US20080318358A1 - Image sensor pixel having photodiode with indium pinning layer - Google Patents

Image sensor pixel having photodiode with indium pinning layer Download PDF

Info

Publication number
US20080318358A1
US20080318358A1 US12/200,805 US20080508A US2008318358A1 US 20080318358 A1 US20080318358 A1 US 20080318358A1 US 20080508 A US20080508 A US 20080508A US 2008318358 A1 US2008318358 A1 US 2008318358A1
Authority
US
United States
Prior art keywords
photodiode
indium
pinning layer
pixel
kev
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/200,805
Inventor
Howard E. Rhodes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omnivision Technologies Inc
Original Assignee
Omnivision Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omnivision Technologies Inc filed Critical Omnivision Technologies Inc
Priority to US12/200,805 priority Critical patent/US20080318358A1/en
Publication of US20080318358A1 publication Critical patent/US20080318358A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Definitions

  • the present invention relates to image sensors, and more particularly, to an image sensor that uses pixels with a photodiode having an indium surface dopant that forms a p+ pinning layer.
  • Image sensors have become ubiquitous. They are widely used in digital still cameras, cellular phones, security cameras, medical, automobile, and other applications.
  • the technology used to manufacture image sensors, and in particular CMOS image sensors, has continued to advance at great pace. For example, the demands of higher resolution and lower power consumption have encouraged the further miniaturization and integration of the image sensor.
  • the pixel typically has a light-sensing element, such as a photodiode, which receives incident light and produces a signal in relation to the amount of incident light.
  • a light-sensing element such as a photodiode
  • One prior art structure of a photodiode that has enhanced well capacity comprises a shallow N ⁇ layer in a P-type region or substrate.
  • a P + pinning layer is then formed over the shallow N ⁇ layer.
  • the P + pinning layer is universally formed by implanting boron, because of boron's relatively good solid solubility.
  • This structure is known as a pinned photodiode and has relatively high well capacity, but sometimes at the expense of “dark current” performance and excess “hot pixel” defects.
  • the local concentration of an implanted dopant such as the dopant for the N ⁇ layer, may vary spacially. In some cases, it is probable that a higher than average number of n-type ions are implanted near the silicon surface. This generates a local n-type region that punches into the surface P + pinning region and can result in a local increase in dark current and hot pixel defect density.
  • FIG. 1 is a combination cross-sectional and schematic diagram of a prior art four transistor (4T) pixel which shows in detail a photodiode formed in a substrate.
  • FIGS. 2-6 are cross-sectional diagrams showing a method of making a photodiode and pixel in accordance with the present invention.
  • FIG. 1 shows a combination cross-sectional and schematic view of a prior art active pixel that uses four transistors. This is known in the art as a 4T active pixel.
  • the photodiode design of the present invention can be used with any type of pixel design, including but not limited to 3T, 4T, 5T, 6T, and other designs. Further, the photodiode design of the present invention may also be used in connection with charge coupled device (CCD) imagers.
  • CCD charge coupled device
  • a photodiode 101 outputs a signal that is used to modulate an amplification transistor 103 .
  • the amplification transistor 103 is also referred to as a source follower transistor.
  • the photodiode 101 can be either a pinned photodiode or a partially pinned photodiode.
  • a transfer transistor 105 is used to transfer the signal output by the photodiode 101 to a floating node 107 (N+ doped) and to the gate of the gate of the amplification transistor 103 .
  • the transfer transistor 105 is controlled by a transfer gate.
  • the photodiode 101 In operation, during an integration period (also referred to as an exposure or accumulation period), the photodiode 101 generates charge (in response to incident light) that is held in the N ⁇ layer 115 . After the integration period, the transfer transistor 105 is turned on to transfer the charge held in the N ⁇ layer 115 of the photodiode 101 to the floating node 107 . After the signal has been transferred to the floating node 107 , the transfer transistor 105 is turned off again for the start of a subsequent integration period.
  • the signal on the floating node 107 is then used to modulate the amplification transistor 103 .
  • an address transistor 109 is used as a means to address the pixel and to selectively read out the signal onto a column bitline 111 .
  • a reset transistor 113 resets the floating node 107 to a reference voltage.
  • the reference voltage is V dd .
  • electrons are accumulated in the N ⁇ layer 115 during the integration period. After the integration period, the electrons (signal) are transferred from the N ⁇ layer 115 into the floating node 107 by applying a high voltage pulse to the transfer gate of the transfer transistor 105 .
  • FIGS. 2-6 show a method for forming the photodiode of the present invention as well as the structure of the present photodiode.
  • a photoresist pattern 201 is formed atop of the semiconductor substrate 202 .
  • the substrate 202 has a transfer gate 205 of a transfer transistor and a reset gate 207 of a reset transistor formed thereon.
  • isolation regions 203 are also shown.
  • the photoresist pattern 201 has an opening 209 to allow an n-type (N ⁇ ) implant to be applied between the STI 203 and the transfer gate 205 .
  • the n-type implant is typically arsenic or phosphorous, but can be any n-type dopant.
  • an arsenic implant is used having an energy range of 50 keV-300 keV, and more preferably 100 keV-200 keV.
  • a phosphorus implant of 25 keV-150 keV, and more preferably 50 keV-100 keV may be used.
  • other implantation energies may be equally suitable.
  • another photoresist pattern 401 is formed, once again having an opening 403 that exposes the photodiode region.
  • an indium dopant implant is performed to form a p-type (P + ) pinning layer 405 .
  • the indium is implanted using 25 KeV-300 KeV, and preferably between 40 KeV-100 KeV of energy and a dopant concentration of 1e13 ions/cm 2 to 5e14 ions/cm 2 , and more preferably 4e13 ions/cm 2 to 2e14 ions/cm 2 .
  • other energy levels and dopant concentrations may also be used, depending upon specific desired device characteristics and other design considerations.
  • an optional boron implant 501 is performed, still using the photoresist pattern 401 as a mask.
  • the boron implant may be implemented using diborane (B 2 H 6 ) or BF 2 as the dopant.
  • the optional boron implant is provided to further increase the dosage and/or to create a P + graded junction for the P + pinning layer.
  • the boron is implanted using BF 2 at 5 KeV to 100 KeV and preferably 10 KeV to 30 KeV at a dopant concentration of 1e13 ions/cm 2 to 5e14 ions/cm 2 , and preferably at 4e13 ions/cm 2 to 2e14 ions/cm 2 .
  • boron and indium dual implant grades the surface profile. This allows the creation of a heavily doped region near the surface (comprised of indium), and a lower graded region of boron. The higher indium concentration near the surface blocks the depletion region from extending up to the surface and the surface defects.
  • an insulator such as oxide
  • the oxide may then be planarized using various techniques, such as chemical mechanical polishing or etching back.
  • various thermal processes are performed on the semiconductor wafer in connection with further manufacturing processes, such as the formation of metal interconnects.
  • the thermal processes tend to have a relatively minimal effect on the indium p+ layer 405 , since indium has low diffusivity. The result is that the indium p+ layer 405 stays near the surface.
  • the thermal processing results in high diffusivity, which causes the boron dopant to diffuse further.

Abstract

An active pixel using a pinned photodiode with a pinning layer formed from indium is disclosed. The pixel comprises a photodiode formed in a semiconductor substrate. The photodiode is an N region formed within a P-type region. A pinning layer formed from indium is then formed at the surface of the N region. Further, the pixel includes a transfer transistor formed between the photodiode and a floating node and selectively operative to transfer a signal from the photodiode to the floating node. Finally, the pixel includes an amplification transistor controlled by the floating node.

Description

    REFERENCE TO PRIOR APPLICATION
  • This application is a divisional of U.S. application Ser. No. 11/004,246 filed Dec. 3, 2004, now pending, entitled “Image Sensor Pixel Having Photodiode with Indium Pinning Layer,” which is hereby incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates to image sensors, and more particularly, to an image sensor that uses pixels with a photodiode having an indium surface dopant that forms a p+ pinning layer.
  • BACKGROUND INFORMATION
  • Image sensors have become ubiquitous. They are widely used in digital still cameras, cellular phones, security cameras, medical, automobile, and other applications. The technology used to manufacture image sensors, and in particular CMOS image sensors, has continued to advance at great pace. For example, the demands of higher resolution and lower power consumption have encouraged the further miniaturization and integration of the image sensor.
  • As the pixels become smaller, the surface area that can receive incident light is also reduced. The pixel typically has a light-sensing element, such as a photodiode, which receives incident light and produces a signal in relation to the amount of incident light. Thus, as the pixel area (and thus the photodiode area) decreases, the well capacity of the photodiode also becomes smaller.
  • One prior art structure of a photodiode that has enhanced well capacity comprises a shallow N layer in a P-type region or substrate. A P+ pinning layer is then formed over the shallow N layer. The P+ pinning layer is universally formed by implanting boron, because of boron's relatively good solid solubility.
  • This structure is known as a pinned photodiode and has relatively high well capacity, but sometimes at the expense of “dark current” performance and excess “hot pixel” defects. Further, because of the statistical nature of dopant implantation, the local concentration of an implanted dopant, such as the dopant for the N layer, may vary spacially. In some cases, it is probable that a higher than average number of n-type ions are implanted near the silicon surface. This generates a local n-type region that punches into the surface P+ pinning region and can result in a local increase in dark current and hot pixel defect density.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a combination cross-sectional and schematic diagram of a prior art four transistor (4T) pixel which shows in detail a photodiode formed in a substrate.
  • FIGS. 2-6 are cross-sectional diagrams showing a method of making a photodiode and pixel in accordance with the present invention.
  • DETAILED DESCRIPTION
  • In the following description, numerous specific details are provided in order to give a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention may be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well known structures, materials, or operations are not shown or described in order to avoid obscuring aspects of the invention.
  • Referenced throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment and included in at least one embodiment of the present invention. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • FIG. 1 shows a combination cross-sectional and schematic view of a prior art active pixel that uses four transistors. This is known in the art as a 4T active pixel. However, it can be appreciated that the photodiode design of the present invention can be used with any type of pixel design, including but not limited to 3T, 4T, 5T, 6T, and other designs. Further, the photodiode design of the present invention may also be used in connection with charge coupled device (CCD) imagers.
  • A photodiode 101, outputs a signal that is used to modulate an amplification transistor 103. The amplification transistor 103 is also referred to as a source follower transistor. In this embodiment, the photodiode 101 can be either a pinned photodiode or a partially pinned photodiode. A transfer transistor 105 is used to transfer the signal output by the photodiode 101 to a floating node 107 (N+ doped) and to the gate of the gate of the amplification transistor 103. The transfer transistor 105 is controlled by a transfer gate.
  • In operation, during an integration period (also referred to as an exposure or accumulation period), the photodiode 101 generates charge (in response to incident light) that is held in the N layer 115. After the integration period, the transfer transistor 105 is turned on to transfer the charge held in the N layer 115 of the photodiode 101 to the floating node 107. After the signal has been transferred to the floating node 107, the transfer transistor 105 is turned off again for the start of a subsequent integration period.
  • The signal on the floating node 107 is then used to modulate the amplification transistor 103. Finally, an address transistor 109 is used as a means to address the pixel and to selectively read out the signal onto a column bitline 111. After readout through the column bitline 111, a reset transistor 113 resets the floating node 107 to a reference voltage. In one embodiment, the reference voltage is Vdd.
  • As noted above, electrons are accumulated in the N layer 115 during the integration period. After the integration period, the electrons (signal) are transferred from the N layer 115 into the floating node 107 by applying a high voltage pulse to the transfer gate of the transfer transistor 105.
  • FIGS. 2-6 show a method for forming the photodiode of the present invention as well as the structure of the present photodiode. Specifically, as seen in FIG. 2, a photoresist pattern 201 is formed atop of the semiconductor substrate 202. In this embodiment, the substrate 202 has a transfer gate 205 of a transfer transistor and a reset gate 207 of a reset transistor formed thereon. Also shown are isolation regions 203, in one embodiment shallow trench isolations (STI). The photoresist pattern 201 has an opening 209 to allow an n-type (N) implant to be applied between the STI 203 and the transfer gate 205. The n-type implant is typically arsenic or phosphorous, but can be any n-type dopant.
  • In one embodiment, an arsenic implant is used having an energy range of 50 keV-300 keV, and more preferably 100 keV-200 keV. Alternatively, a phosphorus implant of 25 keV-150 keV, and more preferably 50 keV-100 keV may be used. However, other implantation energies may be equally suitable.
  • Next, turning to FIG. 3, various conventional steps are performed to form lightly doped drain regions 301 adjacent the transfer gate 205 and reset gate 207. Further, sidewall spacers 303 are formed on the transfer and reset gates and N+ regions 305 are formed between the transfer and reset gates, as well as between the reset gate 207 and the STI 203. These structures, and the steps used to form them, are conventional in the prior art, but are briefly described herein for completeness.
  • Next, turning to FIG. 4, another photoresist pattern 401 is formed, once again having an opening 403 that exposes the photodiode region. Using the photoresist pattern 401, an indium dopant implant is performed to form a p-type (P+) pinning layer 405. In one embodiment, the indium is implanted using 25 KeV-300 KeV, and preferably between 40 KeV-100 KeV of energy and a dopant concentration of 1e13 ions/cm2 to 5e14 ions/cm2, and more preferably 4e13 ions/cm2 to 2e14 ions/cm2. However, it can be appreciated that other energy levels and dopant concentrations may also be used, depending upon specific desired device characteristics and other design considerations.
  • Turning to FIG. 5, an optional boron implant 501 is performed, still using the photoresist pattern 401 as a mask. The boron implant may be implemented using diborane (B2H6) or BF2 as the dopant. The optional boron implant is provided to further increase the dosage and/or to create a P+ graded junction for the P+ pinning layer. In one embodiment, the boron is implanted using BF2 at 5 KeV to 100 KeV and preferably 10 KeV to 30 KeV at a dopant concentration of 1e13 ions/cm2 to 5e14 ions/cm2, and preferably at 4e13 ions/cm2 to 2e14 ions/cm2. The use of a boron and indium dual implant grades the surface profile. This allows the creation of a heavily doped region near the surface (comprised of indium), and a lower graded region of boron. The higher indium concentration near the surface blocks the depletion region from extending up to the surface and the surface defects.
  • Finally, turning to FIG. 6, an insulator, such as oxide, is formed over the structure. The oxide may then be planarized using various techniques, such as chemical mechanical polishing or etching back. Typically, various thermal processes are performed on the semiconductor wafer in connection with further manufacturing processes, such as the formation of metal interconnects. The thermal processes tend to have a relatively minimal effect on the indium p+ layer 405, since indium has low diffusivity. The result is that the indium p+ layer 405 stays near the surface. In the case of the optional boron implant, the thermal processing results in high diffusivity, which causes the boron dopant to diffuse further.
  • From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims (4)

1. A method for forming a photodiode in a P-type semiconductor substrate, said photodiode being an N region formed in said P-type semiconductor substrate, the method comprising:
implanting a N type dopant into said semiconductor substrate; and
implanting an indium dopant into said semiconductor substrate atop said N type dopant to form a P+ pinning layer.
2. The method of claim 1 wherein said P+ layer is formed from a dual implant of indium and boron.
3. The method of claim 1 wherein said indium is implanted with a dosage of between 1e13 ions/cm2 to 5e14 ions/cm2.
4. The method of claim 2 wherein said boron is implanted with a dosage of 1e13 ions/cm2 to 5e14 ions/cm2.
US12/200,805 2004-12-03 2008-08-28 Image sensor pixel having photodiode with indium pinning layer Abandoned US20080318358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/200,805 US20080318358A1 (en) 2004-12-03 2008-08-28 Image sensor pixel having photodiode with indium pinning layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/004,246 US7432543B2 (en) 2004-12-03 2004-12-03 Image sensor pixel having photodiode with indium pinning layer
US12/200,805 US20080318358A1 (en) 2004-12-03 2008-08-28 Image sensor pixel having photodiode with indium pinning layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/004,246 Division US7432543B2 (en) 2004-12-03 2004-12-03 Image sensor pixel having photodiode with indium pinning layer

Publications (1)

Publication Number Publication Date
US20080318358A1 true US20080318358A1 (en) 2008-12-25

Family

ID=35912025

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/004,246 Active US7432543B2 (en) 2004-12-03 2004-12-03 Image sensor pixel having photodiode with indium pinning layer
US12/200,805 Abandoned US20080318358A1 (en) 2004-12-03 2008-08-28 Image sensor pixel having photodiode with indium pinning layer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/004,246 Active US7432543B2 (en) 2004-12-03 2004-12-03 Image sensor pixel having photodiode with indium pinning layer

Country Status (6)

Country Link
US (2) US7432543B2 (en)
EP (1) EP1667232B1 (en)
CN (1) CN1841791B (en)
AT (1) ATE494635T1 (en)
DE (1) DE602005025726D1 (en)
TW (1) TWI295108B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755116B2 (en) * 2004-12-30 2010-07-13 Ess Technology, Inc. Method and apparatus for controlling charge transfer in CMOS sensors with an implant by the transfer gate
US7666703B2 (en) * 2005-01-14 2010-02-23 Omnivision Technologies, Inc. Image sensor pixel having a lateral doping profile formed with indium doping
US7115924B1 (en) * 2005-06-03 2006-10-03 Avago Technologies Sensor Ip Pte. Ltd. Pixel with asymmetric transfer gate channel doping
KR100672688B1 (en) * 2005-06-07 2007-01-22 동부일렉트로닉스 주식회사 Method for manufacturing of CMOS image sensor
US7470945B2 (en) * 2006-12-01 2008-12-30 United Microelectronics Corp. CMOS image sensor and an additional N-well for connecting a floating node to a source follower transistor
US7741666B2 (en) * 2008-02-08 2010-06-22 Omnivision Technologies, Inc. Backside illuminated imaging sensor with backside P+ doped layer
FR2986906B1 (en) 2012-02-15 2015-06-19 New Imaging Technologies Sas IMPROVED LOAD TRANSFER ACTIVE PIXEL STRUCTURE
US9859318B2 (en) 2014-10-22 2018-01-02 Omnivision Technologies, Inc. Color and infrared image sensor with depletion adjustment layer
CN110085705A (en) * 2019-04-30 2019-08-02 德淮半导体有限公司 The forming method of semiconductor devices
WO2023190406A1 (en) * 2022-03-29 2023-10-05 ラピスセミコンダクタ株式会社 Semiconductor device and solid-state imaging device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100551A (en) * 1995-04-13 2000-08-08 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US6127697A (en) * 1997-11-14 2000-10-03 Eastman Kodak Company CMOS image sensor
US6218691B1 (en) * 1998-06-30 2001-04-17 Hyundai Electronics Industries Co., Ltd. Image sensor with improved dynamic range by applying negative voltage to unit pixel
US6306676B1 (en) * 1996-04-04 2001-10-23 Eastman Kodak Company Method of making self-aligned, high-enegry implanted photodiode for solid-state image sensors
US20030096490A1 (en) * 2001-11-16 2003-05-22 John Borland Method of forming ultra shallow junctions
US20040043529A1 (en) * 2002-08-29 2004-03-04 Fossum Eric R. Two-transistor pixel with buried reset channel and method of formation
US6730899B1 (en) * 2003-01-10 2004-05-04 Eastman Kodak Company Reduced dark current for CMOS image sensors
US20040173799A1 (en) * 2003-03-05 2004-09-09 Inna Patrick CMOS imager with enhanced transfer of charge and low voltage operation and method of formation
US20040188727A1 (en) * 2003-03-28 2004-09-30 Inna Patrick Double pinned photodiode for cmos aps and method of formation
US20050116270A1 (en) * 2001-12-12 2005-06-02 Francois Roy Blooming control method for a photodiode and corresponding integrated circuit
US7049671B2 (en) * 2003-05-01 2006-05-23 Renesas Technology Corp. Solid-state imaging device with antireflection film
US7105906B1 (en) * 2003-11-19 2006-09-12 National Semiconductor Corporation Photodiode that reduces the effects of surface recombination sites

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1219328C (en) * 1998-02-19 2005-09-14 国际商业机器公司 Field effect transistors with improved implants and method for making such transistors
US7105793B2 (en) 2003-07-02 2006-09-12 Micron Technology, Inc. CMOS pixels for ALC and CDS and methods of forming the same
US6900484B2 (en) 2003-07-30 2005-05-31 Micron Technology, Inc. Angled pinned photodiode for high quantum efficiency
US7115923B2 (en) 2003-08-22 2006-10-03 Micron Technology, Inc. Imaging with gate controlled charge storage

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100551A (en) * 1995-04-13 2000-08-08 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US6306676B1 (en) * 1996-04-04 2001-10-23 Eastman Kodak Company Method of making self-aligned, high-enegry implanted photodiode for solid-state image sensors
US6127697A (en) * 1997-11-14 2000-10-03 Eastman Kodak Company CMOS image sensor
US6218691B1 (en) * 1998-06-30 2001-04-17 Hyundai Electronics Industries Co., Ltd. Image sensor with improved dynamic range by applying negative voltage to unit pixel
US20030096490A1 (en) * 2001-11-16 2003-05-22 John Borland Method of forming ultra shallow junctions
US20050116270A1 (en) * 2001-12-12 2005-06-02 Francois Roy Blooming control method for a photodiode and corresponding integrated circuit
US20040043529A1 (en) * 2002-08-29 2004-03-04 Fossum Eric R. Two-transistor pixel with buried reset channel and method of formation
US6730899B1 (en) * 2003-01-10 2004-05-04 Eastman Kodak Company Reduced dark current for CMOS image sensors
US20040173799A1 (en) * 2003-03-05 2004-09-09 Inna Patrick CMOS imager with enhanced transfer of charge and low voltage operation and method of formation
US20040188727A1 (en) * 2003-03-28 2004-09-30 Inna Patrick Double pinned photodiode for cmos aps and method of formation
US7049671B2 (en) * 2003-05-01 2006-05-23 Renesas Technology Corp. Solid-state imaging device with antireflection film
US7105906B1 (en) * 2003-11-19 2006-09-12 National Semiconductor Corporation Photodiode that reduces the effects of surface recombination sites

Also Published As

Publication number Publication date
CN1841791A (en) 2006-10-04
US20060118836A1 (en) 2006-06-08
ATE494635T1 (en) 2011-01-15
TW200620646A (en) 2006-06-16
US7432543B2 (en) 2008-10-07
DE602005025726D1 (en) 2011-02-17
TWI295108B (en) 2008-03-21
CN1841791B (en) 2011-08-31
EP1667232A3 (en) 2007-06-20
EP1667232A2 (en) 2006-06-07
EP1667232B1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
US7524695B2 (en) Image sensor and pixel having an optimized floating diffusion
US20080318358A1 (en) Image sensor pixel having photodiode with indium pinning layer
US7670865B2 (en) Image sensor pixel having photodiode with multi-dopant implantation
US7825444B2 (en) Image sensor pixel having a lateral doping profile formed with indium doping
US7595210B2 (en) Method of manufacturing complementary metal oxide semiconductor image sensor
JPH11274454A (en) Solid image pick-up device and its forming method
US20070018269A1 (en) Raised silicon photodiode
EP1537602B1 (en) Image sensor, camera system comprising the image sensor
JP5274118B2 (en) Solid-state imaging device
EP1675182B1 (en) Image sensor pixel having a transfer gate formed from P+ or N+ doped polysilicon
TW202131501A (en) Transistor having increased effective channel width
JP4185807B2 (en) Manufacturing method of MOS type solid-state imaging device
JP2005039219A (en) Solid-state imaging device
JP2005123517A (en) Solid-state imaging apparatus, method of manufacturing thereof, line sensor, and solid-state imaging unit
KR20070050668A (en) Cmos image sensor and method for fabricating thereof
JP2012124515A (en) Solid state image pickup device and method for manufacturing the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION