US20090018052A1 - Treatment of Diabetes and Related Pathologies - Google Patents

Treatment of Diabetes and Related Pathologies Download PDF

Info

Publication number
US20090018052A1
US20090018052A1 US11/931,672 US93167207A US2009018052A1 US 20090018052 A1 US20090018052 A1 US 20090018052A1 US 93167207 A US93167207 A US 93167207A US 2009018052 A1 US2009018052 A1 US 2009018052A1
Authority
US
United States
Prior art keywords
group
compound
insulin
straight
pyridoxal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/931,672
Inventor
Rajat Sethi
Wasimul Haque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medicure Inc
Original Assignee
Medicure Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medicure Inc filed Critical Medicure Inc
Priority to US11/931,672 priority Critical patent/US20090018052A1/en
Publication of US20090018052A1 publication Critical patent/US20090018052A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4355Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4415Pyridoxine, i.e. Vitamin B6
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/64Sulfonylureas, e.g. glibenclamide, tolbutamide, chlorpropamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • This invention relates to methods of treating insulin-dependent diabetes mellitus, noninsulin-dependent diabetes mellitus, and related conditions and symptoms.
  • Diabetes mellitus is a condition in which blood glucose levels are abnormally high because the body is unable to produce enough insulin to maintain normal blood glucose levels or is unable to adequately respond to the insulin produced.
  • Insulin-dependent diabetes mellitus arises when the body produces little or no insulin. About 10% of all diabetics have type I diabetes.
  • Noninsulin-dependent diabetes mellitus arises when the body cannot adequately respond to the insulin that is produced in response to blood glucose levels.
  • Type II diabetes is often associated with hyperglycemia (high plasma glucose levels due to decreased glucose utilization) and hyperinsulinemia (high plasma insulin levels due to decreased insulin receptors available), factors that contribute to insulin resistance.
  • Drug therapy for type I diabetes mellitus requires the administration of insulin; however, drug therapy for type II diabetes mellitus usually involves the administration of insulin and/or oral hypoglycemic drugs to lower blood glucose levels. If the oral hypoglycemic drugs fail to control blood sugar, then insulin, either alone or in combination with the hypoglycemic drugs, will usually be administered.
  • diabetes mellitus Although many of the symptoms of diabetes mellitus may be controlled by insulin therapy, the long-term complications of both type I and type II diabetes mellitus are severe and may reduce life expectancy by as much as one third. Over time, elevated blood glucose levels damage blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, and white blood cell function.
  • insulin therapy may result in insulin allergy, insulin resistance, atrophy of the subcutaneous fat at the site of insulin injection (i.e., lipoatrophy), enlargement of subcutaneous fat deposit (i.e., lipohypertrophy) due to lipogenic action of high local concentration of insulin, and insulin adema.
  • the present invention provides methods for treating insulin-dependent diabetes mellitus, noninsulin-dependent diabetes mellitus, and related conditions and symptoms.
  • One embodiment includes a method of treating diabetes mellitus in a mammal by administering a therapeutically effective amount of a compound, such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • a compound such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • the invention provides a method of treating diabetes mellitus in a mammal by concurrently administering a therapeutically effective amount of a combination of insulin and a compound, such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • a compound such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • the invention provides a method of treating noninsulin-dependent diabetes mellitus in a mammal by concurrently administering a therapeutically effective amount of a combination of a hypoglycemic compound and a compound, such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • a hypoglycemic compound such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • FIG. 1 shows the effect of P-5-P and insulin alone or in combination on plasma glucose levels in rats induced with Type I diabetes.
  • FIG. 2 shows the effect of P-5-P and insulin alone or in combination on plasma insulin levels in rats induced with Type I diabetes.
  • FIG. 4 shows the effect of P-5-P and tolbutamide alone or in combination on plasma insulin levels in rats induced with Type II diabetes.
  • FIG. 5 shows the effect of P-5-P and tolbutamide alone or in combination on increased systolic blood pressure in rats induced with Type II diabetes.
  • the present invention provides methods for treatment of diabetes mellitus and related conditions and symptoms.
  • diabetes mellitus and related conditions include insulin-dependent diabetes mellitus (type I diabetes), noninsulin-dependent diabetes mellitus (type II diabetes), insulin resistance, hyperinsulinemia, and diabetes-induced hypertension.
  • Other diabetes-related conditions include obesity and damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, and immune system.
  • the treatment may be carried out by concurrently administering a therapeutically effective amount of a combination of insulin and a compound suitable for use in methods of the invention.
  • the treatment may involve concurrently administering a therapeutically effective amount of a combination of a hypoglycemic compound and a compound suitable for use in methods of the invention when the diabetes mellitus and related conditions to be treated is type II diabetes, insulin resistance, hyperinsulinemia, diabetes-induced hypertension, obesity, or damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system.
  • a “therapeutically effective amount” as used herein includes a prophylactic amount, for example, an amount effective for preventing or protecting against diabetes mellitus and related conditions and symptoms, and amounts effective for alleviating or healing diabetes mellitus and related conditions and symptoms.
  • a prophylactic amount for example, an amount effective for preventing or protecting against diabetes mellitus and related conditions and symptoms, and amounts effective for alleviating or healing diabetes mellitus and related conditions and symptoms.
  • the insulin and/or hypoglycemic compound may be administered in a dosage amount that is less than the dosage amount required when the insulin and/or hypoglycemic compound is the sole active ingredient.
  • the side effects associated therewith should accordingly be reduced and/or the onset of the long-term complications that arise from diabetes mellitus and related conditions may be delayed.
  • 3-Acylated pyridoxal analogues include prodrugs of pyridoxal that provide for slower metabolism to pyridoxal in vivo.
  • one suitable 3-acylated analogue of pyridoxal (2-methyl-3-hydroxy-4-formyl-5-hydroxymethylpyridine) is a compound of the formula I:
  • R 1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.
  • alkyl group includes a straight or branched saturated aliphatic hydrocarbon chain having from 1 to 8 carbon atoms, such as, for example, methyl, ethyl, propyl, isopropyl (1-methylethyl), butyl, tert-butyl (1,1-dimethylethyl), and the like.
  • alkenyl group includes an unsaturated aliphatic hydrocarbon chain having from 2 to 8 carbon atoms, such as, for example, ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-methyl-1-propenyl, and the like.
  • the above alkyl or alkenyl groups may optionally be interrupted in the chain by a heteroatom, such as, for example, a nitrogen or oxygen atom, forming an alkylaminoalkyl or alkoxyalkyl group, for example, methylaminoethyl or methoxymethyl, and the like.
  • a heteroatom such as, for example, a nitrogen or oxygen atom, forming an alkylaminoalkyl or alkoxyalkyl group, for example, methylaminoethyl or methoxymethyl, and the like.
  • alkoxy group includes an alkyl group as defined above joined to an oxygen atom having preferably from 1 to 4 carbon atoms in a straight or branched chain, such as, for example, methoxy, ethoxy, propoxy, isopropoxy (1-methylethoxy), butoxy, tert-butoxy (1,1-dimethylethoxy), and the like.
  • dialkylamino group includes two alkyl groups as defined above joined to a nitrogen atom, in which the alkyl group has preferably 1 to 4 carbon atoms, such as, for example, dimethylamino, diethylamino, methylethylamino, methylpropylamino, diethylamino, and the like.
  • aryl group includes an aromatic hydrocarbon group, including fused aromatic rings, such as, for example, phenyl and naphthyl. Such groups may be unsubstituted or substituted on the aromatic ring by, for example, an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, an amino group, a hydroxy group, or an acetyloxy group.
  • R 1 groups for compounds of formula I are toluoyl or naphthyl. Such R 1 groups when joined with a carbonyl group form an acyl group
  • 3-acylated analogues of pyridoxal include, but are not limited to, 2-methyl-3-toluoyloxy-4-formyl-5-hydroxymethylpyridine and 2-methyl- ⁇ -naphthoyloxy-4-formyl-5-hydroxymethylpyridine.
  • Another suitable analogue is a 3-acylated analogue of pyridoxal-4,5-aminal (1-secondary amino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) of the formula II:
  • R 1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and
  • R 2 is a secondary amino group.
  • alkyl alkenyl
  • alkoxy alkoxy
  • dialkylamino alkyl
  • aryl aryl
  • second amino group includes a group of the formula III:
  • R 3 R 4 NH derived from a secondary amine R 3 R 4 NH, in which R 3 and R 4 are each independently alkyl, alkenyl, cycloalkyl, aryl, or, when R 3 and R 4 are taken together, may form a ring with the nitrogen atom and which may optionally be interrupted by a heteroatom, such as, for example, a nitrogen or oxygen atom.
  • alkyl alkenyl
  • aryl are used as defined above in forming secondary amino groups such as, for example, dimethylamino, methylethylamino, diethylamino, dialkylamino, phenylmethylamino, diphenylamino, and the like.
  • cycloalkyl refers to a saturated hydrocarbon having from 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms, such as, for example, cyclopropyl, cyclopentyl, cyclohexyl, and the like.
  • R 3 and R 4 When R 3 and R 4 are taken together with the nitrogen atom, they may form a cyclic secondary amino group, such as, for example, piperidino, and, when interrupted with a heteroatom, includes, for example, piperazino and morpholino.
  • a preferred secondary amino group may be morpholino.
  • 3-acylated analogues of pyridoxal-4,5-aminal include, but are not limited to, 1-morpholino-1,3-dihydro-7-(p-toluoyloxy)-6-methylfuro(3,4-c)pyridine; 1-morpholino-1,3-dihydro-7-( ⁇ -naphthoyloxy)-6-methylfuro(3,4-c)pyridine; 1-morpholino-1,3-dihydro-7-pivaloyloxy-6-methylfuro(3,4-c)pyridine; 1-morpholino-1,3-dihydro-7-carbamoyloxy-6-methylfuro(3,4-c)pyridine; and 1-morpholino-1,3-dihydro-7-acetylsalicyloxy-6-methylfuro(3,4-c)pyridine.
  • the compounds of formula I may be prepared by reacting pyridoxal hydrochloride with an acyl halide in an aprotic solvent.
  • a suitable acyl group is
  • a particularly suitable acyl halide includes p-toluoyl chloride or ⁇ -naphthoyl chloride.
  • a suitable aprotic solvent includes acetone, methylethylketone, and the like.
  • the compounds of formula II may be prepared by reacting 1-secondary amino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine with an acyl halide in an aprotic solvent.
  • An acyl group is
  • a particularly suitable acyl halide includes p-toluoyl chloride, ⁇ -naphthoyl chloride, trimethylacetyl chloride, dimethylcarbamoyl chloride, and acetylsalicyloyl chloride.
  • a particularly suitable secondary amino group includes morpholino.
  • the compound 1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine may be prepared by methods known in the art, for example, by reacting morpholine and pyridoxal hydrochloride at a temperature of about 100° C. in a solvent.
  • a suitable solvent includes, for example, toluene.
  • other secondary amines as defined for R 2 may be used as reactants to prepare the appropriate 1-secondary amino compounds.
  • the compounds of formula I may alternatively be prepared from the compounds of formula II by reacting a compound of formula II with an aqueous acid, such as, for example, aqueous acetic acid.
  • an aqueous acid such as, for example, aqueous acetic acid.
  • Pharmaceutically acceptable acid addition salts of the compounds suitable for use in methods of the invention include salts derived from nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like, as well as the salts derived from nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc.
  • nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like
  • nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedio
  • Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoroacetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the like.
  • salts of amino acids such as arginate and the like and gluconate, galacturonate, n-methyl glutamine, etc. (see, e.g., Berge et al., J. Pharmaceutical Science, 66: 1-19 (1977).
  • the acid addition salts of the basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner.
  • the free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner.
  • the free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base for purposes of the present invention.
  • the compounds suitable for use in methods of the invention are formulated into pharmaceutically acceptable unit dosage forms by conventional methods known to the pharmaceutical art.
  • An effective but nontoxic quantity of the compound is employed in treatment.
  • the compounds can be administered in enteral unit dosage forms, such as, for example, tablets, sustained release tablets, enteric coated tablets, capsules, sustained release capsules, enteric coated capsules, pills, powders, granules, solutions, and the like. They may also be administered parenterally, such as, for example, subcutaneously, intramuscularly, intradermally, intramammarally, intravenously, and other administrative methods known in the art.
  • a pharmaceutical composition comprises a pharmaceutically acceptable carrier and a compound.
  • a pharmaceutically acceptable carrier includes, but is not limited to, physiological saline, ringers, phosphate buffered saline, and other carriers known in the art.
  • compositions may also include additives, for example, stabilizers, antioxidants, colorants, excipients, binders, thickeners, dispersing agents, readsorpotion enhancers, buffers, surfactants, preservatives, emulsifiers, isotonizing agents, and diluents.
  • additives for example, stabilizers, antioxidants, colorants, excipients, binders, thickeners, dispersing agents, readsorpotion enhancers, buffers, surfactants, preservatives, emulsifiers, isotonizing agents, and diluents.
  • Pharmaceutically acceptable carriers and additives are chosen such that side effects from the pharmaceutical compound are minimized and the performance of the compound is not canceled or inhibited to such an extent that treatment is ineffective.
  • compositions containing a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention are known to those of skill in the art. All methods may include the step of bringing the compound in association with the carrier and additives. In general, the formulations are prepared by uniformly and intimately bringing the compound of the invention into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired unit dosage form.
  • the ordinarily skilled physician or veterinarian will readily determine and prescribe the therapeutically effective amount of the compound to treat the disease for which treatment is administered. In so proceeding, the physician or veterinarian could employ relatively low dosages at first, subsequently increasing the dose until a maximum response is obtained.
  • the particular disease, the severity of the disease, the compound to be administered, the route of administration, and the characteristics of the mammal to be treated, for example, age, sex, and weight are considered in determining the effective amount to administer.
  • a therapeutically effective amount of a compound to treat diabetes mellitus and related conditions and symptoms is in a range of about 0.1-100 mg/kg of a patient's body weight, more preferably in the range of about 0.5-50 mg/kg of a patient's body weight, per daily dose.
  • the compound may be administered for periods of short and long duration.
  • a therapeutically effective amount of a compound for treating diabetes mellitus and related conditions and symptoms can be administered prior to, concurrently with, or after the onset of the disease or symptom.
  • the compound can be administered to treat diabetes mellitus type I, diabetes mellitus type II, or obesity.
  • the compound can be administered to treat damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system.
  • the compound can be administered to treat insulin resistance or hyperinsulinemia.
  • the compound can be administered to treat diabetes-induced hypertension.
  • the compound may be administered concurrently with insulin and/or a hypoglycemic compound to treat diabetes mellitus and related conditions and symptoms.
  • the compound can be administered concurrently with insulin and/or a hypoglycemic compound to treat type I diabetes, type II diabetes, or obesity.
  • the compound can be administered concurrently with insulin and/or hypoglycemic compound to treat damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system.
  • the compound can be administered concurrently with insulin and/or hypoglycemic compound to treat insulin resistance or hyperinsulinemia.
  • the compound can be administered concurrently with insulin and/or hypoglycemic compound to treat diabetes-induced hypertension.
  • a compound may be administered concurrently with insulin to treat type I diabetes, type II diabetes, and related conditions and symptoms.
  • type II diabetes insulin resistance, hyperinsulinemia, diabetes-induced hypertension, obesity, or damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system
  • a compound may be administered concurrently with a hypoglycemic compound instead of insulin.
  • a compound may be administered concurrently with insulin and a hypoglycemic compound to treat type II diabetes, insulin resistance, hyperinsulinemia, diabetes-induced hypertension, obesity, or damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system.
  • Constant administration includes administering a compound suitable for use in methods of the invention and insulin and/or a hypoglycemic compound in admixture, such as, for example, in a pharmaceutical composition, or as separate compounds, such as, for example, separate pharmaceutical compositions administered consecutively, simultaneously, or at different times.
  • a compound suitable for use in methods of the invention and insulin and/or a hypoglycemic compound in admixture, such as, for example, in a pharmaceutical composition, or as separate compounds, such as, for example, separate pharmaceutical compositions administered consecutively, simultaneously, or at different times.
  • the compound and insulin and/or hypoglycemic compound are administered separately, they are not administered so distant in time from each other that the compound and the insulin and/or hypoglycemic compound cannot interact and a lower dosage amount of insulin and/or hypoglycemic compound cannot be administered.
  • Suitable hypoglycemic compounds include, for example, metformin, acarbose, acetohexamide, glimepiride, tolazamide, glipizide, glyburide, tolbutamide, chlorpropamide, thiazolidinediones, alpha glucosidase inhibitors, biguanindine derivatives, and troglitazone, and a mixture thereof.
  • the hypoglycemic compound is tolbutamide.
  • the compound and the insulin and/or hypoglycemic compound are formulated into pharmaceutically acceptable unit dosage forms by conventional methods known to the pharmaceutical art.
  • An effective but nontoxic quantity of the compound and the insulin and/or hypoglycemic compound is employed in the treatment of diabetes mellitus and related conditions and symptoms.
  • the compound and the insulin may be concurrently administered parenterally in admixture or may be concurrently administered enterally and/or parenterally separately.
  • the compound and the hypoglycemic compound may be concurrently administered enterally in admixture or may be administered enterally and/or parenterally separately.
  • the compound may be concurrently administered with insulin and a hypoglycemic compound. Such administration would involve enteral and/or parenteral administration as described above.
  • Parenteral administration includes subcutaneous, intramuscular, intradermal, intramammary, intravenous, and other administrative methods known in the art.
  • Enteral administration includes tablets, sustained release tablets, enteric coated tablets, capsules, sustained release capsules, enteric coated capsules, pills, powders, granules, solutions, and the like.
  • a pharmaceutical composition suitable for administration includes a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention and, optionally, insulin and/or a hypoglycemic compound.
  • a pharmaceutically acceptable carrier includes, but is not limited to, physiological saline, ringers, phosphate buffered saline, and other carriers known in the art.
  • Pharmaceutical compositions may also include stabilizers, antioxidants, colorants, and diluents.
  • Pharmaceutically acceptable carriers and additives are chosen such that side effects from the pharmaceutical compound are minimized and the performance of the compound is not canceled or inhibited to such an extent that treatment is ineffective.
  • compositions containing a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention and, optionally, insulin and/or a hypoglycemic compound are known to those of skill in the art. All methods may include the step of bringing the compound and, optionally, a hypoglycemic compound in association with the carrier or additives.
  • the formulations are prepared by uniformly and intimately bringing the compound into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired unit dosage form.
  • the compound When concurrently administering a compound with insulin and/or a hypoglycemic compound, the compound is administered in a range of about 0.1-100 mg per daily dose, typically 0.5-50 mg/kg of body weight per daily dose.
  • a hypoglycemic compound is administered in a range of about 1 to 300 mg per daily dose, typically 1 to 200 mg per daily dose.
  • Insulin is typically administered in a range of about 0.1 to 2 units/kg of a patient's body weight per daily dose.
  • a “unit” of insulin refers to that amount of insulin necessary to lower the blood-sugar level in a rabbit by 50% in 1 to 3 hours.
  • a mixture of morpholine (20 g) and toluene (100 mL) was stirred and heated using an oil bath set to 100° C. for 15 minutes. Pyridoxal hydrochloride (10 g) was then added and the reaction mixture was stirred at 100° C. for two hours.
  • the reaction mixture was then concentrated by distillation of the toluene and morpholine.
  • the concentrated reaction mixture was washed three times by adding toluene (100 mL) and removing the toluene by distillation. After washing, the residue was dissolved in toluene and filtered, and then hexane was added until precipitation began, at which time the reaction mixture was left overnight at room temperature. Crystals were collected and washed thoroughly with hexane.
  • the purified solid was analyzed by thin layer chromatography (TLC), NMR, and mass spectroscopy. The purity of the synthesized compound was confirmed by HPLC as described in Example 1.
  • the purified solid was analyzed by TLC, NMR, and mass spectroscopy. The purity of the compound was confirmed by HPLC as described in Example 1.
  • the 3-toluate of pyridoxal is synthesized by reacting the compound of Example 2 with 80% aqueous acetic acid at 60° C. for 30 minutes, and then diluting with water and extracting by ethyl acetate.
  • the ethyl acetate layer is washed with 5% aqueous sodium bicarbonate, dried with magnesium sulfate, and evaporated to dryness.
  • the compound is also analyzed as described supra.
  • the purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • the purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • the 3- ⁇ -naphthoate of pyridoxal is prepared by reacting the compound of Example 4 with 80% aqueous acetic acid at 60° C. for 30 minutes, followed by diluting with water and extracting by ethyl acetate. The ethyl acetate layer is then washed with 5% aqueous sodium bicarbonate, dried with magnesium sulfate, and evaporated to dryness. The compound is also analyzed as described supra.
  • the purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • the purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • the purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • rats are administered pyridoxal-5′-phosphate, either alone or in combination with insulin, after being experimentally induced with type I diabetes, and their urine and blood glucose and insulin levels are determined.
  • mice Male Sprague-Dawley (Charles River Laboratories, Montreal, Canada) rats weighing approximately 200 g are randomly separated into control and experimental groups. All experimental animals are given an intravenous injection of 0.1 M citrate buffered streptozotocin (pH 4.5) at a dosage of 65 mg/kg of body weight to induce diabetes mellitus. All control animals receive an intravenous injection of 0.1 M citrate buffer (pH 4.5) alone.
  • One experimental group of rats also receives daily doses of pyridoxal-5′-phosphate (25 mg/kg body weight) (Aldrich Canada Ltd., Ontario, Canada).
  • a second experimental group receives daily subcutanteous injections of Humulin® N (3 units per day) (insulin isophene, human biosynthetic; Eli Lilly and Co., Indianapolis, Ind.).
  • a third experimental group receives both daily subcutaneous injections of Humulin® N (3 units per day) and a daily dose of pyridoxal-5′-phosphate (25 mg/kg body weight).
  • a fourth experimental group receives daily subcutaneous injections of Humulin® N (1.5 units per day).
  • a fifth experimental group receives both daily subcutaneous injections of Humulin® N (1.5 units per day) and a daily dose of pyridoxal-5′-phosphate (25 mg/kg body weight).
  • Plasma glucose levels were done using the Infinity Glucose Reagent® (Sigma Diagnostics, St. Louis, Mo.).
  • the experimental group of rats that receive daily doses of pyridoxal-5′-phosphate and daily injections of Humulin® N show reduced levels of glucose and insulin in blood and urine samples when compared with the group of rats that receive daily injections of Humulin® N without receiving daily doses of pyridoxal-5′-phosphate.
  • FIG. 1 demonstrates the effect of P-5-P and insulin alone or in combination on increased plasma glucose levels in a Type I diabetes indication of hyperglycemia. It can be seen in FIG. 1 that Insulin (1 unit and 3 unit) and P-5-P significantly reduced the plasma glucose levels when compared to diabetic group. Moreover a decreased dose of insulin was needed in the presence of P-5-P to produce the same effect as with a full dose of 3 units of insulin.
  • FIG. 2 demonstrates the effect of P-5-P and insulin alone or in combination on plasma glucose levels in a Type I diabetes indication of hyperglycemia. It can be seen in FIG. 2 that Insulin (1 unit and 3 unit) and P-5-P significantly increased the plasma insulin levels when compared to diabetic group. Moreover a decreased dose of insulin was needed in the presence of P-5-P to produce the same effect as with a full dose of 3 units of insulin.
  • rats having type II diabetes are administered pyridoxal-5′-phosphate, either alone or in combination with sucrose and/or tolbutamide, and their systolic blood pressure, urine and blood glucose and insulin levels are determined.
  • Acarbose reduces blood pressure in sucrose induced hypertension in rats.
  • Acarbose reduces blood pressure in sucrose induced hypertension in rats .
  • Madar Z et al: Isr J Med Sci; 33:153-159 a high sucrose or fructose diet for a prolonged period is one technique used to induce Type II diabetes, specifically hypertension associated with hyperglycemia and hyperinsulinemia in animals.
  • mice Male Sprague-Dawley (Charles River Laboratories, Montreal, Canada) rats weighing approximately 200 g are randomly separated into the following groups with each group having 5 animals:
  • Plasma insulin levels were measured using Rat Insulin RIA Kit (Linco Research Inc., St. Charles, Mo.). Plasma glucose levels were done using the Infinity Glucose Reagent® (Sigma Diagnostics, St. Louis, Mo.). Blood pressure was measured using the tail cuff method, (see, Madar et al., Acarbose reduces blood pressure in sucrose induced hypertension in rats . Madar Z et al: Isr J Med Sci; 33:153-159).
  • FIG. 3 demonstrates the effect of P-5-P and tolbutamide alone or in combination on increased plasma glucose levels in a Type II diabetes indication of hyperglycemia. It can be seen in FIG. 3 that tolbutamide (40 and 20 mg/kg) and P-5-P significantly decreased the plasma glucose levels when compared to diabetic group. Moreover a decreased dose of tolbutamide was needed in the presence of P-5-P to produce the same effect as with a full dose of 40 mg/kg tolbutamide.
  • FIG. 4 demonstrates the effect of P-5-P and tolbutamide alone or in combination on increased plasma insulin levels in a Type II diabetes indication of hyperglycemia. It can be seen in FIG. 4 that tolbutamide (40 and 20 mg/kg) and P-5-P significantly decreased the plasma insulin levels when compared to diabetic group. Moreover a decreased dose of tolbutamide was needed in the presence of P-5-P to produce the same or better effect as with a full dose of 40 mg/kg tolbutamide.
  • FIG. 5 demonstrates the effect of P-5-P and tolbutamide alone or in combination on increased systolic blood pressure in a Type II diabetes indication of hyperglycemia. It can be seen in FIG. 5 that that P-5-P significantly decreased the rise in systolic blood pressure when compared to diabetic and tolbutamide treatment groups. Moreover when the rats were treated with P-5-P and tolbutamide (40 mg/kg), the decrease in systolic blood pressure was significantly greater when compared to rats treated with P-5-P or tolbutamide alone.

Abstract

Methods for treating diabetes mellitus and related conditions and symptoms are described. The methods are directed to administering a therapeutically effective amount of a compound. Compounds suitable for the invention include pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof. Also disclosed are methods directed to concurrently administering a therapeutically effective amount of a compound with other compounds known in the treatment of diabetes mellitus. In one embodiment, a therapeutically effective amount of a compound is administered concurrently with a therapeutically effective amount of insulin. In another embodiment, a therapeutically effective amount of a compound is administered concurrently with a therapeutically effective amount of a hypoglycemic compound.

Description

  • This application claims priority to provisional application Ser. No. 60/143,466, filed on Jul. 13, 1999.
  • FIELD OF THE INVENTION
  • This invention relates to methods of treating insulin-dependent diabetes mellitus, noninsulin-dependent diabetes mellitus, and related conditions and symptoms.
  • BACKGROUND
  • Diabetes mellitus is a condition in which blood glucose levels are abnormally high because the body is unable to produce enough insulin to maintain normal blood glucose levels or is unable to adequately respond to the insulin produced. Insulin-dependent diabetes mellitus (often referred to as type I diabetes) arises when the body produces little or no insulin. About 10% of all diabetics have type I diabetes. Noninsulin-dependent diabetes mellitus (often referred to as type II diabetes) arises when the body cannot adequately respond to the insulin that is produced in response to blood glucose levels. Type II diabetes is often associated with hyperglycemia (high plasma glucose levels due to decreased glucose utilization) and hyperinsulinemia (high plasma insulin levels due to decreased insulin receptors available), factors that contribute to insulin resistance.
  • Available treatments include weight control, exercise, diet, and drug therapy. Drug therapy for type I diabetes mellitus requires the administration of insulin; however, drug therapy for type II diabetes mellitus usually involves the administration of insulin and/or oral hypoglycemic drugs to lower blood glucose levels. If the oral hypoglycemic drugs fail to control blood sugar, then insulin, either alone or in combination with the hypoglycemic drugs, will usually be administered.
  • Although many of the symptoms of diabetes mellitus may be controlled by insulin therapy, the long-term complications of both type I and type II diabetes mellitus are severe and may reduce life expectancy by as much as one third. Over time, elevated blood glucose levels damage blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, and white blood cell function.
  • Moreover, insulin therapy may result in insulin allergy, insulin resistance, atrophy of the subcutaneous fat at the site of insulin injection (i.e., lipoatrophy), enlargement of subcutaneous fat deposit (i.e., lipohypertrophy) due to lipogenic action of high local concentration of insulin, and insulin adema.
  • Thus, it would be desirable to find an alternative to the above-described therapies or to administer a drug therapy that may reduce the amount of insulin or hypoglycemic drug required, yet maintain the effectiveness of the insulin or hypoglycemic drug administered.
  • SUMMARY OF THE INVENTION
  • The present invention provides methods for treating insulin-dependent diabetes mellitus, noninsulin-dependent diabetes mellitus, and related conditions and symptoms. One embodiment includes a method of treating diabetes mellitus in a mammal by administering a therapeutically effective amount of a compound, such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • In another embodiment, the invention provides a method of treating diabetes mellitus in a mammal by concurrently administering a therapeutically effective amount of a combination of insulin and a compound, such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • In still another embodiment, the invention provides a method of treating noninsulin-dependent diabetes mellitus in a mammal by concurrently administering a therapeutically effective amount of a combination of a hypoglycemic compound and a compound, such as pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the effect of P-5-P and insulin alone or in combination on plasma glucose levels in rats induced with Type I diabetes.
  • FIG. 2 shows the effect of P-5-P and insulin alone or in combination on plasma insulin levels in rats induced with Type I diabetes.
  • FIG. 3 shows the effect of P-5-P and tolbutamide alone or in combination on plasma glucose levels in rats induced with Type II diabetes.
  • FIG. 4 shows the effect of P-5-P and tolbutamide alone or in combination on plasma insulin levels in rats induced with Type II diabetes.
  • FIG. 5 shows the effect of P-5-P and tolbutamide alone or in combination on increased systolic blood pressure in rats induced with Type II diabetes.
  • DETAILED DESCRIPTION
  • The present invention provides methods for treatment of diabetes mellitus and related conditions and symptoms. Such diabetes mellitus and related conditions include insulin-dependent diabetes mellitus (type I diabetes), noninsulin-dependent diabetes mellitus (type II diabetes), insulin resistance, hyperinsulinemia, and diabetes-induced hypertension. Other diabetes-related conditions include obesity and damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, and immune system.
  • In accordance with the present invention, it has been found that compounds, such as, for example, pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof, either alone or in combination with insulin and/or hypoglycemic compounds can be used in the treatment of the above-identified diseases and conditions. As used herein, “treatment” and “treating” include preventing, inhibiting, and alleviating diabetes mellitus and related conditions and symptoms. In some instances, the treatment may be carried out by administering a therapeutically effective amount of a compound suitable for use in methods of the invention. In other instances, the treatment may be carried out by concurrently administering a therapeutically effective amount of a combination of insulin and a compound suitable for use in methods of the invention. In still other instances, the treatment may involve concurrently administering a therapeutically effective amount of a combination of a hypoglycemic compound and a compound suitable for use in methods of the invention when the diabetes mellitus and related conditions to be treated is type II diabetes, insulin resistance, hyperinsulinemia, diabetes-induced hypertension, obesity, or damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system.
  • A “therapeutically effective amount” as used herein includes a prophylactic amount, for example, an amount effective for preventing or protecting against diabetes mellitus and related conditions and symptoms, and amounts effective for alleviating or healing diabetes mellitus and related conditions and symptoms. Generally, by administering a compound suitable for use in methods of the invention concurrently with insulin and/or a hypoglycemic compound the insulin and/or hypoglycemic compound may be administered in a dosage amount that is less than the dosage amount required when the insulin and/or hypoglycemic compound is the sole active ingredient. By administering lower dosage amounts of insulin and/or a hypoglycemic compound, the side effects associated therewith should accordingly be reduced and/or the onset of the long-term complications that arise from diabetes mellitus and related conditions may be delayed.
  • Compounds suitable for use in the methods of the invention include pyridoxal-5′-phosphate, pyridoxal, pyridoxamine, pyridoxine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, or a mixture thereof. 3-Acylated pyridoxal analogues include prodrugs of pyridoxal that provide for slower metabolism to pyridoxal in vivo. For example, one suitable 3-acylated analogue of pyridoxal (2-methyl-3-hydroxy-4-formyl-5-hydroxymethylpyridine) is a compound of the formula I:
  • Figure US20090018052A1-20090115-C00001
  • or a pharmaceutically acceptable acid addition salt thereof, wherein
  • R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.
  • The term “alkyl” group includes a straight or branched saturated aliphatic hydrocarbon chain having from 1 to 8 carbon atoms, such as, for example, methyl, ethyl, propyl, isopropyl (1-methylethyl), butyl, tert-butyl (1,1-dimethylethyl), and the like.
  • The term “alkenyl” group includes an unsaturated aliphatic hydrocarbon chain having from 2 to 8 carbon atoms, such as, for example, ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-methyl-1-propenyl, and the like.
  • The above alkyl or alkenyl groups may optionally be interrupted in the chain by a heteroatom, such as, for example, a nitrogen or oxygen atom, forming an alkylaminoalkyl or alkoxyalkyl group, for example, methylaminoethyl or methoxymethyl, and the like.
  • The term “alkoxy” group includes an alkyl group as defined above joined to an oxygen atom having preferably from 1 to 4 carbon atoms in a straight or branched chain, such as, for example, methoxy, ethoxy, propoxy, isopropoxy (1-methylethoxy), butoxy, tert-butoxy (1,1-dimethylethoxy), and the like.
  • The term “dialkylamino” group includes two alkyl groups as defined above joined to a nitrogen atom, in which the alkyl group has preferably 1 to 4 carbon atoms, such as, for example, dimethylamino, diethylamino, methylethylamino, methylpropylamino, diethylamino, and the like.
  • The term “aryl” group includes an aromatic hydrocarbon group, including fused aromatic rings, such as, for example, phenyl and naphthyl. Such groups may be unsubstituted or substituted on the aromatic ring by, for example, an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, an amino group, a hydroxy group, or an acetyloxy group.
  • Preferred R1 groups for compounds of formula I are toluoyl or naphthyl. Such R1 groups when joined with a carbonyl group form an acyl group
  • Figure US20090018052A1-20090115-C00002
  • which preferred for compounds of formula I include toluoyl or β-naphthoyl. Of the toluoyl group, the p-isomer is more preferred.
  • Examples of 3-acylated analogues of pyridoxal include, but are not limited to, 2-methyl-3-toluoyloxy-4-formyl-5-hydroxymethylpyridine and 2-methyl-β-naphthoyloxy-4-formyl-5-hydroxymethylpyridine.
  • Another suitable analogue is a 3-acylated analogue of pyridoxal-4,5-aminal (1-secondary amino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) of the formula II:
  • Figure US20090018052A1-20090115-C00003
  • or a pharmaceutically acceptable acid addition salt thereof, wherein
  • R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and
  • R2 is a secondary amino group.
  • The terms “alkyl,” “alkenyl,” “alkoxy,” “dialkylamino,” and “aryl” are as defined above.
  • The term “secondary amino” group includes a group of the formula III:
  • Figure US20090018052A1-20090115-C00004
  • derived from a secondary amine R3R4NH, in which R3 and R4 are each independently alkyl, alkenyl, cycloalkyl, aryl, or, when R3 and R4 are taken together, may form a ring with the nitrogen atom and which may optionally be interrupted by a heteroatom, such as, for example, a nitrogen or oxygen atom. The terms “alkyl,” “alkenyl,” and “aryl” are used as defined above in forming secondary amino groups such as, for example, dimethylamino, methylethylamino, diethylamino, dialkylamino, phenylmethylamino, diphenylamino, and the like.
  • The term “cycloalkyl” refers to a saturated hydrocarbon having from 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms, such as, for example, cyclopropyl, cyclopentyl, cyclohexyl, and the like.
  • When R3 and R4 are taken together with the nitrogen atom, they may form a cyclic secondary amino group, such as, for example, piperidino, and, when interrupted with a heteroatom, includes, for example, piperazino and morpholino.
  • Preferred R1 groups for compounds of formula II include toluoyl, e.g., p-toluoyl, naphthyl, tert-butyl, dimethylamino, acetylphenyl, hydroxyphenyl, or alkoxy, e.g., methoxy. Such R1 groups when joined with a carbonyl group form an acyl group
  • Figure US20090018052A1-20090115-C00005
  • which preferred for compounds and formula II include toluoyl, β-naphthoyl, pivaloyl, dimethylcarbamoyl, acetylsalicyloyl, salicyloyl, or alkoxycarbonyl. A preferred secondary amino group may be morpholino.
  • Examples of 3-acylated analogues of pyridoxal-4,5-aminal include, but are not limited to, 1-morpholino-1,3-dihydro-7-(p-toluoyloxy)-6-methylfuro(3,4-c)pyridine; 1-morpholino-1,3-dihydro-7-(β-naphthoyloxy)-6-methylfuro(3,4-c)pyridine; 1-morpholino-1,3-dihydro-7-pivaloyloxy-6-methylfuro(3,4-c)pyridine; 1-morpholino-1,3-dihydro-7-carbamoyloxy-6-methylfuro(3,4-c)pyridine; and 1-morpholino-1,3-dihydro-7-acetylsalicyloxy-6-methylfuro(3,4-c)pyridine.
  • The compounds of formula I may be prepared by reacting pyridoxal hydrochloride with an acyl halide in an aprotic solvent. A suitable acyl group is
  • Figure US20090018052A1-20090115-C00006
  • wherein R1 is as defined above. A particularly suitable acyl halide includes p-toluoyl chloride or β-naphthoyl chloride. A suitable aprotic solvent includes acetone, methylethylketone, and the like.
  • The compounds of formula II may be prepared by reacting 1-secondary amino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine with an acyl halide in an aprotic solvent. An acyl group is
  • Figure US20090018052A1-20090115-C00007
  • wherein R1 is as defined above. A particularly suitable acyl halide includes p-toluoyl chloride, β-naphthoyl chloride, trimethylacetyl chloride, dimethylcarbamoyl chloride, and acetylsalicyloyl chloride. A particularly suitable secondary amino group includes morpholino.
  • The compound 1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine may be prepared by methods known in the art, for example, by reacting morpholine and pyridoxal hydrochloride at a temperature of about 100° C. in a solvent. A suitable solvent includes, for example, toluene. Similarly, other secondary amines as defined for R2 may be used as reactants to prepare the appropriate 1-secondary amino compounds.
  • The compounds of formula I may alternatively be prepared from the compounds of formula II by reacting a compound of formula II with an aqueous acid, such as, for example, aqueous acetic acid.
  • One skilled in the art would recognize variations in the sequence and would recognize variations in the appropriate reaction conditions from the analogous reactions shown or otherwise known that may be appropriately used in the above-described processes to make the compounds of formulas I and II herein.
  • The products of the reactions described herein are isolated by conventional means such as extraction, distillation, chromatography, and the like.
  • Pharmaceutically acceptable acid addition salts of the compounds suitable for use in methods of the invention include salts derived from nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like, as well as the salts derived from nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoroacetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the like. Also contemplated are salts of amino acids such as arginate and the like and gluconate, galacturonate, n-methyl glutamine, etc. (see, e.g., Berge et al., J. Pharmaceutical Science, 66: 1-19 (1977).
  • The acid addition salts of the basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner. The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base for purposes of the present invention.
  • A physician or veterinarian of ordinary skill readily determines a subject who is exhibiting symptoms of any one or more of the diseases described above. Regardless of the route of administration selected, the compounds suitable for use in methods of the invention are formulated into pharmaceutically acceptable unit dosage forms by conventional methods known to the pharmaceutical art. An effective but nontoxic quantity of the compound is employed in treatment. The compounds can be administered in enteral unit dosage forms, such as, for example, tablets, sustained release tablets, enteric coated tablets, capsules, sustained release capsules, enteric coated capsules, pills, powders, granules, solutions, and the like. They may also be administered parenterally, such as, for example, subcutaneously, intramuscularly, intradermally, intramammarally, intravenously, and other administrative methods known in the art.
  • Although it is possible for a compound suitable for use in methods of the invention to be administered alone in a unit dosage form, preferably the compound is administered in admixture as a pharmaceutical composition suitable for use in methods of the invention. A pharmaceutical composition comprises a pharmaceutically acceptable carrier and a compound. A pharmaceutically acceptable carrier includes, but is not limited to, physiological saline, ringers, phosphate buffered saline, and other carriers known in the art. Pharmaceutical compositions may also include additives, for example, stabilizers, antioxidants, colorants, excipients, binders, thickeners, dispersing agents, readsorpotion enhancers, buffers, surfactants, preservatives, emulsifiers, isotonizing agents, and diluents. Pharmaceutically acceptable carriers and additives are chosen such that side effects from the pharmaceutical compound are minimized and the performance of the compound is not canceled or inhibited to such an extent that treatment is ineffective.
  • Methods of preparing pharmaceutical compositions containing a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention are known to those of skill in the art. All methods may include the step of bringing the compound in association with the carrier and additives. In general, the formulations are prepared by uniformly and intimately bringing the compound of the invention into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired unit dosage form.
  • The ordinarily skilled physician or veterinarian will readily determine and prescribe the therapeutically effective amount of the compound to treat the disease for which treatment is administered. In so proceeding, the physician or veterinarian could employ relatively low dosages at first, subsequently increasing the dose until a maximum response is obtained. Typically, the particular disease, the severity of the disease, the compound to be administered, the route of administration, and the characteristics of the mammal to be treated, for example, age, sex, and weight, are considered in determining the effective amount to administer. Generally, a therapeutically effective amount of a compound to treat diabetes mellitus and related conditions and symptoms is in a range of about 0.1-100 mg/kg of a patient's body weight, more preferably in the range of about 0.5-50 mg/kg of a patient's body weight, per daily dose. The compound may be administered for periods of short and long duration.
  • A therapeutically effective amount of a compound for treating diabetes mellitus and related conditions and symptoms can be administered prior to, concurrently with, or after the onset of the disease or symptom. The compound can be administered to treat diabetes mellitus type I, diabetes mellitus type II, or obesity. Preferably, the compound can be administered to treat damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system. Still preferably, the compound can be administered to treat insulin resistance or hyperinsulinemia. Also preferably, the compound can be administered to treat diabetes-induced hypertension.
  • Moreover, the compound may be administered concurrently with insulin and/or a hypoglycemic compound to treat diabetes mellitus and related conditions and symptoms. The compound can be administered concurrently with insulin and/or a hypoglycemic compound to treat type I diabetes, type II diabetes, or obesity. Preferably, the compound can be administered concurrently with insulin and/or hypoglycemic compound to treat damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system. Still preferably, the compound can be administered concurrently with insulin and/or hypoglycemic compound to treat insulin resistance or hyperinsulinemia. Also preferably, the compound can be administered concurrently with insulin and/or hypoglycemic compound to treat diabetes-induced hypertension.
  • Typically, a compound may be administered concurrently with insulin to treat type I diabetes, type II diabetes, and related conditions and symptoms. For type II diabetes, insulin resistance, hyperinsulinemia, diabetes-induced hypertension, obesity, or damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system, a compound may be administered concurrently with a hypoglycemic compound instead of insulin. Alternatively, a compound may be administered concurrently with insulin and a hypoglycemic compound to treat type II diabetes, insulin resistance, hyperinsulinemia, diabetes-induced hypertension, obesity, or damage to blood vessels, eyes, kidneys, nerves, autonomic nervous system, skin, connective tissue, or immune system.
  • “Concurrent administration” and “concurrently administering” as used herein includes administering a compound suitable for use in methods of the invention and insulin and/or a hypoglycemic compound in admixture, such as, for example, in a pharmaceutical composition, or as separate compounds, such as, for example, separate pharmaceutical compositions administered consecutively, simultaneously, or at different times. Preferably, if the compound and insulin and/or hypoglycemic compound are administered separately, they are not administered so distant in time from each other that the compound and the insulin and/or hypoglycemic compound cannot interact and a lower dosage amount of insulin and/or hypoglycemic compound cannot be administered.
  • Suitable hypoglycemic compounds include, for example, metformin, acarbose, acetohexamide, glimepiride, tolazamide, glipizide, glyburide, tolbutamide, chlorpropamide, thiazolidinediones, alpha glucosidase inhibitors, biguanindine derivatives, and troglitazone, and a mixture thereof. Preferably, the hypoglycemic compound is tolbutamide.
  • A physician or veterinarian of ordinary skill readily determines a subject who is exhibiting symptoms of diabetes mellitus and related conditions and symptoms. Regardless of the route of administration selected, the compound and the insulin and/or hypoglycemic compound are formulated into pharmaceutically acceptable unit dosage forms by conventional methods known to the pharmaceutical art. An effective but nontoxic quantity of the compound and the insulin and/or hypoglycemic compound is employed in the treatment of diabetes mellitus and related conditions and symptoms. The compound and the insulin may be concurrently administered parenterally in admixture or may be concurrently administered enterally and/or parenterally separately. Similarly, the compound and the hypoglycemic compound may be concurrently administered enterally in admixture or may be administered enterally and/or parenterally separately. In some instances, the compound may be concurrently administered with insulin and a hypoglycemic compound. Such administration would involve enteral and/or parenteral administration as described above.
  • Parenteral administration includes subcutaneous, intramuscular, intradermal, intramammary, intravenous, and other administrative methods known in the art. Enteral administration includes tablets, sustained release tablets, enteric coated tablets, capsules, sustained release capsules, enteric coated capsules, pills, powders, granules, solutions, and the like.
  • A pharmaceutical composition suitable for administration includes a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention and, optionally, insulin and/or a hypoglycemic compound. A pharmaceutically acceptable carrier includes, but is not limited to, physiological saline, ringers, phosphate buffered saline, and other carriers known in the art. Pharmaceutical compositions may also include stabilizers, antioxidants, colorants, and diluents. Pharmaceutically acceptable carriers and additives are chosen such that side effects from the pharmaceutical compound are minimized and the performance of the compound is not canceled or inhibited to such an extent that treatment is ineffective.
  • Methods of preparing pharmaceutical compositions containing a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention and, optionally, insulin and/or a hypoglycemic compound, are known to those of skill in the art. All methods may include the step of bringing the compound and, optionally, a hypoglycemic compound in association with the carrier or additives. In general, the formulations are prepared by uniformly and intimately bringing the compound into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired unit dosage form.
  • The ordinarily skilled physician or veterinarian will readily determine and prescribe the therapeutically effective amount of the compound to treat the disease for which treatment is administered as described above.
  • When concurrently administering a compound with insulin and/or a hypoglycemic compound, the compound is administered in a range of about 0.1-100 mg per daily dose, typically 0.5-50 mg/kg of body weight per daily dose. A hypoglycemic compound is administered in a range of about 1 to 300 mg per daily dose, typically 1 to 200 mg per daily dose. Insulin is typically administered in a range of about 0.1 to 2 units/kg of a patient's body weight per daily dose. A “unit” of insulin refers to that amount of insulin necessary to lower the blood-sugar level in a rabbit by 50% in 1 to 3 hours.
  • The invention is further elaborated by the representative examples as follows. Such examples are not meant to be limiting but only illustrative of the invention.
  • EXAMPLES Example 1 Synthesis of morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine)
  • A mixture of morpholine (20 g) and toluene (100 mL) was stirred and heated using an oil bath set to 100° C. for 15 minutes. Pyridoxal hydrochloride (10 g) was then added and the reaction mixture was stirred at 100° C. for two hours. The reaction mixture was then concentrated by distillation of the toluene and morpholine. The concentrated reaction mixture was washed three times by adding toluene (100 mL) and removing the toluene by distillation. After washing, the residue was dissolved in toluene and filtered, and then hexane was added until precipitation began, at which time the reaction mixture was left overnight at room temperature. Crystals were collected and washed thoroughly with hexane.
  • Nuclear magnetic resonance spectroscopy (NMR) and mass spectroscopy confirmed the identity of the synthesized compound. The purity of the compound was analyzed by high performance liquid chromatography (HPLC) using a C-18 reverse phase column and water/acetonitrile as solvent (1-100% acetonitrile over 25 minutes).
  • Example 2 Synthesis of the 3-toluate of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-(p-toluoyloxy)-6-methylfuro(3,4-c)pyridine)
  • Anhydrous powdered potassium carbonate (5 g), acetone (100 mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11 g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The reaction mixture was cooled to between 0 and 5° C. and then p-toluoyl chloride (1.06 g, 6 mmoles) in acetone (20 mL) was added. This mixture was stirred for two hours, followed by filtering out the solid and evaporating the solution to dryness under vacuum. The residue was chromatographed on silica gel using a mixture of ethyl acetate and hexane as solvent.
  • The purified solid was analyzed by thin layer chromatography (TLC), NMR, and mass spectroscopy. The purity of the synthesized compound was confirmed by HPLC as described in Example 1.
  • Example 3 Synthesis of the 3-toluate of pyridoxal (2-methyl-3-toluoyloxy-4-formyl-5-hydroxymethylpyridine)
  • Anhydrous potassium carbonate (10 g), acetone (100 mL), and pyridoxal hydrochloride (2.03 g, 10 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5° C. and then p-toluoyl chloride (2.12 g, 12 mmoles) in acetone (20 mL) was added. The reaction mixture was stirred for two hours followed by filtering out the solid and evaporating the solution to dryness under vacuum. The residue was chromatographed on silica gel as described in Example 2.
  • The purified solid was analyzed by TLC, NMR, and mass spectroscopy. The purity of the compound was confirmed by HPLC as described in Example 1.
  • Alternative to the above-described method, the 3-toluate of pyridoxal is synthesized by reacting the compound of Example 2 with 80% aqueous acetic acid at 60° C. for 30 minutes, and then diluting with water and extracting by ethyl acetate. The ethyl acetate layer is washed with 5% aqueous sodium bicarbonate, dried with magnesium sulfate, and evaporated to dryness. The compound is also analyzed as described supra.
  • Example 4 Synthesis of 3-β-naphthoate of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-(β-naphthoyloxy)-6-methylfuro(3,4-c)pyridine)
  • Anhydrous powdered potassium carbonate (5 g), acetone (100 mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11 g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5° C. and then β-naphthoyl chloride (1.06 g, 6 mmoles) in acetone (20 mL) was added. The reaction mixture was stirred for two hours, and then the solid was filtered out and the solution was evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.
  • The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • Example 5 Synthesis of the 3-β-naphthoate of pyridoxal (2-methyl-3-β-naphthoyloxy-4-formyl-5-hydroxymethylpyridine)
  • Anhydrous potassium carbonate (10 g), acetone (100 mL), and pyridoxal hydrochloride (2.03 g, 10 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5° C. and then β-naphthoyl chloride (2.12 g, 12 mmoles) in acetone (20 mL) was added and the mixture was stirred for two hours. The solid was filtered out and the solution was evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.
  • The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • Alternative to the above-described synthesis, the 3-β-naphthoate of pyridoxal is prepared by reacting the compound of Example 4 with 80% aqueous acetic acid at 60° C. for 30 minutes, followed by diluting with water and extracting by ethyl acetate. The ethyl acetate layer is then washed with 5% aqueous sodium bicarbonate, dried with magnesium sulfate, and evaporated to dryness. The compound is also analyzed as described supra.
  • Example 6 Synthesis of 3-pivaloyl of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-pivaloyloxy)-6-methylfuro(3,4-c)pyridine)
  • Anhydrous powdered potassium carbonate (5 g), acetone (100 mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11 g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5° C. and then pivaloyl chloride (trimethylacetyl chloride) (720 mg, 6 mmoles) in acetone (20 mL) was added. The reaction mixture was stirred for two hours. The solid was then filtered out and the solution was evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.
  • The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • Example 7 Synthesis of 3-dimethylcarbamoyl of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-(dimethylcarbamoyloxy)-6-methylfuro(3,4-c)pyridine)
  • Anhydrous powdered potassium carbonate (5 g), acetone (100 mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11 g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5° C. and then dimethylcarbamoyl chloride (642 mg, 6 mmoles) in acetone (20 mL) was added. The reaction mixture was stirred for two hours. The solid was then filtered out and the solution was evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.
  • The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • Example 8 Synthesis of 3-acetylsalicyloyl of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-acetylsalicyloxy)-6-methylfuro(3,4-c)pyridine)
  • Anhydrous powdered potassium carbonate (5 g), acetone (100 mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11 g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5° C. and then acetylsalicyloyl chloride (1.09 g, 6 mmoles) in acetone (20 mL) was added. The reaction mixture was stirred for two hours. The solid was then filtered out and the solution was evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.
  • The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.
  • Example 9 Control of Glucose and Insulin Levels in Subjects Having Type I Diabetes by Administration of Pyridoxal-5′-Phosphate
  • To determine the effect of a compound suitable for use in methods of the invention on glucose and insulin levels, rats are administered pyridoxal-5′-phosphate, either alone or in combination with insulin, after being experimentally induced with type I diabetes, and their urine and blood glucose and insulin levels are determined.
  • Male Sprague-Dawley (Charles River Laboratories, Montreal, Canada) rats weighing approximately 200 g are randomly separated into control and experimental groups. All experimental animals are given an intravenous injection of 0.1 M citrate buffered streptozotocin (pH 4.5) at a dosage of 65 mg/kg of body weight to induce diabetes mellitus. All control animals receive an intravenous injection of 0.1 M citrate buffer (pH 4.5) alone.
  • One experimental group of rats also receives daily doses of pyridoxal-5′-phosphate (25 mg/kg body weight) (Aldrich Canada Ltd., Ontario, Canada). A second experimental group receives daily subcutanteous injections of Humulin® N (3 units per day) (insulin isophene, human biosynthetic; Eli Lilly and Co., Indianapolis, Ind.). A third experimental group receives both daily subcutaneous injections of Humulin® N (3 units per day) and a daily dose of pyridoxal-5′-phosphate (25 mg/kg body weight). A fourth experimental group receives daily subcutaneous injections of Humulin® N (1.5 units per day). A fifth experimental group receives both daily subcutaneous injections of Humulin® N (1.5 units per day) and a daily dose of pyridoxal-5′-phosphate (25 mg/kg body weight).
  • All animals are fed rat chow and water ad libitum. Plasma glucose levels were done using the Infinity Glucose Reagent® (Sigma Diagnostics, St. Louis, Mo.).
  • The experimental group of rats that receive daily doses of pyridoxal-5′-phosphate and daily injections of Humulin® N show reduced levels of glucose and insulin in blood and urine samples when compared with the group of rats that receive daily injections of Humulin® N without receiving daily doses of pyridoxal-5′-phosphate.
  • FIG. 1 demonstrates the effect of P-5-P and insulin alone or in combination on increased plasma glucose levels in a Type I diabetes indication of hyperglycemia. It can be seen in FIG. 1 that Insulin (1 unit and 3 unit) and P-5-P significantly reduced the plasma glucose levels when compared to diabetic group. Moreover a decreased dose of insulin was needed in the presence of P-5-P to produce the same effect as with a full dose of 3 units of insulin.
  • FIG. 2 demonstrates the effect of P-5-P and insulin alone or in combination on plasma glucose levels in a Type I diabetes indication of hyperglycemia. It can be seen in FIG. 2 that Insulin (1 unit and 3 unit) and P-5-P significantly increased the plasma insulin levels when compared to diabetic group. Moreover a decreased dose of insulin was needed in the presence of P-5-P to produce the same effect as with a full dose of 3 units of insulin.
  • Example 10 Control of Glucose and Insulin Levels in Subjects Having Type II Diabetes by Administration of Pyridoxal-5′-Phosphate
  • To determine the effect of a compound suitable for use in methods of the invention on glucose and insulin levels, as well as increases in systolic blood pressure, rats having type II diabetes are administered pyridoxal-5′-phosphate, either alone or in combination with sucrose and/or tolbutamide, and their systolic blood pressure, urine and blood glucose and insulin levels are determined. Acarbose reduces blood pressure in sucrose induced hypertension in rats. Madar Z et al: Isr J Med Sci; 33:153-159.
  • As described by Madar et al., Acarbose reduces blood pressure in sucrose induced hypertension in rats. Madar Z et al: Isr J Med Sci; 33:153-159, a high sucrose or fructose diet for a prolonged period is one technique used to induce Type II diabetes, specifically hypertension associated with hyperglycemia and hyperinsulinemia in animals.
  • Male Sprague-Dawley (Charles River Laboratories, Montreal, Canada) rats weighing approximately 200 g are randomly separated into the following groups with each group having 5 animals:
    • a) The control group that was fed a normal diet and provided with drinking water
    • b) The sucrose group that was fed 35% sucrose (35 gm sucrose/100 ml of drinking water/day) with an average intake of 150 ml/rat/day
    • c) The sucrose+P-5-P group that was fed sucrose as stated in b above and 25 mg/kg orally/day of P-5-P
    • d) The sucrose+tolbutamide group that was fed sucrose as stated in b above and administered 40 mg/kg orally/day of tolbutamide
    • e) The sucrose+P-5-P+tolbutamide group that was fed sucrose as stated in b above, 25 mg/kg orally/day of P-5-P, and administered 40 mg/kg orally/day of tolbutamide
    • f) The sucrose+P-5-P+tolbutamide group that was fed sucrose as stated in b above, 25 mg/kg orally/day of P-5-P, and administered 20 mg/kg, orally/day of tolbutamide
    • g) The sucrose+tolbutamide group that was fed sucrose as stated in b above and 20 mg/kg orally/day of tolbutamide.
  • Total duration of the study was 16 weeks. Plasma insulin levels were measured using Rat Insulin RIA Kit (Linco Research Inc., St. Charles, Mo.). Plasma glucose levels were done using the Infinity Glucose Reagent® (Sigma Diagnostics, St. Louis, Mo.). Blood pressure was measured using the tail cuff method, (see, Madar et al., Acarbose reduces blood pressure in sucrose induced hypertension in rats. Madar Z et al: Isr J Med Sci; 33:153-159).
  • FIG. 3 demonstrates the effect of P-5-P and tolbutamide alone or in combination on increased plasma glucose levels in a Type II diabetes indication of hyperglycemia. It can be seen in FIG. 3 that tolbutamide (40 and 20 mg/kg) and P-5-P significantly decreased the plasma glucose levels when compared to diabetic group. Moreover a decreased dose of tolbutamide was needed in the presence of P-5-P to produce the same effect as with a full dose of 40 mg/kg tolbutamide.
  • FIG. 4 demonstrates the effect of P-5-P and tolbutamide alone or in combination on increased plasma insulin levels in a Type II diabetes indication of hyperglycemia. It can be seen in FIG. 4 that tolbutamide (40 and 20 mg/kg) and P-5-P significantly decreased the plasma insulin levels when compared to diabetic group. Moreover a decreased dose of tolbutamide was needed in the presence of P-5-P to produce the same or better effect as with a full dose of 40 mg/kg tolbutamide.
  • FIG. 5 demonstrates the effect of P-5-P and tolbutamide alone or in combination on increased systolic blood pressure in a Type II diabetes indication of hyperglycemia. It can be seen in FIG. 5 that that P-5-P significantly decreased the rise in systolic blood pressure when compared to diabetic and tolbutamide treatment groups. Moreover when the rats were treated with P-5-P and tolbutamide (40 mg/kg), the decrease in systolic blood pressure was significantly greater when compared to rats treated with P-5-P or tolbutamide alone.
  • It should be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing “a compound” includes a mixture of two or more compounds. Similarly, reference to “a compound” includes a mixture having more than one compound.
  • Although embodiments of the invention have been described above, it is not limited thereto, and it will be apparent to persons skilled in the art that numerous modifications and variations form part of the present invention insofar as they do not depart from the spirit, nature, and scope of the claimed and described invention.

Claims (23)

1-27. (canceled)
28. A method of treating insulin resistance in a mammal comprising: administering to the mammal a therapeutically effective amount of a compound selected from the group consisting of pyridoxal-5′-phosphate, pyridoxamine, pyridoxal, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof.
29. A method according to claim 28, wherein the 3-acylated pyridoxal analogue is a compound of the formula
Figure US20090018052A1-20090115-C00008
wherein
R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.
30. A method according to claim 28, wherein the 3-acylated pyridoxal analogue is a compound of the formula
Figure US20090018052A1-20090115-C00009
wherein
R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and
R2 is of the formula
Figure US20090018052A1-20090115-C00010
wherein R3 and R4 are each independently alkyl, alkenyl, cycloalkyl, aryl, or, when R3 and R4 are taken together to form a ring with the nitrogen atom, which may optionally be interrupted by a heteroatom; or
a pharmaceutically acceptable acid addition salt thereof.
31. The method of claim 28 comprising: concurrently administering insulin with the compound.
32. A method according to claim 31, wherein the 3-acylated pyridoxal analogue is a compound of the formula
Figure US20090018052A1-20090115-C00011
wherein
R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.
33. A method according to claim 31, wherein the 3-acylated pyridoxal analogue is a compound of the formula
Figure US20090018052A1-20090115-C00012
wherein
R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and
R2 is of the formula
Figure US20090018052A1-20090115-C00013
wherein R3 and R4 are each independently alkyl, alkenyl, cycloalkyl, aryl, or, when R3 and R4 are taken together to form a ring with the nitrogen atom, which may optionally be interrupted by a heteroatom; or
a pharmaceutically acceptable acid addition salt thereof.
34. The method of claim 28 comprising: concurrently administering a hypoglycemic compound with the compound selected.
35. A method according to claim 34, wherein the 3-acylated pyridoxal analogue is a compound of the formula
Figure US20090018052A1-20090115-C00014
wherein
R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.
36. A method according to claim 34, wherein the 3-acylated pyridoxal analogue is a compound of the formula
Figure US20090018052A1-20090115-C00015
wherein
R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and
R2 is of the formula
Figure US20090018052A1-20090115-C00016
wherein R3 and R4 are each independently alkyl, alkenyl, cycloalkyl, aryl, or, when R3 and R4 are taken together to form a ring with the nitrogen atom, which may optionally be interrupted by a heteroatom; or
a pharmaceutically acceptable acid addition salt thereof.
37. A method according to claim 34, wherein the hypoglycemic compound is acarbose, acetohexamide, chlorpropamide, glimepiride, glipizide, glyburide, metformin, tolazamide, tolbutamide, or a mixture thereof.
38. A method according to claim 34, wherein the hypoglycemic compound is tolbutamide.
39. A method according to claim 34 further comprising:
concurrently administering to the mammal the compound and the hypoglycemic compound in combination with a therapeutically effective amount of insulin.
40. A method of treating hyperinsulinemia in a mammal comprising: administering to the mammal a therapeutically effective amount of a compound selected from the group consisting of pyridoxal-5′-phosphate, pyridoxamine, pyridoxal, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof,
wherein the 3-acylated pyridoxal analogue is a compound of the formula
Figure US20090018052A1-20090115-C00017
wherein R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and
wherein the 3-acylated pyridoxal analogue is a compound of the formula
Figure US20090018052A1-20090115-C00018
wherein
R1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and
R2 is of the formula
Figure US20090018052A1-20090115-C00019
wherein R3 and R4 are each independently alkyl, alkenyl, cycloalkyl, aryl, or, when R3, and R4 are taken together to form a ring with the nitrogen atom, which may optionally be interrupted by a heteroatom; or
a pharmaceutically acceptable acid addition salt thereof.
41-42. (canceled)
43. The method of claim 40 comprising: concurrently administering insulin with the compound.
44-45. (canceled)
46. The method of claim 43 comprising: concurrently administering hypoglycemic compound with the compound.
47-48. (canceled)
49. A method according to claim 46, wherein the hypoglycemic compound is acarbose, acetohexamide, chlorpropamide, glimepiride, glipizide, glyburide, metformin, tolazamide, tolbutamide, or a mixture thereof.
50. A method according to claim 46, wherein the hypoglycemic compound is tolbutamide.
51. A method according to claim 46 further comprising:
concurrently administering to the mammal the compound and the hypoglycemic compound in combination with a therapeutically effective amount of insulin.
52-75. (canceled)
US11/931,672 1999-07-13 2007-10-31 Treatment of Diabetes and Related Pathologies Abandoned US20090018052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/931,672 US20090018052A1 (en) 1999-07-13 2007-10-31 Treatment of Diabetes and Related Pathologies

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14346699P 1999-07-13 1999-07-13
US09/615,201 US6489345B1 (en) 1999-07-13 2000-07-13 Treatment of diabetes and related pathologies
US10/215,739 US20030008847A1 (en) 1999-07-13 2002-08-08 Treatment of diabetes and related pathologies
US10/881,864 US20040235907A1 (en) 1999-07-13 2004-06-30 Treatment of diabetes and related pathologies
US11/931,672 US20090018052A1 (en) 1999-07-13 2007-10-31 Treatment of Diabetes and Related Pathologies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/881,864 Continuation US20040235907A1 (en) 1999-07-13 2004-06-30 Treatment of diabetes and related pathologies

Publications (1)

Publication Number Publication Date
US20090018052A1 true US20090018052A1 (en) 2009-01-15

Family

ID=22504214

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/615,201 Expired - Fee Related US6489345B1 (en) 1999-07-13 2000-07-13 Treatment of diabetes and related pathologies
US10/215,739 Abandoned US20030008847A1 (en) 1999-07-13 2002-08-08 Treatment of diabetes and related pathologies
US10/881,864 Abandoned US20040235907A1 (en) 1999-07-13 2004-06-30 Treatment of diabetes and related pathologies
US11/931,672 Abandoned US20090018052A1 (en) 1999-07-13 2007-10-31 Treatment of Diabetes and Related Pathologies

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/615,201 Expired - Fee Related US6489345B1 (en) 1999-07-13 2000-07-13 Treatment of diabetes and related pathologies
US10/215,739 Abandoned US20030008847A1 (en) 1999-07-13 2002-08-08 Treatment of diabetes and related pathologies
US10/881,864 Abandoned US20040235907A1 (en) 1999-07-13 2004-06-30 Treatment of diabetes and related pathologies

