US20080299618A1 - Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors - Google Patents

Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors Download PDF

Info

Publication number
US20080299618A1
US20080299618A1 US12/127,237 US12723708A US2008299618A1 US 20080299618 A1 US20080299618 A1 US 20080299618A1 US 12723708 A US12723708 A US 12723708A US 2008299618 A1 US2008299618 A1 US 2008299618A1
Authority
US
United States
Prior art keywords
sequence
primers
variable domain
dna
primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/127,237
Inventor
Gregory P. Winter
Elizabeth S. Ward
Detlef Gussow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Kingdom Research and Innovation
Original Assignee
Medical Research Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27562806&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080299618(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB888826444A external-priority patent/GB8826444D0/en
Priority claimed from GB898906034A external-priority patent/GB8906034D0/en
Priority claimed from GB898909217A external-priority patent/GB8909217D0/en
Priority claimed from GB898911047A external-priority patent/GB8911047D0/en
Priority claimed from GB898912652A external-priority patent/GB8912652D0/en
Priority claimed from GB898913900A external-priority patent/GB8913900D0/en
Priority claimed from GB898918543A external-priority patent/GB8918543D0/en
Application filed by Medical Research Council filed Critical Medical Research Council
Priority to US12/127,237 priority Critical patent/US20080299618A1/en
Publication of US20080299618A1 publication Critical patent/US20080299618A1/en
Assigned to UNITED KINGDOM RESEARCH AND INNOVATION reassignment UNITED KINGDOM RESEARCH AND INNOVATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDICAL RESEARCH COUNCIL
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/655Somatostatins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Definitions

  • the present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, methods for the use of said DNA sequences in the production of Ig-type molecules and said ligands or receptors, and the use of said ligands or receptors in therapy, diagnosis or catalysis.
  • Ig immunoglobulin
  • FIG. 1 shows a schematic representation of the unrearranged and rearranged heavy and light chain variable genes and the location of the primers.
  • FIG. 2 shows a schematic representation of the M13-VHPCR1 vector and a cloning scheme for amplified heavy chain variable domains.
  • FIG. 3 shows the sequence of the Ig variable region derived sequences in M13-VHPCR1.
  • FIG. 4 shows a schematic representation of the M13-VKPCR1 vector and a cloning scheme for light chain variable domains.
  • FIG. 5 shows the sequence of the Ig variable region derived sequences in M13-VKPCR1.
  • FIG. 6 shows the nucleotide sequences of the heavy and light chain variable domain encoding sequences of MAb MBr1.
  • FIG. 7 shows a schematic representation of the pSV-gpt vector (also known as ⁇ -Lys 30) which contains a variable region cloned as a HindIII-BamHI fragment, which is excised on introducing the new variable region.
  • the gene for human IgG1 has also been engineered to remove a BamHI site, such that the BamHI site in the vector is unique.
  • FIG. 8 shows a schematic representation of the pSV-hygro vector (also known as ⁇ -Lys 17). It is derived from pSV gpt vector with the gene encoding mycophenolic acid replaced by a gene coding for hygromycin resistance. The construct contains a variable gene cloned as a HindIII-BamHI fragment which is excised on introducing the new variable region. The gene for human C ⁇ has also been engineered to remove a BamHI site, such that the BamHI site in the vector is unique.
  • FIG. 9 shows the assembly of the mouse: human MBr1 chimeric antibody.
  • FIGS. 10 a - 10 b shows encoded amino acid sequences of 48 mouse rearranged VH genes.
  • FIG. 11 shows encoded amino acid sequences of human rearranged VH genes.
  • FIG. 12 shows encoded amino acid sequences of unrearranged human VH genes.
  • FIG. 13 shows the sequence of part of the plasmid pSW1: essentially the sequence of a pectate lyase leader linked to VHLYS in pSW1 and cloned as an SphI-EcoRI fragment into pUC19 and the translation of the open reading frame encoding the pectate lyase leader-VHLYS polypeptide being shown.
  • FIGS. 14 a - 14 b shows the sequence of part of the plasmid pSW2: essentially the sequence of a pectate lyase leader linked to VHLYS and to VKLYS, and cloned as an SphI-EcoRI-EcoRI fragment into pUC19 and the translation of open reading frames encoding the pectate lyase leader-VHLYS and pectate lyase leader-VKLYS polypeptides being shown.
  • FIG. 15 shows the sequence of part of the plasmid pSW1HPOLYMYC which is based on pSW1 and in which a polylinker sequence has replaced the variable domain of VHLYS, and acts as a cloning site for amplified VH genes, and a peptide tag is introduced at the C-terminal end.
  • FIG. 16 shows the encoded amino acid sequences of two VH domains derived from mouse spleen and having lysozyme binding activity, and compared with the VH domain of the D1,3 antibody.
  • the arrows mark the points of difference between the two VH domains.
  • FIG. 17 shows the encoded amino acid sequence of a VH domain derived from human peripheral blood lymphocytes and having lysozyme binding activity.
  • FIG. 18 shows a scheme for generating and cloning mutants of the VHLYS gene, which is compared with the scheme for cloning natural repertoires of VH genes.
  • FIG. 19 shows the sequence of part of the vector pSW2HPOLY.
  • FIG. 20 shows the sequence of part of the vector pSW3 which encodes the two linked VHLYS domains.
  • FIGS. 21 a - 21 c shows the sequence of the VHLYS domain and pelB leader sequence fused to the alkaline phosphatase gene.
  • FIG. 22 shows the sequence of the vector pSW1VHLYS-VKPOLYMYC for expression of a repertoire of V ⁇ light chain variable domains in association with the VHLYS domain.
  • FIG. 23 shows the sequence of VH domain which is secreted at high levels from E. coli . The differences with VHLYS domain are marked.
  • the present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, methods for the use of said DNA sequences in the production of Ig-type molecules and said ligands or receptors, and the use of said ligands or receptors in therapy, diagnosis or catalysis.
  • Ig immunoglobulin
  • the Ig superfamily includes not only the Igs themselves but also such molecules as receptors on lymphoid cells such as T lymphocytes.
  • Immunoglobulins comprise at least one heavy and one light chain covalently bonded together. Each chain is divided into a number of domains. At the N-terminal end of each chain is a variable domain. The variable domains on the heavy and light chains fit together to form a binding site designed to receive a particular target molecule. In the case of Igs, the target molecules are antigens.
  • T-cell receptors have two chains of equal size, the ⁇ and ⁇ chains, each consisting of two domains.
  • variable domains on the ⁇ and ⁇ chains are believed to fit together to form a binding site for target molecules, in this case peptides presented by a histocompatibility antigen.
  • the variable domains are so called because their amino acid sequences vary particularly from one molecule to another. This variation in sequence enables the molecules to recognize an extremely wide variety of target molecules.
  • each variable domain comprises a number of areas of relatively conserved sequence and three areas of hypervariable sequence.
  • the three hypervariable areas are generally known as complementarity determining regions (CDRs).
  • Boss The Boss application also relates to the cloning and expression of chimeric antibodies.
  • Chimeric antibodies are Ig-type molecules in which the variable domains from one Ig are fused to constant domains from another Ig.
  • the variable domains are derived from an Ig from one species (often a mouse Ig) and the constant domains are derived from an Ig from a different species (often a human Ig).
  • EP-A-0 125 023 (Genentech) relates to much the same subject as the Boss application, but also relates to the production by recombinant DNA technology of other variations of Ig-type molecules.
  • EP-A-0 194 276 discloses not only chimeric antibodies of the type disclosed in the Boss application but also chimeric antibodies in which some or all of the constant domains have been replaced by non-Ig derived protein sequences.
  • the heavy chain CH2 and CH3 domains may be replaced by protein sequences derived from an enzyme or a protein toxin.
  • EP-A-0 239 400 discloses a different approach to the production of Ig molecules.
  • this approach only the CDRs from a first type of Ig are grafted onto a second type of Ig in place of its normal CDRs.
  • the Ig molecule thus produced is predominantly of the second type, since the CDRs form a relatively small part of the whole Ig.
  • the CDRs are the parts which define the specificity of the Ig, the Ig molecule thus produced has its specificity derived from the first Ig.
  • modified antibodies chimeric antibodies, CDR-grafted Igs, the altered antibodies described by Genentech, and fragments of such Igs such as F(ab′) 2 and Fv fragments are referred to herein as modified antibodies.
  • MAbs monoclonal antibodies
  • MAbs directed against cancer antigens have been produced. It is envisaged that these MAbs could be covalently attached or fused to toxins to provide “magic bullets” for use in cancer therapy. MAbs directed against normal tissue or cell surface antigens have also been produced. Labels can be attached to these so that they can be used for in vivo imaging.
  • MAbs in therapy or in vivo diagnosis
  • the vast majority of MAbs which are produced are of rodent, in particular mouse, origin. It is very difficult to produce human MAbs. Since most MAbs are derived from non-human species, they are antigenic in humans. Thus, administration of these MAbs to humans generally results in an anti-Ig response being mounted by the human. Such a response can interfere with therapy or diagnosis, for instance by destroying or clearing the antibody quickly, or can cause allergic reactions or immune complex hypersensitivity which has adverse effects on the patient.
  • modified Igs have been proposed to ensure that the Ig administered to a patient is as “human” as possible, but still retains the appropriate specificity. It is therefore expected that modified Igs will be as effective as the MAb from which the specificity is derived but at the same time not very antigenic. Thus, it should be possible to use the modified Ig a reasonable number of times in a treatment or diagnosis regime.
  • heavy chain variable domains are encoded by a “rearranged” gene which is built from three gene segments: an “unrearranged” VH gene (encoding the N-terminal three framework regions, first two complete CDRs and the first part of the third CDR), a diversity (DH)-segment (DH) (encoding the central portion of the third CDR) and a joining segment (JH) (encoding the last part of the third CDR and the fourth framework region).
  • VH gene encoding the N-terminal three framework regions, first two complete CDRs and the first part of the third CDR
  • DH diversity-segment
  • JH joining segment
  • light chain variable domains are encoded by an “unrearranged” VL gene and a JL gene.
  • VL gene There are two types of light chains, kappa ( ⁇ ) or lambda ( ⁇ ), which are built respectively from unrearranged V ⁇ genes and J ⁇ segments, and from unrearranged V ⁇ genes and J ⁇ segments.
  • Ig heavy chain variable domains can bind to antigen in a 1:1 ratio and with binding constants of equivalent magnitude to those of complete antibody molecules. In view of what was known up until now and in view of the assumptions made by those skilled in the art, this is highly surprising.
  • a single domain ligand consisting of at least part of the variable domain of one chain of a molecule from the Ig superfamily.
  • the ligand consists of the variable domain of an Ig light, or, most preferably, heavy chain.
  • the ligand may be produced by any known technique, for instance by controlled cleavage of Ig superfamily molecules or by peptide synthesis. However, preferably the ligand is produced by recombinant DNA technology. For instance, the gene encoding the rearranged gene for a heavy chain variable domain may be produced, for instance by cloning or gene synthesis, and placed into a suitable expression vector. The expression vector is then used to transform a compatible host cell which is then cultured to allow the ligand to be expressed and, preferably, secreted.
  • the gene for the ligand can be mutated to improve the properties of the expressed domain, for example to increase the yields of expression or the solubility of the ligand, to enable the ligand to bind better, or to introduce a second site for covalent attachment (by introducing chemically reactive residues such as cysteine and histidine) or non-covalent binding of other molecules.
  • a second site for binding to serum components to prolong the residence time of the domains in the serum; or for binding to molecules with effector functions, such as components of complement, or receptors on the surfaces of cells.
  • hydrophobic residues which would normally be at the interface of the heavy chain variable domain with the light chain variable domain could be mutated to more hydrophilic residues to improve solubility; residues in the CDR loops could be mutated to improve antigen binding; residues on the other loops or parts of the ⁇ -sheet could be mutated to introduce new binding activities. Mutations could include single point mutations, multiple point mutations or more extensive changes and could be introduced by any of a variety of recombinant DNA methods, for example gene synthesis, site directed mutagenesis or the polymerase chain reaction.
  • the ligands of the present invention have equivalent binding affinity to that of complete Ig molecules
  • the ligands can be used in many of the ways as are Ig molecules or fragments.
  • Ig molecules have been used in therapy (such as in treating cancer, bacterial and viral diseases), in diagnosis (such as pregnancy testing), in vaccination (such as in producing anti-idiotypic antibodies which mimic antigens), in modulation of activities of hormones or growth factors, in detection, in biosensors and in catalysis.
  • the small size of the ligands of the present invention may confer some advantages over complete antibodies, for example, in neutralizing the activity of low molecular weight drugs (such as dioxin) and allowing their filtration from the kidneys with drug attached; in penetrating tissues and tumors; in neutralizing viruses by binding to small conserved regions on the surfaces of viruses such as the “canyon” sites of viruses [16]; in high resolution epitope mapping of proteins; and in vaccination by ligands which mimic antigens.
  • low molecular weight drugs such as dioxin
  • the present invention also provides receptors comprising a ligand according to the first aspect of the invention linked to one or more of an effector molecule, a label, a surface, or one or more other ligands having the same or different specificity.
  • a receptor comprising a ligand linked to an effector molecule may be of use in therapy.
  • the effector molecule may be a toxin, such as ricin or pseudomonas exotoxin, an enzyme which is able to activate a prodrug, a binding partner or a radio-isotope.
  • the radio-isotope may be directly linked to the ligand or may be attached thereto by a chelating structure which is directly linked to the ligand.
  • Such ligands with attached isotopes are much smaller than those based on Fv fragments, and could penetrate tissues and access tumors more readily.
  • a receptor comprising a ligand linked to a label may be of use in diagnosis.
  • the label may be a heavy metal atom or a radio-isotope, in which case the receptor can be used for in vivo imaging using X-ray or other scanning apparatus.
  • the metal atom or radio-isotope may be attached to the ligand either directly or via a chelating structure directly linked to the ligand.
  • the label may be a heavy metal atom, a radio-isotope, an enzyme, a fluorescent or colored molecule or a protein or peptide tag which can be detected by an antibody, an antibody fragment or another protein.
  • Such receptors would be used in any of the known diagnostic tests, such as ELISA or fluorescence-linked assays.
  • a receptor comprising a ligand linked to a surface could be used for purification of other molecules by affinity chromatography.
  • Linking of ligands to cells for example to the outer membrane proteins of E. coli or to hydrophobic tails which localize the ligands in the cell membranes, could allow a simple diagnostic test in which the bacteria or cells would agglutinate in the presence of molecules bearing multiple sites for binding the ligand(s).
  • Receptors comprising at least two ligands can be used, for instance, in diagnostic tests.
  • the first ligand will bind to a test antigen and the second ligand will bind to a reporter molecule, such as an enzyme, a fluorescent dye, a colored dye, a radio-isotope or a colored-, fluorescently- or radio-labelled protein.
  • such receptors may be useful in increasing the binding to an antigen.
  • the first ligand will bind to a first epitope of the antigen and the second ligand will bind to a second epitope.
  • Such receptors may also be used for increasing the affinity and specificity of binding to different antigens in close proximity on the surface of cells.
  • the first ligand will bind to the first antigen and the second epitope to the second antigen: strong binding will depend on the co-expression of the epitopes on the surface of the cell. This may be useful in therapy of tumors, which can have elevated expression of several surface markers. Further ligands could be added to further improve binding or specificity.
  • the use of strings of ligands with the same or multiple specificities, creates a larger molecule which is less readily filtered from the circulation by the kidney.
  • the use of strings of ligands may prove more effective than single ligands, due to repetition of the immunizing epitopes.
  • such receptors with multiple ligands could include effector molecules or labels so that they can be used in therapy or diagnosis as described above.
  • the ligand may be linked to the other part of the receptor by any suitable means, for instance by covalent or non-covalent chemical linkages.
  • the receptor comprises a ligand and another protein molecule, it is preferred that they are produced by recombinant DNA technology as a fusion product. If necessary, a linker peptide sequence can be placed between the ligand and the other protein molecule to provide flexibility.
  • the ligand is to be used for in vivo diagnosis or therapy in humans, it is humanized, for instance by CDR replacement as described in EP-A-0 239 400.
  • a further problem with the production of ligands, and also receptors according to the invention and modified Igs, by recombinant DNA technology is the cloning of the variable domain encoding sequences from the hybridoma which produces the MAb from which the specificity is to be derived.
  • This can be a relatively long method involving the production of a suitable probe, construction of a clone library from cDNA or genomic DNA, extensive probing of the clone library, and manipulation of any isolated clones to enable the cloning into a suitable expression vector. Due to the inherent variability of the DNA sequences encoding Ig variable domains, it has not previously been possible to avoid such time consuming work. It is therefore a further aim of the present invention to provide a method which enables substantially any sequence encoding an Ig superfamily molecule variable domain (ligand) to be cloned in a reasonable period of time.
  • a method of cloning a sequence (the target sequence) which encodes at least part of the variable domain of an Ig superfamily molecule which method comprises:
  • a forward and a back oligonucleotide primer annealing to the sample a forward and a back oligonucleotide primer, the forward primer being specific for a sequence at or adjacent the 3′ end of the sense strand of the target sequence, the back primer being specific for a sequence at or adjacent the 3′ end of the antisense strand of the target sequence, under conditions which allow the primers to hybridize to the nucleic acid at or adjacent the target sequence;
  • the method of the present invention further includes the step (f) of repeating steps (c) to (e) on the denatured mixture a plurality of times.
  • the method of the present invention is used to clone complete variable domains from Ig molecules, most preferably from Ig heavy chains.
  • the method will produce a DNA sequence encoding a ligand according to the present invention.
  • step (c) recited above the forward primer becomes annealed to the sense strand of the target sequence at or adjacent the 3′ end of the strand.
  • the back primer becomes annealed to the antisense strand of the target sequence at or adjacent the 3′ end of the strand.
  • the forward primer anneals at or adjacent the region of the ds nucleic acid which encodes the C-terminal end of the variable region or domain.
  • the back primer anneals at or adjacent the region of the ds nucleic acid which encodes the N-terminal end of the variable domain.
  • step (d) nucleotides are added onto the 3′ end of the forward and back primers in accordance with the sequence of the strand to which they are annealed. Primer extension will continue in this manner until stopped by the beginning of the denaturing step (e). It must therefore be ensured that step (d) is carried out for a long enough time to ensure that the primers are extended so that the extended strands totally overlap one another.
  • step (e) the extended primers are separated from the ds nucleic acid.
  • the ds nucleic acid can then serve again as a substrate to which further primers can anneal.
  • the extended primers themselves have the necessary complementary sequences to enable the primers to anneal thereto.
  • step (f) the amount of extended primers will increase exponentially so that at the end of the cycles there will be a large quantity of cDNA having sequences complementary to the sense and antisense strands of the target sequence.
  • the method of the present invention will result in the accumulation of a large quantity of cDNA which can form ds cDNA encoding at least part of the variable domain.
  • the forward and back primers may be provided as isolated oligonucleotides, in which case only two oligonucleotides will be used. However, alternatively the forward and back primers may each be supplied as a mixture of closely related oligonucleotides. For instance, it may be found that at a particular point in the sequence to which the primer is to anneal, there is the possibility of nucleotide variation. In this case a primer may be used for each possible nucleotide variation. Furthermore it may be possible to use two or more sets of “nested” primers in the method to enhance the specific cloning of variable region genes.
  • RNA may be isolated in known manner from a cell or cell line which is known to produce Igs.
  • mRNA may be separated from other RNA by oligo-dT chromatography.
  • a complementary strand of cDNA may then be synthesized on the mRNA template, using reverse transcriptase and a suitable primer, to yield an RNA/DNA heteroduplex.
  • a second strand of DNA can be made in one of several ways, for example, by priming with RNA fragments of the mRNA strand (made by incubating RNA/DNA heteroduplex with RNase H) and using DNA polymerase, or by priming with a synthetic oligodeoxynucleotide primer which anneals to the 3′ end of the first strand and using DNA polymerase. It has been found that the method of the present invention can be carried out using ds cDNA prepared in this way.
  • a forward primer which anneals to a sequence in the CH1 domain (for a heavy chain variable domain) or the C ⁇ or C ⁇ domain (for a light chain variable domain). These will be located in close enough proximity to the target sequence to allow the sequence to be cloned.
  • the back primer may be one which anneals to a sequence at the N-terminal end of the VH1, V ⁇ or V ⁇ domain.
  • the back primer may consist of a plurality of primers having a variety of sequences designed to be complementary to the various families of VH1, V ⁇ or V ⁇ sequences known.
  • the back primer may be a single primer having a consensus sequence derived from all the families of variable region genes.
  • the method of the present invention can be carried out using genomic DNA. If genomic DNA is used, there is a very large amount of DNA present, including actual coding sequences, introns and untranslated sequences between genes. Thus, there is considerable scope for non-specific annealing under the conditions used. However, it has surprisingly been found that there is very little non-specific annealing. It is therefore unexpected that it has proved possible to clone the genes of Ig-variable domains from genomic DNA.
  • genomic DNA may prove advantageous compared with use of mRNA, as the mRNA is readily degraded, and especially difficult to prepare from clinical samples of human tissue.
  • the ds nucleic acid used in step (a) is genomic DNA.
  • genomic DNA As the ds nucleic acid source, it will not be possible to use as the forward primer an oligonucleotide having a sequence complementary to a sequence in a constant domain. This is because, in genomic DNA, the constant domain genes are generally separated from the variable domain genes by a considerable number of base pairs. Thus, the site of annealing would be too remote from the sequence to be cloned.
  • the method of the present invention can be used to clone both rearranged and unrearranged variable domain sequences from genomic DNA. It is known that in germ line genomic DNA the three genes, encoding the VH, DH and JH respectively, are separated from one another by considerable numbers of base pairs. On maturation of the immune response, these genes are rearranged so that the VH, DH and JH genes are fused together to provide the gene encoding the whole variable domain (see FIG. 1 ). By using a forward primer specific for a sequence at or adjacent the 3′ end of the sense strand of the genomic “unrearranged” VH gene, it is possible to clone the “unrearranged” VH gene alone, without also cloning the DH and JH genes. This can be of use in that it will then be possible to fuse the VH gene onto pre-cloned or synthetic DH and DH genes. In this way, rearrangement of the variable domain genes can be carried out in vitro.
  • the oligonucleotide primers used in step (c) may be specifically designed for use with a particular target sequence. In this case, it will be necessary to sequence at least the 5′ and 3′ ends of the target sequence so that the appropriate oligonucleotides can be synthesized. However, the present inventors have discovered that it is not necessary to use such specifically designed primers. Instead, it is possible to use a species specific general primer or a mixture of such primers for annealing to each end of the target sequence. This is not particularly surprising as regards the 3′ end of the target sequence. It is known that this end of the variable domain encoding sequence leads into a segment encoding JH which is known to be relatively conserved. However, it was surprisingly discovered that, within a single species, the sequence at the 5′ end of the target sequence is sufficiently well conserved to enable a species specific general primer or a mixture thereof to be designed for the 5′ end of the target sequence.
  • the two primers which are used are species specific general primers, whether used as single primers or as mixtures of primers. This greatly facilitates the cloning of any undetermined target sequence since it will avoid the need to carry out any sequencing on the target sequence in order to produce target sequence-specific primers.
  • the method of this aspect of the invention provides a general method for cloning variable region or domain encoding sequences of a particular species.
  • variable domain gene Once the variable domain gene has been cloned using the method described above, it may be directly inserted into an expression vector, for instance using the PCR reaction to paste the gene into a vector.
  • each primer includes a sequence including a restriction enzyme recognition site.
  • the sequence recognized by the restriction enzyme need not be in the part of the primer which anneals to the ds nucleic acid, but may be provided as an extension which does not anneal.
  • the use of primers with restriction sites has the advantage that the DNA can be cut with at least one restriction enzyme which leaves 3′ or 5′ overhanging nucleotides. Such DNA is more readily cloned into the corresponding sites on the vectors than blunt end fragments taken directly from the method. The ds cDNA produced at the end of the cycles will thus be readily insertable into a cloning vector by use of the appropriate restriction enzymes.
  • restriction sites is such that the ds cDNA is cloned directly into an expression vector, such that the ligand encoded by the gene is expressed.
  • the restriction site is preferably located in the sequence which is annealed to the ds nucleic acid.
  • the primers may not have a sequence exactly complementary to the target sequence to which it is to be annealed, for instance because of nucleotide variations or because of the introduction of a restriction enzyme recognition site, it may be necessary to adjust the conditions in the annealing mixture to enable the primers to anneal to the ds nucleic acid. This is well within the competence of the person skilled in the art and needs no further explanation.
  • any DNA polymerase may be used.
  • Such polymerases are known in the art and are available commercially. The conditions to be used with each polymerase are well known and require no further explanation here.
  • the polymerase reaction will need to be carried out in the presence of the four nucleoside triphosphates. These and the polymerase enzyme may already be present in the sample or may be provided afresh for each cycle.
  • the denaturing step (e) may be carried out, for instance, by heating the sample, by use of chaotropic agents, such as urea or guanidine, or by the use of changes in ionic strength or pH.
  • chaotropic agents such as urea or guanidine
  • denaturing is carried out by heating since this is readily reversible.
  • thermostable DNA polymerase such as Taq polymerase, since this will not need replenishing at each cycle.
  • a suitable cycle of heating comprises denaturation at about 95° C. for about 1 minute, annealing at from 30° C. to 65° C. for about 1 minute and primer extension at about 75° C. for about 2 minutes.
  • the mixture after the final cycle is preferably held at about 60° C. for about 5 minutes.
  • the product ds cDNA may be separated from the mixture for instance by gel electrophoresis using agarose gels.
  • the ds cDNA may be used in unpurified form and inserted directly into a suitable cloning or expression vector by conventional methods. This will be particularly easy to accomplish if the primers include restriction enzyme recognition sequences.
  • the method of the present invention may be used to make variations in the sequences encoding the variable domains.
  • this may be achieved by using a mixture of related oligonucleotide primers as at least one of the primers.
  • the primers are particularly variable in the middle of the primer and relatively conserved at the 5′ and 3′ ends.
  • the ends of the primers are complementary to the framework regions of the variable domain, and the variable region in the middle of the primer covers all or part of a CDR.
  • a forward primer is used in the area which forms the third CDR. If the method is carried out using such a mixture of oligonucleotides, the product will be a mixture of variable domain encoding sequences.
  • variations in the sequence may be introduced by incorporating some mutagenic nucleotide triphosphates in step (d), such that point mutations are scattered throughout the target region.
  • point mutations are introduced by performing a large number of cycles of amplification, as errors due to the natural error rate of the DNA polymerase are amplified, particularly when using high concentrations of nucleoside triphosphates.
  • the method of this aspect of the present invention has the advantage that it greatly facilitates the cloning of variable domain encoding sequences directly from mRNA or genomic DNA. This in turn will facilitate the production of modified Ig-type molecules by any of the prior art methods referred to above. Further, target genes can be cloned from tissue samples containing antibody producing cells, and the genes can be sequenced. By doing this, it will be possible to look directly at the immune repertoire of a patient. This “fingerprinting” of a patient's immune repertoire could be of use in diagnosis, for instance of auto-immune diseases.
  • a single set of primers is used in several cycles of copying via the polymerase chain reaction.
  • steps (a) to (d) as above which further includes the steps of:
  • the second method may further include the steps of:
  • fragments are separated from the vector and from other fragments of the incorrect size by gel electrophoresis.
  • steps (a) to (d) then (g) to (h) can be followed once, but preferably the entire cycle (c) to (d) and (g) to (h) is repeated at least once.
  • a priming step in which the genes are specifically copied, is followed by a cloning step, in which the amount of genes is increased.
  • the ds cDNA is derived from mRNA.
  • the mRNA is preferably be isolated from lymphocytes which have been stimulated to enhance production of mRNA.
  • the set of primers are preferably different from the previous step (c), so as to enhance the specificity of copying.
  • the sets of primers form a nested set.
  • the first set of primers may be located within the signal sequence and constant region, as described by Larrick et al., [18], and the second set of primers entirely within the variable region, as described by Orlandi et al., [19].
  • the primers of step (c) include restriction sites to facilitate subsequent cloning.
  • the set of primers used in step (c) should preferably include restriction sites for introduction into expression vectors.
  • step (g) possible mismatches between the primers and the template strands are corrected by “nick translation”.
  • step (h) the ds cDNA is preferably cleaved with restriction enzymes at sites introduced into the primers to facilitate the cloning.
  • the product ds cDNA is cloned directly into an expression vector.
  • the host may be prokaryotic or eukaryotic, but is preferably bacterial.
  • restriction sites in the primers and in the vector, and other features of the vector will allow the expression of complete ligands, while preserving all those features of the amino acid sequence which are typical of the (methoded) ligands.
  • the primers would be chosen to allow the cloning of target sequences including at least all the three CDR sequences.
  • the cloning vector would then encode a signal sequence (for secretion of the ligand), and sequences encoding the N-terminal end of the first framework region, restriction sites for cloning and then the C-terminal end of the last (fourth) framework region.
  • the primers would be chosen to allow the cloning of target sequences including at least the first two CDRs.
  • the cloning vector could then encode signal sequence, the N-terminal end of the first framework region, restriction sites for cloning and then the C-terminal end of the third framework region, the third CDR and fourth framework region.
  • Primers and cloning vectors may likewise be devised for expression of single CDRs, particularly the third CDR, as parts of complete ligands.
  • the advantage of cloning repertoires of single CDRs would permit the design of a “universal” set of framework regions, incorporating desirable properties such as solubility.
  • Single ligands could be expressed alone or in combination with a complementary variable domain.
  • a heavy chain variable domain can be expressed either as an individual domain or, if it is expressed with a complementary light chain variable domain, as an antigen binding site.
  • the two partners would be expressed in the same cell, or secreted from the same cell, and the proteins allowed to associate non-covalently to form an Fv fragment.
  • the two genes encoding the complementary partners can be placed in tandem and expressed from a single vector, the vector including two sets of restriction sites.
  • the genes are introduced sequentially: for example the heavy chain variable domain can be cloned first and then the light chain variable domain.
  • the two genes are introduced into the vector in a single step, for example by using the polymerase chain reaction to paste together each gene with any necessary intervening sequence, as essentially described by Yon and Fried [29].
  • the two partners could be also expressed as a linked protein to produce a single chain Fv fragment, using similar vectors to those described above.
  • the two genes may be placed in two different vectors, for example in which one vector is a phage vector and the other is a plasmid vector.
  • the cloned ds cDNA may be inserted into an expression vector already containing sequences encoding one or more constant domains to allow the vector to express Ig-type chains.
  • the expression of Fab fragments would have the advantage over Fv fragments that the heavy and light chains would tend to associate through the constant domains in addition to the variable domains.
  • the final expression product may be any of the modified Ig-type molecules referred to above.
  • the cloned sequence may also be inserted into an expression vector so that it can be expressed as a fusion protein.
  • the variable domain encoding sequence may be linked directly or via a linker sequence to a DNA sequence encoding any protein effector molecule, such as a toxin, enzyme, label or another ligand.
  • the variable domain sequences may also be linked to proteins on the outer side of bacteria or phage.
  • the method of this aspect of the invention may be used to produce receptors according to the invention.
  • the cloning of ds cDNA directly for expression permits the rapid construction of expression libraries which can be screened for binding activities.
  • the ds cDNA may comprise variable genes isolated as complete rearranged genes from the animal, or variable genes built from several different sources, for example a repertoire of unrearranged VH genes combined with a synthetic repertoire of DH and JH genes.
  • repertoires of genes encoding Ig heavy chain variable domains are prepared from lymphocytes of animals immunized with an antigen.
  • the screening method may take a range of formats well known in the art.
  • Ig heavy chain variable domains secreted from bacteria may be screened by binding to antigen on a solid phase, and detecting the captured domains by antibodies.
  • the domains may be screened by growing the bacteria in liquid culture and binding to antigen coated on the surface of ELISA plates.
  • bacterial colonies or phage plaques which secrete ligands (or modified ligands, or ligand fusions with proteins) are screened for antigen binding on membranes.
  • Either the ligands are bound directly to the membranes (and for example detected with labelled antigen), or captured on antigen coated membranes (and detected with reagents specific for ligands).
  • the use of membranes offers great convenience in screening many clones, and such techniques are well known in the art.
  • the screening method may also be greatly facilitated by making protein fusions with the ligands, for example by introducing a peptide tag which is recognized by an antibody at the N-terminal or C-terminal end of the ligand, or joining the ligand to an enzyme which catalyses the conversion of a colorless substrate to a colored product.
  • the binding of antigen may be detected simply by adding substrate.
  • joining of the ligand and a domain of a transcriptional activator such as the GAL4 protein of yeast, and joining of antigen to the other domain of the GAL4 protein, could form the basis for screening binding activities, as described by Fields and Song [21].
  • the preparation of proteins, or even cells with multiple copies of the ligands may improve the avidity of the ligand for immobilized antigen, and hence the sensitivity of the screening method.
  • the ligand may be joined to a protein subunit of a multimeric protein, to a phage coat protein or to an outer membrane protein of E. coli such as ompA or lamB.
  • Such fusions to phage or bacterial proteins also offers possibilities of selecting bacteria displaying ligands with antigen binding activities.
  • bacteria may be precipitated with antigen bound to a solid support, or may be subjected to affinity chromatography, or may be bound to larger cells or particles which have been coated with antigen and sorted using a fluorescence activated cell sorter (FACS).
  • FACS fluorescence activated cell sorter
  • the proteins or peptides fused to the ligands are preferably encoded by the vector, such that cloning of the ds cDNA repertoire creates the fusion product.
  • the associated Ig heavy and light chain variable domains For example, repertoires of heavy and light chain variable genes may be cloned such that two domains are expressed together. Only some of the pairs of domains may associate, and only some of these associated pairs may bind to antigen.
  • the repertoires of heavy and light chain variable domains could be cloned such that each domain is paired at random. This approach may be most suitable for isolation of associated domains in which the presence of both partners is required to form a cleft. Alternatively, to allow the binding of hapten.
  • a small repertoire of light chain variable domains for example including representative members of each family of domains, may be combined with a large repertoire of heavy chain variable domains.
  • a repertoire of heavy chain variable domains is screened first for antigen binding in the absence of the light chain partner, and then only those heavy chain variable domains binding to antigen are combined with the repertoire of light chain variable domains. Binding of associated heavy and light chain variable domains may be distinguished readily from binding of single domains, for example by fusing each domain to a different C-terminal peptide tag which are specifically recognized by different monoclonal antibodies.
  • the hierarchical approach of first cloning heavy chain variable domains with binding activities, then cloning matching light chain variable domains may be particularly appropriate for the construction of catalytic antibodies, as the heavy chain may be screened first for substrate binding.
  • a light chain variable domain would then be identified which is capable of association with the heavy chain, and “catalytic” residues such as cysteine or histidine (or prosthetic groups) would be introduced into the CDRs to stabilize the transition state or attack the substrate, as described by Baldwin and Schultz [22].
  • Fab fragments are more likely to be associated than the Fv fragments, as the heavy chain variable domain is attached to a single heavy chain constant domain, and the light chain variable domain is attached to a single light chain variable domain, and the two constant domains associate together.
  • the heavy and light chain variable domains are covalently linked together with a peptide, as in the single chain antibodies, or peptide sequences attached, preferably at the C-terminal end which will associate through forming cysteine bonds or through non-covalent interactions, such as the introduction of “leucine zipper” motifs.
  • the Fv fragments are preferably used.
  • variable domains isolated from a repertoire of variable region genes offer a way of building complete antibodies, and an alternative to hybridoma technology.
  • complete antibodies may be made and should possess natural effector functions, such as complement lysis.
  • This route is particularly attractive for the construction of human monoclonal antibodies, as hybridoma technology has proved difficult, and for example, although human peripheral blood lymphocytes can be immortalized with Epstein Barr virus, such hybridomas tend to secrete low affinity IgM antibodies.
  • lymphocytes do not generally secrete antibodies directed against host-proteins.
  • human antibodies directed against human proteins for example to human cell surface markers to treat cancers, or to histocompatibility antigens to treat auto-immune diseases.
  • the construction of human antibodies built from the combinatorial repertoire of heavy and light chain variable domains may overcome this problem, as it will allow human antibodies to be built with specificities which would normally have been eliminated.
  • the method also offers a new way of making bispecific antibodies.
  • Antibodies with dual specificity can be made by fusing two hybridomas of different specificities, so as to make a hybrid antibody with an Fab arm of one specificity, and the other Fab arm of a second specificity.
  • the yields of the bispecific antibody are low, as heavy and light chains also find the wrong partners.
  • the construction of Fv fragments which are tightly associated should preferentially drive the association of the correct pairs of heavy with light chains. (It would not assist in the correct pairing of the two heavy chains with each other.)
  • the improved production of bispecific antibodies would have a variety of applications in diagnosis and therapy, as is well known.
  • the invention provides a species specific general oligonucleotide primer or a mixture of such primers useful for cloning variable domain encoding sequences from animals of that species.
  • the method allows a single pair or pair of mixtures of species specific general primers to be used to clone any desired antibody specificity from that species. This eliminates the need to carry out any sequencing of the target sequence to be cloned and the need to design specific primers for each specificity to be recovered.
  • variable genes for the expression of the variable genes directly on cloning, for the screening of the encoded domains for binding activities and for the assembly of the domains with other variable domains derived from the repertoire.
  • mouse splenic ds mRNA or genomic DNA may be obtained from a hyper-immunized mouse.
  • the expression vector would be used to transform a host cell, for instance a bacterial cell, to enable it to produce an Fv fragment or a Fab fragment.
  • the Fv or Fab fragment would then be built into a monoclonal antibody by attaching constant domains and expressing it in mammalian cells.
  • oligonucleotide primers or mixed primers were used. Their locations are marked on FIG. 1 and sequences are as follows:
  • VH1FOR 5′ TGAGGAGACGGTGACCGTGGTCCCTTGGCCCCAG 3′; VH1FOR-2 5′ TGAGGAGACGGTGACCGTGGTCCCTTGGCCCC 3′; Hu1VHFOR 5′ CTTGGTGGAGGCTGAGGAGACGGTGACC 3′; Hu2VHFOR 5′ CTTGGTGGAGGCTGAGGAGACGGTGACC 3′; Hu3VHFOR 5′ CTTGGTGGATGCTGAGGAGACGGTGACC 3′; Hu4VHFOR 5′ CTTGGTGGATGCTGATGAGACGGTGACC 3′; MOJH1FOR 5′ TGAGGAGACGGTGACCGTGGTCCCTGCGCCCCCCAG 3′; MOJH2FOR 5′ TGAGGAGACGGTGACCGTGGTGCCTTGGCCCCAG 3′; MOJH3FOR 5′ TGCAGAGACGGTGACCAGTCCCTTGGCCCCAG 3′; MOJH4FOR 5′ TGAGGAGACGGTGACCGAGGTTCC
  • VH1FOR is designed to anneal with the 3′ end of the sense strand of any mouse heavy chain variable domain encoding sequence. It contains a BstEII recognition site.
  • VK1FOR is designed to anneal with the 3′ end of the sense strand of any mouse kappa-type light chain variable domain encoding sequence and contains a BglII recognition site.
  • VH1BACK is designed to anneal with the 3′ end of the antisense strand of any mouse heavy chain variable domain and contains a PstI recognition site.
  • VK1BACK is designed to anneal with the 3′ end of the antisense strand of any mouse kappa-type light chain variable domain encoding sequence and contains a PvuII recognition site.
  • MAbs monoclonal antibodies
  • MBr1 BW431/26 [24]
  • BW494/32 BW494/32 [25]
  • BW250/183 [24,26] BW704/152 [27].
  • MAb MBr1 is particularly interesting in that it is known to be specific for a saccharide epitope on a human mammary carcinoma line MCF-7 [28].
  • a 50 ⁇ l reaction solution which contains 10 ⁇ g mRNA, 20 pmole VH1FOR primer, 250 ⁇ M each of dATP, dTTP, dCTP and dGTP, 10 mM dithiothreitol (DTT), 100 mM Tris.HCl, 10 MM MgCl 2 and 140 mM KCl, adjusted to pH 8.3 was prepared.
  • the reaction solution was heated at 70° C. for ten minutes and allowed to cool to anneal the primer to the 3′ end of the variable domain encoding sequence in the mRNA.
  • To the reaction solution was then added 46 units of reverse transcriptase (Anglian Biotec) and the solution was then incubated at 42° C. for 1 hour to cause first strand cDNA synthesis.
  • variable domain encoding sequences were amplified as follows.
  • a 50 ⁇ l reaction solution containing 5 ⁇ l of the ds RNA/DNA hybrid-containing solution, 25 pmole each of VH1FOR and VH1BACK primers, 250 ⁇ M of dATP, dTTP, dCTP and dGTP, 67 mM Tris.HCl, 17 mM ammonium sulphate, 10 mM MgCl 2 , 200 ⁇ g/ml gelatine and 2 units Taq polymerase (Cetus) was prepared.
  • the reaction solution was overlaid with paraffin oil and subjected to 25 rounds of temperature cycling using a Techne PHC-1 programmable heating block. Each cycle consisted of 1 minute and 95° C. (to denature the nucleic acids), 1 minute at 30° C. (to anneal the primers to the nucleic acids) and 2 minutes at 72° C. (to cause elongation from the primers). After the 25 cycles, the reaction solution and the oil were extracted twice with ether, once with phenol and once with phenol/CHCl3. Thereafter ds cDNA was precipitated with ethanol. The precipitated ds cDNA was then taken up in 50 ⁇ l of water and frozen.
  • VK1FOR and VK1BACK primers were used in place of the VH1FOR and VH1BACK primers respectively.
  • a BstEII recognition site was introduced into the vector M13-HuVHNP [31] by site directed mutagenesis [32,33] to produce the vector M13-VHPCR1 ( FIGS. 2 and 3 ).
  • Each amplified heavy chain variable domain encoding sequence was digested with the restriction enzymes PstI and BstEII.
  • the fragments were phenol extracted, purified on 2% low melting point agarose gels and force cloned into vector M13-VHPCR1 which had been digested with PstI and BstEII and purified on an 0.8% agarose gel.
  • Clones containing the variable domain inserts were identified directly by sequencing [34] using primers based in the 3′ non-coding variable gene in the M13-VHPCR1 vector.
  • variable domain encoding sequences of BW431/26 There is an internal PstI site in the heavy chain variable domain encoding sequences of BW431/26. This variable domain encoding sequence was therefore assembled in two steps. The 3′ PstI-BstEII fragment was first cloned into M13-VHPCR1, followed in a second step by the 5′ PstI fragment.
  • Vector M13 mp 18 [35] was cut with PvuII and the vector backbone was blunt ligated to a synthetic HindIII-BamHI polylinker.
  • Vector M13-HuVKLYS [36] was digested with HindIII and BamHI to isolate the HuVKLYS gene. This HindIII-BamHI fragment was then inserted into the HindIII-BamHI polylinker site to form a vector M13-VKPCR1 which lacks any PvuII sites in the vector backbone ( FIGS. 4 and 5 ).
  • This vector was prepared in E. coli JM110 [22] to avoid dam methylation at the BclI site.
  • Each amplified light chain variable domain encoding sequence was digested with PvuII and BglII.
  • the fragments were phenol extracted, purified on 2% low melting point agarose gels and force cloned into vector M13-VKPCR1 which had been digested with PvuII and BclI, purified on an 0.8% agarose gel and treated with calf intestinal phosphatase.
  • Clones containing the light chain variable region inserts were identified directly by sequencing [34] using primers based in the 3′ non-coding region of the variable domain in the M13-VKPCR1 vector.
  • nucleotide sequences of the MBr1 heavy and light chain variable domains are shown in FIG. 6 with part of the flanking regions of the M13-VHPCR1 and M13-VKPCR1 vectors.
  • the HindIII-BamHI fragment carrying the MBr1 heavy chain variable domain encoding sequence in M13-VHPCR1 was recloned into a pSV-gpt vector with human ⁇ 1 constant regions [37] ( FIG. 7 ).
  • the MBr1 light chain variable domain encoding sequence in M13-VKPCR1 was recloned as a HindIII-BamHI fragment into a pSV vector, PSV-hyg-HuCK with a hygromycin resistance marker and a human kappa constant domain ( FIG. 8 ).
  • the assembly of the genes is summarized in FIG. 9 .
  • the vectors thus produced were linearized with PvuI (in the case of the pSV-hygro vectors the PvuI digest is only partial) and cotransfected into the non-secreting mouse myeloma line NSO [38] by electroporation [39].
  • PvuI in the case of the pSV-hygro vectors the PvuI digest is only partial
  • NSO non-secreting mouse myeloma line NSO
  • electroporation electroporation [39].
  • One day after cotransfection cells were selected in 0.3 ⁇ g/ml mycophenolic acid (MPA) and after seven days in 1 ⁇ g/ml MPA. After 14 days, four wells, each containing one or two major colonies, were screened by incorporation of 14 C-lysine [40] and the secreted antibody detected after precipitation with protein-A SepharoseTM (Pharmacia) on SDS-PAGE [41].
  • the gels were stained, fixed, soaked in
  • the chimeric antibody in the supernatant like the parent mouse MBr1 antibody, was found to bind to MCF-7 cells but not the HT-29 cells, thus showing that the specificity had been properly cloned and expressed.
  • the DNA from the mouse spleen was prepared in one of two ways (although other ways can be used).
  • Method 1 A mouse spleen was cut into two pieces and each piece was put into a standard Eppendorf tube with 200 ⁇ l of PBS. The tip of a 1 ml glass pipette was closed and rounded in the blue flame of a Bunsen burner. The pipette was used to squash the spleen piece in each tube. The cells thus produced were transferred to a fresh Eppendorf tube and the method was repeated three times until the connective tissue of the spleen appeared white. Any connective tissue which has been transferred with the cells was removed using a drawn-out Pasteur pipette. The cells were then washed in PBS and distributed into four tubes.
  • mice spleen cells were then sedimented by a 2 minute spin in a Microcentaur centrifuge at low speed setting. All the supernatant was aspirated with a drawn out Pasteur pipette. If desired, at this point the cell sample can be frozen and stored at ⁇ 20° C.
  • the supernatant was transferred to a new tube and to this was added 125 ⁇ l 5M NaCl and 30 ⁇ l 1M MOPS adjusted to pH 7.0.
  • the DNA in the supernatant was absorbed on a Quiagen 5 tip and purified following the manufacturer's instructions for lambda DNA. After isopropanol precipitation, the DNA was resuspended in 500 ⁇ l water.
  • Method 2 This method is based on the technique described in Maniatis et al. [30].
  • a mouse spleen was cut into very fine pieces and put into a 2 ml glass homogenizer. The cells were then freed from the tissue by several slow up and down strokes with the piston.
  • the cell suspension was made in 500 ⁇ l phosphate buffered saline (PBS) and transferred to an Eppendorf tube. The cells were then spun for 2 min at low speed in a Microcentaur centrifuge. This results in a visible separation of white and red cells. The white cells, sedimenting slower, form a layer on top of the red cells. The supernatant was carefully removed and spun to ensure that all the white cells had sedimented.
  • the layer of white cells was resuspended in two portions of 500 ⁇ l PBS and transferred to another tube.
  • the white cells were precipitated by spinning in the Microcentaur centrifuge at low speed for one minute. The cells were washed a further two times with 500 ⁇ l PBS, and were finally resuspended in 200 ⁇ l PBS. The white cells were added to 2.5 ml 25 mM EDTA and 10 mM Tris.Cl, pH 7.4, and vortexed slowly. While vortexing 25 ⁇ l 20% SDS was added. The cells lysed immediately and the solution became viscous and clear. 100 ⁇ l of 20 mg/ml proteinase K was added and incubated one to three hours at 50° C.
  • the sample was extracted with an equal volume of phenol and the same volume of chloroform, and vortexed. After centrifuging, the aqueous phase was removed and 1/10 volume 3M ammonium acetate was added. This was overlaid with three volumes of cold ethanol and the tube rocked carefully until the DNA strands became visible.
  • the DNA was spooled out with a Pasteur pipette, the ethanol allowed to drip off, and the DNA transferred to 1 ml of 10 mM Tris.Cl pH 7.4, 0.1 mM EDTA in an Eppendorf tube. The DNA was allowed to dissolve in the cold overnight on a roller.
  • the DNA solution was diluted 1/10 in water and boiled for 5 min prior to using the polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • typically 50-200 ng of DNA were used.
  • the heavy and light chain variable domain encoding sequences in the genomic DNA isolated from the human PBL or the mouse spleen cells was then amplified and cloned using the general protocol described in the first two paragraphs of the section headed “Amplification from RNA/DNA Hybrid” in Example 1, except that during the annealing part of each cycle, the temperature was held at 65° C. and that 30 cycles were used. Furthermore, to minimize the annealing between the 3′ ends of the two primers, the sample was first heated to 95° C., then annealed at 65° C., and only then was the Taq polymerase added. At the end of the 30 cycles, the reaction mixture was held at 60° C. for five minutes to ensure that complete elongation and renaturation of the amplified fragments had taken place.
  • VH1FOR and VH1BACK The primers used to amplify the mouse spleen genomic DNA were VH1FOR and VH1BACK, for the heavy chain variable domain and VK2FOR and VK1BACK, for the light chain variable domain. (VK2FOR only differs from VK1FOR in that it has an extra C residue on the 5′ end.)
  • VH1FOR Likewise mixtures of VH1FOR, MOJH1FOR, MOJH2FOR, MOJH3FOR and MOJH4FOR were used as forward primers and mixtures of VH1BACK, MOVHIBACK, MOVHIIABACK, MOVHIIBBACK, MOVHIIIBACK were used as backward primers for amplification of VH genes.
  • All these heavy chain FOR primers referred to above contain a BstEII site and all the BACK primers referred to above contain a PstI site. These light chain FOR and BACK primers referred to above all contain BglII and PvuII sites respectively.
  • Light chain primers VK3FOR and VK2BACK were also devised which utilized different restriction sites, SacI and XhoI.
  • the preferred amplification conditions for mouse VH genes are as follows: the sample was made in a volume of 50-100 ⁇ l, 50-100 ng of DNA, VH1FOR-2 and VH1BACK primers (25 pmole of each), 250 ⁇ M of each deoxynucleotide triphosphate, 10 mM Tris.HCl, pH 8.8, 50 mM KCl, 1.5 mM MgCl 2 , and 100 ⁇ g/ml gelatine. The sample was overlaid with paraffin oil, heated to 95° C. for 2 min, 65° C.
  • the preferred amplification conditions for mouse V ⁇ genes from genomic DNA are as follows: the sample treated as above except with V ⁇ primers, for example VK3FOR and VK2BACK, and using a cycle of 94° C. for one minute, 60° C. for one minute and 72° C. for one minute.
  • V ⁇ primers for example VK3FOR and VK2BACK
  • the conditions which were devised for genomic DNA are also suitable for amplification from the cDNA derived from mRNA from mouse spleen or mouse hybridoma.
  • the reaction mixture was then extracted twice with 40 ⁇ l of water-saturated diethyl ether. This was followed by a standard phenol extraction and ethanol precipitation as described in Example 1.
  • the DNA pellet was then dissolved in 100 ⁇ l 10 mM Tris.Cl, 0.1 mM EDTA.
  • Each reaction mixture containing a light chain variable domain encoding sequence was digested with SacI and XhoI (or with PvuII and BglII) to enable it to be ligated into a suitable expression vector.
  • Each reaction mixture containing a heavy chain variable domain encoding sequence was digested with PstI and BstEII for the same purpose.
  • the heavy chain variable genes isolated as above from a mouse hyper-immunized with lysozyme were cloned into M13VHPCR1 vector and sequenced.
  • the complete sequences of 48 VH gene clones were determined ( FIGS. 10 a - 10 b ). All but two of the mouse VH gene families were represented, with frequencies of: VA (1), IIIC (1), IIIB (8), IIIA (3), IIB (17), IIA (2), IB (12), IA (4).
  • the D segments could be assigned to families SP2 (14), FL16 (11) and Q52 (5), and in 38 clones the JH minigenes to families JH1 (3), JH2 (7), JH3 (14) and JH4 (14).
  • the different sequences of CDR3 marked out each of the 48 clones as unique. Nine pseudogenes and 16 unproductive rearrangements were identified. Of the clones sequenced, 27 have open reading frames.
  • the method is capable of generating a diverse repertoire of heavy chain variable genes from mouse spleen DNA.
  • Method 1 20 ml of heparinized human blood from a healthy volunteer was diluted with an equal volume of phosphate buffered saline (PBS) and distributed equally into 50 ml Falcon tubes. The blood was then underlayed with 15 ml Ficoll Hypaque (Pharmacia 10-A-001-07). To separate the lymphocytes from the red blood cells, the tubes were spun for 10 minutes at 1800 rpm at room temperature in an IEC Centra 3E table centrifuge. The peripheral blood lymphocytes (PBL) were then collected from the interphase by aspiration with a Pasteur pipette. The cells were diluted with an equal volume of PBS and spun again at 1500 rpm for 15 minutes. The supernatant was aspirated, the cell pellet was resuspended in 1 ml PBS and the cells were distributed into two Eppendorf tubes.
  • PBS phosphate buffered saline
  • Method 2 40 ml human blood from a patient with HIV in the pre-AIDS condition was layered on Ficoll to separate the white cells (see Method 1 above). The white cells were then incubated in tissue culture medium for 4-5 days. On day 3, they were infected with Epstein Barr virus. The cells were pelleted (approx 2 ⁇ 10 7 cells) and washed in PBS.
  • the cells were pelleted again and lysed with 7 ml 5M guanidine isothiocyanate, 50 mM Tris, 10 mM EDTA, 0.1 mM dithiothreitol.
  • the cells were vortexed vigorously and 7 volumes of 4M LiCl added.
  • the mixture was incubated at 4° C. for 15-20 hrs.
  • the suspension was spun and the supernatant resuspended in 3M LiCl and centrifuged again.
  • the pellet was dissolved in 2 ml 0.1% SDS, 10 mM Tris HCl and 1 mM EDTA.
  • the suspension was frozen at ⁇ 20° C., and thawed by vortexing for 20 s every 10 min for 45 min.
  • RNA was precipitated by adding 1/10 volume 3M sodium acetate and 2 vol ethanol and leaving overnight at ⁇ 20° C. The pellet was suspended in 0.2 ml water and reprecipitated with ethanol. Aliquots for cDNA synthesis were taken from the ethanol precipitate which had been vortexed to create a fine suspension.
  • the back primers for the amplification of human DNA were designed to match the available human heavy and light chain sequences, in which the different families have slightly different nucleotide sequences at the 5′ end.
  • the primers Hu2VHIBACK, HuVHIIBACK, Hu2VHIIIBACK and HuVH1VBACK were designed as back primers, and HUJH1FOR, HUJH2FOR and HUJH4FOR as forward primers based entirely in the variable gene.
  • Another set of forward primers Hu1VHFOR, Hu2VHFOR, Hu3VHFOR, and Hu4VHFOR was also used, which were designed to match the human J-regions and the 5′ end of the constant regions of different human isotypes.
  • the amplified DNA from the separate primings was then pooled, digested with restriction enzymes PstI and BstEII as above, and then cloned into the vector M13VHPCR1 for sequencing.
  • the sequences reveal a diverse repertoire ( FIG. 11 ) at this stage of the disease.
  • HuJK1FOR, HUJK3FOR; HUJK4FOR and HUJK5FOR were used as forward primers and VK1BACK as back primer. Using these primers it was possible to see a band of amplified ds cDNA of the correct size by gel electrophoresis.
  • Human peripheral blood lymphocytes of a patient with non-Hodgkins lymphoma were prepared as in Example 3 (Method 1).
  • the genomic DNA was prepared from the PBL using the technique described in Example 2 (Method 2).
  • the VH region in the isolated genomic DNA was then amplified and cloned using the general protocol described in the first two paragraphs of the section headed “Amplification from RNA/DNA hybrid” in Example 1 above, except that during the annealing part of each cycle, the temperature was held at 55° C. and that 30 cycles were used. At the end of the 30 cycles, the reaction mixture was held at 60° C. for five minutes to ensure that complete elongation and renaturation of the amplified fragments had taken place.
  • the forward primer used was HuHep1FOR, which contains a SacI site. This primer is designed to anneal to the 3′ end of the unrearranged human VH region gene, and in particular includes a sequence complementary to the last three codons in the VH region gene and nine nucleotides downstream of these three codons.
  • HuOcta1BACK, HuOcta2BACK and HuOcta3BACK was used as the back primer. These primers anneal to a sequence in the promoter region of the genomic DNA VH gene (see FIG. 1 ). 5 ⁇ l of the amplified DNA was checked on 2% agarose gels in TBE buffer and stained with ethidium bromide. A double band was seen of about 620 nucleotides which corresponds to the size expected for the unrearranged VH gene. The ds cDNA was digested with SacI and cloned into an M13 vector for sequencing. Although there are some sequences which are identical, a range of different unrearranged human VH genes were identified ( FIG. 12 ).
  • VHLYS heavy chain variable domain
  • D1.3 anti-lysozyme
  • the heavy chain variable domain (VHLYS) of the D1.3 (anti-lysozyme) antibody was cloned into a vector similar to that described previously [42] but under the control of the lac z promoter, such that the VHLYS domain is attached to a pelB leader sequence for export into the periplasm.
  • the vector was constructed by synthesis of the pelB leader sequence [43], using overlapping oligonucleotides, and cloning into a pUC 19 vector [35].
  • the VHLYS domain of the D1.3 antibody was derived from a cDNA clone [44] and the construct (PSW1) sequenced ( FIG. 13 ).
  • VKLYS light chain variable region
  • the colonies were inoculated into 50 ml 2 ⁇ TY (with 1% glucose and 100 ⁇ g/ml ampicillin) and grown in flasks at 37° C. with shaking for 12-16 hr.
  • the cells were centrifuged, the pellet washed twice with 50 mM sodium chloride, resuspended in 2 ⁇ TY medium containing 100 ⁇ g/ml ampicillin and the inducer IPTG (1 mM) and grown for a further 30 hrs at 37° C.
  • the cells were centrifuged and the supernatant was passed through a Nalgene filter (0.45 ⁇ m) and then down a 1-5 ml lysozyme-Sepharose® affinity column (Pharmacia Fine Chemicals, Inc.).
  • the column was derived by coupling lysozyme at 10 mg/ml to CNBr activated Sepharose.
  • the column was first washed with phosphate buffered saline (PBS), then with 50 mM diethylamine to elute the VHLYS domain (from pSW1) or VHLYS in association with VKLYS (from pSW2).
  • PBS phosphate buffered saline
  • VHLYS and VKLYS domains were identified by SDS polyacrylamide electrophoresis as the correct size.
  • N-terminal sequence determination of VHLYS and VKLYS isolated from a polyacrylamide gel showed that the signal peptide had been produced correctly.
  • both the Fv fragment and the VHLYS domains are able to bind to the lysozyme affinity column, suggesting that both retain at least some of the affinity of the original antibody.
  • VHLYS domain was compared by FPLC with that of the Fv fragment on Superose 12. This indicates that the VHLYS domain is a monomer.
  • the binding of the VHLYS and Fv fragment to lysozyme was checked by ELISA, and equilibrium and rapid reaction studies were carried out using fluorescence quench.
  • the ELISA for lysozyme binding was undertaken as follows:
  • VHLYS or Fv fragment VHLYS associated with VKLYS
  • the reaction was stopped by adding 0.05% sodium azide in 50 mM citric acid pH 4.3.
  • ELISA plates were read in a Titertek Multiscan plate reader. Supernatant from the induced bacterial cultures of both pSW1 (VHLYS domain) or pSW2 (Fv fragment) was found to bind to lysozyme in the ELISA.
  • the purified VHLYS and Fv fragments were titrated with lysozyme using fluorescence quench (Perkin Elmer LS5B Luminescence Spectrometer) to measure the stoichiometry of binding and the affinity constant for lysozyme [48,49].
  • fluorescence quench Perkin Elmer LS5B Luminescence Spectrometer
  • the titration of the Fv fragment at a concentration of 30 nM indicates a dissociation constant of 2.8 nM using a Scatchard analysis.
  • VHLYS was titrated with lysozyme as above using fluorescence quench.
  • the on-rates for VHLYS and Fv fragments with lysozyme were determined by stopped-flow analysis (HI Tech Stop Flow SHU machine) under pseudo-first order conditions with the fragment at a ten fold higher concentration than lysozyme [50].
  • the concentration of lysozyme binding sites was first measured by titration with lysozyme using fluorescence quench as above. The on rates were calculated per mole of binding site (rather than amount of VHLYS protein).
  • the on-rate for the Fv fragment was found to be 2.2 ⁇ 10 6 M ⁇ 1 s ⁇ 1 at 25° C.
  • the on-rate for the VHLYS fragment found to be 3.8 ⁇ 10 6 M ⁇ 1 s ⁇ 1 and the off-rate 0.075 s ⁇ 1 at 20° C.
  • the calculated affinity constant is 19 nM.
  • the VHLYS binds to lysozyme with a dissociation constant of about 19 nM, compared with that of the Fv of 3 nM.
  • a mouse was immunized with hen egg white lysozyme (100 ⁇ g i.p. day 1 in complete Freunds adjuvant), after 14 days immunized i.p. again with 100 ⁇ g lysozyme with incomplete Freunds adjuvant, and on day 35 i.v. with 50 ⁇ g lysozyme in saline. On day 39, spleen was harvested. A second mouse was immunized with keyhole limpet hemocyanin (KLH) in a similar way. The DNA was prepared from the spleen according to Example 2 (Method 2). The VH genes were amplified according to the preferred method in Example 2.
  • KLH keyhole limpet hemocyanin
  • Human peripheral blood lymphocytes from a patient infected with HIV were prepared as in Example 3 (Method 2) and mRNA prepared.
  • the VH genes were amplified according to the method described in Example 3, using primers designed for human VH gene families.
  • the reaction mixture and oil were extracted twice with ether, once with phenol and once with phenol/CHCl 3 .
  • the double stranded DNA was then taken up in 50 ⁇ l of water and frozen. 5 ⁇ l was digested with PstI and BstEII (encoded within the amplification primers) and loaded on an agarose gel for electrophoresis. The band of amplified DNA at about 350 bp was extracted.
  • the repertoire of amplified heavy chain variable domains was then cloned directly into the expression vector pSW1HPOLYMYC.
  • This vector is derived from pSW1 except that the VHLYS gene has been removed and replaced by a polylinker restriction site.
  • a sequence encoding a peptide tag was inserted ( FIG. 15 ). Colonies were toothpicked into 1 ml cultures. After induction (see Example 5 for details), 10 ⁇ l of the supernatant from fourteen 1 ml cultures was loaded on SDS-PAGE gels and the proteins transferred electrophoretically to nitrocellulose. The blot was probed with antibody 9E10 directed against the peptide tag.
  • the probing was undertaken as follows.
  • the nitrocellulose filter was incubated in 3% bovine serum albumin (BSA)/TBS buffer for 20 min (10 ⁇ TBS buffer is 100 mM Tris.HCl, pH 7.4, 9% w/v NaCl).
  • BSA bovine serum albumin
  • the filter was incubated in a suitable dilution of antibody 9E10 (about 1/500) in 3% BSA/TBS for 1-4 hrs. After three washes in TBS (100 ml per wash, each wash for 10 min), the filter was incubated with 1:500 dilution of anti-mouse antibody (peroxidase conjugated anti-mouse Ig (Dakopats)) in 3% BSA/TBS for 1-2 hrs.
  • anti-mouse antibody peroxidase conjugated anti-mouse Ig (Dakopats)
  • Colonies were then toothpicked individually into wells of an ELISA plate (200 ⁇ l) for growth and induction. They were assayed for lysozyme binding with the 9E10 antibody (as in Examples 5 and 7). Wells with lysozyme-binding activity were identified. Two positive wells (of 200) were identified from the amplified mouse spleen DNA and one well from the human cDNA. The heavy chain variable domains were purified on a column of lysozyme-Sepharose. The affinity for lysozyme of the clones was estimated by fluorescence quench titration as >50 nM.
  • VH3 and VH8 The affinities of the two clones (VH3 and VH8) derived from the mouse genes were also estimated by stop flow analysis (ratio of k off /k on ) as 12 nM and 27 nM respectively. Thus both these clones have a comparable affinity to the VHLYS domain.
  • the encoded amino acid sequences of VH3 and VH8 are given in FIG. 16 , and that of the human variable domain in FIG. 17 .
  • a library of VH domains made from the mouse immunized with lysozyme was screened for both lysozyme and keyhole limpet hemocyanin (KLH) binding activities. Two thousand colonies were toothpicked in groups of five into wells of ELISA plates, and the supernatants tested for binding to lysozyme coated plates and separately to KLH coated plates. Twenty one supernatants were shown to have lysozyme binding activities and two to have KLH binding activities.
  • a second expression library, prepared from a mouse immunized with KLH was screened as above. Fourteen supernatants had KLH binding activities and a single supernatant had lysozyme binding activity.
  • a single rearranged VH gene it may be possible to derive entirely new antigen binding activities by extensively mutating each of the CDRs.
  • the mutagenesis might be entirely random, or be derived from pre-existing repertoires of CDRs.
  • a repertoire of CDR3s might be prepared as in the preceding examples by using “universal” primers based in the flanking sequences, and likewise repertoires of the other CDRs (singly or in combination).
  • the CDR repertoires could be stitched into place in the flanking framework regions by a variety of recombinant DNA techniques.
  • CDR3 appears to be the most promising region for mutagenesis as CDR3 is more variable in size and sequence than CDRs 1 and 2. This region would be expected to make a major contribution to antigen binding.
  • the heavy chain variable region (VHLYS) of the anti-lysozyme antibody D1.3 is known to make several important contacts in the CDR3 region.
  • the source of the heavy chain variable domain was an M113 vector containing the VHLYS gene.
  • the body of the sequence encoding the variable region was amplified using the polymerase chain reaction (PCR) with the mutagenic primer VHMUT1 based in CDR3 and the M13 primer which is based in the M13 vector backbone.
  • the mutagenic primer hypermutates the central four residues of CDR3 (Arg-Asp-Tyr-Arg).
  • the PCR was carried out for 25 cycles on a Techne PHC-1 programmable heat block using 100 ng single stranded M13 mp19SWO template, with 25 pmol of VHMUT1 and the M13 primer, 0.5 mM each dNTP, 67 mM Tris.HCl, pH 8.8, 10 mM MgCl 2 , 17 mM (NH 4 ) 2 SO 4 , 200 ⁇ g/ml gelatine and 2.5 units Taq polymerase in a final volume of 50 ⁇ l.
  • the temperature regime was 95° C. for 1.5 min, 25° C. for 1.5 min and 72° C. for 3 min (However a range of PCR conditions could be used).
  • the reaction products were extracted with phenol/chloroform, precipitated with ethanol and resuspended in 10 mM Tris. HCl and 0.1 mM EDTA, pH 8.0.
  • the products from the PCR were digested with PstI and BstEII and purified on a 1.5% LGT agarose gel in Tris acetate buffer using Geneclean® (Bio 101, LaJolla).
  • the gel purified band was ligated into pSW2HPOLY ( FIG. 19 ).
  • the vector was first digested with BstEII and PstI and treated with calf-intestinal phosphatase. Aliquots of the reaction mix were used to transform E. coli BMH 71-18 to ampicillin resistance. Colonies were selected on ampicillin (100 ⁇ g/ml) rich plates containing glucose at 0.8% w/v.
  • Colonies resulting from transfection were picked in pools of five into two 96 well Corning microtitre plates, containing 200 ⁇ l 2 ⁇ TY medium and 100 ⁇ l TY medium, 100 ⁇ g/ml ampicillin and 1% glucose. The colonies were grown for 24 hours at 37° C. and then cells were washed twice in 200 ⁇ l 50 mM NaCl, pelleting the cells in an IEC Centra-3 bench top centrifuge with microtitre plate head fitting. Plates were spun at 2,500 rpm for 10 min at room temperature. Cells were resuspended in 200 ⁇ l 2 ⁇ TY, 100 ⁇ g/ml ampicillin and 1 mM IPTG (Sigma) to induce expression, and grown for a further 24 hr.
  • plasmids were prepared and the VKLYS gene excised by cutting with EcoRI and religating. Thus the plasmids should only direct the expression of the VHLYS mutants. 1.5 ml cultures were grown and induced for expression as above. The cells were spun down and supernatant shown to bind lysozyme as above. (Alternatively the amplified mutant VKLYS genes could have been cloned directly into the pSW1HPOLY vector for expression of the mutant activities in the absence of VKLYS.)
  • An ELISA method was devised in which the activities of bacterial supernatants for binding of lysozyme (or KLH) were compared.
  • a vector was devised for tagging of the VH domains at its C-terminal region with a peptide from the c-myc protein which is recognized by a monoclonal antibody 9E10.
  • the vector was derived from pSW1 by a BstEII and SmaI double digest, and ligation of an oligonucleotide duplex made from
  • VHLYSMYC protein domain expressed after induction was shown to bind to lysozyme and to the 9E10 antibody by ELISA as follows:
  • test solution was discarded, and the wells washed out with PBS (3 washes).
  • 100 ⁇ l of 4 ⁇ g/ml purified 9E10 antibody in 2% Sainsbury's instant dried skimmed milk powder in PBS was added, and incubated at 37° C. for 2 hrs;
  • reaction was stopped by adding 0.05% sodium azide in 50 mM citric acid, pH 4.3.
  • ELISA plates were read in an Titertek Multiscan plate reader.
  • VHLYSMUT59 To check the affinity of the VHLYSMUT59 domain directly, the clone was grown at the 1 L scale and 200-300 ⁇ g purified on lysozyme-Sepharose as in Example 5. By fluorescence quench titration of samples of VHLYS and VHLYSMUT59, the number of binding sites for lysozyme were determined. The samples of VHLYS and VHLYSMUT59 were then compared in the competition ELISA with VHLYSMYC over two orders of magnitude. In the competition assay each microtitre well contained a constant amount of VHLYSMYC (approximately 0.6 ⁇ g VHLYSMYC).
  • VHLYS or VHLYSMUT59 Varying amounts of VHLYS or VHLYSMUT59 (3.8 ⁇ M in lysozyme binding sites) were added (0.166-25 ⁇ l). The final volume and buffer concentration in all wells was constant. 9E10 (anti-myc) antibody was used to quantitate bound VHLYSMYC in each assay well. The % inhibition of VHLYSMYC binding was calculated for each addition of VHLYS or VHLYSMUT59, after subtraction of background binding. Assays were carried out in duplicate. The results indicate that VHLYSMUT59 has a higher affinity for lysozyme than VHLYS.
  • VHLYSMUT59 gene was sequenced (after recloning into M13) and shown to be identical to the VHLYS gene except for the central residues of CDR3 (Arg-Asp-Tyr-Arg). These were replaced by Thr-Gln-Arg-Pro: (encoded by ACACAAAGGCCA).
  • a library of 2000 mutant VH clones was screened for lysozyme and also for KLH binding (toothpicking 5 colonies per well as described in Example 6).
  • Nineteen supernatants were identified with lysozyme binding activities and four with KLH binding activities. This indicates that new specificities and improved affinities can be derived by making a random repertoire of CDR3.
  • Two copies of the cloned heavy chain variable gene of the D1.3 antibody were linked by a nucleotide sequence encoding a flexible linker Gly-Gly-Gly-Ala-Pro-Ala-Ala-Ala-Pro-Ala-Gly-Gly-Gly- (by several steps of cutting, pasting and site directed mutagenesis) to yield the plasmid pSW3 ( FIG. 20 ).
  • the expression was driven by a lacZ promoter and the protein was secreted into the periplasm via a pelB leader sequence (as described in Example 5 for expression of pSW1 and pSW2).
  • the protein could be purified to homogeneity on a lysozyme affinity column.
  • a cysteine residue was introduced at the C-terminus of the VHLYS domain in the vector pSW2.
  • the cysteine was introduced by cleavage of the vector with the restriction enzymes BstI and SmaI (which excises the C-terminal portion of the J segment) and ligation of a short oligonucleotide duplex
  • FIGS. 21 a - 21 c there is shown the sequence of a fusion of a VH domain with alkaline phosphatase.
  • the alkaline phosphatase gene was cloned from a plasmid carrying the E. coli alkaline phosphatase gene in a plasmid pEK48 [51] using the polymerase chain reaction. The gene was amplified with the primers
  • FIGS. 21 a - 21 c The construction ( FIGS. 21 a - 21 c ) was expressed in E.
  • Example 5 coli strain BMH71-18 as in Example 5 and screened for phosphatase activity using 1 mg/ml p-nitrophenylphosphate as substrate in 10 mM diethanolamine and 0.5 mM MgCl 2 , pH 9.5) and also on SDS polyacrylamide gels which had been Western blotted (detecting with anti-idiotypic antiserum). No evidence was found for the secretion of the linked VHLYS-alkaline phosphatase as detected by Western blots (see Example 5), or for secretion of phosphatase activity.
  • linker sequences could then be introduced at the BstEII site to improve the spacing between the two domains.
  • V ⁇ genes A repertoire of V ⁇ genes was derived by PCR using primers as described in Example 2 from DNA prepared from mouse spleen and also from mouse spleen mRNA using the primers VK3FOR and VK2BACK and a cycle of 94° C. for 1 min, 60° C. for 1 min, 72° C. for 2 min.
  • the PCR amplified DNA was fractionated on the agarose gel, the band excised and cloned into a vector which carries the VHLYS domain (from the D 1.3 antibody), and a cloning site (SacI and XhoI) for cloning of the light chain variable domains with a myc tail (pSW1VHLYS-VKPOLYMYC, FIG. 22 ).
  • Clones were screened for lysozyme binding activities as described in Examples 5 and 7 via the myc tag on the light chain variable domain, as this should permit the following kinds of V ⁇ domains to be identified:
  • VHLYS domain was replaced by the heavy chain variable domain VH3 which had been isolated from the repertoire (see Example 6), and then the V ⁇ domains cloned into the vector. (Note that the VH3 domain has an internal SacI site and this was first removed to allow the cloning of the V ⁇ repertoire as SacI-XhoI fragments.)
  • the present invention enables the cloning, amplification and expression of heavy and light chain variable domain encoding sequences in a much more simple manner than was previously possible. It also shows that isolated variable domains or such domains linked to effector molecules are unexpectedly useful.

Abstract

The present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, preferably using the polymerase chain reaction, methods for the use of said DNA sequences in the productions of Ig-type molecules and said ligands or receptors, and the use of said ligand or receptors in therapy, diagnosis or catalysis.

Description

    RELATED APPLICATIONS
  • This is a continuation of application Ser. No. 10/290,233, filed Nov. 8, 2002 (allowed), which is a continuation of application Ser. No. 09/722,364, filed Nov. 28, 2000 (now U.S. Pat. No. 6,545,142), which is a continuation of application Ser. No. 08/470,031, filed Jun. 6, 1995 (now U.S. Pat. No. 6,248,516), which is a divisional of application Ser. No. 08/332,046, filed Nov. 1, 1994 (now abandoned), which is a continuation of application Ser. No. 07/796,805, filed Nov. 25, 1991 (now abandoned), which is a divisional of application Ser. No. 07/580,374, filed Sep. 11, 1990 (now abandoned), which is a continuation of PCT Application No. PCT/GB89/01344, filed Nov. 13, 1989, the entire contents of each of which is hereby incorporated by reference in this application.
  • SUMMARY OF THE INVENTION
  • The present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, methods for the use of said DNA sequences in the production of Ig-type molecules and said ligands or receptors, and the use of said ligands or receptors in therapy, diagnosis or catalysis.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is now described, by way of example only, with reference to the accompanying drawings.
  • FIG. 1 shows a schematic representation of the unrearranged and rearranged heavy and light chain variable genes and the location of the primers.
  • FIG. 2 shows a schematic representation of the M13-VHPCR1 vector and a cloning scheme for amplified heavy chain variable domains.
  • FIG. 3 shows the sequence of the Ig variable region derived sequences in M13-VHPCR1.
  • FIG. 4 shows a schematic representation of the M13-VKPCR1 vector and a cloning scheme for light chain variable domains.
  • FIG. 5 shows the sequence of the Ig variable region derived sequences in M13-VKPCR1.
  • FIG. 6 shows the nucleotide sequences of the heavy and light chain variable domain encoding sequences of MAb MBr1.
  • FIG. 7 shows a schematic representation of the pSV-gpt vector (also known as α-Lys 30) which contains a variable region cloned as a HindIII-BamHI fragment, which is excised on introducing the new variable region. The gene for human IgG1 has also been engineered to remove a BamHI site, such that the BamHI site in the vector is unique.
  • FIG. 8 shows a schematic representation of the pSV-hygro vector (also known as α-Lys 17). It is derived from pSV gpt vector with the gene encoding mycophenolic acid replaced by a gene coding for hygromycin resistance. The construct contains a variable gene cloned as a HindIII-BamHI fragment which is excised on introducing the new variable region. The gene for human Cκ has also been engineered to remove a BamHI site, such that the BamHI site in the vector is unique.
  • FIG. 9 shows the assembly of the mouse: human MBr1 chimeric antibody.
  • FIGS. 10 a-10 b shows encoded amino acid sequences of 48 mouse rearranged VH genes.
  • FIG. 11 shows encoded amino acid sequences of human rearranged VH genes.
  • FIG. 12 shows encoded amino acid sequences of unrearranged human VH genes.
  • FIG. 13 shows the sequence of part of the plasmid pSW1: essentially the sequence of a pectate lyase leader linked to VHLYS in pSW1 and cloned as an SphI-EcoRI fragment into pUC19 and the translation of the open reading frame encoding the pectate lyase leader-VHLYS polypeptide being shown.
  • FIGS. 14 a-14 b shows the sequence of part of the plasmid pSW2: essentially the sequence of a pectate lyase leader linked to VHLYS and to VKLYS, and cloned as an SphI-EcoRI-EcoRI fragment into pUC19 and the translation of open reading frames encoding the pectate lyase leader-VHLYS and pectate lyase leader-VKLYS polypeptides being shown.
  • FIG. 15 shows the sequence of part of the plasmid pSW1HPOLYMYC which is based on pSW1 and in which a polylinker sequence has replaced the variable domain of VHLYS, and acts as a cloning site for amplified VH genes, and a peptide tag is introduced at the C-terminal end.
  • FIG. 16 shows the encoded amino acid sequences of two VH domains derived from mouse spleen and having lysozyme binding activity, and compared with the VH domain of the D1,3 antibody. The arrows mark the points of difference between the two VH domains.
  • FIG. 17 shows the encoded amino acid sequence of a VH domain derived from human peripheral blood lymphocytes and having lysozyme binding activity.
  • FIG. 18 shows a scheme for generating and cloning mutants of the VHLYS gene, which is compared with the scheme for cloning natural repertoires of VH genes.
  • FIG. 19 shows the sequence of part of the vector pSW2HPOLY.
  • FIG. 20 shows the sequence of part of the vector pSW3 which encodes the two linked VHLYS domains.
  • FIGS. 21 a-21 c shows the sequence of the VHLYS domain and pelB leader sequence fused to the alkaline phosphatase gene.
  • FIG. 22 shows the sequence of the vector pSW1VHLYS-VKPOLYMYC for expression of a repertoire of Vκ light chain variable domains in association with the VHLYS domain.
  • FIG. 23 shows the sequence of VH domain which is secreted at high levels from E. coli. The differences with VHLYS domain are marked.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, methods for the use of said DNA sequences in the production of Ig-type molecules and said ligands or receptors, and the use of said ligands or receptors in therapy, diagnosis or catalysis.
  • A list of references is appended to the end of the description. The documents listed therein are referred to in the description by number, which is given in square brackets.
  • The Ig superfamily includes not only the Igs themselves but also such molecules as receptors on lymphoid cells such as T lymphocytes. Immunoglobulins comprise at least one heavy and one light chain covalently bonded together. Each chain is divided into a number of domains. At the N-terminal end of each chain is a variable domain. The variable domains on the heavy and light chains fit together to form a binding site designed to receive a particular target molecule. In the case of Igs, the target molecules are antigens. T-cell receptors have two chains of equal size, the α and β chains, each consisting of two domains. At the N-terminal end of each chain is a variable domain and the variable domains on the α and β chains are believed to fit together to form a binding site for target molecules, in this case peptides presented by a histocompatibility antigen. The variable domains are so called because their amino acid sequences vary particularly from one molecule to another. This variation in sequence enables the molecules to recognize an extremely wide variety of target molecules.
  • Much research has been carried out on Ig molecules to determine how the variable domains are produced. It has been shown that each variable domain comprises a number of areas of relatively conserved sequence and three areas of hypervariable sequence. The three hypervariable areas are generally known as complementarity determining regions (CDRs).
  • Crystallographic studies have shown that in each variable domain of an Ig molecule the CDRs are supported on framework areas formed by the areas of conserved sequences. The three CDRs are brought together by the framework areas and, together with the CDRs on the other chain, form a pocket in which the target molecule is received.
  • Since the advent of recombinant DNA technology, there has been much interest in the use of such technology to clone and express Ig molecules and derivatives thereof. This interest is reflected in the numbers of patent applications and other publications on the subject.
  • The earliest work on the cloning and expression of full Igs in the patent literature is EP-A-0 120 694 (Boss). The Boss application also relates to the cloning and expression of chimeric antibodies. Chimeric antibodies are Ig-type molecules in which the variable domains from one Ig are fused to constant domains from another Ig. Usually, the variable domains are derived from an Ig from one species (often a mouse Ig) and the constant domains are derived from an Ig from a different species (often a human Ig).
  • A later European patent application, EP-A-0 125 023 (Genentech), relates to much the same subject as the Boss application, but also relates to the production by recombinant DNA technology of other variations of Ig-type molecules.
  • EP-A-0 194 276 (Neuberger) discloses not only chimeric antibodies of the type disclosed in the Boss application but also chimeric antibodies in which some or all of the constant domains have been replaced by non-Ig derived protein sequences. For instance, the heavy chain CH2 and CH3 domains may be replaced by protein sequences derived from an enzyme or a protein toxin.
  • EP-A-0 239 400 (Winter) discloses a different approach to the production of Ig molecules. In this approach, only the CDRs from a first type of Ig are grafted onto a second type of Ig in place of its normal CDRs. The Ig molecule thus produced is predominantly of the second type, since the CDRs form a relatively small part of the whole Ig. However, since the CDRs are the parts which define the specificity of the Ig, the Ig molecule thus produced has its specificity derived from the first Ig.
  • Hereinafter, chimeric antibodies, CDR-grafted Igs, the altered antibodies described by Genentech, and fragments of such Igs such as F(ab′)2 and Fv fragments are referred to herein as modified antibodies.
  • One of the main reasons for all the activity in the Ig field using recombinant DNA technology is the desire to use Igs in therapy. It is well known that, using the hybridoma technique developed by Kohler and Milstein, it is possible to produce monoclonal antibodies (MAbs) of almost any specificity. Thus, MAbs directed against cancer antigens have been produced. It is envisaged that these MAbs could be covalently attached or fused to toxins to provide “magic bullets” for use in cancer therapy. MAbs directed against normal tissue or cell surface antigens have also been produced. Labels can be attached to these so that they can be used for in vivo imaging.
  • The major obstacle to the use of such MAbs in therapy or in vivo diagnosis is that the vast majority of MAbs which are produced are of rodent, in particular mouse, origin. It is very difficult to produce human MAbs. Since most MAbs are derived from non-human species, they are antigenic in humans. Thus, administration of these MAbs to humans generally results in an anti-Ig response being mounted by the human. Such a response can interfere with therapy or diagnosis, for instance by destroying or clearing the antibody quickly, or can cause allergic reactions or immune complex hypersensitivity which has adverse effects on the patient.
  • The production of modified Igs has been proposed to ensure that the Ig administered to a patient is as “human” as possible, but still retains the appropriate specificity. It is therefore expected that modified Igs will be as effective as the MAb from which the specificity is derived but at the same time not very antigenic. Thus, it should be possible to use the modified Ig a reasonable number of times in a treatment or diagnosis regime.
  • At the level of the gene, it is known that heavy chain variable domains are encoded by a “rearranged” gene which is built from three gene segments: an “unrearranged” VH gene (encoding the N-terminal three framework regions, first two complete CDRs and the first part of the third CDR), a diversity (DH)-segment (DH) (encoding the central portion of the third CDR) and a joining segment (JH) (encoding the last part of the third CDR and the fourth framework region). In the maturation of B-cells, the genes rearrange so that each unrearranged VH gene is linked to one DH gene and one JH gene. The rearranged gene corresponds to VH-DH-JH. This rearranged gene is linked to a gene which encodes the constant portion of the Ig chain.
  • For light chains, the situation is similar, except that for light chains there is no diversity region. Thus light chain variable domains are encoded by an “unrearranged” VL gene and a JL gene. There are two types of light chains, kappa (κ) or lambda (λ), which are built respectively from unrearranged Vκ genes and Jκ segments, and from unrearranged Vλ genes and Jλ segments.
  • Previous work has shown that it is necessary to have two variable domains in association together for efficient binding. For example, the associated heavy and light chain variable domains were shown to contain the antigen binding site [1]. This assumption is borne out by X-ray crystallographic studies of crystallized antibody/antigen complexes [2-6] which show that both the heavy and light chains of the antibody's variable domains contact the antigen. The expectation that association of heavy and light chain variable domains is necessary for efficient antigen binding underlies work to co-secrete these domains from bacteria [1], and to link the domains together by a short section of polypeptide as in the single chain antibodies [8, 9].
  • Binding of isolated heavy and light chains had also been detected. However the evidence suggested strongly that this was a property of heavy or light chain dimmers. Early work, mainly with polyclonal antibodies, in which antibody heavy and light chains had been separated under denaturing conditions [10] suggested that isolated antibody heavy chains could bind to protein antigens [11] or hapten [12]. The binding of protein antigen was not characterized, but the hapten-binding affinity of the heavy chain fragments was reduced by two orders of magnitude [12] and the number of hapten molecules binding were variously estimated as 0.14 or 0.37 [13] or 0.26 [14] per isolated heavy chain. Furthermore binding of haptens was shown to be a property of dimeric heavy or dimeric light chains [14]. Indeed light chain dimers have been crystallized. It has been shown that in light chain dimers the two chains form a cavity which is able to bind to a single molecule of hapten [15].
  • This confirms the assumption that, in order to obtain efficient binding, it is necessary to have a dimer, and preferably a heavy chain/light chain dimer, containing the respective variable domains. This assumption also underlies the teaching of the patent references cited above, wherein the intention is always to produce dimeric, and preferably heavy/light chain dimeric, molecules.
  • It has now been discovered, contrary to expectations, that isolated Ig heavy chain variable domains can bind to antigen in a 1:1 ratio and with binding constants of equivalent magnitude to those of complete antibody molecules. In view of what was known up until now and in view of the assumptions made by those skilled in the art, this is highly surprising.
  • Therefore, according to a first aspect of the present invention, there is provided a single domain ligand consisting of at least part of the variable domain of one chain of a molecule from the Ig superfamily.
  • Preferably, the ligand consists of the variable domain of an Ig light, or, most preferably, heavy chain.
  • The ligand may be produced by any known technique, for instance by controlled cleavage of Ig superfamily molecules or by peptide synthesis. However, preferably the ligand is produced by recombinant DNA technology. For instance, the gene encoding the rearranged gene for a heavy chain variable domain may be produced, for instance by cloning or gene synthesis, and placed into a suitable expression vector. The expression vector is then used to transform a compatible host cell which is then cultured to allow the ligand to be expressed and, preferably, secreted.
  • If desired, the gene for the ligand can be mutated to improve the properties of the expressed domain, for example to increase the yields of expression or the solubility of the ligand, to enable the ligand to bind better, or to introduce a second site for covalent attachment (by introducing chemically reactive residues such as cysteine and histidine) or non-covalent binding of other molecules. In particular it would be desirable to introduce a second site for binding to serum components, to prolong the residence time of the domains in the serum; or for binding to molecules with effector functions, such as components of complement, or receptors on the surfaces of cells.
  • Thus, hydrophobic residues which would normally be at the interface of the heavy chain variable domain with the light chain variable domain could be mutated to more hydrophilic residues to improve solubility; residues in the CDR loops could be mutated to improve antigen binding; residues on the other loops or parts of the β-sheet could be mutated to introduce new binding activities. Mutations could include single point mutations, multiple point mutations or more extensive changes and could be introduced by any of a variety of recombinant DNA methods, for example gene synthesis, site directed mutagenesis or the polymerase chain reaction.
  • Since the ligands of the present invention have equivalent binding affinity to that of complete Ig molecules, the ligands can be used in many of the ways as are Ig molecules or fragments. For example, Ig molecules have been used in therapy (such as in treating cancer, bacterial and viral diseases), in diagnosis (such as pregnancy testing), in vaccination (such as in producing anti-idiotypic antibodies which mimic antigens), in modulation of activities of hormones or growth factors, in detection, in biosensors and in catalysis.
  • It is envisaged that the small size of the ligands of the present invention may confer some advantages over complete antibodies, for example, in neutralizing the activity of low molecular weight drugs (such as dioxin) and allowing their filtration from the kidneys with drug attached; in penetrating tissues and tumors; in neutralizing viruses by binding to small conserved regions on the surfaces of viruses such as the “canyon” sites of viruses [16]; in high resolution epitope mapping of proteins; and in vaccination by ligands which mimic antigens.
  • The present invention also provides receptors comprising a ligand according to the first aspect of the invention linked to one or more of an effector molecule, a label, a surface, or one or more other ligands having the same or different specificity.
  • A receptor comprising a ligand linked to an effector molecule may be of use in therapy. The effector molecule may be a toxin, such as ricin or pseudomonas exotoxin, an enzyme which is able to activate a prodrug, a binding partner or a radio-isotope. The radio-isotope may be directly linked to the ligand or may be attached thereto by a chelating structure which is directly linked to the ligand. Such ligands with attached isotopes are much smaller than those based on Fv fragments, and could penetrate tissues and access tumors more readily.
  • A receptor comprising a ligand linked to a label may be of use in diagnosis. The label may be a heavy metal atom or a radio-isotope, in which case the receptor can be used for in vivo imaging using X-ray or other scanning apparatus. The metal atom or radio-isotope may be attached to the ligand either directly or via a chelating structure directly linked to the ligand. For in vitro diagnostic testing, the label may be a heavy metal atom, a radio-isotope, an enzyme, a fluorescent or colored molecule or a protein or peptide tag which can be detected by an antibody, an antibody fragment or another protein. Such receptors would be used in any of the known diagnostic tests, such as ELISA or fluorescence-linked assays.
  • A receptor comprising a ligand linked to a surface, such as a chromatography medium, could be used for purification of other molecules by affinity chromatography. Linking of ligands to cells, for example to the outer membrane proteins of E. coli or to hydrophobic tails which localize the ligands in the cell membranes, could allow a simple diagnostic test in which the bacteria or cells would agglutinate in the presence of molecules bearing multiple sites for binding the ligand(s).
  • Receptors comprising at least two ligands can be used, for instance, in diagnostic tests. The first ligand will bind to a test antigen and the second ligand will bind to a reporter molecule, such as an enzyme, a fluorescent dye, a colored dye, a radio-isotope or a colored-, fluorescently- or radio-labelled protein.
  • Alternatively, such receptors may be useful in increasing the binding to an antigen. The first ligand will bind to a first epitope of the antigen and the second ligand will bind to a second epitope. Such receptors may also be used for increasing the affinity and specificity of binding to different antigens in close proximity on the surface of cells. The first ligand will bind to the first antigen and the second epitope to the second antigen: strong binding will depend on the co-expression of the epitopes on the surface of the cell. This may be useful in therapy of tumors, which can have elevated expression of several surface markers. Further ligands could be added to further improve binding or specificity. Moreover, the use of strings of ligands, with the same or multiple specificities, creates a larger molecule which is less readily filtered from the circulation by the kidney.
  • For vaccination with ligands which mimic antigens, the use of strings of ligands may prove more effective than single ligands, due to repetition of the immunizing epitopes.
  • If desired, such receptors with multiple ligands could include effector molecules or labels so that they can be used in therapy or diagnosis as described above.
  • The ligand may be linked to the other part of the receptor by any suitable means, for instance by covalent or non-covalent chemical linkages. However, where the receptor comprises a ligand and another protein molecule, it is preferred that they are produced by recombinant DNA technology as a fusion product. If necessary, a linker peptide sequence can be placed between the ligand and the other protein molecule to provide flexibility.
  • The basic techniques for manipulating Ig molecules by recombinant DNA technology are described in the patent references cited above. These may be adapted in order to allow for the production of ligands and receptors according to the invention by means of recombinant DNA technology.
  • Preferably, where the ligand is to be used for in vivo diagnosis or therapy in humans, it is humanized, for instance by CDR replacement as described in EP-A-0 239 400.
  • In order to obtain a DNA sequence encoding a ligand, it is generally necessary firstly to produce a hybridoma which secretes an appropriate MAb. This can be a very time consuming method. Once an immunized animal has been produced, it is necessary to fuse separated spleen cells with a suitable myeloma cell line, grow up the cell lines thus produced, select appropriate lines, reclone the selected lines and reselect. This can take some long time. This problem also applies to the production of modified Igs.
  • A further problem with the production of ligands, and also receptors according to the invention and modified Igs, by recombinant DNA technology is the cloning of the variable domain encoding sequences from the hybridoma which produces the MAb from which the specificity is to be derived. This can be a relatively long method involving the production of a suitable probe, construction of a clone library from cDNA or genomic DNA, extensive probing of the clone library, and manipulation of any isolated clones to enable the cloning into a suitable expression vector. Due to the inherent variability of the DNA sequences encoding Ig variable domains, it has not previously been possible to avoid such time consuming work. It is therefore a further aim of the present invention to provide a method which enables substantially any sequence encoding an Ig superfamily molecule variable domain (ligand) to be cloned in a reasonable period of time.
  • According to another aspect of the present invention therefore, there is provided a method of cloning a sequence (the target sequence) which encodes at least part of the variable domain of an Ig superfamily molecule, which method comprises:
  • (a) providing a sample of double stranded (ds) nucleic acid which contains the target sequence;
  • (b) denaturing the sample so as to separate the two strands;
  • (c) annealing to the sample a forward and a back oligonucleotide primer, the forward primer being specific for a sequence at or adjacent the 3′ end of the sense strand of the target sequence, the back primer being specific for a sequence at or adjacent the 3′ end of the antisense strand of the target sequence, under conditions which allow the primers to hybridize to the nucleic acid at or adjacent the target sequence;
  • (d) treating the annealed sample with a DNA polymerase enzyme in the presence of deoxynucleoside triphosphates under conditions which cause primer extension to take place; and
  • (e) denaturing the sample under conditions such that the extended primers become separated from the target sequence.
  • Preferably, the method of the present invention further includes the step (f) of repeating steps (c) to (e) on the denatured mixture a plurality of times.
  • Preferably, the method of the present invention is used to clone complete variable domains from Ig molecules, most preferably from Ig heavy chains. In the most preferred instance, the method will produce a DNA sequence encoding a ligand according to the present invention.
  • In step (c) recited above, the forward primer becomes annealed to the sense strand of the target sequence at or adjacent the 3′ end of the strand. In a similar manner, the back primer becomes annealed to the antisense strand of the target sequence at or adjacent the 3′ end of the strand. Thus, the forward primer anneals at or adjacent the region of the ds nucleic acid which encodes the C-terminal end of the variable region or domain. Similarly, the back primer anneals at or adjacent the region of the ds nucleic acid which encodes the N-terminal end of the variable domain.
  • In step (d), nucleotides are added onto the 3′ end of the forward and back primers in accordance with the sequence of the strand to which they are annealed. Primer extension will continue in this manner until stopped by the beginning of the denaturing step (e). It must therefore be ensured that step (d) is carried out for a long enough time to ensure that the primers are extended so that the extended strands totally overlap one another.
  • In step (e), the extended primers are separated from the ds nucleic acid. The ds nucleic acid can then serve again as a substrate to which further primers can anneal. Moreover, the extended primers themselves have the necessary complementary sequences to enable the primers to anneal thereto.
  • During further cycles, if step (f) is used, the amount of extended primers will increase exponentially so that at the end of the cycles there will be a large quantity of cDNA having sequences complementary to the sense and antisense strands of the target sequence. Thus, the method of the present invention will result in the accumulation of a large quantity of cDNA which can form ds cDNA encoding at least part of the variable domain.
  • As will be apparent to the skilled person, some of the steps in the method may be carried out simultaneously or sequentially as desired.
  • The forward and back primers may be provided as isolated oligonucleotides, in which case only two oligonucleotides will be used. However, alternatively the forward and back primers may each be supplied as a mixture of closely related oligonucleotides. For instance, it may be found that at a particular point in the sequence to which the primer is to anneal, there is the possibility of nucleotide variation. In this case a primer may be used for each possible nucleotide variation. Furthermore it may be possible to use two or more sets of “nested” primers in the method to enhance the specific cloning of variable region genes.
  • The method described above is similar to the method described by Saiki et al. [17]. A similar method is also used in the methods described in EP-A-0 200 362. In both cases the method described is carried out using primers which are known to anneal efficiently to the specified nucleotide sequence. In neither of these disclosures was it suggested that the method could be used to clone Ig parts of variable domain encoding sequences, where the target sequence contains inherently highly variable areas.
  • The ds nucleic acid sequence used in the method of the present invention may be derived from mRNA. For instance, RNA may be isolated in known manner from a cell or cell line which is known to produce Igs. mRNA may be separated from other RNA by oligo-dT chromatography. A complementary strand of cDNA may then be synthesized on the mRNA template, using reverse transcriptase and a suitable primer, to yield an RNA/DNA heteroduplex. A second strand of DNA can be made in one of several ways, for example, by priming with RNA fragments of the mRNA strand (made by incubating RNA/DNA heteroduplex with RNase H) and using DNA polymerase, or by priming with a synthetic oligodeoxynucleotide primer which anneals to the 3′ end of the first strand and using DNA polymerase. It has been found that the method of the present invention can be carried out using ds cDNA prepared in this way.
  • When making such ds cDNA, it is possible to use a forward primer which anneals to a sequence in the CH1 domain (for a heavy chain variable domain) or the Cλ or Cκ domain (for a light chain variable domain). These will be located in close enough proximity to the target sequence to allow the sequence to be cloned.
  • The back primer may be one which anneals to a sequence at the N-terminal end of the VH1, Vκ or V λ domain. The back primer may consist of a plurality of primers having a variety of sequences designed to be complementary to the various families of VH1, Vκ or Vλ sequences known. Alternatively the back primer may be a single primer having a consensus sequence derived from all the families of variable region genes.
  • Surprisingly, it has been found that the method of the present invention can be carried out using genomic DNA. If genomic DNA is used, there is a very large amount of DNA present, including actual coding sequences, introns and untranslated sequences between genes. Thus, there is considerable scope for non-specific annealing under the conditions used. However, it has surprisingly been found that there is very little non-specific annealing. It is therefore unexpected that it has proved possible to clone the genes of Ig-variable domains from genomic DNA.
  • Under some circumstances the use of genomic DNA may prove advantageous compared with use of mRNA, as the mRNA is readily degraded, and especially difficult to prepare from clinical samples of human tissue.
  • Thus, in accordance with an aspect of the present invention, the ds nucleic acid used in step (a) is genomic DNA.
  • When using genomic DNA as the ds nucleic acid source, it will not be possible to use as the forward primer an oligonucleotide having a sequence complementary to a sequence in a constant domain. This is because, in genomic DNA, the constant domain genes are generally separated from the variable domain genes by a considerable number of base pairs. Thus, the site of annealing would be too remote from the sequence to be cloned.
  • It should be noted that the method of the present invention can be used to clone both rearranged and unrearranged variable domain sequences from genomic DNA. It is known that in germ line genomic DNA the three genes, encoding the VH, DH and JH respectively, are separated from one another by considerable numbers of base pairs. On maturation of the immune response, these genes are rearranged so that the VH, DH and JH genes are fused together to provide the gene encoding the whole variable domain (see FIG. 1). By using a forward primer specific for a sequence at or adjacent the 3′ end of the sense strand of the genomic “unrearranged” VH gene, it is possible to clone the “unrearranged” VH gene alone, without also cloning the DH and JH genes. This can be of use in that it will then be possible to fuse the VH gene onto pre-cloned or synthetic DH and DH genes. In this way, rearrangement of the variable domain genes can be carried out in vitro.
  • The oligonucleotide primers used in step (c) may be specifically designed for use with a particular target sequence. In this case, it will be necessary to sequence at least the 5′ and 3′ ends of the target sequence so that the appropriate oligonucleotides can be synthesized. However, the present inventors have discovered that it is not necessary to use such specifically designed primers. Instead, it is possible to use a species specific general primer or a mixture of such primers for annealing to each end of the target sequence. This is not particularly surprising as regards the 3′ end of the target sequence. It is known that this end of the variable domain encoding sequence leads into a segment encoding JH which is known to be relatively conserved. However, it was surprisingly discovered that, within a single species, the sequence at the 5′ end of the target sequence is sufficiently well conserved to enable a species specific general primer or a mixture thereof to be designed for the 5′ end of the target sequence.
  • Therefore according to a preferred aspect of the present invention, in step (c) the two primers which are used are species specific general primers, whether used as single primers or as mixtures of primers. This greatly facilitates the cloning of any undetermined target sequence since it will avoid the need to carry out any sequencing on the target sequence in order to produce target sequence-specific primers. Thus the method of this aspect of the invention provides a general method for cloning variable region or domain encoding sequences of a particular species.
  • Once the variable domain gene has been cloned using the method described above, it may be directly inserted into an expression vector, for instance using the PCR reaction to paste the gene into a vector.
  • Advantageously, however, each primer includes a sequence including a restriction enzyme recognition site. The sequence recognized by the restriction enzyme need not be in the part of the primer which anneals to the ds nucleic acid, but may be provided as an extension which does not anneal. The use of primers with restriction sites has the advantage that the DNA can be cut with at least one restriction enzyme which leaves 3′ or 5′ overhanging nucleotides. Such DNA is more readily cloned into the corresponding sites on the vectors than blunt end fragments taken directly from the method. The ds cDNA produced at the end of the cycles will thus be readily insertable into a cloning vector by use of the appropriate restriction enzymes. Preferably the choice of restriction sites is such that the ds cDNA is cloned directly into an expression vector, such that the ligand encoded by the gene is expressed. In this case the restriction site is preferably located in the sequence which is annealed to the ds nucleic acid.
  • Since the primers may not have a sequence exactly complementary to the target sequence to which it is to be annealed, for instance because of nucleotide variations or because of the introduction of a restriction enzyme recognition site, it may be necessary to adjust the conditions in the annealing mixture to enable the primers to anneal to the ds nucleic acid. This is well within the competence of the person skilled in the art and needs no further explanation.
  • In step (d), any DNA polymerase may be used. Such polymerases are known in the art and are available commercially. The conditions to be used with each polymerase are well known and require no further explanation here. The polymerase reaction will need to be carried out in the presence of the four nucleoside triphosphates. These and the polymerase enzyme may already be present in the sample or may be provided afresh for each cycle.
  • The denaturing step (e) may be carried out, for instance, by heating the sample, by use of chaotropic agents, such as urea or guanidine, or by the use of changes in ionic strength or pH. Preferably, denaturing is carried out by heating since this is readily reversible. Where heating is used to carry out the denaturing, it will be usual to use a thermostable DNA polymerase, such as Taq polymerase, since this will not need replenishing at each cycle.
  • If heating is used to control the method, a suitable cycle of heating comprises denaturation at about 95° C. for about 1 minute, annealing at from 30° C. to 65° C. for about 1 minute and primer extension at about 75° C. for about 2 minutes. To ensure that elongation and renaturation is complete, the mixture after the final cycle is preferably held at about 60° C. for about 5 minutes.
  • The product ds cDNA may be separated from the mixture for instance by gel electrophoresis using agarose gels. However, if desired, the ds cDNA may be used in unpurified form and inserted directly into a suitable cloning or expression vector by conventional methods. This will be particularly easy to accomplish if the primers include restriction enzyme recognition sequences.
  • The method of the present invention may be used to make variations in the sequences encoding the variable domains. For example this may be achieved by using a mixture of related oligonucleotide primers as at least one of the primers. Preferably the primers are particularly variable in the middle of the primer and relatively conserved at the 5′ and 3′ ends. Preferably the ends of the primers are complementary to the framework regions of the variable domain, and the variable region in the middle of the primer covers all or part of a CDR. Preferably a forward primer is used in the area which forms the third CDR. If the method is carried out using such a mixture of oligonucleotides, the product will be a mixture of variable domain encoding sequences. Moreover, variations in the sequence may be introduced by incorporating some mutagenic nucleotide triphosphates in step (d), such that point mutations are scattered throughout the target region. Alternatively such point mutations are introduced by performing a large number of cycles of amplification, as errors due to the natural error rate of the DNA polymerase are amplified, particularly when using high concentrations of nucleoside triphosphates.
  • The method of this aspect of the present invention has the advantage that it greatly facilitates the cloning of variable domain encoding sequences directly from mRNA or genomic DNA. This in turn will facilitate the production of modified Ig-type molecules by any of the prior art methods referred to above. Further, target genes can be cloned from tissue samples containing antibody producing cells, and the genes can be sequenced. By doing this, it will be possible to look directly at the immune repertoire of a patient. This “fingerprinting” of a patient's immune repertoire could be of use in diagnosis, for instance of auto-immune diseases.
  • In the method for amplifying the amount of a gene encoding a variable domain, a single set of primers is used in several cycles of copying via the polymerase chain reaction. As a less preferred alternative, there is provided a second method which comprises steps (a) to (d) as above, which further includes the steps of:
  • (g) treating the sample of ds cDNA with traces of DNAse in the presence of DNA polymerase I to allow nick translation of the DNA; and
  • (h) cloning the ds cDNA into a vector.
  • If desired, the second method may further include the steps of:
  • (i) digesting the DNA of recombinant plasmids to release DNA fragments containing genes encoding variable domains; and
  • (j) treating the fragments in a further set of steps (c) to (h).
  • Preferably the fragments are separated from the vector and from other fragments of the incorrect size by gel electrophoresis.
  • The steps (a) to (d) then (g) to (h) can be followed once, but preferably the entire cycle (c) to (d) and (g) to (h) is repeated at least once. In this way a priming step, in which the genes are specifically copied, is followed by a cloning step, in which the amount of genes is increased.
  • In step (a) the ds cDNA is derived from mRNA. For Ig derived variable domains, the mRNA is preferably be isolated from lymphocytes which have been stimulated to enhance production of mRNA.
  • In each step (c) the set of primers are preferably different from the previous step (c), so as to enhance the specificity of copying. Thus the sets of primers form a nested set. For example, for cloning of Ig heavy chain variable domains, the first set of primers may be located within the signal sequence and constant region, as described by Larrick et al., [18], and the second set of primers entirely within the variable region, as described by Orlandi et al., [19]. Preferably the primers of step (c) include restriction sites to facilitate subsequent cloning. In the last cycle the set of primers used in step (c) should preferably include restriction sites for introduction into expression vectors. In step (g) possible mismatches between the primers and the template strands are corrected by “nick translation”. In step (h), the ds cDNA is preferably cleaved with restriction enzymes at sites introduced into the primers to facilitate the cloning.
  • According to another aspect of the present invention the product ds cDNA is cloned directly into an expression vector. The host may be prokaryotic or eukaryotic, but is preferably bacterial. Preferably the choice of restriction sites in the primers and in the vector, and other features of the vector will allow the expression of complete ligands, while preserving all those features of the amino acid sequence which are typical of the (methoded) ligands. For example, for expression of the rearranged variable genes, the primers would be chosen to allow the cloning of target sequences including at least all the three CDR sequences. The cloning vector would then encode a signal sequence (for secretion of the ligand), and sequences encoding the N-terminal end of the first framework region, restriction sites for cloning and then the C-terminal end of the last (fourth) framework region.
  • For expression of unrearranged VH genes as part of complete ligands, the primers would be chosen to allow the cloning of target sequences including at least the first two CDRs. The cloning vector could then encode signal sequence, the N-terminal end of the first framework region, restriction sites for cloning and then the C-terminal end of the third framework region, the third CDR and fourth framework region.
  • Primers and cloning vectors may likewise be devised for expression of single CDRs, particularly the third CDR, as parts of complete ligands. The advantage of cloning repertoires of single CDRs would permit the design of a “universal” set of framework regions, incorporating desirable properties such as solubility.
  • Single ligands could be expressed alone or in combination with a complementary variable domain. For example, a heavy chain variable domain can be expressed either as an individual domain or, if it is expressed with a complementary light chain variable domain, as an antigen binding site. Preferably the two partners would be expressed in the same cell, or secreted from the same cell, and the proteins allowed to associate non-covalently to form an Fv fragment. Thus the two genes encoding the complementary partners can be placed in tandem and expressed from a single vector, the vector including two sets of restriction sites. Preferably the genes are introduced sequentially: for example the heavy chain variable domain can be cloned first and then the light chain variable domain. Alternatively the two genes are introduced into the vector in a single step, for example by using the polymerase chain reaction to paste together each gene with any necessary intervening sequence, as essentially described by Yon and Fried [29]. The two partners could be also expressed as a linked protein to produce a single chain Fv fragment, using similar vectors to those described above. As a further alternative the two genes may be placed in two different vectors, for example in which one vector is a phage vector and the other is a plasmid vector.
  • Moreover, the cloned ds cDNA may be inserted into an expression vector already containing sequences encoding one or more constant domains to allow the vector to express Ig-type chains. The expression of Fab fragments, for example, would have the advantage over Fv fragments that the heavy and light chains would tend to associate through the constant domains in addition to the variable domains. The final expression product may be any of the modified Ig-type molecules referred to above.
  • The cloned sequence may also be inserted into an expression vector so that it can be expressed as a fusion protein. The variable domain encoding sequence may be linked directly or via a linker sequence to a DNA sequence encoding any protein effector molecule, such as a toxin, enzyme, label or another ligand. The variable domain sequences may also be linked to proteins on the outer side of bacteria or phage. Thus, the method of this aspect of the invention may be used to produce receptors according to the invention.
  • According to another aspect of the invention, the cloning of ds cDNA directly for expression permits the rapid construction of expression libraries which can be screened for binding activities. For Ig heavy and light chain variable genes, the ds cDNA may comprise variable genes isolated as complete rearranged genes from the animal, or variable genes built from several different sources, for example a repertoire of unrearranged VH genes combined with a synthetic repertoire of DH and JH genes. Preferably repertoires of genes encoding Ig heavy chain variable domains are prepared from lymphocytes of animals immunized with an antigen.
  • The screening method may take a range of formats well known in the art. For example Ig heavy chain variable domains secreted from bacteria may be screened by binding to antigen on a solid phase, and detecting the captured domains by antibodies. Thus the domains may be screened by growing the bacteria in liquid culture and binding to antigen coated on the surface of ELISA plates. However, preferably bacterial colonies (or phage plaques) which secrete ligands (or modified ligands, or ligand fusions with proteins) are screened for antigen binding on membranes. Either the ligands are bound directly to the membranes (and for example detected with labelled antigen), or captured on antigen coated membranes (and detected with reagents specific for ligands). The use of membranes offers great convenience in screening many clones, and such techniques are well known in the art.
  • The screening method may also be greatly facilitated by making protein fusions with the ligands, for example by introducing a peptide tag which is recognized by an antibody at the N-terminal or C-terminal end of the ligand, or joining the ligand to an enzyme which catalyses the conversion of a colorless substrate to a colored product. In the latter case, the binding of antigen may be detected simply by adding substrate. Alternatively, for ligands expressed and folded correctly inside eukaryotic cells, joining of the ligand and a domain of a transcriptional activator such as the GAL4 protein of yeast, and joining of antigen to the other domain of the GAL4 protein, could form the basis for screening binding activities, as described by Fields and Song [21].
  • The preparation of proteins, or even cells with multiple copies of the ligands, may improve the avidity of the ligand for immobilized antigen, and hence the sensitivity of the screening method. For example, the ligand may be joined to a protein subunit of a multimeric protein, to a phage coat protein or to an outer membrane protein of E. coli such as ompA or lamB. Such fusions to phage or bacterial proteins also offers possibilities of selecting bacteria displaying ligands with antigen binding activities. For example such bacteria may be precipitated with antigen bound to a solid support, or may be subjected to affinity chromatography, or may be bound to larger cells or particles which have been coated with antigen and sorted using a fluorescence activated cell sorter (FACS). The proteins or peptides fused to the ligands are preferably encoded by the vector, such that cloning of the ds cDNA repertoire creates the fusion product.
  • In addition to screening for binding activities of single ligands, it may be necessary to screen for binding or catalytic activities of associated ligands, for example, the associated Ig heavy and light chain variable domains. For example, repertoires of heavy and light chain variable genes may be cloned such that two domains are expressed together. Only some of the pairs of domains may associate, and only some of these associated pairs may bind to antigen. The repertoires of heavy and light chain variable domains could be cloned such that each domain is paired at random. This approach may be most suitable for isolation of associated domains in which the presence of both partners is required to form a cleft. Alternatively, to allow the binding of hapten. Alternatively, since the repertoires of light chain sequences are less diverse than those of heavy chains, a small repertoire of light chain variable domains, for example including representative members of each family of domains, may be combined with a large repertoire of heavy chain variable domains.
  • Preferably however, a repertoire of heavy chain variable domains is screened first for antigen binding in the absence of the light chain partner, and then only those heavy chain variable domains binding to antigen are combined with the repertoire of light chain variable domains. Binding of associated heavy and light chain variable domains may be distinguished readily from binding of single domains, for example by fusing each domain to a different C-terminal peptide tag which are specifically recognized by different monoclonal antibodies.
  • The hierarchical approach of first cloning heavy chain variable domains with binding activities, then cloning matching light chain variable domains may be particularly appropriate for the construction of catalytic antibodies, as the heavy chain may be screened first for substrate binding. A light chain variable domain would then be identified which is capable of association with the heavy chain, and “catalytic” residues such as cysteine or histidine (or prosthetic groups) would be introduced into the CDRs to stabilize the transition state or attack the substrate, as described by Baldwin and Schultz [22].
  • Although the binding activities of non-covalently associated heavy and light chain variable domains (Fv fragments) may be screened, suitable fusion proteins may drive the association of the variable domain partners. Thus Fab fragments are more likely to be associated than the Fv fragments, as the heavy chain variable domain is attached to a single heavy chain constant domain, and the light chain variable domain is attached to a single light chain variable domain, and the two constant domains associate together.
  • Alternatively the heavy and light chain variable domains are covalently linked together with a peptide, as in the single chain antibodies, or peptide sequences attached, preferably at the C-terminal end which will associate through forming cysteine bonds or through non-covalent interactions, such as the introduction of “leucine zipper” motifs. However, in order to isolate pairs of tightly associated variable domains, the Fv fragments are preferably used.
  • The construction of Fv fragments isolated from a repertoire of variable region genes offers a way of building complete antibodies, and an alternative to hybridoma technology. For example by attaching the variable domains to light or suitable heavy chain constant domains, as appropriate, and expressing the assembled genes in mammalian cells, complete antibodies may be made and should possess natural effector functions, such as complement lysis. This route is particularly attractive for the construction of human monoclonal antibodies, as hybridoma technology has proved difficult, and for example, although human peripheral blood lymphocytes can be immortalized with Epstein Barr virus, such hybridomas tend to secrete low affinity IgM antibodies.
  • Moreover, it is known that immunological mechanisms ensure that lymphocytes do not generally secrete antibodies directed against host-proteins. However it is desirable to make human antibodies directed against human proteins, for example to human cell surface markers to treat cancers, or to histocompatibility antigens to treat auto-immune diseases. The construction of human antibodies built from the combinatorial repertoire of heavy and light chain variable domains may overcome this problem, as it will allow human antibodies to be built with specificities which would normally have been eliminated.
  • The method also offers a new way of making bispecific antibodies. Antibodies with dual specificity can be made by fusing two hybridomas of different specificities, so as to make a hybrid antibody with an Fab arm of one specificity, and the other Fab arm of a second specificity. However the yields of the bispecific antibody are low, as heavy and light chains also find the wrong partners. The construction of Fv fragments which are tightly associated should preferentially drive the association of the correct pairs of heavy with light chains. (It would not assist in the correct pairing of the two heavy chains with each other.) The improved production of bispecific antibodies would have a variety of applications in diagnosis and therapy, as is well known.
  • Thus the invention provides a species specific general oligonucleotide primer or a mixture of such primers useful for cloning variable domain encoding sequences from animals of that species. The method allows a single pair or pair of mixtures of species specific general primers to be used to clone any desired antibody specificity from that species. This eliminates the need to carry out any sequencing of the target sequence to be cloned and the need to design specific primers for each specificity to be recovered.
  • Furthermore it provides for the construction of repertoires of variable genes, for the expression of the variable genes directly on cloning, for the screening of the encoded domains for binding activities and for the assembly of the domains with other variable domains derived from the repertoire.
  • Thus the use of the method of the present invention will allow for the production of heavy chain variable domains with binding activities and variants of these domains. It allows for the production of monoclonal antibodies and bispecific antibodies, and will provide an alternative to hybridoma technology. For instance, mouse splenic ds mRNA or genomic DNA may be obtained from a hyper-immunized mouse. This could be cloned using the method of the present invention and then the cloned ds DNA inserted into a suitable expression vector. The expression vector would be used to transform a host cell, for instance a bacterial cell, to enable it to produce an Fv fragment or a Fab fragment. The Fv or Fab fragment would then be built into a monoclonal antibody by attaching constant domains and expressing it in mammalian cells.
  • Primers
  • In the Examples described below, the following oligonucleotide primers, or mixed primers were used. Their locations are marked on FIG. 1 and sequences are as follows:
  • VH1FOR
    5′ TGAGGAGACGGTGACCGTGGTCCCTTGGCCCCAG 3′;
    VH1FOR-2
    5′ TGAGGAGACGGTGACCGTGGTCCCTTGGCCCC 3′;
    Hu1VHFOR
    5′ CTTGGTGGAGGCTGAGGAGACGGTGACC 3′;
    Hu2VHFOR
    5′ CTTGGTGGAGGCTGAGGAGACGGTGACC 3′;
    Hu3VHFOR
    5′ CTTGGTGGATGCTGAGGAGACGGTGACC 3′;
    Hu4VHFOR
    5′ CTTGGTGGATGCTGATGAGACGGTGACC 3′;
    MOJH1FOR
    5′ TGAGGAGACGGTGACCGTGGTCCCTGCGCCCCAG 3′;
    MOJH2FOR
    5′ TGAGGAGACGGTGACCGTGGTGCCTTGGCCCCAG 3′;
    MOJH3FOR
    5′ TGCAGAGACGGTGACCAGAGTCCCTTGGCCCCAG 3′;
    MOJH4FOR
    5′ TGAGGAGACGGTGACCGAGGTTCCTTGACCCCAG 3′;
    HUJH1FOR
    5′ TGAGGAGACGGTGACCAGGGTGCCCTGGCCCCAG 3′;
    HUJH2FOR
    5′ TGAGGAGACGGTGACCAGGGTGCCACGGCCCCAG 3′;
    HUJH4FOR
    5′ TGAGGAGACGGTGACCAGGGTTCCTTGGCCCCAG 3′;
    VK1FOR
    5′   GTTAGATCTCCAGCTTGGTCCC 3′;
    VK2FOR
    5′  CGTTAGATCTCCAGCTTGGTCCC 3′;
    VK3FOR
    5′ CCGTTTCAGCTCGAGCTTGGTCCC 3′;
    MOJK1FOR
    5′ CGTTAGATCTCCAGCTTGGTGCC 3′;
    MOJK3FOR
    5′ GGTTAGATCTCCAGTCTGGTCCC 3′;
    MOJK4FOR
    5′ CGTTAGATCTCCAACTTTGTCCC 3′;
    HUJK1FOR
    5′ CGTTAGATCTCCACCTTGGTCCC 3′;
    HUJK3FOR
    5′ CGTTAGATCTCCACTTTGGTCCC 3′;
    HUJK4FOR
    5′ CGTTAGATCTCCACCTTGGTCCC 3′;
    HUJK5FOR
    5′ CGTTAGATCTCCAGTCGTGTCCC 3′;
    VH1BACK
    5′ AGGT(C/G)(C/A)A(G/A)CTGCAG(G/C)AGTC(T/A)GG 3′;
    Hu2VHIBACK:
    5′ CAGGTGCAGCTGCAGCAGTCTGG 3′;
    HuVHIIBACK:
    5′ CAGGTGCAGCTGCAGGAGTCGGG 3′;
    Hu2VHIIIBACK:
    5′ GAGGTGCAGCTGCAGGAGTCTGG 3′;
    HuVHIVBACK:
    5′ CAGGTGCAGCTGCAGCAGTCTGG 3′;
    MOVHIBACK
    5′ AGGTGCAGCTGCAGGAGTCAG 3′;
    MOVHIIABACK
    5′ AGGTCCAGCTGCAGCA(G/A)TCTGG 3′;
    MOVHIIBBACK
    5′ AGGTCCAACTGCAGCAGCCTGG 3′;
    MOVHIIBACK
    5′ AGGTGAAGCTGCAGGAGTCTGG 3′;
    VK1BACK
    5′ GACATTCAGCTGACCCAGTCTCCA 3′;
    VK2BACK
    5′ GACATTGAGCTCACCCAGTCTCCA 3′;
    MOVKIIABACK
    5′ GATGTTCAGCTGACCCAAACTCCA 3′
    MOVKIIBBACK
    5′ GATATTCAGCTGACCCAGGATGAA 3′;
    HuHep1FOR
    5′ C(A/G)(C/G)TGAGCTCACTGTGTCTCTCGCACA 3′;
    HuOcta1BACK
    5′ CGTGAATATGCAAATAA 3′;
    HUOcta2BACK
    5′ AGTAGGAGACATGCAAAT 3′;
    and
    HuOcta3BACK
    5′ CACCACCCACATGCAAAT 3′;
    VHMUT1
    5′ GGAGACGGTGACCGTGGTCCCTTGGCCCCAGTAGTCAAGNNNNNNNN
    NNNNCTCTCTGGC 3′ (where N is an equimolar mixture
    of T, C, G and A)
    M13 pRIMER
    5′ AACAGCTATGACCATG 3′ (New England Biolabs *1201)
  • EXAMPLE 1 Cloning of Mouse Rearranged Variable Region Genes from Hybridomas, Assembly of Genes Encoding Chimeric Antibodies and the Expression of Antibodies from Myeloma Cells
  • VH1FOR is designed to anneal with the 3′ end of the sense strand of any mouse heavy chain variable domain encoding sequence. It contains a BstEII recognition site. VK1FOR is designed to anneal with the 3′ end of the sense strand of any mouse kappa-type light chain variable domain encoding sequence and contains a BglII recognition site. VH1BACK is designed to anneal with the 3′ end of the antisense strand of any mouse heavy chain variable domain and contains a PstI recognition site. VK1BACK is designed to anneal with the 3′ end of the antisense strand of any mouse kappa-type light chain variable domain encoding sequence and contains a PvuII recognition site.
  • In this Example five mouse hybridomas were used as a source of ds nucleic acid. The hybridomas produce monoclonal antibodies (MAbs) designated MBr1 [23], BW431/26 [24], BW494/32 [25], BW250/183 [24,26] and BW704/152 [27]. MAb MBr1 is particularly interesting in that it is known to be specific for a saccharide epitope on a human mammary carcinoma line MCF-7 [28].
  • Cloning Via mRNA
  • Each of the five hybridomas referred to above was grown up in roller bottles and about 5×108 cells of each hybridoma were used to isolate RNA. mRNA was separated from the isolated RNA using oligodT cellulose [29]. First strand cDNA was synthesized according to the procedure described by Maniatis et al. [30] as set out below.
  • In order to clone the heavy chain variable domain encoding sequence, a 50 μl reaction solution which contains 10 μg mRNA, 20 pmole VH1FOR primer, 250 μM each of dATP, dTTP, dCTP and dGTP, 10 mM dithiothreitol (DTT), 100 mM Tris.HCl, 10 MM MgCl2 and 140 mM KCl, adjusted to pH 8.3 was prepared. The reaction solution was heated at 70° C. for ten minutes and allowed to cool to anneal the primer to the 3′ end of the variable domain encoding sequence in the mRNA. To the reaction solution was then added 46 units of reverse transcriptase (Anglian Biotec) and the solution was then incubated at 42° C. for 1 hour to cause first strand cDNA synthesis.
  • In order to clone the light chain variable domain encoding sequence, the same procedure as set out above was used except that the VK1FOR primer was used in place of the VH1 FOR primer.
  • Amplification from RNA/DNA Hybrid
  • Once the ds RNA/DNA hybrids had been produced, the variable domain encoding sequences were amplified as follows. For heavy chain variable domain encoding sequence amplification, a 50 μl reaction solution containing 5 μl of the ds RNA/DNA hybrid-containing solution, 25 pmole each of VH1FOR and VH1BACK primers, 250 μM of dATP, dTTP, dCTP and dGTP, 67 mM Tris.HCl, 17 mM ammonium sulphate, 10 mM MgCl2, 200 μg/ml gelatine and 2 units Taq polymerase (Cetus) was prepared. The reaction solution was overlaid with paraffin oil and subjected to 25 rounds of temperature cycling using a Techne PHC-1 programmable heating block. Each cycle consisted of 1 minute and 95° C. (to denature the nucleic acids), 1 minute at 30° C. (to anneal the primers to the nucleic acids) and 2 minutes at 72° C. (to cause elongation from the primers). After the 25 cycles, the reaction solution and the oil were extracted twice with ether, once with phenol and once with phenol/CHCl3. Thereafter ds cDNA was precipitated with ethanol. The precipitated ds cDNA was then taken up in 50 μl of water and frozen.
  • The procedure for light chain amplification was exactly as described above, except that the VK1FOR and VK1BACK primers were used in place of the VH1FOR and VH1BACK primers respectively.
  • 5 μl of each sample of amplified cDNA was fractionated on 2% agarose gels by electrophoresis and stained with ethidium bromide. This showed that the amplified ds cDNA gave a major band of the expected size (about 330 bp). (However the band for VK 0 DNA of MBr1 was very weak. It was therefore excised from the gel and reamplified in a second round.) Thus by this simple procedure, reasonable quantities of ds DNA encoding the light and heavy chain variable domains of the five MAbs were produced.
  • Heavy Chain Vector Construction
  • A BstEII recognition site was introduced into the vector M13-HuVHNP [31] by site directed mutagenesis [32,33] to produce the vector M13-VHPCR1 (FIGS. 2 and 3).
  • Each amplified heavy chain variable domain encoding sequence was digested with the restriction enzymes PstI and BstEII. The fragments were phenol extracted, purified on 2% low melting point agarose gels and force cloned into vector M13-VHPCR1 which had been digested with PstI and BstEII and purified on an 0.8% agarose gel. Clones containing the variable domain inserts were identified directly by sequencing [34] using primers based in the 3′ non-coding variable gene in the M13-VHPCR1 vector.
  • There is an internal PstI site in the heavy chain variable domain encoding sequences of BW431/26. This variable domain encoding sequence was therefore assembled in two steps. The 3′ PstI-BstEII fragment was first cloned into M13-VHPCR1, followed in a second step by the 5′ PstI fragment.
  • Light Chain Vector Construction
  • Vector M13 mp 18 [35] was cut with PvuII and the vector backbone was blunt ligated to a synthetic HindIII-BamHI polylinker. Vector M13-HuVKLYS [36] was digested with HindIII and BamHI to isolate the HuVKLYS gene. This HindIII-BamHI fragment was then inserted into the HindIII-BamHI polylinker site to form a vector M13-VKPCR1 which lacks any PvuII sites in the vector backbone (FIGS. 4 and 5). This vector was prepared in E. coli JM110 [22] to avoid dam methylation at the BclI site.
  • Each amplified light chain variable domain encoding sequence was digested with PvuII and BglII. The fragments were phenol extracted, purified on 2% low melting point agarose gels and force cloned into vector M13-VKPCR1 which had been digested with PvuII and BclI, purified on an 0.8% agarose gel and treated with calf intestinal phosphatase. Clones containing the light chain variable region inserts were identified directly by sequencing [34] using primers based in the 3′ non-coding region of the variable domain in the M13-VKPCR1 vector.
  • The nucleotide sequences of the MBr1 heavy and light chain variable domains are shown in FIG. 6 with part of the flanking regions of the M13-VHPCR1 and M13-VKPCR1 vectors.
  • Antibody Expression
  • The HindIII-BamHI fragment carrying the MBr1 heavy chain variable domain encoding sequence in M13-VHPCR1 was recloned into a pSV-gpt vector with human γ1 constant regions [37] (FIG. 7). The MBr1 light chain variable domain encoding sequence in M13-VKPCR1 was recloned as a HindIII-BamHI fragment into a pSV vector, PSV-hyg-HuCK with a hygromycin resistance marker and a human kappa constant domain (FIG. 8). The assembly of the genes is summarized in FIG. 9.
  • The vectors thus produced were linearized with PvuI (in the case of the pSV-hygro vectors the PvuI digest is only partial) and cotransfected into the non-secreting mouse myeloma line NSO [38] by electroporation [39]. One day after cotransfection, cells were selected in 0.3 μg/ml mycophenolic acid (MPA) and after seven days in 1 μg/ml MPA. After 14 days, four wells, each containing one or two major colonies, were screened by incorporation of 14C-lysine [40] and the secreted antibody detected after precipitation with protein-A Sepharose™ (Pharmacia) on SDS-PAGE [41]. The gels were stained, fixed, soaked in a fluorographic reagent, Amplify™ (Amersham), dried and autoradiographed on preflashed film at −70° C. for 2 days.
  • Supernatant was also tested for binding to the mammary carcinoma line MCF-7 and the colon carcinoma line HT-29, essentially as described by Menard et al. [23], either by an indirect immunofluorescence assay on cell suspensions (using a fluorescein-labelled goat anti-human IgG (Amersham)) or by a solid phase RIA on monolayers of fixed cells (using 125I-protein A (Amersham)).
  • It was found that one of the supernatants from the four wells contained secreted antibody. The chimeric antibody in the supernatant, like the parent mouse MBr1 antibody, was found to bind to MCF-7 cells but not the HT-29 cells, thus showing that the specificity had been properly cloned and expressed.
  • EXAMPLE 2 Cloning of Rearranged Variable Genes from Genomic DNA of Mouse Spleen
  • Preparation of DNA from Spleen
  • The DNA from the mouse spleen was prepared in one of two ways (although other ways can be used).
  • Method 1. A mouse spleen was cut into two pieces and each piece was put into a standard Eppendorf tube with 200 μl of PBS. The tip of a 1 ml glass pipette was closed and rounded in the blue flame of a Bunsen burner. The pipette was used to squash the spleen piece in each tube. The cells thus produced were transferred to a fresh Eppendorf tube and the method was repeated three times until the connective tissue of the spleen appeared white. Any connective tissue which has been transferred with the cells was removed using a drawn-out Pasteur pipette. The cells were then washed in PBS and distributed into four tubes.
  • The mouse spleen cells were then sedimented by a 2 minute spin in a Microcentaur centrifuge at low speed setting. All the supernatant was aspirated with a drawn out Pasteur pipette. If desired, at this point the cell sample can be frozen and stored at −20° C.
  • To the cell sample (once thawed if it had been frozen) was added 500 μl of water and 5 μl of a 10% solution of NP-40, a non-ionic detergent. The tube was closed and a hole was punched in the lid. The tube was placed on a boiling water bath for 5 minutes to disrupt the cells and was then cooled on ice for 5 minutes. The tube was then spun for 2 minutes at high speed to remove cell debris.
  • The supernatant was transferred to a new tube and to this was added 125 μl 5M NaCl and 30 μl 1M MOPS adjusted to pH 7.0. The DNA in the supernatant was absorbed on a Quiagen 5 tip and purified following the manufacturer's instructions for lambda DNA. After isopropanol precipitation, the DNA was resuspended in 500 μl water.
  • Method 2. This method is based on the technique described in Maniatis et al. [30]. A mouse spleen was cut into very fine pieces and put into a 2 ml glass homogenizer. The cells were then freed from the tissue by several slow up and down strokes with the piston. The cell suspension was made in 500 μl phosphate buffered saline (PBS) and transferred to an Eppendorf tube. The cells were then spun for 2 min at low speed in a Microcentaur centrifuge. This results in a visible separation of white and red cells. The white cells, sedimenting slower, form a layer on top of the red cells. The supernatant was carefully removed and spun to ensure that all the white cells had sedimented. The layer of white cells was resuspended in two portions of 500 μl PBS and transferred to another tube.
  • The white cells were precipitated by spinning in the Microcentaur centrifuge at low speed for one minute. The cells were washed a further two times with 500 μl PBS, and were finally resuspended in 200 μl PBS. The white cells were added to 2.5 ml 25 mM EDTA and 10 mM Tris.Cl, pH 7.4, and vortexed slowly. While vortexing 25 μl 20% SDS was added. The cells lysed immediately and the solution became viscous and clear. 100 μl of 20 mg/ml proteinase K was added and incubated one to three hours at 50° C.
  • The sample was extracted with an equal volume of phenol and the same volume of chloroform, and vortexed. After centrifuging, the aqueous phase was removed and 1/10 volume 3M ammonium acetate was added. This was overlaid with three volumes of cold ethanol and the tube rocked carefully until the DNA strands became visible. The DNA was spooled out with a Pasteur pipette, the ethanol allowed to drip off, and the DNA transferred to 1 ml of 10 mM Tris.Cl pH 7.4, 0.1 mM EDTA in an Eppendorf tube. The DNA was allowed to dissolve in the cold overnight on a roller.
  • Amplification From Genomic DNA
  • The DNA solution was diluted 1/10 in water and boiled for 5 min prior to using the polymerase chain reaction (PCR). For each PCR reaction, typically 50-200 ng of DNA were used.
  • The heavy and light chain variable domain encoding sequences in the genomic DNA isolated from the human PBL or the mouse spleen cells was then amplified and cloned using the general protocol described in the first two paragraphs of the section headed “Amplification from RNA/DNA Hybrid” in Example 1, except that during the annealing part of each cycle, the temperature was held at 65° C. and that 30 cycles were used. Furthermore, to minimize the annealing between the 3′ ends of the two primers, the sample was first heated to 95° C., then annealed at 65° C., and only then was the Taq polymerase added. At the end of the 30 cycles, the reaction mixture was held at 60° C. for five minutes to ensure that complete elongation and renaturation of the amplified fragments had taken place.
  • The primers used to amplify the mouse spleen genomic DNA were VH1FOR and VH1BACK, for the heavy chain variable domain and VK2FOR and VK1BACK, for the light chain variable domain. (VK2FOR only differs from VK1FOR in that it has an extra C residue on the 5′ end.)
  • Other sets of primers, designed to optimize annealing with different families of mouse VH and Vκ genes were devised and used in mixtures with the primers above. For example, mixtures of VK1FOR, MOJK1FOR, MOJK3FOR and MOJK4FOR were used as forward primers and mixtures of VK1BACK, MOVKIIABACK and MOVKIIBBACK as back primers for amplification of Vκ genes. Likewise mixtures of VH1FOR, MOJH1FOR, MOJH2FOR, MOJH3FOR and MOJH4FOR were used as forward primers and mixtures of VH1BACK, MOVHIBACK, MOVHIIABACK, MOVHIIBBACK, MOVHIIIBACK were used as backward primers for amplification of VH genes.
  • All these heavy chain FOR primers referred to above contain a BstEII site and all the BACK primers referred to above contain a PstI site. These light chain FOR and BACK primers referred to above all contain BglII and PvuII sites respectively. Light chain primers (VK3FOR and VK2BACK) were also devised which utilized different restriction sites, SacI and XhoI.
  • Typically all these primers yielded amplified DNA of the correct size on gel electrophoresis, although other bands were also present. However, a problem was identified in which the 5′ and 3′ ends of the forward and backward primers for the VH genes were partially complementary, and this could yield a major band of “primer-dimer” in which the two oligonucleotides prime on each other. For this reason an improved forward primer, VH1FOR-2 was devised in which the two 3′ nucleotides were removed from VH1FOR.
  • Thus, the preferred amplification conditions for mouse VH genes are as follows: the sample was made in a volume of 50-100 μl, 50-100 ng of DNA, VH1FOR-2 and VH1BACK primers (25 pmole of each), 250 μM of each deoxynucleotide triphosphate, 10 mM Tris.HCl, pH 8.8, 50 mM KCl, 1.5 mM MgCl2, and 100 μg/ml gelatine. The sample was overlaid with paraffin oil, heated to 95° C. for 2 min, 65° C. for 2 min, and then to 72° C.: taq polymerase was added after the sample had reached the elongation temperature and the reaction continued for 2 min at 72° C. The sample was subjected to a further 29 rounds of temperature cycling using the Techne PHC-1 programmable heating block.
  • The preferred amplification conditions for mouse Vκ genes from genomic DNA are as follows: the sample treated as above except with Vκ primers, for example VK3FOR and VK2BACK, and using a cycle of 94° C. for one minute, 60° C. for one minute and 72° C. for one minute.
  • The conditions which were devised for genomic DNA are also suitable for amplification from the cDNA derived from mRNA from mouse spleen or mouse hybridoma.
  • Cloning and Analysis of Variable Region Genes
  • The reaction mixture was then extracted twice with 40 μl of water-saturated diethyl ether. This was followed by a standard phenol extraction and ethanol precipitation as described in Example 1. The DNA pellet was then dissolved in 100 μl 10 mM Tris.Cl, 0.1 mM EDTA.
  • Each reaction mixture containing a light chain variable domain encoding sequence was digested with SacI and XhoI (or with PvuII and BglII) to enable it to be ligated into a suitable expression vector. Each reaction mixture containing a heavy chain variable domain encoding sequence was digested with PstI and BstEII for the same purpose.
  • The heavy chain variable genes isolated as above from a mouse hyper-immunized with lysozyme were cloned into M13VHPCR1 vector and sequenced. The complete sequences of 48 VH gene clones were determined (FIGS. 10 a-10 b). All but two of the mouse VH gene families were represented, with frequencies of: VA (1), IIIC (1), IIIB (8), IIIA (3), IIB (17), IIA (2), IB (12), IA (4). In 30 clones, the D segments could be assigned to families SP2 (14), FL16 (11) and Q52 (5), and in 38 clones the JH minigenes to families JH1 (3), JH2 (7), JH3 (14) and JH4 (14). The different sequences of CDR3 marked out each of the 48 clones as unique. Nine pseudogenes and 16 unproductive rearrangements were identified. Of the clones sequenced, 27 have open reading frames.
  • Thus the method is capable of generating a diverse repertoire of heavy chain variable genes from mouse spleen DNA.
  • EXAMPLE 3 Cloning of Rearranged Variable Genes from mRNA from Human Peripheral Blood lymphocytes
  • Preparation of mRNA
  • Human peripheral blood lymphocytes were purified and mRNA prepared directly (Method 1), or mRNA was prepared after addition of Epstein Barr virus (Method 2).
  • Method 1. 20 ml of heparinized human blood from a healthy volunteer was diluted with an equal volume of phosphate buffered saline (PBS) and distributed equally into 50 ml Falcon tubes. The blood was then underlayed with 15 ml Ficoll Hypaque (Pharmacia 10-A-001-07). To separate the lymphocytes from the red blood cells, the tubes were spun for 10 minutes at 1800 rpm at room temperature in an IEC Centra 3E table centrifuge. The peripheral blood lymphocytes (PBL) were then collected from the interphase by aspiration with a Pasteur pipette. The cells were diluted with an equal volume of PBS and spun again at 1500 rpm for 15 minutes. The supernatant was aspirated, the cell pellet was resuspended in 1 ml PBS and the cells were distributed into two Eppendorf tubes.
  • Method 2. 40 ml human blood from a patient with HIV in the pre-AIDS condition was layered on Ficoll to separate the white cells (see Method 1 above). The white cells were then incubated in tissue culture medium for 4-5 days. On day 3, they were infected with Epstein Barr virus. The cells were pelleted (approx 2×107 cells) and washed in PBS.
  • The cells were pelleted again and lysed with 7 ml 5M guanidine isothiocyanate, 50 mM Tris, 10 mM EDTA, 0.1 mM dithiothreitol. The cells were vortexed vigorously and 7 volumes of 4M LiCl added. The mixture was incubated at 4° C. for 15-20 hrs. The suspension was spun and the supernatant resuspended in 3M LiCl and centrifuged again. The pellet was dissolved in 2 ml 0.1% SDS, 10 mM Tris HCl and 1 mM EDTA. The suspension was frozen at −20° C., and thawed by vortexing for 20 s every 10 min for 45 min. A large white pellet was left behind and the clear supernatant was extracted with phenol chloroform, then with chloroform. The RNA was precipitated by adding 1/10 volume 3M sodium acetate and 2 vol ethanol and leaving overnight at −20° C. The pellet was suspended in 0.2 ml water and reprecipitated with ethanol. Aliquots for cDNA synthesis were taken from the ethanol precipitate which had been vortexed to create a fine suspension.
  • 100 μl of the suspension was precipitated and dissolved in 20 μl water for cDNA synthesis [30] using 10 pmole of a HUFOR primer (see below) in final volume of 50 μl. A sample of 5 μl of the cDNA was amplified as in Example 2 except using the primers for the human VH gene families (see below) using a cycle of 95° C., 60° C. and 72° C.
  • The back primers for the amplification of human DNA were designed to match the available human heavy and light chain sequences, in which the different families have slightly different nucleotide sequences at the 5′ end. Thus for the human VH genes, the primers Hu2VHIBACK, HuVHIIBACK, Hu2VHIIIBACK and HuVH1VBACK were designed as back primers, and HUJH1FOR, HUJH2FOR and HUJH4FOR as forward primers based entirely in the variable gene. Another set of forward primers Hu1VHFOR, Hu2VHFOR, Hu3VHFOR, and Hu4VHFOR was also used, which were designed to match the human J-regions and the 5′ end of the constant regions of different human isotypes.
  • Using sets of these primers it was possible to demonstrate a band of amplified ds cDNA by gel electrophoresis.
  • One such experiment was analyzed in detail to establish whether there was a diverse repertoire in a patient with HIV infection. It is known that during the course of AIDS, that T-cells and also antibodies are greatly diminished in the blood. Presumably the repertoire of lymphocytes is also diminished. In this experiment, for the forward priming, an equimolar mixture of primers Hu1VHFOR, Hu2VHFOR, Hu3VHFOR, and Hu4VHFOR (in PCR 25 pmole of primer 5′ ends) was used. For the back priming, the primers Hu2VHIBACK, HuVHIIBACK, Hu2VHIIIBACK and HuVH1VBACK were used separately in four separate primings. The amplified DNA from the separate primings was then pooled, digested with restriction enzymes PstI and BstEII as above, and then cloned into the vector M13VHPCR1 for sequencing. The sequences reveal a diverse repertoire (FIG. 11) at this stage of the disease.
  • For human Vκ genes the primers HuJK1FOR, HUJK3FOR; HUJK4FOR and HUJK5FOR were used as forward primers and VK1BACK as back primer. Using these primers it was possible to see a band of amplified ds cDNA of the correct size by gel electrophoresis.
  • EXAMPLE 4 Cloning of Unrearranged Variable Gene Genomic DNA from Human Peripheral Blood Lymphocytes
  • Human peripheral blood lymphocytes of a patient with non-Hodgkins lymphoma were prepared as in Example 3 (Method 1). The genomic DNA was prepared from the PBL using the technique described in Example 2 (Method 2). The VH region in the isolated genomic DNA was then amplified and cloned using the general protocol described in the first two paragraphs of the section headed “Amplification from RNA/DNA hybrid” in Example 1 above, except that during the annealing part of each cycle, the temperature was held at 55° C. and that 30 cycles were used. At the end of the 30 cycles, the reaction mixture was held at 60° C. for five minutes to ensure that complete elongation and renaturation of the amplified fragments had taken place.
  • The forward primer used was HuHep1FOR, which contains a SacI site. This primer is designed to anneal to the 3′ end of the unrearranged human VH region gene, and in particular includes a sequence complementary to the last three codons in the VH region gene and nine nucleotides downstream of these three codons.
  • As the back primer, an equimolar mixture of HuOcta1BACK, HuOcta2BACK and HuOcta3BACK was used. These primers anneal to a sequence in the promoter region of the genomic DNA VH gene (see FIG. 1). 5 μl of the amplified DNA was checked on 2% agarose gels in TBE buffer and stained with ethidium bromide. A double band was seen of about 620 nucleotides which corresponds to the size expected for the unrearranged VH gene. The ds cDNA was digested with SacI and cloned into an M13 vector for sequencing. Although there are some sequences which are identical, a range of different unrearranged human VH genes were identified (FIG. 12).
  • EXAMPLE 5 Cloning Variable Domains with Binding Activities from a Hybridoma
  • The heavy chain variable domain (VHLYS) of the D1.3 (anti-lysozyme) antibody was cloned into a vector similar to that described previously [42] but under the control of the lac z promoter, such that the VHLYS domain is attached to a pelB leader sequence for export into the periplasm. The vector was constructed by synthesis of the pelB leader sequence [43], using overlapping oligonucleotides, and cloning into a pUC 19 vector [35]. The VHLYS domain of the D1.3 antibody was derived from a cDNA clone [44] and the construct (PSW1) sequenced (FIG. 13).
  • To express both heavy and light chain variable domains together, the light chain variable region (VKLYS) of the D1.3 antibody was introduced into the pSW1 vector, with a pelB signal sequence to give the construct pSW2 (FIGS. 14 a-14 b).
  • A strain of E. coli (BMH71-18) [45] was then transformed [46,47] with the plasmid pSW1 or pSW2, and colonies resistant to ampicillin (100 μg/ml) were selected on a rich (2×TY=per litre of water, 16 g Bacto-tryptone, 10 g yeast extract, 5 g NaCl) plate which contained 1% glucose to repress the expression of variable domain(s) by catabolite repression.
  • The colonies were inoculated into 50 ml 2×TY (with 1% glucose and 100 μg/ml ampicillin) and grown in flasks at 37° C. with shaking for 12-16 hr. The cells were centrifuged, the pellet washed twice with 50 mM sodium chloride, resuspended in 2×TY medium containing 100 μg/ml ampicillin and the inducer IPTG (1 mM) and grown for a further 30 hrs at 37° C. The cells were centrifuged and the supernatant was passed through a Nalgene filter (0.45 μm) and then down a 1-5 ml lysozyme-Sepharose® affinity column (Pharmacia Fine Chemicals, Inc.). (The column was derived by coupling lysozyme at 10 mg/ml to CNBr activated Sepharose.) The column was first washed with phosphate buffered saline (PBS), then with 50 mM diethylamine to elute the VHLYS domain (from pSW1) or VHLYS in association with VKLYS (from pSW2).
  • The VHLYS and VKLYS domains were identified by SDS polyacrylamide electrophoresis as the correct size. In addition, N-terminal sequence determination of VHLYS and VKLYS isolated from a polyacrylamide gel showed that the signal peptide had been produced correctly. Thus both the Fv fragment and the VHLYS domains are able to bind to the lysozyme affinity column, suggesting that both retain at least some of the affinity of the original antibody.
  • The size of the VHLYS domain was compared by FPLC with that of the Fv fragment on Superose 12. This indicates that the VHLYS domain is a monomer. The binding of the VHLYS and Fv fragment to lysozyme was checked by ELISA, and equilibrium and rapid reaction studies were carried out using fluorescence quench.
  • The ELISA for lysozyme binding was undertaken as follows:
  • (1) The plates (Dynatech Immulon) were coated with 200 μl per well of 300 μg/ml lysozyme in 50 mM NaHCO3, pH 9.6 overnight at room temperature;
  • (2) The wells were rinsed with three washes of PBS, and blocked with 300 μl per well of 1% Sainsbury's instant dried skimmed milk powder in PBS for 2 hours at 37° C.;
  • (3) The wells were rinsed with three washes of PBS and 200 μl of VHLYS or Fv fragment (VHLYS associated with VKLYS) were added and incubated for 2 hours at room temperature;
  • (4) The wells were washed three times with 0.05% Tween 20 in PBS and then three times with PBS to remove detergent;
  • (5) 200 μl of a suitable dilution (1:1000) of rabbit polyclonal antisera raised against the Fv fragment in 2% skimmed milk powder in PBS was added to each well and incubated at room temperature for 2 hours;
  • (6) Washes were repeated as in (4);
  • (7) 200 μl of a suitable dilution (1:1000) of goat anti-rabbit antibody (ICN Immunochemicals) coupled to horse radish peroxidase, in 2% skimmed milk powder in PBS, was added to each well and incubated at room temperature for 1 hour;
  • (8) Washes were repeated as in (4); and
  • (9) 200 ml 2,2′azino-bis(3-ethylbenzthiazolinesulphonic acid) [Sigma] (0.55 mg/ml, with 1 μl 20% hydrogen peroxide: water per 10 ml) was added to each well and the color allowed to develop for up to 10 minutes at room temperature.
  • The reaction was stopped by adding 0.05% sodium azide in 50 mM citric acid pH 4.3. ELISA plates were read in a Titertek Multiscan plate reader. Supernatant from the induced bacterial cultures of both pSW1 (VHLYS domain) or pSW2 (Fv fragment) was found to bind to lysozyme in the ELISA.
  • The purified VHLYS and Fv fragments were titrated with lysozyme using fluorescence quench (Perkin Elmer LS5B Luminescence Spectrometer) to measure the stoichiometry of binding and the affinity constant for lysozyme [48,49]. The titration of the Fv fragment at a concentration of 30 nM indicates a dissociation constant of 2.8 nM using a Scatchard analysis.
  • A similar analysis using fluorescence quench and a Scatchard plot was carried out for VHLYS, at a VHLYS concentration of 100 nM. The stoichiometry of antigen binding is about 1 mole of lysozyme per mole of VHLYS (calculated from plot). (The concentration of VH domains was calculated from optical density at 280 nM using the typical extinction coefficient for complete immunoglobulins.) Due to possible errors in measuring low optical densities and the assumption about the extinction coefficient, the stoichiometry was also measured more carefully. VHLYS was titrated with lysozyme as above using fluorescence quench. To determine the concentration of VHLYS a sample of the stock solution was removed, a known amount of norleucine added, and the sample subjected to quantitative amino acid analysis. This showed a stoichiometry of 1.2 mole of lysozyme per mole of VHLYS domain. The dissociation constant was calculated as about 12 nM.
  • The on-rates for VHLYS and Fv fragments with lysozyme were determined by stopped-flow analysis (HI Tech Stop Flow SHU machine) under pseudo-first order conditions with the fragment at a ten fold higher concentration than lysozyme [50]. The concentration of lysozyme binding sites was first measured by titration with lysozyme using fluorescence quench as above. The on rates were calculated per mole of binding site (rather than amount of VHLYS protein). The on-rate for the Fv fragment was found to be 2.2×106 M−1 s−1 at 25° C. The on-rate for the VHLYS fragment found to be 3.8×106 M−1 s−1 and the off-rate 0.075 s−1 at 20° C. The calculated affinity constant is 19 nM. Thus the VHLYS binds to lysozyme with a dissociation constant of about 19 nM, compared with that of the Fv of 3 nM.
  • EXAMPLE 6 Cloning Complete Variable Domains with Binding Activities from mRNA or DNA of Antibody-Secreting Cells
  • A mouse was immunized with hen egg white lysozyme (100 μg i.p. day 1 in complete Freunds adjuvant), after 14 days immunized i.p. again with 100 μg lysozyme with incomplete Freunds adjuvant, and on day 35 i.v. with 50 μg lysozyme in saline. On day 39, spleen was harvested. A second mouse was immunized with keyhole limpet hemocyanin (KLH) in a similar way. The DNA was prepared from the spleen according to Example 2 (Method 2). The VH genes were amplified according to the preferred method in Example 2.
  • Human peripheral blood lymphocytes from a patient infected with HIV were prepared as in Example 3 (Method 2) and mRNA prepared. The VH genes were amplified according to the method described in Example 3, using primers designed for human VH gene families.
  • After the PCR, the reaction mixture and oil were extracted twice with ether, once with phenol and once with phenol/CHCl3. The double stranded DNA was then taken up in 50 μl of water and frozen. 5 μl was digested with PstI and BstEII (encoded within the amplification primers) and loaded on an agarose gel for electrophoresis. The band of amplified DNA at about 350 bp was extracted.
  • Expression of Anti-Lysozyme Activities
  • The repertoire of amplified heavy chain variable domains (from mouse immunized with lysozyme and from human PBLs) was then cloned directly into the expression vector pSW1HPOLYMYC. This vector is derived from pSW1 except that the VHLYS gene has been removed and replaced by a polylinker restriction site. A sequence encoding a peptide tag was inserted (FIG. 15). Colonies were toothpicked into 1 ml cultures. After induction (see Example 5 for details), 10 μl of the supernatant from fourteen 1 ml cultures was loaded on SDS-PAGE gels and the proteins transferred electrophoretically to nitrocellulose. The blot was probed with antibody 9E10 directed against the peptide tag.
  • The probing was undertaken as follows. The nitrocellulose filter was incubated in 3% bovine serum albumin (BSA)/TBS buffer for 20 min (10×TBS buffer is 100 mM Tris.HCl, pH 7.4, 9% w/v NaCl). The filter was incubated in a suitable dilution of antibody 9E10 (about 1/500) in 3% BSA/TBS for 1-4 hrs. After three washes in TBS (100 ml per wash, each wash for 10 min), the filter was incubated with 1:500 dilution of anti-mouse antibody (peroxidase conjugated anti-mouse Ig (Dakopats)) in 3% BSA/TBS for 1-2 hrs. After three washes in TBS and 0.1% Triton X-100 (about 100 ml per wash, each wash for 10 min), a solution containing 10 ml chloronaphthol in methanol (3 mg/ml), 40 ml TBS and 50 μl hydrogen peroxide solution was added over the blot and allowed to react for up to 10 min. The substrate was washed out with excess water. The blot revealed bands similar in mobility to VHLYSMYC on the Western blot, showing that other VH domains could be expressed.
  • Colonies were then toothpicked individually into wells of an ELISA plate (200 μl) for growth and induction. They were assayed for lysozyme binding with the 9E10 antibody (as in Examples 5 and 7). Wells with lysozyme-binding activity were identified. Two positive wells (of 200) were identified from the amplified mouse spleen DNA and one well from the human cDNA. The heavy chain variable domains were purified on a column of lysozyme-Sepharose. The affinity for lysozyme of the clones was estimated by fluorescence quench titration as >50 nM. The affinities of the two clones (VH3 and VH8) derived from the mouse genes were also estimated by stop flow analysis (ratio of koff/kon) as 12 nM and 27 nM respectively. Thus both these clones have a comparable affinity to the VHLYS domain. The encoded amino acid sequences of VH3 and VH8 are given in FIG. 16, and that of the human variable domain in FIG. 17.
  • A library of VH domains made from the mouse immunized with lysozyme was screened for both lysozyme and keyhole limpet hemocyanin (KLH) binding activities. Two thousand colonies were toothpicked in groups of five into wells of ELISA plates, and the supernatants tested for binding to lysozyme coated plates and separately to KLH coated plates. Twenty one supernatants were shown to have lysozyme binding activities and two to have KLH binding activities. A second expression library, prepared from a mouse immunized with KLH was screened as above. Fourteen supernatants had KLH binding activities and a single supernatant had lysozyme binding activity.
  • This shows that antigen binding activities can be prepared from single VH domains, and that immunization facilitates the isolation of these domains.
  • EXAMPLE 7 Cloning Variable Domains with Binding Activities by Mutagenesis
  • Taking a single rearranged VH gene, it may be possible to derive entirely new antigen binding activities by extensively mutating each of the CDRs. The mutagenesis might be entirely random, or be derived from pre-existing repertoires of CDRs. Thus a repertoire of CDR3s might be prepared as in the preceding examples by using “universal” primers based in the flanking sequences, and likewise repertoires of the other CDRs (singly or in combination). The CDR repertoires could be stitched into place in the flanking framework regions by a variety of recombinant DNA techniques.
  • CDR3 appears to be the most promising region for mutagenesis as CDR3 is more variable in size and sequence than CDRs 1 and 2. This region would be expected to make a major contribution to antigen binding. The heavy chain variable region (VHLYS) of the anti-lysozyme antibody D1.3 is known to make several important contacts in the CDR3 region.
  • Multiple mutations were made in CDR3. The polymerase chain reaction (PCR) and a highly degenerate primer were used to make the mutations and by this means the original sequence of CDR3 was destroyed. (It would also have been possible to construct the mutations in CDR3 by cloning a mixed oligonucleotide duplex into restriction sites flanking the CDR or by other methods of site-directed mutagenesis). Mutants expressing heavy chain variable domains with affinities for lysozyme were screened and those with improved affinities or new specificities were identified.
  • The source of the heavy chain variable domain was an M113 vector containing the VHLYS gene. The body of the sequence encoding the variable region was amplified using the polymerase chain reaction (PCR) with the mutagenic primer VHMUT1 based in CDR3 and the M13 primer which is based in the M13 vector backbone. The mutagenic primer hypermutates the central four residues of CDR3 (Arg-Asp-Tyr-Arg). The PCR was carried out for 25 cycles on a Techne PHC-1 programmable heat block using 100 ng single stranded M13 mp19SWO template, with 25 pmol of VHMUT1 and the M13 primer, 0.5 mM each dNTP, 67 mM Tris.HCl, pH 8.8, 10 mM MgCl2, 17 mM (NH4)2SO4, 200 μg/ml gelatine and 2.5 units Taq polymerase in a final volume of 50 μl. The temperature regime was 95° C. for 1.5 min, 25° C. for 1.5 min and 72° C. for 3 min (However a range of PCR conditions could be used). The reaction products were extracted with phenol/chloroform, precipitated with ethanol and resuspended in 10 mM Tris. HCl and 0.1 mM EDTA, pH 8.0.
  • The products from the PCR were digested with PstI and BstEII and purified on a 1.5% LGT agarose gel in Tris acetate buffer using Geneclean® (Bio 101, LaJolla). The gel purified band was ligated into pSW2HPOLY (FIG. 19). (This vector is related to pSW2 except that the body of the VHLYS gene has been replaced by a polylinker.) The vector was first digested with BstEII and PstI and treated with calf-intestinal phosphatase. Aliquots of the reaction mix were used to transform E. coli BMH 71-18 to ampicillin resistance. Colonies were selected on ampicillin (100 μg/ml) rich plates containing glucose at 0.8% w/v.
  • Colonies resulting from transfection were picked in pools of five into two 96 well Corning microtitre plates, containing 200 μl 2×TY medium and 100 μl TY medium, 100 μg/ml ampicillin and 1% glucose. The colonies were grown for 24 hours at 37° C. and then cells were washed twice in 200 μl 50 mM NaCl, pelleting the cells in an IEC Centra-3 bench top centrifuge with microtitre plate head fitting. Plates were spun at 2,500 rpm for 10 min at room temperature. Cells were resuspended in 200 μl 2×TY, 100 μg/ml ampicillin and 1 mM IPTG (Sigma) to induce expression, and grown for a further 24 hr.
  • Cells were spun down and the supernatants used in ELISA with lysozyme coated plates and anti-idiotypic sera (raised in rabbits against the Fv fragment of the D1.3 antibody). Bound anti-idiotypic serum was detected using horse radish peroxidase conjugated to anti-rabbit sera (ICN Immunochemicals). Seven of the wells gave a positive result in the ELISA. These pools were restreaked for single colonies which were picked, grown up, induced in microtitre plates and rescreened in the ELISA as above. Positive clones were grown up at the 50 ml scale and expression was induced. Culture supernatants were purified as in Example 5 on columns of lysozyme-Sepharose and eluates analysed on SDS-PAGE and staining with Page Blue 90 (BDH). On elution of the column with diethylamine, bands corresponding to the VHLYS mutant domains were identified, but none to the VKLYS domains. This suggested that although the mutant domains could bind to lysozyme, they could no longer associate with the VKYLS domains.
  • For seven clones giving a positive reaction in ELISA, plasmids were prepared and the VKLYS gene excised by cutting with EcoRI and religating. Thus the plasmids should only direct the expression of the VHLYS mutants. 1.5 ml cultures were grown and induced for expression as above. The cells were spun down and supernatant shown to bind lysozyme as above. (Alternatively the amplified mutant VKLYS genes could have been cloned directly into the pSW1HPOLY vector for expression of the mutant activities in the absence of VKLYS.)
  • An ELISA method was devised in which the activities of bacterial supernatants for binding of lysozyme (or KLH) were compared. Firstly a vector was devised for tagging of the VH domains at its C-terminal region with a peptide from the c-myc protein which is recognized by a monoclonal antibody 9E10. The vector was derived from pSW1 by a BstEII and SmaI double digest, and ligation of an oligonucleotide duplex made from
  • 5′ GTC ACC GTC TCC TCA GAA CAA AAA CTC ATA TCA GAA
    GAG GAT CTG AAT TAA TAA 3′
    and
    5′ TTA TTA ATT CAG ATC CTC TTC TGA GAT GAG TTT TTG
    TTC TGA GGA GAC G 3′.
  • The VHLYSMYC protein domain expressed after induction was shown to bind to lysozyme and to the 9E10 antibody by ELISA as follows:
  • (1) Falcon (3912) flat bottomed wells were coated with 180 μl lysozyme (3 mg/ml) or KLH (50 μg/ml) per well in 50 mM NaHCO3, pH 9.6, and left to stand at room temperature overnight;
  • (2) The wells were washed with PBS and blocked for 2 hrs at 37° C. with 200 μl 2% Sainsbury's instant dried skimmed milk powder in PBS per well;
  • (3) The Blocking solution was discarded, and the walls washed out with PBS (3 washes) and 150 μl test solution (supernatant or purified tagged domain) pipetted into each well. The sample was incubated at 37° C. for 2 hrs;
  • (4) The test solution was discarded, and the wells washed out with PBS (3 washes). 100 μl of 4 μg/ml purified 9E10 antibody in 2% Sainsbury's instant dried skimmed milk powder in PBS was added, and incubated at 37° C. for 2 hrs;
  • (5) The 9E10 antibody was discarded, the wells washed with PBS (3 washes). 100 ml of 1/500 dilution of anti-mouse antibody (peroxidase conjugated anti-mouse Ig (Dakopats)) was added and incubated at 37° C. for 2 hrs;
  • (6) The second antibody was discarded and wells washed three times with PBS; and
  • (7) 100 μl 2,2′azino-bis(3-ethylbenzthiazolinesulphonic acid) [Sigma] (0.55 mg/ml, with 1 μl 20% hydrogen peroxide: water per 10 ml) was added to each well and the color allowed to develop for up to 10 minutes at room temperature.
  • The reaction was stopped by adding 0.05% sodium azide in 50 mM citric acid, pH 4.3. ELISA plates were read in an Titertek Multiscan plate reader.
  • The activities of the mutant supernatants were compared with VHLYS supernatant by competition with the VHLYSMYC domain for binding to lysozyme. The results show that supernatant from clone VHLYSMUT59 is more effective than wild type VHLYS supernatant in competing for VHLYSMYC. Furthermore, Western blots of SDS-PAGE aliquots of supernatant from the VHLYS and VHLYSMUT59 domain (using anti-Fv antisera) indicated comparable amounts of the two samples. Thus assuming identical amounts of VHLYS and VHLYSMUT59, the affinity of the mutant appears to be greater than that of the VHLYS domain.
  • To check the affinity of the VHLYSMUT59 domain directly, the clone was grown at the 1 L scale and 200-300 μg purified on lysozyme-Sepharose as in Example 5. By fluorescence quench titration of samples of VHLYS and VHLYSMUT59, the number of binding sites for lysozyme were determined. The samples of VHLYS and VHLYSMUT59 were then compared in the competition ELISA with VHLYSMYC over two orders of magnitude. In the competition assay each microtitre well contained a constant amount of VHLYSMYC (approximately 0.6 μg VHLYSMYC). Varying amounts of VHLYS or VHLYSMUT59 (3.8 μM in lysozyme binding sites) were added (0.166-25 μl). The final volume and buffer concentration in all wells was constant. 9E10 (anti-myc) antibody was used to quantitate bound VHLYSMYC in each assay well. The % inhibition of VHLYSMYC binding was calculated for each addition of VHLYS or VHLYSMUT59, after subtraction of background binding. Assays were carried out in duplicate. The results indicate that VHLYSMUT59 has a higher affinity for lysozyme than VHLYS.
  • The VHLYSMUT59 gene was sequenced (after recloning into M13) and shown to be identical to the VHLYS gene except for the central residues of CDR3 (Arg-Asp-Tyr-Arg). These were replaced by Thr-Gln-Arg-Pro: (encoded by ACACAAAGGCCA).
  • A library of 2000 mutant VH clones was screened for lysozyme and also for KLH binding (toothpicking 5 colonies per well as described in Example 6). Nineteen supernatants were identified with lysozyme binding activities and four with KLH binding activities. This indicates that new specificities and improved affinities can be derived by making a random repertoire of CDR3.
  • EXAMPLE 8 Construction and Expression of Double Domain for Lysozyme Binding
  • The finding that single domains have excellent binding activities should allow the construction of strings of domains (concatamers). Thus, multiple specificities could be built into the same molecule, allowing binding to different epitopes spaced apart by the distance between domain heads. Flexible linker regions could be built to space out the domains. In principle such molecules could be devised to have exceptional specificity and affinity.
  • Two copies of the cloned heavy chain variable gene of the D1.3 antibody were linked by a nucleotide sequence encoding a flexible linker Gly-Gly-Gly-Ala-Pro-Ala-Ala-Ala-Pro-Ala-Gly-Gly-Gly- (by several steps of cutting, pasting and site directed mutagenesis) to yield the plasmid pSW3 (FIG. 20). The expression was driven by a lacZ promoter and the protein was secreted into the periplasm via a pelB leader sequence (as described in Example 5 for expression of pSW1 and pSW2). The protein could be purified to homogeneity on a lysozyme affinity column. On SDS polyacrylamide gels, it gave a band of the right size (molecular weight about 26,000). The protein also bound strongly to lysozyme as detected by ELISA (see Example 5) using anti-idiotypic antiserum directed against the Fv fragment of the D1.3 antibody to detect the protein. Thus, such constructs are readily made and secreted and at least one of the domains binds to lysozyme.
  • EXAMPLE 9 Introduction of Cysteine Residue at C-Terminal End of VHLYS
  • A cysteine residue was introduced at the C-terminus of the VHLYS domain in the vector pSW2. The cysteine was introduced by cleavage of the vector with the restriction enzymes BstI and SmaI (which excises the C-terminal portion of the J segment) and ligation of a short oligonucleotide duplex
  • 5′ GTC ACC GTC TCC TCA TGT TAA TAA 3′
    and
    5′ TTA TTA ACA TGA GGA GAC G 3′.

    By purification on an affinity column of lysozyme Sepharose it was shown that the VHLYS-Cys domain was expressed in association with the VKLYS variable domain, but the overall yields were much lower than the wild type Fv fragment. Comparison of non-reducing and reducing SDS polyacrylamide gels of the purified Fv-Cys protein indicated that the two VH-Cys domains had become linked-through the introduced cysteine residue.
  • EXAMPLE 10 Linking of VH Domain with Enzyme
  • Linking of enzyme activities to VH domains should be possible by either cloning the enzyme on either the N-terminal or the C-terminal side of the VH domain. Since both partners must be active, it may be necessary to design a suitable linker (see Example 8) between the two domains. For secretion of the VH-enzyme fusion, it would be preferable to utilize an enzyme which is usually secreted. In FIGS. 21 a-21 c, there is shown the sequence of a fusion of a VH domain with alkaline phosphatase. The alkaline phosphatase gene was cloned from a plasmid carrying the E. coli alkaline phosphatase gene in a plasmid pEK48 [51] using the polymerase chain reaction. The gene was amplified with the primers
  • 5′CAC CAC GGT CAC CGT CTC CTC ACG GAC ACC AGA AAT
    GCC TGT TCT G 3′
    and
    5′ GCG AAA ATT CAC TCC CGG GCG CGG TTT TAT TTC 3′.

    The gene was introduced into the vector pSW1 by cutting at BstEII and SmaI. The construction (FIGS. 21 a-21 c) was expressed in E. coli strain BMH71-18 as in Example 5 and screened for phosphatase activity using 1 mg/ml p-nitrophenylphosphate as substrate in 10 mM diethanolamine and 0.5 mM MgCl2, pH 9.5) and also on SDS polyacrylamide gels which had been Western blotted (detecting with anti-idiotypic antiserum). No evidence was found for the secretion of the linked VHLYS-alkaline phosphatase as detected by Western blots (see Example 5), or for secretion of phosphatase activity.
  • However when the construct was transfected into a bacterial strain BL21DE3 [52] which is deficient in proteases, a band of the correct size (as well as degraded products) was detected on the Western blots. Furthermore phosphatase activity could now be detected in the bacterial supernatant. Such activity is not present in supernatant from the strain which had not been transfected with the construct.
  • A variety of linker sequences could then be introduced at the BstEII site to improve the spacing between the two domains.
  • EXAMPLE 11 Coexpression of VH Domains with Vκ Repertoire
  • A repertoire of Vκ genes was derived by PCR using primers as described in Example 2 from DNA prepared from mouse spleen and also from mouse spleen mRNA using the primers VK3FOR and VK2BACK and a cycle of 94° C. for 1 min, 60° C. for 1 min, 72° C. for 2 min. The PCR amplified DNA was fractionated on the agarose gel, the band excised and cloned into a vector which carries the VHLYS domain (from the D 1.3 antibody), and a cloning site (SacI and XhoI) for cloning of the light chain variable domains with a myc tail (pSW1VHLYS-VKPOLYMYC, FIG. 22).
  • Clones were screened for lysozyme binding activities as described in Examples 5 and 7 via the myc tag on the light chain variable domain, as this should permit the following kinds of Vκ domains to be identified:
  • (1) those which bind to lysozyme in the absence of the VHLYS domain;
  • (2) those which associate with the heavy chain and make no contribution to binding of lysozyme; and
  • (3) those which associate with the heavy chain and also contribute to binding of lysozyme (either helping or hindering).
  • This would not identify those Vκ domains which associated with the VHLYS domain and completely abolished its binding to lysozyme.
  • In a further experiment, the VHLYS domain was replaced by the heavy chain variable domain VH3 which had been isolated from the repertoire (see Example 6), and then the Vκ domains cloned into the vector. (Note that the VH3 domain has an internal SacI site and this was first removed to allow the cloning of the Vκ repertoire as SacI-XhoI fragments.)
  • By screening the supernatant using the ELISA described in Example 6, bacterial supernatants will be identified which bind lysozyme.
  • EXAMPLE 12 High Expression of VH Domains
  • By screening several clones from a VH library derived from a mouse immunized with lysozyme via a Western blot, using the 9E10 antibody directed against the peptide tag, one clone was noted with very high levels of expression of the domain (estimated as 25-50 mg/l). The clone was sequenced to determine the nature of the sequence. The sequence proved to be closely related to that of the VHLYS domain, except with a few amino acid changes (FIG. 23). The result was unexpected, and shows that a limited number of amino acid changes, perhaps even a single amino acid substitution, can cause greatly elevated levels of expression.
  • By making mutations of the high expressing domain at these residues, it was found that a single amino acid change in the VHLYS domain (Asn 35 to H is) is sufficient to cause the domain to be expressed at high levels.
  • CONCLUSION
  • It can thus be seen that the present invention enables the cloning, amplification and expression of heavy and light chain variable domain encoding sequences in a much more simple manner than was previously possible. It also shows that isolated variable domains or such domains linked to effector molecules are unexpectedly useful.
  • It will be appreciated that the present invention has been described above by way of example only and that variations and modifications may be made by the skilled person without departing from the scope of the invention.
  • LIST OF REFERENCES
    • [1] Inbar et al., PNAS-USA, 69, 2659-2662, 1972.
    • [2] Amit et al., Science, 233, 747, 1986.
    • [3] Satow et al., J. Mol. Biol., 190, 593, 1986.
    • [4] Colman et al., Nature, 326, 358, 1987.
    • [5] Sheriff et al., PNAS-USA, 84, 8075-8079, 1987.
    • [6] Padlan et al., PNAS-USA, 86, 5938-5942, 1989.
    • [7] Skerra and Plückthun, Science, 240, 1038-1041, 1988.
    • [8] Bird et al., Science, 242, 423-426, 1988.
    • [9] Huston et al., PNAS-USA, 85, 5879-5833, 1988.
    • [10] Fleischman, Arch. Biochem. Biophys. Suppl., 1, 174, 1966.
    • [1,1] Porter and Weir, J. Cell. Physiol. Suppl., 1, 51, 1967.
    • [1,2] Jaton et al., Biochemistry, 7, 4185, 1968.
    • [1,3] Rockey, J. Exp. Med., 125, 249, 1967.
    • [1,4] Stevenson, Biochem. J., 133, 827-836, 1973.
    • [15] Edmundson et al., Biochemistry, 14, 3953, 1975.
    • [1,6] Rossman et al., Nature, 317, 145-153, 1985.
    • [1,7] Saiki et al., Science, 230, 1350-1354, 1985.
    • [1,8] Larrick et al., Biochem. Biophys. Res. Comm., 160, 1250, 1989.
    • [1,9] Orlandi et al., PNAS-USA, 86, 3833, 1989.
    • [20] Yon and Fried, Nuc. Acids Res., 17, 4895, 1989.
    • [21] Fields and Song, Nature, 340, 245-246, 1989.
    • [22] Baldwin and Schultz, Science, 245, 1104-1107, 1989.
    • [23] Menard et al., Cancer Res., 43, 1295-1300, 1983.
    • [24] Bosslet et al., Eur. J. Nuc. Med., 14, 523-528, 1988.
    • [25] Bosslet et al., Cancer Immunol. Immunother., 23, 185-191, 1986.
    • [26] Bosslet et al., Int. J. Cancer, 36, 75-84, 1985.
    • [27]
    • [28] Bremer et al., J. Biol. Chem., 259, 14773-14777, 1984.
    • [29] Griffiths & Milstein, Hybridoma Technology in the Biosciences and Medicine, 103-115, 1985.
    • [30] Maniatis et al., Molecular Cloning: a Laboratory Manual, Cold Spring Harbour Laboratory, 1982.
    • [31] Jones et al., Nature, 321, 522-525, 1986.
    • [32] Zoller & Smith, Nuc. Acids Res., 10, 6457-6500, 1982.
    • [33] Carter et al., Nuc. Acids Res., 13, 4431-4443, 1985.
    • [34] Sanger et al., PNAS-USA, 74, 5463-5467, 1977.
    • [35] Yannisch-Perron et al., Gene, 33, 103-119, 1985.
    • [36]
    • [37] Riechmann et al., Nature, 332, 323-327, 1988.
    • [38] Kearney et al., J. Immunol., 123, 1548-1550, 1979.
    • [39] Patter et al., PNAS-USA, 81, 7161-7163, 1984.
    • [40] Galfre & Milstein, Meth. Enzym., 73, 1-46, 1981.
    • [41] Laemmli, Nature, 227, 680-685, 1970.
    • [42] Better et al., Science, 240, 1041, 1988.
    • [43] Lei et al., J. Bacteriol., 169, 4379, 1987.
    • [44] Verhoeyen et al., Science, 239, 1534, 1988.
    • [45] Gronenbom, Mol. Gen. Genet, 148, 243, 1976.
    • [46] Dagert et al., Gene, 6, 23, 1974.
    • [47] Hanahan, J. Mol. Biol., 166, 557, 1983.
    • [48] Jones et al., Nature, 321, 522, 1986.
    • [49] Segal, Enzyme Kinetics, 73, Wiley, New York, 1975.
    • [50] Gutfreund, Enzymes, Physical Principles, Wiley Interscience, London, 1972.
    • [51] Chaidaroglou, Biochem., 27, 8338, 1988.
    • [52] Grodberg and Dunn, J. Bacteriol., 170, 1245-1253, 1988.

Claims (32)

1. A single domain ligand consisting of at least part of the variable domain of one chain of a molecule from the immunoglobulin (Ig) superfamily.
2. The ligand of claim 1, which consists of the variable domain of an Ig heavy chain.
3. The ligand of claim 1, which consists of the variable domain of an Ig chain with one or more point mutations from the natural sequence.
4. A receptor comprising a ligand of claim 1 linked to one or more of an effector molecule, a prosthetic group, a label, a solid support or one or more other ligands having the same or different specificity.
5. The receptor of claim 4, comprising at least two ligands.
6. The receptor of claim 5, wherein the first ligand binds to a first epitope of an antigen and the second ligand binds to a second epitope.
7. The receptor of claim 6, which includes an effector molecule or label.
8. The receptor of claim 5 which comprises a ligand and another protein molecule, produced by recombinant DNA technology as a fusion product.
9. The receptor of claim 8, wherein a linker peptide sequence is placed between the ligand and the other protein molecule.
10. A method of cloning a sequence (the target sequence) which encodes at least part of the variable domain of an Ig superfamily molecule, which method comprises:
(a) providing a sample of double stranded (ds) nucleic acid which contains the target sequence;
(b) denaturing the sample so as to separate the two strands;
(c) annealing to the sample a forward and a back oligonucleotide primer, the forward primer being specific for a sequence at or adjacent the 3′ end of the sense strand of the target sequence, the back primer being specific for a sequence at or adjacent the 3′ end of the antisense strand of the target sequence, under conditions which allow the primers to hybridise to the nucleic acid at or adjacent the target sequence;
(d) treating the annealed sample with a DNA polymerase enzyme in the presence of deoxynucleoside triphosphates under conditions which cause primer extension to take place; and (e) denaturing the sample under conditions such that the extended primers become separated from the target sequence.
11. The method of claim 10, further including the step (f) of repeating steps (c) to (e) on the denatured mixture a plurality of times.
12. The method of claim 10, which is used to clone a complete variable domain from an Ig heavy chain.
13. The method of claim 10 which is used to produce a DNA sequence encoding a ligand.
14. The method of claim 10, wherein the forward and back primers are provided as single oligonucleotides.
15. The method of claim 10, wherein the forward and back primers are each supplied as a mixture of closely related oligonucleotides.
16. The method of claim 14, wherein the primers which are used are species specific general primers.
17. The method of claim 10, wherein the ds nucleic acid sequence is genomic DNA.
18. The method of claim 10, wherein the ds nucleic acid is derived from a human.
19. The method of claim 10, wherein the ds nucleic acid is derived from peripheral blood lymphocytes.
20. The method of claim 10, wherein each primer includes a sequence encoding a restriction enzyme recognition site.
21. The method of claim 20, wherein the restriction enzyme recognition site is located in the sequence which is annealed to the ds nucleic acid.
22. The method of claim 10, wherein the product ds cDNA is inserted into an expression vector and expressed alone.
23. The method of claim 10, wherein the product ds cDNA is expressed in combination with a complementary variable domain.
24. The method of claim 10, wherein the cloned ds cDNA is inserted into an expression vector already containing sequences encoding one or more constant domains to allow the vector to express Ig-type chains.
25. The method of claim 10, wherein the cloned ds cDNA is inserted into an expression vector so that it can be expressed as a fusion protein.
26. The method of claim 10, wherein one or both of the primers comprises a mixture of oligonucleotides of hypervariable sequence, whereby a mixture of variable domain encoding sequences is produced.
27. A method of cloning a sequence (the target sequence) which encodes at least part of the variable domain of an Ig superfamily molecule, which method comprises:
(a) providing a sample of double stranded (ds) nucleic acid which contains the target sequence;
(b) denaturing the sample so as to separate the two strands;
(c) annealing to the sample a forward and a back oligonucleotide primer, the forward primer being specific for a sequence at or adjacent the 3′ end of the sense strand of the target sequence, the back primer being specific for a sequence at or adjacent the 3′ end of the antisense strand of the target sequence, under conditions which allow the primers to hybridise to the nucleic acid at or adjacent the target sequence;
(d) treating the annealed sample with a DNA polymerase enzyme in the presence of deoxynucleoside triphosphates under conditions which cause primer extension to take place; (g) treating the sample of ds cDNA with traces of DNAse in the presence of DNA polymerase I to allow nick translation of the DNA; and (h) cloning the ds cDNA into a vector.
28. The method of claim 27, which further includes the steps of: (i) digesting the DNA of recombinant plasmids to release DNA fragments containing genes encoding variable domains; and (j) treating the fragments in a further set of steps (c) to (h).
29. The method of claim 27, wherein the fragments are separated from the vector and from other fragments of the incorrect size by gel electrophoresis.
30. The method of claim 27, wherein the product ds cDNA is cloned directly into an expression vector.
31. A species specific general oligonucleotide primer or mixture of such primers useful for cloning at least part of a variable domain encoding sequence from an animal of that species.
32. A primer or mixture of primers according to claim 27, wherein each primer includes a restriction enzyme recognition site within the sequence which anneals to the coding part of the variable domain encoding sequence.
US12/127,237 1988-11-11 2008-05-27 Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors Abandoned US20080299618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/127,237 US20080299618A1 (en) 1988-11-11 2008-05-27 Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
GB888826444A GB8826444D0 (en) 1988-11-11 1988-11-11 Cloning immunoglobulin variable domains for expression by polymerase chain reaction
GB8826444.5 1988-11-11
GB8906034.7 1989-03-16
GB898906034A GB8906034D0 (en) 1989-03-16 1989-03-16 Recombinant dna method
GB898909217A GB8909217D0 (en) 1989-04-22 1989-04-22 Antibody binding
GB8909217.5 1989-04-22
GB8911047.2 1989-05-15
GB898911047A GB8911047D0 (en) 1989-05-15 1989-05-15 Antibody binding
GB898912652A GB8912652D0 (en) 1989-06-02 1989-06-02 Antibody binding
GB8912652.8 1989-06-02
GB898913900A GB8913900D0 (en) 1989-06-16 1989-06-16 Antibody binding
GB8913900.0 1989-06-16
GB8918543.3 1989-08-15
GB898918543A GB8918543D0 (en) 1989-08-15 1989-08-15 Antibody binding
PCT/GB1989/001344 WO1990005144A1 (en) 1988-11-11 1989-11-13 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US58037490A 1990-09-11 1990-09-11
US79680591A 1991-11-25 1991-11-25
US33204694A 1994-11-01 1994-11-01
US08/470,031 US6248516B1 (en) 1988-11-11 1995-06-06 Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US09/722,364 US6545142B1 (en) 1988-11-11 2000-11-28 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US10/290,233 US20040110941A2 (en) 1988-11-11 2002-11-08 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US12/127,237 US20080299618A1 (en) 1988-11-11 2008-05-27 Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/290,233 Continuation US20040110941A2 (en) 1988-11-11 2002-11-08 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors

Publications (1)

Publication Number Publication Date
US20080299618A1 true US20080299618A1 (en) 2008-12-04

Family

ID=27562806

Family Applications (5)

Application Number Title Priority Date Filing Date
US08/470,031 Expired - Lifetime US6248516B1 (en) 1988-11-11 1995-06-06 Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US09/722,364 Expired - Fee Related US6545142B1 (en) 1988-11-11 2000-11-28 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US10/290,252 Expired - Fee Related US7306907B2 (en) 1988-11-11 2002-11-08 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US10/290,233 Abandoned US20040110941A2 (en) 1988-11-11 2002-11-08 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US12/127,237 Abandoned US20080299618A1 (en) 1988-11-11 2008-05-27 Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US08/470,031 Expired - Lifetime US6248516B1 (en) 1988-11-11 1995-06-06 Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US09/722,364 Expired - Fee Related US6545142B1 (en) 1988-11-11 2000-11-28 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US10/290,252 Expired - Fee Related US7306907B2 (en) 1988-11-11 2002-11-08 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US10/290,233 Abandoned US20040110941A2 (en) 1988-11-11 2002-11-08 Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors

Country Status (13)

Country Link
US (5) US6248516B1 (en)
EP (1) EP0368684B2 (en)
JP (1) JP2919890B2 (en)
KR (1) KR0184860B1 (en)
AT (1) ATE102631T1 (en)
AU (1) AU634186B2 (en)
CA (1) CA2002868C (en)
DE (1) DE68913658T3 (en)
DK (1) DK175392B1 (en)
ES (1) ES2052027T5 (en)
FI (1) FI903489A0 (en)
NO (1) NO903059L (en)
WO (1) WO1990005144A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940298B2 (en) 2007-09-04 2015-01-27 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting and detection
US8940871B2 (en) 2006-03-20 2015-01-27 The Regents Of The University Of California Engineered anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting

Families Citing this family (1591)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229272A (en) * 1989-04-25 1993-07-20 Igen, Inc. Catalytic antibody components
AU634186B2 (en) * 1988-11-11 1993-02-18 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
CA2006878A1 (en) * 1988-12-29 1990-06-29 John D. Rodwell Molecular recognition units
US5196510A (en) * 1988-12-29 1993-03-23 Cytogen Corporation Molecular recognition units
US5225538A (en) * 1989-02-23 1993-07-06 Genentech, Inc. Lymphocyte homing receptor/immunoglobulin fusion proteins
US6406697B1 (en) 1989-02-23 2002-06-18 Genentech, Inc. Hybrid immunoglobulins
US5116964A (en) * 1989-02-23 1992-05-26 Genentech, Inc. Hybrid immunoglobulins
DE3909799A1 (en) 1989-03-24 1990-09-27 Behringwerke Ag MONOCLONAL ANTIBODIES (MAK) AGAINST TUMOR ASSOCIATED ANTIGENS, THEIR PRODUCTION AND USE
US5194585A (en) * 1989-04-25 1993-03-16 Igen, Inc. Inhibitors of catalytic antibodies
US5599538A (en) * 1989-04-25 1997-02-04 Igen, Inc. Autoantibodies which enhance the rate of a chemical reaction
US6048717A (en) * 1989-04-25 2000-04-11 Igen International, Inc. Inhibitors of catalytic antibodies
US5318897A (en) * 1989-04-25 1994-06-07 Igen, Inc. Monoclonal antibody and antibody components elicited to a polypeptide antigen ground state
US5658753A (en) * 1989-04-25 1997-08-19 Paul; Sudhir Catalytic antibody components
US5236836A (en) * 1989-04-25 1993-08-17 Igen, Inc. Autoantibodies which enhance the rate of a chemical reaction
US5602015A (en) * 1989-04-25 1997-02-11 Igen, Inc. Autoantibodies which enhance the rate of a chemical reaction
US6291160B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6291161B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertiore
US6291158B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US6680192B1 (en) 1989-05-16 2004-01-20 Scripps Research Institute Method for producing polymers having a preselected activity
US6291159B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6969586B1 (en) 1989-05-16 2005-11-29 Scripps Research Institute Method for tapping the immunological repertoire
CA2016841C (en) * 1989-05-16 1999-09-21 William D. Huse A method for producing polymers having a preselected activity
US5231015A (en) * 1989-10-18 1993-07-27 Eastman Kodak Company Methods of extracting nucleic acids and pcr amplification without using a proteolytic enzyme
US6274324B1 (en) 1989-12-01 2001-08-14 Unilever Patent Holdings B.V. Specific binding reagent comprising a variable domain protein linked to a support or tracer
GB8928501D0 (en) * 1989-12-18 1990-02-21 Unilever Plc Reagents
ATE277179T1 (en) 1990-02-01 2004-10-15 Dade Behring Marburg Gmbh PRODUCTION AND USE OF HUMAN ANTIBODIES GENE BANKS (ßHUMAN ANTIBODIES LIBRARIESß)
GB9021671D0 (en) * 1990-10-05 1990-11-21 Unilever Plc Delivery of agents
US5427908A (en) * 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
US5723286A (en) * 1990-06-20 1998-03-03 Affymax Technologies N.V. Peptide library and screening systems
US7063943B1 (en) 1990-07-10 2006-06-20 Cambridge Antibody Technology Methods for producing members of specific binding pairs
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
US6916605B1 (en) 1990-07-10 2005-07-12 Medical Research Council Methods for producing members of specific binding pairs
GB9206318D0 (en) * 1992-03-24 1992-05-06 Cambridge Antibody Tech Binding substances
GB9016299D0 (en) * 1990-07-25 1990-09-12 Brien Caroline J O Binding substances
DE4033120A1 (en) * 1990-10-18 1992-04-23 Boehringer Mannheim Gmbh Genomic DNA fragment encoding antibody variable region prodn. - by attaching primers to hybridoma DNA then subjecting to polymerase chain reaction, for constructing genes encoding chimeric antibodies
US5571894A (en) * 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
AU1025692A (en) * 1991-02-06 1992-08-13 Ciba-Geigy Ag Novel chimeric antiidiotypic monoclonal antibodies
MX9203138A (en) * 1991-03-12 1992-09-01 Biogen Inc DOMAIN OF LINK CD2-ANTIGEN 3 (LFA-3) ASSOCIATED WITH FUNCTION LYMPHOSITES.
JPH05508779A (en) * 1991-03-12 1993-12-09 バイオジェン,インコーポレイテッド CD2-binding domain of lymphocyte function-related antigen 3
JP3672306B2 (en) * 1991-04-10 2005-07-20 ザ スクリップス リサーチ インスティテュート Heterodimeric receptor library using phagemids
US5858657A (en) * 1992-05-15 1999-01-12 Medical Research Council Methods for producing members of specific binding pairs
US6492160B1 (en) 1991-05-15 2002-12-10 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US6225447B1 (en) 1991-05-15 2001-05-01 Cambridge Antibody Technology Ltd. Methods for producing members of specific binding pairs
US5962255A (en) * 1992-03-24 1999-10-05 Cambridge Antibody Technology Limited Methods for producing recombinant vectors
US5871907A (en) * 1991-05-15 1999-02-16 Medical Research Council Methods for producing members of specific binding pairs
DE69233254T2 (en) 1991-06-14 2004-09-16 Genentech, Inc., South San Francisco Humanized Heregulin antibody
US6800738B1 (en) 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
WO1994004679A1 (en) * 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
US5939531A (en) * 1991-07-15 1999-08-17 Novartis Corp. Recombinant antibodies specific for a growth factor receptor
NL9101290A (en) * 1991-07-23 1993-02-16 Stichting Rega V Z W RECOMBINANT DNA MOLECULA FOR THE EXPRESSION OF AN FV FRAGMENT OF AN ANTIBODY.
US6764681B2 (en) 1991-10-07 2004-07-20 Biogen, Inc. Method of prophylaxis or treatment of antigen presenting cell driven skin conditions using inhibitors of the CD2/LFA-3 interaction
US5733731A (en) * 1991-10-16 1998-03-31 Affymax Technologies N.V. Peptide library and screening method
US5270170A (en) * 1991-10-16 1993-12-14 Affymax Technologies N.V. Peptide library and screening method
DK1024191T3 (en) 1991-12-02 2008-12-08 Medical Res Council Preparation of autoantibodies displayed on phage surfaces from antibody segment libraries
EP2224006A1 (en) * 1991-12-02 2010-09-01 MedImmune Limited Production of anti-self antibodies from antibody segment repertoires and displayed on phage
DE4142077A1 (en) * 1991-12-19 1993-06-24 Boehringer Mannheim Gmbh METHOD FOR EXPRESSING RECOMBINANT ANTIKOERPERS
US5824307A (en) 1991-12-23 1998-10-20 Medimmune, Inc. Human-murine chimeric antibodies against respiratory syncytial virus
US6399368B1 (en) 1992-01-17 2002-06-04 Board Of Regents, The University Of Texas System Secretion of T cell receptor fragments from recombinant Escherichia coli cells
CZ291039B6 (en) 1992-02-06 2002-12-11 Schering Corporation Monoclonal antibody, hybridoma, polypeptide and process for preparing thereof, isolated DNA, recombinant vector, host cell, humanized antibody and pharmaceutical composition
US5733743A (en) * 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
EP0640094A1 (en) * 1992-04-24 1995-03-01 The Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
GB9216983D0 (en) * 1992-08-11 1992-09-23 Unilever Plc Polypeptide production
US6765087B1 (en) 1992-08-21 2004-07-20 Vrije Universiteit Brussel Immunoglobulins devoid of light chains
DE4233152A1 (en) * 1992-10-02 1994-04-07 Behringwerke Ag Antibody-enzyme conjugates for prodrug activation
GB9225453D0 (en) 1992-12-04 1993-01-27 Medical Res Council Binding proteins
DK1231268T3 (en) * 1994-01-31 2005-11-21 Univ Boston Polyclonal antibody libraries
US6010861A (en) * 1994-08-03 2000-01-04 Dgi Biotechnologies, Llc Target specific screens and their use for discovering small organic molecular pharmacophores
US6056957A (en) * 1994-08-04 2000-05-02 Schering Corporation Humanized monoclonal antibodies against human interleukin-5
EP0859841B1 (en) 1995-08-18 2002-06-19 MorphoSys AG Protein/(poly)peptide libraries
US6828422B1 (en) 1995-08-18 2004-12-07 Morphosys Ag Protein/(poly)peptide libraries
US7368111B2 (en) 1995-10-06 2008-05-06 Cambridge Antibody Technology Limited Human antibodies specific for TGFβ2
US6136311A (en) 1996-05-06 2000-10-24 Cornell Research Foundation, Inc. Treatment and diagnosis of cancer
DE69738254T2 (en) 1996-05-10 2008-08-14 Novozymes A/S METHOD FOR PROVISION OF DNA SEQUENCES
ATE391183T1 (en) 1996-08-19 2008-04-15 Morphosys Ip Gmbh VECTORS/DNA SEQUENCES FROM HUMAN COMBINATORY ANTIBODIES LIBRARIES
GB9701425D0 (en) 1997-01-24 1997-03-12 Bioinvent Int Ab A method for in vitro molecular evolution of protein function
ATE461282T1 (en) * 1997-10-27 2010-04-15 Bac Ip Bv MULTIVALENT ANTIGEN-BINDING PROTEINS
WO1999040434A1 (en) 1998-02-04 1999-08-12 Invitrogen Corporation Microarrays and uses therefor
CA2328422A1 (en) 1998-05-13 1999-11-18 Diversys Limited Selection system
US6914128B1 (en) 1999-03-25 2005-07-05 Abbott Gmbh & Co. Kg Human antibodies that bind human IL-12 and methods for producing
US6492497B1 (en) 1999-04-30 2002-12-10 Cambridge Antibody Technology Limited Specific binding members for TGFbeta1
US7534605B2 (en) 1999-06-08 2009-05-19 Yissum Research Development Company Of The Hebrew University Of Jerusalem CD44 polypeptides, polynucleotides encoding same, antibodies directed thereagainst and method of using same for diagnosing and treating inflammatory diseases
US7297478B1 (en) 2000-09-22 2007-11-20 Large Scale Biology Corporation Creation of variable length and sequence linker regions for dual-domain or multi-domain molecules
AU785038B2 (en) 2000-01-27 2006-08-31 Applied Molecular Evolution, Inc. Ultra high affinity neutralizing antibodies
AU2001234125A1 (en) 2000-02-22 2001-09-03 Medical And Biological Laboratories Co., Ltd. Antibody library
EP2341074A1 (en) 2000-03-01 2011-07-06 MedImmune, LLC Antibodies binding to the f protein of a respiratory syncytial virus (rsv)
US8288322B2 (en) 2000-04-17 2012-10-16 Dyax Corp. Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
CA2406236C (en) * 2000-04-17 2013-02-19 Dyax Corp. Novel methods of constructing libraries of genetic packages that collectively display the members of a diverse family of peptides, polypeptides or proteins
EP1176200A3 (en) 2000-06-20 2005-01-12 Switch Biotech Aktiengesellschaft Use of polyeptides or their encoding nucleic acids for the diagnosis or treatment of skin diseases or wound healing and their use in indentifying pharmacologically acitve substances
ATE420958T1 (en) 2000-06-29 2009-01-15 Abbott Lab ANTIBODIES WITH DUAL SPECIFICITIES AND METHOD FOR THE PRODUCTION AND USE THEREOF
US7288390B2 (en) 2000-08-07 2007-10-30 Centocor, Inc. Anti-dual integrin antibodies, compositions, methods and uses
US6902734B2 (en) 2000-08-07 2005-06-07 Centocor, Inc. Anti-IL-12 antibodies and compositions thereof
UA81743C2 (en) 2000-08-07 2008-02-11 Центокор, Инк. HUMAN MONOCLONAL ANTIBODY WHICH SPECIFICALLY BINDS TUMOR NECROSIS FACTOR ALFA (TNFα), PHARMACEUTICAL MIXTURE CONTAINING THEREOF, AND METHOD FOR TREATING ARTHRITIS
US20050196755A1 (en) * 2000-11-17 2005-09-08 Maurice Zauderer In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
AU2001297872B2 (en) 2000-11-17 2006-11-09 University Of Rochester In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
US7179900B2 (en) 2000-11-28 2007-02-20 Medimmune, Inc. Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
US6919189B2 (en) 2000-12-11 2005-07-19 Alexion Pharmaceuticals, Inc. Nested oligonucleotides containing a hairpin for nucleic acid amplification
US6958213B2 (en) 2000-12-12 2005-10-25 Alligator Bioscience Ab Method for in vitro molecular evolution of protein function
US7658921B2 (en) 2000-12-12 2010-02-09 Medimmune, Llc Molecules with extended half-lives, compositions and uses thereof
EP2341060B1 (en) 2000-12-12 2019-02-20 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
AU2002249854B2 (en) 2000-12-18 2007-09-20 Dyax Corp. Focused libraries of genetic packages
US20020086292A1 (en) 2000-12-22 2002-07-04 Shigeaki Harayama Synthesis of hybrid polynucleotide molecules using single-stranded polynucleotide molecules
WO2002051438A2 (en) 2000-12-22 2002-07-04 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Use of repulsive guidance molecule (rgm) and its modulators
WO2002086096A2 (en) * 2001-01-23 2002-10-31 University Of Rochester Medical Center Methods of producing or identifying intrabodies in eukaryotic cells
JP2005503999A (en) 2001-01-31 2005-02-10 アイデック ファーマスーティカルズ コーポレイション Use of CD23 antagonists for the treatment of neoplastic diseases
GB0110029D0 (en) 2001-04-24 2001-06-13 Grosveld Frank Transgenic animal
US6972324B2 (en) 2001-05-18 2005-12-06 Boehringer Ingelheim Pharmaceuticals, Inc. Antibodies specific for CD44v6
GB0115841D0 (en) * 2001-06-28 2001-08-22 Medical Res Council Ligand
US20060073141A1 (en) * 2001-06-28 2006-04-06 Domantis Limited Compositions and methods for treating inflammatory disorders
ATE477280T1 (en) * 2001-06-28 2010-08-15 Domantis Ltd DOUBLE-SPECIFIC LIGAND AND USE THEREOF
WO2004003019A2 (en) * 2002-06-28 2004-01-08 Domantis Limited Immunoglobin single variant antigen-binding domains and dual-specific constructs
WO2003009740A2 (en) 2001-07-24 2003-02-06 Biogen Idec Ma Inc. Methods for treating or preventing sclerotic disorders using cd2-binding agents
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
EP2202243A3 (en) 2001-08-10 2012-08-08 Aberdeen University Antigen binding domains from fish
WO2003018749A2 (en) * 2001-08-22 2003-03-06 Shengfeng Li Compositions and methods for generating antigen-binding units
US20040005709A1 (en) * 2001-10-24 2004-01-08 Hoogenboom Henricus Renerus Jacobus Mattheus Hybridization control of sequence variation
GB0126378D0 (en) 2001-11-02 2002-01-02 Oxford Biomedica Ltd Antigen
US7175983B2 (en) 2001-11-02 2007-02-13 Abmaxis, Inc. Adapter-directed display systems
CA2471116A1 (en) * 2001-12-21 2003-07-03 Serge Muyldermans Method for cloning of variable domain sequences
US20050069549A1 (en) 2002-01-14 2005-03-31 William Herman Targeted ligands
SI2508596T1 (en) 2002-02-21 2016-01-29 Institute Of Virology Slovak Academy Of Sciences MN/CA IX-specific monoclonal antibodies generated from MN/CA IX-deficient mice and methods of use
US7718776B2 (en) * 2002-04-05 2010-05-18 Amgen Inc. Human anti-OPGL neutralizing antibodies as selective OPGL pathway inhibitors
US7135310B2 (en) 2002-04-24 2006-11-14 The Regents Of The University Of California Method to amplify variable sequences without imposing primer sequences
ES2656427T3 (en) 2002-05-22 2018-02-27 Esbatech, An Alcon Biomedical Research Unit Llc Immunoglobulin frames demonstrating improved stability in the intracellular environment and methods for identification
EP2305710A3 (en) 2002-06-03 2013-05-29 Genentech, Inc. Synthetic antibody phage libraries
WO2003102157A2 (en) 2002-06-03 2003-12-11 Genentech, Inc. Synthetic antibody phage libraries
US7425618B2 (en) 2002-06-14 2008-09-16 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
GB0213745D0 (en) 2002-06-14 2002-07-24 Univ Edinburgh Enzyme
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US9028822B2 (en) 2002-06-28 2015-05-12 Domantis Limited Antagonists against TNFR1 and methods of use therefor
US20060002935A1 (en) 2002-06-28 2006-01-05 Domantis Limited Tumor Necrosis Factor Receptor 1 antagonists and methods of use therefor
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
US7696320B2 (en) 2004-08-24 2010-04-13 Domantis Limited Ligands that have binding specificity for VEGF and/or EGFR and methods of use therefor
WO2004015425A1 (en) 2002-08-07 2004-02-19 Umc Utrecht Holding B.V. Modulation of platelet adhesion based on the surface exposed beta-switch loop of platelet glycoprotein ib-alpha
US20040067532A1 (en) 2002-08-12 2004-04-08 Genetastix Corporation High throughput generation and affinity maturation of humanized antibody
NZ593428A (en) * 2002-09-06 2013-01-25 Amgen Inc Therapeutic human anti-il-1r1 monoclonal antibody
EP1947113B1 (en) 2002-10-07 2011-12-14 Ludwig Institute for Cancer Research Ltd P53 binding polypeptide
WO2004034988A2 (en) * 2002-10-16 2004-04-29 Amgen Inc. Human anti-ifn-ϝ neutralizing antibodies as selective ifn-ϝ pathway inhibitors
US9701754B1 (en) 2002-10-23 2017-07-11 City Of Hope Covalent disulfide-linked diabodies and uses thereof
US20060034845A1 (en) 2002-11-08 2006-02-16 Karen Silence Single domain antibodies directed against tumor necrosis factor alpha and uses therefor
NZ540194A (en) 2002-11-08 2008-07-31 Ablynx Nv Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
EP1578801A2 (en) * 2002-12-27 2005-09-28 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
GB0230201D0 (en) * 2002-12-27 2003-02-05 Domantis Ltd Retargeting
GB0230203D0 (en) * 2002-12-27 2003-02-05 Domantis Ltd Fc fusion
ES2542330T3 (en) 2003-01-10 2015-08-04 Ablynx N.V. Therapeutic polypeptides, homologs thereof, fragments thereof and their use in modulating platelet-mediated aggregation
EP1590369B1 (en) * 2003-01-24 2016-03-16 Applied Molecular Evolution, Inc. Human il-1 beta antagonists
DE10303974A1 (en) 2003-01-31 2004-08-05 Abbott Gmbh & Co. Kg Amyloid β (1-42) oligomers, process for their preparation and their use
SI1606409T1 (en) 2003-03-19 2011-01-31 Biogen Idec Inc Nogo receptor binding protein
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
US9708410B2 (en) 2003-05-30 2017-07-18 Janssen Biotech, Inc. Anti-tissue factor antibodies and compositions
EP1498133A1 (en) 2003-07-18 2005-01-19 Aventis Pharma Deutschland GmbH Use of a pak inhibitor for the treatment of a joint disease
US20050106667A1 (en) 2003-08-01 2005-05-19 Genentech, Inc Binding polypeptides with restricted diversity sequences
JP2007501011A (en) * 2003-08-01 2007-01-25 ジェネンテック・インコーポレーテッド Binding polypeptide having restriction diversity sequence
US7758859B2 (en) 2003-08-01 2010-07-20 Genentech, Inc. Anti-VEGF antibodies
EP2824190A1 (en) * 2003-09-09 2015-01-14 Integrigen, Inc. Methods and compositions for generation of germline human antibody genes
ES2339710T5 (en) 2003-09-23 2017-10-05 University Of North Carolina At Chapel Hill Cells that coexpress vitamin K reductase and vitamin K dependent protein and use them to improve the productivity of said vitamin K dependent protein
WO2006101474A1 (en) 2005-03-15 2006-09-28 University Of North Carolina At Chapel Hill Methods and compositions for producing active vitamin k-dependent proteins
ES2344413T3 (en) 2003-10-14 2010-08-26 Baxter International Inc. VKORC1 POLYPEPTIDE FOR RECYCLING VITAMIN K-EPOXIDE, A THERAPEUTIC TARGET OF CUMARINE AND ITS DERIVATIVES.
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
WO2005054860A1 (en) 2003-12-01 2005-06-16 Dako Denmark A/S Methods and compositions for immuno-histochemical detection
GB0328690D0 (en) 2003-12-10 2004-01-14 Ludwig Inst Cancer Res Tumour suppressor protein
PL2805728T3 (en) 2003-12-23 2020-07-13 Genentech, Inc. Novel anti-IL 13 antibodies and uses thereof
EP1761561B1 (en) * 2004-01-20 2015-08-26 KaloBios Pharmaceuticals, Inc. Antibody specificity transfer using minimal essential binding determinants
GB0406215D0 (en) 2004-03-19 2004-04-21 Procure Therapeutics Ltd Prostate stem cell
NZ550225A (en) 2004-03-30 2010-11-26 Glaxo Group Ltd Immunoglobulins that bind oncostatin and inhibit or block interaction between hOSM and pg130
US7785903B2 (en) 2004-04-09 2010-08-31 Genentech, Inc. Variable domain library and uses
ES2442386T3 (en) 2004-04-23 2014-02-11 Bundesrepublik Deutschland Letztvertreten Durch Das Robert Koch-Institut Vertreten Durch Seinen Pr Method for the treatment of conditions mediated by T cells by the decrease of positive ICOS cells in vivo.
US7662921B2 (en) 2004-05-07 2010-02-16 Astellas Us Llc Methods of treating viral disorders
MXPA06014031A (en) 2004-06-01 2007-10-08 Domantis Ltd Drug compositions, fusions and conjugates.
CA2567655C (en) 2004-06-02 2015-06-30 Diatech Pty Ltd Binding moieties based on shark ignar domains
EP1776136B1 (en) 2004-06-24 2012-10-03 Biogen Idec MA Inc. Treatment of conditions involving demyelination
TWI307630B (en) 2004-07-01 2009-03-21 Glaxo Group Ltd Immunoglobulins
GB0414886D0 (en) 2004-07-02 2004-08-04 Neutec Pharma Plc Treatment of bacterial infections
PL2053408T3 (en) 2004-07-20 2012-08-31 Symphogen As A procedure for structural characterization of a recombinant polyclonal protein or a polyclonal cell line
KR20070038556A (en) 2004-07-20 2007-04-10 심포젠 에이/에스 Anti-rhesus d recombinant polyclonal antibody and methods of manufacture
PL2311874T3 (en) 2004-07-22 2017-10-31 Univ Erasmus Med Ct Rotterdam Binding molecules
GB0416487D0 (en) 2004-07-23 2004-08-25 Isis Innovation Modified virus
CN101014245A (en) 2004-08-03 2007-08-08 比奥根艾迪克Ma公司 Taj in neuronal function
US7563443B2 (en) 2004-09-17 2009-07-21 Domantis Limited Monovalent anti-CD40L antibody polypeptides and compositions thereof
ES2429541T3 (en) 2004-11-16 2013-11-15 Kalobios Pharmaceuticals, Inc. Immunoglobulin variable region cassette exchange
GB0425739D0 (en) * 2004-11-23 2004-12-22 Procure Therapeutics Ltd Humanised baculovirus 2
GB0521621D0 (en) 2005-10-24 2005-11-30 Domantis Ltd Tumor necrosis factor receptor 1 antagonists for treating respiratory diseases
FR2879605B1 (en) 2004-12-16 2008-10-17 Centre Nat Rech Scient Cnrse PRODUCTION OF ANTIBODY FORMATS AND IMMUNOLOGICAL APPLICATIONS OF THESE FORMATS
WO2006071200A2 (en) 2004-12-30 2006-07-06 Agency For Science, Technology And Research Chinese hamster apoptosis-related genes
AU2006203889A1 (en) 2005-01-05 2006-07-13 Biogen Idec Ma Inc. CRIPTO binding molecules
PT1836500E (en) 2005-01-14 2010-09-28 Ablynx Nv Methods and assays for distinguishing between different forms of diseases and disorders characterized by thrombocytopenia and/or by spontaneous interaction between von willebrand factor (vwf) and platelets
AU2006222204B2 (en) 2005-03-11 2012-09-27 Sanofi-Aventis Use of MGC4504
JP2008532559A (en) 2005-03-19 2008-08-21 メディカル リサーチ カウンシル Treatment and prevention of viral infection or improvement of treatment and prevention
PT1866339E (en) 2005-03-25 2013-09-03 Gitr Inc Gitr binding molecules and uses therefor
JP2008539742A (en) 2005-05-11 2008-11-20 サノフィ−アベンティス Use of GIP promoter polymorphism
HUE045710T2 (en) 2005-05-18 2020-01-28 Ablynx Nv Improved nanobodies tm against tumor necrosis factor-alpha
PE20061444A1 (en) 2005-05-19 2007-01-15 Centocor Inc ANTI-MCP-1 ANTIBODY, COMPOSITIONS, METHODS AND USES
EP3415535B1 (en) 2005-05-20 2020-12-09 Ablynx N.V. Improved nanobodies tm for the treatment of aggregation-mediated disorders
JP5372500B2 (en) 2005-06-17 2013-12-18 トレラクス リクイデーティング トラスト ILT3-binding molecules and uses thereof
KR20130080058A (en) 2005-06-30 2013-07-11 아보트 러보러터리즈 Il-12/p40 binding proteins
EP2478917A1 (en) 2005-07-08 2012-07-25 Biogen Idec MA Inc. SP35 antibodies and uses thereof
EP2500352A1 (en) 2005-08-19 2012-09-19 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
EP2500356A3 (en) 2005-08-19 2012-10-24 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
RS55788B1 (en) 2005-08-31 2017-08-31 Merck Sharp & Dohme Engineered anti-il-23 antibodies
CN101277974A (en) 2005-09-30 2008-10-01 阿伯特有限及两合公司 Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use
WO2007041644A1 (en) 2005-10-03 2007-04-12 Smith & Nephew, Inc. Locking instrument assembly
DE102005048898A1 (en) 2005-10-12 2007-04-19 Sanofi-Aventis Deutschland Gmbh EGLN2 variants and their use in the prevention or treatment of thromboembolic disorders and coronary heart disease
GB0521139D0 (en) 2005-10-18 2005-11-23 Univ Sheffield Therapeutic agent
WO2007053524A2 (en) * 2005-10-28 2007-05-10 The Florida International University Board Of Trustees Horse: human chimeric antibodies
US8753625B2 (en) 2005-11-04 2014-06-17 Genentech, Inc. Use of complement inhibitors to treat ocular diseases
US20090246189A1 (en) 2005-11-04 2009-10-01 Biogen Idec Ma Inc. And Mclean Hospital Methods for Promoting Neurite Outgrowth and Survival of Dopaminergic Neurons
ES2577292T3 (en) 2005-11-07 2016-07-14 Genentech, Inc. Binding polypeptides with diversified VH / VL hypervariable sequences and consensus
UA96139C2 (en) 2005-11-08 2011-10-10 Дженентек, Інк. Anti-neuropilin-1 (nrp1) antibody
JP2009516513A (en) 2005-11-21 2009-04-23 ラボラトワール セローノ ソシエテ アノニム Composition and production method of hybrid antigen binding molecule and use thereof
SG10201706600VA (en) 2005-11-30 2017-09-28 Abbvie Inc Monoclonal antibodies and uses thereof
PT1954718E (en) 2005-11-30 2014-12-16 Abbvie Inc Anti-a globulomer antibodies, antigen-binding moieties thereof, corresponding hybridomas, nucleic acids, vectors, host cells, methods of producing said antibodies, compositions comprising said antibodies, uses of said antibodies and methods of using said antibodies
AU2006321364B2 (en) * 2005-12-01 2011-11-10 Domantis Limited Noncompetitive domain antibody formats that bind Interleukin 1 Receptor type 1
ES2547689T3 (en) 2005-12-02 2015-10-08 Genentech, Inc. Compositions and methods for the treatment of diseases and disorders associated with cytokine signaling that involve antibodies that bind to IL-22 and IL-22R
US20090175872A1 (en) 2005-12-02 2009-07-09 Biogen Idec Ma Inc. Treatment of Conditions Involving Demyelination
EP1973951A2 (en) * 2005-12-02 2008-10-01 Genentech, Inc. Binding polypeptides with restricted diversity sequences
RU2470941C2 (en) 2005-12-02 2012-12-27 Дженентек, Инк. Binding polypeptides and use thereof
EP1981902B1 (en) 2006-01-27 2015-07-29 Biogen MA Inc. Nogo receptor antagonists
EA017417B1 (en) 2006-02-01 2012-12-28 Сефалон Астралия Пти Лтд. DOMAIN ANTIBODY CONSTRUCT WHICH BINDS TO HUMAN TNF-α AND USE THEREOF
WO2007100711A2 (en) 2006-02-24 2007-09-07 Investigen, Inc. Methods and compositions for detecting polynucleotides
US20100226920A1 (en) * 2006-03-27 2010-09-09 Ablynx N.V. Medical delivery device for therapeutic proteins based on single domain antibodies
EP2016101A2 (en) * 2006-05-09 2009-01-21 Genentech, Inc. Binding polypeptides with optimized scaffolds
KR101454508B1 (en) 2006-05-30 2014-11-04 제넨테크, 인크. Antibodies and immunoconjugates and uses therefor
GB0611116D0 (en) 2006-06-06 2006-07-19 Oxford Genome Sciences Uk Ltd Proteins
CA2655903A1 (en) 2006-06-19 2008-08-07 Tolerx, Inc. Ilt3 binding molecules and uses therefor
US8874380B2 (en) 2010-12-09 2014-10-28 Rutgers, The State University Of New Jersey Method of overcoming therapeutic limitations of nonuniform distribution of radiopharmaceuticals and chemotherapy drugs
WO2008019061A2 (en) * 2006-08-03 2008-02-14 Vaccinex, Inc. Anti-il-6 monoclonal antibodies and uses thereof
DK2059533T3 (en) 2006-08-30 2013-02-25 Genentech Inc MULTI-SPECIFIC ANTIBODIES
WO2008030611A2 (en) 2006-09-05 2008-03-13 Medarex, Inc. Antibodies to bone morphogenic proteins and receptors therefor and methods for their use
WO2008127271A2 (en) 2006-09-08 2008-10-23 Abbott Laboratories Interleukin -13 binding proteins
JP2010503407A (en) 2006-09-12 2010-02-04 ジェネンテック・インコーポレーテッド Methods and compositions for diagnosis and treatment of cancer
US7833527B2 (en) 2006-10-02 2010-11-16 Amgen Inc. Methods of treating psoriasis using IL-17 Receptor A antibodies
KR20170123712A (en) 2006-10-02 2017-11-08 메다렉스, 엘.엘.시. Human antibodies that bind cxcr4 and uses thereof
GB0620705D0 (en) 2006-10-18 2006-11-29 Opsona Therapeutics Compounds for the modulation of toll-like receptor activity and assay methods for the identification of said compounds
WO2008052187A2 (en) 2006-10-27 2008-05-02 Genentech. Inc. Antibodies and immunoconjugates and uses therefor
US8067179B2 (en) 2006-11-30 2011-11-29 Research Development Foundation Immunoglobulin libraries
US8455626B2 (en) 2006-11-30 2013-06-04 Abbott Laboratories Aβ conformer selective anti-aβ globulomer monoclonal antibodies
BRPI0717902A2 (en) 2006-12-01 2013-10-29 Medarex Inc "HUMAN MONOCLONAL ANTIBODY ISOLATED, COMPOSITION, ASSOCIATED ANTIBODY-MOLLECLE PARTNERSHIP, IMMUNOCOUGHTED, ISOLATED NUCLEIC ACID MOLECULES, EXPRESSION VECTOR, HOSPEDIC CELL FOR PREPARING A CDT FOR THE PREPARATION OF A CD22 AND METHOD FOR TREATING INFLAMMATORY DISEASE OR SELF-IMMUNEING AN INDIVIDUAL "
CL2007003622A1 (en) 2006-12-13 2009-08-07 Medarex Inc Human anti-cd19 monoclonal antibody; composition comprising it; and tumor cell growth inhibition method.
BRPI0720271A2 (en) 2006-12-14 2014-01-28 Schering Corp DESIGNED ANTI-TSLP ANTIBODY
NZ578354A (en) 2006-12-14 2012-01-12 Medarex Inc Antibody-partner molecule conjugates that bind cd70 and uses thereof
CA2670992C (en) 2006-12-18 2017-11-21 Genentech, Inc. Antagonist anti-notch3 antibodies and their use in the prevention and treatment of notch3-related diseases
US9512236B2 (en) 2006-12-19 2016-12-06 Ablynx N.V. Amino acid sequences directed against GPCRS and polypeptides comprising the same for the treatment of GPCR-related diseases and disorders
CA2673331A1 (en) 2006-12-19 2008-06-26 Ablynx N.V. Amino acid sequences directed against gpcrs and polypeptides comprising the same for the treatment of gpcr-related diseases and disorders
AU2007336243B2 (en) 2006-12-19 2012-07-26 Ablynx N.V. Amino acid sequences directed against a metalloproteinase from the ADAM family and polypeptides comprising the same for the treatment of ADAM-related diseases and disorders
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
GEP20125693B (en) 2007-01-09 2012-11-26 Biogen Idec Inc Sp35 antibodies and usage thereof
AU2008205512B2 (en) 2007-01-16 2014-06-12 Abbvie Inc. Methods for treating psoriasis
US8664364B2 (en) 2007-01-24 2014-03-04 Carnegie Mellon University Optical biosensors
US7771947B2 (en) 2007-02-23 2010-08-10 Investigen, Inc. Methods and compositions for rapid light-activated isolation and detection of analytes
EP2064242A1 (en) 2007-02-23 2009-06-03 Schering Corporation Engineered anti-il-23p19 antibodies
PL2059534T3 (en) 2007-02-23 2012-09-28 Merck Sharp & Dohme Engineered anti-il-23p19 antibodies
EP3118221B1 (en) 2007-02-26 2019-08-21 Oxford BioTherapeutics Ltd Proteins
WO2008104803A2 (en) 2007-02-26 2008-09-04 Oxford Genome Sciences (Uk) Limited Proteins
US20100311767A1 (en) 2007-02-27 2010-12-09 Abbott Gmbh & Co. Kg Method for the treatment of amyloidoses
AU2008219684B2 (en) 2007-02-28 2014-04-17 Merck Sharp & Dohme Corp. Engineered anti-IL-23R antibodies
RU2518340C2 (en) 2007-03-30 2014-06-10 Эббви Инк Recombinant expression vector elements (reves) to enhance expression of recombinant proteins in host cells
US9969797B2 (en) * 2008-04-23 2018-05-15 Covalent Bioscience Incorporated Immunoglobulins directed to bacterial, viral and endogenous polypeptides
EP2139916A1 (en) 2007-04-26 2010-01-06 Opsona Therapeutics Limited Toll-like receptor binding epitope and compositions for binding thereto
TWI570135B (en) 2007-04-27 2017-02-11 建南德克公司 Potent, stable and non-immunosuppressive anti-cd4 antibodies
DK2155789T3 (en) 2007-05-01 2013-10-21 Res Dev Foundation Immunoglobulin Fc libraries
WO2008143666A2 (en) 2007-05-17 2008-11-27 Genentech, Inc. Crystal structures of neuropilin fragments and neuropilin-antibody complexes
EP1997830A1 (en) 2007-06-01 2008-12-03 AIMM Therapeutics B.V. RSV specific binding molecules and means for producing them
CA2683801A1 (en) * 2007-06-06 2008-12-11 Domantis Limited Polypeptides, antibody variable domains and antagonists
MX2009013137A (en) 2007-06-06 2010-04-30 Domantis Ltd Methods for selecting protease resistant polypeptides.
GB0724331D0 (en) 2007-12-13 2008-01-23 Domantis Ltd Compositions for pulmonary delivery
US8138313B2 (en) 2007-06-15 2012-03-20 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Treatment of tumors using specific anti-L1 antibody
WO2009002451A2 (en) 2007-06-22 2008-12-31 Genera, Doo Adamts4 as a blood biomarker and therapeutic target for chronis renal failure
WO2009004066A2 (en) 2007-07-03 2009-01-08 Ablynx N.V. Providing improved immunoglobulin sequences by mutating cdr and/or fr positions
CN101801413A (en) 2007-07-12 2010-08-11 托勒克斯股份有限公司 Combination therapies employing GITR binding molecules
EP2023144A1 (en) 2007-08-01 2009-02-11 Sanofi-Aventis Novel AS160-like protein, test systems, methods and uses involving it for the identification of diabetes type 2 therapeutics
AU2008285626B2 (en) 2007-08-03 2013-09-12 Neuramedy Co., Ltd. Use of TLR-2 antagonists for treatment of reperfusion injury and tissue damage
NO2195023T3 (en) * 2007-08-29 2018-08-04
MX2010002661A (en) 2007-09-14 2010-05-20 Adimab Inc Rationally designed, synthetic antibody libraries and uses therefor.
US8877688B2 (en) 2007-09-14 2014-11-04 Adimab, Llc Rationally designed, synthetic antibody libraries and uses therefor
CA2698390C (en) 2007-09-18 2018-05-22 Dako Denmark A/S A rapid and sensitive method for detection of biological targets
DK3059246T3 (en) 2007-09-26 2018-10-01 Chugai Pharmaceutical Co Ltd Modified constant region of an antibody
CN104004088B (en) 2007-09-26 2017-11-07 Ucb医药有限公司 dual specificity antibody fusions
EP2050764A1 (en) * 2007-10-15 2009-04-22 sanofi-aventis Novel polyvalent bispecific antibody format and uses thereof
EP3360567A1 (en) 2007-11-07 2018-08-15 Genentech, Inc. Amp for use in treating microbial disorders
US7892760B2 (en) 2007-11-19 2011-02-22 Celera Corporation Lung cancer markers, and uses thereof
KR20100087330A (en) 2007-11-19 2010-08-04 제넨테크, 인크. Compositions and methods for inhibiting tumor progression
KR101945394B1 (en) 2007-11-27 2019-02-07 더 유니버시티 오브 브리티쉬 콜롬비아 14-3-3 ETA antibodies and uses thereof for the diagnosis and treatment of arthritis
AU2008328781A1 (en) 2007-11-27 2009-06-04 Ablynx N.V. Amino acid sequences directed against heterodimeric cytokines and/or their receptors and polypeptides comprising the same
TWI580694B (en) 2007-11-30 2017-05-01 建南德克公司 Anti-vegf antibodies
US8426153B2 (en) 2007-12-03 2013-04-23 Carnegie Mellon University Linked peptides fluorogenic biosensors
DK2851374T3 (en) 2007-12-14 2017-06-19 Bristol Myers Squibb Co Binding molecules to the human OX40 receptor
US8557243B2 (en) 2008-01-03 2013-10-15 The Scripps Research Institute EFGR antibodies comprising modular recognition domains
SG189769A1 (en) 2008-01-03 2013-05-31 Scripps Research Inst Antibody targeting through a modular recognition domain
US8557242B2 (en) 2008-01-03 2013-10-15 The Scripps Research Institute ERBB2 antibodies comprising modular recognition domains
US8454960B2 (en) 2008-01-03 2013-06-04 The Scripps Research Institute Multispecific antibody targeting and multivalency through modular recognition domains
US8574577B2 (en) 2008-01-03 2013-11-05 The Scripps Research Institute VEGF antibodies comprising modular recognition domains
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
CN101965362A (en) 2008-03-05 2011-02-02 埃博灵克斯股份有限公司 Novel antigens is in conjunction with dimer-mixture and its production and application
EP2098536A1 (en) 2008-03-05 2009-09-09 4-Antibody AG Isolation and identification of antigen- or ligand-specific binding proteins
US9873957B2 (en) 2008-03-13 2018-01-23 Dyax Corp. Libraries of genetic packages comprising novel HC CDR3 designs
TWI461210B (en) 2008-03-18 2014-11-21 Abbvie Inc Methods for treating psoriasis
EP2105742A1 (en) 2008-03-26 2009-09-30 Sanofi-Aventis Use of cathepsin C
AU2009228158B2 (en) 2008-03-27 2014-02-27 Zymogenetics, Inc. Compositions and methods for inhibiting PDGFRbeta and VEGF-A
WO2009124090A1 (en) * 2008-03-31 2009-10-08 Genentech, Inc. Compositions and methods for treating and diagnosing asthma
JP2011516520A (en) 2008-04-07 2011-05-26 アブリンクス エン.ヴェー. Amino acid sequence having directivity in Notch pathway and use thereof
AU2008201871A1 (en) * 2008-04-16 2009-11-26 Deutsches Krebsforschungszentrum Stiftung Des Oeffentlichen Rechts Inhibition of angiogenesis and tumor metastasis
WO2009132287A2 (en) 2008-04-24 2009-10-29 Dyax Corp. Libraries of genetic packages comprising novel hc cdr1, cdr2, and cdr3 and novel lc cdr1, cdr2, and cdr3 designs
MX2010011955A (en) 2008-04-29 2011-01-21 Abbott Lab Dual variable domain immunoglobulins and uses thereof.
SG176464A1 (en) 2008-05-09 2011-12-29 Agency Science Tech & Res Diagnosis and treatment of kawasaki disease
CN104558178A (en) 2008-05-09 2015-04-29 Abbvie公司 Antibodies to receptor of advanced glycation end products (rage) and uses thereof
EP2285833B1 (en) 2008-05-16 2014-12-17 Ablynx N.V. AMINO ACID SEQUENCES DIRECTED AGAINST CXCR4 AND OTHER GPCRs AND COMPOUNDS COMPRISING THE SAME
NZ589436A (en) 2008-06-03 2012-12-21 Abbott Lab Dual variable domain immunoglobulins and uses thereof
US9035027B2 (en) 2008-06-03 2015-05-19 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
PT2285408T (en) 2008-06-05 2019-02-01 Ablynx Nv Amino acid sequences directed against envelope proteins of a virus and polypeptides comprising the same for the treatment of viral diseases
CA2728308A1 (en) 2008-06-20 2009-12-23 Wyeth Llc Compositions and methods of use of orf1358 from beta-hemolytic streptococcal strains
NZ590074A (en) 2008-07-08 2012-12-21 Abbott Lab Prostaglandin e2 dual variable domain immunoglobulins and uses thereof
EP2310049A4 (en) 2008-07-08 2013-06-26 Abbvie Inc Prostaglandin e2 binding proteins and uses thereof
JP2011527572A (en) 2008-07-09 2011-11-04 バイオジェン・アイデック・エムエイ・インコーポレイテッド Composition comprising a LINGO antibody or fragment
KR20110036638A (en) 2008-07-25 2011-04-07 리차드 더블유. 와그너 Protein screening methods
WO2010016806A1 (en) 2008-08-08 2010-02-11 Agency For Science, Technology And Research (A*Star) Vhz for diagnosis and treatment of cancers
US8795981B2 (en) 2008-08-08 2014-08-05 Molecular Devices, Llc Cell detection
MX2011001409A (en) 2008-08-14 2011-03-29 Cephalon Australia Pty Ltd Anti-il-12/il-23 antibodies.
BRPI0918648A2 (en) 2008-09-03 2019-09-03 Genentech Inc multispecific antibodies
BRPI0823049A2 (en) 2008-09-07 2015-06-16 Glyconex Inc Anti-extended type 1 glycosphingolipid antibodies, derivatives thereof and use.
US9075065B2 (en) 2008-09-12 2015-07-07 Dako Denmark A/S Prostate cancer biomarker
US8417011B2 (en) 2008-09-18 2013-04-09 Molecular Devices (New Milton) Ltd. Colony detection
US20100093563A1 (en) * 2008-09-22 2010-04-15 Robert Anthony Williamson Methods and vectors for display of molecules and displayed molecules and collections
WO2010033237A2 (en) * 2008-09-22 2010-03-25 Calmune Corporation Methods for creating diversity in libraries and libraries, display vectors and methods, and displayed molecules
WO2010034779A2 (en) 2008-09-24 2010-04-01 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Composition and method for treatment of preterm labor
LT2334705T (en) 2008-09-26 2017-03-27 Ucb Biopharma Sprl Biological products
WO2010043650A2 (en) 2008-10-14 2010-04-22 Ablynx Nv Amino acid sequences directed against cellular receptors for viruses and bacteria
CA2738243C (en) 2008-10-29 2020-09-29 Wyeth Llc Formulations of single domain antigen binding molecules
US10118962B2 (en) 2008-10-29 2018-11-06 Ablynx N.V. Methods for purification of single domain antigen binding molecules
CA2742968C (en) 2008-11-07 2020-06-09 Fabrus Llc Combinatorial antibody libraries and uses thereof
JP5823871B2 (en) 2008-12-10 2015-11-25 アブリンクス エン.ヴェー. Amino acid sequences directed against the Angiopoietin / Tie system for the treatment of diseases and disorders associated with angiogenesis and polypeptides comprising the same
EP2373689A1 (en) 2008-12-12 2011-10-12 MedImmune, LLC Crystals and structure of a human igg fc variant with enhanced fcrn binding
TW201029662A (en) 2008-12-19 2010-08-16 Glaxo Group Ltd Novel antigen binding proteins
AU2009329501B2 (en) 2008-12-19 2015-11-26 Ablynx N.V. Genetic immunization for producing immunoglobulins against cell-associated antigens such as P2X7, CXCR7 or CXCR4
WO2010078526A1 (en) 2008-12-31 2010-07-08 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
JP2012515544A (en) 2009-01-21 2012-07-12 オックスフォード ビオトヘラペウトイクス エルティーディー. PTA089 protein
US20100260752A1 (en) 2009-01-23 2010-10-14 Biosynexus Incorporated Opsonic and protective antibodies specific for lipoteichoic acid of gram positive bacteria
AU2010208637A1 (en) 2009-01-29 2011-08-04 Abbvie Inc. IL-1 binding proteins
EP2219029A1 (en) 2009-01-30 2010-08-18 Sanofi-Aventis Test systems, methods and uses involving AS160 protein
ES2712732T3 (en) 2009-02-17 2019-05-14 Cornell Res Foundation Inc Methods and kits for the diagnosis of cancer and the prediction of therapeutic value
US9671400B2 (en) 2009-02-19 2017-06-06 Dako Denmark A/S Conjugate molecules
US8030026B2 (en) 2009-02-24 2011-10-04 Abbott Laboratories Antibodies to troponin I and methods of use thereof
WO2010100437A2 (en) 2009-03-05 2010-09-10 University Of Sheffield Production of protein
SG173705A1 (en) 2009-03-05 2011-09-29 Abbott Lab Il-17 binding proteins
WO2010102175A1 (en) 2009-03-05 2010-09-10 Medarex, Inc. Fully human antibodies specific to cadm1
WO2010100135A1 (en) 2009-03-05 2010-09-10 Ablynx N.V. Novel antigen binding dimer-complexes, methods of making/avoiding and uses thereof
US8283162B2 (en) 2009-03-10 2012-10-09 Abbott Laboratories Antibodies relating to PIVKAII and uses thereof
SI3260136T1 (en) 2009-03-17 2021-05-31 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
GB0905023D0 (en) 2009-03-24 2009-05-06 Univ Erasmus Medical Ct Binding molecules
JP5616428B2 (en) 2009-04-07 2014-10-29 ロシュ グリクアート アクチェンゲゼルシャフト Trivalent bispecific antibody
CN105399828B (en) 2009-04-10 2021-01-15 埃博灵克斯股份有限公司 Improved amino acid sequences directed against IL-6R and polypeptides comprising the same for the treatment of IL-6R related diseases and disorders
AP2011005984A0 (en) 2009-04-20 2011-12-31 Oxford Biotherapeutics Ltd Antibodies specific to cadherin-17.
CA2759506A1 (en) * 2009-04-23 2010-10-28 Theraclone Sciences, Inc. Granulocyte-macrophage colony-stimulating factor (gm-csf) neutralizing antibodies
CA2759370C (en) 2009-04-30 2020-02-11 Peter Schotte Method for the production of domain antibodies
AU2010249470B2 (en) * 2009-05-20 2015-06-25 Novimmune S.A. Synthetic Polypeptide Libraries And Methods For Generating Naturally Diversified Polypeptide Variants
DK2435568T3 (en) 2009-05-29 2014-09-08 Morphosys Ag Collection of synthetic antibodies to treat disease
EP2438087B1 (en) 2009-06-05 2017-05-10 Ablynx N.V. Trivalent anti human respiratory syncytial virus (hrsv) nanobody constructs for the prevention and/or treatment of respiratory tract infections
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
JP5683581B2 (en) * 2009-06-30 2015-03-11 リサーチ ディベロップメント ファウンデーション Immunoglobulin Fc polypeptide
WO2011000054A1 (en) 2009-07-03 2011-01-06 Avipep Pty Ltd Immuno-conjugates and methods for producing them
IE20090514A1 (en) 2009-07-06 2011-02-16 Opsona Therapeutics Ltd Humanised antibodies and uses therof
US9150640B2 (en) 2009-07-10 2015-10-06 Ablynx N.V. Method for the production of variable domains
TW201106972A (en) 2009-07-27 2011-03-01 Genentech Inc Combination treatments
CA2771575A1 (en) 2009-08-29 2011-03-03 Abbott Laboratories Therapeutic dll4 binding proteins
EP2293072A1 (en) 2009-08-31 2011-03-09 Sanofi-Aventis Use of cathepsin H
JP5715137B2 (en) 2009-08-31 2015-05-07 アボット・ラボラトリーズAbbott Laboratories Biomarkers and their use for prediction of major adverse cardiac events
CA2772628A1 (en) 2009-09-01 2011-03-10 Abbott Laboratories Dual variable domain immunoglobulins and uses thereof
CA2772715C (en) 2009-09-02 2019-03-26 Genentech, Inc. Mutant smoothened and methods of using the same
EP2473528B1 (en) 2009-09-03 2014-12-03 Ablynx N.V. Stable formulations of polypeptides and uses thereof
ES2788869T3 (en) 2009-09-03 2020-10-23 Merck Sharp & Dohme Anti-GITR antibodies
EP2477654A4 (en) 2009-09-14 2013-01-23 Abbott Lab Methods for treating psoriasis
JP2013504602A (en) * 2009-09-14 2013-02-07 ダイアックス コーポレーション Newly designed gene package library containing HCCR3
SG10201408401RA (en) 2009-09-16 2015-01-29 Genentech Inc Coiled coil and/or tether containing protein complexes and uses thereof
US20110189183A1 (en) 2009-09-18 2011-08-04 Robert Anthony Williamson Antibodies against candida, collections thereof and methods of use
GB201005063D0 (en) 2010-03-25 2010-05-12 Ucb Pharma Sa Biological products
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
US8518405B2 (en) 2009-10-08 2013-08-27 The University Of North Carolina At Charlotte Tumor specific antibodies and uses therefor
TW201117824A (en) 2009-10-12 2011-06-01 Amgen Inc Use of IL-17 receptor a antigen binding proteins
EP2470569A1 (en) 2009-10-13 2012-07-04 Oxford Biotherapeutics Ltd. Antibodies against epha10
AR078651A1 (en) 2009-10-15 2011-11-23 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
WO2011046457A1 (en) 2009-10-16 2011-04-21 Auckland Uniservices Limited Anti-neoplastic uses of artemin antagonists
WO2011047680A1 (en) 2009-10-20 2011-04-28 Dako Denmark A/S Immunochemical detection of single target entities
UY32979A (en) 2009-10-28 2011-02-28 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
JO3437B1 (en) 2009-10-30 2019-10-20 Esai R & D Man Co Ltd Improved anti human Fraktalkine antibodies and uses thereof
TW201121568A (en) 2009-10-31 2011-07-01 Abbott Lab Antibodies to receptor for advanced glycation end products (RAGE) and uses thereof
EP2496605A1 (en) 2009-11-02 2012-09-12 Oxford Biotherapeutics Ltd. Ror1 as therapeutic and diagnostic target
NZ599761A (en) 2009-11-04 2014-04-30 Merck Sharp & Dohme Engineered anti-tslp antibody
JP6007420B2 (en) 2009-11-04 2016-10-12 ファブラス エルエルシー Antibody optimization method based on affinity maturation
US20110165648A1 (en) 2009-11-04 2011-07-07 Menno Van Lookeren Campagne Co-crystal structure of factor D and anti-factor D antibody
EP2496944A2 (en) 2009-11-05 2012-09-12 Novartis AG Biomarkers predictive of progression of fibrosis
WO2011058087A1 (en) 2009-11-11 2011-05-19 Gentian As Immunoassay for assessing related analytes of different origin
US9644022B2 (en) 2009-11-30 2017-05-09 Ablynx N.V. Amino acid sequences directed against human respiratory syncytial virus (HRSV) and polypeptides comprising the same for the prevention and/or treatment of respiratory tract infections
EP3135302A1 (en) 2009-12-02 2017-03-01 Imaginab, Inc. J591 minibodies and cys-diabodies for targeting human prostate specific membrane antigen (psma) and methods for their use
CN102656190A (en) 2009-12-08 2012-09-05 雅培股份有限两合公司 Monoclonal antibodies against the RGM A protein for use in the treatment of retinal nerve fiber layer degeneration
US8486397B2 (en) 2009-12-11 2013-07-16 Genentech, Inc. Anti-VEGF-C antibodies and methods using same
US8962807B2 (en) 2009-12-14 2015-02-24 Ablynx N.V. Single variable domain antibodies against OX40L, constructs and therapeutic use
PL2515941T3 (en) 2009-12-21 2020-04-30 F. Hoffmann-La Roche Ag Pharmaceutical formulation of bevacizumab
AU2010336485B2 (en) 2009-12-23 2015-03-26 Genentech, Inc. Anti-Bv8 antibodies and uses thereof
WO2011075786A1 (en) 2009-12-23 2011-06-30 Avipep Pty Ltd Immuno-conjugates and methods for producing them 2
WO2011083141A2 (en) 2010-01-08 2011-07-14 Ablynx Nv Method for generation of immunoglobulin sequences by using lipoprotein particles
TWI513466B (en) 2010-01-20 2015-12-21 Boehringer Ingelheim Int Anticoagulant antidotes
EP2528947A4 (en) 2010-01-28 2013-09-18 Glaxo Group Ltd Cd127 binding proteins
EP2354159A1 (en) 2010-02-05 2011-08-10 RWTH Aachen CCL17 inhibitors for use in T helper cell-driven diseases
AU2011214465A1 (en) 2010-02-10 2012-08-30 Novartis Ag Methods and compounds for muscle growth
US9120855B2 (en) 2010-02-10 2015-09-01 Novartis Ag Biologic compounds directed against death receptor 5
CN102753148B (en) 2010-02-11 2018-01-26 埃博灵克斯股份有限公司 For preparing the method and composition of aerosol
ES2519348T3 (en) 2010-02-18 2014-11-06 Genentech, Inc. Neurregulin antagonists and their use in cancer treatment
PE20130580A1 (en) 2010-03-02 2013-06-02 Abbvie Inc THERAPEUTIC BINDING PROTEINS TO DLL4
UA108227C2 (en) 2010-03-03 2015-04-10 ANTIGENCY PROTEIN
GB201003701D0 (en) 2010-03-05 2010-04-21 Cilian Ag System for the expression of a protein
SG10201504808XA (en) 2010-03-17 2015-07-30 Abbott Res Bv Anti-Nerve Growth Factor (NGF) Antibody Compositions
BR112012022044A2 (en) 2010-03-24 2020-08-25 Genentech Inc ''antibody, immunoconjugate, pharmaceutical formulation, antibody use, treatment method, isolated bispecific antibody and host cell''.
US8937164B2 (en) 2010-03-26 2015-01-20 Ablynx N.V. Biological materials related to CXCR7
TW201138821A (en) 2010-03-26 2011-11-16 Roche Glycart Ag Bispecific antibodies
MX336196B (en) 2010-04-15 2016-01-11 Abbvie Inc Amyloid-beta binding proteins.
SG185415A1 (en) 2010-05-06 2012-12-28 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (lrp6) multivalent antibodies
PE20130207A1 (en) 2010-05-06 2013-02-28 Novartis Ag ANTIBODIES ANTAGONISTS TO LRP6 (LOW DENSITY LIPOPROTEIN-RELATED PROTEIN 6) AND COMPOSITIONS
AU2011252883B2 (en) 2010-05-14 2015-09-10 Abbvie Inc. IL-1 binding proteins
WO2011144749A1 (en) 2010-05-20 2011-11-24 Ablynx Nv Biological materials related to her3
EP2577309B1 (en) 2010-05-25 2016-11-23 Carnegie Mellon University Targeted probes of cellular physiology
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
AR081556A1 (en) 2010-06-03 2012-10-03 Glaxo Group Ltd HUMANIZED ANTIGEN UNION PROTEINS
NZ602840A (en) 2010-06-03 2014-11-28 Genentech Inc Immuno-pet imaging of antibodies and immunoconjugates and uses therefor
WO2011161545A2 (en) 2010-06-04 2011-12-29 The Netherlands Cancer Institute Non-hydrolyzable protein conjugates, methods and compositions related thereto
WO2011158019A1 (en) 2010-06-16 2011-12-22 Adjuvantix Limited Polypeptide vaccine
CN103080136B (en) 2010-06-18 2015-08-12 霍夫曼-拉罗奇有限公司 Anti-Axl antibody and using method
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
WO2011161263A1 (en) 2010-06-25 2011-12-29 Ablynx Nv Pharmaceutical compositions for cutaneous administration
US20120009196A1 (en) 2010-07-08 2012-01-12 Abbott Laboratories Monoclonal antibodies against hepatitis c virus core protein
NZ605400A (en) 2010-07-09 2015-05-29 Biogen Idec Hemophilia Inc Chimeric clotting factors
UY33492A (en) 2010-07-09 2012-01-31 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
BR112013000340A2 (en) 2010-07-09 2016-05-31 Genentech Inc isolated antibody that binds neuropillin-1 (nrp1), isolated nucleic acid, host cell, method of producing an antibody, immunoconjugate and method of detecting nrp1 in a biological sample
US20120100166A1 (en) 2010-07-15 2012-04-26 Zyngenia, Inc. Ang-2 Binding Complexes and Uses Thereof
CA3086837C (en) 2010-07-16 2023-03-07 Adimab, Llc Libraries comprising segmental pools, and methods for their preparation and use
AU2011282476B2 (en) 2010-07-20 2015-08-20 Cephalon Australia Pty Ltd Anti-IL-23 heterodimer specific antibodies
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
US9120862B2 (en) 2010-07-26 2015-09-01 Abbott Laboratories Antibodies relating to PIVKA-II and uses thereof
AU2011285852B2 (en) 2010-08-03 2014-12-11 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
EP2600895A1 (en) 2010-08-03 2013-06-12 Hoffmann-La Roche AG Chronic lymphocytic leukemia (cll) biomarkers
RU2013106217A (en) 2010-08-05 2014-09-10 Ф. Хоффманн-Ля Рош Аг HYBRID PROTEIN FROM ANTIBODIES AGAINST MHC AND ANTIVIRAL CYTOKINE
EP2603526A1 (en) 2010-08-13 2013-06-19 Medimmune Limited Monomeric polypeptides comprising variant fc regions and methods of use
EA037977B1 (en) 2010-08-13 2021-06-18 Роше Гликарт Аг Anti-fap antibodies, methods of production and use thereof
WO2012020038A1 (en) 2010-08-13 2012-02-16 Roche Glycart Ag Anti-tenascin-c a2 antibodies and methods of use
WO2012024187A1 (en) 2010-08-14 2012-02-23 Abbott Laboratories Amyloid-beta binding proteins
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
HUE058226T2 (en) 2010-08-19 2022-07-28 Zoetis Belgium S A Anti-ngf antibodies and their use
MY162825A (en) 2010-08-20 2017-07-31 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3)
WO2012025530A1 (en) 2010-08-24 2012-03-01 F. Hoffmann-La Roche Ag Bispecific antibodies comprising a disulfide stabilized - fv fragment
TW201215405A (en) 2010-08-25 2012-04-16 Hoffmann La Roche Antibodies against IL-18R1 and uses thereof
KR20130139884A (en) 2010-08-26 2013-12-23 애브비 인코포레이티드 Dual variable domain immunoglobulins and uses thereof
ES2920140T3 (en) 2010-08-31 2022-08-01 Theraclone Sciences Inc Human immunodeficiency virus (HIV) neutralizing antibodies
RU2013114360A (en) 2010-08-31 2014-10-10 Дженентек, Инк. BIOMARKERS AND TREATMENT METHODS
KR20130096731A (en) 2010-09-08 2013-08-30 할로자임, 아이엔씨 Methods for assessing and identifying or evolving conditionally active therapeutic proteins
KR101527297B1 (en) 2010-09-09 2015-06-26 화이자 인코포레이티드 4-1bb binding molecules
WO2012038744A2 (en) 2010-09-22 2012-03-29 Genome Research Limited Detecting mutations
GB201016494D0 (en) 2010-09-30 2010-11-17 Queen Mary Innovation Ltd Polypeptide
US8497138B2 (en) 2010-09-30 2013-07-30 Genetix Limited Method for cell selection
US8481680B2 (en) 2010-10-05 2013-07-09 Genentech, Inc. Mutant smoothened and methods of using the same
ES2660895T3 (en) 2010-10-29 2018-03-26 Ablynx N.V. Method for the production of individual variable domains of immunoglobulin
MX352929B (en) 2010-11-05 2017-12-13 Zymeworks Inc Stable heterodimeric antibody design with mutations in the fc domain.
CN103201627B (en) 2010-11-08 2016-10-12 丹麦达科有限公司 In histological sample, single target molecules is quantitative
TWI619730B (en) 2010-11-08 2018-04-01 諾華公司 Chemokine receptor binding polypeptides
TW201300417A (en) 2010-11-10 2013-01-01 Genentech Inc Methods and compositions for neural disease immunotherapy
JP6253986B2 (en) 2010-11-19 2017-12-27 モルフォシス・アーゲー Collection and its usage
CA2817161C (en) 2010-12-06 2019-04-02 Dako Denmark A/S Combined histological stain
BR122020012255B1 (en) 2010-12-16 2022-08-09 Genentech, Inc USE OF AN ANTI-IL-13 ANTIBODY, USES OF A TH2 PATHWAY INHIBITOR AND ANTI-PERIOSTIN ANTIBODIES
TW201238974A (en) 2010-12-17 2012-10-01 Sanofi Sa MiRNAs in joint disease
TW201241179A (en) 2010-12-17 2012-10-16 Sanofi Sa MiRNAs in joint disease
TW201239097A (en) 2010-12-17 2012-10-01 Sanofi Sa MiRNAs in joint disease
UY33807A (en) 2010-12-17 2012-07-31 Sanofi Sa miRNAs as indicators of tissue status or of diseases such as osteoarthritis
AU2011349443B2 (en) 2010-12-20 2015-12-24 Genentech, Inc. Anti-mesothelin antibodies and immunoconjugates
EP2655607A4 (en) 2010-12-21 2014-05-14 Univ North Carolina Methods and compositions for producing active vitamin k-dependent proteins
TW201307388A (en) 2010-12-21 2013-02-16 Abbott Lab IL-1 binding proteins
RU2627171C2 (en) 2010-12-21 2017-08-03 Эббви Инк. Il-1 alpha and beta bispecific immunoglobulins with double variable domains and their application
KR20130118925A (en) 2010-12-22 2013-10-30 제넨테크, 인크. Anti-pcsk9 antibodies and methods of use
CN103384831B (en) 2010-12-23 2016-02-10 霍夫曼-拉罗奇有限公司 Polypeptide dimer is detected by bivalent binders
ES2605493T3 (en) 2010-12-23 2017-03-14 F. Hoffmann-La Roche Ag Detection of a post-translationally modified polypeptide by a bivalent binding agent
WO2012085111A1 (en) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
CA2817448C (en) 2010-12-23 2019-01-22 F. Hoffmann-La Roche Ag Binding agent
US20140038842A1 (en) 2010-12-28 2014-02-06 Xoma Technology Cell surface display using pdz domains
EP2471554A1 (en) 2010-12-28 2012-07-04 Hexal AG Pharmaceutical formulation comprising a biopharmaceutical drug
WO2012109133A1 (en) 2011-02-07 2012-08-16 Research Development Foundation Engineered immunoglobulin fc polypeptides
AU2012215572A1 (en) 2011-02-10 2013-05-02 Roche Glycart Ag Improved immunotherapy
WO2012109624A2 (en) 2011-02-11 2012-08-16 Zyngenia, Inc. Monovalent and multivalent multispecific complexes and uses thereof
AR085403A1 (en) 2011-02-28 2013-09-25 Hoffmann La Roche MONOVALENT PROTEINS THAT JOIN ANTIGENS
RU2607038C2 (en) 2011-02-28 2017-01-10 Ф. Хоффманн-Ля Рош Аг Antigen-binding proteins
EP2686016B1 (en) 2011-03-14 2019-05-01 Cellmid Limited Antibody recognizing n-domain of midkine
AR085911A1 (en) 2011-03-16 2013-11-06 Sanofi Sa SAFE THERAPEUTIC DOSE OF A SIMILAR PROTEIN TO AN ANTIBODY WITH VUAL REGION
AU2012234284B2 (en) 2011-03-28 2015-10-08 Ablynx Nv Bispecific anti-CXCR7 immunoglobulin single variable domains
ES2688591T3 (en) 2011-03-28 2018-11-05 Ablynx N.V. Method for producing solid formulations comprising individual variable domains of immunoglobulin
MY163539A (en) 2011-03-29 2017-09-15 Roche Glycart Ag Antibody fc variants
MA34978B1 (en) 2011-03-30 2014-03-01 Boehringer Ingelheim Int ANTIDOTES FOR ANTICOAGULANTS
MX342240B (en) 2011-04-07 2016-09-21 Genentech Inc Anti-fgfr4 antibodies and methods of use.
EP2511293A1 (en) 2011-04-13 2012-10-17 LEK Pharmaceuticals d.d. A method for controlling the main complex N-glycan structures and the acidic variants and variability in bioprocesses producing recombinant proteins
CA2832907C (en) 2011-04-19 2020-07-14 Dako Denmark A/S New method for enzyme-mediated signal amplification
KR20140031217A (en) 2011-04-20 2014-03-12 로슈 글리카트 아게 Method and constructs for the ph dependent passage of the blood-brain-barrier
AU2012245073B2 (en) 2011-04-21 2016-02-11 Garvan Institute Of Medical Research Modified variable domain molecules and methods for producing and using them b
EP2518157A1 (en) 2011-04-26 2012-10-31 Sanofi Test Systems and methods for identifying a compound altering cellular DDR activity
WO2012149197A2 (en) 2011-04-27 2012-11-01 Abbott Laboratories Methods for controlling the galactosylation profile of recombinantly-expressed proteins
EA201892619A1 (en) 2011-04-29 2019-04-30 Роше Гликарт Аг IMMUNOCONJUGATES CONTAINING INTERLEUKIN-2 MUTANT POLYPETIPS
UA117218C2 (en) 2011-05-05 2018-07-10 Мерк Патент Гмбх Amino acid sequences directed against il-17a, il-17f and/or il17-a/f and polypeptides comprising the same
BR112013028655B1 (en) 2011-05-06 2022-08-16 Zoetis Services Llc ANTI-NEURONAL GROWTH FACTOR ANTIBODIES, PHARMACEUTICAL COMPOSITION COMPRISING THEM AND KIT FOR THE TREATMENT OF FELINE PAIN
CA2835094C (en) 2011-05-06 2020-12-22 David Gearing Anti-nerve growth factor antibodies and methods of preparing and using the same
PL3498732T3 (en) 2011-05-06 2022-02-28 Zoetis Services Llc Anti-nerve growth factor antibodies and methods of preparing and using the same
ES2704007T3 (en) 2011-05-06 2019-03-13 Nexvet Australia Pty Ltd Anti-nerve growth factor antibodies and procedures for preparing and using them
GB201114858D0 (en) 2011-08-29 2011-10-12 Nvip Pty Ltd Anti-nerve growth factor antibodies and methods of using the same
US9534039B2 (en) 2011-05-09 2017-01-03 Ablynx N.V. Method for the production of immunoglobulin single variable domains
WO2012155019A1 (en) 2011-05-12 2012-11-15 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature pepides
SG194917A1 (en) 2011-05-16 2013-12-30 Genentech Inc Fgfr1 agonists and methods of use
CN106432484B (en) 2011-05-17 2020-10-30 洛克菲勒大学 Neutralizing antibodies to human immunodeficiency virus and methods of use thereof
EP2714738B1 (en) 2011-05-24 2018-10-10 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
EP2714736A1 (en) 2011-05-27 2014-04-09 Ablynx N.V. Inhibition of bone resorption with rankl binding peptides
US9580480B2 (en) 2011-05-31 2017-02-28 Massachusetts Institute Of Technology Cell-directed synthesis of multifunctional nanopatterns and nanomaterials
HUE038509T2 (en) 2011-06-10 2018-10-29 Medimmune Ltd Anti-pseudomonas psl binding molecules and uses thereof
MX343580B (en) 2011-06-13 2016-11-10 Csl Ltd Antibodies against g-csfr and uses thereof.
US8623666B2 (en) 2011-06-15 2014-01-07 Hoffmann-La Roche Inc. Method for detecting erythropoietin (EPO) receptor using anti-human EPO receptor antibodies
EP2537532A1 (en) 2011-06-22 2012-12-26 J. Stefan Institute Cathepsin-binding compounds bound to a nanodevice and their diagnostic and therapeutic use
SI2723769T2 (en) 2011-06-23 2022-09-30 Ablynx Nv Techniques for predicting, detecting and reducing aspecific protein interference in assays involving immunoglobulin single variable domains
EP2723772A1 (en) 2011-06-23 2014-04-30 Ablynx N.V. Immunoglobulin single variable domains directed against ige
KR20240033183A (en) 2011-06-23 2024-03-12 아블린쓰 엔.브이. Techniques for predicting, detecting and reducing aspecific protein interference in assays involving immunoglobulin single variable domains
EP4350345A2 (en) 2011-06-23 2024-04-10 Ablynx N.V. Techniques for predicting, detecting and reducing aspecific protein interference in assays involving immunoglobin single variable domains
EA031181B1 (en) 2011-06-28 2018-11-30 Оксфорд Байотерепьютикс Лтд. Antibody or an antigen binding fragment thereof that specifically binds to bst1, nucleic acids encoding chains thereof, host cell and method provided for making this antibody and use thereof for treating cancer and inflammatory diseases
LT2726094T (en) 2011-06-28 2017-02-10 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
BR112013030472A2 (en) 2011-06-30 2019-09-24 Genentech Inc pharmaceutical formulation, article of manufacture and method
WO2013009521A2 (en) 2011-07-13 2013-01-17 Abbvie Inc. Methods and compositions for treating asthma using anti-il-13 antibodies
WO2013012733A1 (en) 2011-07-15 2013-01-24 Biogen Idec Ma Inc. Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto
US20140234330A1 (en) 2011-07-22 2014-08-21 Amgen Inc. Il-17 receptor a is required for il-17c biology
KR20140057326A (en) 2011-08-17 2014-05-12 제넨테크, 인크. Neuregulin antibodies and uses thereof
WO2013026832A1 (en) 2011-08-23 2013-02-28 Roche Glycart Ag Anti-mcsp antibodies
SI2748202T1 (en) 2011-08-23 2018-10-30 Roche Glycart Ag Bispecific antigen binding molecules
US20130058936A1 (en) 2011-08-23 2013-03-07 Peter Bruenker Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use
US20130078250A1 (en) 2011-08-23 2013-03-28 Oliver Ast Bispecific t cell activating antigen binding molecules
MY169358A (en) 2011-08-23 2019-03-26 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
SG11201400222RA (en) 2011-08-30 2014-03-28 Nvip Pty Ltd Caninised tumour necrosis factor antibodies and methods of using the same
WO2013033069A1 (en) 2011-08-30 2013-03-07 Theraclone Sciences, Inc. Human rhinovirus (hrv) antibodies
JP6216317B2 (en) 2011-09-09 2017-10-18 メディミューン リミテッド Anti-Siglec-15 antibody and use thereof
GB2511928B (en) 2011-09-14 2015-04-08 Abeterno Ltd Intracellular cell selection
WO2013040433A1 (en) 2011-09-15 2013-03-21 Genentech, Inc. Methods of promoting differentiation
KR20210099167A (en) 2011-09-19 2021-08-11 악손 뉴로사이언스 에스이 Protein-based therapy and diagnosis of tau-mediated pathology in alzheimer's disease
AU2012312515A1 (en) 2011-09-19 2014-03-13 Genentech, Inc. Combination treatments comprising c-met antagonists and B-raf antagonists
GB201116116D0 (en) 2011-09-19 2011-11-02 Univ York Cell differentiation
ES2806146T3 (en) 2011-09-22 2021-02-16 Amgen Inc CD27L antigen-binding proteins
US10138302B2 (en) 2011-09-23 2018-11-27 Ablynx N.V. Methods for treating rheumatoid arthritis by administering interleukin-6 receptor antibodies
GB201116702D0 (en) 2011-09-28 2011-11-09 Procure Therapeutics Ltd Cell surface markers
EP3495389A1 (en) 2011-09-30 2019-06-12 Teva Pharmaceuticals Australia Pty Ltd Antibodies against tl1a and uses thereof
US20130089562A1 (en) 2011-10-05 2013-04-11 Genenthech, Inc. Methods of treating liver conditions using notch2 antagonists
US9575073B2 (en) 2011-10-10 2017-02-21 Rutgers, The State University Of New Jersey Detection of high-risk intraductal papillary mucinous neoplasm and pancreatic adenocarcinoma
ES2687951T3 (en) 2011-10-14 2018-10-30 F. Hoffmann-La Roche Ag Anti-HtrA1 antibodies and procedures for use
MX2014004426A (en) 2011-10-15 2014-07-09 Genentech Inc Scd1 antagonists for treating cancer.
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
RS20140202A1 (en) 2011-10-24 2014-10-31 Abbvie Inc. Biospecific immunibinders directed against tnf and il-17
US8999331B2 (en) 2011-10-24 2015-04-07 Abbvie Inc. Immunobinders directed against sclerostin
CN104093739A (en) 2011-10-24 2014-10-08 艾伯维公司 Immunobinders directed against TNF
GB201118359D0 (en) 2011-10-25 2011-12-07 Univ Sheffield Pulmonary hypertension
NZ756727A (en) 2011-10-28 2022-12-23 Teva Pharmaceuticals Australia Pty Ltd Polypeptide constructs and uses thereof
MX2014004991A (en) 2011-10-28 2014-05-22 Genentech Inc Therapeutic combinations and methods of treating melanoma.
US9265817B2 (en) 2011-10-28 2016-02-23 Patrys Limited PAT-LM1 epitopes and methods for using same
GB201118840D0 (en) 2011-11-01 2011-12-14 Univ Sheffield Pulmonary hypertension II
AU2012332263A1 (en) 2011-11-04 2014-05-22 Novartis Ag Low density lipoprotein-related protein 6 (LRP6) - half life extender constructs
RU2675319C2 (en) 2011-11-04 2018-12-18 Займворкс Инк. STABLE HETERODIMERIC ANTIBODY DESIGN WITH MUTATIONS IN Fc DOMAIN
HUE037142T2 (en) 2011-11-11 2018-08-28 Ucb Biopharma Sprl Albumin binding antibodies and binding fragments thereof
WO2013078170A1 (en) 2011-11-21 2013-05-30 Genentech, Inc. Purification of anti-c-met antibodies
BR112014012882A2 (en) 2011-11-29 2017-06-13 Genentech Inc method, antibody, polynucleotide, host cell, hybridoma cell line, antibody use and kit
AU2012346861A1 (en) 2011-11-30 2014-06-19 AbbVie Deutschland GmbH & Co. KG Methods and compositions for determining responsiveness to treatment with a tnf-alpha inhibitor
BR112014013568A8 (en) 2011-12-05 2017-06-13 Novartis Ag epidermal growth factor 3 (her3) receptor antibodies directed to her3 domain ii
AU2012349735B2 (en) 2011-12-05 2016-05-19 Novartis Ag Antibodies for epidermal growth factor receptor 3 (HER3)
US20140335084A1 (en) 2011-12-06 2014-11-13 Hoffmann-La Roche Inc. Antibody formulation
RU2628703C2 (en) 2011-12-22 2017-08-21 Ф. Хоффманн-Ля Рош Аг Expression vector structure, new methods for obtaining producer cells and their application for recombinant obtaining of polypeptides
EP2794651B1 (en) 2011-12-22 2022-09-21 F. Hoffmann-La Roche AG Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides
WO2013096791A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Process for making high concentration protein formulations
TW201333035A (en) 2011-12-30 2013-08-16 Abbvie Inc Dual specific binding proteins directed against IL-13 and/or IL-17
JP6684490B2 (en) 2012-01-09 2020-04-22 ザ・スクリップス・リサーチ・インスティテュート Ultralong complementarity determining regions and uses thereof
US20150011431A1 (en) 2012-01-09 2015-01-08 The Scripps Research Institute Humanized antibodies
SI2802606T1 (en) 2012-01-10 2018-08-31 Biogen Ma Inc. Enhancement of transport of therapeutic molecules across the blood brain barrier
SG11201404198TA (en) 2012-01-18 2014-08-28 Genentech Inc Anti-lrp5 antibodies and methods of use
KR20140119114A (en) 2012-01-18 2014-10-08 제넨테크, 인크. Methods of using fgf19 modulators
SG10202006762PA (en) 2012-01-27 2020-08-28 Abbvie Deutschland Composition and method for diagnosis and treatment of diseases associated with neurite degeneration
WO2013113641A1 (en) 2012-01-31 2013-08-08 Roche Glycart Ag Use of nkp46 as a predictive biomarker for cancer treatment with adcc- enhanced antibodies
CA2861124A1 (en) 2012-02-10 2013-08-15 Genentech, Inc. Single-chain antibodies and other heteromultimers
US20130209473A1 (en) 2012-02-11 2013-08-15 Genentech, Inc. R-spondin translocations and methods using the same
BR112014018005B1 (en) 2012-02-15 2021-06-29 F. Hoffmann-La Roche Ag USE OF A NON-COVALENT IMMOBILIZED COMPLEX
GB201203071D0 (en) 2012-02-22 2012-04-04 Ucb Pharma Sa Biological products
GB201203587D0 (en) 2012-03-01 2012-04-11 Univ Warwick Modified bacterial cell
RU2014138586A (en) 2012-03-02 2016-04-20 Рош Гликарт Аг PROGNOSTIC BIOMARKER FOR TREATING CANCER WITH ANTIBODIES WITH AN INCREASED ANTIBODY-DEPENDENT CELL CYTOTOXICITY
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
SG11201406079TA (en) 2012-03-27 2014-10-30 Genentech Inc Diagnosis and treatments relating to her3 inhibitors
AU2013240090B2 (en) 2012-03-27 2017-01-05 Ventana Medical Systems, Inc. Signaling conjugates and methods of use
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc ANTI-LGR5 AND IMMUNOCATE PLAYERS
US9150645B2 (en) 2012-04-20 2015-10-06 Abbvie, Inc. Cell culture methods to reduce acidic species
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9181572B2 (en) 2012-04-20 2015-11-10 Abbvie, Inc. Methods to modulate lysine variant distribution
KR20150006000A (en) 2012-05-01 2015-01-15 제넨테크, 인크. Anti-pmel17 antibodies and immunoconjugates
US9328174B2 (en) 2012-05-09 2016-05-03 Novartis Ag Chemokine receptor binding polypeptides
AU2013258834B2 (en) 2012-05-10 2017-09-07 Zymeworks Bc Inc. Heteromultimer constructs of immunoglobulin heavy chains with mutations in the Fc domain
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
JP2015518829A (en) 2012-05-14 2015-07-06 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. LINGO-2 antagonist for treatment of conditions involving motor neurons
UY34813A (en) 2012-05-18 2013-11-29 Amgen Inc ANTIGEN UNION PROTEINS DIRECTED AGAINST ST2 RECEIVER
EP2666786A1 (en) 2012-05-21 2013-11-27 PAION Deutschland GmbH Immunotherapy for intracranial hemorrhage
MX2014014086A (en) 2012-05-23 2015-01-26 Genentech Inc Selection method for therapeutic agents.
US9249182B2 (en) 2012-05-24 2016-02-02 Abbvie, Inc. Purification of antibodies using hydrophobic interaction chromatography
BR112014029274B1 (en) 2012-05-24 2022-02-15 Mountgate Innotech (Hk) Limited ISOLATED ANTIBODY, PHARMACEUTICAL COMPOSITION, ANTIBODY USE, AND, KIT TO TREAT RABIC INFECTION
CA2875096A1 (en) 2012-06-15 2013-12-19 Genentech, Inc. Anti-pcsk9 antibodies, formulations, dosing, and methods of use
US9499634B2 (en) 2012-06-25 2016-11-22 Zymeworks Inc. Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells
RU2015100656A (en) 2012-06-27 2016-08-20 Ф. Хоффманн-Ля Рош Аг METHOD FOR PRODUCING ANTIBODY FC-FRAGMENT CONNECTING, INCLUDING AT LEAST ONE CONNECTING GROUP, WHICH SPECIALLY RELATED TO THE TARGET, AND THEIR APPLICATION
CN104395339A (en) 2012-06-27 2015-03-04 弗·哈夫曼-拉罗切有限公司 Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
RU2644263C2 (en) 2012-06-27 2018-02-08 Ф. Хоффманн-Ля Рош Аг Method for selection and production of selective and multispecific therapeutic molecules with specified properties, including, at least two, different target groups, and their applications
EP3138578B1 (en) 2012-07-04 2022-01-12 F. Hoffmann-La Roche AG Anti-theophylline antibodies and methods of use
RU2630296C2 (en) 2012-07-04 2017-09-06 Ф. Хоффманн-Ля Рош Аг Antibodies to biotin and application methods
CN104428006B (en) 2012-07-04 2017-09-08 弗·哈夫曼-拉罗切有限公司 The antigen-antibody conjugate of covalent attachment
CN104428416B (en) 2012-07-05 2019-01-29 弗·哈夫曼-拉罗切有限公司 Expression and excretory system
BR112015000439A2 (en) 2012-07-09 2017-12-19 Genentech Inc immunoconjugate, pharmaceutical formulation and methods of treating an individual and inhibiting proliferation
WO2014011521A1 (en) 2012-07-09 2014-01-16 Genentech, Inc. Immunoconjugates comprising anti - cd79b antibodies
JP2015527318A (en) 2012-07-09 2015-09-17 ジェネンテック, インコーポレイテッド Immune complex comprising anti-CD22
AU2013288930A1 (en) 2012-07-09 2014-12-04 Genentech, Inc. Immunoconjugates comprising anti-CD79b antibodies
AR091755A1 (en) 2012-07-12 2015-02-25 Abbvie Inc PROTEINS OF UNION TO IL-1
CA2874554C (en) 2012-07-13 2019-12-03 Roche Glycart Ag Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
CN112587671A (en) 2012-07-18 2021-04-02 博笛生物科技有限公司 Targeted immunotherapy for cancer
GB201213652D0 (en) 2012-08-01 2012-09-12 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
SG10201800535XA (en) 2012-08-07 2018-02-27 Roche Glycart Ag Composition comprising two antibodies engineered to have reduced and increased effector function
PE20150645A1 (en) 2012-08-08 2015-05-11 Roche Glycart Ag INTERLEUQUIN 10 FUSION PROTEINS AND USES OF THEM
US9771427B2 (en) 2012-08-09 2017-09-26 Roche Glycart Ag ASGPR antibodies and uses thereof
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
CA2883272A1 (en) 2012-09-02 2014-03-06 Abbvie Inc. Methods to control protein heterogeneity
JP6444874B2 (en) 2012-10-08 2018-12-26 ロシュ グリクアート アーゲー Fc-free antibody comprising two Fab fragments and methods of use
AU2013331049B2 (en) 2012-10-18 2018-11-15 California Institute Of Technology Broadly-neutralizing anti-HIV antibodies
WO2014063194A1 (en) 2012-10-23 2014-05-01 The University Of Sydney Elastic hydrogel
KR20180008921A (en) 2012-11-01 2018-01-24 애브비 인코포레이티드 Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof
EP2914621B1 (en) 2012-11-05 2023-06-07 Foundation Medicine, Inc. Novel ntrk1 fusion molecules and uses thereof
JP6302476B2 (en) 2012-11-08 2018-03-28 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト HER3 antigen binding protein that binds to the HER3 beta hairpin
EP3461501A1 (en) 2012-11-13 2019-04-03 F. Hoffmann-La Roche AG Anti-hemagglutinin antibodies and methods of use
US9914785B2 (en) 2012-11-28 2018-03-13 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
TW201425336A (en) 2012-12-07 2014-07-01 Amgen Inc BCMA antigen binding proteins
ES2702602T3 (en) 2012-12-10 2019-03-04 Allergan Pharmaceuticals Int Ltd Manufacture of scalable three-dimensional elastic constructions
US9550986B2 (en) 2012-12-21 2017-01-24 Abbvie Inc. High-throughput antibody humanization
JP2016510319A (en) 2012-12-28 2016-04-07 アッヴィ・インコーポレイテッド Multivalent binding protein composition
CA3150658A1 (en) 2013-01-18 2014-07-24 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014116596A1 (en) 2013-01-22 2014-07-31 Abbvie, Inc. Methods for optimizing domain stability of binding proteins
US20140242077A1 (en) 2013-01-23 2014-08-28 Abbvie, Inc. Methods and compositions for modulating an immune response
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
WO2014114595A1 (en) 2013-01-23 2014-07-31 Roche Glycart Ag Predictive biomarker for cancer treatment with adcc-enhanced antibodies
US9920121B2 (en) 2013-01-25 2018-03-20 Amgen Inc. Antibodies targeting CDH19 for melanoma
DK2951208T3 (en) 2013-02-01 2020-01-13 Kira Biotech Pty Ltd ANTI-CD83 ANTIBODIES AND USE THEREOF
PL2953971T3 (en) 2013-02-07 2023-07-03 Csl Limited Il-11r binding proteins and uses thereof
US20140228875A1 (en) 2013-02-08 2014-08-14 Nidus Medical, Llc Surgical device with integrated visualization and cauterization
GB201302447D0 (en) 2013-02-12 2013-03-27 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
MX2015010791A (en) 2013-02-22 2015-11-26 Hoffmann La Roche Methods of treating cancer and preventing drug resistance.
EP2961773B1 (en) 2013-02-26 2019-03-20 Roche Glycart AG Bispecific t cell activating antigen binding molecules
KR20150123811A (en) 2013-02-26 2015-11-04 로슈 글리카트 아게 Anti-mcsp antibodies
HUE047925T2 (en) 2013-02-26 2020-05-28 Roche Glycart Ag Bispecific t cell activating antigen binding molecules specific to cd3 and cea
WO2014131711A1 (en) 2013-02-26 2014-09-04 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
JP6416793B2 (en) 2013-02-28 2018-10-31 カプリオン プロテオミクス インコーポレーテッド Tuberculosis biomarkers and uses thereof
WO2014138364A2 (en) 2013-03-06 2014-09-12 Genentech, Inc. Methods of treating and preventing cancer drug resistance
SG11201507230PA (en) 2013-03-12 2015-10-29 Abbvie Inc Human antibodies that bind human tnf-alpha and methods of preparing the same
AR095399A1 (en) 2013-03-13 2015-10-14 Genentech Inc FORMULATIONS WITH REDUCED OXIDATION, METHOD
AR095398A1 (en) 2013-03-13 2015-10-14 Genentech Inc FORMULATIONS WITH REDUCED OXIDATION
RU2019137020A (en) 2013-03-13 2021-01-14 Дженентек, Инк. REDUCED OXIDATION COMPOSITIONS
SG10201913932VA (en) 2013-03-13 2020-03-30 Genentech Inc Antibody formulations
CA2901312C (en) 2013-03-13 2022-09-06 Seattle Genetics, Inc. Activated carbon filtration for purification of benzodiazepine adcs
ES2688895T3 (en) 2013-03-13 2018-11-07 F. Hoffmann-La Roche Ag Formulations with reduced oxidation
CN105228649B (en) 2013-03-14 2019-01-18 雅培制药有限公司 HCV Ag-Ab combination measurement is with method and used in composition therein
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
EP3299391B1 (en) 2013-03-14 2019-12-04 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
US9790478B2 (en) 2013-03-14 2017-10-17 Abbott Laboratories HCV NS3 recombinant antigens and mutants thereof for improved antibody detection
BR112015022576A2 (en) 2013-03-14 2017-10-24 Genentech Inc pharmaceutical product and its use, kit and method for treating hyperproliferative dysfunction
US8921526B2 (en) 2013-03-14 2014-12-30 Abbvie, Inc. Mutated anti-TNFα antibodies and methods of their use
JP2016514130A (en) 2013-03-14 2016-05-19 ノバルティス アーゲー Antibody against Notch3
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
CN113549148A (en) 2013-03-14 2021-10-26 雅培制药有限公司 HCV core lipid binding domain monoclonal antibodies
JP2016516046A (en) 2013-03-14 2016-06-02 ジェネンテック, インコーポレイテッド Methods for treating cancer and methods for preventing cancer drug resistance
US9499614B2 (en) 2013-03-14 2016-11-22 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides
AR095517A1 (en) 2013-03-15 2015-10-21 Genentech Inc ANTIBODIES AGAINST THE CHEMIOATRAYENT RECEIVER EXPRESSED IN T HELPER 2 CELLS (ANTI-CRTh2) AND METHODS OF USE
WO2014151866A1 (en) 2013-03-15 2014-09-25 Genentech, Inc. Compositions and methods for diagnosis and treatment of hepatic cancers
US11634502B2 (en) 2013-03-15 2023-04-25 Amgen Inc. Heterodimeric bispecific antibodies
BR112015023120A2 (en) 2013-03-15 2017-11-21 Genentech Inc method for identifying an individual with a disease or dysfunction, method for predicting the responsiveness of an individual with a disease or dysfunction, method for determining the likelihood that an individual with a disease or dysfunction will exhibit benefit from treatment, method for selecting a therapy, Uses of a pd-11 Axis Binding Antagonist, Assay to Identify an Individual with a Disease, Diagnostic Kit, Method to Evaluate a Treatment Response, and Method to Monitor the Response of a Treated Individual
US20140302037A1 (en) 2013-03-15 2014-10-09 Amgen Inc. BISPECIFIC-Fc MOLECULES
AU2014228172B2 (en) 2013-03-15 2018-12-06 Abbvie Deutschland Gmbh & Co.Kg Anti-EGFR antibody drug conjugate formulations
RU2015144020A (en) 2013-03-15 2017-04-21 Дженентек, Инк. ENVIRONMENTS FOR CULTIVATION OF CELLS AND METHODS FOR PRODUCING ANTIBODIES
PL2970875T3 (en) 2013-03-15 2020-08-10 F.Hoffmann-La Roche Ag Cell culture compositions with antioxidants and methods for polypeptide production
EA038918B1 (en) 2013-03-15 2021-11-09 Зинджения, Инк. Peptide binding an epidermal growth factor receptor, multispecific complexes comprising peptide and antibodies and use thereof
KR20150130451A (en) 2013-03-15 2015-11-23 제넨테크, 인크. Methods of treating cancer and preventing cancer drug resistance
US10993420B2 (en) 2013-03-15 2021-05-04 Erasmus University Medical Center Production of heavy chain only antibodies in transgenic mammals
SG11201507432XA (en) 2013-03-15 2015-10-29 Abbvie Inc Antibody drug conjugate (adc) purification
CN105143258B (en) 2013-03-15 2020-06-23 Ac免疫有限公司 anti-Tau antibodies and methods of use
CA2904448A1 (en) 2013-03-15 2014-09-18 Tariq Ghayur Dual specific binding proteins directed against il-1.beta. and/or il-17
GB201306589D0 (en) 2013-04-11 2013-05-29 Abeterno Ltd Live cell imaging
ES2703192T3 (en) 2013-04-29 2019-03-07 Agrosavfe Nv Agrochemical compositions that contain antibodies that bind sphingolipids
US11117975B2 (en) 2013-04-29 2021-09-14 Teva Pharmaceuticals Australia Pty Ltd Anti-CD38 antibodies and fusions to attenuated interferon alpha-2B
DK3677591T3 (en) 2013-04-29 2023-03-20 Teva Pharmaceuticals Australia Pty Ltd Anti-CD38 antibodies and fusions to attenuated interferon alpha-2b
KR102293064B1 (en) 2013-05-20 2021-08-23 제넨테크, 인크. Anti-transferrin receptor antibodies and methods of use
AU2014273966B2 (en) 2013-05-30 2017-08-31 Kiniksa Pharmaceuticals, Ltd. Oncostatin M receptor antigen binding proteins
CN111518199A (en) 2013-07-18 2020-08-11 图鲁斯生物科学有限责任公司 Humanized antibodies with ultralong complementarity determining regions
EP3022224A2 (en) 2013-07-18 2016-05-25 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
KR102062784B1 (en) 2013-07-23 2020-01-07 바이오콘 리미티드 Methods for controlling fucosylation levels in proteins
TWI623551B (en) 2013-08-02 2018-05-11 輝瑞大藥廠 Anti-cxcr4 antibodies and antibody-drug conjugates
JP6382311B2 (en) 2013-08-13 2018-08-29 エラスタジェン・プロプライエタリー・リミテッドElastagen Pty Ltd Regeneration of damaged tissue
RU2016109247A (en) 2013-09-17 2017-10-19 Дженентек, Инк. WAYS OF APPLICATION OF ANTIBODIES TO LGR5
KR102331663B1 (en) 2013-09-27 2021-11-25 제넨테크, 인크. Anti-pdl1 antibody formulations
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
AU2014329609B2 (en) 2013-10-02 2019-09-12 Humabs Biomed Sa Neutralizing anti-influenza A antibodies and uses thereof
WO2015051293A2 (en) 2013-10-04 2015-04-09 Abbvie, Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
EP3055328A1 (en) 2013-10-11 2016-08-17 F. Hoffmann-La Roche AG Nsp4 inhibitors and methods of use
JP6422956B2 (en) 2013-10-11 2018-11-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Multispecific domain exchange common variable light chain antibody
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US8946395B1 (en) 2013-10-18 2015-02-03 Abbvie Inc. Purification of proteins using hydrophobic interaction chromatography
CN105744954B (en) 2013-10-18 2021-03-05 豪夫迈·罗氏有限公司 anti-RSPO 2 and/or anti-RSPO 3 antibodies and uses thereof
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
SG11201603127WA (en) 2013-10-23 2016-05-30 Genentech Inc Methods of diagnosing and treating eosinophilic disorders
US10203327B2 (en) 2013-11-05 2019-02-12 Novartis Ag Organic compounds
WO2015073884A2 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
MY176237A (en) 2013-11-21 2020-07-24 Hoffmann La Roche Anti-alpha-synuclein antibodies and methods of use
CA2931356A1 (en) 2013-11-27 2015-06-04 Zymeworks Inc. Bispecific antigen-binding constructs targeting her2
JP6612246B2 (en) 2013-11-28 2019-11-27 シーエスエル、リミテッド How to treat nephropathy
TW201536320A (en) 2013-12-02 2015-10-01 Abbvie Inc Compositions and methods for treating osteoarthritis
US9309314B2 (en) 2013-12-03 2016-04-12 Agency For Science, Technology And Research (A*Star) Polypeptides, nucleic acids and uses thereof
CN105916519B (en) 2013-12-09 2021-10-22 爱乐科斯公司 anti-Siglec-8 antibodies and methods of use thereof
EP3080164B1 (en) 2013-12-13 2019-01-16 Genentech, Inc. Anti-cd33 antibodies and immunoconjugates
EP2883883A1 (en) 2013-12-16 2015-06-17 Cardio3 Biosciences S.A. Therapeutic targets and agents useful in treating ischemia reperfusion injury
MX2016007965A (en) 2013-12-17 2016-10-28 Genentech Inc Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists.
SG10201809385RA (en) 2013-12-17 2018-11-29 Genentech Inc Anti-cd3 antibodies and methods of use
SG11201604875PA (en) 2013-12-17 2016-07-28 Genentech Inc Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
KR102630750B1 (en) 2013-12-17 2024-01-30 제넨테크, 인크. Methods of treating cancers using pd-1 axis binding antagonists and taxanes
ES2851386T3 (en) 2013-12-18 2021-09-06 Csl Ltd Wound treatment method
CN105899533B (en) 2013-12-20 2019-10-11 豪夫迈·罗氏有限公司 Anti- Tau (pS422) antibody and application method of humanization
TWI670283B (en) 2013-12-23 2019-09-01 美商建南德克公司 Antibodies and methods of use
MX2016008189A (en) 2014-01-03 2016-09-29 Hoffmann La Roche Covalently linked helicar-anti-helicar antibody conjugates and uses thereof.
MX2016008187A (en) 2014-01-03 2016-09-29 Hoffmann La Roche Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles.
JP6521464B2 (en) 2014-01-03 2019-05-29 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Covalently linked polypeptide toxin-antibody conjugates
CA2932547C (en) 2014-01-06 2023-05-23 F. Hoffmann-La Roche Ag Monovalent blood brain barrier shuttle modules
EP3092254A4 (en) 2014-01-10 2017-09-20 Birdie Biopharmaceuticals Inc. Compounds and compositions for treating her2 positive tumors
EP3096797A1 (en) 2014-01-24 2016-11-30 F. Hoffmann-La Roche AG Methods of using anti-steap1 antibodies and immunoconjugates
EP3102197B1 (en) 2014-02-04 2018-08-29 Genentech, Inc. Mutant smoothened and methods of using the same
MX2016010237A (en) 2014-02-08 2017-04-27 Genentech Inc Methods of treating alzheimer's disease.
EP3718563A1 (en) 2014-02-08 2020-10-07 F. Hoffmann-La Roche AG Methods of treating alzheimer's disease
CA2936565C (en) 2014-02-12 2020-08-11 Genentech, Inc. Anti-jagged1 antibodies and methods of use
JP6619745B2 (en) 2014-02-20 2019-12-11 アラーガン、インコーポレイテッドAllergan,Incorporated Complement component C5 antibody
CN106029693A (en) 2014-02-21 2016-10-12 豪夫迈·罗氏有限公司 Anti-IL-13/IL-17 bispecific antibodies and uses thereof
US9796776B2 (en) 2014-02-27 2017-10-24 Allergan, Inc. Complement factor Bb antibodies
EP3110446B1 (en) 2014-02-28 2021-12-01 Allakos Inc. Methods and compositions for treating siglec-8 associated diseases
ES2897765T3 (en) 2014-03-14 2022-03-02 Hoffmann La Roche Methods and compositions for the secretion of heterologous polypeptides
KR20220123560A (en) 2014-03-21 2022-09-07 애브비 인코포레이티드 Anti-egfr antibodies and antibody drug conjugates
WO2015140591A1 (en) 2014-03-21 2015-09-24 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
KR20160137599A (en) 2014-03-24 2016-11-30 제넨테크, 인크. Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
AU2015241038A1 (en) 2014-03-31 2016-10-13 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and OX40 binding agonists
PT3126394T (en) 2014-03-31 2019-12-19 Hoffmann La Roche Anti-ox40 antibodies and methods of use
BR112016024319B1 (en) 2014-04-18 2024-01-23 Acceleron Pharma Inc USE OF A COMPOSITION COMPRISING AN ActRII ANTAGONIST FOR THE MANUFACTURING OF A MEDICATION FOR TREATING OR PREVENTING A COMPLICATION OF SICKLE CELL ANEMIA
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
UA119352C2 (en) 2014-05-01 2019-06-10 Тева Фармасьютикалз Острейліа Пті Лтд Combination of lenalidomide or pomalidomide and cd38 antibody-attenuated interferon-alpha constructs, and the use thereof
US11474101B2 (en) 2014-05-08 2022-10-18 Novodiax, Inc. Direct immunohistochemistry assay
EP3888690A3 (en) 2014-05-16 2021-10-20 MedImmune, LLC Molecules with altered neonate fc receptor binding having enhanced therapeutic and diagnostic properties
JP2017522861A (en) 2014-05-22 2017-08-17 ジェネンテック, インコーポレイテッド Anti-GPC3 antibody and immunoconjugate
EP3146071B1 (en) 2014-05-23 2020-09-02 F. Hoffmann-La Roche AG Mit biomarkers and methods using the same
WO2015191617A2 (en) 2014-06-09 2015-12-17 Biomed Valley Discoveries, Inc. Combination therapies using anti-metabolites and agents that target tumor-associated stroma or tumor cells
US10434174B2 (en) 2014-06-09 2019-10-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination therapies using platinum agents and agents that target tumor-associated stroma or tumor cells
WO2015191590A2 (en) 2014-06-09 2015-12-17 Biomed Valley Discoveries, Inc. Combination therapies targeting tumor-associated stroma or tumor cells and microtubules
WO2015191610A2 (en) 2014-06-09 2015-12-17 Biomed Valley Discoveries, Inc. Combination therapies using agents that target tumor-associated stroma or tumor cells and other pathways
US10799584B2 (en) 2014-06-09 2020-10-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services National Institutes Of Health Combination therapies using agents that target tumor-associated stroma or tumor cells and alkylating agents
US10758614B2 (en) 2014-06-09 2020-09-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services National Institutes Of Health Combination therapies targeting tumor-associated stroma or tumor cells and topoisomerase
US11034757B2 (en) 2014-06-09 2021-06-15 Biomed Valley Discoveries, Inc. Combination therapies using agents that target tumor-associated stroma or tumor cells and tumor vasculature
CA2949982A1 (en) 2014-06-11 2015-12-17 Genentech, Inc. Anti-lgr5 antibodies and uses thereof
BR122023023170A2 (en) 2014-06-13 2024-02-20 Acceleron Pharma Inc. USE OF AN ACTRII ANTAGONIST IN THE TREATMENT OR PREVENTION OF SKIN ULCERS ASSOCIATED WITH BETA-THALASSEMIA
WO2015191986A1 (en) 2014-06-13 2015-12-17 Genentech, Inc. Methods of treating and preventing cancer drug resistance
NL2013007B1 (en) 2014-06-16 2016-07-05 Ablynx Nv Methods of treating TTP with immunoglobulin single variable domains and uses thereof.
NL2013661B1 (en) 2014-10-21 2016-10-05 Ablynx Nv KV1.3 Binding immunoglobulins.
MX2016015280A (en) 2014-06-26 2017-03-03 Hoffmann La Roche Anti-brdu antibodies and methods of use.
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
SI3164492T1 (en) 2014-07-03 2020-02-28 F. Hoffmann-La Roche Ag Polypeptide expression systems
CN112546230A (en) 2014-07-09 2021-03-26 博笛生物科技有限公司 Combination therapeutic compositions and combination therapeutic methods for treating cancer
CA2954446A1 (en) 2014-07-09 2016-01-14 Shanghai Birdie Biotech, Inc. Anti-pd-l1 combinations for treating tumors
MX2017000363A (en) 2014-07-11 2017-04-27 Genentech Inc Notch pathway inhibition.
KR102360693B1 (en) 2014-07-11 2022-02-08 벤타나 메디컬 시스템즈, 인코포레이티드 Anti-pd-l1 antibodies and diagnostic uses thereof
WO2016009436A1 (en) 2014-07-15 2016-01-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Isolated polypeptides of cd44 and uses thereof
MX2017001556A (en) 2014-08-04 2017-05-15 Hoffmann La Roche Bispecific t cell activating antigen binding molecules.
BR112017003835A2 (en) 2014-08-28 2018-04-10 Bioatla Llc chimeric antigen receptor, expression vector, genetically engineered cytotoxic cell, pharmaceutical composition, and methods for producing a chimeric antigen receptor and for treating a disease in an individual.
CN112587672A (en) 2014-09-01 2021-04-02 博笛生物科技有限公司 anti-PD-L1 conjugates for the treatment of tumors
US9751946B2 (en) 2014-09-12 2017-09-05 Genentech, Inc. Anti-CLL-1 antibodies and immunoconjugates
CN113698488A (en) 2014-09-12 2021-11-26 基因泰克公司 anti-B7-H4 antibodies and immunoconjugates
BR112017004631A2 (en) 2014-09-12 2018-01-30 Genentech, Inc. antibody, nucleic acid, host cell, antibody production method, immunoconjugate, pharmaceutical formulation, methods of treatment, cell proliferation inhibition and human her2 detection and method for cancer detection
MX2017003121A (en) 2014-09-15 2017-08-02 Genentech Inc Antibody formulations.
WO2016044396A1 (en) 2014-09-17 2016-03-24 Genentech, Inc. Immunoconjugates comprising anti-her2 antibodies and pyrrolobenzodiazepines
SI3262071T1 (en) 2014-09-23 2020-07-31 F. Hoffmann-La Roche Ag Method of using anti-cd79b immunoconjugates
DK3204095T3 (en) 2014-10-10 2019-07-15 Ablynx Nv INHALATION APPLICATION FOR USE IN AEROSOL TREATMENT OF AIR ROAD DISEASES
US10561805B2 (en) 2014-10-10 2020-02-18 Ablynx N.V. Methods of treating RSV infections
US9732148B2 (en) 2014-10-16 2017-08-15 Genentech, Inc. Anti-α-synuclein antibodies and methods of use
WO2016059602A2 (en) 2014-10-16 2016-04-21 Glaxo Group Limited Methods of treating cancer and related compositions
AU2015336946A1 (en) 2014-10-23 2017-04-13 La Trobe University Fn14-binding proteins and uses thereof
EP3209695A4 (en) 2014-10-23 2018-05-30 DendroCyte BioTech Pty Ltd Cd83 binding proteins and uses thereof
HUE054075T2 (en) 2014-10-29 2021-08-30 Seagen Inc Dosage and administration of non-fucosylated anti-cd40 antibodies
SG11201703251TA (en) 2014-10-29 2017-05-30 Teva Pharmaceuticals Australia Pty Ltd INTERFERON α2B VARIANTS
AU2015343339A1 (en) 2014-11-03 2017-06-15 Genentech, Inc. Methods and biomarkers for predicting efficacy and evaluation of an OX40 agonist treatment
CN106796235B (en) 2014-11-03 2021-01-29 豪夫迈·罗氏有限公司 Assays for detecting T cell immune subsets and methods of use thereof
CA2966548A1 (en) 2014-11-05 2016-05-12 Agrosavfe Nv Transgenic plant comprising a polynucleotide encoding a variable domain of heavy-chain antibody
KR102544705B1 (en) 2014-11-05 2023-06-15 제넨테크, 인크. Methods of producing two chain proteins in bacteria
JP6875276B2 (en) 2014-11-05 2021-05-19 ジェネンテック, インコーポレイテッド Method of producing double-stranded protein in bacteria
RU2017119428A (en) 2014-11-06 2018-12-06 Дженентек, Инк. COMBINED THERAPY, INCLUDING THE USE OF OX40-CONNECTING AGONISTS AND TIGIT INHIBITORS
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
CN107105632A (en) 2014-11-10 2017-08-29 豪夫迈·罗氏有限公司 Nephrosis animal model and its therapeutic agent
EA201791029A1 (en) 2014-11-10 2017-12-29 Дженентек, Инк. ANTIBODIES AGAINST INTERLEUKIN-33 AND THEIR APPLICATION
TWI713474B (en) 2014-11-14 2020-12-21 瑞士商赫孚孟拉羅股份公司 Antigen binding molecules comprising a tnf family ligand trimer
CN107429075B (en) 2014-11-17 2022-11-01 卡内基梅隆大学 Activatable two-component photosensitizer
JP2017537090A (en) 2014-11-17 2017-12-14 ジェネンテック, インコーポレイテッド Combination therapy comprising OX40 binding agonist and PD-1 axis binding antagonist
WO2016081640A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
CN107108745B (en) 2014-11-19 2021-01-12 基因泰克公司 Antibodies against BACE1 and their use for immunotherapy of neurological diseases
US10508151B2 (en) 2014-11-19 2019-12-17 Genentech, Inc. Anti-transferrin receptor antibodies and methods of use
EP3747905A1 (en) 2014-11-20 2020-12-09 F. Hoffmann-La Roche AG Common light chains and methods of use
KR20240024318A (en) 2014-11-20 2024-02-23 에프. 호프만-라 로슈 아게 Combination therapy of t cell activating bispecific antigen binding molecules cd3 abd folate receptor 1 (folr1) and pd-1 axis binding antagonists
CN107001482B (en) 2014-12-03 2021-06-15 豪夫迈·罗氏有限公司 Multispecific antibodies
MA41119A (en) 2014-12-03 2017-10-10 Acceleron Pharma Inc METHODS OF TREATMENT OF MYELODYSPLASIC SYNDROMES AND SIDEROBLASTIC ANEMIA
CN107108739B (en) 2014-12-05 2022-01-04 豪夫迈·罗氏有限公司 anti-CD 79b antibodies and methods of use
BR112017011234A2 (en) 2014-12-10 2018-03-27 Genentech Inc antibodies to the blood-brain barrier receptor and methods of use
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
CA2971278C (en) 2014-12-19 2023-09-19 Ablynx N.V. Cysteine linked nanobody dimers
SG10201710322VA (en) 2014-12-19 2018-02-27 Chugai Pharmaceutical Co Ltd Anti-c5 antibodies and methods of use
WO2016094962A1 (en) 2014-12-19 2016-06-23 Monash University Il-21 antibodies
WO2016112270A1 (en) 2015-01-08 2016-07-14 Biogen Ma Inc. Lingo-1 antagonists and uses for treatment of demyelinating disorders
AU2016206191B2 (en) 2015-01-09 2017-08-03 Adalta Limited CXCR4 binding molecules
WO2016117346A1 (en) 2015-01-22 2016-07-28 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
US11304676B2 (en) 2015-01-23 2022-04-19 The University Of North Carolina At Chapel Hill Apparatuses, systems, and methods for preclinical ultrasound imaging of subjects
JP6871866B2 (en) 2015-02-03 2021-05-19 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Anti-RHO GTPASE conformational single domain antibody and its use
US10330683B2 (en) 2015-02-04 2019-06-25 Genentech, Inc. Mutant smoothened and methods of using the same
CN114773469A (en) 2015-02-05 2022-07-22 中外制药株式会社 Antibodies comprising an ion concentration-dependent antigen-binding domain, FC region variants, IL-8-binding antibodies and uses thereof
US10457737B2 (en) 2015-02-09 2019-10-29 Research Development Foundation Engineered immunoglobulin Fc polypeptides displaying improved complement activation
US20170151281A1 (en) 2015-02-19 2017-06-01 Batu Biologics, Inc. Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
WO2016135041A1 (en) 2015-02-26 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Fusion proteins and antibodies comprising thereof for promoting apoptosis
CN107430117A (en) 2015-03-16 2017-12-01 豪夫迈·罗氏有限公司 Detection and quantitative IL 13 method and the purposes in diagnosing and treating Th2 relevant diseases
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
MA54328A (en) 2015-04-06 2021-10-06 Acceleron Pharma Inc TYPE I AND TYPE II RECEPTOR HETEROMULTIMERS OF THE TGF-BETA SUPERFAMILY AND THEIR USES
MA41919A (en) 2015-04-06 2018-02-13 Acceleron Pharma Inc ALK4 HETEROMULTIMERS: ACTRIIB AND THEIR USES
DK3280441T3 (en) 2015-04-07 2021-11-15 Alector Llc ANTI-SORTILINE ANTIBODIES AND PROCEDURES FOR USE
CA2981183A1 (en) 2015-04-07 2016-10-13 Greg Lazar Antigen binding complex having agonistic activity and methods of use
WO2016172160A1 (en) 2015-04-21 2016-10-27 Genentech, Inc. Compositions and methods for prostate cancer analysis
JP7044553B2 (en) 2015-04-24 2022-03-30 ジェネンテック, インコーポレイテッド How to identify bacteria containing bound polypeptides
BR112017023158A2 (en) 2015-04-30 2018-07-24 Harvard College anti-ap2 antibodies and antigen binding agents to treat metabolic disorders
EP3778640A1 (en) 2015-05-01 2021-02-17 Genentech, Inc. Masked anti-cd3 antibodies and methods of use
US20160346387A1 (en) 2015-05-11 2016-12-01 Genentech, Inc. Compositions and methods of treating lupus nephritis
DK3294770T3 (en) 2015-05-12 2020-12-07 Hoffmann La Roche Therapeutic and diagnostic methods for cancer
EP3095465A1 (en) 2015-05-19 2016-11-23 U3 Pharma GmbH Combination of fgfr4-inhibitor and bile acid sequestrant
CN107771182A (en) 2015-05-29 2018-03-06 豪夫迈·罗氏有限公司 The anti-Ebola virus glycoproteins antibody of humanization and application method
IL294138A (en) 2015-05-29 2022-08-01 Genentech Inc Therapeutic and diagnostic methods for cancer
RS59935B1 (en) 2015-05-29 2020-03-31 Abbvie Inc Anti-cd40 antibodies and uses thereof
KR20180011117A (en) 2015-05-31 2018-01-31 큐어제닉스 코포레이션 Composite composition for immunotherapy
EP3302552A1 (en) 2015-06-02 2018-04-11 H. Hoffnabb-La Roche Ag Compositions and methods for using anti-il-34 antibodies to treat neurological diseases
TWI790642B (en) 2015-06-05 2023-01-21 美商建南德克公司 Anti-tau antibodies and methods of use
JP2018521019A (en) 2015-06-08 2018-08-02 ジェネンテック, インコーポレイテッド Method of treating cancer using anti-OX40 antibody
AU2016274584A1 (en) 2015-06-08 2018-01-04 Genentech, Inc. Methods of treating cancer using anti-OX40 antibodies and PD-1 axis binding antagonists
JP2018518491A (en) 2015-06-12 2018-07-12 アレクトル エルエルシー Anti-CD33 antibody and method of use thereof
SG10201912085WA (en) 2015-06-12 2020-02-27 Alector Llc Anti-cd33 antibodies and methods of use thereof
AR104987A1 (en) 2015-06-15 2017-08-30 Genentech Inc ANTIBODY-DRUG IMMUNOCUJADOS UNITED BY NON-PEPTIDIC LINKERS
TW201710286A (en) 2015-06-15 2017-03-16 艾伯維有限公司 Binding proteins against VEGF, PDGF, and/or their receptors
CN114507289A (en) 2015-06-16 2022-05-17 豪夫迈·罗氏有限公司 Humanized and affinity matured antibodies to FcRH5 and methods of use
JP6996983B2 (en) 2015-06-16 2022-02-21 ジェネンテック, インコーポレイテッド Anti-CLL-1 antibody and how to use
WO2016204966A1 (en) 2015-06-16 2016-12-22 Genentech, Inc. Anti-cd3 antibodies and methods of use
US10774145B2 (en) 2015-06-17 2020-09-15 Allakos Inc. Methods and compositions for treating fibrotic diseases
CN107787331B (en) 2015-06-17 2022-01-11 豪夫迈·罗氏有限公司 anti-HER 2 antibodies and methods of use
KR20180018538A (en) 2015-06-17 2018-02-21 제넨테크, 인크. Methods for the treatment of locally advanced or metastatic breast cancer using PD-1 axis-binding antagonists and taxanes
EP3744732A1 (en) 2015-06-24 2020-12-02 F. Hoffmann-La Roche AG Humanized anti-tau(ps422) antibodies and methods of use
US9861621B2 (en) 2015-06-29 2018-01-09 Biomed Valley Discoveries, Inc. LPT-723 and immune checkpoint inhibitor combinations and methods of treatment
CA2989936A1 (en) 2015-06-29 2017-01-05 Genentech, Inc. Type ii anti-cd20 antibody for use in organ transplantation
CA3162816A1 (en) 2015-06-29 2017-01-05 Ventana Medical Systems, Inc. Materials and methods for performing histochemical assays for human pro-epiregulin and amphiregulin
WO2017004330A1 (en) 2015-06-30 2017-01-05 Seattle Genetics, Inc. Anti-ntb-a antibodies and related compositions and methods
WO2017023866A1 (en) 2015-07-31 2017-02-09 Boston Biomedical, Inc. Method of targeting stat3 and other non-druggable proteins
TWI797060B (en) 2015-08-04 2023-04-01 美商再生元醫藥公司 Taurine supplemented cell culture medium and methods of use
CN108348578B (en) 2015-08-04 2022-08-09 阿塞勒隆制药公司 Methods for treating myeloproliferative disorders
SG10201913625XA (en) 2015-08-07 2020-03-30 Imaginab Inc Antigen binding constructs to target molecules
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
EP3932953A1 (en) 2015-08-28 2022-01-05 F. Hoffmann-La Roche AG Anti-hypusine antibodies and uses thereof
WO2017046335A1 (en) 2015-09-18 2017-03-23 INSERM (Institut National de la Santé et de la Recherche Médicale) T cell receptors (tcr) and uses thereof for the diagnosis and treatment of diabetes
WO2017046994A1 (en) 2015-09-18 2017-03-23 Chugai Seiyaku Kabushiki Kaisha Il-8-binding antibodies and uses thereof
EP3353206A1 (en) 2015-09-22 2018-08-01 Spring Bioscience Corporation Anti-ox40 antibodies and diagnostic uses thereof
CN116987187A (en) 2015-09-23 2023-11-03 豪夫迈·罗氏有限公司 Optimized variants of anti-VEGF antibodies
CN108289954B (en) 2015-09-24 2022-05-31 阿布维特罗有限责任公司 HIV antibody compositions and methods of use
WO2017055484A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for determining the metabolic status of lymphomas
AR106188A1 (en) 2015-10-01 2017-12-20 Hoffmann La Roche ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
BR112018005164A2 (en) 2015-10-02 2019-10-01 Hoffmann La Roche antibodies, nucleic acid, host cell, method for producing an antibody, pharmaceutical formulation, use of the antibody and method of treating an individual who has cancer
JP6937746B2 (en) 2015-10-02 2021-09-22 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Bispecific anti-CD19 × CD3T cell-activating antigen-binding molecule
WO2017055392A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules
EP3356409A2 (en) 2015-10-02 2018-08-08 H. Hoffnabb-La Roche Ag Bispecific t cell activating antigen binding molecules
WO2017055385A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xgd2 bispecific t cell activating antigen binding molecules
KR102431342B1 (en) 2015-10-02 2022-08-10 에프. 호프만-라 로슈 아게 Bispecific antibodies specific for pd1 and tim3
WO2017055395A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xrob04 bispecific t cell activating antigen binding molecules
JP2018536389A (en) 2015-10-02 2018-12-13 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Bispecific cell-activating antigen binding molecule that binds mesothelin and CD3
WO2017055393A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules
MA43017A (en) 2015-10-02 2018-08-08 Hoffmann La Roche BISPECIFIC ANTIBODIES SPECIFIC TO A TNF CO-STIMULATION RECEPTOR
EP3356410B1 (en) 2015-10-02 2021-10-20 F. Hoffmann-La Roche AG Bispecific anti-ceaxcd3 t cell activating antigen binding molecules
CN108271377B (en) 2015-10-07 2021-11-19 豪夫迈·罗氏有限公司 Bispecific antibodies having a tetravalent targeting co-stimulatory TNF receptor
US10556953B2 (en) 2015-10-12 2020-02-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Agent capable of depleting CD8 T cells for the treatment of myocardial infarction or acute myocardial infarction
MA43354A (en) 2015-10-16 2018-08-22 Genentech Inc CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
US10604577B2 (en) 2015-10-22 2020-03-31 Allakos Inc. Methods and compositions for treating systemic mastocytosis
JP6949016B2 (en) 2015-10-29 2021-10-13 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Antivariant Fc region antibody and usage
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
SI3368578T1 (en) 2015-10-30 2021-08-31 F. Hoffmann-La Roche Ag Anti-htra1 antibodies and methods of use thereof
WO2017075173A2 (en) 2015-10-30 2017-05-04 Genentech, Inc. Anti-factor d antibodies and conjugates
CN108602884A (en) 2015-11-08 2018-09-28 豪夫迈·罗氏有限公司 The method for screening multi-specificity antibody
EP3374389A1 (en) 2015-11-13 2018-09-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti- nkg2d single domain antibodies and uses thereof
KR20180083402A (en) 2015-11-20 2018-07-20 오스트레일리언 바이오메디컬 컴퍼니 피티와이 리미티드 Compounds for medical use
WO2017091706A1 (en) 2015-11-23 2017-06-01 Acceleron Pharma Inc. Methods for treating eye disorders
EP3932945A1 (en) 2015-11-27 2022-01-05 Ablynx NV Polypeptides inhibiting cd40l
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
MX2018005229A (en) 2015-12-09 2019-04-29 F Hoffmann­La Roche Ag Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies.
TWI597292B (en) 2015-12-18 2017-09-01 中外製藥股份有限公司 Anti-c5 antibodies and methods of use
JP6970090B2 (en) 2015-12-18 2021-11-24 エーザイ・アール・アンド・ディー・マネジメント株式会社 Immunoglobulin conjugated with C-terminal lysine
MX2018008063A (en) 2015-12-30 2018-11-29 Genentech Inc Use of tryptophan derivatives for protein formulations.
CN115400220A (en) 2015-12-30 2022-11-29 豪夫迈·罗氏有限公司 Preparation for reducing degradation of polysorbate
US20200264165A1 (en) 2016-01-04 2020-08-20 Inserm (Institut National De La Sante Et De Larecherche Medicale) Use of pd-1 and tim-3 as a measure for cd8+ cells in predicting and treating renal cell carcinoma
WO2017118307A1 (en) 2016-01-05 2017-07-13 江苏恒瑞医药股份有限公司 Pcsk9 antibody, antigen-binding fragment thereof, and medical uses thereof
KR20180097615A (en) 2016-01-08 2018-08-31 에프. 호프만-라 로슈 아게 Methods for the treatment of CEA-positive cancers using PD-1 axis-binding antagonists and anti-CEA / anti-CD3 bispecific antibodies
CA3011739A1 (en) 2016-01-20 2017-07-27 Genentech, Inc. High dose treatments for alzheimer's disease
WO2017129558A1 (en) 2016-01-25 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting or treating myelopoiesis-driven cardiometabolic diseases and sepsis
ES2924775T3 (en) 2016-01-28 2022-10-10 Inst Nat Sante Rech Med Methods and pharmaceutical composition for the treatment of cancer
ES2924741T3 (en) 2016-01-28 2022-10-10 Inst Nat Sante Rech Med Methods to Increase the Potency of Immune Checkpoint Inhibitors
WO2017129763A1 (en) 2016-01-28 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of signet ring cell gastric cancer
AU2017213826A1 (en) 2016-02-04 2018-08-23 Curis, Inc. Mutant smoothened and methods of using the same
MX2018010361A (en) 2016-02-29 2019-07-08 Genentech Inc Therapeutic and diagnostic methods for cancer.
MY189113A (en) 2016-03-02 2022-01-26 Eisai R&D Man Co Ltd Eribulin-based antibody-drug conjugates and methods of use
US11027021B2 (en) 2016-03-15 2021-06-08 Seagen Inc. Combinations of PBD-based antibody drug conjugates with Bcl-2 inhibitors
EP3430054B1 (en) 2016-03-15 2021-12-29 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
PT3433280T (en) 2016-03-22 2023-06-15 Hoffmann La Roche Protease-activated t cell bispecific molecules
SI3433280T1 (en) 2016-03-22 2023-07-31 F. Hoffmann-La Roche Ag Protease-activated t cell bispecific molecules
US20170315132A1 (en) 2016-03-25 2017-11-02 Genentech, Inc. Multiplexed total antibody and antibody-conjugated drug quantification assay
KR20240034883A (en) 2016-03-29 2024-03-14 얀센 바이오테크 인코포레이티드 Treating psoriasis with increased interval dosing of anti-il12 and/or -23 antibody
EP3231813A1 (en) 2016-03-29 2017-10-18 F. Hoffmann-La Roche AG Trimeric costimulatory tnf family ligand-containing antigen binding molecules
US20200330459A1 (en) 2016-04-06 2020-10-22 Inserm (Institut National De La Santé Et La Recherche Médicale) Methods and pharmaceutical compositions for the treatment of age-related cardiometabolic diseases
EP3443004A1 (en) 2016-04-14 2019-02-20 H. Hoffnabb-La Roche Ag Anti-rspo3 antibodies and methods of use
EP3443120A2 (en) 2016-04-15 2019-02-20 H. Hoffnabb-La Roche Ag Methods for monitoring and treating cancer
EP3443350B1 (en) 2016-04-15 2020-12-09 H. Hoffnabb-La Roche Ag Methods for monitoring and treating cancer
US20190125826A1 (en) 2016-04-22 2019-05-02 Inserm (Institut National De La Santé Et De La Médicale) Methods and pharmaceutical composition for the treatment of inflammatory skin diseases associated with desmoglein-1 deficiency
JP6871948B2 (en) 2016-04-27 2021-05-19 アッヴィ・インコーポレイテッド Treatment of Diseases with Harmful IL-13 Activity Using Anti-IL-13 Antibodies
AU2017259876A1 (en) 2016-05-02 2018-10-25 Ablynx Nv Treatment of RSV infection
UA123323C2 (en) 2016-05-02 2021-03-17 Ф. Хоффманн-Ля Рош Аг The contorsbody - a single chain target binder
US11098124B2 (en) 2016-05-03 2021-08-24 Institut National De La Sante Et De La Recherche Medicale (Inserm) CD31 shed as a molecular target for imaging of inflammation
US11376269B2 (en) 2016-05-06 2022-07-05 Inserm Pharmaceutical compositions for the treatment of chemoresistant acute myeloid leukemia (AML)
WO2017194554A1 (en) 2016-05-10 2017-11-16 Inserm (Institut National De La Sante Et De La Recherche Medicale) Combinations therapies for the treatment of cancer
WO2017194441A1 (en) 2016-05-11 2017-11-16 F. Hoffmann-La Roche Ag Modified anti-tenascin antibodies and methods of use
EP3455254B1 (en) 2016-05-11 2021-07-07 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and a tenascin binding moiety
EP3243836A1 (en) 2016-05-11 2017-11-15 F. Hoffmann-La Roche AG C-terminally fused tnf family ligand trimer-containing antigen binding molecules
HRP20221298T1 (en) 2016-05-13 2022-12-23 Bioatla, Inc. Anti-ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
MA45029B1 (en) 2016-05-18 2021-03-31 Boehringer Ingelheim Int Anti pd-1 and anti-lag3 antibodies for cancer treatment
ES2858151T3 (en) 2016-05-20 2021-09-29 Hoffmann La Roche PROTAC-Antibody Conjugates and Procedures for Use
WO2017202962A1 (en) 2016-05-24 2017-11-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd)
EP3465221B1 (en) 2016-05-27 2020-07-22 H. Hoffnabb-La Roche Ag Bioanalytical method for the characterization of site-specific antibody-drug conjugates
WO2017202890A1 (en) 2016-05-27 2017-11-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating myeloma
CN110603266A (en) 2016-06-02 2019-12-20 豪夫迈·罗氏有限公司 Type II anti-CD 20 and anti-CD 20/CD3 bispecific antibodies for the treatment of cancer
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
EP3464280B1 (en) 2016-06-06 2021-10-06 F. Hoffmann-La Roche AG Silvestrol antibody-drug conjugates and methods of use
CA3027047A1 (en) 2016-06-08 2017-12-14 Abbvie Inc. Anti-cd98 antibodies and antibody drug conjugates
AU2017277422A1 (en) 2016-06-08 2019-01-03 Abbvie Inc. Anti-EGFR antibody drug conjugates
CN109641962A (en) 2016-06-08 2019-04-16 艾伯维公司 Anti- B7-H3 antibody and antibody drug conjugates
CN116059394A (en) 2016-06-08 2023-05-05 艾伯维公司 anti-EGFR antibody drug conjugates
TW202304996A (en) 2016-06-08 2023-02-01 美商艾伯維有限公司 Anti-b7-h3 antibodies and antibody drug conjugates
BR112018075653A2 (en) 2016-06-08 2019-08-27 Abbvie Inc anti-b7-h3 antibodies and drug antibody conjugates
WO2017214301A1 (en) 2016-06-08 2017-12-14 Abbvie Inc. Anti-egfr antibody drug conjugates
JP2019524651A (en) 2016-06-08 2019-09-05 アッヴィ・インコーポレイテッド Anti-CD98 antibodies and antibody drug conjugates
US20200147235A1 (en) 2016-06-08 2020-05-14 Abbvie Inc. Anti-cd98 antibodies and antibody drug conjugates
CN109475642B (en) 2016-06-10 2023-05-02 卫材R&D管理有限公司 Lysine conjugated immunoglobulins
GB201610198D0 (en) 2016-06-10 2016-07-27 Ucb Biopharma Sprl Anti-ige antibodies
CN116143918A (en) 2016-06-24 2023-05-23 豪夫迈·罗氏有限公司 Anti-polyubiquitin multispecific antibodies
WO2018007442A1 (en) 2016-07-06 2018-01-11 Ablynx N.V. Treatment of il-6r related diseases
HUE054228T2 (en) 2016-07-15 2021-08-30 Acceleron Pharma Inc Compositions comprising actriia polypeptides for use in treating pulmonary hypertension
CA3030926A1 (en) 2016-07-19 2018-01-25 Teva Pharmaceuticals Australia Pty Ltd. Anti-cd47 combination therapy
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
BR112019001615A2 (en) 2016-07-27 2019-04-30 Acceleron Pharma Inc. methods and compositions for treating myelofibrosis
BR112019001693A2 (en) 2016-07-29 2019-07-02 Ct Hospitalier Universitaire Toulouse antibodies targeting tumor-associated macrophages and their uses
CN109415444B (en) 2016-07-29 2024-03-01 中外制药株式会社 Bispecific antibodies exhibiting increased functional activity of alternative FVIII cofactors
CN109963871A (en) 2016-08-05 2019-07-02 豪夫迈·罗氏有限公司 Multivalence and multi-epitope Antibody and application method with agonist activity
CN116271014A (en) 2016-08-05 2023-06-23 中外制药株式会社 Compositions for preventing or treating IL-8 related diseases
JP7250674B2 (en) 2016-08-08 2023-04-03 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト CANCER TREATMENT AND DIAGNOSTIC METHOD
WO2018029182A1 (en) 2016-08-08 2018-02-15 Ablynx N.V. Il-6r single variable domain antibodies for treatment of il-6r related diseases
WO2018031662A1 (en) 2016-08-11 2018-02-15 Genentech, Inc. Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
WO2018041989A1 (en) 2016-09-02 2018-03-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing and treating refractory celiac disease type 2
EP3510407A1 (en) 2016-09-08 2019-07-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing and treating nephrotic syndrome
US11098113B2 (en) 2016-09-15 2021-08-24 Vib Vzw Immunoglobulin single variable domains directed against macrophage migration inhibitory factor
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
JOP20190009A1 (en) 2016-09-21 2019-01-27 Alx Oncology Inc Antibodies against signal-regulatory protein alpha and methods of use
SG11201900845YA (en) 2016-09-23 2019-02-27 Genentech Inc Uses of il-13 antagonists for treating atopic dermatitis
JP7051826B2 (en) 2016-09-23 2022-04-11 シーエスエル、リミテッド Coagulation factor binding protein and its use
MA46366A (en) 2016-09-30 2019-08-07 Janssen Biotech Inc SAFE AND EFFECTIVE PROCESS FOR TREATING PSORIASIS WITH A SPECIFIC ANTIBODY AGAINST IL-23
WO2018060301A1 (en) 2016-09-30 2018-04-05 F. Hoffmann-La Roche Ag Bispecific antibodies against cd3
CA3039573A1 (en) 2016-10-05 2018-04-12 Acceleron Pharma Inc. Alk4:actriib heteromultimers and uses thereof
CN116650622A (en) 2016-10-05 2023-08-29 艾科赛扬制药股份有限公司 Compositions and methods for treating kidney disease
CN110139674B (en) 2016-10-05 2023-05-16 豪夫迈·罗氏有限公司 Method for preparing antibody drug conjugates
WO2018068028A1 (en) 2016-10-06 2018-04-12 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
WO2018075564A1 (en) 2016-10-17 2018-04-26 University Of Maryland, College Park Multispecific antibodies targeting human immunodeficiency virus and methods of using the same
EP3532496A1 (en) 2016-10-28 2019-09-04 Banyan Biomarkers, Inc. Antibodies to ubiquitin c-terminal hydrolase l1 (uch-l1) and glial fibrillary acidic protein (gfap) and related methods
CN110267678A (en) 2016-10-29 2019-09-20 霍夫曼-拉罗奇有限公司 Anti- MIC antibody and application method
US20190345500A1 (en) 2016-11-14 2019-11-14 |Nserm (Institut National De La Santé Et De La Recherche Médicale) Methods and pharmaceutical compositions for modulating stem cells proliferation or differentiation
CN109923128A (en) 2016-11-15 2019-06-21 基因泰克公司 Administration for being treated with anti-CD20/ AntiCD3 McAb bispecific antibody
WO2018093841A1 (en) 2016-11-16 2018-05-24 Janssen Biotech, Inc. Method of treating psoriasis with anti-il-23 specific antibody
JP7222888B2 (en) 2016-11-16 2023-02-15 アブリンクス エン.ヴェー. T cell engaging polypeptides capable of binding CD123 and TCR alpha/beta
EP3541830A1 (en) 2016-11-17 2019-09-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for increasing endogenous protein level
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 Anti-hla-g antibodies and use thereof
JP7274417B2 (en) 2016-11-23 2023-05-16 イミュノア・セラピューティクス・インコーポレイテッド 4-1BB binding protein and uses thereof
TWI797097B (en) 2016-11-28 2023-04-01 日商中外製藥股份有限公司 Polypeptides comprising an antigen-binding domain and a transport moiety
WO2018099968A1 (en) 2016-11-29 2018-06-07 Ablynx N.V. Treatment of infection by respiratory syncytial virus (rsv)
WO2018100190A1 (en) 2016-12-02 2018-06-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for diagnosing renal cell carcinoma
AU2017373889A1 (en) 2016-12-07 2019-06-06 Ac Immune Sa Anti-Tau antibodies and methods of use
CA3045294A1 (en) 2016-12-07 2018-06-14 Genentech, Inc. Anti-tau antibodies and methods of use
CN110114674B (en) 2016-12-13 2023-05-09 豪夫迈·罗氏有限公司 Method for determining the presence of a target antigen in a tumor sample
US20190310250A1 (en) 2016-12-16 2019-10-10 Merck Patent Gmbh Methods for the use of galectin 3 binding protein detected in the urine for monitoring the severity and progression of lupus nephritis
IL267284B2 (en) 2016-12-19 2023-03-01 Hoffmann La Roche Combination therapy with targeted 4-1bb (cd137) agonists
JP7247091B2 (en) 2016-12-20 2023-03-28 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Combination therapy with anti-CD20/anti-CD3 bispecific antibody and 4-1BB (CD137) agonist
GB201621806D0 (en) 2016-12-21 2017-02-01 Philogen Spa Immunocytokines with progressive activation mechanism
EP3360898A1 (en) 2017-02-14 2018-08-15 Boehringer Ingelheim International GmbH Bispecific anti-tnf-related apoptosis-inducing ligand receptor 2 and anti-cadherin 17 binding molecules for the treatment of cancer
CN108261544B (en) 2016-12-30 2023-05-05 江苏太平洋美诺克生物药业股份有限公司 Stable pharmaceutical formulation comprising CD147 monoclonal antibody
CN108261391B (en) 2016-12-30 2022-03-01 江苏太平洋美诺克生物药业有限公司 Stable pharmaceutical formulation comprising CD147 monoclonal antibody
MX2019007795A (en) 2017-01-03 2019-08-16 Hoffmann La Roche Bispecific antigen binding molecules comprising anti-4-1bb clone 20h4.9.
WO2018134389A1 (en) 2017-01-23 2018-07-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating infections
CN110234351A (en) 2017-01-30 2019-09-13 詹森生物科技公司 For treating the anti-TNF antibodies, composition and method of activity psoriatic arthritis
EP3576789A4 (en) 2017-02-01 2020-11-25 Centrymed Pharmaceuticals Inc. MONOMERIC HUMAN IgG1 Fc AND BISPECIFIC ANTIBODIES
MX2019009377A (en) 2017-02-07 2019-12-11 Janssen Biotech Inc Anti-tnf antibodies, compositions, and methods for the treatment of active ankylosing spondylitis.
US11266745B2 (en) 2017-02-08 2022-03-08 Imaginab, Inc. Extension sequences for diabodies
JP7341060B2 (en) 2017-02-10 2023-09-08 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Methods and pharmaceutical compositions for the treatment of cancer associated with MAPK pathway activation
MY197534A (en) 2017-02-10 2023-06-21 Genentech Inc Anti-tryptase antibodies, compositions thereof, and uses thereof
WO2018158335A1 (en) 2017-02-28 2018-09-07 Vib Vzw Means and methods for oral protein delivery
AU2018228873A1 (en) 2017-03-01 2019-08-29 Genentech, Inc. Diagnostic and therapeutic methods for cancer
EP3589654A1 (en) 2017-03-02 2020-01-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to nectin-4 and uses thereof
CR20190481A (en) 2017-03-22 2020-01-06 Genentech Inc Optimized antibody compositions for treatment of ocular disorders
MA49265A (en) 2017-03-22 2020-02-05 Ascendis Pharma As Hydrogel cross-linked hyaluronic acid prodrug compositions and methods
US20210186982A1 (en) 2017-03-24 2021-06-24 Universite Nice Sophia Antipolis Methods and compositions for treating melanoma
WO2018178029A1 (en) 2017-03-27 2018-10-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating degenerative muscular and/or neurological conditions or diseases
WO2018178030A1 (en) 2017-03-27 2018-10-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating degenerative muscular and/or neurological conditions or diseases
CA3056837A1 (en) 2017-03-27 2018-10-04 F. Hoffmann-La Roche Ag Improved antigen binding receptors
BR112019017629A2 (en) 2017-03-27 2020-04-07 Hoffmann La Roche antigen-binding receptor, isolated polynucleotide, vector, transduced t cell, methods for treating a disease and for inducing lysis, use of the receptor and receptor
TW202400231A (en) 2017-03-28 2024-01-01 美商建南德克公司 Methods of treating neurodegenerative diseases
EP3601325B1 (en) 2017-03-28 2023-07-19 INSERM (Institut National de la Santé et de la Recherche Médicale) New tau species
CN110573528B (en) 2017-03-29 2023-06-09 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules to costimulatory TNF receptors
EP3601346A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
WO2018178074A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Trimeric antigen binding molecules specific for a costimulatory tnf receptor
US20200188541A1 (en) 2017-03-30 2020-06-18 Duke University Radiolabeled biomolecules and their use
JP7148539B2 (en) 2017-04-03 2022-10-05 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト immunoconjugate
EP3606963B1 (en) 2017-04-03 2023-08-30 F. Hoffmann-La Roche AG Antibodies binding to steap-1
BR112019017329A2 (en) 2017-04-03 2020-04-14 Hoffmann La Roche immunoconjugates, one or more polynucleotides and vectors, methods for the production of an immunoconjugate, treatment of a disease and for the stimulation of the immune system, composition, use of the immunoconjugate, invention and uses of the composition
SG11201908787WA (en) 2017-04-04 2019-10-30 Hoffmann La Roche Novel bispecific antigen binding molecules capable of specific binding to cd40 and to fap
KR102408873B1 (en) 2017-04-05 2022-06-15 에프. 호프만-라 로슈 아게 Bispecific antibodies specifically binding to pd1 and lag3
KR102294136B1 (en) 2017-04-05 2021-08-26 에프. 호프만-라 로슈 아게 anti-LAG3 antibody
CN108728444A (en) 2017-04-18 2018-11-02 长春华普生物技术股份有限公司 Immunoregulation polynucleotide and its application
WO2018192974A1 (en) 2017-04-18 2018-10-25 Université Libre de Bruxelles Biomarkers and targets for proliferative diseases
WO2018195302A1 (en) 2017-04-19 2018-10-25 Bluefin Biomedicine, Inc. Anti-vtcn1 antibodies and antibody drug conjugates
MA49131A (en) 2017-04-21 2020-03-25 Hoffmann La Roche USE OF KLK5 ANTAGONISTS FOR THE TREATMENT OF DISEASE
TWI791519B (en) 2017-04-27 2023-02-11 美商提薩羅有限公司 Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof
JP2020518638A (en) 2017-05-05 2020-06-25 アラコス インコーポレイテッド Methods and compositions for treating allergic eye diseases
JP2020519261A (en) 2017-05-11 2020-07-02 ブイアイビー ブイゼットダブリュVib Vzw Glycosylation of variable immunoglobulin domains
WO2018213097A1 (en) 2017-05-15 2018-11-22 University Of Rochester Broadly neutralizing anti-influenza monoclonal antibody and uses thereof
EP3403649A1 (en) 2017-05-16 2018-11-21 Bayer Pharma Aktiengesellschaft Inhibitors and antagonists of gpr84 for the treatment of endometriosis
EP3624780A1 (en) 2017-05-17 2020-03-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Flt3 inhibitors for improving pain treatments by opioids
EP3406253A1 (en) 2017-05-24 2018-11-28 Bayer Aktiengesellschaft Inhibitors and antagonists of human pycr1
WO2018218068A1 (en) * 2017-05-24 2018-11-29 Development Center For Biotechnology Humanized antibodies against globo h and uses thereof in cancer treatments
EP3409322A1 (en) 2017-06-01 2018-12-05 F. Hoffmann-La Roche AG Treatment method
EP4272822A3 (en) 2017-06-02 2024-03-27 Merck Patent GmbH Adamts binding immunoglobulins
WO2018220236A1 (en) 2017-06-02 2018-12-06 Merck Patent Gmbh Polypeptides binding adamts5, mmp13 and aggrecan
BR112019025392A2 (en) 2017-06-02 2020-07-07 Ablynx N.V. aggrecan-binding immunoglobulins
CA3064469A1 (en) 2017-06-02 2018-12-06 Merck Patent Gmbh Mmp13 binding immunoglobulins
EP3634582A1 (en) 2017-06-08 2020-04-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating hyperpigmentation disorders
EP3635398A1 (en) 2017-06-08 2020-04-15 Institut National de la Sante et de la Recherche Medicale (INSERM) Chimeric receptor for use in whole-cell sensors for detecting analytes of interest
TWI726217B (en) * 2017-06-15 2021-05-01 財團法人生物技術開發中心 Antibody-drug conjugates containing anti-globo h antibodies and uses thereof
US20210403573A1 (en) 2017-06-22 2021-12-30 INSERM (Institut National de la Santé et de la Recherche Médicale Methods and pharmaceutical compositions for the treatment of fibrosis with agents capable of inhibiting the activation of mucosal-associated invariant t (mait) cells
WO2019000223A1 (en) 2017-06-27 2019-01-03 Nanjing Legend Biotech Co., Ltd. Chimeric antibody immune effctor cell engagers and methods of use thereof
WO2019002548A1 (en) 2017-06-29 2019-01-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Treating migraine by agonising trek1, trek2 or heteromers including them
TWI820031B (en) 2017-07-11 2023-11-01 美商坎伯斯治療有限責任公司 Agonist antibodies that bind human cd137 and uses thereof
KR102625929B1 (en) 2017-07-19 2024-01-16 브이아이비 브이지더블유 Serum albumin binder
WO2019016310A1 (en) 2017-07-20 2019-01-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers
TWI823859B (en) 2017-07-21 2023-12-01 美商建南德克公司 Therapeutic and diagnostic methods for cancer
WO2019020480A1 (en) 2017-07-24 2019-01-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies and peptides to treat hcmv related diseases
EP3658173A1 (en) 2017-07-25 2020-06-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for modulating monocytopoiesis
JP7407699B2 (en) 2017-07-28 2024-01-04 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antibody preparation
JP7299160B2 (en) 2017-08-03 2023-06-27 アレクトル エルエルシー ANTI-CD33 ANTIBODY AND METHOD OF USE THEREOF
EP3444275A1 (en) 2017-08-16 2019-02-20 Exiris S.r.l. Monoclonal antibody anti-fgfr4
CN111511762A (en) 2017-08-21 2020-08-07 天演药业公司 anti-CD137 molecules and uses thereof
EP3676296A1 (en) 2017-08-30 2020-07-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-mesothelin radiolabelled single domain antibodies suitable for the imaging and treatment of cancers
EP3457139A1 (en) 2017-09-19 2019-03-20 Promise Advanced Proteomics Antibody-like peptides for quantifying therapeutic antibodies
WO2019059411A1 (en) 2017-09-20 2019-03-28 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
EP3684471A1 (en) 2017-09-20 2020-07-29 Institut National de la Sante et de la Recherche Medicale (INSERM) Methods and pharmaceutical compositions for modulating autophagy
TW201922780A (en) 2017-09-25 2019-06-16 美商健生生物科技公司 Safe and effective method of treating Lupus with anti-IL12/IL23 antibody
JP7450535B2 (en) 2017-10-20 2024-03-15 エフ. ホフマン-ラ ロシュ アーゲー Method for generating multispecific antibodies from monospecific antibodies
WO2019081456A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft Use of activators and stimulators of sgc comprising a beta2 subunit
AU2018358883A1 (en) 2017-10-30 2020-04-23 F. Hoffmann-La Roche Ag Method for in vivo generation of multispecific antibodies from monospecific antibodies
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
WO2019086548A1 (en) 2017-10-31 2019-05-09 Vib Vzw Novel antigen-binding chimeric proteins and methods and uses thereof
JP2021500930A (en) 2017-11-01 2021-01-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft COMP Body-Multivalent Target Binding Substance
JP2021501162A (en) 2017-11-01 2021-01-14 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Combination therapy with targeted OX40 agonist
WO2019086499A1 (en) 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag Novel tnf family ligand trimer-containing antigen binding molecules
CR20200171A (en) 2017-11-01 2020-06-14 Hoffmann La Roche Bispecific 2+1 contorsbodies
TW201923089A (en) 2017-11-06 2019-06-16 美商建南德克公司 Diagnostic and therapeutic methods for cancer
CA3082365A1 (en) 2017-11-09 2019-05-16 Pinteon Therapeutics Inc. Methods and compositions for the generation and use of humanized conformation-specific phosphorylated tau antibodies
EP3710486A1 (en) 2017-11-15 2020-09-23 Novo Nordisk A/S Factor x binders enhancing fx activation
US11851497B2 (en) 2017-11-20 2023-12-26 Compass Therapeutics Llc CD137 antibodies and tumor antigen-targeting antibodies and uses thereof
WO2019101995A1 (en) 2017-11-27 2019-05-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for cardiac regeneration
SG11202004897XA (en) 2017-11-28 2020-06-29 Chugai Pharmaceutical Co Ltd Polypeptide including antigen-binding domain and carrying section
US20210179721A1 (en) 2017-11-29 2021-06-17 Csl Limited Method of treating or preventing ischemia-reperfusion injury
BR112020010937A2 (en) 2017-12-01 2020-11-17 Seattle Genetics, Inc. humanized anti-liv1 antibodies for the treatment of breast cancer
CN111448213A (en) 2017-12-01 2020-07-24 西雅图基因公司 CD47 antibodies and their use for treating cancer
TW201934578A (en) 2017-12-14 2019-09-01 瑞士商赫孚孟拉羅股份公司 treatment method
EA202091521A1 (en) 2017-12-19 2020-10-22 Дзе Рокфеллер Юниверсити HUMAN Fc IgG DOMAIN OPTIONS WITH IMPROVED EFFECTIVE FUNCTION
EP3502140A1 (en) 2017-12-21 2019-06-26 F. Hoffmann-La Roche AG Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
CN111527107A (en) 2017-12-21 2020-08-11 豪夫迈·罗氏有限公司 Antibodies that bind HLA-A2/WT1
JP7394058B2 (en) 2017-12-21 2023-12-07 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Universal reporter cell assay for specificity testing of novel antigen-binding moieties
WO2019122060A1 (en) 2017-12-21 2019-06-27 F. Hoffmann-La Roche Ag Car-t cell assay for specificity test of novel antigen binding moieties
WO2019126472A1 (en) 2017-12-22 2019-06-27 Genentech, Inc. Use of pilra binding agents for treatment of a disease
TW201930358A (en) 2017-12-28 2019-08-01 大陸商南京傳奇生物科技有限公司 Single-domain antibodies and variants thereof against TIGIT
JP2021508498A (en) 2017-12-29 2021-03-11 アレクター リミテッド ライアビリティ カンパニー Anti-TMEM106B antibody and how to use it
EP3735590A1 (en) 2018-01-04 2020-11-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma resistant
KR20200120641A (en) 2018-01-15 2020-10-21 난징 레전드 바이오테크 씨오., 엘티디. Single-domain antibody against PD-1 and variants thereof
EP3740505A1 (en) 2018-01-16 2020-11-25 Lakepharma Inc. Bispecific antibody that binds cd3 and another target
EP3743096A1 (en) 2018-01-25 2020-12-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Antagonists of il-33 for use in methods for preventing ischemia reperfusion injury in an organ
JP2021511793A (en) 2018-01-31 2021-05-13 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antibody containing an antigen binding site that binds to LAG3
EP3746476A1 (en) 2018-01-31 2020-12-09 Alector LLC Anti-ms4a4a antibodies and methods of use thereof
CN111630063A (en) 2018-01-31 2020-09-04 豪夫迈·罗氏有限公司 Stabilized immunoglobulin domains
WO2019150309A1 (en) 2018-02-02 2019-08-08 Hammack Scott Modulators of gpr68 and uses thereof for treating and preventing diseases
WO2019148444A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Anti-ctla4 antibodies and methods of making and using the same
KR20200118444A (en) 2018-02-06 2020-10-15 아블린쓰 엔.브이. Method of treatment of early episodes of TTP using immunoglobulin single variable domain
CR20200391A (en) 2018-02-08 2020-10-19 Genentech Inc Bispecific antigen-binding molecules and methods of use
TWI829667B (en) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to gprc5d
WO2019157358A1 (en) 2018-02-09 2019-08-15 Genentech, Inc. Therapeutic and diagnostic methods for mast cell-mediated inflammatory diseases
WO2019158675A1 (en) 2018-02-16 2019-08-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating vitiligo
TW202000702A (en) 2018-02-26 2020-01-01 美商建南德克公司 Dosing for treatment with anti-TIGIT and anti-PD-L1 antagonist antibodies
EP3758742A1 (en) 2018-03-01 2021-01-06 Vrije Universiteit Brussel Human pd-l1-binding immunoglobulins
JP2021514648A (en) 2018-03-01 2021-06-17 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Specificity assay for novel target antigen binding moieties
KR20200129125A (en) 2018-03-05 2020-11-17 얀센 바이오테크 인코포레이티드 How to treat Crohn's disease with anti-IL23 specific antibodies
TW202003561A (en) 2018-03-13 2020-01-16 瑞士商赫孚孟拉羅股份公司 Combination therapy with targeted 4-1BB (CD137) agonists
EP3765489A1 (en) 2018-03-13 2021-01-20 F. Hoffmann-La Roche AG Therapeutic combination of 4-1 bb agonists with anti-cd20 antibodies
AU2019235033A1 (en) 2018-03-14 2020-07-30 Beijing Xuanyi Pharmasciences Co., Ltd. Anti-claudin 18.2 antibodies
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
KR20200132938A (en) 2018-03-15 2020-11-25 추가이 세이야쿠 가부시키가이샤 Anti-dengue virus antibodies with cross-reactivity against Zika virus and methods of use
WO2019179365A1 (en) 2018-03-20 2019-09-26 WuXi Biologics Ireland Limited Novel anti-lag-3 antibody polypeptide
AU2019240111A1 (en) 2018-03-21 2020-09-17 ALX Oncology Inc. Antibodies against signal-regulatory protein alpha and methods of use
CA3088676A1 (en) 2018-03-23 2019-09-26 Universite Libre De Bruxelles Wnt signaling agonist molecules
JP2021519073A (en) 2018-03-29 2021-08-10 ジェネンテック, インコーポレイテッド Regulation of lactogenic activity in mammalian cells
EP3778639A4 (en) 2018-04-02 2021-06-09 Mab-Venture Biopharm Co., Ltd. Lymphocyte activation gene-3 (lag-3) binding antibody and use thereof
WO2019192973A1 (en) 2018-04-04 2019-10-10 F. Hoffmann-La Roche Ag Diagnostic assays to detect tumor antigens in cancer patients
WO2019193375A1 (en) 2018-04-04 2019-10-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of fzd7 inhibitors for the treatment of retinal neovascularization
TW202011029A (en) 2018-04-04 2020-03-16 美商建南德克公司 Methods for detecting and quantifying FGF21
EP3775883A1 (en) 2018-04-04 2021-02-17 F. Hoffmann-La Roche AG Diagnostic assays to detect tumor antigens in cancer patients
EP3552631A1 (en) 2018-04-10 2019-10-16 Inatherys Antibody-drug conjugates and their uses for the treatment of cancer
MX2020010732A (en) 2018-04-13 2020-11-09 Hoffmann La Roche Her2-targeting antigen binding molecules comprising 4-1bbl.
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
AR114789A1 (en) 2018-04-18 2020-10-14 Hoffmann La Roche ANTI-HLA-G ANTIBODIES AND THE USE OF THEM
WO2019207030A1 (en) 2018-04-26 2019-10-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer
WO2019213384A1 (en) 2018-05-03 2019-11-07 University Of Rochester Anti-influenza neuraminidase monoclonal antibodies and uses thereof
CA3100007A1 (en) 2018-05-14 2019-11-21 Werewolf Therapeutics, Inc. Activatable interleukin-2 polypeptides and methods of use thereof
BR112020023167A2 (en) 2018-05-14 2021-02-09 Werewolf Therapeutics, Inc. activatable cytokine polypeptides and methods of using these
AU2019269066B2 (en) 2018-05-18 2022-10-06 F. Hoffmann-La Roche Ag Targeted intracellular delivery of large nucleic acids
EP3569618A1 (en) 2018-05-19 2019-11-20 Boehringer Ingelheim International GmbH Antagonizing cd73 antibody
EA202092825A1 (en) 2018-05-25 2021-04-22 ЭЛЕКТОР ЭлЭлСи ANTI-SIRPA ANTIBODIES AND METHODS OF THEIR APPLICATION
WO2019230868A1 (en) 2018-05-30 2019-12-05 中外製薬株式会社 Ligand-binding molecule containing single domain antibody
JP7390315B2 (en) 2018-06-01 2023-12-01 エーザイ・アール・アンド・ディー・マネジメント株式会社 Splicing modulator antibody-drug conjugates and methods of use thereof
KR20210016406A (en) 2018-06-01 2021-02-15 에자이 알앤드디 매니지먼트 가부시키가이샤 How to use splicing modifier
EP3801613A1 (en) 2018-06-04 2021-04-14 Bayer Aktiengesellschaft Inhibitors of shp2
EP3805400A4 (en) 2018-06-04 2022-06-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule showing changed half-life in cytoplasm
TW202016151A (en) 2018-06-09 2020-05-01 德商百靈佳殷格翰國際股份有限公司 Multi-specific binding proteins for cancer treatment
CA3103629A1 (en) 2018-06-15 2019-12-19 Flagship Pioneering Innovations V, Inc. Increasing immune activity through modulation of postcellular signaling factors
WO2019244107A1 (en) 2018-06-21 2019-12-26 Daiichi Sankyo Company, Limited Compositions including cd3 antigen binding fragments and uses thereof
KR20210024550A (en) 2018-06-23 2021-03-05 제넨테크, 인크. PD-1 axis binding antagonist, platinum agent, and method of treating lung cancer using topoisomerase II inhibitor
EA202190138A1 (en) 2018-06-29 2021-05-27 ЭЛЕКТОР ЭлЭлСи ANTI-SIRP-BETA1 ANTIBODIES AND METHODS OF THEIR USE
EP3818083A2 (en) 2018-07-03 2021-05-12 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and uses thereof
TW202035447A (en) 2018-07-04 2020-10-01 瑞士商赫孚孟拉羅股份公司 Novel bispecific agonistic 4-1bb antigen binding molecules
WO2020008083A1 (en) 2018-07-05 2020-01-09 Consejo Superior De Investigaciones Científicas Therapeutic target in chemokine receptors for the screening of compounds useful for the treatment of pathological processes involving chemokine signaling
KR20230065382A (en) 2018-07-13 2023-05-11 알렉터 엘엘씨 Anti-sortilin antibodies and methods of use thereof
MX2021000558A (en) 2018-07-18 2021-04-13 Genentech Inc Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent.
EP3824295A4 (en) 2018-07-18 2022-04-27 Janssen Biotech, Inc. Sustained response predictors after treatment with anti-il23 specific antibody
BR112021000727A2 (en) 2018-07-20 2021-04-13 Surface Oncology, Inc. ANTI-CD112R COMPOSITIONS AND METHODS
JP7401166B2 (en) 2018-08-01 2023-12-19 イムチェック セラピューティクス エスエーエス Anti-BTN3A antibodies and their use in the treatment of cancer or infectious disorders
JPWO2020027330A1 (en) 2018-08-03 2021-08-19 中外製薬株式会社 Antigen-binding molecule containing two antigen-binding domains linked to each other
SG11202100601TA (en) 2018-08-08 2021-02-25 Genentech Inc Use of tryptophan derivatives and l-methionine for protein formulation
AU2019318031A1 (en) 2018-08-10 2021-02-25 Chugai Seiyaku Kabushiki Kaisha Anti-CD137 antigen-binding molecule and utilization thereof
TW202021618A (en) 2018-08-17 2020-06-16 美商23與我有限公司 Anti-il1rap antibodies and methods of use thereof
US11548938B2 (en) 2018-08-21 2023-01-10 Quidel Corporation DbpA antibodies and uses thereof
TW202016307A (en) 2018-08-31 2020-05-01 美商阿列克特有限責任公司 Anti-cd33 antibodies and methods of use thereof
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
US20210278420A1 (en) 2018-09-05 2021-09-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating asthma and allergic diseases
GB2576914A (en) 2018-09-06 2020-03-11 Kymab Ltd Antigen-binding molecules comprising unpaired variable domains produced in mammals
US20220047701A1 (en) 2018-09-10 2022-02-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Combination of her2/neu antibody with heme for treating cancer
WO2020053147A1 (en) 2018-09-10 2020-03-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of an inhibitor of ntsr1 activation or expression for preventing weight loss, muscle loss, and protein blood level decrease in subjects in need thereof
WO2020053125A1 (en) 2018-09-10 2020-03-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of neurofibromatosis
US20220023265A1 (en) 2018-09-17 2022-01-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of inhibitors of phosphatase activity of soluble epoxide for the treatment of cardiometabolic diseases
TW202023542A (en) 2018-09-18 2020-07-01 瑞士商赫孚孟拉羅股份公司 Use of a cathepsin s inhibitor against the formation of anti-drug antibodies
US20220073638A1 (en) 2018-09-19 2022-03-10 INSERM (Institut National de la Santé et de la Recherche Médicale Methods and pharmaceutical composition for the treatment of cancers resistant to immune checkpoint therapy
MX2021003214A (en) 2018-09-19 2021-05-12 Genentech Inc Therapeutic and diagnostic methods for bladder cancer.
WO2020061349A1 (en) 2018-09-21 2020-03-26 Genentech, Inc. Diagnostic methods for triple-negative breast cancer
FI13575Y1 (en) 2018-09-24 2024-03-26 Janssen Biotech Inc IL12/IL23 antibody to be used in a safe and efficient method for treating ulcerative colitis
EP3856772A1 (en) 2018-09-25 2021-08-04 Institut National de la Santé et de la Recherche Médicale (INSERM) Use of antagonists of th17 cytokines for the treatment of bronchial remodeling in patients suffering from allergic asthma
BR112021005907A2 (en) 2018-09-27 2021-08-10 Xilio Development, Inc. masked cytokines, nucleic acid, vector, host cell, methods for producing a masked cytokine, for treating or preventing a neoplastic disease and for treating or preventing a neoplastic inflammatory or autoimmune disease, composition, pharmaceutical composition and kit
WO2020070062A1 (en) 2018-10-01 2020-04-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of tim-3 inhibitors for the treatment of exacerbations in patients suffering from severe asthma
CN112654641A (en) 2018-10-01 2021-04-13 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules with trivalent binding to CD40
MX2021003548A (en) 2018-10-01 2021-05-27 Hoffmann La Roche Bispecific antigen binding molecules comprising anti-fap clone 212.
EP3861022A1 (en) 2018-10-04 2021-08-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of mucosal inflammatory diseases
WO2020070288A1 (en) 2018-10-05 2020-04-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and systems for controlling the agonistic properties of antibody variable domains by light
EP3636657A1 (en) 2018-10-08 2020-04-15 Ablynx N.V. Chromatography-free antibody purification method
WO2020074937A1 (en) 2018-10-09 2020-04-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of alpha-v-integrin (cd51) inhibitors for the treatment of cardiac fibrosis
TW202028244A (en) 2018-10-09 2020-08-01 美商建南德克公司 Methods and systems for determining synapse formation
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
WO2020079162A1 (en) 2018-10-18 2020-04-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for inducing full ablation of hematopoiesis
EP3867646A1 (en) 2018-10-18 2021-08-25 F. Hoffmann-La Roche AG Diagnostic and therapeutic methods for sarcomatoid kidney cancer
CA3115110A1 (en) 2018-10-24 2020-04-30 F. Hoffmann-La Roche Ag Conjugated chemical inducers of degradation and methods of use
CA3117051A1 (en) 2018-11-05 2020-05-14 Genentech, Inc. Methods of producing two chain proteins in prokaryotic host cells
JP2022507253A (en) 2018-11-13 2022-01-18 コンパス セラピューティクス リミテッド ライアビリティ カンパニー Multispecific binding constructs for checkpoint molecules and their use
GB201818477D0 (en) 2018-11-13 2018-12-26 Emstopa Ltd Tissue plasminogen activator antibodies and method of use thereof
EP3883961A1 (en) 2018-11-20 2021-09-29 Takeda Vaccines, Inc. Novel anti-zika virus antibodies and uses thereof
WO2020104479A1 (en) 2018-11-20 2020-05-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies
MA55149A (en) 2018-11-20 2021-09-29 Janssen Biotech Inc SAFE AND EFFECTIVE PROCESS FOR TREATING PSORIASIS WITH A SPECIFIC ANTI-IL-23 ANTIBODY
CA3119798A1 (en) 2018-12-06 2020-06-11 Genentech, Inc. Combination therapy of diffuse large b-cell lymphoma comprising an anti-cd79b immunoconjugates, an alkylating agent and an anti-cd20 antibody
WO2020115261A1 (en) 2018-12-07 2020-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2020123275A1 (en) 2018-12-10 2020-06-18 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
WO2020120592A1 (en) 2018-12-12 2020-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating melanoma
JP2022512401A (en) 2018-12-13 2022-02-03 エーザイ・アール・アンド・ディー・マネジメント株式会社 Harboxy Diene Splicing Regulatory Antibodies-Drug Conjugates and Their Usage
WO2020120644A1 (en) 2018-12-13 2020-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) New anti tau svqivykpv epitope single domain antibody
JP2022514561A (en) 2018-12-18 2022-02-14 ヤンセン バイオテツク,インコーポレーテツド A safe and effective way to treat lupus with anti-IL12 / IL23 antibodies
AR117327A1 (en) 2018-12-20 2021-07-28 23Andme Inc ANTI-CD96 ANTIBODIES AND METHODS OF USE OF THEM
BR112021011939A2 (en) 2018-12-21 2021-09-14 F. Hoffmann-La Roche Ag CD3 BINDING ANTIBODY, CD3 AND TYRP-1 BINDING ANTIBODIES, ISOLATED POLYNUCLEOTIDE, HOST CELL, METHOD FOR PRODUCING A CD3 BINDING ANTIBODY, PHARMACEUTICAL COMPOSITION AND USES OF THE ANTIBODY
WO2020127885A1 (en) 2018-12-21 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Compositions for treating cancers and resistant cancers
EP3898683A1 (en) 2018-12-21 2021-10-27 F. Hoffmann-La Roche AG Tumor-targeted superagonistic cd28 antigen binding molecules
EP3898984A1 (en) 2018-12-21 2021-10-27 Genentech, Inc. Methods of producing polypeptides using a cell line resistant to apoptosis
BR112021010374A2 (en) 2018-12-21 2021-08-24 23Andme, Inc. Anti-il-36 antibodies and methods of using them
UA128001C2 (en) 2018-12-21 2024-03-06 Ф. Хоффманн-Ля Рош Аг Tumor-targeted agonistic cd28 antigen binding molecules
MX2021007768A (en) 2018-12-26 2021-08-24 Xilio Dev Inc Anti-ctla4 antibodies and methods of use thereof.
EP3902830A1 (en) 2018-12-30 2021-11-03 F. Hoffmann-La Roche AG Anti-rabbit cd19 antibodies and methods of use
EP4059569A1 (en) 2019-01-03 2022-09-21 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer
MX2021008434A (en) 2019-01-14 2021-09-23 Genentech Inc Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine.
EP3911676A1 (en) 2019-01-15 2021-11-24 Janssen Biotech, Inc. Anti-tnf antibody compositions and methods for the treatment of juvenile idiopathic arthritis
CA3124515A1 (en) 2019-01-23 2020-07-30 Genentech, Inc. Methods of producing multimeric proteins in eukaryotic host cells
KR20210118878A (en) 2019-01-23 2021-10-01 얀센 바이오테크 인코포레이티드 Anti-TNF antibody composition for use in a method of treating psoriatic arthritis
US20220089770A1 (en) 2019-01-24 2022-03-24 Chugai Seiyaku Kabushiki Kaisha Novel cancer antigens and antibodies of said antigens
JP2022518796A (en) 2019-01-28 2022-03-16 メイプル バイオテック エルエルシー PSMP antagonist for use in the treatment of lung, kidney, or liver fibrosis disorders
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
EP3921031A1 (en) 2019-02-04 2021-12-15 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods and compositions for modulating blood-brain barrier
EP3921443A1 (en) 2019-02-08 2021-12-15 F. Hoffmann-La Roche AG Diagnostic and therapeutic methods for cancer
CN113728107B (en) 2019-02-18 2022-06-24 Atb治疗公司 Method for producing conjugate-toxin fusion proteins in plant cells or whole plants
WO2020169707A1 (en) 2019-02-21 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Foxo1 inhibitor for use in the treatment of latent virus infection
WO2020169698A1 (en) 2019-02-21 2020-08-27 F. Hoffmann-La Roche Ag Sensitization of cancer cells to tnf by bet inhibition
CN113710706A (en) 2019-02-27 2021-11-26 豪夫迈·罗氏有限公司 Administration for anti-TIGIT antibody and anti-CD 20 antibody or anti-CD 38 antibody treatment
EP3930744A1 (en) 2019-03-01 2022-01-05 Allogene Therapeutics, Inc. Dll3 targeting chimeric antigen receptors and binding agents
US20220137054A1 (en) 2019-03-05 2022-05-05 INSERM (Institut National de la Santé et de la Recherche Médicale) New biomarkers and biotargets in renal cell carcinoma
CA3126728A1 (en) 2019-03-08 2020-09-17 Genentech, Inc. Methods for detecting and quantifying membrane-associated proteins on extracellular vesicles
CA3133383A1 (en) 2019-03-14 2020-09-17 Janssen Biotech, Inc. Methods for producing anti-tnf antibody compositions
CN113840838A (en) 2019-03-14 2021-12-24 詹森生物科技公司 Methods of manufacture of compositions for the production of anti-TNF antibodies
JP2022524074A (en) 2019-03-14 2022-04-27 ジェネンテック, インコーポレイテッド Treatment of cancer with HER2xCD3 bispecific antibodies in combination with anti-HER2 MAB
CA3133395A1 (en) 2019-03-14 2020-09-17 Janssen Biotech, Inc. Manufacturing methods for producing anti-il12/il23 antibody compositions
KR20210141998A (en) 2019-03-14 2021-11-23 얀센 바이오테크 인코포레이티드 Method of making anti-TNF antibody composition
AU2020241428A1 (en) 2019-03-15 2021-08-12 Cartesian Therapeutics, Inc. Anti-BCMA chimeric antigen receptors
KR20210141583A (en) 2019-03-18 2021-11-23 얀센 바이오테크 인코포레이티드 Methods of Treating Psoriasis in Children Using Anti-IL-12/IL-23 Antibodies
US20220153875A1 (en) 2019-03-19 2022-05-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing antigen-binding domain of which binding activity to antigen is changed depending on mta, and library for obtaining said antigen-binding domain
EP3947446A1 (en) 2019-03-25 2022-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of taupathy disorders by targeting new tau species
KR20210150623A (en) 2019-03-29 2021-12-10 제넨테크, 인크. Modulators of cell surface protein interactions and related methods and compositions
US20220249511A1 (en) 2019-03-29 2022-08-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of keloid, hypertrophic scars and/or hyperpigmentation disorders
EP3947737A2 (en) 2019-04-02 2022-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
WO2020201442A1 (en) 2019-04-03 2020-10-08 Orega Biotech Combination therapies based on pd1 and il-17b inhibitors
US20220249458A1 (en) 2019-04-04 2022-08-11 Bayer Aktiengesellschaft Agonists Of Adiponectin
SG11202109901TA (en) 2019-04-09 2021-10-28 Hospital For Special Surgery Protein binders for irhom2
WO2020208124A1 (en) 2019-04-12 2020-10-15 F. Hoffmann-La Roche Ag Treatment of cancer using a cea cd3 bispecific antibody and a wnt signaling inhibitor
CN113677403A (en) 2019-04-12 2021-11-19 豪夫迈·罗氏有限公司 Bispecific antigen binding molecules comprising lipocalin muteins
BR112021020867A2 (en) 2019-04-19 2022-01-04 Genentech Inc Antibodies, nucleic acid, vector, host cell, method of producing an antibody, immunoconjugate, pharmaceutical formulation, uses of the antibody, method of treating an individual with cancer, and method of reducing clearance
KR20220004028A (en) 2019-04-26 2022-01-11 알로젠 테라퓨틱스 인코포레이티드 Methods for making allogeneic CAR T cells
WO2020221796A1 (en) 2019-04-30 2020-11-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
EP3962493A2 (en) 2019-05-03 2022-03-09 Flagship Pioneering Innovations V, Inc. Methods of modulating immune activity/level of irf or sting or of treating cancer, comprising the administration of a sting modulator and/or purinergic receptor modulator or postcellular signaling factor
EP3962947A2 (en) 2019-05-03 2022-03-09 F. Hoffmann-La Roche AG Methods of treating cancer with an anti-pd-l1 antibody
KR20220007136A (en) 2019-05-14 2022-01-18 제넨테크, 인크. Methods of Use of Anti-CD79b Immunoconjugates to Treat Follicular Lymphoma
MX2021013766A (en) 2019-05-14 2022-02-21 Werewolf Therapeutics Inc Separation moieties and methods and use thereof.
KR20220012883A (en) 2019-05-23 2022-02-04 얀센 바이오테크 인코포레이티드 A method of treating inflammatory bowel disease with a combination therapy of IL-23 and an antibody against TNF alpha
WO2020239945A1 (en) 2019-05-28 2020-12-03 Vib Vzw Cancer treatment by targeting plexins in the immune compartment
US20220228116A1 (en) 2019-05-28 2022-07-21 Vib Vzw Cd8+ t-cells lacking plexins and their application in cancer treatment
CA3142580A1 (en) 2019-06-03 2020-12-10 Janssen Biotech, Inc. Anti-tnf antibodies, compositions, and methods for the treatment of active ankylosing spondylitis
MX2021014885A (en) 2019-06-03 2022-04-06 Janssen Biotech Inc Anti-tnf antibody compositions, and methods for the treatment of psoriatic arthritis.
JPWO2020246563A1 (en) 2019-06-05 2020-12-10
WO2020246567A1 (en) 2019-06-05 2020-12-10 中外製薬株式会社 Protease substrate, and polypeptide including protease cleavage sequence
JPWO2020246617A1 (en) 2019-06-07 2020-12-10
AU2020291527A1 (en) 2019-06-11 2022-01-20 Alector Llc Anti-Sortilin antibodies for use in therapy
JP2022537031A (en) 2019-06-20 2022-08-23 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Conformational single domain antibodies against protease nexin-1 and uses thereof
TW202115124A (en) 2019-06-26 2021-04-16 瑞士商赫孚孟拉羅股份公司 Novel antigen binding molecules binding to cea
WO2020260326A1 (en) 2019-06-27 2020-12-30 F. Hoffmann-La Roche Ag Novel icos antibodies and tumor-targeted antigen binding molecules comprising them
WO2021001289A1 (en) 2019-07-02 2021-01-07 F. Hoffmann-La Roche Ag Immunoconjugates comprising a mutant interleukin-2 and an anti-cd8 antibody
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
WO2021016233A1 (en) 2019-07-22 2021-01-28 Seagen Inc. Humanized anti-liv1 antibodies for the treatment of cancer
CR20220078A (en) 2019-07-31 2022-06-24 Alector Llc Anti-ms4a4a antibodies and methods of use thereof
EP4003526A2 (en) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Antibodies binding to gprc5d
JP2022543551A (en) 2019-07-31 2022-10-13 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Antibody that binds to GPRC5D
US20220275105A1 (en) 2019-08-02 2022-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Neutralizing granzyme b for providing cardioprotection in a subject who experienced a myocardial infarction
WO2021028752A1 (en) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Anti-tfn antibodies for treating type i diabetes
WO2021048292A1 (en) 2019-09-11 2021-03-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
KR20220062304A (en) 2019-09-12 2022-05-16 제넨테크, 인크. Compositions and methods for treating lupus nephritis
US11918649B2 (en) 2019-09-18 2024-03-05 Molecular Templates, Inc. PD-L1-binding molecules comprising Shiga toxin a subunit scaffolds
CA3150999A1 (en) 2019-09-18 2021-03-25 James Thomas Koerber Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use
EP4031580A1 (en) 2019-09-20 2022-07-27 F. Hoffmann-La Roche AG Dosing for anti-tryptase antibodies
CN112625130B (en) 2019-09-24 2023-08-29 财团法人工业技术研究院 Anti-TIGIT antibodies and methods of use
EP4048693A1 (en) 2019-09-27 2022-08-31 F. Hoffmann-La Roche AG Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
US20220281997A1 (en) 2019-09-27 2022-09-08 Nanjing GenScript Biotech Co., Ltd. Anti-VHH Domain Antibodies and Use Thereof
CN114450304B (en) 2019-09-27 2023-12-12 国家医疗保健研究所 anti-Mullera tube inhibiting substance antibodies and uses thereof
WO2021058729A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
WO2021063968A1 (en) 2019-09-30 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and composition for diagnosing chronic obstructive pulmonary disease
WO2021064009A1 (en) 2019-09-30 2021-04-08 Scirhom Gmbh Protein binders to irhom2 epitopes
TW202128756A (en) 2019-10-02 2021-08-01 德商百靈佳殷格翰國際股份有限公司 Multi-specific binding proteins for cancer treatment
EP4037714A1 (en) 2019-10-03 2022-08-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating macrophages polarization
US20220363776A1 (en) 2019-10-04 2022-11-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer
BR112022007216A2 (en) 2019-10-18 2022-08-23 Genentech Inc METHODS FOR TREATMENT OF DIFFUSE LYMPHOMA, KIT AND IMMUNOCONJUGATE
WO2021078359A1 (en) 2019-10-21 2021-04-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of inhibitors of cubilin for the treatment of chronic kidney diseases
WO2021089513A1 (en) 2019-11-05 2021-05-14 F. Hoffmann-La Roche Ag Treatment of cancer using a hla-a2/wt1 x cd3 bispecific antibody and lenalidomide
EP4055388A1 (en) 2019-11-06 2022-09-14 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
WO2021090062A1 (en) 2019-11-07 2021-05-14 Eisai R&D Management Co., Ltd. Anti-mesothelin eribulin antibody-drug conjugates and methods of use
US20220390449A1 (en) 2019-11-12 2022-12-08 INSERM (Institut National de la Santé et de la Recherche Médicale) New serological marker for the latent form of toxoplasmosis
MX2022005904A (en) 2019-11-15 2022-09-07 Pliant Therapeutics Inc Compositions and methods for activation of integrins.
WO2021110796A1 (en) 2019-12-04 2021-06-10 Bayer Aktiengesellschaft Inhibitors of shp2
US20230040928A1 (en) 2019-12-09 2023-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to her4 and uses thereof
GB201918279D0 (en) 2019-12-12 2020-01-29 Vib Vzw Glycosylated single chain immunoglobulin domains
IL293827A (en) 2019-12-13 2022-08-01 Alector Llc Anti-mertk antibodies and methods of use thereof
CN114867494B9 (en) 2019-12-13 2024-01-12 基因泰克公司 anti-LY 6G6D antibodies and methods of use
US20230114107A1 (en) 2019-12-17 2023-04-13 Flagship Pioneering Innovations V, Inc. Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly
MX2022007635A (en) 2019-12-18 2022-07-19 Hoffmann La Roche Antibodies binding to hla-a2/mage-a4.
US20210188971A1 (en) 2019-12-19 2021-06-24 Quidel Corporation Monoclonal antibody fusions
AU2020412609A1 (en) 2019-12-23 2022-06-16 Genentech, Inc. Apolipoprotein L1-specific antibodies and methods of use
JPWO2021132166A1 (en) 2019-12-23 2021-07-01
PE20221585A1 (en) 2019-12-27 2022-10-06 Chugai Pharmaceutical Co Ltd ANTI-ANTIGEN-4 ANTIBODY ASSOCIATED WITH THE CYTOTOXIC T LYMPHOCYTE (CTLA-4) AND USE THEREOF
JP2023509952A (en) 2020-01-09 2023-03-10 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Novel 4-1BBL trimer-containing antigen-binding molecule
CN110818795B (en) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 anti-TIGIT antibodies and methods of use
EP4090770A1 (en) 2020-01-17 2022-11-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
IL294859A (en) 2020-01-31 2022-09-01 Genentech Inc Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
CA3167027A1 (en) 2020-02-05 2021-08-12 Larimar Therapeutics, Inc. Tat peptide binding proteins and uses thereof
CA3167349A1 (en) 2020-02-10 2021-08-19 Qing Zhou Claudin 18.2 antibody and use thereof
KR20220139357A (en) 2020-02-10 2022-10-14 상하이 에스쿠겐 바이오테크놀로지 컴퍼니 리미티드 CLDN18.2 Antibodies and Their Uses
TW202144395A (en) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 Anti-CD137 antigen-binding molecule for use in cancer treatment
CN113248611A (en) 2020-02-13 2021-08-13 湖南华康恒健生物技术有限公司 anti-BCMA antibody, pharmaceutical composition and application thereof
WO2021170750A1 (en) 2020-02-28 2021-09-02 Orega Biotech Combination therapies based on ctla4 and il-17b inhibitors
CA3174680A1 (en) 2020-03-13 2021-09-16 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
WO2021188749A1 (en) 2020-03-19 2021-09-23 Genentech, Inc. Isoform-selective anti-tgf-beta antibodies and methods of use
PE20230414A1 (en) 2020-03-24 2023-03-07 Genentech Inc TIE2 FIXING AGENTS AND METHODS OF USE
CA3169908A1 (en) 2020-03-26 2021-09-30 Genentech, Inc. Modified mammalian cells having reduced host cell proteins
WO2021202590A1 (en) 2020-03-31 2021-10-07 Alector Llc Anti-mertk antibodies and methods of use thereof
US20230121511A1 (en) 2020-03-31 2023-04-20 Chugai Seiyaku Kabushiki Kaisha Method for producing multispecific antigen-binding molecules
MX2022012376A (en) 2020-03-31 2023-02-15 Biotalys NV Anti-fungal polypeptides.
JP2023519930A (en) 2020-04-01 2023-05-15 ユニバーシティ オブ ロチェスター Monoclonal Antibodies Against Hemagglutinin (HA) and Neuraminidase (NA) of Influenza H3N2 Virus
AR121706A1 (en) 2020-04-01 2022-06-29 Hoffmann La Roche OX40 AND FAP-TARGETED BSPECIFIC ANTIGEN-BINDING MOLECULES
WO2021198511A1 (en) 2020-04-03 2021-10-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treatment of sars-cov-2 infection
JP2023520515A (en) 2020-04-03 2023-05-17 ジェネンテック, インコーポレイテッド Therapeutic and diagnostic methods for cancer
AU2021256936A1 (en) 2020-04-15 2022-07-21 F. Hoffmann-La Roche Ag Immunoconjugates
CN113527488A (en) 2020-04-22 2021-10-22 迈威(上海)生物科技股份有限公司 Single variable domain antibody targeting human programmed death ligand 1(PD-L1) and derivative thereof
IL297541A (en) 2020-04-24 2022-12-01 Genentech Inc Methods of using anti-cd79b immunoconjugates
AR121918A1 (en) 2020-04-24 2022-07-20 Hoffmann La Roche MODULATION OF ENZYMES AND PATHWAYS WITH SULFHYDRYL COMPOUNDS AND THEIR DERIVATIVES
TW202206100A (en) 2020-04-27 2022-02-16 美商西健公司 Treatment for cancer
MX2021015024A (en) 2020-04-28 2022-01-18 Univ Rockefeller Neutralizing anti-sars-cov-2 antibodies and methods of use thereof.
WO2021222167A1 (en) 2020-04-28 2021-11-04 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
IL297830A (en) 2020-05-03 2023-01-01 Levena Suzhou Biopharma Co Ltd Antibody-drug conjugates (adcs) comprising an anti-trop-2 antibody, compositions comprising such adcs, as well as methods of making and using the same
WO2021224401A1 (en) 2020-05-07 2021-11-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for determining a reference range of β-galactose exposure platelet
EP4149558A1 (en) 2020-05-12 2023-03-22 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas
EP4149964A2 (en) 2020-05-15 2023-03-22 Apogenix AG Multi-specific immune modulators
WO2021229104A1 (en) 2020-05-15 2021-11-18 Université de Liège Anti-cd38 single-domain antibodies in disease monitoring and treatment
AU2021276332A1 (en) 2020-05-19 2022-11-17 Boehringer Ingelheim International Gmbh Binding molecules for the treatment of cancer
US20230302050A1 (en) 2020-05-20 2023-09-28 Institut Curie Single Domain Antibodies and Their Use in Cancer Therapies
US20230204567A1 (en) 2020-05-20 2023-06-29 Takeda Vaccines, Inc. Method for determining the potency of antigens
WO2021236845A1 (en) 2020-05-20 2021-11-25 Takeda Vaccines, Inc. Method for detection of zika virus specific antibodies
WO2021236225A1 (en) 2020-05-20 2021-11-25 Takeda Vaccines, Inc. Method for detection of zika virus specific antibodies
JP2023526477A (en) 2020-05-20 2023-06-21 アンスティテュ・クリー Synthetic single domain library
CN116323665A (en) 2020-05-29 2023-06-23 23和我公司 anti-CD 200R1 antibodies and methods of use thereof
WO2021245224A1 (en) 2020-06-05 2021-12-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for treating ocular diseases
JP2023528412A (en) 2020-06-05 2023-07-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 Anti-BCMA antibody-drug conjugates and methods of use
BR112022024996A2 (en) 2020-06-08 2022-12-27 Hoffmann La Roche ANTIBODIES, NUCLEIC ACID, HOST CELL, METHOD FOR PRODUCING AN ANTIBODY, PHARMACEUTICAL COMPOSITION, THERAPEUTIC AGENT, USE OF THE ANTIBODY, AND METHOD FOR TREATING AN INDIVIDUAL WITH HEPATITIS B
MX2022015651A (en) 2020-06-11 2023-01-16 Genentech Inc Nanolipoprotein-polypeptide conjugates and compositions, systems, and methods using same.
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
KR20230025691A (en) 2020-06-16 2023-02-22 제넨테크, 인크. Methods and compositions for treating triple negative breast cancer
CA3181672A1 (en) 2020-06-18 2021-12-23 Shi Li Treatment with anti-tigit antibodies and pd-1 axis binding antagonists
TW202216767A (en) 2020-06-19 2022-05-01 瑞士商赫孚孟拉羅股份公司 Antibodies binding to cd3 and folr1
KR20230025667A (en) 2020-06-19 2023-02-22 에프. 호프만-라 로슈 아게 Protease Activated T Cell Bispecific Antibody
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
BR112022025574A2 (en) 2020-06-19 2023-01-03 Hoffmann La Roche ANTIBODIES THAT BINDS CD3, POLYNUCLEOTIDE ISOLATED, HOST CELL, METHOD FOR PRODUCING AN ANTIBODY THAT BINDS CD3 AND FOR TREAT A DISEASE IN AN INDIVIDUAL, PHARMACEUTICAL COMPOSITION, ANTIBODY FOR USE AND INVENTION
CR20220637A (en) 2020-06-19 2023-01-31 Hoffmann La Roche Antibodies binding to cd3 and cd19
CA3183475A1 (en) 2020-06-22 2021-12-30 Thomas Huber Anti-il-36 antibodies and methods of use thereof
TW202216769A (en) 2020-06-23 2022-05-01 瑞士商赫孚孟拉羅股份公司 Agonistic cd28 antigen binding molecules targeting her2
IL299161A (en) 2020-06-24 2023-02-01 Genentech Inc Apoptosis resistant cell lines
WO2021260064A1 (en) 2020-06-25 2021-12-30 F. Hoffmann-La Roche Ag Anti-cd3/anti-cd28 bispecific antigen binding molecules
JP2023532726A (en) 2020-06-29 2023-07-31 インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル) ANTI-PROTEIN S SINGLE DOMAIN ANTIBODY AND POLYPEPTIDE CONTAINING THE SAME
EP4172323A1 (en) 2020-06-29 2023-05-03 Flagship Pioneering Innovations V, Inc. Viruses engineered to promote thanotransmission and their use in treating cancer
WO2022008597A1 (en) 2020-07-08 2022-01-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of infectious diseases
TW202204895A (en) 2020-07-13 2022-02-01 美商建南德克公司 Cell-based methods for predicting polypeptide immunogenicity
BR112023000839A2 (en) 2020-07-17 2023-02-07 Genentech Inc ISOLATED ANTIBODIES, ISOLATED NUCLEIC ACID, HOST CELL, METHODS FOR PRODUCING AN ANTIBODY THAT BINDS TO HUMAN NOTCH2, FOR TREATING AN INDIVIDUAL WITH A MUCO-OBSTRUCTIVE PULMONARY DISEASE, AND FOR REDUCING THE NUMBER OF SECRETORY CELLS IN AN INDIVIDUAL, PHARMACEUTICAL COMPOSITION, ANTIBODY, ANTIBODY FOR USE AND USE OF THE ANTIBODY
MX2023000888A (en) 2020-07-21 2023-02-22 Genentech Inc Antibody-conjugated chemical inducers of degradation of brm and methods thereof.
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
WO2022023379A1 (en) 2020-07-28 2022-02-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for preventing and treating a cancer
EP4189071A1 (en) 2020-08-03 2023-06-07 Institut National de la Santé et de la Recherche Médicale (INSERM) Population of treg cells functionally committed to exert a regulatory activity and their use for adoptive therapy
EP4192942A1 (en) 2020-08-07 2023-06-14 Genentech, Inc. T cell-based methods for predicting polypeptide immunogenicity
IL300701A (en) 2020-08-17 2023-04-01 Atb Therapeutics Recombinant immunotoxin comprising a ribotoxin or rnase
CN114106173A (en) 2020-08-26 2022-03-01 上海泰槿生物技术有限公司 anti-OX 40 antibodies, pharmaceutical compositions and uses thereof
WO2022047222A2 (en) 2020-08-28 2022-03-03 Genentech, Inc. Crispr/cas9 multiplex knockout of host cell proteins
CN116113707A (en) 2020-08-31 2023-05-12 基因泰克公司 Methods for producing antibodies
JP2023541627A (en) 2020-09-14 2023-10-03 イシュノス サイエンシズ ソシエテ アノニム Antibodies that bind to IL1RAP and uses thereof
IL300543A (en) 2020-09-24 2023-04-01 Hoffmann La Roche Prevention or mitigation of t-cell bispecific antibody-related adverse effects
WO2022063947A1 (en) 2020-09-24 2022-03-31 Vib Vzw Combination of p2y6 inhibitors and immune checkpoint inhibitors
WO2022063957A1 (en) 2020-09-24 2022-03-31 Vib Vzw Biomarker for anti-tumor therapy
WO2022064049A1 (en) 2020-09-28 2022-03-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for diagnosing brucella infection
WO2022067348A1 (en) 2020-09-28 2022-03-31 Seagen Inc. Humanized anti-liv1 antibodies for the treatment of cancer
TW202229348A (en) 2020-09-30 2022-08-01 美商西健公司 Uveal melanoma treatment using sea-cd40
JP2023544407A (en) 2020-10-05 2023-10-23 ジェネンテック, インコーポレイテッド Administration for treatment with anti-FcRH5/anti-CD3 bispecific antibodies
EP4226155A1 (en) 2020-10-09 2023-08-16 Takeda Vaccines, Inc. Methods for determining complement-fixing antibodies
EP4229090A1 (en) 2020-10-16 2023-08-23 Université d'Aix-Marseille Anti-gpc4 single domain antibodies
AR123855A1 (en) 2020-10-20 2023-01-18 Genentech Inc PEG-CONJUGATED ANTI-MERTK ANTIBODIES AND METHODS OF USE
WO2022084300A1 (en) 2020-10-20 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosis and monitoring form of coronavirus infection
EP4232040A1 (en) 2020-10-20 2023-08-30 F. Hoffmann-La Roche AG Combination therapy of pd-1 axis binding antagonists and lrrk2 inhitibors
WO2022084355A2 (en) 2020-10-21 2022-04-28 Boehringer Ingelheim International Gmbh Agonistic trkb binding molecules for the treatment of eye diseases
WO2022084531A1 (en) 2020-10-23 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating glioma
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
JP2023549062A (en) 2020-10-30 2023-11-22 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Treatment of cancer using CEA CD3 bispecific antibodies and TGFβ signaling inhibitors
KR20230095119A (en) 2020-11-04 2023-06-28 제넨테크, 인크. Dosing for Treatment with Anti-CD20/Anti-CD3 Bispecific Antibodies
EP4240493A2 (en) 2020-11-04 2023-09-13 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
EP4240758A1 (en) 2020-11-04 2023-09-13 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
AU2021376354A1 (en) 2020-11-04 2023-06-22 Myeloid Therapeutics, Inc. Engineered chimeric fusion protein compositions and methods of use thereof
CA3196076A1 (en) 2020-11-04 2022-05-12 Chi-Chung Li Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
EP4240761A1 (en) 2020-11-05 2023-09-13 Institut National de la Santé et de la Recherche Médicale (INSERM) Use of il-6 inhibitors for the treatment of acute chest syndrome in patients suffering from sickle cell disease
EP4243856A1 (en) 2020-11-10 2023-09-20 F. Hoffmann-La Roche AG Prevention or mitigation of t-cell engaging agent-related adverse effects
WO2022101088A1 (en) 2020-11-16 2022-05-19 F. Hoffmann-La Roche Ag Fab high mannose glycoforms
WO2022101481A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating uveal melanoma
WO2022101458A1 (en) 2020-11-16 2022-05-19 F. Hoffmann-La Roche Ag Combination therapy with fap-targeted cd40 agonists
BR112023009875A2 (en) 2020-11-23 2024-02-06 Genentech Inc METHODS TO TREAT AN INDIVIDUAL WITH A SARS-COV-2 INFECTION, TO REDUCE THE BINDING OF SARS-COV-2 TO A CELL, TO DECREASE THE SARS-COV-2 INFECTION, AND TO IDENTIFY A MODULATOR, METHODS OF PROPHYLAXIS, MODULATORS ISOLATES, USES AND ANTAGONISTS
AU2021386240A1 (en) 2020-11-27 2023-06-29 Genentech, Inc. Methods for modulating host cell surface interactions with human cytomegalovirus
KR20230116843A (en) 2020-12-01 2023-08-04 제넨테크, 인크. Biological vesicles presenting cell surface proteins and methods associated therewith
AU2021392039A1 (en) 2020-12-02 2023-06-29 Alector Llc Methods of use of anti-sortilin antibodies
US20220213199A1 (en) 2020-12-17 2022-07-07 Hoffmann-La Roche Inc. Anti-HLA-G antibodies and use thereof
CA3202897A1 (en) 2020-12-21 2022-06-30 Peter Joseph Gough Use of cell turnover factors for increasing tissue regeneration
IL304067A (en) 2021-01-06 2023-08-01 Hoffmann La Roche Combination therapy employing a pd1-lag3 bispecific antibody and a cd20 t cell bispecific antibody
WO2022153212A1 (en) 2021-01-13 2022-07-21 Axon Neuroscience Se Antibodies neutralizing sars-cov-2
CA3204731A1 (en) 2021-01-13 2022-07-21 John T. POIRIER Anti-dll3 antibody-drug conjugate
EP4277664A1 (en) 2021-01-13 2023-11-22 Memorial Sloan Kettering Cancer Center Antibody-pyrrolobenzodiazepine derivative conjugate
JP2024505428A (en) 2021-01-14 2024-02-06 アンスティテュ キュリー HER2 single domain antibody variants and their CARs
WO2022155324A1 (en) 2021-01-15 2022-07-21 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
AR124681A1 (en) 2021-01-20 2023-04-26 Abbvie Inc ANTI-EGFR ANTIBODY-DRUG CONJUGATES
EP4281484A1 (en) 2021-01-22 2023-11-29 Bionecure Therapeutics, Inc. Anti-her-2/trop-2 constructs and uses thereof
KR20230137295A (en) 2021-01-28 2023-10-04 난징 챔피언 바이오테크놀로지 컴퍼니 리미티드 Conjugates and their uses
CN117241804A (en) 2021-02-17 2023-12-15 非营利性组织佛兰芒综合大学生物技术研究所 Inhibition of SLC4A4 in cancer treatment
CN117321076A (en) 2021-02-19 2023-12-29 美国卫生及公众服务部代表 Single domain antibodies neutralizing SARS-CoV-2
CA3207134A1 (en) 2021-02-19 2022-08-25 Jeffrey A. Ledbetter Dnase fusion polypeptides and related compositions and methods
WO2022178415A1 (en) 2021-02-22 2022-08-25 Genentech, Inc. Methods for modulating host cell surface interactions with herpesviruses
KR20230150287A (en) 2021-02-26 2023-10-30 바이엘 악티엔게젤샤프트 Inhibitors of IL-11 or IL-11RA for use in the treatment of abnormal uterine bleeding
US20220306743A1 (en) 2021-03-01 2022-09-29 Xilio Development, Inc. Combination of ctla4 and pd1/pdl1 antibodies for treating cancer
BR112023017035A2 (en) 2021-03-01 2024-02-06 New York Soc For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surger HUMANIZED ANTIBODIES AGAINST IRHOM2, NUCLEIC ACID, USE OF THE ANTIBODY, PHARMACEUTICAL COMPOSITION, COMPOSITION, TREATMENT METHOD AND THERAPEUTIC KIT
TW202246324A (en) 2021-03-01 2022-12-01 美商艾希利歐發展股份有限公司 Combination of masked ctla4 and pd1/pdl1 antibodies for treating cancer
EP4301418A1 (en) 2021-03-03 2024-01-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates comprising an anti-bcma antibody
WO2022190034A1 (en) 2021-03-12 2022-09-15 Janssen Biotech, Inc. Method of treating psoriatic arthritis patients with inadequate response to tnf therapy with anti-il23 specific antibody
JP2024512377A (en) 2021-03-12 2024-03-19 ジェネンテック, インコーポレイテッド Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use
US20220298236A1 (en) 2021-03-12 2022-09-22 Janssen Biotech, Inc. Safe and Effective Method of Treating Psoriatic Arthritis with Anti-IL23 Specific Antibody
WO2022198192A1 (en) 2021-03-15 2022-09-22 Genentech, Inc. Compositions and methods of treating lupus nephritis
WO2022197945A1 (en) 2021-03-17 2022-09-22 Molecular Templates, Inc. Pd-l1 binding proteins comprising shiga toxin a subunit scaffolds and cd8+ t cell antigens
WO2022194908A1 (en) 2021-03-17 2022-09-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
CA3208011A1 (en) 2021-03-17 2022-09-22 Sarah Harris Methods of treating atopic dermatitis with anti il-13 antibodies
JP2024512002A (en) 2021-03-18 2024-03-18 アレクトル エルエルシー Anti-TMEM106B antibody and method of use thereof
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
EP4313317A1 (en) 2021-03-23 2024-02-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the diagnosis and treatment of t cell-lymphomas
JP2024511610A (en) 2021-03-23 2024-03-14 アレクトル エルエルシー Anti-TMEM106B antibody for treatment and prevention of coronavirus infection
WO2022207652A1 (en) 2021-03-29 2022-10-06 Scirhom Gmbh Methods of treatment using protein binders to irhom2 epitopes
CN117157312A (en) 2021-03-30 2023-12-01 豪夫迈·罗氏有限公司 Protease-activated polypeptides
EP4313109A1 (en) 2021-03-31 2024-02-07 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
BR112023020832A2 (en) 2021-04-08 2023-12-19 Marengo Therapeutics Inc TCR-BINDED MULTIFUNCTIONAL MOLECULES AND THEIR USES
WO2022214681A1 (en) 2021-04-09 2022-10-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of anaplastic large cell lymphoma
EP4323402A1 (en) 2021-04-14 2024-02-21 Villaris Therapeutics, Inc. Anti-cd122 antibodies and uses thereof
AR125344A1 (en) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd ANTI-C1S ANTIBODY
IL307501A (en) 2021-04-19 2023-12-01 Hoffmann La Roche Modified mammalian cells
WO2022223488A1 (en) 2021-04-19 2022-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of splice switching oligonucleotides for exon skipping-mediated knockdown of pim2
WO2022223791A1 (en) 2021-04-23 2022-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cell senescence accumulation related disease
WO2022223651A1 (en) 2021-04-23 2022-10-27 F. Hoffmann-La Roche Ag Prevention or mitigation of nk cell engaging agent-related adverse effects
WO2022228705A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
WO2022228706A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
EP4334343A2 (en) 2021-05-06 2024-03-13 The Rockefeller University Neutralizing anti-sars- cov-2 antibodies and methods of use thereof
BR112023023622A2 (en) 2021-05-12 2024-02-06 Genentech Inc METHODS TO TREAT DIFFUSE LYMPHOMA, KITS, IMMUNOCONJUGATES, POLATUZUMABE VEDOTIN AND IMMUNOCONJUGATE FOR USE
WO2022241082A1 (en) 2021-05-14 2022-11-17 Genentech, Inc. Agonists of trem2
WO2022242892A1 (en) 2021-05-17 2022-11-24 Université de Liège Anti-cd38 single-domain antibodies in disease monitoring and treatment
WO2022243261A1 (en) 2021-05-19 2022-11-24 F. Hoffmann-La Roche Ag Agonistic cd40 antigen binding molecules targeting cea
KR20240010469A (en) 2021-05-21 2024-01-23 제넨테크, 인크. Modified cells for production of recombinant products of interest
EP4347657A1 (en) 2021-05-25 2024-04-10 Seagen Inc. Methods of quantifying anti-cd40 antibodies
EP4348257A1 (en) 2021-05-26 2024-04-10 Genentech, Inc. Methods for modulating host cell surface interactions with human cytomegalovirus
AR126009A1 (en) 2021-06-02 2023-08-30 Hoffmann La Roche CD28 ANTIGEN-BINDING AGONIST MOLECULES THAT TARGET EPCAM
EP4347653A1 (en) 2021-06-04 2024-04-10 Boehringer Ingelheim International GmbH Anti-sirp-alpha antibodies
CN117480184A (en) 2021-06-04 2024-01-30 中外制药株式会社 anti-DDR 2 antibodies and uses thereof
WO2022258600A1 (en) 2021-06-09 2022-12-15 F. Hoffmann-La Roche Ag Combination of a particular braf inhibitor (paradox breaker) and a pd-1 axis binding antagonist for use in the treatment of cancer
WO2022266221A1 (en) 2021-06-16 2022-12-22 Alector Llc Monovalent anti-mertk antibodies and methods of use thereof
CN117642426A (en) 2021-06-16 2024-03-01 艾莱克特有限责任公司 Bispecific anti-MerTK and anti-PDL 1 antibodies and methods of use thereof
TW202317625A (en) 2021-06-17 2023-05-01 德商百靈佳殷格翰國際股份有限公司 Novel tri-specific binding molecules
WO2022269473A1 (en) 2021-06-23 2022-12-29 Janssen Biotech, Inc. Materials and methods for hinge regions in functional exogenous receptors
WO2022270611A1 (en) 2021-06-25 2022-12-29 中外製薬株式会社 Anti–ctla-4 antibody
AU2022297107A1 (en) 2021-06-25 2024-01-18 Chugai Seiyaku Kabushiki Kaisha Use of anti-ctla-4 antibody
CA3224374A1 (en) 2021-06-29 2023-01-05 Flagship Pioneering Innovations V, Inc. Immune cells engineered to promote thanotransmission and uses thereof
AU2022302170A1 (en) 2021-07-02 2023-12-21 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
AU2022306973A1 (en) 2021-07-09 2024-02-22 Janssen Biotech, Inc. Manufacturing methods for producing anti-il12/il23 antibody compositions
KR20240032991A (en) 2021-07-09 2024-03-12 얀센 바이오테크 인코포레이티드 Manufacturing Methods for Producing Anti-TNF Antibody Compositions
AU2022306144A1 (en) 2021-07-09 2024-02-22 Janssen Biotech, Inc. Manufacturing methods for producing anti-tnf antibody compositions
IL309559A (en) 2021-07-09 2024-02-01 Luxembourg Inst Of Health Lih Dimeric protein complexes and uses thereof
WO2023285362A1 (en) 2021-07-12 2023-01-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of il-36 inhibitors for the treatment of netherton syndrome
WO2023288241A1 (en) 2021-07-14 2023-01-19 Genentech, Inc. Anti-c-c motif chemokine receptor 8 (ccr8) antibodies and methods of use
CA3219606A1 (en) 2021-07-22 2023-01-26 F. Hoffmann-La Roche Ag Heterodimeric fc domain antibodies
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
AU2022317820A1 (en) 2021-07-28 2023-12-14 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
WO2023010080A1 (en) 2021-07-30 2023-02-02 Seagen Inc. Treatment for cancer
WO2023006975A2 (en) 2021-07-30 2023-02-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Chimeric proteins and methods of immunotherapy
CN117794953A (en) 2021-08-03 2024-03-29 豪夫迈·罗氏有限公司 Bispecific antibodies and methods of use
WO2023019239A1 (en) 2021-08-13 2023-02-16 Genentech, Inc. Dosing for anti-tryptase antibodies
WO2023028591A1 (en) 2021-08-27 2023-03-02 Genentech, Inc. Methods of treating tau pathologies
TW202325727A (en) 2021-08-30 2023-07-01 美商建南德克公司 Anti-polyubiquitin multispecific antibodies
TW202313695A (en) 2021-09-15 2023-04-01 法商感應檢查療法公司 Use of anti-btn3a antibody in manufacturing a medicament for use in treating a tumor
WO2023052541A1 (en) 2021-09-30 2023-04-06 Imcheck Therapeutics Combination of an anti-btn3a activating antibody and an il-2 agonist for use in therapy
WO2023056362A1 (en) 2021-09-30 2023-04-06 Seagen Inc. B7-h4 antibody-drug conjugates for the treatment of cancer
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023060086A1 (en) 2021-10-04 2023-04-13 Takeda Vaccines, Inc. Methods for determining norovirus-reactive antibodies
US20230190805A1 (en) 2021-10-06 2023-06-22 Immatics Biotechnologies Gmbh Methods of identifying metastatic lesions in a patient and treating thereof
WO2023057601A1 (en) 2021-10-06 2023-04-13 Biotalys NV Anti-fungal polypeptides
WO2023062048A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag Alternative pd1-il7v immunoconjugates for the treatment of cancer
AU2022362681A1 (en) 2021-10-14 2024-04-04 F. Hoffmann-La Roche Ag New interleukin-7 immunoconjugates
WO2023069919A1 (en) 2021-10-19 2023-04-27 Alector Llc Anti-cd300lb antibodies and methods of use thereof
WO2023073084A1 (en) 2021-10-27 2023-05-04 Imcheck Therapeutics Butyrophilin (btn) 3a activating antibodies for use in methods for treating infectious disorders
WO2023073615A1 (en) 2021-10-29 2023-05-04 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
WO2023073225A1 (en) 2021-11-01 2023-05-04 F. Hoffmann-La Roche Ag Treatment of cancer using a hla-a2/wt1 x cd3 bispecific antibody and a 4-1bb (cd137) agonist
WO2023078900A1 (en) 2021-11-03 2023-05-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating triple negative breast cancer (tnbc)
US20230192886A1 (en) 2021-11-08 2023-06-22 Immatics Biotechnologies Gmbh Adoptive cell therapy combination treatment and compositions thereof
WO2023086835A1 (en) 2021-11-09 2023-05-19 Sensei Biotherapeutics, Inc. Anti-vista antibodies and uses thereof
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
US20230151087A1 (en) 2021-11-15 2023-05-18 Janssen Biotech, Inc. Methods of Treating Crohn's Disease with Anti-IL23 Specific Antibody
WO2023088889A1 (en) 2021-11-16 2023-05-25 Apogenix Ag CD137 ligands
WO2023088876A1 (en) 2021-11-16 2023-05-25 Apogenix Ag Multi-specific immune modulators
TW202337494A (en) 2021-11-16 2023-10-01 美商建南德克公司 Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab
WO2023095000A1 (en) 2021-11-23 2023-06-01 Janssen Biotech, Inc. Method of treating ulcerative colitis with anti-il23 specific antibody
WO2023094525A1 (en) 2021-11-25 2023-06-01 Veraxa Biotech Gmbh Improved antibody-payload conjugates (apcs) prepared by site-specific conjugation utilizing genetic code expansion
EP4186529A1 (en) 2021-11-25 2023-05-31 Veraxa Biotech GmbH Improved antibody-payload conjugates (apcs) prepared by site-specific conjugation utilizing genetic code expansion
WO2023094698A1 (en) 2021-11-29 2023-06-01 Ose Immunotherapeutics Specific antagonist anti-sirpg antibodies
AR127887A1 (en) 2021-12-10 2024-03-06 F Hoffmann La Roche Ag ANTIBODIES THAT BIND CD3 AND PLAP
WO2023110788A1 (en) 2021-12-14 2023-06-22 F. Hoffmann-La Roche Ag Treatment of cancer using a hla-a2/mage-a4 x cd3 bispecific antibody and a 4-1bb (cd137) agonist
WO2023110937A1 (en) 2021-12-14 2023-06-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Depletion of nk cells for the treatment of adverse post-ischemic cardiac remodeling
WO2023114543A2 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Platform for antibody discovery
WO2023114544A1 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Antibodies and uses thereof
TW202340248A (en) 2021-12-20 2023-10-16 瑞士商赫孚孟拉羅股份公司 Agonistic ltbr antibodies and bispecific antibodies comprising them
WO2023118165A1 (en) 2021-12-21 2023-06-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
EP4209508A1 (en) 2022-01-11 2023-07-12 Centre national de la recherche scientifique Nanobodies for the deneddylating enzyme nedp1
WO2023141445A1 (en) 2022-01-19 2023-07-27 Genentech, Inc. Anti-notch2 antibodies and conjugates and methods of use
WO2023147329A1 (en) 2022-01-26 2023-08-03 Genentech, Inc. Antibody-conjugated chemical inducers of degradation and methods thereof
WO2023147328A1 (en) 2022-01-26 2023-08-03 Genentech, Inc. Antibody-conjugated chemical inducers of degradation with hydolysable maleimide linkers and methods thereof
WO2023147399A1 (en) 2022-01-27 2023-08-03 The Rockefeller University Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof
WO2023144235A1 (en) 2022-01-27 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for monitoring and treating warburg effect in patients with pi3k-related disorders
WO2023144303A1 (en) 2022-01-31 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd38 as a biomarker and biotarget in t-cell lymphomas
EP4231017A1 (en) 2022-02-17 2023-08-23 Promise Proteomics Detection and quantification of anti-drug antibodies and anti-self antibodies
WO2023156634A1 (en) 2022-02-17 2023-08-24 Atb Therapeutics Recombinant immunotoxin comprising a ribosome inactivating protein
WO2023173026A1 (en) 2022-03-10 2023-09-14 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2023170247A1 (en) 2022-03-11 2023-09-14 Mablink Bioscience Antibody-drug conjugates and their uses
WO2023175171A1 (en) 2022-03-18 2023-09-21 Inserm (Institut National De La Sante Et De La Recherche Medicale) Bk polyomavirus antibodies and uses thereof
US20230414750A1 (en) 2022-03-23 2023-12-28 Hoffmann-La Roche Inc. Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023186756A1 (en) 2022-03-28 2023-10-05 F. Hoffmann-La Roche Ag Interferon gamma variants and antigen binding molecules comprising these
US20230312703A1 (en) 2022-03-30 2023-10-05 Janssen Biotech, Inc. Method of Treating Psoriasis with IL-23 Specific Antibody
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
EP4257609A1 (en) 2022-04-08 2023-10-11 iOmx Therapeutics AG Combination therapies based on pd-1 inhibitors and sik3 inhibitors
WO2023198648A1 (en) 2022-04-11 2023-10-19 Institut National de la Santé et de la Recherche Médicale Methods for the diagnosis and treatment of t-cell malignancies
TW202400243A (en) 2022-04-12 2024-01-01 日商衛材R&D企管股份有限公司 Eribulin-based antibody-drug conjugates and methods of use
WO2023198727A1 (en) 2022-04-13 2023-10-19 F. Hoffmann-La Roche Ag Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use
WO2023201299A1 (en) 2022-04-13 2023-10-19 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
WO2023198851A1 (en) 2022-04-14 2023-10-19 Institut National de la Santé et de la Recherche Médicale Methods for controlling the tumor cell killing by light
WO2023198874A1 (en) 2022-04-15 2023-10-19 Institut National de la Santé et de la Recherche Médicale Methods for the diagnosis and treatment of t cell-lymphomas
WO2023212298A1 (en) 2022-04-29 2023-11-02 Broadwing Bio Llc Bispecific antibodies and methods of treating ocular disease
WO2023212294A1 (en) 2022-04-29 2023-11-02 Broadwing Bio Llc Angiopoietin-related protein 7-specific antibodies and uses thereof
WO2023212293A1 (en) 2022-04-29 2023-11-02 Broadwing Bio Llc Complement factor h related 4-specific antibodies and uses thereof
WO2023215737A1 (en) 2022-05-03 2023-11-09 Genentech, Inc. Anti-ly6e antibodies, immunoconjugates, and uses thereof
WO2023217904A1 (en) 2022-05-10 2023-11-16 Institut National de la Santé et de la Recherche Médicale Syncitin-1 fusion proteins and uses thereof for cargo delivery into target cells
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023218431A1 (en) 2022-05-13 2023-11-16 BioNTech SE Rna compositions targeting hiv
WO2023223265A1 (en) 2022-05-18 2023-11-23 Janssen Biotech, Inc. Method for evaluating and treating psoriatic arthritis with il23 antibody
US20230416412A1 (en) 2022-05-31 2023-12-28 Hoffmann-La Roche Inc. Prevention or mitigation of t-cell engaging agent-related adverse effects
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023237661A1 (en) 2022-06-09 2023-12-14 Institut National de la Santé et de la Recherche Médicale Use of endothelin receptor type b agonists for the treatment of aortic valve stenosis
EP4299124A1 (en) 2022-06-30 2024-01-03 Universite De Montpellier Anti-mglur2 nanobodies for use as biomolecule transporter
WO2024003310A1 (en) 2022-06-30 2024-01-04 Institut National de la Santé et de la Recherche Médicale Methods for the diagnosis and treatment of acute lymphoblastic leukemia
WO2024008755A1 (en) 2022-07-04 2024-01-11 Vib Vzw Blood-cerebrospinal fluid barrier crossing antibodies
WO2024008274A1 (en) 2022-07-04 2024-01-11 Universiteit Antwerpen T regulatory cell modification
WO2024008799A1 (en) 2022-07-06 2024-01-11 Institut National de la Santé et de la Recherche Médicale Methods for the treatment of proliferative glomerulonephritis
WO2024013234A1 (en) 2022-07-13 2024-01-18 Institut National de la Santé et de la Recherche Médicale Methods for diagnosis, prognosis, stratification and treating of myocarditis
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024013315A1 (en) 2022-07-15 2024-01-18 Boehringer Ingelheim International Gmbh Binding molecules for the treatment of cancer
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024018003A1 (en) 2022-07-21 2024-01-25 Institut National de la Santé et de la Recherche Médicale Extracellular vesicles functionalized with an erv syncitin and uses thereof for cargo delivery
WO2024018046A1 (en) 2022-07-22 2024-01-25 Institut National de la Santé et de la Recherche Médicale Garp as a biomarker and biotarget in t-cell malignancies
WO2024020579A1 (en) 2022-07-22 2024-01-25 Bristol-Myers Squibb Company Antibodies binding to human pad4 and uses thereof
WO2024018426A1 (en) 2022-07-22 2024-01-25 Janssen Biotech, Inc. Enhanced transfer of genetic instructions to effector immune cells
WO2024023246A1 (en) 2022-07-28 2024-02-01 Philogen S.P.A. Antibody binding to pd1
WO2024026472A2 (en) 2022-07-29 2024-02-01 Alector Llc Transferrin receptor antigen-binding domains and uses therefor
WO2024023283A1 (en) 2022-07-29 2024-02-01 Institut National de la Santé et de la Recherche Médicale Lrrc33 as a biomarker and biotarget in cutaneous t-cell lymphomas
WO2024026471A1 (en) 2022-07-29 2024-02-01 Alector Llc Cd98hc antigen-binding domains and uses therefor
WO2024026447A1 (en) 2022-07-29 2024-02-01 Alector Llc Anti-gpnmb antibodies and methods of use thereof
WO2024028433A1 (en) 2022-08-04 2024-02-08 Institut National de la Santé et de la Recherche Médicale Methods for the treatment of lymphoproliferative disorders
WO2024033362A1 (en) 2022-08-08 2024-02-15 Atb Therapeutics Humanized antibodies against cd79b
WO2024033400A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sk2 inhibitor for the treatment of pancreatic cancer
WO2024033399A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sigmar1 ligand for the treatment of pancreatic cancer
WO2024040020A1 (en) 2022-08-15 2024-02-22 Absci Corporation Quantitative affinity activity specific cell enrichment
WO2024038112A1 (en) 2022-08-17 2024-02-22 Institut National de la Santé et de la Recherche Médicale Improved anti-albumin nanobodies and their uses
WO2024047110A1 (en) 2022-08-31 2024-03-07 Institut National de la Santé et de la Recherche Médicale Method to generate more efficient car-t cells
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024052503A1 (en) 2022-09-08 2024-03-14 Institut National de la Santé et de la Recherche Médicale Antibodies having specificity to ltbp2 and uses thereof
WO2024056668A1 (en) 2022-09-12 2024-03-21 Institut National de la Santé et de la Recherche Médicale New anti-itgb8 antibodies and its uses thereof
WO2024068705A1 (en) 2022-09-29 2024-04-04 F. Hoffmann-La Roche Ag Protease-activated polypeptides

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356270A (en) * 1977-11-08 1982-10-26 Genentech, Inc. Recombinant DNA cloning vehicle
US4642334A (en) * 1982-03-15 1987-02-10 Dnax Research Institute Of Molecular And Cellular Biology, Inc. Hybrid DNA prepared binding composition
US4656134A (en) * 1982-01-11 1987-04-07 Board Of Trustees Of Leland Stanford Jr. University Gene amplification in eukaryotic cells
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4704692A (en) * 1986-09-02 1987-11-03 Ladner Robert C Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
US4711845A (en) * 1984-08-31 1987-12-08 Cetus Corporation Portable temperature-sensitive control cassette
US4714681A (en) * 1981-07-01 1987-12-22 The Board Of Reagents, The University Of Texas System Cancer Center Quadroma cells and trioma cells and methods for the production of same
US4800159A (en) * 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US4806471A (en) * 1982-09-16 1989-02-21 A/S Alfred Benzon Plasmids with conditional uncontrolled replication behavior
US4816397A (en) * 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
US4889818A (en) * 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
US4937193A (en) * 1986-06-27 1990-06-26 Delta Biotechnology Limited Process for the genetic modification of yeast
US4946786A (en) * 1987-01-14 1990-08-07 President And Fellows Of Harvard College T7 DNA polymerase
US4959317A (en) * 1985-10-07 1990-09-25 E. I. Du Pont De Nemours And Company Site-specific recombination of DNA in eukaryotic cells
US4965188A (en) * 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4978743A (en) * 1987-09-24 1990-12-18 Bayer Aktiengesellschaft Process for the continuous, counter flow/direct flow extraction of polyamides
US4978745A (en) * 1987-11-23 1990-12-18 Centocor, Inc. Immunoreactive heterochain antibodies
US4983728A (en) * 1987-07-31 1991-01-08 Ire-Celltarg S.A. Nucleic acid probes of human papilloma virus
US5023171A (en) * 1989-08-10 1991-06-11 Mayo Foundation For Medical Education And Research Method for gene splicing by overlap extension using the polymerase chain reaction
US5030565A (en) * 1983-08-17 1991-07-09 Scripps Clinic And Research Foundation Polypeptide-induced monoclonal receptors to protein ligands
US5091513A (en) * 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5126258A (en) * 1984-09-07 1992-06-30 Scripps Clinic And Research Foundation Molecules with antibody combining sites that exhibit catalytic properties
US5132405A (en) * 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5229072A (en) * 1992-02-03 1993-07-20 Liquid Carbonic Inc. Use of interhalogen compounds as a sterilizing agent
US5229292A (en) * 1986-07-28 1993-07-20 Stine Seed Farm, Inc. Biological control of insects using pseudomonas strains transformed with bacillus thuringiensis insect toxingene
US5534254A (en) * 1992-02-06 1996-07-09 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
US5846818A (en) * 1985-11-01 1998-12-08 Xoma Corporation Pectate lyase signal sequence
US5885793A (en) * 1991-12-02 1999-03-23 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US5969108A (en) * 1990-07-10 1999-10-19 Medical Research Council Methods for producing members of specific binding pairs
US6207804B1 (en) * 1987-05-21 2001-03-27 Curis, Inc. Genetically engineered antibody analogues and fusion proteins thereof
US6214553B1 (en) * 1997-01-21 2001-04-10 Massachusetts General Hospital Libraries of protein encoding RNA-protein fusions
US6248516B1 (en) * 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US6291158B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US6291159B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JPS6147500A (en) 1984-08-15 1986-03-07 Res Dev Corp Of Japan Chimera monoclonal antibody and its preparation
EP0173494A3 (en) 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by dna splicing and expression
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
JPS61104788A (en) 1984-10-26 1986-05-23 Teijin Ltd Nucleic acid base sequence
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
ES8706823A1 (en) 1985-03-28 1987-06-16 Cetus Corp Process for amplifying, detecting, and/or cloning nucleic acid sequences.
AU606320B2 (en) * 1985-11-01 1991-02-07 International Genetic Engineering, Inc. Modular assembly of antibody genes, antibodies prepared thereby and use
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
SE458555B (en) 1986-07-21 1989-04-10 Atte Heikkilae LINFAESTANORDNING
JPS63152984A (en) 1986-08-18 1988-06-25 Wakunaga Pharmaceut Co Ltd Dna coding l-chain of antipyocyanic human-type antibody
ATE87659T1 (en) * 1986-09-02 1993-04-15 Enzon Lab Inc BINDING MOLECULES WITH SINGLE POLYPEPTIDE CHAIN.
DE3852304T3 (en) * 1987-03-02 1999-07-01 Enzon Lab Inc Organism as carrier for "Single Chain Antibody Domain (SCAD)".
CA1341235C (en) 1987-07-24 2001-05-22 Randy R. Robinson Modular assembly of antibody genes, antibodies prepared thereby and use
CA2016841C (en) 1989-05-16 1999-09-21 William D. Huse A method for producing polymers having a preselected activity
EP0478627A4 (en) 1989-05-16 1992-08-19 William D. Huse Co-expression of heteromeric receptors
CA2016842A1 (en) 1989-05-16 1990-11-16 Richard A. Lerner Method for tapping the immunological repertoire
AU627591B2 (en) 1989-06-19 1992-08-27 Xoma Corporation Chimeric mouse-human km10 antibody with specificity to a human tumor cell antigen
EP0859841B1 (en) 1995-08-18 2002-06-19 MorphoSys AG Protein/(poly)peptide libraries

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356270A (en) * 1977-11-08 1982-10-26 Genentech, Inc. Recombinant DNA cloning vehicle
US4714681A (en) * 1981-07-01 1987-12-22 The Board Of Reagents, The University Of Texas System Cancer Center Quadroma cells and trioma cells and methods for the production of same
US4656134A (en) * 1982-01-11 1987-04-07 Board Of Trustees Of Leland Stanford Jr. University Gene amplification in eukaryotic cells
US4642334A (en) * 1982-03-15 1987-02-10 Dnax Research Institute Of Molecular And Cellular Biology, Inc. Hybrid DNA prepared binding composition
US4806471A (en) * 1982-09-16 1989-02-21 A/S Alfred Benzon Plasmids with conditional uncontrolled replication behavior
US4816397A (en) * 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
US5030565A (en) * 1983-08-17 1991-07-09 Scripps Clinic And Research Foundation Polypeptide-induced monoclonal receptors to protein ligands
US4711845A (en) * 1984-08-31 1987-12-08 Cetus Corporation Portable temperature-sensitive control cassette
US5126258A (en) * 1984-09-07 1992-06-30 Scripps Clinic And Research Foundation Molecules with antibody combining sites that exhibit catalytic properties
US4959317A (en) * 1985-10-07 1990-09-25 E. I. Du Pont De Nemours And Company Site-specific recombination of DNA in eukaryotic cells
US5846818A (en) * 1985-11-01 1998-12-08 Xoma Corporation Pectate lyase signal sequence
US4683195B1 (en) * 1986-01-30 1990-11-27 Cetus Corp
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4800159A (en) * 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4937193A (en) * 1986-06-27 1990-06-26 Delta Biotechnology Limited Process for the genetic modification of yeast
US5229292A (en) * 1986-07-28 1993-07-20 Stine Seed Farm, Inc. Biological control of insects using pseudomonas strains transformed with bacillus thuringiensis insect toxingene
US4965188A (en) * 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4889818A (en) * 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
US4704692A (en) * 1986-09-02 1987-11-03 Ladner Robert C Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
US4946786A (en) * 1987-01-14 1990-08-07 President And Fellows Of Harvard College T7 DNA polymerase
US6207804B1 (en) * 1987-05-21 2001-03-27 Curis, Inc. Genetically engineered antibody analogues and fusion proteins thereof
US5132405A (en) * 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5091513A (en) * 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US4983728A (en) * 1987-07-31 1991-01-08 Ire-Celltarg S.A. Nucleic acid probes of human papilloma virus
US4978743A (en) * 1987-09-24 1990-12-18 Bayer Aktiengesellschaft Process for the continuous, counter flow/direct flow extraction of polyamides
US4978745A (en) * 1987-11-23 1990-12-18 Centocor, Inc. Immunoreactive heterochain antibodies
US6248516B1 (en) * 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US6545142B1 (en) * 1988-11-11 2003-04-08 Medical Research Council Of The United Kingdom Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US20030130496A1 (en) * 1988-11-11 2003-07-10 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US6291158B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US6291159B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US5023171A (en) * 1989-08-10 1991-06-11 Mayo Foundation For Medical Education And Research Method for gene splicing by overlap extension using the polymerase chain reaction
US5969108A (en) * 1990-07-10 1999-10-19 Medical Research Council Methods for producing members of specific binding pairs
US5885793A (en) * 1991-12-02 1999-03-23 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US5229072A (en) * 1992-02-03 1993-07-20 Liquid Carbonic Inc. Use of interhalogen compounds as a sterilizing agent
US5534254A (en) * 1992-02-06 1996-07-09 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
US6214553B1 (en) * 1997-01-21 2001-04-10 Massachusetts General Hospital Libraries of protein encoding RNA-protein fusions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940871B2 (en) 2006-03-20 2015-01-27 The Regents Of The University Of California Engineered anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting
US8940298B2 (en) 2007-09-04 2015-01-27 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting and detection
US9527919B2 (en) 2007-09-04 2016-12-27 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (PSCA) antibodies for cancer targeting and detection

Also Published As

Publication number Publication date
US20030130496A1 (en) 2003-07-10
DE68913658T2 (en) 1994-09-08
ES2052027T3 (en) 1994-07-01
CA2002868A1 (en) 1990-05-11
EP0368684B2 (en) 2004-09-29
US6248516B1 (en) 2001-06-19
KR0184860B1 (en) 1999-04-01
NO903059D0 (en) 1990-07-09
US7306907B2 (en) 2007-12-11
AU634186B2 (en) 1993-02-18
KR920700228A (en) 1992-02-19
EP0368684A1 (en) 1990-05-16
DK164790D0 (en) 1990-07-09
JPH03502801A (en) 1991-06-27
CA2002868C (en) 2007-03-20
DE68913658D1 (en) 1994-04-14
US6545142B1 (en) 2003-04-08
ATE102631T1 (en) 1994-03-15
US20030114659A1 (en) 2003-06-19
ES2052027T5 (en) 2005-04-16
WO1990005144A1 (en) 1990-05-17
US20040110941A2 (en) 2004-06-10
DK175392B1 (en) 2004-09-20
JP2919890B2 (en) 1999-07-19
EP0368684B1 (en) 1994-03-09
NO903059L (en) 1990-09-07
DK164790A (en) 1990-09-07
DE68913658T3 (en) 2005-07-21
AU4520189A (en) 1990-05-28
FI903489A0 (en) 1990-07-10

Similar Documents

Publication Publication Date Title
US7306907B2 (en) Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
JP3992290B2 (en) Development of a new immunological repertoire
US6291158B1 (en) Method for tapping the immunological repertoire
US5874060A (en) Recombinant human anti-Lewis Y antibodies
US6291161B1 (en) Method for tapping the immunological repertiore
US6291159B1 (en) Method for producing polymers having a preselected activity
US7189841B2 (en) Method for tapping the immunological repertoire
US6680192B1 (en) Method for producing polymers having a preselected activity
JPH06510671A (en) Production of chimeric antibodies - combinatorial approach
US20230212273A1 (en) Chimeric antibodies for treatment of amyloid deposition diseases
US5976531A (en) Composite antibodies of human subgroup IV light chain capable of binding to tag-72
KR20230057351A (en) Anti-cleavage variant CALR-CD3 bispecific antibody and pharmaceutical composition
US5182205A (en) Nucleotide sequences which are selectively expressed in pre-B cells and probes therefor
JP2000508881A (en) PCR amplification of rearranged genomic variable regions of immunoglobulin genes
EP0618969B1 (en) Composite antibodies of human subgroup iv light chain capable of binding to tag-72
Wiens et al. Repertoire shift in the humoral response to phosphocholine-keyhole limpet hemocyanin: VH somatic mutation in germinal center B cells impairs T15 Ig function
WO1997031110A1 (en) Traf family molecule, polynucleotide coding for the molecule, and antibody against the molecule
AU9058291A (en) Composite antibodies of human subgroup IV light chain capable of binding to tag-72

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: UNITED KINGDOM RESEARCH AND INNOVATION, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDICAL RESEARCH COUNCIL;REEL/FRAME:046469/0108

Effective date: 20180401

Owner name: UNITED KINGDOM RESEARCH AND INNOVATION, UNITED KIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDICAL RESEARCH COUNCIL;REEL/FRAME:046469/0108

Effective date: 20180401