US20090048148A1 - Compositions and methods for therapeutic use - Google Patents

Compositions and methods for therapeutic use Download PDF

Info

Publication number
US20090048148A1
US20090048148A1 US12/058,447 US5844708A US2009048148A1 US 20090048148 A1 US20090048148 A1 US 20090048148A1 US 5844708 A US5844708 A US 5844708A US 2009048148 A1 US2009048148 A1 US 2009048148A1
Authority
US
United States
Prior art keywords
gene
bladder
expression
detergent
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/058,447
Inventor
Heidrun Engler
Bernard G. Huyghe
Daniel C. Maneval
Paul Shabram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canji Inc
Original Assignee
Canji Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canji Inc filed Critical Canji Inc
Priority to US12/058,447 priority Critical patent/US20090048148A1/en
Publication of US20090048148A1 publication Critical patent/US20090048148A1/en
Priority to US12/912,496 priority patent/US20110104118A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/186Quaternary ammonium compounds, e.g. benzalkonium chloride or cetrimide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4736Retinoblastoma protein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4746Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used p53
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/022Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from an adenovirus

Definitions

  • the present invention is directed to compositions and methods of treating cancer by gene therapy using a therapeutic gene, such as a tumor suppressor gene delivered by a gene delivery system, such as a recombinant viral vector delivery system, formulated in a buffer comprising a delivery-enhancing agent.
  • a therapeutic gene such as a tumor suppressor gene delivered by a gene delivery system, such as a recombinant viral vector delivery system, formulated in a buffer comprising a delivery-enhancing agent.
  • a tumor suppressor gene e.g., p53 or retinoblastoma (RB)
  • RB retinoblastoma
  • Carcinoma of the bladder represents a significant source of morbidity and mortality.
  • Bladder cancer ranks 10th in males and 12th in females in cancer related mortality (Cancer Facts and Figures, Amer. Can. Soc. 5:11 (1995)).
  • Therapies available for the treatment of bladder cancer include adjuvant chemotherapy or immunotherapy, transurethral resection of superficial disease, radical cystectomy or radiotherapy which is often combined with systemic chemotherapy. Despite these therapeutic options, overall survival has not changed appreciably. (Ibid) Thus, new therapeutic modalities must be developed for the treatment of bladder cancer.
  • Distinct approaches have been developed to treat neoplasms based on gene transfer methods. Methods have been developed to correct specific lesions at defined genetic loci which give rise to neoplastic transformation and progression (Spandidos et al., Anticancer Res. 10: 1543-1554 (1990); Banerjee et al. Cancer Res. 52:6297-6304 (1992)). Overexpression of dominant oncogenes may be addressed using techniques to inhibit the transforming gene or gene product. Loss of tumor suppressor gene function may be approached using methods to reconstitute wild-type tumor suppressor gene function (Goodrich et al., Cancer Res. 52:1968-1973 (1992)). Besides these methods to achieve mutation compensation, genetic techniques have been developed to specifically and selectively eradicate tumor cells.
  • tumor suppressor genes such as p53 and RB
  • p53 and RB tumor suppressor genes
  • carcinoma of the bladder Tujimoto et al. Cancer Res. 52:1393-1398 (1992); Cairns et al. Oncogene 6:2305-2309 (1991)
  • reversion of the neoplastic phenotype can be demonstrated with replacement of the corresponding wild-type tumor suppressor gene (Spandidos, Id.; Banerjee, Id.).
  • acetone, DMSO, prolamine sulfate can break down the protective “mucin” layer that protects the bladder epithelium from bacteria, viruses and other pathogens (Monson et al. J. Urol. 145:842-845 (1992); Parsons et al. J. Urol. 143:139-142 (1990)). None of the methods tried to date achieve enhanced delivery of a therapeutic tumor suppressor gene to the bladder for the treatment of bladder cancer. In order to accomplish gene therapy for treatment of bladder cancer, gene therapy methods must be developed to accomplish direct, optimal, in vivo tumor suppressor gene delivery to the bladder epithelium.
  • One aspect of the invention is a method of administering a therapeutic agent to a tissue having an epithelial membrane, comprising administering a therapeutically effective amount of the therapeutic agent formulated in a buffer comprising a detergent.
  • a further aspect of the invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of the therapeutic agent formulated in a buffer comprising a detergent.
  • a further aspect of the invention is a method of treating bladder cancer comprising administration of a therapeutically effective amount of a therapeutic gene contained within a gene delivery system that is formulated in a buffer comprising a delivery-enhancing agent.
  • a further aspect of the invention is a pharmaceutical formulation for administration of a recombinant adenovirus, comprising about 10 9 -10 11 particles (PN)/ml recombinant adenovirus, about 2-10 mM Big CHAP or about 0.1-1.0 mM TRITON®-X-100 detergent, phosphate buffered saline (PBS), about 2-3% sucrose (w/v) and about 1-3 mM MgCl 2 , about pH 6.4-8.4.
  • FIG. 1 depicts the influence of formulation on adenovirus mediated gene transfer and expression in the rat bladder epithelium after intravesical administration.
  • FIG. 2 depicts adenovirus transgene expression in bladder epithelial cells after intravesical administration.
  • FIG. 3 depicts dose dependent adenovirus transgene expression in the rat bladder after intravesical administration.
  • FIG. 4 depicts a reverse-transcriptase polymerase chain reaction (RT-PCR) analysis of recombinant adenovirus transgene expression in the mouse bladder after intravesical administration.
  • RT-PCR reverse-transcriptase polymerase chain reaction
  • FIG. 5 depicts a time course of recombinant adenovirus transgene expression in bladder, kidney, and liver tissue after intravesical administration of the virus.
  • FIG. 6 depicts recombinant adenovirus transgene DNA in bladder and kidney homogenates after intravesical administration
  • FIG. 7 depicts improvement of gene transfer to bladder epithelium using a Big CHAP (N,N, bis-(3-D-gluconamidopropyl)-cholamide (CALBIOCHEM® Biochemicals) formulation.
  • Big CHAP N,N, bis-(3-D-gluconamidopropyl)-cholamide
  • FIG. 8 depicts improvement of gene transfer to bladder epithelium using different concentrations of recombinant adenovirus in a 7 mM Big CHAP formulation.
  • FIG. 9 depicts enhancement of recombinant adenovirus transgene expression in bladder tissue by using an ethanol (ETOH) or Big CHAP formulation.
  • FIG. 10 depicts gene transfer to tumors using a 4 mM Big CHAP formulation.
  • FIG. 11 depicts transgene transfer to pig bladder epithelium.
  • FIG. 12 depicts the expression of p53 in tumor tissue.
  • FIG. 13 depicts gene transfer to the muscosa of rat ileum.
  • a gene delivery system refers to any means of delivery of a therapeutic gene to a particular epithelial tissue or organ including, for example, recombinant vectors and non-vector systems.
  • non-vector systems include but are not limited to any lipid-based, lipid encapsulated DNA or cationic lipid/DNA complexes.
  • recombinant viral vectors include but are not limited to herpes virus, retrovirus, vaccinia virus, adenovirus, and adenoassociated virus.
  • Recombinant refers to nucleic acids and protein encoded by them wherein the nucleic acids are constructed by methods of recombinant DNA technology, also termed “genetic engineering”.
  • a preferred recombinant viral vector is the adenoviral vector delivery system which has a deletion of the protein IX gene (See International Patent Application WO 95/11984, which is herein incorporated by reference in its entirety for all purposes).
  • the recombinant vector delivery system comprising a therapeutic gene, such as a tumor suppressor gene is formulated in a buffer comprising a delivery-enhancing agent.
  • a delivery-enhancing agent refers to any agent which enhances delivery of a therapeutic gene, such as a tumor suppressor gene to a cancerous tissue or organ.
  • Such enhanced delivery may be achieved by various mechanisms. One such mechanism may involve the disruption of the protective glycosaminoglycan layer on the epithelial surface of the bladder.
  • Examples of such delivery-enhancing agents are detergents, alcohols, glycols, surfactants, bile salts, heparin antagonists, cyclooxygenase inhibitors, hypertonic salt solutions, and acetates.
  • Alcohols include for example the aliphatic alcohols such as ethanol, N-propanol, isopropanol, butyl alcohol, acetyl alcohol.
  • Glycols include glycerine, propyleneglycol, polyethyleneglycol and other low molecular weight glycols such as glycerol and thioglycerol.
  • Acetates such as acetic acid, gluconol acetate, and sodium acetate are further examples of delivery-enhancing agents.
  • Hypertonic salt solutions like 1M NaCl are also examples of delivery-enhancing agents.
  • surfactants are sodium dodecyl sulfate (SDS) and lysolecithin, polysorbate 80, nonylphenoxypolyoxyethylene, lysophosphatidylcholine, polyethylenglycol 400, polysorbate 80, polyoxyethylene ethers, polyglycol ether surfactants and DMSO.
  • Bile salts such as taurocholate, sodium tauro-deoxycholate, deoxycholate, chenodesoxycholate, glycocholic acid, glycochenodeoxycholic acid and other astringents like silver nitrate may be used.
  • Heparin-antagonists like quaternary amines such as prolamine sulfate may also be used.
  • Cyclooxygenase inhibitors such as sodium salicylate, salicylic acid, and non-steroidal antiinflammatory drug (NSAIDS) like indomethacin, naproxen, diclofenac may be used.
  • NSAIDS non-steroidal antiinflammatory drug
  • Detergents include anionic, cationic, zwitterionic, and nonionic detergents.
  • Exemplary detergents include but are not limited to taurocholate, deoxycholate, taurodeoxycholate, cetylpyridium, benalkonium chloride, ZWITTERGENT®3-14 detergent, CHAPS (3-[(3-Cholamidopropyl)dimethylammoniol]-1-propanesulfonate hydrate, Aldrich), Big CHAP, Deoxy Big CHAP, TRITON®-X-100 detergent, C12E8, Octyl-B-D-Glucopyranoside, PLURONIC®-F68 detergent, TWEEN® 20 detergent, and TWEEN® 80 detergent (CALBIOCHEM® Biochemicals).
  • the delivery-enhancing agent is included in the buffer in which the recombinant adenoviral vector delivery system is formulated.
  • the delivery-enhancing agent may be administered prior to the recombinant virus or concomitant with the virus.
  • the delivery-enhancing agent is provided with the virus by mixing a virus preparation with a delivery-enhancing agent formulation just prior to administration to the patient.
  • the delivery-enhancing agent and virus are provided in a single vial to the caregiver for administration.
  • the pharmaceutical composition may be administered over time in the range of about 5 minutes to 3 hours, preferably about 10 minutes to 120 minutes, and most preferably about 15 minutes to 90 minutes.
  • the delivery-enhancing agent may be administered prior to administration of the recombinant adenoviral vector delivery system containing the tumor suppressor gene.
  • the prior administration of the delivery-enhancing agent may be in the range of about 30 seconds to 1 hour, preferably about 1 minute to 10 minutes, and most preferably about 1 minute to 5 minutes prior to administration of the adenoviral vector delivery system containing the tumor suppressor gene.
  • the concentration of the delivery-enhancing agent will depend on a number of factors known to one of ordinary skill in the art such as the particular delivery-enhancing agent being used, the buffer, pH, target tissue or organ and mode of administration.
  • the concentration of the delivery-enhancing agent will be in the range of 1% to 50% (v/v), preferably 10% to 40% (v/v) and most preferably 15% to 30% (v/v).
  • the detergent concentration in the final formulation administered to the patient is about 0.5-2 ⁇ the critical micellization concentration (CMC).
  • CMC critical micellization concentration
  • a preferred concentration of Big CHAP is about 2-20 mM, more preferable about 3.5-7 mM.
  • the buffer containing the delivery-enhancing agent may be any pharmaceutical buffer such as phosphate buffered saline or sodium phosphate/sodium sulfate, Tris buffer, glycine buffer, sterile water and other buffers known to the ordinarily skilled artisan such as those described by Good et al. (1966) Biochemistry 5:467.
  • the pH of the buffer in the pharmaceutical composition comprising the tumor suppressor gene contained in the adenoviral vector delivery system may be in the range of 6.4 to 8.4, preferably 7 to 7.5, and most preferably 7.2 to 7.4.
  • a preferred formulation for administration of a recombinant adenovirus is about 10 9 -10 11 PN/ml virus, about 2-10 mM Big CHAP or about 0.1-1.0 mM TRITON®-X-100 detergent, in phosphate buffered saline (PBS), plus about 2-3% sucrose (w/v) and about 1-3 mM MgCl 2 , at about pH 6.4-8.4.
  • the term “enhanced” describes the increased delivery of the therapeutic gene, such as a tumor suppressor gene, to the cancerous tissue or organ.
  • Increased delivery of a therapeutic gene, such as a tumor suppressor gene can be measured by various means, for example by measuring expression of the tumor suppressor gene compared to expression levels when the tumor suppressor gene is delivery in an adenoviral vector delivery system in a buffer lacking the delivery-enhancing agent.
  • therapeutic genes are tumor suppressor genes and the suicide gene thymidine kinase.
  • tumor suppressor genes include but are not limited to p53, the retinoblastoma gene, either full length (p110 RB ) or fragments thereof such as p94 RB or p56 RB , and p16.
  • therapeutic genes include but are not limited to CFTR, genes encoding cytokines (such as the interferons ⁇ , ⁇ , ⁇ , ⁇ , interleukins (e.g., IL-4, IL-10, IL-2), GM-CSF, and any other genes encoding proteins which have therapeutic potential in the treatment of non-cancerous diseases of the bladder such as cystitis.
  • the therapeutic gene encodes antisense RNA.
  • compositions of the invention comprise a therapeutically effective amount of a therapeutic gene, such as a tumor suppressor gene contained in a recombinant viral vector delivery system in a buffer comprising a delivery-enhancing agent.
  • a therapeutically effective refers to the prevention of, reduction of, or curing of symptoms associated with a disease state.
  • Therapeutically effective amounts of the pharmaceutical composition comprising a therapeutic gene, such as p53 or the retinoblastoma tumor suppressor gene, in a recombinant viral vector delivery system formulated in a buffer comprising a delivery-enhancing agent will be administered in accord with the teaching of this invention.
  • a therapeutic gene such as p53 or the retinoblastoma tumor suppressor gene
  • therapeutically effective amounts of the retinoblastoma tumor suppressor gene in the recombinant adenoviral vector delivery system formulated in a buffer containing a delivery-enhancing agent are in the range of about 1 ⁇ 10 11 particles/ml to 1 ⁇ 10 12 particles/ml, more typically about 1 ⁇ 10 8 particles/ml to 5 ⁇ 10 11 particles/ml, most typically 1 ⁇ 10 9 particles/ml to 1 ⁇ 10 11 particles/ml (PN/ml).
  • compositions of this invention may additionally include a stabilizer, enhancer or other pharmaceutically acceptable carriers or vehicles.
  • a pharmaceutically acceptable carrier can contain a physiologically acceptable compound that acts, for example, to stabilize the recombinant adenoviral vector delivery system comprising the tumor suppressor gene.
  • a physiologically acceptable compound can include, for example, carbohydrates, such as glucose, sucrose or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients.
  • Other physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives, which are particularly useful for preventing the growth or action of microorganisms.
  • preservatives include, for example, phenol and ascorbic acid.
  • pharmaceutically acceptable carrier depends on the route of administration and the particular physiochemical characteristics of the recombinant adenoviral vector delivery system and the particular tumor suppressor gene contained therein. Examples of carriers, stabilizers or adjuvants can be found in Martin, Remington's Pharm. Sci., 15th Ed. (Mack Publ. Co., Easton, Pa. 1975), incorporated herein by reference.
  • the recombinant viral vector delivery system comprising a therapeutic gene formulated in a buffer comprising a delivery-enhancing agent may be delivered to any cancerous tissue or organ using any delivery method known to the ordinarily skilled artisan for example, intratumoral or intravesical administration.
  • Cancerous tissues and organs include any tissue or organ having an epithelial membrane such as the gastrointestinal tract, the bladder, respiratory tract, and the lung.
  • Examples include but are not limited to carcinoma of the bladder and upper respiratory tract, vulva, cervix, vagina or bronchi; local metastatic tumors of the peritoneum; broncho-alveolar carcinoma; pleural metastatic carcinoma; carcinoma of the mouth and tonsils; carcinoma of the nasopharynx, nose, larynx, oesophagus, stomach, colon and rectum, gallbladder, or skin; or melanoma.
  • the delivery-enhancing agents of the invention can also be used to formulate other pharmaceutical agents, such as proteins, nucleic acids, antisense RNA, small molecules, etc., for administration to any tissue or organ having an epithelial membrane.
  • the administered material was retained in the bladder for 45 minutes. The bladder were then flushed with PBS, and the animals were permitted to recover from the procedure.
  • Xgal (5-Bromo-4-chloro-3-indolyl- ⁇ -D-galactoside) solution to evaluate reporter gene transfer. Xgal-stained tissues were then paraffin embedded, sectioned, and counter stained with hematoxylin and eosin. Hydrolysis of Xgal by ⁇ -galactosidase results in a blue color that localized to the superficial luminal bladder epithelium.
  • Transgene expression consequent to delivery by the adenoviral vector, was detected in bladders from all animals treated with rAd- ⁇ gal but not in an untreated control. Transgene expression was similar to previously published results using the PBS/sucrose formulation (Bass et al. Cancer Gene Therapy 2:2:97-104 (1995)). In sharp contrast, ⁇ -galactosidase expression in the luminal epithelial surface was greatly enhanced in animals that received rAd- ⁇ gal diluted in 30% ethanol ( FIG. 1 ). Bladder specimens described in FIG. 1 were embedded, sectioned, and counter stained with hematoxylin and eosin.
  • FIG. 2 Histologic evaluation of the bladder tissue demonstrated increased ⁇ -galactosidase expression of the transitional bladder epithelium when ethanol was added to the adenovirus formulation ( FIG. 2 ).
  • the interaction of ethanol with the protective glycosaminoglycan (GAG) layer on the epithelium surface provides a mechanism for the observed increase in transgene expression. Disruption of this layer may facilitate virus-cell interaction at the surface and potentially enhance penetration into the submucosa.
  • GAG glycosaminoglycan
  • ⁇ -galactosidase expression in the luminal bladder epithelium correlated with the concentration of the administered recombinant adenovirus ( FIG. 3 ).
  • Expression of ⁇ -galactosidase decreased at lower concentrations. No evidence of ⁇ -galactosidase expression was detected in animals dosed at a concentration of 1 ⁇ 10 7 PN/mL or in an untreated control animal.
  • the recombinant adenovirus used in this study was based on serotype 5 human adenovirus from which the viral early region 1 encoding E1a, E1b, and pIX proteins have been deleted. This adenovirus is limited to propagation in 293 cells which produce the Ad5 El gene products required for replication. Transfer plasmids encoding either full length or truncated Rb were generated from pACN (Wills et al. Cancer Gene Therapy 2:191-197 (1995)) and were, in turn, used to construct the recombinant adenoviruses.
  • ACNRB PN/mL
  • PBS PBS
  • v/v 30% ethanol solution
  • primers were generated to identify ACNRB and amplify the region from the 3′ end of the CMV sequence and to the 5′ end of the RB sequence.
  • RT-PCR products were separated on a 10% polyacrylamide gel, stained with ethidium bromide, and photographed. Increased ACNRB expression was detected after treatment with ACNRB in 30% (v/v) ethanol compared to very low expression after treatment with ACNRB in VPBS.
  • Positive controls for the assay included samples from ACNRB-infected 5637 human bladder cancer cells (CONTROL). Bladder RNA samples from ACNRB-infected animals that were amplified with primers specific for beta-actin provided an internal control for the quality of RNA.
  • primers specific for ACNRB For detection of ACNRB DNA, a DNA extraction kit (Stratagene) was used on tissue homogenates. PCR was performed with the primers specific for ACNRB, as described above for the RT-PCR analysis.
  • ACNRB transgene expression in the bladder homogenates was detected only in samples collected on days 1-6, with expression relative to endogenous p53 decreasing with time ( FIG. 5 , upper panel). No expression was detected from samples collected 7 and 14 days after administration. Interestingly, some ACNRB expression was detected in the kidneys on days 1, 2 and 3, but no expression was observed in the liver ( FIG. 5 , lower panels).
  • ACNRB DNA was detected in bladder tissue of all animals that received ACNRB, including those harvested 14 days after administration ( FIG. 6 , (left panel)). DNA was also recovered from the kidney homogenates, consistent with the ACNRB expression detected in this tissue ( FIG. 6 , right panel). No evidence for ACNRB DNA was detected in liver samples harvested during the study (data not shown). Samples from an untreated animal (U) and purified ACNRB DNA (PC) were used as negative and 25 positive controls, respectively.
  • Adenovirus-mediated gene transfer to the bladder epithelium can be enhanced by the presence of a delivery-enhancing agent, such as ethanol, in the formulation.
  • a delivery-enhancing agent such as ethanol
  • One mechanism for the increased gene transfer may be the disruption of the protective glycosaminoglycan layer on the epithelial surface of the bladder.
  • a single intravesical administration of ACNRB in a 20-30% (v/v) ethanol formulation results in transgene expression in the bladder that persists for approximately one week. Retrograde ureteral flow provides a likely explanation for the transient expression of ACNRB detected in the kidney.
  • the absence of ACNRB expression and ACNRB DNA in the liver indicates limited systemic exposure after intravesical administration.
  • rAd- ⁇ gal was formulated in different detergents at their critical micellization concentration to evaluate efficiency of gene transfer to the bladder epithelium.
  • Female rats about 200 g b/w, Harlan Sprague Dawley
  • isoflurane received a single intravesical administration of rAd- ⁇ gal (1 ⁇ 10 11 PN/ml) in different detergent formulations (see Table I).
  • bladders were flushed with PBS and then emptied.
  • rAd- ⁇ gal was then instilled in a volume of 0.5 ml. The instilled solution was retained in the bladder for 45 minutes. The bladders were then flushed with PBS, and the animals were permitted to recover from the procedure.
  • the rats were sacrificed, the bladders harvested, and fixed in formalin. After fixation, the bladders were opened longitudinally so that the urothelium was exposed to the chromogen (Xgal), that is converted to a blue color, if reporter gene ( ⁇ -galactosidase) expression is present.
  • the luminal epithelial surface of the whole bladder was photographed an blue staining scored: +(minimal staining), ++ (moderate staining), +++ intense staining covering the whole bladder epithelial surface. The results are shown in Table I.
  • anionic detergents tacrodeoxycholate
  • zwitterionic detergents CHAP, ZWITTERGENT®
  • non-ionic detergents Big CHAP, TRITON® X-100
  • Cationic detergents and some of the nonionic detergents did not have similar effects. In general, improvements of gene transfer were accompanied by cystitis. Zwiterionic detergents facilitated bladder stone formation.
  • cystitis Possible manifestations of cystitis as observed with ethanol were evaluated in mice using a 7 MM Big CHAP (2 ⁇ CMC) or 0.05 mM TRITON®-X-100 detergent (CMC) formulation.
  • the formulations were administered intravesically in a volume of 80 uL, and animals were observed over a 7-day interval.
  • bladders were paraffin-embedded, sectioned, and stained with hematoxylin and eosin for pathologic evaluation. Only a slight macrophage infiltration into the bladder tissue was observed in mice treated with Big CHAP. Macrophages infiltrated more prominently (slight to mild) induced by TRITON®-X-100 detergent. In sharp contrast, significant cystitis was detected in animals treated with 22% ethanol.
  • ACNRB ACNRB (4 ⁇ 10 10 PN/mL) was formulated in VPBS, 22% (v/v) ethanol, or 3 mM Big CHAP. After the virus was retained in the bladder for 45 minutes, the animals were permitted to recover. Mice were sacrificed 48 hours after ACNRB administration, and bladders snap frozen in liquid nitrogen. Transgene expression was determined using RT-PCR.
  • RNAse free water Tissues were rinsed in RNAse free water, homogenized, digested in Tri-Reagent (Molecular Research Center), and total cellular RNA extracted.
  • ACNRB was probed using a 5′ primer located in the CMV region of ACNRB vector, and a 3′ primer resided in the 5′ end of Rb genome.
  • RT-PCR was performed in the Perkin Elmer 9600 GeneAmp PCR System. Cycling conditions were 10 min at 65° C., 8 min at 50° C., 5 min at 95° C. 32 cycles of PCR were performed, each cycle consisting of 30 sec at 94° C., 30 sec at 58° C., and 30 sec at 72° C. The 32nd cycle included a 10 min elongation step at 72° C. to ensure full extension of incomplete DNA fragments.
  • ACNRB-RNA bands were stained with ethidium bromide. The results, enhanced expression using an ethanol or Big CHAP formulation, are shown in FIG. 9 .
  • the intensity of blue staining correlates with the ⁇ gal-transgene expression.
  • the figure shows the epithelial surface of Xgal stained bladders. The results indicate a concentration-dependent increase of gene transfer to the epithelium. The 3.5-7 mM concentrations of Big CHAP significantly improved gene transfer.
  • the formulation alone did not induce a blue color from the Xgal substrate. A higher concentration (17.5) mM did not notably improve gene transfer or expression, but induced cystitis in some of the animals tested.
  • FIG. 8 shows a concentration dependent increase of gene transfer to the epithelium. A concentration of 1.3 ⁇ 10 11 PN/ml induced maximal gene transfer. A higher concentration (6.5 ⁇ 10 11 PN/ml) did not notably improve the blue staining.
  • rAd-p53 Gene transfer of rAd carrying the p53 gene (rAd-p53) (Wills et al. Human Gene Therapy 5:1079-1088 (1994)) was also tested in this animal model of bladder cancer. Briefly, bladder tumors were induced in female Fisher rates (Charles River) by addition of 0.05% BBN (N-butyl-N—N(4-hydroxybutyl)nitrosamine) in the drinking water for three months. rAD-p53 (1 ⁇ 10 11 PN/ml) was formulated in 7 mM Big CHAP. Under isoflurane anesthesia a catheter (24G) was inserted into the bladder for administration. rAD-p53 was instilled into the bladder for 45 minutes. The animals were then allowed to recover from anesthesia.
  • BBN N-butyl-N—N(4-hydroxybutyl)nitrosamine
  • FIG. 12 shows p53 gene expression in the surface area of proliferative epithelium (left panel) and nuclear staining for p53 expression at higher magnification (right panel). No staining was detected in tumor tissue from untreated animals.
  • rAd- ⁇ gal (1 ⁇ 10 11 PN/ml) was formulated in VPBS or 7 mM Big CHAP.
  • a volume of 50 ml was injected via the catheter into the bladder of the conscious animals.
  • the instilled material was retained for 2 hr.
  • the animals were sacrificed 48 hr later, and a central section of the bladder was harvested and stained for ⁇ -galactosidase expression.
  • An increase in the intensity of gene expression was observed in the 7 mM Big CHAP treated pig compared to the VPBS treated pig ( FIG. 11 ). Histologic evaluation demonstrated transduction of several epithelial layers using Big CHAP (left panel), but only superficial transduction with the VPBS buffer (right panel).
  • rAd- ⁇ gal was formulated in 10 mM taurodeoxycholatic acid (in distilled water, sterile filtered) (Treatment group 1) or VPBS (Treatment Group 2).
  • a third treatment group comprised animals treated with 10 mM taurodeoxycholatic acid. Thereafter, clamps were removed and a loose silk suture anchored on both ends for recognition at time of necropsy. The abdominal incision was closed and animals allowed to recover in their cages. Animals were sacrificed 48 hr later. The infected segment and a control segment were harvested in fixative for whole organ Xgal staining.

