US20090038382A1 - Probe and cantilever - Google Patents

Probe and cantilever Download PDF

Info

Publication number
US20090038382A1
US20090038382A1 US12/089,349 US8934906A US2009038382A1 US 20090038382 A1 US20090038382 A1 US 20090038382A1 US 8934906 A US8934906 A US 8934906A US 2009038382 A1 US2009038382 A1 US 2009038382A1
Authority
US
United States
Prior art keywords
probe
cantilever
flat plate
crystalline material
beam part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/089,349
Inventor
Kouji Koyama
Toshiro Kotaki
Kazuhiko Sunagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Assigned to NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA reassignment NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOTAKI, TOSHIRO, KOYAMA, KOUJI, SUNAGAWA, KAZUHIKO
Publication of US20090038382A1 publication Critical patent/US20090038382A1/en
Priority to US12/837,171 priority Critical patent/US8104332B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper

Definitions

  • the present invention relates to a probe for use in a scanning probe microscope comprising a single-crystalline material having various properties and a cantilever onto which the probe is disposed.
  • SPM Scanning probe microscopes
  • a probe constituting the key part of an SPM is required to have an atomically sharp point.
  • a probe can easily be formed to have a sharp point.
  • sample materials with high aspect ratios have been rising, in particular, over the recent years, there is increasingly high demand for probes with a long needle part. Accordingly, single-crystalline materials are increasing the importance of their role.
  • Previously known conventional methods to fix a probe made of a single-crystalline material, such as single crystal diamond, onto abeam part of a cantilever include the following:
  • the inventors have completed the present invention based on their finding that the properties of a probe can be taken full advantage of when a probe having an optimally selected crystal orientation is formed independently of a beam part of a cantilever and mounted on the beam part by means of a flat plate part formed on the base of the probe.
  • an aspect of the present invention according to claim 1 is a probe disposed at the tip of a cantilever used for an SPM, the probe comprising a needle-like part having a length of not less than 10 ⁇ m and a flat plate part having a face contacting the beam part of the cantilever, the needle-like part and the flat plate part are integrally formed with a single-crystalline material, and at least one side face of the flat plate part containing a flat surface in order to indicate the crystal orientation of the single-crystalline material.
  • an aspect of the present invention according to claim 2 is a probe characterized by a structure according to claim 1 and further characterized by the flat surface comprising both side faces of the flat plate part parallel to each other.
  • an aspect of the present invention according to claim 3 is a probe characterized by a structure according to claims 1 and 2 and further characterized by the single-crystalline material made of a single crystal diamond.
  • a single crystal diamond is known to be the hardest material and is characterized by very high wear resistance as the property of the single-crystalline material. Then, if the scanning direction of a probe can be set parallel to the direction ⁇ 110> of a ⁇ 100 ⁇ plane, which is relatively easy to form, the wear of the probe can be preferably prevented.
  • An aspect of the present invention according to claim 4 is a cantilever with a probe according to claims 2 and 3 , wherein both side faces of the beam part in the cantilever parallel to each other, the probe is disposed on the main surface of the beam part so that both side faces of the flat plate part and those of the beam part are parallel to each other, the distance between both side faces of the flat plate part has a length 0.9 to 1.1 times of that of both side faces between the beam part, and the probe is bonded using a liquid adhesive onto the main surface of the beam part as disposed thereon.
  • the aforementioned positional configuration of a probe and a beam part allows both side faces of the flat plate part of the probe and that of the beam part to be in alignment with a nearly same plane.
  • an SPM probe for use in an SPM in accordance with the present invention, even if manufactured using a single-crystalline material having distinctive properties, an SPM probe will allow a high precision adjustment of crystal orientation as mounted on the beam part of a cantilever. Accordingly, an advantage will be obtained that allows for providing a cantilever making full use of the properties of the single-crystalline material.
  • a surface tension will act on the surface of the liquid adhesive and push both side faces of the beam part and those of the flat plate part. Consequently, an advantage will be obtained that allows for automatic adjustment of the crystal orientation of a probe to an optimal direction.
  • a probe 1 according to a preferable embodiment of the present invention consists of a needle-like part 1 a and a flat plate part 1 b , which are integrally formed as illustrated in FIG. 1 , and is used as the tip of a cantilever 2 of an SPM.
  • a single-crystalline material 4 having distinctive properties can be used as a material for a probe 1 according to a preferable embodiment of the present invention. More specifically, use of a single crystal diamond, which is a material having a high wear resistance, is preferable, but a single crystal sapphire or silicon nitride can be used instead.
  • a probe 1 and a sample surface are either in an extreme proximity, where interactions such as atomic force can occur, or in a full contact. Then, use of a material having high wear resistance as a single-crystalline material 4 is preferable because the wear of the probe 1 can be prevented in measurement or observation by scanning with a cantilever 2 having the probe 1 ; consequently, the measuring resolution of the SPM can be long maintained.
  • the needle-like part 1 a of a probe 1 is given a length of not less than 10 ⁇ m, while the point of the needle-like part 1 a has a diameter of several nanometers to several tens of nanometers. Elongation of the needle-like part 1 a facilitates applicability to a high aspect ratio structure.
  • the needle-like part 1 a can be given a length of 1,000 ⁇ m so that it can be used for deep etched sample.
  • the needle-like part 1 a can be given a length of less than 500 ⁇ m to make the probe 1 less prone to breakage when colliding a sample material.
  • the flat plate part 1 b of the probe 1 is given a bottom width of 20 to 500 ⁇ m, a depth of 20 to 500 ⁇ m, and a thickness of 5 to 500 ⁇ m, or preferably 5 to 20 ⁇ m.
  • the flat plate part 1 b can have a bottom thickness of less than 20 ⁇ m so that a reduced weight of the probe 1 will prevent the lowering of the resonance frequency of a cantilever 2 and consequently increase the resolution of an SPM.
  • the flat plate part 1 b can be not less than 20 ⁇ m thick to make the flat plate part 1 b less prone to breakage.
  • the probe 1 should preferably have a bottom area exceeding 400 ⁇ m 2 so that a sufficient contact area between the bottom face and the beam part 2 a of the cantilever 2 can prevent disengagement of the probe 1 from the cantilever 2 .
  • a side face of the flat plate part 1 b of the probe 1 should be provided with at least one flat surface 1 c in order to indicate the crystal orientation of the single-crystalline material 4 .
  • the crystal orientation of this flat surface 1 c should preferably be selected to be parallel to a side face of a cantilever 2 when the scanning direction of the cantilever 2 coincides with the most wear-resistant crystal orientation of the single-crystalline material 4 . This is because the crystal orientation of the flat surface 1 c , if so selected, can be easily adjusted with high precision when mounting the probe 1 on the beam part 2 a of the cantilever 2 .
  • the flat surfaces 1 c on the side faces of the flat plate part 1 b should preferably be formed parallel to each other.
  • whichever flat surface 1 c can be used for crystal orientation adjustment when mounting the probe 1 on the beam part 2 a of a cantilever 2 .
  • Another desirable advantage is the ease of retaining of the probe 1 when mounting the probe 1 on the beam part 2 a of the cantilever 2 .
  • the needle-like part 1 a and the flat plate part 1 b should be integrally formed using a same single-crystalline material 4 . Detailed explanations are given below regarding methods of forming a probe 1 .
  • a single-crystalline material 4 used as the material of a probe 1 described above is cut out to have a bottom face shaped similarly to that of the flat plate part 1 b of the probe 1 and a thickness equivalent to the sum of the length of the needle-like part 1 a of the probe 1 and the thickness of the flat plate part 1 b .
  • the entire single-crystalline material 4 is polished by publicly known polishing means such as fixed- or slurry-abrasive particles or by scaife polishing for in particular single crystal diamond.
  • a side face of the single-crystalline material 4 thus cut out should contain at least one flat surface 1 c in order to indicate the crystal orientation of the single-crystalline material 4 .
  • the crystal orientation of the flat surface 1 c should preferably be selected to be parallel to a side face of the beam part 2 a of a cantilever 2 when the scanning direction of the cantilever 2 coincides with the most wear-resistant crystal orientation. This is because the crystal orientation of the flat surface 1 c , if so selected, can be easily adjusted with high precision when mounting the probe 1 on the beam part 2 a of the cantilever 2 .
  • the polished single-crystalline material 4 should have a face provided with a needle-like part 1 a , which is formed by ablating the surface of the face except a region corresponding to the needle-like part 1 a .
  • Available ablation techniques include laser ablation, plasma etching, focused ion beam-(FIB) processing, and thermochemical processing among others.
  • means such as a chemical vapor deposition (CVD) method can be employed to form such a needle-like part 1 a on a flat plate part 1 b consisting of the polished single-crystalline material 4 .
  • any of the first through third techniques below can be used to folio a modified region 5 on the surface of a single-crystalline material 4 excluding a region where the needle-like part 1 a is formed. Then, the modified region 5 is ablated by means of, for example, etching to form such a needle-like part 1 a on the single-crystalline material 4 .
  • the first technique uses a laser 3 that exhibits intrinsic absorption for a single-crystalline material 4 and moves a focus 3 c of the collected light relatively to the single-crystalline material 4 .
  • This technique uses, for example, YAG laser and harmonics thereof, CO 2 laser, or excimer laser as the laser 3 .
  • the single-crystalline material 4 is placed, for example, as shown in FIG. 2 ( a ), on a stage 10 having an XYZ movable stage, where the laser 3 emitted from a laser source 3 a is collected by a lens 3 b into the focus 3 c on the surface of the single-crystalline material 4 .
  • the XYZ movable stage (not illustrated) is operated to move the single-crystalline material 4 relatively to the focus 3 c and form a modified region 5 in proximity of the focus 3 c.
  • the second technique uses a laser 3 that exhibits intrinsic absorption for a single-crystalline material 4 , in which a masking 11 is pre-formed, to irradiate the laser 3 on a predetermined irradiation area and form a modified region 5 thereon.
  • This technique uses, for example, YAG laser and harmonics thereof, CO 2 laser, or excimer laser as the laser 3 .
  • the pattern of a masking 11 is pre-formed and the single-crystalline material 4 is placed, as shown in FIG. 2 ( b ), on a stage 10 , where the beam of the laser 3 is narrowed down as necessary by means of a lens 3 b to irradiate a desired area on the single-crystalline material 4 and form a modified region 5 on the region uncovered by the masking 11 .
  • the third technique uses a laser 3 that exhibits multi-photon absorption for a single-crystalline material 4 and moves a focus 3 c of the collected light relatively to the single-crystalline material 4 .
  • This technique uses, for example, Ti-sapphire laser as the laser 3 .
  • the single-crystalline material 4 is placed, for example, as shown in FIG. 2 ( c ), on a stage 10 having an XYZ movable stage so that at least its one side mirror-polished face will be oriented to a laser source 3 a .
  • the laser 3 emitted from the laser source 3 a is collected by means of a lens 3 b into the focus 3 c and the XYZ movable stage (not illustrated) is operated to move the single-crystalline material 4 relatively to the focus 3 c and form a modified region 5 .
  • the laser 3 exhibits multi-photon absorption and provides activation energy required for phase change to form the modified region 5 inside the single-crystalline material 4 .
  • the forming of the modified region 5 should preferably start from the farthest to the nearest face from the laser source 3 a in order of distance until the surface of the single-crystalline material 4 is eventually reached.
  • a single crystal diamond ( FIG. 3 ( a )) is used as a single-crystalline material 4 .
  • a thin film 6 of a carbon-soluble metal such as nickel, rhodium, palladium, platinum, iridium, tungsten, molybdenum, manganese, iron, titanium, chromium, or an alloy consisting thereof is formed with a uniform thickness of not less than 0.1 ⁇ m on the ablated surface of the single crystal diamond ( FIG. 3 ( b )).
  • the thin metal film 6 can be formed using a film formation technique such as sputtering method, molecular beam epitaxy (MBE) method, vacuum evaporation method, ion plating method.
  • the thin metal film 6 can be given a thickness of at least 0.1 ⁇ m to make the thin metal film less prone to aggregation in the heat-treatment process described below.
  • a thin metal film 6 is partially ablated by means such as mechanical processing, laser ablation, photolithography, and focused ion beam (FIB) processing among others according to the shape of a needle-like part 1 a in order to form a single crystal diamond exposing portion 7 ( FIG. 3 ( c )). Then, a single crystal diamond containing the partially ablated thin metal film 6 is heat-treated to cause absorption of carbon atoms of the single crystal diamond into the thin metal film 6 . Then, the thin metal film 6 will be embedded into the single crystal diamond while leaving the single crystal diamond exposing portion 7 behind ( FIG. 3 ( d )). Consequently, the single crystal diamond exposing portion 7 is left untreated.
  • FIB focused ion beam
  • the residual of the thin metal film 6 on the surface of the single crystal diamond can be removed as necessary by means such as acid treatment ( FIG. 3 ( e )).
  • acid treatment FIG. 3 ( e )
  • the process described above can be used to form the needle-like part 1 a on the single crystal diamond with high precision.
  • a probe 1 thus formed is mounted on the tip of the beam part 2 a of a cantilever 2 .
  • the beam part 2 a used here is such that has at least one side containing a flat surface 2 c when the face on which the probe 1 is mounted is specified as the top face.
  • both side faces be formed as flat surfaces 2 c parallel to each other at least in the vicinity of a probe 1 —mounting position of a beam part 2 a of a cantilever 2 .
  • a probe 1 be formed to have flat surfaces 1 c , of which both surfaces are parallel to each other.
  • the probe 1 is mounted on the top face of the beam part 2 a of the cantilever 2 in such a manner that a fiat surface 1 c formed on the probe 1 will be mutually parallel to (and preferably on a same plane as) a flat surface 2 c formed on the beam part 2 a .
  • This parallel alignment provides a condition where the crystal orientation of the probe 1 on the cantilever 2 allows full use of the properties of the probe 1 .
  • the flat plate part 1 b and the cantilever 2 be configured so that the distance ratio between each of their respective side faces will be 0.9 to 1.1. It is additionally preferable that the probe 1 and the beam part 2 a be bonded together using a liquid adhesive 8 , because, in such a case, the surface tension of the liquid automates the angle adjustment process.
  • a liquid adhesive 8 an epoxy-based adhesive liquefied at ambient temperature or a thermally fusible brazing material can be used.
  • a rectangular parallelepiped single crystal diamond was prepared which had a ⁇ 100 ⁇ plane in its top face, a bottom of 50 ⁇ m square, and a thickness of 100 ⁇ m.
  • the crystal orientation of the single crystal diamond was defined by the top face with ⁇ 100 ⁇ plane and the directions of both side faces with ⁇ 110 ⁇ .
  • a thin nickel film 1 ⁇ m thick was formed on its top face.
  • an opening with a diameter of approximately 10 nm was cut in the thin nickel film by means of electron beam lithography.
  • thermochemical processing was carried out to fuse a 50 ⁇ m thick layer around the single crystal diamond except the opening into the thin nickel film and form a needle-like part thereon.
  • a probe made of a single crystal diamond was formed with a needle-like part having a length of 50 ⁇ m long and a point diameter of 10 nm, and a bottom diameter of approximately 10 ⁇ m around the boundary with the flat plate part.
  • a cantilever beam part with both side faces parallel to each other with a distance of 50 ⁇ m in between was prepared.
  • the probe was placed on and bonded to the bonding face. Then, an angle between the direction ⁇ 110>, which was the most wear-resistant crystal orientation of the diamond probe, and the direction perpendicular to the side face of the beam part prepared as the scanning direction of the cantilever was limited to within approximately 5° without any angle adjustment performed.
  • FIG. 1 is a cross-sectional view illustrating a probe and a cantilever according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a process for forming a needle-like part of a probe using a laser ablation processing according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a process for forming a needle-like part of a probe using a thermochemical processing technique according to an embodiment of the present invention.
  • FIG. 4 is a plan view illustrating a preferably formed cantilever beam part according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a preferable process for bonding a probe and a cantilever beam part according to an embodiment of the present invention.

Abstract

[Object of the Invention] To provide a probe 1 for use in a cantilever 2 of an scanning probe microscope (SPM) manufacturable in a simple manufacturing process and usable while allowing full use of the properties of single-crystalline material and a cantilever 2 using that probe.
[Solution] A probe 1 disposed at the tip of beam part 2 a of a cantilever 2 used for an SPM, wherein the probe 1 comprises a needle-like part 1 a having a length of not less than 10 μm or and a flat plate part 1 b having a face contacting a beam part of the cantilever, the needle-like part 1 a and the flat plate part 1 b are integrally formed with a single-crystalline material, and at least one side face of the flat plate part 1b contains a flat surface 1c in order to indicate the crystal orientation of the single-crystalline material.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a probe for use in a scanning probe microscope comprising a single-crystalline material having various properties and a cantilever onto which the probe is disposed.
  • DESCRIPTION OF RELATED ART
  • Scanning probe microscopes (hereafter SPM) are widely used as instruments for observing material surfaces in nanoscale resolution. An SPM obtains images using atomic forces and other interactions that occur between the probe tip and a sample surface.
  • A probe constituting the key part of an SPM is required to have an atomically sharp point. Generally, when manufactured using a single-crystalline material, a probe can easily be formed to have a sharp point. As measurement and observation needs for sample materials with high aspect ratios have been rising, in particular, over the recent years, there is increasingly high demand for probes with a long needle part. Accordingly, single-crystalline materials are increasing the importance of their role.
  • Previously known conventional methods to fix a probe made of a single-crystalline material, such as single crystal diamond, onto abeam part of a cantilever include the following:
  • (1) a method of manufacturing a cantilever for atomic force microscope comprising
    • a process of forming a photoresist on a one side surface of a silicon wafer,
    • a process of patterning the photoresist,
    • a process of etching the silicon wafer using the patterned photoresist as a mask,
    • a process of removing the photoresist after completion of etching,
    • a process of scratching the surface opposite to the etched surface of the silicon wafer,
    • a process of growing a diamond to be a probe on the scratched region,
    • a process of forming an oxide film on the silicon wafer surface after the growth of the diamond,
    • a process of forming a nitride film on the oxide film surface,
    • a process of forming a patterned photoresist mask for etching for removing nitride films from the diamond probe and the back side of the silicon wafer,
    • a process of removing the photoresist,
    • a process of additionally etching an etched region of the silicon wafer until exposing an oxide film on the diamond probe-formed side of the silicon wafer,
    • and a process of forming a thin metal film on the etched region of the silicon wafer after completion of etching (Patent Document 1)
  • (2) a method wherein a rough diamond is fixed in a round stylus holder comprising a magnetic material in order to grind the diamond into a stylus, magnetize the magnetic material of the stylus holder, spread an glue on the beam part of a cantilever, fix the stylus holder on the glue spread surface of the beam part, and separate the magnet from the beam part after solidification of the glue so that the magnetic material of the stylus holder will be demagnetized (Patent Document 2).
  • [Patent Document 1] JP-A-H05-203444
  • [Patent Document 2] JP-A-H04-106852
  • DISCLOSURE OF THE INVENTION [Problems to be Solved by the Invention]
  • The method according to the method of Patent Document 1, wherein a probe comprising diamond is formed on the beam part of a cantilever, however, involves many compulsory steps, such as resist and nitride film formation and removal, and therefore has a complicated process.
  • Moreover, the method according to the method of Patent Document 1, wherein a probe made of diamond is formed on the beam part of a cantilever, requires that the diamond grow inside a hole disposed through the surrounding silicon. The crystalline lattice constant of a diamond growing in there differs significantly from that of the silicon of the beam part. Consequently, the grown crystal of the probe can often be defective and have a drawback of reducing the mechanical strength of the probe.
  • In addition, in the method according to Patent Document 2, a stylus holder is fixed by using the glue on a cantilever, and a stylus (probe) comprising diamond is fixed on the stylus holder. Thus, this method involves two interfaces between the stylus and the cantilever, and consequently has a high possibility of a shift of the crystal orientation of the diamond on each interface and hence a drawback of being unable to manufacture a probe that makes fall use of the properties of the material.
  • In view of the aforementioned drawbacks, it is an object of the present invention to provide a probe for use in a cantilever of an SPM manufacturable in a simple manufacturing process and usable while allowing full use of the properties of a single-crystalline material and a cantilever using that probe.
  • [Means for Solving the Problems]
  • The inventors have completed the present invention based on their finding that the properties of a probe can be taken full advantage of when a probe having an optimally selected crystal orientation is formed independently of a beam part of a cantilever and mounted on the beam part by means of a flat plate part formed on the base of the probe.
  • In other words, an aspect of the present invention according to claim 1 is a probe disposed at the tip of a cantilever used for an SPM, the probe comprising a needle-like part having a length of not less than 10 μm and a flat plate part having a face contacting the beam part of the cantilever, the needle-like part and the flat plate part are integrally formed with a single-crystalline material, and at least one side face of the flat plate part containing a flat surface in order to indicate the crystal orientation of the single-crystalline material.
  • Meanwhile, an aspect of the present invention according to claim 2 is a probe characterized by a structure according to claim 1 and further characterized by the flat surface comprising both side faces of the flat plate part parallel to each other.
  • Then, two mutually parallel flat surfaces will facilitate the holding of the probe when mounting the probe on the beam part of the cantilever.
  • Additionally, an aspect of the present invention according to claim 3 is a probe characterized by a structure according to claims 1 and 2 and further characterized by the single-crystalline material made of a single crystal diamond.
  • A single crystal diamond is known to be the hardest material and is characterized by very high wear resistance as the property of the single-crystalline material. Then, if the scanning direction of a probe can be set parallel to the direction <110> of a {100} plane, which is relatively easy to form, the wear of the probe can be preferably prevented.
  • An aspect of the present invention according to claim 4 is a cantilever with a probe according to claims 2 and 3, wherein both side faces of the beam part in the cantilever parallel to each other, the probe is disposed on the main surface of the beam part so that both side faces of the flat plate part and those of the beam part are parallel to each other, the distance between both side faces of the flat plate part has a length 0.9 to 1.1 times of that of both side faces between the beam part, and the probe is bonded using a liquid adhesive onto the main surface of the beam part as disposed thereon.
  • Then, the aforementioned positional configuration of a probe and a beam part allows both side faces of the flat plate part of the probe and that of the beam part to be in alignment with a nearly same plane.
  • [Effect of the Invention]
  • According to an embodiment of a probe for use in an SPM in accordance with the present invention, even if manufactured using a single-crystalline material having distinctive properties, an SPM probe will allow a high precision adjustment of crystal orientation as mounted on the beam part of a cantilever. Accordingly, an advantage will be obtained that allows for providing a cantilever making full use of the properties of the single-crystalline material.
  • According to an embodiment of a cantilever manufacturing method in accordance with claim 4 of the present invention, when both side faces of the flat plate part of a probe and that of the beam part of a cantilever are on an approximately same plane and bonded using a liquid adhesive, a surface tension will act on the surface of the liquid adhesive and push both side faces of the beam part and those of the flat plate part. Consequently, an advantage will be obtained that allows for automatic adjustment of the crystal orientation of a probe to an optimal direction.
  • PREFERABLE EMBODIMENTS OF THE INVENTION
  • Explanations are provided below regarding preferable embodiments of the present invention:
  • A probe 1 according to a preferable embodiment of the present invention consists of a needle-like part 1 a and a flat plate part 1 b, which are integrally formed as illustrated in FIG. 1, and is used as the tip of a cantilever 2 of an SPM.
  • <Embodiments of a Probe>
  • A single-crystalline material 4 having distinctive properties can be used as a material for a probe 1 according to a preferable embodiment of the present invention. More specifically, use of a single crystal diamond, which is a material having a high wear resistance, is preferable, but a single crystal sapphire or silicon nitride can be used instead.
  • In measurement or observation using an SPM, a probe 1 and a sample surface are either in an extreme proximity, where interactions such as atomic force can occur, or in a full contact. Then, use of a material having high wear resistance as a single-crystalline material 4 is preferable because the wear of the probe 1 can be prevented in measurement or observation by scanning with a cantilever 2 having the probe 1; consequently, the measuring resolution of the SPM can be long maintained.
  • The needle-like part 1 a of a probe 1 is given a length of not less than 10 μm, while the point of the needle-like part 1 a has a diameter of several nanometers to several tens of nanometers. Elongation of the needle-like part 1 a facilitates applicability to a high aspect ratio structure. Here, the needle-like part 1 a can be given a length of 1,000 μm so that it can be used for deep etched sample. Alternatively, the needle-like part 1 a can be given a length of less than 500 μm to make the probe 1 less prone to breakage when colliding a sample material.
  • Meanwhile, the flat plate part 1 b of the probe 1 is given a bottom width of 20 to 500 μm, a depth of 20 to 500 μm, and a thickness of 5 to 500 μm, or preferably 5 to 20 μm. Here, the flat plate part 1 b can have a bottom thickness of less than 20 μm so that a reduced weight of the probe 1 will prevent the lowering of the resonance frequency of a cantilever 2 and consequently increase the resolution of an SPM. Alternatively, the flat plate part 1 b can be not less than 20 μm thick to make the flat plate part 1 b less prone to breakage. On the other hand, the probe 1 should preferably have a bottom area exceeding 400 μm2 so that a sufficient contact area between the bottom face and the beam part 2 a of the cantilever 2 can prevent disengagement of the probe 1 from the cantilever 2.
  • Then, a side face of the flat plate part 1 b of the probe 1 should be provided with at least one flat surface 1 c in order to indicate the crystal orientation of the single-crystalline material 4. The crystal orientation of this flat surface 1 c should preferably be selected to be parallel to a side face of a cantilever 2 when the scanning direction of the cantilever 2 coincides with the most wear-resistant crystal orientation of the single-crystalline material 4. This is because the crystal orientation of the flat surface 1 c, if so selected, can be easily adjusted with high precision when mounting the probe 1 on the beam part 2 a of the cantilever 2.
  • Moreover, the flat surfaces 1 c on the side faces of the flat plate part 1 b should preferably be formed parallel to each other. In particular, when the probe 1 has a point-symmetric shape, whichever flat surface 1 c can be used for crystal orientation adjustment when mounting the probe 1 on the beam part 2 a of a cantilever 2. Another desirable advantage is the ease of retaining of the probe 1 when mounting the probe 1 on the beam part 2 a of the cantilever 2.
  • Finally, the needle-like part 1 a and the flat plate part 1 b should be integrally formed using a same single-crystalline material 4. Detailed explanations are given below regarding methods of forming a probe 1.
  • <Methods of Forming a Probe>
  • A single-crystalline material 4 used as the material of a probe 1 described above is cut out to have a bottom face shaped similarly to that of the flat plate part 1 b of the probe 1 and a thickness equivalent to the sum of the length of the needle-like part 1 a of the probe 1 and the thickness of the flat plate part 1 b. Thus, the entire single-crystalline material 4 is polished by publicly known polishing means such as fixed- or slurry-abrasive particles or by scaife polishing for in particular single crystal diamond.
  • A side face of the single-crystalline material 4 thus cut out should contain at least one flat surface 1 c in order to indicate the crystal orientation of the single-crystalline material 4. The crystal orientation of the flat surface 1 c should preferably be selected to be parallel to a side face of the beam part 2 a of a cantilever 2 when the scanning direction of the cantilever 2 coincides with the most wear-resistant crystal orientation. This is because the crystal orientation of the flat surface 1 c, if so selected, can be easily adjusted with high precision when mounting the probe 1 on the beam part 2 a of the cantilever 2.
  • The polished single-crystalline material 4 should have a face provided with a needle-like part 1 a, which is formed by ablating the surface of the face except a region corresponding to the needle-like part 1 a. Available ablation techniques include laser ablation, plasma etching, focused ion beam-(FIB) processing, and thermochemical processing among others. Alternatively, means such as a chemical vapor deposition (CVD) method can be employed to form such a needle-like part 1 a on a flat plate part 1 b consisting of the polished single-crystalline material 4.
  • For example, when a laser ablation technique is used to form a needle-like part 1 a, any of the first through third techniques below, for example, can be used to folio a modified region 5 on the surface of a single-crystalline material 4 excluding a region where the needle-like part 1 a is formed. Then, the modified region 5 is ablated by means of, for example, etching to form such a needle-like part 1 a on the single-crystalline material 4.
  • The first technique uses a laser 3 that exhibits intrinsic absorption for a single-crystalline material 4 and moves a focus 3 c of the collected light relatively to the single-crystalline material 4.
  • This technique uses, for example, YAG laser and harmonics thereof, CO2 laser, or excimer laser as the laser 3. Then, the single-crystalline material 4 is placed, for example, as shown in FIG. 2 (a), on a stage 10 having an XYZ movable stage, where the laser 3 emitted from a laser source 3 a is collected by a lens 3 b into the focus 3 c on the surface of the single-crystalline material 4. Then, the XYZ movable stage (not illustrated) is operated to move the single-crystalline material 4 relatively to the focus 3 c and form a modified region 5 in proximity of the focus 3 c.
  • The second technique uses a laser 3 that exhibits intrinsic absorption for a single-crystalline material 4, in which a masking 11 is pre-formed, to irradiate the laser 3 on a predetermined irradiation area and form a modified region 5 thereon.
  • This technique uses, for example, YAG laser and harmonics thereof, CO2 laser, or excimer laser as the laser 3. In a region of the surface of the single-crystalline material 4, where a probe 1 is to be pre-formed, the pattern of a masking 11 is pre-formed and the single-crystalline material 4 is placed, as shown in FIG. 2 (b), on a stage 10, where the beam of the laser 3 is narrowed down as necessary by means of a lens 3 b to irradiate a desired area on the single-crystalline material 4 and form a modified region 5 on the region uncovered by the masking 11.
  • The third technique uses a laser 3 that exhibits multi-photon absorption for a single-crystalline material 4 and moves a focus 3 c of the collected light relatively to the single-crystalline material 4.
  • This technique uses, for example, Ti-sapphire laser as the laser 3. Then, the single-crystalline material 4 is placed, for example, as shown in FIG. 2 (c), on a stage 10 having an XYZ movable stage so that at least its one side mirror-polished face will be oriented to a laser source 3 a. Following that, the laser 3 emitted from the laser source 3 a is collected by means of a lens 3 b into the focus 3 c and the XYZ movable stage (not illustrated) is operated to move the single-crystalline material 4 relatively to the focus 3 c and form a modified region 5. Then, the laser 3 exhibits multi-photon absorption and provides activation energy required for phase change to form the modified region 5 inside the single-crystalline material 4. The forming of the modified region 5 should preferably start from the farthest to the nearest face from the laser source 3 a in order of distance until the surface of the single-crystalline material 4 is eventually reached.
  • On the other hand, when a thermochemical ablation technique is used to form a needle-like part 1 a, a single crystal diamond (FIG. 3 (a)) is used as a single-crystalline material 4. After planarization of an ablated surface of the single crystal diamond by means such as mirror-polishing technique to less than Ra=1 nm, a thin film 6 of a carbon-soluble metal such as nickel, rhodium, palladium, platinum, iridium, tungsten, molybdenum, manganese, iron, titanium, chromium, or an alloy consisting thereof is formed with a uniform thickness of not less than 0.1 μm on the ablated surface of the single crystal diamond (FIG. 3 (b)). The thin metal film 6 can be formed using a film formation technique such as sputtering method, molecular beam epitaxy (MBE) method, vacuum evaporation method, ion plating method. Here, the thin metal film 6 can be given a thickness of at least 0.1 μm to make the thin metal film less prone to aggregation in the heat-treatment process described below.
  • A thin metal film 6 is partially ablated by means such as mechanical processing, laser ablation, photolithography, and focused ion beam (FIB) processing among others according to the shape of a needle-like part 1 a in order to form a single crystal diamond exposing portion 7 (FIG. 3 (c)). Then, a single crystal diamond containing the partially ablated thin metal film 6 is heat-treated to cause absorption of carbon atoms of the single crystal diamond into the thin metal film 6. Then, the thin metal film 6 will be embedded into the single crystal diamond while leaving the single crystal diamond exposing portion 7 behind (FIG. 3 (d)). Consequently, the single crystal diamond exposing portion 7 is left untreated. The residual of the thin metal film 6 on the surface of the single crystal diamond can be removed as necessary by means such as acid treatment (FIG. 3 (e)). Thus, the process described above can be used to form the needle-like part 1 a on the single crystal diamond with high precision.
  • <The Mounting of a Probe on a Cantilever Beam>
  • A probe 1 thus formed is mounted on the tip of the beam part 2 a of a cantilever 2. The beam part 2 a used here is such that has at least one side containing a flat surface 2 c when the face on which the probe 1 is mounted is specified as the top face.
  • Here, it is desirable that, as shown in FIG. 4, both side faces be formed as flat surfaces 2 c parallel to each other at least in the vicinity of a probe 1—mounting position of a beam part 2 a of a cantilever 2. Moreover, it is also preferable that a probe 1 be formed to have flat surfaces 1 c, of which both surfaces are parallel to each other.
  • The probe 1 is mounted on the top face of the beam part 2 a of the cantilever 2 in such a manner that a fiat surface 1 c formed on the probe 1 will be mutually parallel to (and preferably on a same plane as) a flat surface 2 c formed on the beam part 2 a. This parallel alignment provides a condition where the crystal orientation of the probe 1 on the cantilever 2 allows full use of the properties of the probe 1.
  • Here, it is preferable that the flat plate part 1 b and the cantilever 2 be configured so that the distance ratio between each of their respective side faces will be 0.9 to 1.1. It is additionally preferable that the probe 1 and the beam part 2 a be bonded together using a liquid adhesive 8, because, in such a case, the surface tension of the liquid automates the angle adjustment process. As a preferable example of liquid adhesive 8, an epoxy-based adhesive liquefied at ambient temperature or a thermally fusible brazing material can be used.
  • EXAMPLE
  • A rectangular parallelepiped single crystal diamond was prepared which had a {100} plane in its top face, a bottom of 50 μm square, and a thickness of 100 μm. The crystal orientation of the single crystal diamond was defined by the top face with {100} plane and the directions of both side faces with {110}. After polishing each face of the single crystal diamond, a thin nickel film 1 μm thick was formed on its top face. Then, an opening with a diameter of approximately 10 nm was cut in the thin nickel film by means of electron beam lithography. When all set, thermochemical processing was carried out to fuse a 50 μm thick layer around the single crystal diamond except the opening into the thin nickel film and form a needle-like part thereon. As the result, a probe made of a single crystal diamond was formed with a needle-like part having a length of 50 μm long and a point diameter of 10 nm, and a bottom diameter of approximately 10 μm around the boundary with the flat plate part.
  • Then, a cantilever beam part with both side faces parallel to each other with a distance of 50 μm in between was prepared. After a small quantity of an epoxy-based adhesive was applied on the bonding face of the beam part to the probe, the probe was placed on and bonded to the bonding face. Then, an angle between the direction <110>, which was the most wear-resistant crystal orientation of the diamond probe, and the direction perpendicular to the side face of the beam part prepared as the scanning direction of the cantilever was limited to within approximately 5° without any angle adjustment performed.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view illustrating a probe and a cantilever according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a process for forming a needle-like part of a probe using a laser ablation processing according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a process for forming a needle-like part of a probe using a thermochemical processing technique according to an embodiment of the present invention.
  • FIG. 4 is a plan view illustrating a preferably formed cantilever beam part according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a preferable process for bonding a probe and a cantilever beam part according to an embodiment of the present invention.
  • EXPLANATION OF LETTERS OR NUMERALS
    • 1 Probe
    • 1 a Needle-like part
    • 1 b Flat plate part
    • 2 Cantilever
    • 2 a Beam
    • 1 c, 2 c Flat surface
    • 3 Laser
    • 3 a Laser source
    • 3 b Lens
    • 3 c Focus
    • 4 Single-crystalline material
    • 5 Modified region
    • 6 Thin metal film
    • 7 Single crystal diamond exposing portion
    • 8 Adhesive
    • 9 Cantilever support
    • 10 Stage
    • 11 Masking

Claims (9)

1. A probe disposed at a tip of a cantilever for use in a scanning probe microscope, the probe comprising:
a needle-like part having a length of not less than 10 μm, and
a flat plate part having a face contacting a beam part of the cantilever,
wherein the needle-like part and the flat plate part are integrally formed with a single crystalline material, and a flat surface in order to indicate a crystal orientation of the single-crystalline material is provided on at least one side face of the flat plate part.
2. A probe according to claim 1, wherein the flat surface comprising both side faces of the flat plate part are parallel to each other.
3. A probe according to claim 1, wherein the single-crystalline material is made of a single crystal diamond.
4. A cantilever having a probe according to claim 1,
wherein both side faces of the beam part in the cantilever are parallel to each other,
wherein the probe is disposed on a main surface of the beam part so that both side faces of the flat plate part and those of the beam part are parallel to each other,
a distance between both side faces of the flat plate part has a length 0.9 to 1.1 times that of both side faces of the beam part, and
the probe is bonded using a liquid adhesive onto a main surface of the beam part.
5. A probe according to claim 2, wherein the single-crystalline material is made of a single crystal diamond.
6. A cantilever having a probe according to claim 2, wherein both side faces of the beam part in the cantilever are parallel to each other,
wherein the probe is disposed on a main surface of the beam part so that both side faces of the flat plate part and those of the beam part are parallel to each other,
a distance between both side faces of the flat plate part has a length 0.9 to 1.1 times of that of both side faces of the beam part, and
the probe is bonded using a liquid adhesive onto a main surface of the beam part.
7. A cantilever comprising:
a beam part having a main surface for supporting a probe, said probe comprising:
a needle-like part having a length of not less than 10 μm, and
a flat plate part having a face contacting a beam part of the cantilever,
wherein the needle-like part and the flat plate part of the probe are integrally formed with a single crystalline material with at least one side face of the flat plate part having a flat surface in order to indicate a crystal orientation of the single-crystalline material;
wherein the probe is disposed on the main surface of the beam part so that both side faces of the flat plate part and those of the beam part are parallel to each other, a distance between both side faces of the flat plate part has a length 0.9 to 1.1 times of that of both side faces of the beam part, and the probe is bonded using a liquid adhesive onto a main surface of the beam part.
8. The cantilever according to claim 7, wherein the flat surface comprising both side faces of the flat plate part are parallel to each other.
9. The cantilever according to claim 8, wherein the single-crystalline material is made of a single crystal diamond.
US12/089,349 2005-10-06 2006-10-06 Probe and cantilever Abandoned US20090038382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/837,171 US8104332B2 (en) 2005-10-06 2010-07-15 Probe and cantilever

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005294183 2005-10-06
JP2005-294183 2005-10-06
PCT/JP2006/320135 WO2007040283A1 (en) 2005-10-06 2006-10-06 Probe and cantilever

Publications (1)

Publication Number Publication Date
US20090038382A1 true US20090038382A1 (en) 2009-02-12

Family

ID=37906324

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/089,349 Abandoned US20090038382A1 (en) 2005-10-06 2006-10-06 Probe and cantilever
US12/837,171 Expired - Fee Related US8104332B2 (en) 2005-10-06 2010-07-15 Probe and cantilever

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/837,171 Expired - Fee Related US8104332B2 (en) 2005-10-06 2010-07-15 Probe and cantilever

Country Status (4)

Country Link
US (2) US20090038382A1 (en)
EP (1) EP1950551A4 (en)
JP (1) JP4403585B2 (en)
WO (1) WO2007040283A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292375A (en) * 2007-05-25 2008-12-04 Namiki Precision Jewel Co Ltd Probe and cantilever used for scanning probe microscope
JPWO2009060973A1 (en) * 2007-11-10 2011-03-24 並木精密宝石株式会社 Needle-shaped diamond, cantilever using it, probe for photomask correction or cell manipulation
EP2235723B1 (en) * 2007-12-28 2021-10-13 Bruker Nano, Inc. Method of fabricating a probe device for a metrology instrument and probe device produced thereby
JP5552654B2 (en) * 2008-08-06 2014-07-16 並木精密宝石株式会社 Sharpened diamond-shaped diamond, cantilever for scanning probe microscope using the same, probe for photomask correction, electron beam source
WO2010123120A1 (en) * 2009-04-24 2010-10-28 並木精密宝石株式会社 Immersion measurement probe, cantilever, and immersion measurement method
JP2011158283A (en) * 2010-01-29 2011-08-18 Tdk Corp Method of manufacturing cantilever
JP2018030750A (en) * 2016-08-23 2018-03-01 並木精密宝石株式会社 CRYSTAL SUBSTRATE HAVING Ni THIN FILM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193385A (en) * 1990-08-28 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Cantilever for use in atomic force microscope and manufacturing method therefor
US5856672A (en) * 1996-08-29 1999-01-05 International Business Machines Corporation Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
US6000280A (en) * 1995-07-20 1999-12-14 Cornell Research Foundation, Inc. Drive electrodes for microfabricated torsional cantilevers
US6013573A (en) * 1996-02-23 2000-01-11 Canon Kabushiki Kaisha Method of manufacturing an air bridge type structure for supporting a micro-structure
US6408122B1 (en) * 1999-10-14 2002-06-18 Canon Kabushiki Kaisha Probe for irradiating with or detecting light and method for manufacturing the same
US20080044647A1 (en) * 2004-03-29 2008-02-21 Yoshiki Nishibayashi Method for Forming Carbonaceous Material Protrusion and Carbonaceous Material Protrusion

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066358A (en) * 1988-10-27 1991-11-19 Board Of Trustees Of The Leland Stanford Juninor University Nitride cantilevers with single crystal silicon tips
US4943719A (en) * 1989-01-17 1990-07-24 The Board Of Trustees Of The Leland Stanford University Microminiature cantilever stylus
JPH02239192A (en) * 1989-03-10 1990-09-21 Idemitsu Petrochem Co Ltd Synthesis of diamond
EP0468071B1 (en) * 1990-07-25 1994-09-14 International Business Machines Corporation Method of producing micromechanical sensors for the AFM/STM/MFM profilometry and micromechanical AFM/STM/MFM sensor head
JP3079320B2 (en) 1992-01-29 2000-08-21 セイコーインスツルメンツ株式会社 Method of manufacturing cantilever for atomic force microscope
JP2821061B2 (en) * 1992-05-22 1998-11-05 電気化学工業株式会社 Single crystal manufacturing method
US5831181A (en) * 1995-09-29 1998-11-03 The Regents Of The University Of California Automated tool for precision machining and imaging
JP3639684B2 (en) * 1997-01-13 2005-04-20 キヤノン株式会社 Evanescent wave detection microprobe and method for manufacturing the same, probe including the microprobe and method for manufacturing the same, evanescent wave detection device including the microprobe, near-field scanning optical microscope, and information reproducing device
EP0899538B1 (en) * 1997-08-27 2003-05-14 IMEC vzw A probe tip configuration, a method of fabricating probe tips and use thereof
JP2000155084A (en) * 1998-11-20 2000-06-06 Hitachi Ltd Interatomic force microscope, measuring method for surface shape using it and manufacture of magnetic recording medium
US6635870B1 (en) * 1999-10-22 2003-10-21 3M Innovative Properties Company Method and apparatus for molecular analysis of buried layers
JP4106852B2 (en) 2000-04-14 2008-06-25 株式会社デンソー AC generator for vehicles
US6902716B2 (en) * 2002-10-29 2005-06-07 City University Of Hong Kong Fabrication of single crystal diamond tips and their arrays
JP4245951B2 (en) * 2003-03-28 2009-04-02 エスアイアイ・ナノテクノロジー株式会社 Electrical property evaluation equipment
JP4466019B2 (en) * 2003-08-29 2010-05-26 住友電気工業株式会社 Diamond element and method for manufacturing diamond element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193385A (en) * 1990-08-28 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Cantilever for use in atomic force microscope and manufacturing method therefor
US6000280A (en) * 1995-07-20 1999-12-14 Cornell Research Foundation, Inc. Drive electrodes for microfabricated torsional cantilevers
US6013573A (en) * 1996-02-23 2000-01-11 Canon Kabushiki Kaisha Method of manufacturing an air bridge type structure for supporting a micro-structure
US5856672A (en) * 1996-08-29 1999-01-05 International Business Machines Corporation Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
US6408122B1 (en) * 1999-10-14 2002-06-18 Canon Kabushiki Kaisha Probe for irradiating with or detecting light and method for manufacturing the same
US20080044647A1 (en) * 2004-03-29 2008-02-21 Yoshiki Nishibayashi Method for Forming Carbonaceous Material Protrusion and Carbonaceous Material Protrusion

Also Published As

Publication number Publication date
JP4403585B2 (en) 2010-01-27
WO2007040283A1 (en) 2007-04-12
US8104332B2 (en) 2012-01-31
US20100293675A1 (en) 2010-11-18
JPWO2007040283A1 (en) 2009-04-16
EP1950551A1 (en) 2008-07-30
EP1950551A4 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
US8104332B2 (en) Probe and cantilever
EP1742034B1 (en) Method of fabrication of a SPM thin line probe
US8020216B2 (en) Tapered probe structures and fabrication
JP5552654B2 (en) Sharpened diamond-shaped diamond, cantilever for scanning probe microscope using the same, probe for photomask correction, electron beam source
Grow et al. Silicon nitride cantilevers with oxidation-sharpened silicon tips for atomic force microscopy
US7482587B1 (en) Circular silicon substrates with thin film membranes for electron microscopy
US8829436B2 (en) Phase plate and method of fabricating same
US20070186627A1 (en) High aspect ratio AFM probe and method of making
EP2133883B1 (en) Method for cost-efficient manufacturing diamond tips for ultra-high resolution electrical measurements
CN101932756A (en) The treatment process of ZnO class substrate and ZnO class substrate and ZnO based semiconductor device
CN104701146A (en) Graphene nano-electronical appliance and preparation method thereof
US20200088762A1 (en) Diamond probe hosting an atomic sized defect
JP3768197B2 (en) Preparation method of transmission electron microscope specimen
US20090160307A1 (en) Diamond electron source and method for manufacturing the same
JP2008292375A (en) Probe and cantilever used for scanning probe microscope
JP2001021478A (en) Probe for scanning probe microscope, its manufacture, and image drawing device
JP3563271B2 (en) Method of producing probe for scanning probe microscope and apparatus therefor
JPH06324269A (en) Attachment for pre-processing microscopic sample and manufacturing method for fracture face using it
モハマド,タウヒード,キブリア SUPPRESSION OF MAGNETIC DEAD LAYER AT INTERFACES: Fe FILMS ON IRON SILICIDES, GRAPHENE AND FEW-LAYER GRAPHITE
JP2011022010A (en) Cantilever having inclination correction probe and method for manufacturing the same
JP2005271142A (en) Micro-projecting structure
KR100744565B1 (en) Near-field optical probe based on silicon nitride layer and fabrication method thereof
JPWO2009060973A1 (en) Needle-shaped diamond, cantilever using it, probe for photomask correction or cell manipulation
JP3183940B2 (en) Cantilever tip for scanning probe microscope
JP2008026114A (en) Observation sample and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOYAMA, KOUJI;KOTAKI, TOSHIRO;SUNAGAWA, KAZUHIKO;REEL/FRAME:020799/0231;SIGNING DATES FROM 20080310 TO 20080311

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION