US20090087637A1 - Architectural Fabric - Google Patents

Architectural Fabric Download PDF

Info

Publication number
US20090087637A1
US20090087637A1 US12/329,048 US32904808A US2009087637A1 US 20090087637 A1 US20090087637 A1 US 20090087637A1 US 32904808 A US32904808 A US 32904808A US 2009087637 A1 US2009087637 A1 US 2009087637A1
Authority
US
United States
Prior art keywords
fabric
flame
specimen
architectural
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/329,048
Inventor
Thomas Kelmartin
Thomas Wallace
William Greene
Robert Willmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
Thomas Kelmartin
Thomas Wallace
William Greene
Robert Willmann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas Kelmartin, Thomas Wallace, William Greene, Robert Willmann filed Critical Thomas Kelmartin
Priority to US12/329,048 priority Critical patent/US20090087637A1/en
Publication of US20090087637A1 publication Critical patent/US20090087637A1/en
Assigned to W. L. GORE & ASSOCIATES, INC. reassignment W. L. GORE & ASSOCIATES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GORE ENTERPRISE HOLDINGS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/02Layered products comprising a layer of synthetic resin in the form of fibres or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/047Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with fluoropolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2221Coating or impregnation is specified as water proof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2221Coating or impregnation is specified as water proof
    • Y10T442/2238Fluorocarbon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/259Coating or impregnation provides protection from radiation [e.g., U.V., visible light, I.R., micscheme-change-itemave, high energy particle, etc.] or heat retention thru radiation absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • Y10T442/2639Coated or impregnated asbestos fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric

Definitions

  • the present invention relates to fabric and, more particularly, to architectural fabric that is waterproof, fire retardant, flexible, durable, and aesthetically pleasing.
  • Architectural fabric is fabric used as a building structure or part of a building structure. It typically provides protection for humans from elements such as wind, sun, and rain. It may be a permanent structure or a temporary one. If temporary, it may be retractable or removable, for example by folding, rolling, or otherwise storing.
  • a known architectural fabric is a composite consisting of fiberglass fabric coated with PTFE. Although this product has certain desirable qualities, it is not suitably flexible. The fabric thus cannot be used efficiently in applications where convenient removal of the fabric is needed.
  • Another known architectural fabric has a coating of PVC or acrylic on polyester fabric. These products have flexibility but only limited durability. Unless specially treated, these fabrics are flammable and tend to degrade under UV light. After a certain amount of flexing and UV exposure, these products develop cracks or other imperfections that allow water to penetrate the fabric at the point where it has been compromised.
  • the article disclosed therein comprises a polytetrafluoroethylene fabric attached to at least one composite membrane of a porous polytetrafluoroethylene film having a fluoropolymer adhesive (such as THV) contained in its pores.
  • a fluoropolymer adhesive such as THV
  • the porous polytetrafluoroethylene film is provided to make the article durable and aesthetically pleasing. Addition of the film requires additional processing, however. The film also tends to mute any pigments or colors in the fabric or the THV.
  • the present invention provides an article consisting of (a) a layer of fabric having a first surface and a second surface made of polytetrafluoroethylene fibers; and (b) a fluoropolymer coating disposed on said first surface of said fabric.
  • the invention further includes a fluoropolymer coating disposed on the second surface of the fabric.
  • the fluoropolymer coating is preferably THV.
  • the article of the present invention is preferably waterproof, fire retardant, and has high seam strength. It is also preferably an architectural fabric for retractable, temporary, or permanent structures, such as tensile structures, and is adapted to be joined to itself by welding.
  • the present invention provides a method of making an architectural fabric for a retractable, temporary, or permanent structure by:
  • the invention provides a method of making an architectural fabric comprising the steps of
  • FIG. 1 is an optical micrograph of a cross-section of an article in accordance with an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic illustration of an exemplary process for making an article according to the present invention.
  • FIG. 1 is an optical micrograph of a cross-section of an article 10 according to an exemplary embodiment of the present invention.
  • article 10 is an architectural fabric.
  • Article 10 includes a fabric 11 made of fibers 13 of a fluoropolymer material, preferably PTFE fibers that have sufficient strength for a particular application, and most preferably expanded PTFE fibers.
  • Fabric 11 has a warp and a weft direction, accounting for the cross-sectional views perpendicular to and parallel to the axes of the individual fibers of fabric 11 shown in FIG. 1 .
  • Fabric 11 has a first surface 20 and a second surface 21 . Disposed adjacent to first surface 20 , which extends along fibers 13 in both the warp and weft direction, and extending in between and among fibers 13 is a fluoropolymer coating 12 , preferably a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV).
  • fluoropolymer coating 12 preferably a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV).
  • Article 10 is useful as an architectural fabric with only first surface 20 covered by fluoropolymer coating 12 .
  • a preferable embodiment also has fluoropolymer coating 12 disposed on second surface 21 (and extending between and among fibers 13 from such second surface 21 ).
  • Fabric 11 is any material that is UV light resistant and fire retardant. It must also be strong, flexible and durable. PTFE fiber is preferred. Fabric made from expanded polytetrafluoroethylene fibers is most preferred.
  • Fluoropolymer coating 12 is a material that is UV light resistant and fire retardant. THV is preferred. This preferred fluoropolymer coating is also advantageously flexible, adherent to the fabric 11 (without being limited by theory, it is believed that the THV is able to encapsulate the fibers of fabric 11 to form a mechanical bond rather than a chemical bond) and clear or translucent. Preferably, the coating on both sides of the fabric is the same material. THV can be filled for functionality, such as color, TV resistance (if needed, for example if no PTFE fabric is used), and flame resistance.
  • Fluoropolymer coating 12 is preferably applied to fabric 11 by extrusion coating, although other methods, such as solvent coating or lamination with or without the use of release layers are alternatives.
  • FIG. 2 depicts a preferred extrusion coating process for making the architectural fabric of this invention. Fabric 11 is passed between rolls 91 and 92 while fluoropolymer coating 12 is simultaneously extruded onto fabric 11 from extruder 90 . The surfaces of rolls 91 and 92 , as well as the temperature and speed of the rolls are critical processing parameters for making the present invention. Details of these parameters are given in the example below.
  • article 10 can be much more easily seam-sealed to itself using welding techniques known in the art of seam-sealing for example, with PTFE/fiberglass fabrics. This is a result of the elimination of the microporous PTFE element described in U.S. Pat. No. 6,770,577B2.
  • a variety of seaming techniques can be used.
  • a secure seam is formed by applying heat (about 230 degrees C. for 45 seconds) and pressure to overlapped portions of the inventive fabric.
  • a suitable seam sealing device is an electric impulse hot bar welder available from Aline Heat Sealing Corporation, Cerritos Calif., part number HD-25.
  • radio frequency welding can also be used, as can wedge welding and hot-air welding. Using the invention, one can easily get a strong weld without the need for special processing, or for adding additional adhesives or seam tape as with other fabrics currently used.
  • An architectural fabric was prepared as follows:
  • THV220 (Dyneon, Inc, Oakdale, Minn.) which was pigmented tan was extruded using a single screw extruder and a slotted die at a temperature of 250 C. It was directed vertically downward into a nip created by two rolls; one being a TEFLON®-sleeved EPDM rubber roll and the other a TEFLON®-coated steel roll. The thickness of the extruded film was 175 micrometers.
  • the EPDM roll had a surface temperature of 90 C, and the steel roll had a surface temperature of 115 C. The surface speed of the rolls was 2.75 meters per minute.
  • Fabric woven of expanded PTFE fiber was obtained from W.L. Gore & Associates, Inc. This fabric was woven in a plain weave, 18 ends by 18 picks per centimeter. Each end and each pick yarn was composed of two 500 denier expanded PTFE fibers plied together.
  • the fabric entered the nip over the steel roll and was pressed against the molten THV220 in the nip.
  • the nip force was 130 Newtons per centimeter.
  • the THV220 was pushed into the voids in the fabric by the action of the nip.
  • the resulting THV220/fabric composite was wound onto a roll at the end of the extrusion line.
  • the aforementioned THV220/fabric composite was then run a second time on the extrusion line except that a second coating of molten THV220 pigmented red was applied to the fabric face which was not extruded upon in the first pass.
  • the machine conditions were the same for this second pass as they were for the first pass.
  • This material produced in this example was identified as 360-75.
  • the thickness of the THV220/fabric composite was 0.65 millimeters, and the mass per unit area was 1240 grams per square meter.
  • the fabric produced according to the above example was tested for various properties as follows.
  • Specimen size circular sample of 41 ⁇ 2′′ (11.4 cm) diameter.
  • Conditioning Condition the specimens at 21 ⁇ 1° C. (70 ⁇ 2° F.), 65 ⁇ 2% RH prior to testing.
  • the example fabric was tested for fire retardance as follows.
  • Specimen size 3′′ ⁇ 12′′ with the 12′′ length parallel to the test direction.
  • Conditioning Condition the specimens at 70 ⁇ 2° F., 65 ⁇ 2% RH prior to testing.
  • the example material tested for fire retardance had the following results, illustrating that the material was indeed fire retardant.

Abstract

An article useful as an architectural fabric consisting of (a) a layer of fabric having a first surface and a second surface made of polytetrafluoroethylene fibers; and (b) a fluoropolymer coating disposed on at least the first surface of the fabric.

Description

    RELATED APPLICATION
  • The present application is a continuation application of pending U.S. patent application Ser. No. 11/195,911 filed Aug. 2, 2005.
  • FIELD OF INVENTION
  • The present invention relates to fabric and, more particularly, to architectural fabric that is waterproof, fire retardant, flexible, durable, and aesthetically pleasing.
  • BACKGROUND OF INVENTION
  • Architectural fabric is fabric used as a building structure or part of a building structure. It typically provides protection for humans from elements such as wind, sun, and rain. It may be a permanent structure or a temporary one. If temporary, it may be retractable or removable, for example by folding, rolling, or otherwise storing.
  • There are several requirements for architectural fabric. It must be strong enough to withstand wind and other stresses during assembly and use. It must be flexible and durable, so that it can be folded or rolled and its strength and integrity are maintained over time. It must be UV light resistant. UV light tends to degrade and weaken fabric over time. A fabric that is UV resistant will stand up under this exposure. It should generally be fire retardant and waterproof. It should be easily seamed (or “welded”). It must also be aesthetically pleasing.
  • A known architectural fabric is a composite consisting of fiberglass fabric coated with PTFE. Although this product has certain desirable qualities, it is not suitably flexible. The fabric thus cannot be used efficiently in applications where convenient removal of the fabric is needed.
  • Another known architectural fabric has a coating of PVC or acrylic on polyester fabric. These products have flexibility but only limited durability. Unless specially treated, these fabrics are flammable and tend to degrade under UV light. After a certain amount of flexing and UV exposure, these products develop cracks or other imperfections that allow water to penetrate the fabric at the point where it has been compromised.
  • Another known architectural fabric is that disclosed in U.S. Pat. No. 6,770,577B2 to Kelmartin et al. The article disclosed therein comprises a polytetrafluoroethylene fabric attached to at least one composite membrane of a porous polytetrafluoroethylene film having a fluoropolymer adhesive (such as THV) contained in its pores. The porous polytetrafluoroethylene film is provided to make the article durable and aesthetically pleasing. Addition of the film requires additional processing, however. The film also tends to mute any pigments or colors in the fabric or the THV.
  • An economical, weldable, waterproof, fire retardant architectural fabric is needed in the industry.
  • SUMMARY OF INVENTION
  • The present invention provides an article consisting of (a) a layer of fabric having a first surface and a second surface made of polytetrafluoroethylene fibers; and (b) a fluoropolymer coating disposed on said first surface of said fabric. In another embodiment, the invention further includes a fluoropolymer coating disposed on the second surface of the fabric. The fluoropolymer coating is preferably THV. The article of the present invention is preferably waterproof, fire retardant, and has high seam strength. It is also preferably an architectural fabric for retractable, temporary, or permanent structures, such as tensile structures, and is adapted to be joined to itself by welding.
  • In another aspect, the present invention provides a method of making an architectural fabric for a retractable, temporary, or permanent structure by:
      • (a) providing a layer of fabric having a first surface and a second surface and comprising polytetrafluoroethylene fibers;
      • (b) disposing THV on the first surface of said fabric; and
      • (c) optionally disposing THV on the second surface of said fabric.
  • In another aspect, the invention provides a method of making an architectural fabric comprising the steps of
      • (a) providing a fluoropolymer fabric
      • (b) extrusion coating the fluoropolymer fabric with THV by simultaneously extruding the THV onto the fabric and nipping the fabric and extruded THV between a first roll and a second roll.
    BRIEF DESCRIPTION OF INVENTION
  • FIG. 1 is an optical micrograph of a cross-section of an article in accordance with an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic illustration of an exemplary process for making an article according to the present invention.
  • DETAILED DESCRIPTION OF INVENTION
  • The present invention will now be described with reference to the figures in the drawing. FIG. 1 is an optical micrograph of a cross-section of an article 10 according to an exemplary embodiment of the present invention. In this exemplary embodiment, article 10 is an architectural fabric. Article 10 includes a fabric 11 made of fibers 13 of a fluoropolymer material, preferably PTFE fibers that have sufficient strength for a particular application, and most preferably expanded PTFE fibers. Fabric 11 has a warp and a weft direction, accounting for the cross-sectional views perpendicular to and parallel to the axes of the individual fibers of fabric 11 shown in FIG. 1.
  • Fabric 11 has a first surface 20 and a second surface 21. Disposed adjacent to first surface 20, which extends along fibers 13 in both the warp and weft direction, and extending in between and among fibers 13 is a fluoropolymer coating 12, preferably a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV).
  • Article 10 is useful as an architectural fabric with only first surface 20 covered by fluoropolymer coating 12. A preferable embodiment, however, also has fluoropolymer coating 12 disposed on second surface 21 (and extending between and among fibers 13 from such second surface 21).
  • Fabric 11 is any material that is UV light resistant and fire retardant. It must also be strong, flexible and durable. PTFE fiber is preferred. Fabric made from expanded polytetrafluoroethylene fibers is most preferred.
  • Fluoropolymer coating 12 is a material that is UV light resistant and fire retardant. THV is preferred. This preferred fluoropolymer coating is also advantageously flexible, adherent to the fabric 11 (without being limited by theory, it is believed that the THV is able to encapsulate the fibers of fabric 11 to form a mechanical bond rather than a chemical bond) and clear or translucent. Preferably, the coating on both sides of the fabric is the same material. THV can be filled for functionality, such as color, TV resistance (if needed, for example if no PTFE fabric is used), and flame resistance.
  • Fluoropolymer coating 12 is preferably applied to fabric 11 by extrusion coating, although other methods, such as solvent coating or lamination with or without the use of release layers are alternatives. FIG. 2 depicts a preferred extrusion coating process for making the architectural fabric of this invention. Fabric 11 is passed between rolls 91 and 92 while fluoropolymer coating 12 is simultaneously extruded onto fabric 11 from extruder 90. The surfaces of rolls 91 and 92, as well as the temperature and speed of the rolls are critical processing parameters for making the present invention. Details of these parameters are given in the example below.
  • Surprisingly, Applicant has discovered that the article of the present invention functions well as an architectural fabric. Contrary to the conventional wisdom expressed in U.S. Pat. No. 6,770,577B2 to Kelmartin et al., Applicant has discovered that an architectural fabric made without the PTFE film disclosed in Kelmartin is durable, processable and aesthetically pleasing. As stated in this patent, “[w]hen THV alone is used to coat the fabric, the surface has a blotchy appearance that is tacky. With the inventive article, however, the surface appears uniform and is not tacky. This also provides unexpected improvements in processability. The article does not stick to or coat processing rolls during manufacture.” It was thus conventional wisdom before the present invention that elimination of the porous polytetrafluoroethylene film would be undesirable.
  • Also surprisingly, article 10 can be much more easily seam-sealed to itself using welding techniques known in the art of seam-sealing for example, with PTFE/fiberglass fabrics. This is a result of the elimination of the microporous PTFE element described in U.S. Pat. No. 6,770,577B2. A variety of seaming techniques can be used. A secure seam is formed by applying heat (about 230 degrees C. for 45 seconds) and pressure to overlapped portions of the inventive fabric. A suitable seam sealing device is an electric impulse hot bar welder available from Aline Heat Sealing Corporation, Cerritos Calif., part number HD-25. Surprisingly, radio frequency welding can also be used, as can wedge welding and hot-air welding. Using the invention, one can easily get a strong weld without the need for special processing, or for adding additional adhesives or seam tape as with other fabrics currently used.
  • The following example is intended to illustrate, but not limit, the present invention.
  • EXAMPLE
  • An architectural fabric was prepared as follows:
  • THV220 (Dyneon, Inc, Oakdale, Minn.) which was pigmented tan was extruded using a single screw extruder and a slotted die at a temperature of 250 C. It was directed vertically downward into a nip created by two rolls; one being a TEFLON®-sleeved EPDM rubber roll and the other a TEFLON®-coated steel roll. The thickness of the extruded film was 175 micrometers. The EPDM roll had a surface temperature of 90 C, and the steel roll had a surface temperature of 115 C. The surface speed of the rolls was 2.75 meters per minute. Fabric woven of expanded PTFE fiber was obtained from W.L. Gore & Associates, Inc. This fabric was woven in a plain weave, 18 ends by 18 picks per centimeter. Each end and each pick yarn was composed of two 500 denier expanded PTFE fibers plied together.
  • The fabric entered the nip over the steel roll and was pressed against the molten THV220 in the nip. The nip force was 130 Newtons per centimeter. The THV220 was pushed into the voids in the fabric by the action of the nip. The resulting THV220/fabric composite was wound onto a roll at the end of the extrusion line.
  • The aforementioned THV220/fabric composite was then run a second time on the extrusion line except that a second coating of molten THV220 pigmented red was applied to the fabric face which was not extruded upon in the first pass. The machine conditions were the same for this second pass as they were for the first pass. This material produced in this example was identified as 360-75. The thickness of the THV220/fabric composite was 0.65 millimeters, and the mass per unit area was 1240 grams per square meter.
  • Testing
  • The fabric produced according to the above example was tested for various properties as follows.
  • (1) Waterproofness
  • Apparatus:
      • RO/Distilled water
      • Thermometer
      • Low Hydrostatic Pressure Tester (Alfred Suter Co., Ramsey, N.J., Model No. 502 Suter LHPT)
      • Timer
      • Water Circulator
    Test Specimens:
  • Specimen size: circular sample of 4½″ (11.4 cm) diameter.
  • Specimens per sample: Three.
  • Conditioning: Condition the specimens at 21±1° C. (70±2° F.), 65±2% RH prior to testing.
  • Test Procedure:
    • 1. Check the water level in the tank.
    • 2. Add water if the level is too low.
    • 3. Turn the pump on.
    • 4. Check that the water temperature is at 27±3° C. (80±5° F.).
      • 4.1 Run the motor to heat or add heated water to the tank if the water temperature is too low.
      • 4.2 Float an ice pack, located in the freezer, in the tank to lower the temperature if the water temperature is too high (or becomes too high while testing), or add cold water.
    • 5. Purge the water lines.
    • 6. Place a specimen face side down under the specimen holder.
    • 7. Clamp the specimen in place.
    • 8. Open the valves to start water flow.
    • 9. Set a timer for 3 minutes.
    • 10. Start the timer when the gauge on the LPHT tester reaches the specified pressure (1.1 psig).
    • 11. Check each specimen for leaks. Samples that leak are reported as failures. Those that do not leak, pass.
      • 11.1 Failures should only be counted if leaks occur in the test area.
        • 11.1.1 Drops of water penetrating the specimen at the clamped edge of the specimen or within 0.32 cm (⅛″) of this edge shall not be counted.
  • Three samples of the example material were tested as described above. All three samples passed with no leakage.
  • (2) Fire Retardance
  • The example fabric was tested for fire retardance as follows.
  • Apparatus:
  • Cabinet including Tirrill Burner Brass weights
    Metal specimen holder and clips Scissors or hole punch
    Specimen mounting block Butane lighter
    Timer (tenths of seconds) Disposable gloves
    Metric ruler (1 mm graduations) Gas: methane 99% pure
    Plastic bag
  • Test Specimens:
  • Specimen size: 3″×12″ with the 12″ length parallel to the test direction.
  • Number of samples: two.
  • Conditioning: Condition the specimens at 70±2° F., 65±2% RH prior to testing.
  • Test Procedure:
  • 1. Cut specimens as specified above.
      • 1.1. Ensure that the gas pressure is 2.5±0.25 psi.
      • 1.2. Turn power on (control panel on counter).
      • 1.3. Turn the pilot knob slightly counter-clockwise, so that it is on.
      • 1.4. Ignite the pilot with the butane lighter.
      • 1.5. Adjust the pilot size to ⅛″ using the pilot knob. Measure the pilot flame from its lowest point to the tip.
      • 1.6. Set the flame ignition timer to 120 seconds.
      • 1.7. Turn the flame/fan knob to flame and burn the flame for at least 2 minutes prior to the beginning of each set up and testing session.
      • 1.9. Adjust the flame height to 1.5″ by turning the knob at the bottom
      • 15. of the burner clockwise to increase the height or counter clockwise to decrease the height. The tip of the flame should reach the top point of the flame indicator.
      • 1.10. Re-set the flame ignition timer to 12 seconds and re-light the flame.
      • 1.11. Turn the flame/fan knob to fan.
      • 1.12. Place the metal specimen holder on the mounting block.
      • 1.13. Align a dummy specimen in the metal holder with the short edge of the dummy aligned with the lower edge of the holder.
      • 1.14. Close the specimen holder and clamp with the clips at two places on each side making sure the dummy is smooth and flat in the holder.
      • 1.15. Turn the flame/fan knob to flame.
      • 1.16. Light the flame with the butane lighter.
      • 1.17. Immediately turn the flame/fan knob to off.
      • 1.18. Position the specimen holder securely in the cabinet.
      • 1.19. Make sure the holder is positioned in the groove of the holder rest at the back of the cabinet and the middle of the lower edge of the specimen is centered ¾″ above the burner.
      • 1.20. Close the cabinet door and the hood sash.
        • Note: The specimen must be tested within 2 minutes of being placed in the cabinet.
      • 1.21. Turn the flame/fan knob to flame to start the 12-second flame.
      • 1.22. Once the 12-second flame has extinguished confirm that the pilot light is the proper size.
      • 1.23. Depress the door release button and allow the cabinet to ventilate for 30 seconds or until all smoke and fumes are removed.
      • 1.24. Adjust the pilot light, if necessary, and repeat steps 1.15 through 1.24 as needed until proper pilot size is maintained.
    2. Testing:
      • 2.1. Place the metal specimen holder on the mounting block.
      • 2.2. Align the specimen in the metal holder such that the test area does not contain any identification markings when the short edge of the specimen is aligned with the lower edge of the holder.
      • 2.3. Close the specimen holder and clamp with clips at two places on each side making sure the specimen is smooth and flat in the holder.
      • 2.4. Turn the flame/fan knob to flame.
      • 2.5. Light the flame with the butane lighter.
      • 2.6. Immediately turn the flame/fan knob to off.
      • 2.7. Position the specimen holder securely in the cabinet.
      • 2.8. Make sure that the holder is positioned in the groove of the holder rest at the back of the cabinet and that the middle of the lower edge of the specimen is centered ¾″ above the burner.
      • 2.9. Close the cabinet door and the hood.
      • Note: The specimens must be tested within 2 minutes of being place in the cabinet.
      • 2.10. Turn the flame/fan knob to flame to start the 12-second flame.
      • 2.11. Determine the after-flame, and after-glow time, and the presence of melting or dripping, after the 12-second flame extinguishes, and record in the lab database.
        • 2.11.1. After-flame: Using the timer mounted on the hood, measure the number of seconds, to the nearest 0.1 seconds, that the material continues to burn after the igniting flame extinguishes. Do not turn the fan on until the specimen has stopped glowing, regardless of whether or not the after-glow is being measured.
        • 2.11.2. After-glow: Using the automatic timer, measure the number of seconds, to the nearest 0.1 seconds, that the material glows after the flaming ends. The glow shall not be extinguished even if after-glow time is not being evaluated because of the glow's effect on char length.
        • 2.11.3. Melt/Drip: Look for signs of melting or dripping.
  • The example material tested for fire retardance had the following results, illustrating that the material was indeed fire retardant.
  • Sample: 360-75
    Standard
    A B C Average Deviation
    Warp Afterflame(sec) 1.3 1.2 1.2 1.23 0.05
    Afterglow(sec) 0 0 0 0.00 0.00
    Melt/Drip Melt/No Drip Melt/No Drip Melt/No Drip
    Char
    Length(cm) 1.4 1.55 1.85 1.60 0.19
    Fill Afterflame(sec) 1.2 1.1 1 1.10 0.08
    Afterglow(sec) 0 0 0 0.00 0.00
    Melt/Drip Melt/No Drip Melt/No Drip Melt/No Drip
    Char
    Length(cm) 1.6 1.45 1.85 1.63 0.16
  • (3) Seam Strength
  • Two pieces of the example fabric were placed in overlapping relationship in the warp direction, such that 2.5 inches (6.35 cm) of each piece overlapped. No seam tape was used, nor was any scuffing or abrasion performed on the areas to be welded. The overlap was welded to form a seam with an Aline Welder Model HD-25 at 230 degrees C. for 45 seconds. Strips of the fabric were cut 2 inches (5.08 cm) wide by 14 inches (35.5 cm) long with the long direction perpendicular to the seam. The seam strength was tested by pulling the seam on a tensile tester (Instron Corporation, Norwood Mass., Model 5567) with 4 inch (10.16 cm) gauge length at 2 inches (5.08 cm) per minute extension rate. Five such specimens were produced. The results are tabulated below, and indicate a very strong seam was produced using this simple welding technique on the inventive fabric. A seam having a strength of at least 90% of the nominal strength of the fabric is desired.
  • Percent of Nominal
    Max Force Max Force Max Force Fabric Strength (456
    Specimen (Lb/2 Inch) (Lb/Inch) (N/5 cm) Lb/in - 4000 N/5 cm)
    1 929 465 4074 102% 
    2 901 451 3951 99%
    3 868 434 3806 95%
    4 884 442 3876 97%
    5 882 441 3868 97%
    Average 893 446 3915 98%
    Std. Dev. 23.4 11.7 102.5
    COV 2.6% 2.6% 2.6%
  • While particular embodiments of the present invention have been illustrated and described herein, the present invention should not be limited to such illustrations and descriptions. It should be apparent that the changes and modifications may be incorporated and embodied as part of the present invention within the scope of the following claims.

Claims (1)

1. An architectural fabric for retractable, temporary, or permanent structures formed by the process of providing at least two pieces of fluoropolymer fabric and welding said pieces together with radio frequency without the use of seam tape or surface preparation through abrasion.
US12/329,048 2005-08-02 2008-12-05 Architectural Fabric Abandoned US20090087637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/329,048 US20090087637A1 (en) 2005-08-02 2008-12-05 Architectural Fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/195,911 US7501356B2 (en) 2005-08-02 2005-08-02 Architectural fabric
US12/329,048 US20090087637A1 (en) 2005-08-02 2008-12-05 Architectural Fabric

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/195,911 Continuation US7501356B2 (en) 2005-08-02 2005-08-02 Architectural fabric

Publications (1)

Publication Number Publication Date
US20090087637A1 true US20090087637A1 (en) 2009-04-02

Family

ID=37718211

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/195,911 Active 2026-08-09 US7501356B2 (en) 2005-08-02 2005-08-02 Architectural fabric
US12/039,879 Abandoned US20080178993A1 (en) 2005-08-02 2008-02-29 Architectural Fabric
US12/329,048 Abandoned US20090087637A1 (en) 2005-08-02 2008-12-05 Architectural Fabric

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/195,911 Active 2026-08-09 US7501356B2 (en) 2005-08-02 2005-08-02 Architectural fabric
US12/039,879 Abandoned US20080178993A1 (en) 2005-08-02 2008-02-29 Architectural Fabric

Country Status (11)

Country Link
US (3) US7501356B2 (en)
EP (1) EP1910079B1 (en)
JP (1) JP5260287B2 (en)
KR (1) KR101295462B1 (en)
CN (1) CN101484314A (en)
AU (1) AU2006279050B2 (en)
BR (1) BRPI0614506A2 (en)
CA (1) CA2616694A1 (en)
ES (1) ES2436762T3 (en)
HK (1) HK1111659A1 (en)
WO (1) WO2007019014A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159181A1 (en) * 2005-08-02 2010-06-24 Thomas Kelmartin High Seam Strength Architectural Fabric

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187733B2 (en) * 2005-08-02 2012-05-29 W. L. Gore & Associates, Inc. Architectural fabric
US7501356B2 (en) * 2005-08-02 2009-03-10 Gore Enterprise Holdings, Inc. Architectural fabric
DE202008013246U1 (en) * 2008-10-08 2009-01-02 Fitz, Johannes Textile fluorothermoplastic composite
EP2284200A1 (en) 2009-07-31 2011-02-16 3M Innovative Properties Company Aqueous fluoropolymer dispersions containing a polyol comprising at least one long chain residue and method for producing them
CN102549060B (en) 2009-07-31 2016-01-20 3M创新有限公司 Fluoro-containing copolymer composition containing polyol compound and preparation method thereof
DE202010009801U1 (en) 2010-07-02 2010-10-14 Fitz, Johannes Finish for finishing textile structures made of fluoropolymers
DE202011109461U1 (en) 2011-12-22 2012-02-15 Aeronautec Gmbh Textile solar cell composites of high flexibility
US8975197B2 (en) 2012-04-19 2015-03-10 Stern & Stern Industries, Inc. Flexible laminate structure
EP2803690B1 (en) 2013-05-17 2016-12-14 3M Innovative Properties Company Method for reducing fluorinated emulsifiers from aqueous fluoropolymer dispersions using sugar-based emulsifiers
EP2803691B1 (en) 2013-05-17 2016-04-20 3M Innovative Properties Company Fluoropolymer compositions containing a polyhydroxy surfactant
FR3011504B1 (en) * 2013-10-04 2015-10-23 Arkema France TEXTILE ARTICLE IN PVDF
US9988758B2 (en) * 2015-06-15 2018-06-05 W. L. Gore & Associates, Inc. Fabrics containing expanded polytetrafluoroethylene fibers
JP6441298B2 (en) * 2016-03-24 2018-12-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション Printable fabric
CN113733693B (en) * 2021-08-14 2023-06-06 潍坊迅纺新材料科技有限公司 Preparation method of stock solution coloring chlorine-bleaching-resistant surgical gown fabric

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4749610A (en) * 1986-02-20 1988-06-07 Central Glass Company, Limited Glass fiber reinforced flexible composite material using soft fluororesin
US4770927A (en) * 1983-04-13 1988-09-13 Chemical Fabrics Corporation Reinforced fluoropolymer composite
US4943473A (en) * 1985-05-16 1990-07-24 Chemical Fabrics Corporation Flexible laminated fluoropolymer-containing composites
US4946736A (en) * 1987-08-06 1990-08-07 W. L. Gore & Associates, Inc. Protective electromagnetically transparent window
US5230937A (en) * 1983-04-13 1993-07-27 Chemfab Corporation Reinforced fluoropolymer composite
US5262234A (en) * 1991-10-17 1993-11-16 W. L. Gore & Associates, Inc. Polyetrafluoroethylene fiber containing conductive filler
US5264276A (en) * 1992-04-06 1993-11-23 W. L. Gore & Associates, Inc. Chemically protective laminate
US5275887A (en) * 1986-04-22 1994-01-04 Raychem Corporation Fluoropolymer compositions
US5357726A (en) * 1989-02-02 1994-10-25 Chemfab Corporation Composite materials for structural end uses
US5401901A (en) * 1991-09-19 1995-03-28 W. L. Gore & Associates, Inc. Weather-resistant electromagnetic interference shielding for electronic equipment enclosures
US5433996A (en) * 1993-02-18 1995-07-18 W. L. Gore & Associates, Inc. Laminated patch tissue repair sheet material
US5759924A (en) * 1996-10-18 1998-06-02 Chemfab Corporation Translucent polymeric composite for use in an architectural load-bearing structure
US5814405A (en) * 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
US5916659A (en) * 1994-01-24 1999-06-29 Chemfab Corporation Composites of fluoropolymers with thermally non-adherent non-fluoropolymers and methods for producing the same
US6071452A (en) * 1998-04-30 2000-06-06 Gore Enterprise Holdings, Inc. Process of making polytetrafluoroethylene fiber
US6517919B1 (en) * 1998-07-10 2003-02-11 Donaldson Company, Inc. Laminate and pulse jet filter bag
US6770577B2 (en) * 2001-10-29 2004-08-03 Gore Enterprise Holdings, Inc. Architectural fabric
US20040219851A1 (en) * 2003-04-30 2004-11-04 Saint-Gobain Performance Plastics Corporation Flexible composites and applications including the flexible composites
US20050143508A1 (en) * 2003-12-30 2005-06-30 General Electric Company Resin compositions with fluoropolymer filler combinations
US20070032152A1 (en) * 2005-08-02 2007-02-08 Thomas Kelmartin Architectural fabric
US20080032576A1 (en) * 2005-08-02 2008-02-07 Thomas Kelmartin Architectural Fabric

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513064A (en) * 1966-04-27 1970-05-19 Du Pont Composite polyfluorocarbon sheet material
DE3533807A1 (en) * 1985-09-21 1987-03-26 Hoechst Ag AQUEOUS, PASTOISE COATING COMPOSITION AND THEIR USE
CA2077998C (en) 1990-11-23 1999-06-15 John A. Effenberger Composite materials for architectural structural end use
US5591526A (en) * 1994-06-15 1997-01-07 W. L. Gore & Associates, Inc Expanded PTFE fiber and fabric and method of making same
WO2001096695A1 (en) 2000-06-15 2001-12-20 Saint-Gobain Performance Plastics Corporation Composite membrane for control of interior environments
DE10239004B4 (en) * 2002-08-26 2007-11-15 Performance Fibers Gmbh Textile fabrics made of synthetic fibers, process for its production and its use
DE202004020048U1 (en) * 2004-12-22 2005-03-17 Fitz Johannes Textile composites of fluoropolymers

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4770927A (en) * 1983-04-13 1988-09-13 Chemical Fabrics Corporation Reinforced fluoropolymer composite
US5230937A (en) * 1983-04-13 1993-07-27 Chemfab Corporation Reinforced fluoropolymer composite
US4943473A (en) * 1985-05-16 1990-07-24 Chemical Fabrics Corporation Flexible laminated fluoropolymer-containing composites
US4749610A (en) * 1986-02-20 1988-06-07 Central Glass Company, Limited Glass fiber reinforced flexible composite material using soft fluororesin
US5275887A (en) * 1986-04-22 1994-01-04 Raychem Corporation Fluoropolymer compositions
US4946736A (en) * 1987-08-06 1990-08-07 W. L. Gore & Associates, Inc. Protective electromagnetically transparent window
US5357726A (en) * 1989-02-02 1994-10-25 Chemfab Corporation Composite materials for structural end uses
US5401901A (en) * 1991-09-19 1995-03-28 W. L. Gore & Associates, Inc. Weather-resistant electromagnetic interference shielding for electronic equipment enclosures
US5262234A (en) * 1991-10-17 1993-11-16 W. L. Gore & Associates, Inc. Polyetrafluoroethylene fiber containing conductive filler
US5264276A (en) * 1992-04-06 1993-11-23 W. L. Gore & Associates, Inc. Chemically protective laminate
US5433996A (en) * 1993-02-18 1995-07-18 W. L. Gore & Associates, Inc. Laminated patch tissue repair sheet material
US5916659A (en) * 1994-01-24 1999-06-29 Chemfab Corporation Composites of fluoropolymers with thermally non-adherent non-fluoropolymers and methods for producing the same
US5814405A (en) * 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
US5759924A (en) * 1996-10-18 1998-06-02 Chemfab Corporation Translucent polymeric composite for use in an architectural load-bearing structure
US6071452A (en) * 1998-04-30 2000-06-06 Gore Enterprise Holdings, Inc. Process of making polytetrafluoroethylene fiber
US6517919B1 (en) * 1998-07-10 2003-02-11 Donaldson Company, Inc. Laminate and pulse jet filter bag
US6770577B2 (en) * 2001-10-29 2004-08-03 Gore Enterprise Holdings, Inc. Architectural fabric
US7163601B2 (en) * 2001-10-29 2007-01-16 Gore Enterprise Holdings, Inc. Method of making architectural fabric
US20040219851A1 (en) * 2003-04-30 2004-11-04 Saint-Gobain Performance Plastics Corporation Flexible composites and applications including the flexible composites
US20050143508A1 (en) * 2003-12-30 2005-06-30 General Electric Company Resin compositions with fluoropolymer filler combinations
US20070032152A1 (en) * 2005-08-02 2007-02-08 Thomas Kelmartin Architectural fabric
US20080032576A1 (en) * 2005-08-02 2008-02-07 Thomas Kelmartin Architectural Fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159181A1 (en) * 2005-08-02 2010-06-24 Thomas Kelmartin High Seam Strength Architectural Fabric
US8349747B2 (en) 2005-08-02 2013-01-08 W. L. Gore & Associates, Inc. High seam strength architectural fabric

Also Published As

Publication number Publication date
US20070032152A1 (en) 2007-02-08
WO2007019014A3 (en) 2008-08-28
BRPI0614506A2 (en) 2011-03-29
JP2009502588A (en) 2009-01-29
KR20080034909A (en) 2008-04-22
AU2006279050B2 (en) 2010-05-20
EP1910079A2 (en) 2008-04-16
US7501356B2 (en) 2009-03-10
ES2436762T3 (en) 2014-01-07
WO2007019014A2 (en) 2007-02-15
CA2616694A1 (en) 2007-02-15
US20080178993A1 (en) 2008-07-31
JP5260287B2 (en) 2013-08-14
AU2006279050A1 (en) 2007-02-15
KR101295462B1 (en) 2013-08-12
HK1111659A1 (en) 2008-08-15
EP1910079B1 (en) 2013-10-02
CN101484314A (en) 2009-07-15
EP1910079A4 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
US7501356B2 (en) Architectural fabric
US8187733B2 (en) Architectural fabric
US7163601B2 (en) Method of making architectural fabric
AU2002363219A1 (en) Architectural fabric
US8349747B2 (en) High seam strength architectural fabric
US20070021023A1 (en) Barrier laminates and articles made therefrom
US7816289B2 (en) Fire resistant barrier laminates and articles made therefrom
Patton Characterization of Polyethylene Structure Membrane

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508

Effective date: 20120130