Abstract

A method and pharmaceutical composition for the treatment of cancer using a gene delivery system, such as a viral vector delivery system, comprising a therapeutic gene such as p53 or a retinoblastoma tumor suppressor gene wherein the gene delivery system is formulated in a buffer comprising a delivery-enhancing agent such as ethanol or a detergent.

Description

  • This application is a continuation-in-part of U.S. Ser. No. 08/584,077, filed Jan. 8, 1996.
  • BACKGROUND OF THE INVENTION
  • The present invention is directed to compositions and methods of treating cancer by gene therapy using a therapeutic gene, such as a tumor suppressor gene delivered by a gene delivery system, such as a recombinant viral vector delivery system, formulated in a buffer comprising a delivery-enhancing agent. In particular, this invention relates to the delivery of a tumor suppressor gene (e.g., p53 or retinoblastoma (RB)) to cancerous epithelial tissues and organs, such as the bladder, using a recombinant adenoviral vector delivery system formulated in a buffer comprising a delivery-enhancing agent.
  • Carcinoma of the bladder represents a significant source of morbidity and mortality. Bladder cancer ranks 10th in males and 12th in females in cancer related mortality (Cancer Facts and Figures, Amer. Can. Soc. 5:11 (1995)). Therapies available for the treatment of bladder cancer include adjuvant chemotherapy or immunotherapy, transurethral resection of superficial disease, radical cystectomy or radiotherapy which is often combined with systemic chemotherapy. Despite these therapeutic options, overall survival has not changed appreciably. (Ibid) Thus, new therapeutic modalities must be developed for the treatment of bladder cancer.
  • Gene therapy strategies have been developed as an alternative therapeutic approach (See for example, Brewster et al. Eur Urol 25:177-182 (1994); Takahashi et al., Proc Natl Acad Sci USA 88: 5257-5261 (1991); Rosenberg, S A, J. Clin Oncol. 10:180-199 (1992)).
  • Distinct approaches have been developed to treat neoplasms based on gene transfer methods. Methods have been developed to correct specific lesions at defined genetic loci which give rise to neoplastic transformation and progression (Spandidos et al., Anticancer Res. 10: 1543-1554 (1990); Banerjee et al. Cancer Res. 52:6297-6304 (1992)). Overexpression of dominant oncogenes may be addressed using techniques to inhibit the transforming gene or gene product. Loss of tumor suppressor gene function may be approached using methods to reconstitute wild-type tumor suppressor gene function (Goodrich et al., Cancer Res. 52:1968-1973 (1992)). Besides these methods to achieve mutation compensation, genetic techniques have been developed to specifically and selectively eradicate tumor cells. These approaches of molecular chemotherapy rely on specific expression of toxin genes in neoplastic cells (Abe et al., Proc Soc Exp Biol Med. 203:354-359 (1993)). Finally, gene transfer methods have been used to achieve antitumor immunization. These methods of genetic immunopotentiation use techniques of genetic immunoregulation to enhance immune recognition of tumors. Consequently, a variety of distinct approaches have been developed to accomplish gene therapy of cancer.
  • A high incidence of mutations has been observed in tumor suppressor genes, such as p53 and RB, in the case of carcinoma of the bladder (Fujimoto et al. Cancer Res. 52:1393-1398 (1992); Cairns et al. Oncogene 6:2305-2309 (1991)). For such genetic lesions of tumor suppressor genes, reversion of the neoplastic phenotype can be demonstrated with replacement of the corresponding wild-type tumor suppressor gene (Spandidos, Id.; Banerjee, Id.).
  • In vitro studies using cell lines derived from human bladder tissues have demonstrated efficient transgene expression following infection with recombinant adenovirus (Bass et al. Cancer Gene Therapy 2:2:97-104 (1995)). Experiments in vivo have also shown adenovirus transgene expression in the urinary bladder of rodents after intravesical administration (Ibid; Morris et al. J. Urology. 152:506-50 (1994)). In vitro experiments with wild-type adenovirus demonstrate that virus attachment and internalization is not influenced by benzyl alcohol, but do demonstrate an enhanced uncoating of the virion (Blixt et al. Arch. Virol. 129:265-277 (1993)). In vivo efforts with agents (e.g. acetone, DMSO, prolamine sulfate) can break down the protective “mucin” layer that protects the bladder epithelium from bacteria, viruses and other pathogens (Monson et al. J. Urol. 145:842-845 (1992); Parsons et al. J. Urol. 143:139-142 (1990)). None of the methods tried to date achieve enhanced delivery of a therapeutic tumor suppressor gene to the bladder for the treatment of bladder cancer. In order to accomplish gene therapy for treatment of bladder cancer, gene therapy methods must be developed to accomplish direct, optimal, in vivo tumor suppressor gene delivery to the bladder epithelium.
  • These needs and others are addressed by the instant invention.
  • SUMMARY OF THE INVENTION
  • One aspect of the invention is a method of administering a therapeutic agent to a tissue having an epithelial membrane, comprising administering a therapeutically effective amount of the therapeutic agent formulated in a buffer comprising a detergent.
  • A further aspect of the invention is a pharmaceutical composition comprising a therapeutically effective amount of the therapeutic agent formulated in a buffer comprising a detergent.
  • A further aspect of the invention is a method of treating bladder cancer comprising administration of a therapeutically effective amount of a therapeutic gene contained within a gene delivery system that is formulated in a buffer comprising a delivery-enhancing agent.
  • A further aspect of the invention is a pharmaceutical formulation for administration of a recombinant adenovirus, comprising about 109-1011 particles (PN)/ml recombinant adenovirus, about 2-10 mM Big CHAP or about 0.1-1.0 mM TRITON®-X-100 detergent, phosphate buffered saline (PBS), about 2-3% sucrose (w/v) and about 1-3 mM MgCl2, about pH 6.4-8.4.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts the influence of formulation on adenovirus mediated gene transfer and expression in the rat bladder epithelium after intravesical administration.
  • FIG. 2 depicts adenovirus transgene expression in bladder epithelial cells after intravesical administration.
  • FIG. 3 depicts dose dependent adenovirus transgene expression in the rat bladder after intravesical administration.
  • FIG. 4 depicts a reverse-transcriptase polymerase chain reaction (RT-PCR) analysis of recombinant adenovirus transgene expression in the mouse bladder after intravesical administration.
  • FIG. 5 depicts a time course of recombinant adenovirus transgene expression in bladder, kidney, and liver tissue after intravesical administration of the virus.
  • FIG. 6 depicts recombinant adenovirus transgene DNA in bladder and kidney homogenates after intravesical administration FIG. 7 depicts improvement of gene transfer to bladder epithelium using a Big CHAP (N,N, bis-(3-D-gluconamidopropyl)-cholamide (CALBIOCHEM® Biochemicals) formulation.
  • FIG. 8 depicts improvement of gene transfer to bladder epithelium using different concentrations of recombinant adenovirus in a 7 mM Big CHAP formulation.
  • FIG. 9 depicts enhancement of recombinant adenovirus transgene expression in bladder tissue by using an ethanol (ETOH) or Big CHAP formulation.
  • FIG. 10 depicts gene transfer to tumors using a 4 mM Big CHAP formulation.
  • FIG. 11 depicts transgene transfer to pig bladder epithelium.
  • FIG. 12 depicts the expression of p53 in tumor tissue.
  • FIG. 13 depicts gene transfer to the muscosa of rat ileum.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, “a gene delivery system” refers to any means of delivery of a therapeutic gene to a particular epithelial tissue or organ including, for example, recombinant vectors and non-vector systems. Examples of non-vector systems include but are not limited to any lipid-based, lipid encapsulated DNA or cationic lipid/DNA complexes. Examples of recombinant viral vectors include but are not limited to herpes virus, retrovirus, vaccinia virus, adenovirus, and adenoassociated virus. “Recombinant” refers to nucleic acids and protein encoded by them wherein the nucleic acids are constructed by methods of recombinant DNA technology, also termed “genetic engineering”. A preferred recombinant viral vector is the adenoviral vector delivery system which has a deletion of the protein IX gene (See International Patent Application WO 95/11984, which is herein incorporated by reference in its entirety for all purposes). The recombinant vector delivery system comprising a therapeutic gene, such as a tumor suppressor gene, is formulated in a buffer comprising a delivery-enhancing agent. “A delivery-enhancing agent” refers to any agent which enhances delivery of a therapeutic gene, such as a tumor suppressor gene to a cancerous tissue or organ. Such enhanced delivery may be achieved by various mechanisms. One such mechanism may involve the disruption of the protective glycosaminoglycan layer on the epithelial surface of the bladder. Examples of such delivery-enhancing agents are detergents, alcohols, glycols, surfactants, bile salts, heparin antagonists, cyclooxygenase inhibitors, hypertonic salt solutions, and acetates. Alcohols include for example the aliphatic alcohols such as ethanol, N-propanol, isopropanol, butyl alcohol, acetyl alcohol. Glycols include glycerine, propyleneglycol, polyethyleneglycol and other low molecular weight glycols such as glycerol and thioglycerol. Acetates such as acetic acid, gluconol acetate, and sodium acetate are further examples of delivery-enhancing agents. Hypertonic salt solutions like 1M NaCl are also examples of delivery-enhancing agents. Examples of surfactants are sodium dodecyl sulfate (SDS) and lysolecithin, polysorbate 80, nonylphenoxypolyoxyethylene, lysophosphatidylcholine, polyethylenglycol 400, polysorbate 80, polyoxyethylene ethers, polyglycol ether surfactants and DMSO. Bile salts such as taurocholate, sodium tauro-deoxycholate, deoxycholate, chenodesoxycholate, glycocholic acid, glycochenodeoxycholic acid and other astringents like silver nitrate may be used. Heparin-antagonists like quaternary amines such as prolamine sulfate may also be used. Cyclooxygenase inhibitors such as sodium salicylate, salicylic acid, and non-steroidal antiinflammatory drug (NSAIDS) like indomethacin, naproxen, diclofenac may be used.
  • Detergents include anionic, cationic, zwitterionic, and nonionic detergents. Exemplary detergents include but are not limited to taurocholate, deoxycholate, taurodeoxycholate, cetylpyridium, benalkonium chloride, ZWITTERGENT®3-14 detergent, CHAPS (3-[(3-Cholamidopropyl)dimethylammoniol]-1-propanesulfonate hydrate, Aldrich), Big CHAP, Deoxy Big CHAP, TRITON®-X-100 detergent, C12E8, Octyl-B-D-Glucopyranoside, PLURONIC®-F68 detergent, TWEEN® 20 detergent, and TWEEN® 80 detergent (CALBIOCHEM® Biochemicals).
  • In an embodiment, the delivery-enhancing agent is included in the buffer in which the recombinant adenoviral vector delivery system is formulated. The delivery-enhancing agent may be administered prior to the recombinant virus or concomitant with the virus. In some embodiments, the delivery-enhancing agent is provided with the virus by mixing a virus preparation with a delivery-enhancing agent formulation just prior to administration to the patient. In other embodiments, the delivery-enhancing agent and virus are provided in a single vial to the caregiver for administration.
  • In the case of a pharmaceutical composition comprising a tumor suppressor gene contained in a recombinant adenoviral vector delivery system formulated in a buffer which further comprises a delivery-enhancing agent, the pharmaceutical composition may be administered over time in the range of about 5 minutes to 3 hours, preferably about 10 minutes to 120 minutes, and most preferably about 15 minutes to 90 minutes. In another embodiment the delivery-enhancing agent may be administered prior to administration of the recombinant adenoviral vector delivery system containing the tumor suppressor gene. The prior administration of the delivery-enhancing agent may be in the range of about 30 seconds to 1 hour, preferably about 1 minute to 10 minutes, and most preferably about 1 minute to 5 minutes prior to administration of the adenoviral vector delivery system containing the tumor suppressor gene.
  • The concentration of the delivery-enhancing agent will depend on a number of factors known to one of ordinary skill in the art such as the particular delivery-enhancing agent being used, the buffer, pH, target tissue or organ and mode of administration. The concentration of the delivery-enhancing agent will be in the range of 1% to 50% (v/v), preferably 10% to 40% (v/v) and most preferably 15% to 30% (v/v). Preferably, the detergent concentration in the final formulation administered to the patient is about 0.5-2× the critical micellization concentration (CMC). A preferred concentration of Big CHAP is about 2-20 mM, more preferable about 3.5-7 mM.
  • The buffer containing the delivery-enhancing agent may be any pharmaceutical buffer such as phosphate buffered saline or sodium phosphate/sodium sulfate, Tris buffer, glycine buffer, sterile water and other buffers known to the ordinarily skilled artisan such as those described by Good et al. (1966) Biochemistry 5:467. The pH of the buffer in the pharmaceutical composition comprising the tumor suppressor gene contained in the adenoviral vector delivery system, may be in the range of 6.4 to 8.4, preferably 7 to 7.5, and most preferably 7.2 to 7.4.
  • A preferred formulation for administration of a recombinant adenovirus is about 109-1011 PN/ml virus, about 2-10 mM Big CHAP or about 0.1-1.0 mM TRITON®-X-100 detergent, in phosphate buffered saline (PBS), plus about 2-3% sucrose (w/v) and about 1-3 mM MgCl2, at about pH 6.4-8.4.
  • The term “enhanced” describes the increased delivery of the therapeutic gene, such as a tumor suppressor gene, to the cancerous tissue or organ. Increased delivery of a therapeutic gene, such as a tumor suppressor gene, can be measured by various means, for example by measuring expression of the tumor suppressor gene compared to expression levels when the tumor suppressor gene is delivery in an adenoviral vector delivery system in a buffer lacking the delivery-enhancing agent. Examples of therapeutic genes are tumor suppressor genes and the suicide gene thymidine kinase. Examples of tumor suppressor genes include but are not limited to p53, the retinoblastoma gene, either full length (p110RB) or fragments thereof such as p94RB or p56RB, and p16. Other therapeutic genes include but are not limited to CFTR, genes encoding cytokines (such as the interferons α, β, γ, δ, interleukins (e.g., IL-4, IL-10, IL-2), GM-CSF, and any other genes encoding proteins which have therapeutic potential in the treatment of non-cancerous diseases of the bladder such as cystitis. In some embodiments of the invention, the therapeutic gene encodes antisense RNA.
  • In some embodiments, the compositions of the invention comprise a therapeutically effective amount of a therapeutic gene, such as a tumor suppressor gene contained in a recombinant viral vector delivery system in a buffer comprising a delivery-enhancing agent. “Therapeutically effective” as used herein refers to the prevention of, reduction of, or curing of symptoms associated with a disease state.
  • Therapeutically effective amounts of the pharmaceutical composition comprising a therapeutic gene, such as p53 or the retinoblastoma tumor suppressor gene, in a recombinant viral vector delivery system formulated in a buffer comprising a delivery-enhancing agent will be administered in accord with the teaching of this invention. For example, therapeutically effective amounts of the retinoblastoma tumor suppressor gene in the recombinant adenoviral vector delivery system formulated in a buffer containing a delivery-enhancing agent are in the range of about 1×1011 particles/ml to 1×1012 particles/ml, more typically about 1×108 particles/ml to 5×1011 particles/ml, most typically 1×109 particles/ml to 1×1011 particles/ml (PN/ml).
  • The compositions of this invention may additionally include a stabilizer, enhancer or other pharmaceutically acceptable carriers or vehicles. A pharmaceutically acceptable carrier can contain a physiologically acceptable compound that acts, for example, to stabilize the recombinant adenoviral vector delivery system comprising the tumor suppressor gene. A physiologically acceptable compound can include, for example, carbohydrates, such as glucose, sucrose or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients. Other physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives, which are particularly useful for preventing the growth or action of microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid. One skilled in the art would know that the choice of pharmaceutically acceptable carrier, depends on the route of administration and the particular physiochemical characteristics of the recombinant adenoviral vector delivery system and the particular tumor suppressor gene contained therein. Examples of carriers, stabilizers or adjuvants can be found in Martin, Remington's Pharm. Sci., 15th Ed. (Mack Publ. Co., Easton, Pa. 1975), incorporated herein by reference.
  • The recombinant viral vector delivery system comprising a therapeutic gene formulated in a buffer comprising a delivery-enhancing agent may be delivered to any cancerous tissue or organ using any delivery method known to the ordinarily skilled artisan for example, intratumoral or intravesical administration. Cancerous tissues and organs include any tissue or organ having an epithelial membrane such as the gastrointestinal tract, the bladder, respiratory tract, and the lung. Examples include but are not limited to carcinoma of the bladder and upper respiratory tract, vulva, cervix, vagina or bronchi; local metastatic tumors of the peritoneum; broncho-alveolar carcinoma; pleural metastatic carcinoma; carcinoma of the mouth and tonsils; carcinoma of the nasopharynx, nose, larynx, oesophagus, stomach, colon and rectum, gallbladder, or skin; or melanoma.
  • The delivery-enhancing agents of the invention can also be used to formulate other pharmaceutical agents, such as proteins, nucleic acids, antisense RNA, small molecules, etc., for administration to any tissue or organ having an epithelial membrane.
  • The following examples are intended to illustrate, not limit the scope of this invention.
  • EXPERIMENTAL EXAMPLES Example 1 Ethanol Improves Gene Transfer in the Bladder
  • Initial experiments have shown that several factors including virus concentration, time of administration, and volume of dosing can influence gene transfer to the bladder epithelium after intravesical administration to rats. Because increased penetration of dyes can be achieved by intravesical administration of different solvents, modification of the adenovirus formulation was also investigated as an alternative strategy to increase adenovirus transgene expression in the bladder (Monson et al. Urology 145:842-845 (1991)). The instant experiments focused on the use of ethanol to increase adenovirus transgene expression in the bladder.
  • Nine female buffalo rats (Harlan Sprague Dawley) were anesthetized with isoflurane and received a single intravesical administration of a human recombinant adenovirus encoding the lacZ gene (rAd-βgal). The human recombinant adenoviral vector comprising the lacZ gene (rAd-βgal) is described in Wills et al. Human Gene Therapy 5:1079-1088 (1994). Before instillation bladders were flushed with PBS and emptied. rAd-βgal was then diluted to achieve a final concentration of 1.7×1011 PN/mL in 1) VPBS (2% (w/v) sucrose and 2 mM MgCl, in PBS), 2) 30% (v/v) ethanol, or 3) 50% (v/v) DMSO, and instilled in a 250 μL volume (N=3 animals/group). The administered material was retained in the bladder for 45 minutes. The bladder were then flushed with PBS, and the animals were permitted to recover from the procedure. Two days after administration, rats were sacrificed, bladders were harvested, fixed, and whole organs were stained with an Xgal (5-Bromo-4-chloro-3-indolyl-β-D-galactoside) solution to evaluate reporter gene transfer. Xgal-stained tissues were then paraffin embedded, sectioned, and counter stained with hematoxylin and eosin. Hydrolysis of Xgal by β-galactosidase results in a blue color that localized to the superficial luminal bladder epithelium.
  • Transgene expression, consequent to delivery by the adenoviral vector, was detected in bladders from all animals treated with rAd-βgal but not in an untreated control. Transgene expression was similar to previously published results using the PBS/sucrose formulation (Bass et al. Cancer Gene Therapy 2:2:97-104 (1995)). In sharp contrast, β-galactosidase expression in the luminal epithelial surface was greatly enhanced in animals that received rAd-βgal diluted in 30% ethanol (FIG. 1). Bladder specimens described in FIG. 1 were embedded, sectioned, and counter stained with hematoxylin and eosin. Histologic evaluation of the bladder tissue demonstrated increased β-galactosidase expression of the transitional bladder epithelium when ethanol was added to the adenovirus formulation (FIG. 2). The interaction of ethanol with the protective glycosaminoglycan (GAG) layer on the epithelium surface provides a mechanism for the observed increase in transgene expression. Disruption of this layer may facilitate virus-cell interaction at the surface and potentially enhance penetration into the submucosa.
  • Example 2 Dose-Dependent Transgene Expression in the Rat Bladder
  • In another experiment, 18 female Sprague-Dawley rats were anaesthetized with isoflurane and received a single 0.5 ml intravesical bolus of rAd-βgal at concentrations of 2×107, 2×108, 2×109, 2×1010, and 2×1011, PN/mL in a 22.5% (v/v) ethanol formulation. After a 45 minute incubation, the bladders were flushed with PBS, and animals were permitted to recover from anesthesia. Two days later, animals were sacrificed, and bladders were harvested, fixed, and whole organs were stained with Xgal solution to evaluate adenovirus transgene expression. β-galactosidase expression in the luminal bladder epithelium correlated with the concentration of the administered recombinant adenovirus (FIG. 3). No striking differences were observed among animals receiving 2×1010 or 2×1011 PN/mL, suggesting a saturation of transgene expression in this model: Analysis of the volume voided after instillation indicated only a minimal reduction in the infectious titer of the dosing material at these high doses. Expression of β-galactosidase decreased at lower concentrations. No evidence of β-galactosidase expression was detected in animals dosed at a concentration of 1×107 PN/mL or in an untreated control animal.
  • Example 3 ACNRB Gene Transfer in the Mouse Bladder
  • A pilot study was conducted to specifically evaluate expression of the RB transgene using a RT-PCR assay. The recombinant adenovirus used in this study was based on serotype 5 human adenovirus from which the viral early region 1 encoding E1a, E1b, and pIX proteins have been deleted. This adenovirus is limited to propagation in 293 cells which produce the Ad5 El gene products required for replication. Transfer plasmids encoding either full length or truncated Rb were generated from pACN (Wills et al. Cancer Gene Therapy 2:191-197 (1995)) and were, in turn, used to construct the recombinant adenoviruses. Either a full-length RB cDNA (1-928 amino acids), subcloned as a 2.8 Kb Xba I-Bam HI fragment from the plasmids pETRbc (Huang et al. Nature 350:160-162 (1991) or a truncated fragment (amino acids 381-928) subcloned as a 1.7 KB Xba 1-Bam HI cDNA fragment, was placed downstream of the CMV promoter/enhancer and the Ad 2 tripartite leader cDNA of the plasmid pACN. These plasmids were subsequently linearized with Eco RI and cotransfected (CaPO4, Stratagene) with either the isolated Cla I digested large fragment of H5ilE4 (Hemstrom et al. J. Virol. 62:3258-3264 (1988)), to make Ad-RB56 (ACN56) containing a partial E4 deletion, or with the large fragment from a hybrid virus of dl327 (Ginsberg et al. Proc. Natl. Acad. Sci. U.S.A. 86:3823-3827 (1989)) and H5ilE4 to create Ad-Rb110 (ACNRB) which contains deletions in both the E3 and E4 regions of the vector.
  • Eight female ICR mice (Charles River Laboratories) were anesthetized with avertine and each received a single 80 μl intravesical administration of (ACNRB). ACNRB (4×1011 PN/mL) was diluted and prepared in a PBS solution or a 30% (v/v) ethanol solution. After the virus was retained in the bladder for 45 minutes, the animals were permitted to recover and void. Mice were sacrificed 2 days or 14 days after ACNRB administration, and bladders, livers, and kidneys from each animal were harvested, homogenized, and processed for analysis (N=2 animals/group). Transgene expression was determined using RT-PCR with a primer specific for ACNRB. More specifically, primers were generated to identify ACNRB and amplify the region from the 3′ end of the CMV sequence and to the 5′ end of the RB sequence. Following amplification (30 cycles) RT-PCR products were separated on a 10% polyacrylamide gel, stained with ethidium bromide, and photographed. Increased ACNRB expression was detected after treatment with ACNRB in 30% (v/v) ethanol compared to very low expression after treatment with ACNRB in VPBS. Positive controls for the assay included samples from ACNRB-infected 5637 human bladder cancer cells (CONTROL). Bladder RNA samples from ACNRB-infected animals that were amplified with primers specific for beta-actin provided an internal control for the quality of RNA. Untreated samples and bladder samples without the reverse transcriptase (RT) provided controls for contaminating DNA. Two days after dosing, levels of ACNRB expression in the bladder homogenates were detected from animals that received ACNRB prepared in 30% ethanol (FIG. 4). No evidence of expression was detected in non-bladder tissue or in any samples collected 14 days after dosing.
  • Example 4 Kinetics of Biodistribution and ACNRB Expression After Intravesical Administration to Mice
  • To investigate the time course of expression after intravesical administration, 40 female mice (Charles River Laboratories) were anaesthetized with avertine and received a single 80 μL bolus of ACNRB (4×1010 PN/mL in 22% (v/v) ethanol). The instilled material was retained in the bladder for approximately 45 minutes, and animals were permitted to recover from the procedure. Mice were sacrificed 1, 2, 3, 4, 5, 6, 7, and 14 days after administration (N=4/time) for analysis. Bladders, livers, and kidneys were harvested and snap frozen in liquid nitrogen for subsequent analysis. For detection of ACNRB expression, tissue samples were homogenized, and total RNA was extracted using TRI-Reagent®. An aliquot of total RNA was amplified in an RT-PCR assay using primers specific for ACNRB to distinguish transgene expression from endogenous RB expression. For detection of ACNRB DNA, a DNA extraction kit (Stratagene) was used on tissue homogenates. PCR was performed with the primers specific for ACNRB, as described above for the RT-PCR analysis.
  • ACNRB transgene expression in the bladder homogenates was detected only in samples collected on days 1-6, with expression relative to endogenous p53 decreasing with time (FIG. 5, upper panel). No expression was detected from samples collected 7 and 14 days after administration. Interestingly, some ACNRB expression was detected in the kidneys on days 1, 2 and 3, but no expression was observed in the liver (FIG. 5, lower panels).
  • ACNRB DNA was detected in bladder tissue of all animals that received ACNRB, including those harvested 14 days after administration (FIG. 6, (left panel)). DNA was also recovered from the kidney homogenates, consistent with the ACNRB expression detected in this tissue (FIG. 6, right panel). No evidence for ACNRB DNA was detected in liver samples harvested during the study (data not shown). Samples from an untreated animal (U) and purified ACNRB DNA (PC) were used as negative and 25 positive controls, respectively.
  • Because systemic administration of recombinant adenovirus results primarily in transgene expression in the liver (Li et al. Human Gene Therapy 4:403-409 (1993)), the absence of ACNRB DNA and expression in liver samples (FIGS. 5 and 6) suggests negligible systemic exposure of ACNRB after intravesical administration. Retrograde flow via the ureters may have contributed to the detection of ACNRB in the kidney.
  • The data presented above demonstrate transgene expression in the rodent bladder following intravesical administration of ACNRB. These studies further indicate that adenovirus-mediated gene transfer to the bladder epithelium can be enhanced by the presence of a delivery-enhancing agent, such as ethanol, in the formulation. One mechanism for the increased gene transfer may be the disruption of the protective glycosaminoglycan layer on the epithelial surface of the bladder. A single intravesical administration of ACNRB in a 20-30% (v/v) ethanol formulation results in transgene expression in the bladder that persists for approximately one week. Retrograde ureteral flow provides a likely explanation for the transient expression of ACNRB detected in the kidney. The absence of ACNRB expression and ACNRB DNA in the liver indicates limited systemic exposure after intravesical administration.
  • Example 5 Use of Detergent Formulations
  • To minimize side effects without losing gene transfer efficiency, other excipients were tested. Detergents are known to interact with cell membranes and form large pores without further damaging the cells. The efficiency of recombinant adenovirus formulated in less toxic detergents was studied in rats and mice gene transfer models.
  • rAd-βgal was formulated in different detergents at their critical micellization concentration to evaluate efficiency of gene transfer to the bladder epithelium. Female rats (about 200 g b/w, Harlan Sprague Dawley) were anesthetized with isoflurane and received a single intravesical administration of rAd-βgal (1×1011 PN/ml) in different detergent formulations (see Table I). Before instillation, bladders were flushed with PBS and then emptied. rAd-βgal was then instilled in a volume of 0.5 ml. The instilled solution was retained in the bladder for 45 minutes. The bladders were then flushed with PBS, and the animals were permitted to recover from the procedure. 48 hours after administration, the rats were sacrificed, the bladders harvested, and fixed in formalin. After fixation, the bladders were opened longitudinally so that the urothelium was exposed to the chromogen (Xgal), that is converted to a blue color, if reporter gene (β-galactosidase) expression is present. The luminal epithelial surface of the whole bladder was photographed an blue staining scored: +(minimal staining), ++ (moderate staining), +++ intense staining covering the whole bladder epithelial surface. The results are shown in Table I. Some of the anionic detergents (taurodeoxycholate), zwitterionic detergents (CHAPS, ZWITTERGENT®, and non-ionic detergents (Big CHAP, TRITON® X-100) enhanced gene transfer dramatically. Cationic detergents and some of the nonionic detergents (PLURONIC® F68, TWEEN®), did not have similar effects. In general, improvements of gene transfer were accompanied by cystitis. Zwiterionic detergents facilitated bladder stone formation.
  • Possible manifestations of cystitis as observed with ethanol were evaluated in mice using a 7 MM Big CHAP (2×CMC) or 0.05 mM TRITON®-X-100 detergent (CMC) formulation. The formulations were administered intravesically in a volume of 80 uL, and animals were observed over a 7-day interval. After sacrifice, bladders were paraffin-embedded, sectioned, and stained with hematoxylin and eosin for pathologic evaluation. Only a slight macrophage infiltration into the bladder tissue was observed in mice treated with Big CHAP. Macrophages infiltrated more prominently (slight to mild) induced by TRITON®-X-100 detergent. In sharp contrast, significant cystitis was detected in animals treated with 22% ethanol.
  • Dose Gene Expression in
    Excipient Charge of Detergent (nM) Bladder Epithelium Gross Pathology Stability
    Taurocholate anionic 6 + none ND
    Deoxycholate anionic 5 + Cystitis ND
    Taurodeoxycholate anionic 6 +++ Cystitis +
    Cetylpyridinium cationic 0.9 + none
    Benzalkonium Chloride cationic 0.5% <+ none
    Zwittergent ® 3-14 zwitterionic 4 +++ stone formation ND
    Chaps zwitterionic 7 +++ stone formation +
    Big Chap non ionic 3.5 +++ none +
    Deoxy Big Chap non ionic 1.5 +++ Cystitis ND
    Triton X-100 non ionic 0.05 +++ none +
    C12E8 non ionic 4 ++ none ND
    Octyl-β-D-Glucopyranoside non ionic 10 ++ none ND
    Pluronic F68 non ionic 0.04 + none +
    Tween 20 non ionic 2 + none +
    Tween 80 non ionic 0.02 + none ND
    Tween 80 non ionic 2 + none +
  • Example 6 Gene Transfer of ACNRB
  • In addition to the experiments with the reporter gene, a different set of studies was conducted to specifically evaluate gene transfer of ACNRB. Female ICR mice were anesthetized with avertine and each mouse received a single 80 μL intravesical administration of ACNRB. ACNRB (4×1010 PN/mL) was formulated in VPBS, 22% (v/v) ethanol, or 3 mM Big CHAP. After the virus was retained in the bladder for 45 minutes, the animals were permitted to recover. Mice were sacrificed 48 hours after ACNRB administration, and bladders snap frozen in liquid nitrogen. Transgene expression was determined using RT-PCR. Tissues were rinsed in RNAse free water, homogenized, digested in Tri-Reagent (Molecular Research Center), and total cellular RNA extracted. ACNRB was probed using a 5′ primer located in the CMV region of ACNRB vector, and a 3′ primer resided in the 5′ end of Rb genome. RT-PCR was performed in the Perkin Elmer 9600 GeneAmp PCR System. Cycling conditions were 10 min at 65° C., 8 min at 50° C., 5 min at 95° C. 32 cycles of PCR were performed, each cycle consisting of 30 sec at 94° C., 30 sec at 58° C., and 30 sec at 72° C. The 32nd cycle included a 10 min elongation step at 72° C. to ensure full extension of incomplete DNA fragments. ACNRB-RNA bands were stained with ethidium bromide. The results, enhanced expression using an ethanol or Big CHAP formulation, are shown in FIG. 9.
  • Example 7 Big CHAP Enhances Transgene Expression With Minimal Cystitis
  • Because Big CHAP enhanced gene transfer with minimal cystitis, this formulation was selected for further evaluation, including concentration and dose-dependence in studies similar to those described above. Briefly, in anaesthetized female rats rAd-βgal (1×10 11 PN/ml) was administered into the bladder via an intravesical catheter. rAd-βgal was formulated in different concentrations of Big CHAP. A volume of 0.5 ml was injected and remained instilled in the bladder for 45 minutes. The animals were sacrificed 48 hours later, the bladder fixed in 4% formalin/glutaraldehyde, opened longitudinally, and the β-galactosidase enzyme activity measured using Xgal substrate. The intensity of blue staining correlates with the βgal-transgene expression. The figure shows the epithelial surface of Xgal stained bladders. The results indicate a concentration-dependent increase of gene transfer to the epithelium. The 3.5-7 mM concentrations of Big CHAP significantly improved gene transfer. The formulation alone (FIG. 7, lower panel) did not induce a blue color from the Xgal substrate. A higher concentration (17.5) mM did not notably improve gene transfer or expression, but induced cystitis in some of the animals tested.
  • Effects of higher recombinant adenovirus concentrations were also tested. Briefly, in anaesthetized female rats different concentrations of rAd-βgal, formulated in 7 mM Big CHAP were administered into the bladder via an intravesical catheter. The animals were sacrificed 48 hours later, the bladder fixed in 4% formalin/glutaraldehyde, opened longitudinally, and Xgal stained. FIG. 8 shows a concentration dependent increase of gene transfer to the epithelium. A concentration of 1.3×1011 PN/ml induced maximal gene transfer. A higher concentration (6.5×1011 PN/ml) did not notably improve the blue staining. In lower concentrations of rAd-βgal, 1.3×1010 PN/ml, or 1.3×109 PN/ml, transgene expression reduced dose dependently. When 3.5 mM and 7 mM formulations were compared, β-galactosidase expression was similar, although the enhanced effect appeared more reproducible in animals treated with the 7 mM Big CHAP formulation.
  • Example 8 Transgene Expression in Tumors with Big CHAP Formulation
  • Because initial investigations focused on animals with intact bladder epithelium, evaluated adenovirus mediated gene transfer in an animal model of transitional cell carcinoma was also studied. Tumors were induced in male Fisher rats by addition of 0.05% BBN in the drinking water for six months. rAd-βgal (1×1011 PN/ml), formulated in 4 mM Big CHAP or VPBS was instilled into the bladder for 45 minutes by direct injection. β-gal expression was evaluated 48 hr after treatment. Consistent with earlier experiments using non-tumor bearing animals, gene transfer to tumor tissue was improved with the Big CHAP formulation compared to the VPBS formulation (FIG. 10).
  • Gene transfer of rAd carrying the p53 gene (rAd-p53) (Wills et al. Human Gene Therapy 5:1079-1088 (1994)) was also tested in this animal model of bladder cancer. Briefly, bladder tumors were induced in female Fisher rates (Charles River) by addition of 0.05% BBN (N-butyl-N—N(4-hydroxybutyl)nitrosamine) in the drinking water for three months. rAD-p53 (1×1011 PN/ml) was formulated in 7 mM Big CHAP. Under isoflurane anesthesia a catheter (24G) was inserted into the bladder for administration. rAD-p53 was instilled into the bladder for 45 minutes. The animals were then allowed to recover from anesthesia. Twenty-four hr later, animals were sacrificed, and the bladder was fixed in formalin. After paraffin embedding and sectioning, p53 expression was assayed by immunohistochemistry using p53ES-kit (Oncogene) using AEC (AEC-kit, Vector Labs) as a substrate. Tissues were counterstained with hematoxylin. FIG. 12 shows p53 gene expression in the surface area of proliferative epithelium (left panel) and nuclear staining for p53 expression at higher magnification (right panel). No staining was detected in tumor tissue from untreated animals.
  • Example 9 Big CHAP Enhances Transgene Expression in Pig Urothelium
  • To simulate volumes expected for clinical investigation, the 7 mM Big CHAP formulation was tested in a chronically catheterized adult pig model in collaboration with SPRI Drug Safety and Metabolism. rAd-βgal (1×1011 PN/ml) was formulated in VPBS or 7 mM Big CHAP. A volume of 50 ml was injected via the catheter into the bladder of the conscious animals. The instilled material was retained for 2 hr. The animals were sacrificed 48 hr later, and a central section of the bladder was harvested and stained for β-galactosidase expression. An increase in the intensity of gene expression was observed in the 7 mM Big CHAP treated pig compared to the VPBS treated pig (FIG. 11). Histologic evaluation demonstrated transduction of several epithelial layers using Big CHAP (left panel), but only superficial transduction with the VPBS buffer (right panel).
  • Example 10 Gene Transfer into Intestinal Epithelium in Rats
  • A slightly modification of the method of Sandberg et al. (Human Gene Therapy 5:323-329 (1994)) was used to prepare rat ileal segments for gene transfer studies. Briefly, female Sprague-Dawley rats were anesthetized with isoflurane. The abdominal cavity was opened and an ileal segment rostral from the last Peyer's patch isolated. The segment (about 3 cm) was cautiously cleared from food residues and both sides closed with atraumatic vascular clamps. rAd-βgal (1×1011 PN/ml), 0.5 ml volume, was directly injected into the segment with a 24 G needle and allowed to incubate for 45 minutes. rAd-βgal was formulated in 10 mM taurodeoxycholatic acid (in distilled water, sterile filtered) (Treatment group 1) or VPBS (Treatment Group 2). A third treatment group comprised animals treated with 10 mM taurodeoxycholatic acid. Thereafter, clamps were removed and a loose silk suture anchored on both ends for recognition at time of necropsy. The abdominal incision was closed and animals allowed to recover in their cages. Animals were sacrificed 48 hr later. The infected segment and a control segment were harvested in fixative for whole organ Xgal staining.
  • The results are shown in FIG. 13. The extent of Xgal blue staining demonstrated evidence of transgene expression in the ileal sections. Enhanced gene transfer was evident in the detergent formulation (medial panel).
  • All publications and patent applications cited in this specification are herein incorporated by reference in their entirety as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.
  • As will be apparent to those skilled in the art to which the invention pertains, the present invention may be embodied in forms other than those specifically disclosed above, without departing from the spirit or essential characteristics of the invention. The particular embodiments of the invention described above, are, therefore to be considered as illustrative and not restrictive. The scope of the present invention is as set forth in the appended claims rather than being limited to the examples contained in the foregoing description.

Claims (27)

1. A method of administering a therapeutic agent to the urinary bladder comprising intravesically administering to the urinary bladder a therapeutically effective amount of the therapeutic agent formulated in a buffer comprising a detergent.
2. The method of claim 1, wherein the therapeutic agent is a protein.
3. The method of claim 1, wherein the therapeutic agent is a nucleic acid.
4. The method of claim 3, wherein the nucleic acid is a tumor suppressor gene.
5. The method of claim 1, wherein the detergent is Big CHAP.
6. (canceled)
7. The method of claim 3, wherein the nucleic acid encodes a cytokine.
8. The method of claim 7, wherein the cytokine is an interferon α, β, γ, or δ.
9-10. (canceled)
11. A pharmaceutical composition comprising a therapeutically effective amount of a therapeutic agent formulated in a buffer comprising a detergent.
12. The pharmaceutical composition of claim 11, wherein the therapeutic agent is a protein.
13. The pharmaceutical composition of claim 11, wherein the therapeutic agent is a nucleic acid.
14. The pharmaceutical composition of claim 13, wherein the nucleic acid is a tumor suppressor gene.
15-16. (canceled)
17. The pharmaceutical composition of claim 11, wherein the detergent is Big CHAP.
18. (canceled)
19. (canceled)
20. A method of treating bladder cancer comprising intravesically administering to the urinary bladder of a subject having the bladder cancer a therapeutically effective amount of a therapeutic gene contained within a gene delivery system that is formulated in a buffer comprising a delivery-enhancing agent.
21. The method of claim 20 wherein the gene delivery system is a viral vector delivery system.
22. The method of claim 20 wherein the gene delivery system is a recombinant adenoviral vector delivery system.
23. The method of claim 20 wherein the therapeutic gene is a tumor suppressor gene.
24-27. (canceled)
28. The method of claim 20 wherein the delivery-enhancing agent is a detergent.
29. The method of claim 28, wherein the detergent is Big CHAP.
31-39. (canceled)
40. The method of claim 20, wherein the gene encodes a cytokine.
41. The method of claim 20, wherein the gene encodes an interferon α, β, γ, or δ.
US12/058,447 1996-01-08 2008-03-28 Compositions and methods for therapeutic use Abandoned US20090048148A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/058,447 US20090048148A1 (en) 1996-01-08 2008-03-28 Compositions and methods for therapeutic use
US12/912,496 US20110104118A1 (en) 1996-01-08 2010-10-26 Compositions and methods for therapeutic use

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/584,077 US5789244A (en) 1996-01-08 1996-01-08 Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems
US08/779,627 US6165779A (en) 1996-01-08 1997-01-07 Compositions and methods for therapeutic use
US65035900A 2000-08-28 2000-08-28
US10/454,662 US20030211598A1 (en) 1996-01-08 2003-06-03 Compositions and methods for therapeutic use
US12/058,447 US20090048148A1 (en) 1996-01-08 2008-03-28 Compositions and methods for therapeutic use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/454,662 Continuation US20030211598A1 (en) 1996-01-08 2003-06-03 Compositions and methods for therapeutic use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/912,496 Continuation US20110104118A1 (en) 1996-01-08 2010-10-26 Compositions and methods for therapeutic use

Publications (1)

Publication Number Publication Date
US20090048148A1 true US20090048148A1 (en) 2009-02-19

Family

ID=24335847

Family Applications (6)

Application Number Title Priority Date Filing Date
US08/584,077 Expired - Lifetime US5789244A (en) 1996-01-08 1996-01-08 Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems
US08/779,627 Expired - Lifetime US6165779A (en) 1996-01-08 1997-01-07 Compositions and methods for therapeutic use
US08/938,089 Expired - Lifetime US6312681B1 (en) 1996-01-08 1997-09-26 Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems
US10/454,662 Abandoned US20030211598A1 (en) 1996-01-08 2003-06-03 Compositions and methods for therapeutic use
US12/058,447 Abandoned US20090048148A1 (en) 1996-01-08 2008-03-28 Compositions and methods for therapeutic use
US12/912,496 Abandoned US20110104118A1 (en) 1996-01-08 2010-10-26 Compositions and methods for therapeutic use

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US08/584,077 Expired - Lifetime US5789244A (en) 1996-01-08 1996-01-08 Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems
US08/779,627 Expired - Lifetime US6165779A (en) 1996-01-08 1997-01-07 Compositions and methods for therapeutic use
US08/938,089 Expired - Lifetime US6312681B1 (en) 1996-01-08 1997-09-26 Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems
US10/454,662 Abandoned US20030211598A1 (en) 1996-01-08 2003-06-03 Compositions and methods for therapeutic use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/912,496 Abandoned US20110104118A1 (en) 1996-01-08 2010-10-26 Compositions and methods for therapeutic use

Country Status (8)

Country Link
US (6) US5789244A (en)
EP (1) EP0873141B1 (en)
AT (1) ATE282434T1 (en)
AU (1) AU732439B2 (en)
CA (1) CA2242542C (en)
DE (1) DE69731611T2 (en)
ES (1) ES2233995T3 (en)
WO (1) WO1997025072A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9943568B2 (en) 2013-04-18 2018-04-17 Armo Biosciences, Inc. Methods of using pegylated interleukin-10 for treating cancer
US10398761B2 (en) 2015-08-25 2019-09-03 Armo Biosciences, Inc. Methods of using combinations of PEG-IL-10 and IL-15 for treating cancers
US10757694B2 (en) 2010-06-08 2020-08-25 Electronics And Telecommunications Research Institute Method and apparatus for transmission and reception in multi-carrier wireless communication systems

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331524B1 (en) * 1994-12-09 2001-12-18 Genzyme Corporation Organ-specific targeting of cationic amphiphile / DNA complexes for gene therapy
US6383814B1 (en) 1994-12-09 2002-05-07 Genzyme Corporation Cationic amphiphiles for intracellular delivery of therapeutic molecules
FR2729295A1 (en) 1995-01-17 1996-07-19 Rhone Poulenc Rorer Sa COMBINED THERAPEUTIC TREATMENT OF HYPERPROLIFERATIVE CONDITIONS
US7002027B1 (en) * 1996-01-08 2006-02-21 Canji, Inc. Compositions and methods for therapeutic use
US5789244A (en) * 1996-01-08 1998-08-04 Canji, Inc. Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems
US6392069B2 (en) * 1996-01-08 2002-05-21 Canji, Inc. Compositions for enhancing delivery of nucleic acids to cells
EP1591528A3 (en) * 1996-10-18 2005-11-16 CANJI, Inc. Method and compositions for delivery and expression of interferon-alpha nucleic acids
EP1707631A3 (en) * 1996-11-20 2006-12-27 Introgen Therapeutics, Inc. An improved method for the production and purification of adenoviral vectors
US7732129B1 (en) * 1998-12-01 2010-06-08 Crucell Holland B.V. Method for the production and purification of adenoviral vectors
US6544769B1 (en) 1996-12-13 2003-04-08 Schering Corporation Compostions comprising viruses and methods for concentrating virus preparations
US6884430B1 (en) * 1997-02-10 2005-04-26 Aventis Pharma S.A. Formulation of stabilized cationic transfection agent(s) /nucleic acid particles
US6696423B1 (en) 1997-08-29 2004-02-24 Biogen, Inc. Methods and compositions for therapies using genes encoding secreted proteins such as interferon-beta
US6753005B1 (en) 1997-12-31 2004-06-22 Direct Therapeutics, Inc. Method for tissue perfusion
KR100862169B1 (en) * 1998-02-17 2008-10-09 쉐링 코포레이션 Compositions comprising viruses
US7691370B2 (en) * 1998-10-15 2010-04-06 Canji, Inc. Selectivity replicating viral vector
WO2000023606A1 (en) 1998-10-22 2000-04-27 Medical College Of Georgia Institute, Inc. Long terminal repeat, enhancer, and insulator sequences for use in recombinant vectors
US6689600B1 (en) 1998-11-16 2004-02-10 Introgen Therapeutics, Inc. Formulation of adenovirus for gene therapy
US20030036520A1 (en) * 1999-07-23 2003-02-20 Jack Gauldie Intestinal gene therapy
AU2001256675A1 (en) * 2000-05-10 2001-11-20 Mitsubishi Pharma Corporation Method of preparing virus vector
EP1438252A1 (en) * 2001-10-19 2004-07-21 MonoGen, Inc. Container uncapping apparatus and method
EP1453536A4 (en) * 2001-12-12 2009-08-26 Mayne Pharma Int Pty Ltd Composition for the preservation of viruses
AU2002366809A1 (en) * 2001-12-20 2003-07-09 Schering-Plough Corporation Syn3 compositions and methods
JP4202928B2 (en) 2002-01-17 2008-12-24 アルファ ラバル コーポレート アクティエボラーグ Submerged evaporator with integrated heat exchanger
US7351404B2 (en) 2002-02-04 2008-04-01 Allergan, Inc. Method of enhancing hair growth
US8758733B2 (en) 2002-02-04 2014-06-24 Allergan, Inc. Topical treatment for chemotherapy induced eyelash loss or hypotrichosis using prostamide F2 alpha agonists
US9216183B2 (en) 2002-02-04 2015-12-22 Allergan, Inc. Topical treatment for chemotherapy induced eyelash loss or hypotrichosis using prostamide F2 alpha agonists
CA2476451A1 (en) * 2002-02-15 2003-08-28 Research Development Foundation Hyaluronic acid mediated adenoviral transduction
JP4452970B2 (en) * 2002-03-27 2010-04-21 日本臓器製薬株式会社 Diclofenac sodium oral formulation
US7459154B2 (en) * 2002-12-26 2008-12-02 Cell Genesys, Inc. Methods and reagents for the enhancement of virus transduction in the bladder epithelium
EP1628624A2 (en) * 2003-06-04 2006-03-01 CANJI, Inc. Methods and compositions for interferon therapy
US7355056B2 (en) * 2003-06-04 2008-04-08 Canji, Inc. Transfection agents
US20050059613A1 (en) * 2003-07-08 2005-03-17 Bahram Memarzadeh Compositions and methods for the enhanced uptake of therapeutic agents through the bladder epithelium
ITRM20030394A1 (en) * 2003-08-12 2005-02-13 Maria Gabriella Santoro USE OF INDOMETHACIN AND DERIVATIVES AS ANTIVIRAL DRUGS AND RELATIVE PHARMACEUTICAL COMPOSITIONS.
ATE502654T1 (en) 2003-12-10 2011-04-15 Canji Inc METHODS AND COMPOSITIONS FOR TREATING INTERFERON-RESISTANT TUMORS
WO2005065721A2 (en) * 2003-12-30 2005-07-21 Board Of Regents, The University Of Texas System Use of an anti-inflammatory compound for the reduction of inflammation secondary to the administration of a lipid-nucleic acid complex
ATE435656T1 (en) 2004-04-05 2009-07-15 Univ California NKG2D MODULATION
JP2008518632A (en) * 2004-11-03 2008-06-05 イントロゲン セラピューティックス, インコーポレイテッド A novel method for the production and purification of adenoviral vectors
CA2590943C (en) * 2004-12-13 2013-10-22 Canji, Inc. Cell lines for production of replication-defective adenovirus
EP2446897A1 (en) 2005-01-06 2012-05-02 Novo Nordisk A/S Anti-KIR combination treatments and methods
EP1974044B1 (en) * 2005-12-12 2011-01-26 CANJI, Inc. Adenoviral expression vectors having an expression cassette in the e1 region and an inactivated e2b polymerase
US20070160890A1 (en) * 2006-01-09 2007-07-12 Fischer Bernhard A Micro ejector static mixer for combining and homogenizing fluids
US20090098529A1 (en) 2006-10-16 2009-04-16 Nanhai Chen Methods for attenuating virus strains for diagnostic and therapeutic uses
KR101383476B1 (en) 2007-11-01 2014-04-11 아스테라스 세이야쿠 가부시키가이샤 Immunosuppressive polypeptides and nucleic acids
WO2009092113A2 (en) * 2008-01-19 2009-07-23 Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods and compositions for the delivery of vaccines to disrupted epithelium
US20100204335A1 (en) * 2008-12-01 2010-08-12 Allergan, Inc. Kit and composition for eyelash growth
US20110015256A1 (en) * 2009-07-16 2011-01-20 Ihab Mamdouh Ishak Sadek Delivery of restriction endonucleases to treat hiv, cancer, and other medical conditions
CA2780925A1 (en) * 2009-11-09 2011-05-12 Allergan, Inc. Compositions for enhancing hair growth
US9149484B2 (en) 2009-11-09 2015-10-06 Allergan, Inc. Compositions and methods for stimulating hair growth
CN102724951A (en) 2009-11-09 2012-10-10 阿勒根公司 Compositions and methods for stimulating hair growth
WO2012142529A2 (en) 2011-04-15 2012-10-18 Genelux Corporation Clonal strains of attenuated vaccinia viruses and methods of use thereof
TWI560200B (en) 2011-05-25 2016-12-01 Innate Pharma Sa Anti-kir antibodies for the treatment of inflammatory and autoimmune disorders
WO2014055960A1 (en) 2012-10-05 2014-04-10 Genelux Corporation Energy absorbing-based diagnostic and therapeutic methods employing nucleic acid molecules encoding chromophore-producing enzymes
WO2014158373A1 (en) 2013-03-14 2014-10-02 Allergan, Inc. Topical compositions comprising bimatoprost and methods for stimulating hair growth therewith
WO2015103438A2 (en) 2014-01-02 2015-07-09 Genelux Corporation Oncolytic virus adjunct therapy with agents that increase virus infectivity
ES2932498T3 (en) 2016-12-05 2023-01-20 Nuritas Ltd Compositions comprising the peptide WKDEAGKPLVK
EP3329930A1 (en) 2016-12-05 2018-06-06 Nuritas Limited Pharmaceuctical compositions
GB202018320D0 (en) 2020-11-20 2021-01-06 Univ Newcastle Methods of producing recombinant complement proteins
WO2024011250A1 (en) 2022-07-08 2024-01-11 Viromissile, Inc. Oncolytic vaccinia viruses and recombinant viruses and methods of use thereof

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414150A (en) * 1980-11-10 1983-11-08 Genentech, Inc. Hybrid human leukocyte interferons
US4456748A (en) * 1981-02-23 1984-06-26 Genentech, Inc. Hybrid human leukocyte interferons
US4678751A (en) * 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4695623A (en) * 1982-05-06 1987-09-22 Amgen Consensus human leukocyte interferon
US5108921A (en) * 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5118512A (en) * 1990-01-23 1992-06-02 Osteotech, Inc. (A Delaware Corp.) Process for cryopreserving biological materials and materials prepared thereby
US5250524A (en) * 1990-12-06 1993-10-05 Hoechst Aktiengesellschaft Bile acid derivatives, process for their preparation and use of these compounds as pharmaceuticals
US5264618A (en) * 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5279833A (en) * 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5298222A (en) * 1989-08-09 1994-03-29 Osteotech, Inc. Process for disinfecting musculoskeletal tissue and tissues prepared thereby
US5346701A (en) * 1993-02-22 1994-09-13 Theratech, Inc. Transmucosal delivery of macromolecular drugs
US5521291A (en) * 1991-09-30 1996-05-28 Boehringer Ingelheim International, Gmbh Conjugates for introducing nucleic acid into higher eucaryotic cells
US5552309A (en) * 1994-09-30 1996-09-03 Indiana University Foundation Use of polyols for improving the introduction of genetic material into cells
US5580859A (en) * 1989-03-21 1996-12-03 Vical Incorporated Delivery of exogenous DNA sequences in a mammal
US5601818A (en) * 1991-07-26 1997-02-11 University Of Rochester Cancer therapy utilizing malignant cells expressing HSV-TK
US5631236A (en) * 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
US5831062A (en) * 1996-05-09 1998-11-03 Amgen Inc. Use of the human interferon consensus gene for gene therapy
US5912236A (en) * 1993-03-25 1999-06-15 Baylor College Of Medicine Broad-spectrum tumor suppressor genes gene products and methods for tumor suppressor gene therapy
US6013638A (en) * 1991-10-02 2000-01-11 The United States Of America As Represented By The Department Of Health And Human Services Adenovirus comprising deletions on the E1A, E1B and E3 regions for transfer of genes to the lung
US6165779A (en) * 1996-01-08 2000-12-26 Canji, Inc. Compositions and methods for therapeutic use
US20020111502A1 (en) * 1996-01-08 2002-08-15 Canji, Inc. Compositions and methods for enhancing delivery of therapeutic agents to cells
US20040014709A1 (en) * 1996-01-08 2004-01-22 Canji, Inc. Methods and compositions for interferon therapy
US20050025742A1 (en) * 1996-01-08 2005-02-03 Canji, Inc. Methods and compositions for interferon therapy
US20050085427A1 (en) * 2003-06-04 2005-04-21 Canji, Inc. Transfection agents
US20060199782A1 (en) * 1996-01-08 2006-09-07 Canji, Inc. Compositions and methods for therapeutic use
US7163925B1 (en) * 1995-07-17 2007-01-16 Board Of Regents, The University Of Texas System p16 expression constructs and their application in cancer therapy

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554386A (en) * 1986-07-03 1996-09-10 Advanced Magnetics, Inc. Delivery of therapeutic agents to receptors using polysaccharides
US5166320A (en) * 1987-04-22 1992-11-24 University Of Connecticut Carrier system and method for the introduction of genes into mammalian cells
US7105156B1 (en) * 1987-09-17 2006-09-12 The Regents Of The University Of California Method of using an adenoviral vector encoding a retinoblastoma protein to treat hyperproliferating cells
US6207454B1 (en) * 1989-10-16 2001-03-27 Amgen Inc. Method for enhancing the effciency of gene transfer with stem cell factor (SCF) polypeptide
US5013556A (en) * 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5542935A (en) * 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
US5120316A (en) * 1990-09-28 1992-06-09 Akzo N.V. Urethral catheter and catheterization process
JPH06509329A (en) * 1991-06-28 1994-10-20 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Treatment of diseases by site-specific infusion of cells or site-specific transformation of cells and kits therefor
US5283185A (en) * 1991-08-28 1994-02-01 University Of Tennessee Research Corporation Method for delivering nucleic acids into cells
US5602023A (en) * 1992-03-24 1997-02-11 Csatary; Laszlo K. Pharmaceutical product containing live, stabilized virus for the therapy of viral and malignant diseases and process for preparing the same
US5334761A (en) * 1992-08-28 1994-08-02 Life Technologies, Inc. Cationic lipids
US5578475A (en) * 1993-07-12 1996-11-26 Life Technologies, Inc. Composition and methods for transfecting eukaryotic cells
US5804566A (en) * 1993-08-26 1998-09-08 The Regents Of The University Of California Methods and devices for immunizing a host through administration of naked polynucleotides with encode allergenic peptides
WO1995010265A1 (en) * 1993-10-15 1995-04-20 Cytrx Corporation Therapeutic delivery compositions and methods of use thereof
US6210939B1 (en) * 1993-10-25 2001-04-03 Canji, Inc. Recombinant adenoviral vector and methods of use
DK0797676T3 (en) * 1993-10-25 2006-04-18 Canji Inc Recombinant adenoviral vector and methods for its use
US6120794A (en) * 1995-09-26 2000-09-19 University Of Pittsburgh Emulsion and micellar formulations for the delivery of biologically active substances to cells
AU2002366809A1 (en) * 2001-12-20 2003-07-09 Schering-Plough Corporation Syn3 compositions and methods
ATE502654T1 (en) * 2003-12-10 2011-04-15 Canji Inc METHODS AND COMPOSITIONS FOR TREATING INTERFERON-RESISTANT TUMORS
JP2006149140A (en) * 2004-11-24 2006-06-08 Alps Electric Co Ltd Electrostatic attraction driving device

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414150A (en) * 1980-11-10 1983-11-08 Genentech, Inc. Hybrid human leukocyte interferons
US4456748A (en) * 1981-02-23 1984-06-26 Genentech, Inc. Hybrid human leukocyte interferons
US4678751A (en) * 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4695623A (en) * 1982-05-06 1987-09-22 Amgen Consensus human leukocyte interferon
US4897471A (en) * 1982-05-06 1990-01-30 Amgen Consensus human leukocyte interferon
US5580859A (en) * 1989-03-21 1996-12-03 Vical Incorporated Delivery of exogenous DNA sequences in a mammal
US5589466A (en) * 1989-03-21 1996-12-31 Vical Incorporated Induction of a protective immune response in a mammal by injecting a DNA sequence
US5108921A (en) * 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5298222A (en) * 1989-08-09 1994-03-29 Osteotech, Inc. Process for disinfecting musculoskeletal tissue and tissues prepared thereby
US5118512A (en) * 1990-01-23 1992-06-02 Osteotech, Inc. (A Delaware Corp.) Process for cryopreserving biological materials and materials prepared thereby
US5279833A (en) * 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5264618A (en) * 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5250524A (en) * 1990-12-06 1993-10-05 Hoechst Aktiengesellschaft Bile acid derivatives, process for their preparation and use of these compounds as pharmaceuticals
US5601818A (en) * 1991-07-26 1997-02-11 University Of Rochester Cancer therapy utilizing malignant cells expressing HSV-TK
US5521291A (en) * 1991-09-30 1996-05-28 Boehringer Ingelheim International, Gmbh Conjugates for introducing nucleic acid into higher eucaryotic cells
US6013638A (en) * 1991-10-02 2000-01-11 The United States Of America As Represented By The Department Of Health And Human Services Adenovirus comprising deletions on the E1A, E1B and E3 regions for transfer of genes to the lung
US5346701A (en) * 1993-02-22 1994-09-13 Theratech, Inc. Transmucosal delivery of macromolecular drugs
US5912236A (en) * 1993-03-25 1999-06-15 Baylor College Of Medicine Broad-spectrum tumor suppressor genes gene products and methods for tumor suppressor gene therapy
US5631236A (en) * 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
US5552309A (en) * 1994-09-30 1996-09-03 Indiana University Foundation Use of polyols for improving the introduction of genetic material into cells
US7163925B1 (en) * 1995-07-17 2007-01-16 Board Of Regents, The University Of Texas System p16 expression constructs and their application in cancer therapy
US6165779A (en) * 1996-01-08 2000-12-26 Canji, Inc. Compositions and methods for therapeutic use
US6312681B1 (en) * 1996-01-08 2001-11-06 Canji Incorporated Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems
US20020111502A1 (en) * 1996-01-08 2002-08-15 Canji, Inc. Compositions and methods for enhancing delivery of therapeutic agents to cells
US20040014709A1 (en) * 1996-01-08 2004-01-22 Canji, Inc. Methods and compositions for interferon therapy
US20050025742A1 (en) * 1996-01-08 2005-02-03 Canji, Inc. Methods and compositions for interferon therapy
US20060199782A1 (en) * 1996-01-08 2006-09-07 Canji, Inc. Compositions and methods for therapeutic use
US5831062A (en) * 1996-05-09 1998-11-03 Amgen Inc. Use of the human interferon consensus gene for gene therapy
US20050085427A1 (en) * 2003-06-04 2005-04-21 Canji, Inc. Transfection agents

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10757694B2 (en) 2010-06-08 2020-08-25 Electronics And Telecommunications Research Institute Method and apparatus for transmission and reception in multi-carrier wireless communication systems
US11743905B2 (en) 2010-06-08 2023-08-29 Electronics And Telecommunications Research Institute Method and apparatus for transmission and reception in multi-carrier wireless communication systems
US9943568B2 (en) 2013-04-18 2018-04-17 Armo Biosciences, Inc. Methods of using pegylated interleukin-10 for treating cancer
US10357545B2 (en) 2013-04-18 2019-07-23 Armo Biosciences, Inc. Methods of using interleukin-10 for treating solid tumors
US10398761B2 (en) 2015-08-25 2019-09-03 Armo Biosciences, Inc. Methods of using combinations of PEG-IL-10 and IL-15 for treating cancers

Also Published As

Publication number Publication date
US6165779A (en) 2000-12-26
DE69731611T2 (en) 2005-11-10
AU732439B2 (en) 2001-04-26
EP0873141A4 (en) 2000-07-05
US5789244A (en) 1998-08-04
US6312681B1 (en) 2001-11-06
AU1530097A (en) 1997-08-01
CA2242542A1 (en) 1997-07-17
EP0873141B1 (en) 2004-11-17
ATE282434T1 (en) 2004-12-15
US20030211598A1 (en) 2003-11-13
DE69731611D1 (en) 2004-12-23
WO1997025072A1 (en) 1997-07-17
US20110104118A1 (en) 2011-05-05
EP0873141A1 (en) 1998-10-28
ES2233995T3 (en) 2005-06-16
CA2242542C (en) 2009-07-14

Similar Documents

Publication Publication Date Title
US6165779A (en) Compositions and methods for therapeutic use
US7538093B2 (en) Compositions and methods for therapeutic use
JP2007269808A (en) Method and composition for interferon therapy
US6392069B2 (en) Compositions for enhancing delivery of nucleic acids to cells
JP2006526661A5 (en)
NZ543970A (en) Methods and compositions for interferon therapy
EP1456377B1 (en) Syn3 compositions and methods
US20040014709A1 (en) Methods and compositions for interferon therapy
MXPA00000306A (en) Compositions and methods for enhancing delivery of therapeutic agents to cells
MXPA05012993A (en) Methods and compositions for interferon therapy

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION