw head 16 thereof is received adjacent a first end 18 a of retainer 18 .
  • screw head 16 may be positioned within retainer 18 in any known manner so that multiaxial or polyaxial and relative movement between retainer 18 and screw 12 is permitted. In this way, a user, such as a surgeon or physician, is able to change the polyaxial position of retainer 18 relative to screw 12 in order to adjust an angular position of the retainer or receiving channel 19 and an elongated member or rod, such as rod 28 ( FIG. 6 ), which is received and retained in the retainer 18 at a first end 18 a.
  • screw 12 is configured so that the retainer 18 is able to pivot in a non-symmetrical manner about screw head 16 . More specifically, it will be noted from the embodiment shown in FIGS. 10 , 11 A- 11 B, 18 , 19 A- 19 B, 26 , 27 A- 27 B, 34 and 35 A- 35 B, that a centerline axis 16 a of screw head 16 is offset from a centerline axis 14 a of the threaded portion 14 .
  • the screw head 16 enables the retainer 18 to pivot by varying degrees in different directions. In this way, implementation of spinal fixation assembly 10 will permit a greater degree of movement of the retainer 18 toward the threaded portion 14 , which may be desirable for a given application or case.
  • the retainer 18 which preferably has a generally cylindrical configuration with helical rod-receiving channels 21 and 23 ( FIG. 4 ) similar to that described in detail in U.S. Patent Application Publication 2007/0043357 A1 to Kirschman U.S. patent application Ser. No. 11/193,523 filed Jul. 29, 2005; U.S. patent application Ser. No. 11/610,698 filed Dec. 14, 2006; and U.S. patent application Ser. No. 11/762,911 filed Jun. 14, 2007, which are also owned by the assignee of the present application and all of which are incorporated by reference and made a part hereof.
  • retainer 18 preferably includes a receiving channel 19 in communication with the helical rod-receiving channels 21 and 23 for engaging an elongated rod or member 28 .
  • the rod 28 may engage directly against the screw head 16 .
  • the spinal fixation assembly 10 may further include a compression member 24 that is received in the bore 15 .
  • the compression member 24 comprises a receiving channel 26 which is utilized to receive engage rod 28 and which engages the screw head 16 .
  • the screw 12 may be used with a non-capless retainer 18 , such as retainer 18 ′ in FIGS. 36 and 37 , which utilizes a cap or other means for retaining rod 28 in the retainer.
  • a non-capless retainer 18 such as retainer 18 ′ in FIGS. 36 and 37 , which utilizes a cap or other means for retaining rod 28 in the retainer.
  • a centerline axis 16 a through screw head 16 is generally offset from and not coaxial with centerline axes 14 a and 16 a .
  • screw head 16 may either be rotated so that centerline axis thereof is at a specified angle relative to centerline axes 14 a and 16 a or shifted in parallel to such centerline axes 14 a and 16 a .
  • screw head 16 is not configured or oriented so as to be symmetrical with respect to or about the centerline axes 14 a and 16 a.
  • Screw head 16 preferably includes at least one female opening, slot or groove 30 ( FIG. 4 ) so that a corresponding tool 34 is able to interact with screw 12 in order to threadingly screw the screw 12 into spinal bone.
  • the opening 30 to be formed therein for receiving the corresponding tool 34 which enables screw 12 to be threaded into and out spinal bone.
  • the partial opening is configured as walls 31 a , 31 b , 31 c and 31 d that intersect at point 32 and that define recessed areas or slots 30 formed in screw head 16 (i.e., as for a Phillips screw). More specifically, the walls 31 a , 31 b , 31 c and 31 d define opening 30 in screw head 16 .
  • the intersecting point 32 is aligned with centerline axis 14 a of threaded portion 14 or a distance 35 ( FIG. 7 ) from centerline axis 16 a .
  • the tool 34 FIG. 8
  • the screw head 16 and slots 30 and pressure applied thereby is directed along centerline axis 14 a.
  • FIG. 10 depicts the pivoting of retainer 18 about screw head 16 in a first direction E as an angle 38 with a range of, for example, approximately 0°-55°.
  • FIG. 11A shows the pivoting of retainer 18 about screw head 16 in a second direction F (opposite the first direction), where an angle 40 has a range of, for example, approximately 0°-55°.
  • the maximum amount of movement or pivoting is greater in the first direction E than in the second direction F. This permits a desirable flexibility for the adjustment of rod 28 when secured as part of a spinal fixation assembly.
  • FIG. 11B shows the rod 28 in a loaded and locked position after the retainer 18 has been pivoted and rotated to the locked position.
  • the partial opening or partial shape of the screw head 16 and the corresponding tool or driver utilized to interface therewith may take any desirable form.
  • other possible configurations of the screw head 16 include, but are not limited to a shape adapted to define a hexagonal opening 42 ( FIGS. 14 and 17 ), a “Y” shape 44 ( FIGS. 22 and 25 ), and an opening 46 defined by a plurality of side walls ( FIGS. 30 and 33 ).
  • corresponding tools 48 FIG. 16
  • 50 FIG. 24
  • 52 FIG. 32
  • the respective tool may have a linear configuration (as evidenced by tools 34 and 48 ) or a non-linear configuration (as seen for tools 50 and 52 ).
  • FIGS. 4-35B illustrate use of the screw 12 with the compression module 17 , but it should be understood that the screw 12 may be used with retainers that do not utilize a compression module 17 . It should be understood that while the embodiments illustrated in FIGS. 4-35B illustrate the use of the screw 12 with a capless retainer and compression module 17 , the screw 12 may be used with non-capless systems.
  • FIGS. 36 and 37 illustrate the use of the screw 12 with a non-capless retainer 18 ′.
  • retainer 18 ′ has a threaded interior surface for receiving a threaded cap 39 .
  • the screw 12 may also be used with other types of retainers that utilize other means for retaining the rod in the receiver, and such receivers and securing mechanisms are known to those skilled in the art.
  • FIGS. 38-44 another embodiment is shown.
  • those parts that are the same or similar to the part shown in FIGS. 4-35B are identified with the same part number.
  • this embodiment utilizes a screw 102 having a threaded shank 104 and a head 106 .
  • the head 106 comprises a female aperture 108 for receiving a tool for screwing the screw 102 .
  • the tool 110 may be a linear tool, without an offset of the type illustrated in FIG. 24 , for example.
  • the receiver 18 comprises an axis 112 that is coaxial with the axis 104 a of the shank 104 .
  • the head 106 comprises an axis 106 a that is coaxial with both the axis 104 a of shank 104 and the axis 112 as illustrated in FIG. 39 . This is advantageous in that when the screw 112 is rotatably driven, it may be driven along a common axis which facilitates mounting or screwing the screw 102 into bone.
  • the head 106 is integrally secured to the shank 104 by an intermediate or neck portion 113 .
  • the neck portion 113 comprises a first surface or area 112 a having a relatively large radius and a second surface or area 112 b that has a relative small radius as shown.
  • the larger and small radiuses of the surfaces 112 a and 112 b permit the retainer 18 to be pivoted a plurality of different angles or degrees.
  • FIG. 43 illustrates the retainer 18 pivoting to the left (as viewed in FIG. 43 ) a predetermined angle 114 as shown.
  • FIG. 43 illustrates the retainer 18 pivoting to the left (as viewed in FIG. 43 ) a predetermined angle 114 as shown.
  • FIG. 43 illustrates the retainer 18 pivoting to the left (as viewed in FIG. 43 ) a predetermined angle 114 as shown.
  • FIG. 43 illustrates the retainer 18 pivoting to the left (as viewed in FIG. 43 ) a predetermined angle 114
  • the relatively small radius surface 112 b defines an area or intermediate portion 113 that permits the retainer 18 to pivot toward the right (as viewed in FIG. 44 ) a predetermined angle 116 which is greater than the predetermined angle 114 as in at least one area of the intermediate portion 113 .
  • the intermediate portion 113 is neither centric nor symmetrical about the axis 104 a .
  • the intermediate portion 113 is eccentric about axis 104 a .
  • the radius of curvature is not constant about the axis 104 a and generally becomes larger as the radius of curvature moves from the portion or area 112 b toward the area 112 a , with the area 112 a having the largest radius of curvature.
  • the radius of curvature changes as well.
  • This embodiment enables the system of FIGS. 38-45 to enable the retainer 18 to pivot a plurality of angles about the head 106 , with the greatest degree of pivot being realized when the retainer 18 pivots toward the smallest radius of curvature 112 b and the smallest amount of pivot being achieved when the retainer 18 is pivoted toward the largest radius of curvature 112 a .
  • the embodiment of FIGS. 38-45 enables the retainer 18 to pivot a plurality of different angles about the head 106 as shown.
  • FIGS. 38-44 Another advantage of the embodiment illustrated in FIGS. 38-44 is that it enables the use of the tool 110 that is generally linear and that is not offset as illustrated, for example, in the embodiment shown in FIG. 24 . This facilitates enabling the tool 110 to become coaxial with the axes of the head 106 and shank 104 , as illustrated in FIG. 41 , which facilitates rotating the screw 104 and mounting in into bone.
  • FIG. 42 shows a cross-section of the illustration shown in FIG. 41 illustrating the tool 110 being coaxial with the head 106 as shown.
  • an intersection of the screw head 16 to the threaded portion 14 may have a wall 14 b ( FIGS. 5 and 8 ) that defines an area 14 c that is generally concave and permits a bottom edge 18 a 1 ( FIGS. 4 , 5 and 8 ) of retainer 18 to move inwardly toward centerline axis 14 a and inside an imaginary plane defined by the outside edge 14 d ( FIG. 8 ) of at least one thread on the threaded portion 14 .

Abstract

A capless multiaxial screw fixation assembly, including: a screw having a threaded portion and a screw head portion positioned at one end thereof; and, a retainer having a first end, a second end opposite the first end, and a bore for receiving the screw threaded portion so that the screw head portion is seated therein. At least one of the screw and the retainer is configured such that the retainer is able to pivot about the screw head portion in a non-symmetrical manner.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to a screw having an offset head and to a multiaxial or polyaxial screw for use with a bone fixation system and, in particular, to a multiaxial or polyaxial screw which permits a greater range of pivotability in at least one direction.
  • 2. Description of the Related Art
  • As is generally known in the art, spinal abnormalities may be correctable using a pair of posterior spinal fixation rods attached to the vertebrae using pedicle screws and the like. In order to provide increased stability and rigidity, especially to resist twisting or the like, the pair of elongated rods often include cross connecting devices. The cross connecting devices typically traverse the spinal column and couple to each of the elongated rods. In other words, the cross connecting devices are perpendicular or substantially perpendicular to the spinal column.
  • In addition, bone screws with a polyaxial head are commonly used in spine surgery today. They are used chiefly in the lumbar spine and screwed into bone (pedicle) posteriorly. The head of the screw is attached to the shaft of the screw. The head of the screw is machined into a ball, and the head may be provided with a receiver or socket into which the ball fits. One typical prior art system further contains a receiver for receiving a separate rod. The rod is fastened to the screw head receiver via a threaded cap. The rod is then fastened to screws placed in adjacent vertebrae thus providing stabilization. The polyaxial head allows the rod to be placed in a variety of angles with respect to the screw allowing conformance to local anatomy.
  • Exemplary bone screws are disclosed in the following patents: U.S. Pat. No. 5,466,237 to Bird et al.; U.S. Pat. No. 4,946,458 to Harms; U.S. Pat. No. 5,207,678 to Harms et al.; U.S. Pat. No. 5,474,555 to Puno et al.; and U.S. Pat. No. 6,869,433 to Glascott. It will be appreciated from the prior art, however, that multiaxial screws involve the ability to pivot symmetrically or the same amount in each direction. In some instances, it is desired for the retainer to be moved or pivoted about the screw head more in a certain direction than in another, whereby greater maneuverability of the rod attached to the retainer may be accommodated. It was difficult to get a “favorable angle” of the retainer relative to the screw head.
  • FIGS. 1-3B show a prior art system wherein a retainer having an angled or canted surface that permits movement between a predetermined angle A (FIG. 2) and a different smaller angle B (FIG. 3A) when the retainer is moved between a first direction C and a second direction D, respectively.
  • Thus, it would be desirable for a multiaxial screw assembly to be developed for use with a spinal fixation system which permits non-symmetrical pivoting and that is capable of use with a variety of retainers, including those with non-canted surfaces. It would also be desirable for a multiaxial screw assembly to be developed in which simple modification of existing components enables the desired pivoting action.
  • SUMMARY OF THE INVENTION
  • It is therefore, an object of the invention to provide a polyaxial screw having a head that provides a greater range of mobility.
  • In one aspect, one embodiment comprises a multiaxial screw fixation assembly, comprising a screw having a threaded portion and a screw head portion positioned at one end thereof, and a retainer having a first end, a second end opposite said first end, and a bore for receiving said threaded portion so that said screw head portion may be seated therein, wherein said screw is adapted such that said retainer is able to pivot about said screw head portion in a non-symmetrical manner.
  • In another aspect, another embodiment comprises a multiaxial screw fixation assembly, comprising a screw, further comprising a threaded portion having a centerline axis extending therethrough, and a head portion positioned at one end of said threaded portion, said head portion having a centerline axis extending therethrough, wherein said screw head portion is not aligned with said screw threaded portion, and a retainer having a first end, a second end opposite said first end, a centerline axis extending therethrough, and a bore for receiving said screw threaded portion so that said screw head portion is seated therein axis, wherein said retainer is able to pivot about said screw head portion in a non-symmetrical manner.
  • In still another aspect, another embodiment comprises a retainer for use in a spinal fixation procedure, said retainer comprising a retainer body having a first end for receiving a rod, said retainer also comprising a bore for receiving a shank of a screw having a screw head, said retainer body having a second end adapted to permit said retainer to pivot or move in a first direction a first predetermined angle and further adapted to permit the retainer to pivot or move in a second direction a second predetermined angle, wherein said second predetermined angle is less than said first predetermined angle.
  • In yet another aspect, another embodiment comprises a polyaxial screw for use during a spinal procedure, said polyaxial screw comprising a threaded shank having a shank axis, and a head integral with said threaded shank, said head being adapted to permit a retainer to pivot or move about a head axis, said head axis being offset from said shank axis.
  • These and other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
  • BRIEF DESCRIPTION OF THE OF THE ACCOMPANYING DRAWINGS
  • FIG. 1 is a front elevation view of a prior art retainer having a centered bottom edge;
  • FIG. 2 is a front elevation view of a prior art retainer, wherein the retainer associated therewith is shown in a first pivoted position;
  • FIG. 3A is a front elevation view of the prior art retainer assembly depicted in FIGS. 1 and 2, wherein the retainer associated therewith is shown in a second pivoted position;
  • FIG. 3B is a top view of the prior art retainer taken along the line 3B-3B in FIG. 1;
  • FIG. 4 is an exploded perspective view of the polyaxial screw assembly having an offset head, wherein a compression member and a rod for engagement with the compression member are also shown;
  • FIG. 5 is an exploded side view of the polyaxial screw assembly depicted in FIG. 4;
  • FIG. 6 is a top view of the polyaxial screw assembly depicted in FIGS. 4 and 5 taken along line 6-6 in FIG. 5;
  • FIG. 7 is a top sectional view of the polyaxial screw assembly depicted in FIGS. 4-6 taken along line 7-7 in FIG. 5;
  • FIG. 8 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIGS. 4 and 5, wherein a tool is shown as interfacing with a head portion thereof to position it within the retainer;
  • FIG. 9 is a top sectional view of the polyaxial screw assembly with the head portion thereof positioned within the retainer, as depicted in FIG. 8, taken along line 9-9 of FIG. 8;
  • FIG. 10 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 8, wherein the compression member and rod engaged therewith are included and the retainer has been pivoted to a maximum degree in a first direction;
  • FIGS. 11A and 11B are enlarged, partial sectional views of the polyaxial screw assembly depicted in FIG. 8, wherein the compression member and rod in unlocked and locked positions and the retainer has been pivoted to a maximum degree in a second direction;
  • FIG. 12 is an exploded perspective view of a polyaxial screw assembly having a first alternative configuration, wherein a compression member and a rod for engagement with the compression member are also shown;
  • FIG. 13 is an exploded side view of the polyaxial screw assembly depicted in FIG. 12;
  • FIG. 14 is a top view of the polyaxial screw assembly depicted in FIGS. 12 and 13 taken along line 14-14 in FIG. 13,
  • FIG. 15 is a top sectional view of the polyaxial screw assembly depicted in FIGS. 12 and 13 taken along line 15-15 in FIG. 13;
  • FIG. 16 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIGS. 12 and 13, wherein a tool is shown as interfacing with a head portion thereof to position it within the retainer;
  • FIG. 17 is a top section view of the polyaxial screw assembly with the head portion thereof positioned within the retainer, as depicted in FIG. 26, taken along line 17-17 of FIG. 16;
  • FIG. 18 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 16, wherein the compression member and rod engaged therewith are included and the retainer has been pivoted to a maximum degree in a first direction;
  • FIGS. 19A and 19B are enlarged, partial sectional views of the polyaxial screw assembly depicted in FIG. 16, wherein the compression member and rod in unlocked and locked positions and the retainer has been pivoted to a maximum degree in a second direction;
  • FIG. 20 is an exploded perspective view of a polyaxial screw assembly having a second alternative configuration, wherein a compression member and a rod for engagement with the compression member are also shown;
  • FIG. 21 is an exploded side view of the polyaxial screw assembly depicted in FIG. 20;
  • FIG. 22 is a top view of the polyaxial screw assembly depicted in FIGS. 20 and 21 taken along line 22-22 in FIG. 21,
  • FIG. 23 is a top sectional view of the polyaxial screw assembly depicted in FIGS. 20 and 21 taken along line 23-23 in FIG. 21;
  • FIG. 24 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIGS. 20 and 21, wherein a tool is shown as interfacing with a head portion thereof to position it within the retainer;
  • FIG. 25 is a top section view of the polyaxial screw assembly with the head portion thereof positioned within the retainer, as depicted in FIG. 24, taken along line 25-25 of FIG. 24;
  • FIG. 26 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 24, wherein the compression member and rod engaged therewith are included and the retainer has been pivoted to a maximum degree in a first direction;
  • FIGS. 27A and 27B are enlarged, partial sectional views of the polyaxial screw assembly depicted in FIG. 24, wherein the compression member and rod in unlocked and locked positions;
  • FIG. 28 is an exploded perspective view of a polyaxial screw assembly having a third alternative configuration, wherein a compression member and a rod for engagement with the compression member are also shown;
  • FIG. 29 is an exploded side view of the polyaxial screw assembly depicted in FIG. 28;
  • FIG. 30 is a top view of the polyaxial screw assembly depicted in FIGS. 28 and 29 taken along line 30-30 in FIG. 29,
  • FIG. 31 is a top sectional view of the polyaxial screw assembly depicted in FIGS. 28 and 29 taken along line 31-31 in FIG. 29;
  • FIG. 32 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIGS. 28 and 29, wherein a tool is shown as interfacing with a head portion thereof to position it within the retainer;
  • FIG. 33 is a top sectional view of the polyaxial screw assembly with the head portion thereof positioned within the retainer, as depicted in FIG. 32, taken along line 33-33 of FIG. 32;
  • FIG. 34 is an enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 32, wherein the compression member and rod engaged therewith are included and the retainer has been pivoted to a maximum degree in a first direction;
  • FIGS. 35A and 35B are enlarged, partial sectional view of the polyaxial screw assembly depicted in FIG. 32, wherein the compression member and rod engaged therewith in unlocked and locked positions;
  • FIG. 36 is an exploded view of another embodiment of the invention illustrating the polyaxial screw assembly used in combination with a retainer that utilizes a cap, such as a thread cap;
  • FIG. 37 is a sectional exploded view of the embodiment shown in FIG. 36;
  • FIG. 38 is a view of another embodiment of the invention wherein a screw head has a common or coaxial axis with the shank;
  • FIG. 39 is a sectional view of the embodiment shown in FIG. 38;
  • FIG. 40 is a sectional view taken along the line 40-40 in FIG. 39;
  • FIG. 41 is a fragmentary sectional view of the embodiment shown in FIG. 39 illustrating the use of a tool that becomes coaxial with the axes and shank;
  • FIG. 42 is a sectional view taken along the line 42-42 in FIG. 41;
  • FIG. 43 is a fragmentary sectional view of the embodiment shown in FIG. 38 illustrating the pivotal movement of the retainer relative to the head, with the retainer being in an unlocked position;
  • FIG. 44 is another fragmentary sectional view of the embodiment shown in FIG. 38 illustrating the pivotal movement of the head in a direction that is different from the direction shown in FIG. 43, but illustrating a greater degree of pivoting; and
  • FIG. 45 is a sectional view of an intermediate portion showing its eccentricity and non-symmetry about an axis.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to the drawings in detail, wherein identical numerals indicate the same elements throughout the figures, FIGS. 4-35B depict various embodiments of a multi-axial screw and spinal fixation assembly 10. Spinal fixation assembly 10 includes a screw 12 having a threaded portion 14 and a screw head 16 that preferably has a rounded, arcuate, spherical or curved profile. Spinal fixation assembly 10 further includes a retainer 18, which preferably has a generally cylindrical configuration. In these illustrative embodiments, the retainer 18 is capless, but the retainer 18 could be non-capless, such as is illustrated in FIGS. 36 and 37 below. Although not shown, it will be appreciated that retainer 18 includes an aperture or bore 15 therethrough along a centerline axis 20 (FIG. 4). Accordingly, the bore 15 that receives a threaded portion 14 of the screw 12 until screw head 16 thereof is received adjacent a first end 18 a of retainer 18. It will be understood that screw head 16 may be positioned within retainer 18 in any known manner so that multiaxial or polyaxial and relative movement between retainer 18 and screw 12 is permitted. In this way, a user, such as a surgeon or physician, is able to change the polyaxial position of retainer 18 relative to screw 12 in order to adjust an angular position of the retainer or receiving channel 19 and an elongated member or rod, such as rod 28 (FIG. 6), which is received and retained in the retainer 18 at a first end 18 a.
  • Contrary to similar assemblies in the prior art shown in FIGS. 1-3B, screw 12 is configured so that the retainer 18 is able to pivot in a non-symmetrical manner about screw head 16. More specifically, it will be noted from the embodiment shown in FIGS. 10, 11A-11B, 18, 19A-19B, 26, 27A-27B, 34 and 35A-35B, that a centerline axis 16 a of screw head 16 is offset from a centerline axis 14 a of the threaded portion 14. The screw head 16 enables the retainer 18 to pivot by varying degrees in different directions. In this way, implementation of spinal fixation assembly 10 will permit a greater degree of movement of the retainer 18 toward the threaded portion 14, which may be desirable for a given application or case.
  • In the illustration, the retainer 18 which preferably has a generally cylindrical configuration with helical rod-receiving channels 21 and 23 (FIG. 4) similar to that described in detail in U.S. Patent Application Publication 2007/0043357 A1 to Kirschman U.S. patent application Ser. No. 11/193,523 filed Jul. 29, 2005; U.S. patent application Ser. No. 11/610,698 filed Dec. 14, 2006; and U.S. patent application Ser. No. 11/762,911 filed Jun. 14, 2007, which are also owned by the assignee of the present application and all of which are incorporated by reference and made a part hereof.
  • It will be appreciated that retainer 18 preferably includes a receiving channel 19 in communication with the helical rod-receiving channels 21 and 23 for engaging an elongated rod or member 28. In one embodiment, the rod 28 may engage directly against the screw head 16.
  • The spinal fixation assembly 10 may further include a compression member 24 that is received in the bore 15. The compression member 24 comprises a receiving channel 26 which is utilized to receive engage rod 28 and which engages the screw head 16.
  • As mentioned earlier, the screw 12 may be used with a non-capless retainer 18, such as retainer 18′ in FIGS. 36 and 37, which utilizes a cap or other means for retaining rod 28 in the retainer.
  • While a centerline axis 14 a through threaded portion 14 of screw 12 remains generally aligned with a centerline axis 16 a through retainer 18, it will be appreciated that a centerline axis 16 a through screw head 16, however, is generally offset from and not coaxial with centerline axes 14 a and 16 a. As such, screw head 16 may either be rotated so that centerline axis thereof is at a specified angle relative to centerline axes 14 a and 16 a or shifted in parallel to such centerline axes 14 a and 16 a. In either case, it will be understood that screw head 16 is not configured or oriented so as to be symmetrical with respect to or about the centerline axes 14 a and 16 a.
  • Screw head 16 preferably includes at least one female opening, slot or groove 30 (FIG. 4) so that a corresponding tool 34 is able to interact with screw 12 in order to threadingly screw the screw 12 into spinal bone. The opening 30 to be formed therein for receiving the corresponding tool 34 which enables screw 12 to be threaded into and out spinal bone. As best seen in FIGS. 6 and 9, the partial opening is configured as walls 31 a, 31 b, 31 c and 31 d that intersect at point 32 and that define recessed areas or slots 30 formed in screw head 16 (i.e., as for a Phillips screw). More specifically, the walls 31 a, 31 b, 31 c and 31 d define opening 30 in screw head 16. Note that the intersecting point 32 is aligned with centerline axis 14 a of threaded portion 14 or a distance 35 (FIG. 7) from centerline axis 16 a. In this way, the tool 34 (FIG. 8) is able to access the screw head 16 and slots 30 and pressure applied thereby is directed along centerline axis 14 a.
  • When screw head 16 is seated properly within retainer 18, as viewed for example in FIGS. 8, 10 and 11, it will be appreciated that the intentional misalignment of screw head 16 and threaded portion 14 creates the ability for retainer 18 (and compression member 24) to pivot non-symmetrically. For example, FIG. 10 depicts the pivoting of retainer 18 about screw head 16 in a first direction E as an angle 38 with a range of, for example, approximately 0°-55°. Similarly, FIG. 11A shows the pivoting of retainer 18 about screw head 16 in a second direction F (opposite the first direction), where an angle 40 has a range of, for example, approximately 0°-55°. Clearly, the maximum amount of movement or pivoting is greater in the first direction E than in the second direction F. This permits a desirable flexibility for the adjustment of rod 28 when secured as part of a spinal fixation assembly.
  • FIG. 11B shows the rod 28 in a loaded and locked position after the retainer 18 has been pivoted and rotated to the locked position.
  • It will be understood that the partial opening or partial shape of the screw head 16 and the corresponding tool or driver utilized to interface therewith may take any desirable form. Besides the exemplary slots 30 and tool 34 shown in FIGS. 6, 8 and 9, other possible configurations of the screw head 16 include, but are not limited to a shape adapted to define a hexagonal opening 42 (FIGS. 14 and 17), a “Y” shape 44 (FIGS. 22 and 25), and an opening 46 defined by a plurality of side walls (FIGS. 30 and 33). Of course, corresponding tools 48 (FIG. 16), 50 (FIG. 24) and 52 (FIG. 32) would be utilized therewith, respectively. It will be appreciated that the respective tool may have a linear configuration (as evidenced by tools 34 and 48) or a non-linear configuration (as seen for tools 50 and 52).
  • Moreover, the embodiments of FIGS. 4-35B illustrate use of the screw 12 with the compression module 17, but it should be understood that the screw 12 may be used with retainers that do not utilize a compression module 17. It should be understood that while the embodiments illustrated in FIGS. 4-35B illustrate the use of the screw 12 with a capless retainer and compression module 17, the screw 12 may be used with non-capless systems. For example, FIGS. 36 and 37 illustrate the use of the screw 12 with a non-capless retainer 18′. In this embodiment, retainer 18′ has a threaded interior surface for receiving a threaded cap 39. Of course, the screw 12 may also be used with other types of retainers that utilize other means for retaining the rod in the receiver, and such receivers and securing mechanisms are known to those skilled in the art.
  • Referring now to FIGS. 38-44, another embodiment is shown. In this embodiment, those parts that are the same or similar to the part shown in FIGS. 4-35B are identified with the same part number.
  • As shown in FIGS. 38 and 39, notice that this embodiment utilizes a screw 102 having a threaded shank 104 and a head 106. The head 106 comprises a female aperture 108 for receiving a tool for screwing the screw 102. In the illustration being described, and as illustrated in FIG. 41, the tool 110 may be a linear tool, without an offset of the type illustrated in FIG. 24, for example. Notice that in this embodiment, the receiver 18 comprises an axis 112 that is coaxial with the axis 104 a of the shank 104. Notice also that the head 106 comprises an axis 106 a that is coaxial with both the axis 104 a of shank 104 and the axis 112 as illustrated in FIG. 39. This is advantageous in that when the screw 112 is rotatably driven, it may be driven along a common axis which facilitates mounting or screwing the screw 102 into bone.
  • As best illustrated in FIGS. 38 and 39, notice that the head 106 is integrally secured to the shank 104 by an intermediate or neck portion 113. As shown in FIGS. 41-43 and 44, notice that the neck portion 113 comprises a first surface or area 112 a having a relatively large radius and a second surface or area 112 b that has a relative small radius as shown. The larger and small radiuses of the surfaces 112 a and 112 b permit the retainer 18 to be pivoted a plurality of different angles or degrees. For example, FIG. 43 illustrates the retainer 18 pivoting to the left (as viewed in FIG. 43) a predetermined angle 114 as shown. In contrast, notice in FIG. 44, the relatively small radius surface 112 b defines an area or intermediate portion 113 that permits the retainer 18 to pivot toward the right (as viewed in FIG. 44) a predetermined angle 116 which is greater than the predetermined angle 114 as in at least one area of the intermediate portion 113.
  • To enable the polyaxial movement, notice in FIG. 41 that the intermediate portion 113 is neither centric nor symmetrical about the axis 104 a. Thus, the intermediate portion 113 is eccentric about axis 104 a. Notice in FIGS. 38-45 that the radius of curvature is not constant about the axis 104 a and generally becomes larger as the radius of curvature moves from the portion or area 112 b toward the area 112 a, with the area 112 a having the largest radius of curvature. Thus, not only is the intermediate portion 113 not symmetrical about the axis 104 a, but the radius of curvature changes as well.
  • This embodiment enables the system of FIGS. 38-45 to enable the retainer 18 to pivot a plurality of angles about the head 106, with the greatest degree of pivot being realized when the retainer 18 pivots toward the smallest radius of curvature 112 b and the smallest amount of pivot being achieved when the retainer 18 is pivoted toward the largest radius of curvature 112 a. Thus, the embodiment of FIGS. 38-45 enables the retainer 18 to pivot a plurality of different angles about the head 106 as shown.
  • Another advantage of the embodiment illustrated in FIGS. 38-44 is that it enables the use of the tool 110 that is generally linear and that is not offset as illustrated, for example, in the embodiment shown in FIG. 24. This facilitates enabling the tool 110 to become coaxial with the axes of the head 106 and shank 104, as illustrated in FIG. 41, which facilitates rotating the screw 104 and mounting in into bone.
  • FIG. 42 shows a cross-section of the illustration shown in FIG. 41 illustrating the tool 110 being coaxial with the head 106 as shown.
  • Note also that an intersection of the screw head 16 to the threaded portion 14 may have a wall 14 b (FIGS. 5 and 8) that defines an area 14 c that is generally concave and permits a bottom edge 18 a 1 (FIGS. 4, 5 and 8) of retainer 18 to move inwardly toward centerline axis 14 a and inside an imaginary plane defined by the outside edge 14 d (FIG. 8) of at least one thread on the threaded portion 14.
  • Having shown and described the preferred embodiment of the present invention, further adaptations of the capless multiaxial screw can be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the invention.
  • While the system and method herein described constitute preferred embodiments of this invention, it is to be understood that the invention is not limited to this precise system and method, and that changes may be made therein without departing from the scope of the invention which is defined in the appended claims.

Claims (30)

1. A multiaxial screw fixation system, comprising:
(a) a screw having a threaded portion and a screw head portion positioned at one end thereof; and
(b) a retainer having a first end, a second end opposite said first end, and a bore for receiving said threaded portion so that said screw head portion may be seated therein;
wherein said screw is adapted such that said retainer is able to pivot about said screw head portion in a non-symmetrical manner.
2. The multiaxial screw fixation system of claim 1, said screw comprises an offset screw head.
3. The multiaxial screw fixation system of claim 2, wherein said offset screw head permits said retainer to pivot with respect to said screw head portion in a first direction greater than in a second direction opposite of said first direction.
4. The multiaxial screw fixation system of claim 1, wherein said retainer is a capless retainer.
5. The multiaxial screw fixation system of claim 1, wherein said retainer comprises a cap for retaining a rod in the retainer.
6. The multiaxial screw fixation system of claim 1, wherein a centerline axis through said screw is co-linear with a centerline axis of said retainer.
7. The multiaxial screw fixation system of claim 1, said threaded portion having a first centerline axis extending therethrough and said screw head portion having a second centerline axis extending therethrough, wherein said first centerline axis and said second centerline axis are not co-linear.
8. The multiaxial screw fixation system of claim 7, wherein said second centerline axis through said screw head portion is offset from said first centerline axis of said threaded portion.
9. The multiaxial screw fixation system of claim 7, wherein said second centerline axis of said screw head portion is oriented at an angle to said first centerline axis of said threaded portion.
10. The multiaxial screw fixation system of claim 1, wherein said screw comprises an intermediate portion between said screw head portion and said threaded portion; said intermediate portion being non-symmetrical about its axis.
11. The multiaxial screw fixation system of claim 1, wherein said screw comprises an intermediate portion coupling said threaded portion to said screw head portion; said intermediate portion comprising a radius of curvature that changes about the axis of the threaded portion.
12. The multiaxial screw fixation system of claim 11, wherein said screw head portion and said threaded portion comprise a common axis, said intermediate portion being non-symmetrical or non-concentric about the common axis.
13. The multiaxial screw fixation system of claim 7, wherein said screw head portion is not symmetrical with respect to said first centerline axis of said threaded portion.
14. The multiaxial screw fixation system of claim 7, said screw head portion further comprising a partial opening formed therein for receiving a corresponding tool.
15. The multiaxial screw fixation system of claim 14, wherein a centerpoint of said partial opening is offset from said second centerline axis of said screw head portion.
16. The multiaxial screw fixation system of claim 14, wherein a centerpoint of said partial opening is aligned with a first centerline axis of said threaded portion.
17. The multiaxial screw fixation system of claim 14, wherein said partial opening is a pair of intersecting slots.
18. The multiaxial screw fixation system of claim 14, wherein said partial opening is at least one of a hexagonal opening or a y-shaped slot.
19. The multiaxial screw fixation system of claim 1, said retainer including a receiving channel for receiving an elongated member.
20. The multiaxial screw fixation system of claim 1, further comprising a compression member for situating in said bore and engaging said screw head portion.
21. A multiaxial screw fixation system, comprising:
(a) a screw, further comprising:
(1) a threaded portion having a centerline axis extending therethrough; and
(2) a head portion positioned at one end of said threaded portion, said head portion having a centerline axis extending therethrough, wherein said head portion is not aligned with said threaded portion; and
(b) a retainer having a first end, a second end opposite said first end, a centerline axis extending therethrough, and a bore for receiving said threaded portion so that said head portion may be seated therein;
wherein said retainer is able to pivot an axis of said threaded portion in a non-symmetrical manner.
22. The multiaxial screw fixation system of claim 21, wherein said centerline axis of said threaded portion and said centerline axis of said head portion are not aligned.
23. A polyaxial screw for use during a surgical procedure, said polyaxial screw comprising:
a threaded shank having a shank axis; and
a head integral with said threaded shank,
said head being adapted to permit a retainer to pivot or move about a head axis,
wherein said head axis being offset from said shank axis.
24. The polyaxial screw as recited in claim 23, wherein said head is generally spherical and comprises at least one recessed area adapted to receive a tool for rotating said polyaxial screw.
25. The polyaxial screw as recited in claim 24, wherein said at least one recessed area comprises a plurality of recessed areas.
26. The polyaxial screw as recited in claim 24, wherein said at least one recessed area comprises a plurality of recessed areas defines a y-shaped engaging area or a plurality of non-intersecting recessed areas.
27. The polyaxial screw as recited in claim 23, wherein an axis of said head is offset from said shank axis.
28. The polyaxial screw as recited in claim 23, wherein said threaded shank has a wall defining a recessed area to permit an end of said retainer to pivot toward said shank axis and inside an imaginary line defined by an outside edge of at least one thread of said threaded shank.
29. A polyaxial screw for use during a surgical procedure, said polyaxial screw comprising a:
a threaded shank having a shank axis;
a head having a head axis; and
an intermediate portion integrally coupling said threaded shank to said head;
said head and said threaded shank having a common axis and being centric or non-symmetrical about said axis.
30. The polyaxial screw as recited in claim 29, wherein said intermediate portion comprises a radius of curvature that changes about the axis.
US11/960,119 2007-12-19 2007-12-19 Offset multiaxial or polyaxial screw, system and assembly Active 2030-02-28 US8029539B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/960,119 US8029539B2 (en) 2007-12-19 2007-12-19 Offset multiaxial or polyaxial screw, system and assembly
US13/214,428 US8480714B2 (en) 2007-12-19 2011-08-22 Offset multiaxial or polyaxial screw, system and assembly
US13/935,601 US9198691B2 (en) 2007-12-19 2013-07-05 Offset multiaxial or polyaxial screw, system and assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/960,119 US8029539B2 (en) 2007-12-19 2007-12-19 Offset multiaxial or polyaxial screw, system and assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/214,428 Continuation US8480714B2 (en) 2007-12-19 2011-08-22 Offset multiaxial or polyaxial screw, system and assembly

Publications (2)

Publication Number Publication Date
US20090163961A1 true US20090163961A1 (en) 2009-06-25
US8029539B2 US8029539B2 (en) 2011-10-04

Family

ID=40789537

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/960,119 Active 2030-02-28 US8029539B2 (en) 2007-12-19 2007-12-19 Offset multiaxial or polyaxial screw, system and assembly
US13/214,428 Active US8480714B2 (en) 2007-12-19 2011-08-22 Offset multiaxial or polyaxial screw, system and assembly
US13/935,601 Active US9198691B2 (en) 2007-12-19 2013-07-05 Offset multiaxial or polyaxial screw, system and assembly

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/214,428 Active US8480714B2 (en) 2007-12-19 2011-08-22 Offset multiaxial or polyaxial screw, system and assembly
US13/935,601 Active US9198691B2 (en) 2007-12-19 2013-07-05 Offset multiaxial or polyaxial screw, system and assembly

Country Status (1)

Country Link
US (3) US8029539B2 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080045963A1 (en) * 2006-08-21 2008-02-21 Abdou M S Bone screw systems and methods of use
US20080161859A1 (en) * 2006-10-16 2008-07-03 Innovative Delta Technology Llc Bone Screw and Associated Assembly and Methods of Use Thereof
US20100087874A1 (en) * 2005-12-21 2010-04-08 Jong Wuk Jang Pedicle screw
US20100312282A1 (en) * 2005-02-18 2010-12-09 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US20120209335A1 (en) * 2011-02-11 2012-08-16 Blackstone Medical, Inc. Multi-axial pedicle fixation assembly and method for use
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US8337530B2 (en) 2011-03-09 2012-12-25 Zimmer Spine, Inc. Polyaxial pedicle screw with increased angulation
US8377102B2 (en) 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US8377067B2 (en) 2004-02-27 2013-02-19 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US8394133B2 (en) 2004-02-27 2013-03-12 Roger P. Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US8556938B2 (en) 2009-06-15 2013-10-15 Roger P. Jackson Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
JP2014113489A (en) * 2012-12-10 2014-06-26 Biedermann Technologies Gmbh & Co Kg Anchoring member suitable for use in polyaxial bone anchoring device and polyaxial bone anchoring device with enlarged pivot angle to one side
US8814911B2 (en) 2003-06-18 2014-08-26 Roger P. Jackson Polyaxial bone screw with cam connection and lock and release insert
US8814913B2 (en) 2002-09-06 2014-08-26 Roger P Jackson Helical guide and advancement flange with break-off extensions
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US8870928B2 (en) 2002-09-06 2014-10-28 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US8894657B2 (en) 2004-02-27 2014-11-25 Roger P. Jackson Tool system for dynamic spinal implants
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US20150032116A1 (en) * 2013-07-25 2015-01-29 Zimmer Spine, Inc. Self-retaining driver for a bone screw
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US8998960B2 (en) 2004-11-10 2015-04-07 Roger P. Jackson Polyaxial bone screw with helically wound capture connection
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US9211150B2 (en) 2004-11-23 2015-12-15 Roger P. Jackson Spinal fixation tool set and method
US9216039B2 (en) 2004-02-27 2015-12-22 Roger P. Jackson Dynamic spinal stabilization assemblies, tool set and method
US9308027B2 (en) 2005-05-27 2016-04-12 Roger P Jackson Polyaxial bone screw with shank articulation pressure insert and method
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9414863B2 (en) 2005-02-22 2016-08-16 Roger P. Jackson Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures
US9439683B2 (en) 2007-01-26 2016-09-13 Roger P Jackson Dynamic stabilization member with molded connection
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9480517B2 (en) 2009-06-15 2016-11-01 Roger P. Jackson Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9907574B2 (en) 2008-08-01 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
FR3063005A1 (en) * 2017-02-22 2018-08-24 Novastep SCREW FOR OSTEOSYNTHESIS COMPRISING ANGULAR INDEXING IN RELATION TO SCREWDRIVERS
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US10194951B2 (en) 2005-05-10 2019-02-05 Roger P. Jackson Polyaxial bone anchor with compound articulation and pop-on shank
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US10349983B2 (en) 2003-05-22 2019-07-16 Alphatec Spine, Inc. Pivotal bone anchor assembly with biased bushing for pre-lock friction fit
US10363070B2 (en) 2009-06-15 2019-07-30 Roger P. Jackson Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers
US10485588B2 (en) 2004-02-27 2019-11-26 Nuvasive, Inc. Spinal fixation tool attachment structure
US10543107B2 (en) 2009-12-07 2020-01-28 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10548740B1 (en) 2016-10-25 2020-02-04 Samy Abdou Devices and methods for vertebral bone realignment
US10575961B1 (en) 2011-09-23 2020-03-03 Samy Abdou Spinal fixation devices and methods of use
US10695105B2 (en) 2012-08-28 2020-06-30 Samy Abdou Spinal fixation devices and methods of use
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10918498B2 (en) 2004-11-24 2021-02-16 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US11006982B2 (en) 2012-02-22 2021-05-18 Samy Abdou Spinous process fixation devices and methods of use
US11173040B2 (en) 2012-10-22 2021-11-16 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055888C1 (en) 2000-11-10 2002-04-25 Biedermann Motech Gmbh Bone screw, has connector rod receiving part with unsymmetrically arranged end bores
US8313487B2 (en) 2008-06-24 2012-11-20 Extremity Medical Llc Fixation system, an intramedullary fixation assembly and method of use
US9017329B2 (en) 2008-06-24 2015-04-28 Extremity Medical, Llc Intramedullary fixation assembly and method of use
US8328806B2 (en) 2008-06-24 2012-12-11 Extremity Medical, Llc Fixation system, an intramedullary fixation assembly and method of use
US20110230884A1 (en) * 2008-06-24 2011-09-22 Adam Mantzaris Hybrid intramedullary fixation assembly and method of use
US8303589B2 (en) 2008-06-24 2012-11-06 Extremity Medical Llc Fixation system, an intramedullary fixation assembly and method of use
US9044282B2 (en) 2008-06-24 2015-06-02 Extremity Medical Llc Intraosseous intramedullary fixation assembly and method of use
US9289220B2 (en) 2008-06-24 2016-03-22 Extremity Medical Llc Intramedullary fixation assembly and method of use
US8343199B2 (en) 2008-06-24 2013-01-01 Extremity Medical, Llc Intramedullary fixation screw, a fixation system, and method of fixation of the subtalar joint
US9463047B2 (en) * 2013-02-09 2016-10-11 Vertiscrew, Llc Bone screw
US9579125B2 (en) 2013-02-09 2017-02-28 Vertiscrew, Llc Bone screw
EP3468485B1 (en) * 2016-06-09 2023-11-08 Stryker European Operations Holdings LLC Bone screw
US10610265B1 (en) 2017-07-31 2020-04-07 K2M, Inc. Polyaxial bone screw with increased angulation
US11925393B2 (en) * 2019-06-28 2024-03-12 K2M, Inc. Pedicle screw rasp system and adjuster

Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US483342A (en) * 1892-09-27 bolte
US900717A (en) * 1907-09-26 1908-10-13 Edward B Feaster Cable fastener or clamp.
US2344381A (en) * 1940-05-03 1944-03-14 Leonard A Young Nut
US3019504A (en) * 1959-04-29 1962-02-06 Burroughs Corp Tape and terminal fitting assembly
US3648691A (en) * 1970-02-24 1972-03-14 Univ Colorado State Res Found Method of applying vertebral appliance
US3752203A (en) * 1971-07-28 1973-08-14 Hill Fastener Corp Lock-screw fasteners
US3875936A (en) * 1972-12-18 1975-04-08 Robert G Volz Trochantaric attachment assembly and method of using same
US4011602A (en) * 1975-10-06 1977-03-15 Battelle Memorial Institute Porous expandable device for attachment to bone tissue
US4085744A (en) * 1977-01-31 1978-04-25 David Warren Lewis Spinal column prostheses orthoses
US4269178A (en) * 1979-06-04 1981-05-26 Keene James S Hook assembly for engaging a spinal column
US4289124A (en) * 1978-09-18 1981-09-15 Zickel Robert E Surgical appliance for the fixation of fractured bones
US4294300A (en) * 1978-01-13 1981-10-13 Nedschroef Octrooi Maatschappij N.V. Self-locking fastener
US4309139A (en) * 1979-07-29 1982-01-05 Kishu Neji Co., Ltd. Self-locking fastening device
US4411259A (en) * 1980-02-04 1983-10-25 Drummond Denis S Apparatus for engaging a hook assembly to a spinal column
US4604995A (en) * 1984-03-30 1986-08-12 Stephens David C Spinal stabilizer
US4611581A (en) * 1983-12-16 1986-09-16 Acromed Corporation Apparatus for straightening spinal columns
US4611580A (en) * 1983-11-23 1986-09-16 Henry Ford Hospital Intervertebral body stabilization
US4641636A (en) * 1983-05-04 1987-02-10 Cotrel Yves P C A Device for supporting the rachis
US4648388A (en) * 1985-11-01 1987-03-10 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4653481A (en) * 1985-07-24 1987-03-31 Howland Robert S Advanced spine fixation system and method
US4655199A (en) * 1985-03-29 1987-04-07 Acromed Corporation Spinal column straightening apparatus
US4658809A (en) * 1983-02-25 1987-04-21 Firma Heinrich C. Ulrich Implantable spinal distraction splint
US4696290A (en) * 1983-12-16 1987-09-29 Acromed Corporation Apparatus for straightening spinal columns
US4719905A (en) * 1985-11-01 1988-01-19 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4763644A (en) * 1984-02-28 1988-08-16 Webb Peter J Spinal fixation
US4771767A (en) * 1986-02-03 1988-09-20 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4805602A (en) * 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
US4887596A (en) * 1988-03-02 1989-12-19 Synthes (U.S.A.) Open backed pedicle screw
US4887595A (en) * 1987-07-29 1989-12-19 Acromed Corporation Surgically implantable device for spinal columns
US4913134A (en) * 1987-07-24 1990-04-03 Biotechnology, Inc. Spinal fixation system
US4946458A (en) * 1986-04-25 1990-08-07 Harms Juergen Pedicle screw
US4950269A (en) * 1988-06-13 1990-08-21 Acromed Corporation Spinal column fixation device
US5005562A (en) * 1988-06-24 1991-04-09 Societe De Fabrication De Material Orthopedique Implant for spinal osteosynthesis device, in particular in traumatology
US5024213A (en) * 1989-02-08 1991-06-18 Acromed Corporation Connector for a corrective device
US5042982A (en) * 1987-07-08 1991-08-27 Harms Juergen Positioning device
US5067955A (en) * 1989-04-13 1991-11-26 Societe De Fabrication De Material Orthopedique Vertebral implant for osteosynthesis device
US5084049A (en) * 1989-02-08 1992-01-28 Acromed Corporation Transverse connector for spinal column corrective devices
US5092867A (en) * 1988-07-13 1992-03-03 Harms Juergen Correction and supporting apparatus, in particular for the spinal column
US5113685A (en) * 1991-01-28 1992-05-19 Acromed Corporation Apparatus for contouring spine plates and/or rods
US5120171A (en) * 1990-11-27 1992-06-09 Stuart Surgical Bone screw with improved threads
US5127912A (en) * 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
US5129900A (en) * 1990-07-24 1992-07-14 Acromed Corporation Spinal column retaining method and apparatus
US5176680A (en) * 1990-02-08 1993-01-05 Vignaud Jean Louis Device for the adjustable fixing of spinal osteosynthesis rods
US5183359A (en) * 1992-05-12 1993-02-02 Illinois Tool Works Inc. Rotary fastener with anti-strip-out nibs
US5190543A (en) * 1990-11-26 1993-03-02 Synthes (U.S.A.) Anchoring device
US5207678A (en) * 1989-07-20 1993-05-04 Prufer Pedicle screw and receiver member therefore
US5261913A (en) * 1989-07-26 1993-11-16 J.B.S. Limited Company Device for straightening, securing, compressing and elongating the spinal column
US5360431A (en) * 1990-04-26 1994-11-01 Cross Medical Products Transpedicular screw system and method of use
US5380325A (en) * 1992-11-06 1995-01-10 Biomat Osteosynthesis device for spinal consolidation
US5466237A (en) * 1993-11-19 1995-11-14 Cross Medical Products, Inc. Variable locking stabilizer anchor seat and screw
US5702486A (en) * 1994-02-22 1997-12-30 Kirschner Medical Corporation Modular humeral prosthesis for reconstruction of the humerus
US5797911A (en) * 1996-09-24 1998-08-25 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5879350A (en) * 1996-09-24 1999-03-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5885286A (en) * 1996-09-24 1999-03-23 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5891145A (en) * 1997-07-14 1999-04-06 Sdgi Holdings, Inc. Multi-axial screw
US20020120272A1 (en) * 1998-06-17 2002-08-29 Hansen Yuan Device for securing spinal rods
US6660004B2 (en) * 1999-09-01 2003-12-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US6755829B1 (en) * 2000-09-22 2004-06-29 Depuy Acromed, Inc. Lock cap anchor assembly for orthopaedic fixation
US20040225289A1 (en) * 2003-05-07 2004-11-11 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US6869433B2 (en) * 2001-01-12 2005-03-22 Depuy Acromed, Inc. Polyaxial screw with improved locking
US20060058788A1 (en) * 2004-08-27 2006-03-16 Hammer Michael A Multi-axial connection system
US20060155278A1 (en) * 2004-10-25 2006-07-13 Alphaspine, Inc. Pedicle screw systems and methods of assembling/installing the same
US20060161152A1 (en) * 2004-10-25 2006-07-20 Alphaspine, Inc. Bone fixation systems and methods of assembling and/or installing the same
US20060161153A1 (en) * 2004-10-25 2006-07-20 Alphaspine, Inc. Pedicle screw systems and methods of assembling/installing the same
US20060173456A1 (en) * 2005-01-31 2006-08-03 Hawkes David T Polyaxial pedicle screw assembly
US20060195086A1 (en) * 2005-02-02 2006-08-31 Syberspine Limited Integral, articulated, pedicle screw and longitudinal member for spinal osteosynthesis
US20070043357A1 (en) * 2005-07-29 2007-02-22 X-Spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
US20070053765A1 (en) * 2005-07-29 2007-03-08 Warnick David R Thread on a bone screw
US20070093826A1 (en) * 2005-10-04 2007-04-26 Hawkes David T Modular pedicle screw systems and methods of intra-operatively assembling the same
US20070093827A1 (en) * 2005-10-04 2007-04-26 Warnick David R Pedicle screw system with provisional locking aspects
US20070123862A1 (en) * 2004-10-25 2007-05-31 Warnick David R Bone fixation system and method for using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB167228A (en) 1920-04-26 1921-07-26 Stanley Watkin Darker Improvements in or relating to nut locks
DE3219575A1 (en) 1982-05-25 1983-12-01 Patrick Dr.med. 3590 Bad Wildungen Kluger Implant system for correction of the position and stabilisation of the spine
DE3613075C1 (en) 1986-04-18 1987-07-02 Huennebeck Gmbh Steel tube support with quick lowering
EP0267959A1 (en) 1986-05-30 1988-05-25 BUMPUS, John Distraction rods
DE3639810C2 (en) 1986-11-21 1998-04-09 Heinrich Ulrich Implant for spine correction and / or stabilization
DE3711013C1 (en) 1987-04-01 1988-06-09 Harms Juergen Pedicle screw
FR2615095B1 (en) 1987-05-15 1989-08-18 Fabrication Materiel Orthopedi OSTEOSYNTHESIS INSTRUMENTATION FOR THE CORRECTION OF LUMBAR SCOLIOSES BY POSTERIOR PATHWAY
FR2624720B1 (en) 1987-12-21 1994-04-15 Fabrication Materiel Orthopediqu IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS
DE9403231U1 (en) 1994-02-26 1994-04-21 Aesculap Ag Surgical implant
FR2852815B1 (en) 2003-03-26 2006-09-01 Jean Pierre Lenfant IMPLANTABLE GAME-RETRACTING DEVICE FOR POSITIONAL MAINTENANCE OF VERTEBRATES

Patent Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US483342A (en) * 1892-09-27 bolte
US900717A (en) * 1907-09-26 1908-10-13 Edward B Feaster Cable fastener or clamp.
US2344381A (en) * 1940-05-03 1944-03-14 Leonard A Young Nut
US3019504A (en) * 1959-04-29 1962-02-06 Burroughs Corp Tape and terminal fitting assembly
US3648691A (en) * 1970-02-24 1972-03-14 Univ Colorado State Res Found Method of applying vertebral appliance
US3752203A (en) * 1971-07-28 1973-08-14 Hill Fastener Corp Lock-screw fasteners
US3875936A (en) * 1972-12-18 1975-04-08 Robert G Volz Trochantaric attachment assembly and method of using same
US4011602A (en) * 1975-10-06 1977-03-15 Battelle Memorial Institute Porous expandable device for attachment to bone tissue
US4085744A (en) * 1977-01-31 1978-04-25 David Warren Lewis Spinal column prostheses orthoses
US4294300A (en) * 1978-01-13 1981-10-13 Nedschroef Octrooi Maatschappij N.V. Self-locking fastener
US4289124A (en) * 1978-09-18 1981-09-15 Zickel Robert E Surgical appliance for the fixation of fractured bones
US4269178A (en) * 1979-06-04 1981-05-26 Keene James S Hook assembly for engaging a spinal column
US4309139A (en) * 1979-07-29 1982-01-05 Kishu Neji Co., Ltd. Self-locking fastening device
US4411259A (en) * 1980-02-04 1983-10-25 Drummond Denis S Apparatus for engaging a hook assembly to a spinal column
US4658809A (en) * 1983-02-25 1987-04-21 Firma Heinrich C. Ulrich Implantable spinal distraction splint
US4815453A (en) * 1983-05-04 1989-03-28 Societe De Fabrication De Materiel Orthopedique (Sofamor) Device for supporting the rachis
US4641636A (en) * 1983-05-04 1987-02-10 Cotrel Yves P C A Device for supporting the rachis
US4611580A (en) * 1983-11-23 1986-09-16 Henry Ford Hospital Intervertebral body stabilization
US4611581A (en) * 1983-12-16 1986-09-16 Acromed Corporation Apparatus for straightening spinal columns
US4696290A (en) * 1983-12-16 1987-09-29 Acromed Corporation Apparatus for straightening spinal columns
US4763644A (en) * 1984-02-28 1988-08-16 Webb Peter J Spinal fixation
US4604995A (en) * 1984-03-30 1986-08-12 Stephens David C Spinal stabilizer
US4655199A (en) * 1985-03-29 1987-04-07 Acromed Corporation Spinal column straightening apparatus
US4653481A (en) * 1985-07-24 1987-03-31 Howland Robert S Advanced spine fixation system and method
US4719905A (en) * 1985-11-01 1988-01-19 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4719905B1 (en) * 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US4648388B1 (en) * 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US4648388A (en) * 1985-11-01 1987-03-10 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4771767A (en) * 1986-02-03 1988-09-20 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4946458A (en) * 1986-04-25 1990-08-07 Harms Juergen Pedicle screw
US4805602A (en) * 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
US5042982A (en) * 1987-07-08 1991-08-27 Harms Juergen Positioning device
US4913134A (en) * 1987-07-24 1990-04-03 Biotechnology, Inc. Spinal fixation system
US4887595A (en) * 1987-07-29 1989-12-19 Acromed Corporation Surgically implantable device for spinal columns
US4887596A (en) * 1988-03-02 1989-12-19 Synthes (U.S.A.) Open backed pedicle screw
US4950269A (en) * 1988-06-13 1990-08-21 Acromed Corporation Spinal column fixation device
US5005562A (en) * 1988-06-24 1991-04-09 Societe De Fabrication De Material Orthopedique Implant for spinal osteosynthesis device, in particular in traumatology
US5092867A (en) * 1988-07-13 1992-03-03 Harms Juergen Correction and supporting apparatus, in particular for the spinal column
US5084049A (en) * 1989-02-08 1992-01-28 Acromed Corporation Transverse connector for spinal column corrective devices
US5024213A (en) * 1989-02-08 1991-06-18 Acromed Corporation Connector for a corrective device
US5067955A (en) * 1989-04-13 1991-11-26 Societe De Fabrication De Material Orthopedique Vertebral implant for osteosynthesis device
US5207678A (en) * 1989-07-20 1993-05-04 Prufer Pedicle screw and receiver member therefore
US5261913A (en) * 1989-07-26 1993-11-16 J.B.S. Limited Company Device for straightening, securing, compressing and elongating the spinal column
US5176680A (en) * 1990-02-08 1993-01-05 Vignaud Jean Louis Device for the adjustable fixing of spinal osteosynthesis rods
US5624442A (en) * 1990-04-26 1997-04-29 Cross Medical Products, Inc. Transverse link for use with a spinal implant system
US5360431A (en) * 1990-04-26 1994-11-01 Cross Medical Products Transpedicular screw system and method of use
US5474555A (en) * 1990-04-26 1995-12-12 Cross Medical Products Spinal implant system
US5129900B1 (en) * 1990-07-24 1998-12-29 Acromed Corp Spinal column retaining method and apparatus
US5129900A (en) * 1990-07-24 1992-07-14 Acromed Corporation Spinal column retaining method and apparatus
US5127912A (en) * 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
US5190543A (en) * 1990-11-26 1993-03-02 Synthes (U.S.A.) Anchoring device
US5120171A (en) * 1990-11-27 1992-06-09 Stuart Surgical Bone screw with improved threads
US5113685A (en) * 1991-01-28 1992-05-19 Acromed Corporation Apparatus for contouring spine plates and/or rods
US5183359A (en) * 1992-05-12 1993-02-02 Illinois Tool Works Inc. Rotary fastener with anti-strip-out nibs
US5380325A (en) * 1992-11-06 1995-01-10 Biomat Osteosynthesis device for spinal consolidation
US5466237A (en) * 1993-11-19 1995-11-14 Cross Medical Products, Inc. Variable locking stabilizer anchor seat and screw
US5702486A (en) * 1994-02-22 1997-12-30 Kirschner Medical Corporation Modular humeral prosthesis for reconstruction of the humerus
US5797911A (en) * 1996-09-24 1998-08-25 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5879350A (en) * 1996-09-24 1999-03-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5885286A (en) * 1996-09-24 1999-03-23 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5891145A (en) * 1997-07-14 1999-04-06 Sdgi Holdings, Inc. Multi-axial screw
US20020120272A1 (en) * 1998-06-17 2002-08-29 Hansen Yuan Device for securing spinal rods
US6660004B2 (en) * 1999-09-01 2003-12-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US6755829B1 (en) * 2000-09-22 2004-06-29 Depuy Acromed, Inc. Lock cap anchor assembly for orthopaedic fixation
US7125426B2 (en) * 2000-09-22 2006-10-24 Depuy Spine Sarl Locking cap assembly for spinal fixation instrumentation
US20050033296A1 (en) * 2000-09-22 2005-02-10 Bono Frank Scott Locking cap assembly for spinal fixation instrumentation
US7081117B2 (en) * 2000-09-22 2006-07-25 Depuy Acromed, Inc. Locking cap assembly for spinal fixation instrumentation
US20050177154A1 (en) * 2000-09-22 2005-08-11 Missoum Moumene Locking cap assembly for spinal fixation instrumentation
US20060235393A1 (en) * 2000-09-22 2006-10-19 Depuy Spine, Inc. Locking cap assembly for spinal fixation instrumentation
US6869433B2 (en) * 2001-01-12 2005-03-22 Depuy Acromed, Inc. Polyaxial screw with improved locking
US20040225289A1 (en) * 2003-05-07 2004-11-11 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US20060058788A1 (en) * 2004-08-27 2006-03-16 Hammer Michael A Multi-axial connection system
US20060161152A1 (en) * 2004-10-25 2006-07-20 Alphaspine, Inc. Bone fixation systems and methods of assembling and/or installing the same
US20060161153A1 (en) * 2004-10-25 2006-07-20 Alphaspine, Inc. Pedicle screw systems and methods of assembling/installing the same
US20060155278A1 (en) * 2004-10-25 2006-07-13 Alphaspine, Inc. Pedicle screw systems and methods of assembling/installing the same
US20070123862A1 (en) * 2004-10-25 2007-05-31 Warnick David R Bone fixation system and method for using the same
US20060173456A1 (en) * 2005-01-31 2006-08-03 Hawkes David T Polyaxial pedicle screw assembly
US20060195086A1 (en) * 2005-02-02 2006-08-31 Syberspine Limited Integral, articulated, pedicle screw and longitudinal member for spinal osteosynthesis
US20070043357A1 (en) * 2005-07-29 2007-02-22 X-Spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
US20070053765A1 (en) * 2005-07-29 2007-03-08 Warnick David R Thread on a bone screw
US20070093826A1 (en) * 2005-10-04 2007-04-26 Hawkes David T Modular pedicle screw systems and methods of intra-operatively assembling the same
US20070093827A1 (en) * 2005-10-04 2007-04-26 Warnick David R Pedicle screw system with provisional locking aspects

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814913B2 (en) 2002-09-06 2014-08-26 Roger P Jackson Helical guide and advancement flange with break-off extensions
US8870928B2 (en) 2002-09-06 2014-10-28 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US10349983B2 (en) 2003-05-22 2019-07-16 Alphatec Spine, Inc. Pivotal bone anchor assembly with biased bushing for pre-lock friction fit
US8377102B2 (en) 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US8814911B2 (en) 2003-06-18 2014-08-26 Roger P. Jackson Polyaxial bone screw with cam connection and lock and release insert
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US11426216B2 (en) 2003-12-16 2022-08-30 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10039578B2 (en) 2003-12-16 2018-08-07 DePuy Synthes Products, Inc. Methods and devices for minimally invasive spinal fixation element placement
US10299839B2 (en) 2003-12-16 2019-05-28 Medos International Sárl Percutaneous access devices and bone anchor assemblies
US11147597B2 (en) 2004-02-27 2021-10-19 Roger P Jackson Dynamic spinal stabilization assemblies, tool set and method
US9662151B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Orthopedic implant rod reduction tool set and method
US8377067B2 (en) 2004-02-27 2013-02-19 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9636151B2 (en) 2004-02-27 2017-05-02 Roger P Jackson Orthopedic implant rod reduction tool set and method
US9532815B2 (en) 2004-02-27 2017-01-03 Roger P. Jackson Spinal fixation tool set and method
US11291480B2 (en) 2004-02-27 2022-04-05 Nuvasive, Inc. Spinal fixation tool attachment structure
US9216039B2 (en) 2004-02-27 2015-12-22 Roger P. Jackson Dynamic spinal stabilization assemblies, tool set and method
US9055978B2 (en) 2004-02-27 2015-06-16 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US10485588B2 (en) 2004-02-27 2019-11-26 Nuvasive, Inc. Spinal fixation tool attachment structure
US8394133B2 (en) 2004-02-27 2013-03-12 Roger P. Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US9050139B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US9918751B2 (en) 2004-02-27 2018-03-20 Roger P. Jackson Tool system for dynamic spinal implants
US9662143B2 (en) 2004-02-27 2017-05-30 Roger P Jackson Dynamic fixation assemblies with inner core and outer coil-like member
US11648039B2 (en) 2004-02-27 2023-05-16 Roger P. Jackson Spinal fixation tool attachment structure
US8894657B2 (en) 2004-02-27 2014-11-25 Roger P. Jackson Tool system for dynamic spinal implants
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US9743957B2 (en) 2004-11-10 2017-08-29 Roger P. Jackson Polyaxial bone screw with shank articulation pressure insert and method
US8998960B2 (en) 2004-11-10 2015-04-07 Roger P. Jackson Polyaxial bone screw with helically wound capture connection
US11147591B2 (en) 2004-11-10 2021-10-19 Roger P Jackson Pivotal bone anchor receiver assembly with threaded closure
US9211150B2 (en) 2004-11-23 2015-12-15 Roger P. Jackson Spinal fixation tool set and method
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US9522021B2 (en) 2004-11-23 2016-12-20 Roger P. Jackson Polyaxial bone anchor with retainer with notch for mono-axial motion
US11389214B2 (en) 2004-11-23 2022-07-19 Roger P. Jackson Spinal fixation tool set and method
US9629669B2 (en) 2004-11-23 2017-04-25 Roger P. Jackson Spinal fixation tool set and method
US8840652B2 (en) 2004-11-23 2014-09-23 Roger P. Jackson Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US10039577B2 (en) 2004-11-23 2018-08-07 Roger P Jackson Bone anchor receiver with horizontal radiused tool attachment structures and parallel planar outer surfaces
US10918498B2 (en) 2004-11-24 2021-02-16 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US11096799B2 (en) 2004-11-24 2021-08-24 Samy Abdou Devices and methods for inter-vertebral orthopedic device placement
US8845701B2 (en) 2005-02-18 2014-09-30 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US8308776B2 (en) 2005-02-18 2012-11-13 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US8398689B2 (en) 2005-02-18 2013-03-19 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US20100312282A1 (en) * 2005-02-18 2010-12-09 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US8845696B1 (en) 2005-02-18 2014-09-30 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
USRE47551E1 (en) 2005-02-22 2019-08-06 Roger P. Jackson Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures
US9414863B2 (en) 2005-02-22 2016-08-16 Roger P. Jackson Polyaxial bone screw with spherical capture, compression insert and alignment and retention structures
US10194951B2 (en) 2005-05-10 2019-02-05 Roger P. Jackson Polyaxial bone anchor with compound articulation and pop-on shank
US9308027B2 (en) 2005-05-27 2016-04-12 Roger P Jackson Polyaxial bone screw with shank articulation pressure insert and method
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US20100087874A1 (en) * 2005-12-21 2010-04-08 Jong Wuk Jang Pedicle screw
US8308773B2 (en) 2005-12-21 2012-11-13 Medyssey Co., Ltd. Pedicle screw
US20080045963A1 (en) * 2006-08-21 2008-02-21 Abdou M S Bone screw systems and methods of use
US8876874B2 (en) * 2006-08-21 2014-11-04 M. Samy Abdou Bone screw systems and methods of use
US20080161859A1 (en) * 2006-10-16 2008-07-03 Innovative Delta Technology Llc Bone Screw and Associated Assembly and Methods of Use Thereof
US8167910B2 (en) * 2006-10-16 2012-05-01 Innovative Delta Technology Llc Bone screw and associated assembly and methods of use thereof
US10792074B2 (en) 2007-01-22 2020-10-06 Roger P. Jackson Pivotal bone anchor assemly with twist-in-place friction fit insert
US9439683B2 (en) 2007-01-26 2016-09-13 Roger P Jackson Dynamic stabilization member with molded connection
US9907574B2 (en) 2008-08-01 2018-03-06 Roger P. Jackson Polyaxial bone anchors with pop-on shank, friction fit fully restrained retainer, insert and tool receiving features
US9717534B2 (en) 2009-06-15 2017-08-01 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US9504496B2 (en) 2009-06-15 2016-11-29 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US10363070B2 (en) 2009-06-15 2019-07-30 Roger P. Jackson Pivotal bone anchor assemblies with pressure inserts and snap on articulating retainers
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US8556938B2 (en) 2009-06-15 2013-10-15 Roger P. Jackson Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9480517B2 (en) 2009-06-15 2016-11-01 Roger P. Jackson Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock
US10857004B2 (en) 2009-12-07 2020-12-08 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10945861B2 (en) 2009-12-07 2021-03-16 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10610380B2 (en) 2009-12-07 2020-04-07 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10543107B2 (en) 2009-12-07 2020-01-28 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US11918486B2 (en) 2009-12-07 2024-03-05 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US20120209335A1 (en) * 2011-02-11 2012-08-16 Blackstone Medical, Inc. Multi-axial pedicle fixation assembly and method for use
US9504495B2 (en) * 2011-02-11 2016-11-29 Blackstone Medical, Inc. Multi-axial pedicle fixation assembly and method for use
US8337530B2 (en) 2011-03-09 2012-12-25 Zimmer Spine, Inc. Polyaxial pedicle screw with increased angulation
US20130013004A1 (en) * 2011-03-09 2013-01-10 Zimmer Spine, Inc. Polyaxial pedicle screw with increased angulation
US9532810B2 (en) * 2011-03-09 2017-01-03 Zimmer Spine, Inc. Polyaxial pedicle screw with increased angulation
US9289244B2 (en) 2011-03-09 2016-03-22 Zimmer Spine, Inc. Polyaxial pedicle screw with increased angulation
US8685064B2 (en) * 2011-03-09 2014-04-01 Zimmer Spine, Inc. Polyaxial pedicle screw with increased angulation
US10575961B1 (en) 2011-09-23 2020-03-03 Samy Abdou Spinal fixation devices and methods of use
US11517449B2 (en) 2011-09-23 2022-12-06 Samy Abdou Spinal fixation devices and methods of use
US11324608B2 (en) 2011-09-23 2022-05-10 Samy Abdou Spinal fixation devices and methods of use
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US9636146B2 (en) 2012-01-10 2017-05-02 Roger P. Jackson Multi-start closures for open implants
US11839413B2 (en) 2012-02-22 2023-12-12 Samy Abdou Spinous process fixation devices and methods of use
US11006982B2 (en) 2012-02-22 2021-05-18 Samy Abdou Spinous process fixation devices and methods of use
US10695105B2 (en) 2012-08-28 2020-06-30 Samy Abdou Spinal fixation devices and methods of use
US11559336B2 (en) 2012-08-28 2023-01-24 Samy Abdou Spinal fixation devices and methods of use
US11173040B2 (en) 2012-10-22 2021-11-16 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US11918483B2 (en) 2012-10-22 2024-03-05 Cogent Spine Llc Devices and methods for spinal stabilization and instrumentation
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US9770265B2 (en) 2012-11-21 2017-09-26 Roger P. Jackson Splay control closure for open bone anchor
US10070896B2 (en) * 2012-12-10 2018-09-11 Biedermann Technologies Gmbh & Co. Kg Anchoring member suitable for use in a polyaxial bone anchoring device and polyaxial bone anchoring device with an enlarged pivot angle to one side
US20170231665A1 (en) * 2012-12-10 2017-08-17 Biedermann Technologies Gmbh & Co. Kg Anchoring member suitable for use in a polyaxial bone anchoring device and polyaxial bone anchoring device with an enlarged pivot angle to one side
JP2014113489A (en) * 2012-12-10 2014-06-26 Biedermann Technologies Gmbh & Co Kg Anchoring member suitable for use in polyaxial bone anchoring device and polyaxial bone anchoring device with enlarged pivot angle to one side
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9931149B2 (en) 2013-07-25 2018-04-03 Zimmer Spine, Inc. Self-retaining driver for a bone screw
US9358060B2 (en) * 2013-07-25 2016-06-07 Zimmer Spine, Inc. Self-retaining driver for a bone screw
US20150032116A1 (en) * 2013-07-25 2015-01-29 Zimmer Spine, Inc. Self-retaining driver for a bone screw
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US11246718B2 (en) 2015-10-14 2022-02-15 Samy Abdou Devices and methods for vertebral stabilization
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US11058548B1 (en) 2016-10-25 2021-07-13 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US11752008B1 (en) 2016-10-25 2023-09-12 Samy Abdou Devices and methods for vertebral bone realignment
US10548740B1 (en) 2016-10-25 2020-02-04 Samy Abdou Devices and methods for vertebral bone realignment
US11259935B1 (en) 2016-10-25 2022-03-01 Samy Abdou Devices and methods for vertebral bone realignment
FR3063005A1 (en) * 2017-02-22 2018-08-24 Novastep SCREW FOR OSTEOSYNTHESIS COMPRISING ANGULAR INDEXING IN RELATION TO SCREWDRIVERS
US11207113B2 (en) 2017-02-22 2021-12-28 Novastep Osteosynthesis screw comprising an angular index in relation to the screwdriver
WO2018154225A1 (en) * 2017-02-22 2018-08-30 Novastep Osteosynthesis screw comprising an angular index in relation to the screwdriver
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation

Also Published As

Publication number Publication date
US8029539B2 (en) 2011-10-04
US20110301651A1 (en) 2011-12-08
US8480714B2 (en) 2013-07-09
US20130296948A1 (en) 2013-11-07
US9198691B2 (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US8480714B2 (en) Offset multiaxial or polyaxial screw, system and assembly
EP1774919B1 (en) Poly-axial screw pivotable in a single plane
EP1909666B1 (en) Capless multiaxial screw and spinal fixation assembly
US8361129B2 (en) Large diameter bone anchor assembly
US8277494B2 (en) Bone anchoring device
US8845700B2 (en) Adjustable bone screw assembly
US20080015597A1 (en) Large diameter bone anchor assembly
US9060811B2 (en) Pedicle-screw assembly
EP2279706A1 (en) Bone anchoring device
ZA200602781B (en) Polyaxial bone anchor and method of spinal fixation
US20080015596A1 (en) Large diameter multiple piece bone anchor assembly
TW201309257A (en) Polyaxial bone anchoring system
US10188431B2 (en) Double-headed pedicle screw
US11931081B2 (en) Monoaxial-uniplanar hybrid screw

Legal Events

Date Code Title Description
AS Assignment

Owner name: X-SPINE SYSTEMS, INC.,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIRSCHMAN, DAVID LOUIS;REEL/FRAME:021695/0467

Effective date: 20071218

Owner name: X-SPINE SYSTEMS, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIRSCHMAN, DAVID LOUIS;REEL/FRAME:021695/0467

Effective date: 20071218

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ROS ACQUISITION OFFSHORE, LP, CAYMAN ISLANDS

Free format text: SECURITY INTEREST;ASSIGNORS:BACTERIN INTERNATIONAL, INC.;X-SPINE SYSTEMS, INC.;REEL/FRAME:036252/0338

Effective date: 20150731

AS Assignment

Owner name: SILICON VALLEY BANK, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:XTANT MEDICAL HOLDINGS, INC.;BACTERIN INTERNATIONAL, INC.;X-SPINE SYSTEMS, INC.;AND OTHERS;REEL/FRAME:038884/0063

Effective date: 20160525

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8

AS Assignment

Owner name: BACTERIN INTERNATIONAL, INC., MONTANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROS ACQUISITION OFFSHORE LP;REEL/FRAME:056323/0218

Effective date: 20210506

Owner name: X-SPINE SYSTEMS, INC., MONTANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROS ACQUISITION OFFSHORE LP;REEL/FRAME:056323/0218

Effective date: 20210506

AS Assignment

Owner name: MIDCAP FINANCIAL TRUST, MARYLAND

Free format text: SECURITY INTEREST (REVOLVING);ASSIGNORS:XTANT MEDICAL HOLDINGS, INC.;XTANT MEDICAL, INC.;BACTERIN INTERNATIONAL, INC.;AND OTHERS;REEL/FRAME:056323/0536

Effective date: 20210506

Owner name: MIDCAP FINANCIAL TRUST, MARYLAND

Free format text: SECURITY INTEREST (TERM);ASSIGNORS:XTANT MEDICAL HOLDINGS, INC.;XTANT MEDICAL, INC.;BACTERIN INTERNATIONAL, INC.;AND OTHERS;REEL/FRAME:056323/0586

Effective date: 20210506

AS Assignment

Owner name: XTANT MEDICAL HOLDINGS, INC., MONTANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:056493/0457

Effective date: 20210503

Owner name: BACTERIN INTERNATIONAL, INC., MONTANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:056493/0457

Effective date: 20210503

Owner name: X-SPINE SYSTEMS, INC., MONTANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:056493/0457

Effective date: 20210503

Owner name: XTANT MEDICAL, INC., MONTANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:056493/0457

Effective date: 20210503

AS Assignment

Owner name: BACTERIN INTERNATIONAL, INC., MONTANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROS ACQUISITION OFFSHORE LP;REEL/FRAME:056627/0795

Effective date: 20210506

Owner name: X-SPINE SYSTEMS, INC., MONTANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROS ACQUISITION OFFSHORE LP;REEL/FRAME:056627/0795

Effective date: 20210506

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12