Country Status (5)

Country Link
US (4) US6489345B1 (en)
EP (1) EP1196171A2 (en)
AU (1) AU5840200A (en)
CA (1) CA2376029A1 (en)
WO (1) WO2001003682A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750209B1 (en) * 1995-09-12 2004-06-15 Kansas University Medical Center Advanced glycation end-product intermediaries and post-amadori inhibition
US6489345B1 (en) * 1999-07-13 2002-12-03 Medicure, Inc. Treatment of diabetes and related pathologies
US7442689B2 (en) * 2000-02-29 2008-10-28 Medicure International Inc. Cardioprotective phosphonates and malonates
US6897228B2 (en) 2000-07-07 2005-05-24 Medicure International Inc. Pyridoxine and pyridoxal analogues: new uses
AU2004224562A1 (en) * 2003-03-27 2004-10-07 Medicure Inc. Modulation of cell death
CA2520422A1 (en) * 2003-03-27 2004-10-07 Medicure Inc. Compositions for treating angina
US20090082407A1 (en) * 2004-06-18 2009-03-26 Biostratum, Inc. Pyridoxamine for the Treatment of Diabetic Kidney Disease
PL1643999T3 (en) * 2003-06-20 2012-02-29 Nephrogenex Inc Pyridoxamine for use in the treatment of diabetic neprhopathy in type ii diabetes
US20050054731A1 (en) * 2003-09-08 2005-03-10 Franco Folli Multi-system therapy for diabetes, the metabolic syndrome and obesity
WO2005077902A2 (en) * 2004-02-09 2005-08-25 Biostratum, Inc. Methods for the synthesis of pyridoxamine
US20080032952A1 (en) * 2004-07-09 2008-02-07 Marjorie Zettler Combination Therapies Employing Nicotinic Acid Derivatives or Fibric Acid Derivatives
EP1773376A4 (en) * 2004-08-03 2009-07-01 Emisphere Tech Inc Antidiabetic oral insulin-biguanide combination
WO2006015489A1 (en) * 2004-08-10 2006-02-16 Medicure International Inc. Combination therapies employing vitamin b6 related compounds and ace inhibitors and uses thereof for the treatment of diabetic disorders
US20070060549A1 (en) * 2004-08-10 2007-03-15 Friesen Albert D Combination therapies employing ace inhibitors and uses thereof for the treatment of diabetic disorders
US7459468B2 (en) 2004-10-28 2008-12-02 Medicure International, Inc. Aryl sulfonic pyridoxines as antiplatelet agents
JP2008517956A (en) 2004-10-28 2008-05-29 メディキュア・インターナショナル・インコーポレーテッド Dual antiplatelet / anticoagulant pyridoxine analogues
JP2008521756A (en) * 2004-11-26 2008-06-26 メディキュア インターナショナル インコーポレイテッド Novel formulation and preparation method of pyridoxal-5'-phosphate
WO2006056079A1 (en) * 2004-11-26 2006-06-01 Medicure International Inc. Formulations of pyridoxal -5'-phosphate and methods of preparation
CA2593793A1 (en) * 2005-01-05 2006-07-13 Medicure International Inc. Compounds and methods for regulating triglyceride levels
CA2503087A1 (en) * 2005-03-30 2006-09-30 Medicure International Inc. Intravenous formulations of pyridoxal 5'-phosphate and method of preparation
EP1906934A4 (en) * 2005-07-14 2012-03-07 Franco Folli Daily dosage regimen for treating diabetes, obsity, metabolic syndrome and polycystic ovary syndrome
US20070249562A1 (en) * 2006-04-25 2007-10-25 Friesen Albert D Treatment of atrial fibrillation

Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3206463A (en) * 1965-09-14 Pyridoxine aspartate and its process of preparation
US3282778A (en) * 1960-09-02 1966-11-01 Lohel Mervyn Joseph Medicinal preparation containing acetyl salicylic acid and a pyridoxine compound
US3910921A (en) * 1970-01-08 1975-10-07 Soc D Etudes Prod Chimique Papaverine monopyridoxal phosphate
US3987177A (en) * 1974-06-27 1976-10-19 Synthelabo Vincaminic acid esters
US4032534A (en) * 1973-03-22 1977-06-28 Ferlus-Chimie S.A. Certain 2-(2-thioethyl)thiazolidine-4-carboxylic acids
US4036844A (en) * 1972-04-04 1977-07-19 Beecham Group Limited Aryloxypyridines
US4053607A (en) * 1972-04-04 1977-10-11 Beecham Group Limited Aryloxypyridine for treating hyperglycaemia
US4137316A (en) * 1976-05-11 1979-01-30 Societe D'etudes De Produits Chimiques Anti-depressive vincamine pyridoxal-5-phosphate
US4167562A (en) * 1978-08-28 1979-09-11 Evers H Ray Method and composition for treating arteriosclerosis
US4361570A (en) * 1980-09-22 1982-11-30 Istituto Luso Farmaco D'italia S.P.A. Use of pyridoxine α-ketoglutarate in the prophylaxis of hyperlacticacidaemia
US4369172A (en) * 1981-12-18 1983-01-18 Forest Laboratories Inc. Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose
US4374841A (en) * 1980-05-19 1983-02-22 S. A. Labaz N.V. Pyridoxine derivatives, and use in therapeutics
US4513771A (en) * 1983-11-07 1985-04-30 General Motors Corporation Air valve
US4567179A (en) * 1984-10-11 1986-01-28 Pfizer, Inc. Antiinflammatory salts of piroxicam
US4569938A (en) * 1983-11-17 1986-02-11 Societe De Conseils De Recherches Et D'applications Scientifiques Diuretic, antihypertensive and antihistaminic 7-carboxymethoxy-furo-(3,4-c)-pyridine derivatives
US4569939A (en) * 1983-11-16 1986-02-11 Societe De Conseils De Recherches Et D'applications Scientifiques Diuretic 6-vinyl-furo-(3,4-c)-pyridine derivatives
US4581363A (en) * 1983-04-05 1986-04-08 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Furo-(3,4-C)-pyridine derivatives and therapeutic compositions containing the same
US4605741A (en) * 1985-11-13 1986-08-12 Lisapharma Spa Pharmaceutically active salt derivative of 3-hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde phosphate
US4730042A (en) * 1985-06-01 1988-03-08 Basf Aktiengesellschaft Compounds 1 or 3-hydroxy-4-benzyl-6-methyl-7-(4-isopropylamino-butoxy)-1,3-dihydro[3,4-C]pyridine and 2-methyl-3-(4-isopropyl-aminobutoxy)-4-(1'-morphilinomethyl)-5-hydroxymethyl-6-benzyl pyridine, useful for treating cardiac arrhythmias
US4735950A (en) * 1983-04-05 1988-04-05 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S) Furo-(3,4-C)-pyridine derivatives and therapeutic composition containing the same
US4735956A (en) * 1985-09-13 1988-04-05 Merck & Co., Inc. Certain 1,4-dihydro-2,6-di-lower hydrocarbyl-4-heterocyclic-3,5-pyridine dicarboxylates which are useful as calcium channel blockers
US4837239A (en) * 1985-08-23 1989-06-06 Syntex (U.S.A.) Inc. Cardiotonic phosphodiesterase inhibitors complexed with water soluble vitamins
US4843071A (en) * 1986-12-05 1989-06-27 Serotonin Industries Of Charleston Method and composition for treating obesity, drug abuse, and narcolepsy
US4962121A (en) * 1987-04-22 1990-10-09 Anders Hamberger Method and composition for treating neurological diseases such as migraine
US5001115A (en) * 1989-05-17 1991-03-19 University Of Florida Prodrugs of biologically active hydroxyaromatic compounds
US5053396A (en) * 1985-08-27 1991-10-01 Blass David H Therapeutic composition
US5118505A (en) * 1988-01-28 1992-06-02 Koeltringer Peter Combination preparation for the treatment of nerve cell and nerve fibre diseases and injury
US5130324A (en) * 1984-03-19 1992-07-14 The Rockefeller University 2-alkylidene-aminoguanidines and methods of use therefor
US5132115A (en) * 1986-04-17 1992-07-21 Karin Wolter Planar therapeutic system, process for its production and utilization
US5210083A (en) * 1986-07-17 1993-05-11 Ed. Geistlich Sohne A.G. Fur Chemische Industrie Pharmaceutical compositions
US5213813A (en) * 1987-05-29 1993-05-25 The University Of Vermont Pyridoxal-5'-phosphate as an in vitro blood platelet stabilizer
US5254557A (en) * 1988-05-09 1993-10-19 Beecham Group P.L.C. Compound and treatment
US5254572A (en) * 1987-11-27 1993-10-19 Vesta Medicines (Pty) Ltd. Method and composition for supplementing vitamin B6 where the PN-PLP pathway is disturbed
US5278154A (en) * 1991-07-03 1994-01-11 Adir Et Compagnie New vanadium complexes
US5288716A (en) * 1987-02-18 1994-02-22 Ulrich Speck Use of pyridoxine derivatives in the prevention and treatment of hyperlipidaemia and atherosclerosis
US5326757A (en) * 1992-01-06 1994-07-05 Health Maintenance Programs, Inc. Pharmaceutically active antioxidant containing composition and the method of its use to prevent and treat restenosis following angioplasty
US5328453A (en) * 1988-12-21 1994-07-12 Drug Delivery Systems Inc. Method for enhancing transdermal drug delivery of electrical drug applicators
US5385937A (en) * 1991-04-10 1995-01-31 Brigham & Women's Hospital Nitrosation of homocysteine as a method for treating homocysteinemia
US5420112A (en) * 1992-06-12 1995-05-30 Lewis; Michael E. Prevention and treatment of peripheral neuropathy
US5441972A (en) * 1993-04-02 1995-08-15 Senju Pharmaceutical Co., Ltd. Pharmaceutical use of pyridoxal derivative
US5504090A (en) * 1994-03-30 1996-04-02 Trustees Of The University Of Pennsylvania Compositions and methods for the prevention and treatment of ischemia-reperfusion organ injury
US5563126A (en) * 1986-11-20 1996-10-08 Metabolite Laboratories Method for treatment and prevention of deficiencies of vitamins B12, folic acid, and B6
US5569459A (en) * 1995-02-15 1996-10-29 Bio-Virus Research Incorporated Pharmaceutical compositions for the management of premenstrual syndrome and alleviation of menopausal disorders
US5569648A (en) * 1992-06-12 1996-10-29 Cephalon, Inc. Prevention and treatment of peripheral neuropathy
US5631271A (en) * 1986-11-29 1997-05-20 Serfontein; Willem J. Methods and preparations for the treatment and prophylaxis of metabolic disturbances
US5728684A (en) * 1991-05-15 1998-03-17 Yale University Determination of prodrugs metabolizable by the liver and therapeutic use thereof
US5733916A (en) * 1995-03-24 1998-03-31 The Trustees Of The University Of Pennsylvania Prevention and treatment of ischemia-reperfusion and endotoxin-related injury using adenosine and purino receptor antagonists
US5733884A (en) * 1995-11-07 1998-03-31 Nestec Ltd. Enteral formulation designed for optimized wound healing
US5770215A (en) * 1997-01-06 1998-06-23 Moshyedi; Emil Payman Multivitamin/vascular occlusion inhibiting composition
US5795873A (en) * 1992-12-29 1998-08-18 Metabolite Laboratories, Inc. Method for treatment and prevention of deficiencies of vitamins B12, folic acid and B6
US5804594A (en) * 1997-01-22 1998-09-08 Murad; Howard Pharmaceutical compositions and methods for improving wrinkles and other skin conditions
US5804163A (en) * 1992-11-12 1998-09-08 Magnetic Research, Inc. Contrast agents for magnetic resonance imaging aminosaccharide
US5858017A (en) * 1994-12-12 1999-01-12 Omeros Medical Systems, Inc. Urologic irrigation solution and method for inhibition of pain, inflammation and spasm
US5859051A (en) * 1996-02-02 1999-01-12 Merck & Co., Inc. Antidiabetic agents
US5874443A (en) * 1995-10-19 1999-02-23 Trega Biosciences, Inc. Isoquinoline derivatives and isoquinoline combinatorial libraries
US5874420A (en) * 1995-12-26 1999-02-23 Allegheny University Of The Health Sciences Process for regulating vagal tone
US5888514A (en) * 1997-05-23 1999-03-30 Weisman; Bernard Natural composition for treating bone or joint inflammation
US6043259A (en) * 1998-07-09 2000-03-28 Medicure Inc. Treatment of cardiovascular and related pathologies
US6051587A (en) * 1998-04-16 2000-04-18 Medicure, Inc. Treatment of iatrogenic and age-related hypertension and pharmaceutical compositions useful therein
US6103748A (en) * 1998-06-19 2000-08-15 Bryan; Thomas B. Method of treating an autoimmune disorder
US6228858B1 (en) * 1995-09-12 2001-05-08 University Of Kansas Medical Center Advanced glycation end-product intermediaries and post-amadori inhibition
US6339085B1 (en) * 1999-03-08 2002-01-15 The University Of Manitoba Therapeutics for cardiovascular and related diseases
US6342500B1 (en) * 1999-03-05 2002-01-29 Kansas University Medical Center Post-Amadori inhibitors of Advanced Glycation reactions
US6417204B1 (en) * 2000-07-07 2002-07-09 Medicure International Inc. Pyridoxine AMD pyridoxal analogues: cardiovascular therapeutics
US6548519B1 (en) * 2001-07-06 2003-04-15 Medicure International Inc. Pyridoxine and pyridoxal analogues: novel uses
US6586414B2 (en) * 2000-03-28 2003-07-01 Medicure International Inc. Treatment of cerebrovascular disease
US6605612B2 (en) * 2000-02-29 2003-08-12 Medicure International Inc. Cardioprotective phosohonates and malonates
US6677356B1 (en) * 1999-08-24 2004-01-13 Medicure International Inc. Treatment of cardiovascular and related pathologies
US20040121988A1 (en) * 2001-03-28 2004-06-24 Medicure International Inc. Treatment of cerebrovascular disease
US20040171588A1 (en) * 2000-02-29 2004-09-02 Wasimul Haque Cardioprotective phosphonates and malonates
US20040186077A1 (en) * 2003-03-17 2004-09-23 Medicure International Inc. Novel heteroaryl phosphonates as cardioprotective agents
US20050107443A1 (en) * 2000-07-07 2005-05-19 Medicure International Inc. Pyridoxine and pyridoxal analogues: new uses
US20060019929A1 (en) * 2004-07-07 2006-01-26 Albert Friesen Combination therapies employing platelet aggregation drugs
US20060035864A1 (en) * 2004-08-10 2006-02-16 Friesen Albert D Combination therapies employing ace inhibitors and uses thereof for the treatment of diabetic disorders
US20060094761A1 (en) * 2004-10-28 2006-05-04 Wasimul Haque Dual antiplatelet/anticoagulant pyridoxine analogs
US20060094748A1 (en) * 2004-10-28 2006-05-04 Medicure International Inc. Aryl sulfonic pyridoxines as antiplatelet agents
US20060094749A1 (en) * 2004-10-28 2006-05-04 Medicure International Inc. Substituted pyridoxines as anti-platelet agents
US20060148763A1 (en) * 2005-01-05 2006-07-06 Friesen Albert D Compounds and methods for regulating triglyceride levels
US20070032456A1 (en) * 2003-03-27 2007-02-08 Friesen Albert D Modulation of cell death
US20070060549A1 (en) * 2004-08-10 2007-03-15 Friesen Albert D Combination therapies employing ace inhibitors and uses thereof for the treatment of diabetic disorders
US20070149485A1 (en) * 2005-11-28 2007-06-28 Medicure International, Inc. Selected dosage for the treatment of cardiovascular and related pathologies
US20070167411A1 (en) * 2003-03-27 2007-07-19 Medicure International Inc. Compositions for treating angina
US20070243249A1 (en) * 2004-11-26 2007-10-18 Friesen Albert D Novel formulation of pyridoxal-5'-phosphate and method of preparation
US20070249562A1 (en) * 2006-04-25 2007-10-25 Friesen Albert D Treatment of atrial fibrillation

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR846376A (en) 1938-08-23 1939-09-15 Air navigation and aerial bombardment equipment
GB966805A (en) 1961-05-15 1964-08-19 Merck & Co Inc Process for the preparation of 2-methyl-3-hydroxypyridines
BE634408A (en) 1962-07-05
GB1228142A (en) 1967-03-31 1971-04-15
DE1767499A1 (en) 1968-05-16 1971-09-09 Merck Patent Gmbh Process for the production of durable vitamin preparations
ES360566A1 (en) 1968-11-22 1970-10-16 Made Labor Sa Pyridoxine alpha-ketoglutarate and derivatives thereof
GB1236531A (en) 1969-02-12 1971-06-23 Soc D Etudes Prod Chimique Adenin derivative
GB1297080A (en) 1970-04-17 1972-11-22
FR2101010A1 (en) 1970-08-06 1972-03-31 Lyocentre Sparteine mono-and dipyridoxinates and prepn - as tonics for cardiova disorders
GB1493993A (en) 1975-05-16 1977-12-07 Howard A Dietary supplement and dietary methods employing said supplement for the treatment of obesity
GB1360536A (en) 1972-04-25 1974-07-17 Soc D Etudes Prod Chimique Pyridoxyl-l-aspartic acid salt
BE790118A (en) 1972-10-09 1973-02-01 Made Labor Sa PYRIDOXAL AND PYRIDOXAMINE ALPHA-CETOGLUTARATE DERIVATIVES,
FR2255883A1 (en) 1973-12-28 1975-07-25 Centre Etd Ind Pharma Clofibric acid-vitamin B6 compsns. - with synergistic hypocholesterolaemic and normolipaemic activity
FR2275209A1 (en) 1974-06-21 1976-01-16 Synthelabo Oxoalkyl esters of vincamine acids - and their pharm. acceptable salts for use in medicine
DE2461742C2 (en) 1974-12-28 1983-01-27 Steigerwald Arzneimittelwerk Gmbh, 6100 Darmstadt Pyridoxine-5'-phosphoric acid ester derivatives and their preparation and pharmaceuticals containing these compounds
DE2717478C2 (en) * 1977-04-20 1984-08-16 Basf Ag, 6700 Ludwigshafen Process for the preparation of pyridoxine
JPS5417130A (en) 1977-07-08 1979-02-08 Chugai Pharmaceut Co Ltd Remedy for cardio-vasocular diseases
BE863754A (en) 1978-02-08 1978-05-29 Dechamps Pierre NEW VINCAMINE DERIVATIVES FOR USE AS BRAIN CIRCULATION REGULATORS
FR2428640A1 (en) 1978-06-12 1980-01-11 Parcor 5-Piperazino:alkoxy:methyl-pyridine cpds. - with antiinflammatory, diuretic and vaso-protective properties
CA1184499A (en) 1981-06-29 1985-03-26 David C. Madsen Nutritional composition for management of hepatic failure
US4528197A (en) 1983-01-26 1985-07-09 Kabivitrum Ab Controlled triglyceride nutrition for hypercatabolic mammals
US4515771A (en) 1983-04-11 1985-05-07 Fine Daniel H Composition and method for the preventative treatment of dental disease and apparatus for dispensing said composition
IT1212792B (en) 1983-11-30 1989-11-30 Egidio Aldo Moja DIETARY SUPPLEMENT AND PRE-PACKED FOOD THAT CONTAINS IT PREPARATION PROCEDURE AND METHOD OF ADMINISTRATION
US5272165A (en) 1984-03-19 1993-12-21 The Rockefeller University 2-alkylidene-aminoguanidines and methods of use therefor
NZ222664A (en) 1986-11-29 1990-06-26 Vesta Med Pty Ltd Pharmaceutical compositions containing pyridoxal as a source of vitamin b6
DE3705549A1 (en) 1987-02-18 1988-09-01 Ulrich Speck USE OF PYRIDOXINE DERIVATIVES IN THE PROPHYLAXIS AND THERAPY OF HYPERLIPIDAEMIA AND ATHEROSCLEROSIS
NO179479C (en) 1988-03-11 1996-10-16 Teikoku Seiyaku Kk Process for the preparation of an intravaginal pharmaceutical preparation
FR2641189B1 (en) 1988-06-20 1991-05-10 Timol Mamoojee PHARMACEUTICAL COMPOSITIONS CONTAINING ACETYL SALICYLIC ACID AND VITAMIN B6
GB8918368D0 (en) 1989-08-11 1989-09-20 Amco Chemie Gmbh Compositions for treating obstructive airways disease
DE4016963A1 (en) 1990-05-25 1991-11-28 Steigerwald Arzneimittelwerk USE OF MAGNESIUM PYRIDOXAL 5'-PHOSPHATE GLUTAMINATE TO PREVENT ILLNESSES ARISING AS A RESULT OF DISSOLUTION
GB2254556B (en) 1991-04-11 1995-04-12 Fisons Plc Formulations containing linolenic acid
IT1263957B (en) 1993-02-23 1996-09-05 THERAPEUTIC USE OF PYROLIDON CARBOXYLATE OF PYRIDOXY
DE4344751A1 (en) 1993-12-28 1995-06-29 Carl Heinrich Dr Weischer New vitamin=B6 ester cpds. of sulphur-contg. carboxylic acids
US5744451A (en) * 1995-09-12 1998-04-28 Warner-Lambert Company N-substituted glutamic acid derivatives with interleukin-1 β converting enzyme inhibitory activity
US5833998A (en) 1995-11-06 1998-11-10 The Procter & Gamble Company Topical compositions for regulating the oily/shiny appearance of skin
US5847008A (en) 1996-02-02 1998-12-08 Merck & Co., Inc. Method of treating diabetes and related disease states
US5834446A (en) 1996-06-21 1998-11-10 Queen's University At Kingston Nerve process growth modulators
US7030146B2 (en) * 1996-09-10 2006-04-18 University Of South Carolina Methods for treating diabetic neuropathy
EP0891719A1 (en) 1997-07-14 1999-01-20 N.V. Nutricia Nutritional composition containing methionine
SE516023C2 (en) * 1999-06-24 2001-11-12 Abb Ab Industrial robot comprising an gearbox configuration and method in an industrial robot
CA2377918A1 (en) * 1999-07-09 2001-01-18 Bruce G. Gold Compositions and methods for promoting nerve regeneration
US6489345B1 (en) * 1999-07-13 2002-12-03 Medicure, Inc. Treatment of diabetes and related pathologies

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3206463A (en) * 1965-09-14 Pyridoxine aspartate and its process of preparation
US3282778A (en) * 1960-09-02 1966-11-01 Lohel Mervyn Joseph Medicinal preparation containing acetyl salicylic acid and a pyridoxine compound
US3910921A (en) * 1970-01-08 1975-10-07 Soc D Etudes Prod Chimique Papaverine monopyridoxal phosphate
US4036844A (en) * 1972-04-04 1977-07-19 Beecham Group Limited Aryloxypyridines
US4053607A (en) * 1972-04-04 1977-10-11 Beecham Group Limited Aryloxypyridine for treating hyperglycaemia
US4032534A (en) * 1973-03-22 1977-06-28 Ferlus-Chimie S.A. Certain 2-(2-thioethyl)thiazolidine-4-carboxylic acids
US3987177A (en) * 1974-06-27 1976-10-19 Synthelabo Vincaminic acid esters
US4137316A (en) * 1976-05-11 1979-01-30 Societe D'etudes De Produits Chimiques Anti-depressive vincamine pyridoxal-5-phosphate
US4167562A (en) * 1978-08-28 1979-09-11 Evers H Ray Method and composition for treating arteriosclerosis
US4374841A (en) * 1980-05-19 1983-02-22 S. A. Labaz N.V. Pyridoxine derivatives, and use in therapeutics
US4361570A (en) * 1980-09-22 1982-11-30 Istituto Luso Farmaco D'italia S.P.A. Use of pyridoxine α-ketoglutarate in the prophylaxis of hyperlacticacidaemia
US4369172A (en) * 1981-12-18 1983-01-18 Forest Laboratories Inc. Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose
US4581363A (en) * 1983-04-05 1986-04-08 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Furo-(3,4-C)-pyridine derivatives and therapeutic compositions containing the same
US4735950A (en) * 1983-04-05 1988-04-05 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S) Furo-(3,4-C)-pyridine derivatives and therapeutic composition containing the same
US4513771A (en) * 1983-11-07 1985-04-30 General Motors Corporation Air valve
US4569939A (en) * 1983-11-16 1986-02-11 Societe De Conseils De Recherches Et D'applications Scientifiques Diuretic 6-vinyl-furo-(3,4-c)-pyridine derivatives
US4569938A (en) * 1983-11-17 1986-02-11 Societe De Conseils De Recherches Et D'applications Scientifiques Diuretic, antihypertensive and antihistaminic 7-carboxymethoxy-furo-(3,4-c)-pyridine derivatives
US5130324A (en) * 1984-03-19 1992-07-14 The Rockefeller University 2-alkylidene-aminoguanidines and methods of use therefor
US4567179A (en) * 1984-10-11 1986-01-28 Pfizer, Inc. Antiinflammatory salts of piroxicam
US4730042A (en) * 1985-06-01 1988-03-08 Basf Aktiengesellschaft Compounds 1 or 3-hydroxy-4-benzyl-6-methyl-7-(4-isopropylamino-butoxy)-1,3-dihydro[3,4-C]pyridine and 2-methyl-3-(4-isopropyl-aminobutoxy)-4-(1'-morphilinomethyl)-5-hydroxymethyl-6-benzyl pyridine, useful for treating cardiac arrhythmias
US4837239A (en) * 1985-08-23 1989-06-06 Syntex (U.S.A.) Inc. Cardiotonic phosphodiesterase inhibitors complexed with water soluble vitamins
US5053396A (en) * 1985-08-27 1991-10-01 Blass David H Therapeutic composition
US4735956A (en) * 1985-09-13 1988-04-05 Merck & Co., Inc. Certain 1,4-dihydro-2,6-di-lower hydrocarbyl-4-heterocyclic-3,5-pyridine dicarboxylates which are useful as calcium channel blockers
US4605741A (en) * 1985-11-13 1986-08-12 Lisapharma Spa Pharmaceutically active salt derivative of 3-hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde phosphate
US5132115A (en) * 1986-04-17 1992-07-21 Karin Wolter Planar therapeutic system, process for its production and utilization
US5210083A (en) * 1986-07-17 1993-05-11 Ed. Geistlich Sohne A.G. Fur Chemische Industrie Pharmaceutical compositions
US5563126A (en) * 1986-11-20 1996-10-08 Metabolite Laboratories Method for treatment and prevention of deficiencies of vitamins B12, folic acid, and B6
US5631271A (en) * 1986-11-29 1997-05-20 Serfontein; Willem J. Methods and preparations for the treatment and prophylaxis of metabolic disturbances
US4843071A (en) * 1986-12-05 1989-06-27 Serotonin Industries Of Charleston Method and composition for treating obesity, drug abuse, and narcolepsy
US5288716A (en) * 1987-02-18 1994-02-22 Ulrich Speck Use of pyridoxine derivatives in the prevention and treatment of hyperlipidaemia and atherosclerosis
US4962121A (en) * 1987-04-22 1990-10-09 Anders Hamberger Method and composition for treating neurological diseases such as migraine
US5213813A (en) * 1987-05-29 1993-05-25 The University Of Vermont Pyridoxal-5'-phosphate as an in vitro blood platelet stabilizer
US5254572A (en) * 1987-11-27 1993-10-19 Vesta Medicines (Pty) Ltd. Method and composition for supplementing vitamin B6 where the PN-PLP pathway is disturbed
US5118505A (en) * 1988-01-28 1992-06-02 Koeltringer Peter Combination preparation for the treatment of nerve cell and nerve fibre diseases and injury
US5254557A (en) * 1988-05-09 1993-10-19 Beecham Group P.L.C. Compound and treatment
US5328453A (en) * 1988-12-21 1994-07-12 Drug Delivery Systems Inc. Method for enhancing transdermal drug delivery of electrical drug applicators
US5001115A (en) * 1989-05-17 1991-03-19 University Of Florida Prodrugs of biologically active hydroxyaromatic compounds
US5385937A (en) * 1991-04-10 1995-01-31 Brigham & Women's Hospital Nitrosation of homocysteine as a method for treating homocysteinemia
US5728684A (en) * 1991-05-15 1998-03-17 Yale University Determination of prodrugs metabolizable by the liver and therapeutic use thereof
US5278154A (en) * 1991-07-03 1994-01-11 Adir Et Compagnie New vanadium complexes
US5326757A (en) * 1992-01-06 1994-07-05 Health Maintenance Programs, Inc. Pharmaceutically active antioxidant containing composition and the method of its use to prevent and treat restenosis following angioplasty
US5420112A (en) * 1992-06-12 1995-05-30 Lewis; Michael E. Prevention and treatment of peripheral neuropathy
US5569648A (en) * 1992-06-12 1996-10-29 Cephalon, Inc. Prevention and treatment of peripheral neuropathy
US5633228A (en) * 1992-06-12 1997-05-27 Cephalon, Inc., Prevention and treatment of peripheral neuropathy
US5648335A (en) * 1992-06-12 1997-07-15 Cephalon, Inc. Prevention and treatment of peripheral neuropathy
US5804163A (en) * 1992-11-12 1998-09-08 Magnetic Research, Inc. Contrast agents for magnetic resonance imaging aminosaccharide
US5795873A (en) * 1992-12-29 1998-08-18 Metabolite Laboratories, Inc. Method for treatment and prevention of deficiencies of vitamins B12, folic acid and B6
US5441972A (en) * 1993-04-02 1995-08-15 Senju Pharmaceutical Co., Ltd. Pharmaceutical use of pyridoxal derivative
US5504090A (en) * 1994-03-30 1996-04-02 Trustees Of The University Of Pennsylvania Compositions and methods for the prevention and treatment of ischemia-reperfusion organ injury
US5858017A (en) * 1994-12-12 1999-01-12 Omeros Medical Systems, Inc. Urologic irrigation solution and method for inhibition of pain, inflammation and spasm
US5569459A (en) * 1995-02-15 1996-10-29 Bio-Virus Research Incorporated Pharmaceutical compositions for the management of premenstrual syndrome and alleviation of menopausal disorders
US5733916A (en) * 1995-03-24 1998-03-31 The Trustees Of The University Of Pennsylvania Prevention and treatment of ischemia-reperfusion and endotoxin-related injury using adenosine and purino receptor antagonists
US6228858B1 (en) * 1995-09-12 2001-05-08 University Of Kansas Medical Center Advanced glycation end-product intermediaries and post-amadori inhibition
US5874443A (en) * 1995-10-19 1999-02-23 Trega Biosciences, Inc. Isoquinoline derivatives and isoquinoline combinatorial libraries
US5733884A (en) * 1995-11-07 1998-03-31 Nestec Ltd. Enteral formulation designed for optimized wound healing
US5874420A (en) * 1995-12-26 1999-02-23 Allegheny University Of The Health Sciences Process for regulating vagal tone
US5859051A (en) * 1996-02-02 1999-01-12 Merck & Co., Inc. Antidiabetic agents
US5770215A (en) * 1997-01-06 1998-06-23 Moshyedi; Emil Payman Multivitamin/vascular occlusion inhibiting composition
US5804594A (en) * 1997-01-22 1998-09-08 Murad; Howard Pharmaceutical compositions and methods for improving wrinkles and other skin conditions
US5888514A (en) * 1997-05-23 1999-03-30 Weisman; Bernard Natural composition for treating bone or joint inflammation
US6051587A (en) * 1998-04-16 2000-04-18 Medicure, Inc. Treatment of iatrogenic and age-related hypertension and pharmaceutical compositions useful therein
US6103748A (en) * 1998-06-19 2000-08-15 Bryan; Thomas B. Method of treating an autoimmune disorder
US6274612B1 (en) * 1998-06-19 2001-08-14 Thomas B. Bryan Method of treating an autoimmune disorder
US6043259A (en) * 1998-07-09 2000-03-28 Medicure Inc. Treatment of cardiovascular and related pathologies
US6342500B1 (en) * 1999-03-05 2002-01-29 Kansas University Medical Center Post-Amadori inhibitors of Advanced Glycation reactions
US6339085B1 (en) * 1999-03-08 2002-01-15 The University Of Manitoba Therapeutics for cardiovascular and related diseases
US7230009B2 (en) * 1999-03-08 2007-06-12 Medicure, Inc. Pyridoxal analogues and methods of treatment
US6890943B2 (en) * 1999-03-08 2005-05-10 Medicure Inc. Pyridoxal analogues and methods of treatment
US7115625B2 (en) * 1999-08-24 2006-10-03 Medicure International Inc. Treatment of cardiovascular and related pathologies
US7115626B2 (en) * 1999-08-24 2006-10-03 Medicure International Inc. Treatment of cardiovascular and related pathologies
US7125889B2 (en) * 1999-08-24 2006-10-24 Medicure International Inc. Treating of cardiovascular and related pathologies
US6677356B1 (en) * 1999-08-24 2004-01-13 Medicure International Inc. Treatment of cardiovascular and related pathologies
US6867215B2 (en) * 2000-02-29 2005-03-15 Medicure International Inc. Cardioprotective phosphonates and malonates
US20040171588A1 (en) * 2000-02-29 2004-09-02 Wasimul Haque Cardioprotective phosphonates and malonates
US6780997B2 (en) * 2000-02-29 2004-08-24 Medicure International Inc. Cardioprotective phosphonates and malonates
US7105673B2 (en) * 2000-02-29 2006-09-12 Medicure International Inc. Cardioprotective phosphonates and malonates
US6605612B2 (en) * 2000-02-29 2003-08-12 Medicure International Inc. Cardioprotective phosohonates and malonates
US6861439B2 (en) * 2000-03-28 2005-03-01 Medicure International, Inc. Treatment of cerebrovascular disease
US6586414B2 (en) * 2000-03-28 2003-07-01 Medicure International Inc. Treatment of cerebrovascular disease
US20050107443A1 (en) * 2000-07-07 2005-05-19 Medicure International Inc. Pyridoxine and pyridoxal analogues: new uses
US6897228B2 (en) * 2000-07-07 2005-05-24 Medicure International Inc. Pyridoxine and pyridoxal analogues: new uses
US6417204B1 (en) * 2000-07-07 2002-07-09 Medicure International Inc. Pyridoxine AMD pyridoxal analogues: cardiovascular therapeutics
US20040121988A1 (en) * 2001-03-28 2004-06-24 Medicure International Inc. Treatment of cerebrovascular disease
US6548519B1 (en) * 2001-07-06 2003-04-15 Medicure International Inc. Pyridoxine and pyridoxal analogues: novel uses
US20040186077A1 (en) * 2003-03-17 2004-09-23 Medicure International Inc. Novel heteroaryl phosphonates as cardioprotective agents
US20060241083A1 (en) * 2003-03-17 2006-10-26 Medicure International Inc. Novel heteroaryl phosphonates as cardioprotective agents
US20070032456A1 (en) * 2003-03-27 2007-02-08 Friesen Albert D Modulation of cell death
US20070167411A1 (en) * 2003-03-27 2007-07-19 Medicure International Inc. Compositions for treating angina
US20060019929A1 (en) * 2004-07-07 2006-01-26 Albert Friesen Combination therapies employing platelet aggregation drugs
US20070060549A1 (en) * 2004-08-10 2007-03-15 Friesen Albert D Combination therapies employing ace inhibitors and uses thereof for the treatment of diabetic disorders
US20060035864A1 (en) * 2004-08-10 2006-02-16 Friesen Albert D Combination therapies employing ace inhibitors and uses thereof for the treatment of diabetic disorders
US20060094761A1 (en) * 2004-10-28 2006-05-04 Wasimul Haque Dual antiplatelet/anticoagulant pyridoxine analogs
US20060094748A1 (en) * 2004-10-28 2006-05-04 Medicure International Inc. Aryl sulfonic pyridoxines as antiplatelet agents
US20070142270A1 (en) * 2004-10-28 2007-06-21 Wasimul Haque Aryl Sulfonic Pyridoxines as Antiplatelet Agents
US20060094749A1 (en) * 2004-10-28 2006-05-04 Medicure International Inc. Substituted pyridoxines as anti-platelet agents
US20070243249A1 (en) * 2004-11-26 2007-10-18 Friesen Albert D Novel formulation of pyridoxal-5'-phosphate and method of preparation
US20060148763A1 (en) * 2005-01-05 2006-07-06 Friesen Albert D Compounds and methods for regulating triglyceride levels
US20070149485A1 (en) * 2005-11-28 2007-06-28 Medicure International, Inc. Selected dosage for the treatment of cardiovascular and related pathologies
US20070249562A1 (en) * 2006-04-25 2007-10-25 Friesen Albert D Treatment of atrial fibrillation

Also Published As

Publication number Publication date
US20040235907A1 (en) 2004-11-25
WO2001003682A2 (en) 2001-01-18
US20030008847A1 (en) 2003-01-09
CA2376029A1 (en) 2001-01-18
WO2001003682B1 (en) 2002-01-24
AU5840200A (en) 2001-01-30
WO2001003682A3 (en) 2001-12-27
EP1196171A2 (en) 2002-04-17
US6489345B1 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US20090018052A1 (en) Treatment of Diabetes and Related Pathologies
US7144892B2 (en) Treatment of cardiovascular and related pathologies
EP1377278B1 (en) Treatment of type 2 diabetes with inhibitors of dipeptidyl peptidase iv
EP0500847B1 (en) Treatment of obesity with an alpha-2-adrenergic agonist and a growth hormone releasing peptide
EP2786750B2 (en) Agent for reducing adverse side effects of kinase inhibitor
EP1405638B1 (en) Pharmaceutical composition comprising quinuclidin-3'-yl 1-phenyl-1,2,3,4,-tetrahydroisoquinoline-2-carboxylate for treatment of interstitial cystitis and/or abacterial prostatitis
EA015683B1 (en) Purine derivatives and methods of use thereof
BR112021002387A2 (en) methods for delaying the occurrence of new-onset type 2 diabetes and for reducing the progression and treatment of type 2 diabetes
US6399658B1 (en) Composition containing ascorbic acid
WO2005079792A1 (en) Preventive or therapeutic agents for severe diabetic retinopathy
US20150011639A1 (en) Sulfonamides for the prevention of diabetes
KR20030085558A (en) Biguanide derivatives
JP2872809B2 (en) Pharmaceutical composition suitable for treating Parkinson's disease, comprising monosialoganglioside GM <1> or a derivative thereof
US7622447B2 (en) Use of glutathione synthesis stimulating compounds in reducing insulin resistance
EP1493443A1 (en) Use of pyridoxal phosphate for the treatment of diabetes and related complications
EP1897547A1 (en) Use of pyridoxal phosphate derivatives for the treatment of diabetes and related complications
EP1832291A2 (en) use of pyridoxal phosphate for the treatment of diabetes and related complications
EP1662875A2 (en) Chelerythrine, analogs thereof and their use in the treatment of bipolar disorder and other cognitive disorders
MX2014014316A (en) A method of weight reduction.
EP1256342B1 (en) Hypoglycemics comprising organic zinc (ii) complexes
KR102022682B1 (en) Diabetes Treatment Composition
US9446025B2 (en) Treatment or prevention of hypotension and shock
EP0903144A1 (en) Remedy for retinal neuropathy
US20060166957A1 (en) Methods of treating obesity and related disorders using tellurium selenium compounds
US20240033263A1 (en) Combination of aldose reductase inhibitors and probenecid for the treatment of diabetic complications

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION