US20080254867A1 - Gaming machine and control method of game - Google Patents

Gaming machine and control method of game Download PDF

Info

Publication number
US20080254867A1
US20080254867A1 US11/932,816 US93281607A US2008254867A1 US 20080254867 A1 US20080254867 A1 US 20080254867A1 US 93281607 A US93281607 A US 93281607A US 2008254867 A1 US2008254867 A1 US 2008254867A1
Authority
US
United States
Prior art keywords
bet
processing
value
game
game media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/932,816
Inventor
Jun Fujimoto
Yukinori Inamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Entertainment Corp
Original Assignee
Aruze Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aruze Corp filed Critical Aruze Corp
Priority to US11/932,816 priority Critical patent/US20080254867A1/en
Priority to AU2008201026A priority patent/AU2008201026A1/en
Priority to JP2008056861A priority patent/JP2008259827A/en
Assigned to ARUZE CORP. reassignment ARUZE CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJIMOTO, JUN, INAMURA, YUKINORI
Publication of US20080254867A1 publication Critical patent/US20080254867A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports, or amusements
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports, or amusements
    • G07F17/3244Payment aspects of a gaming system, e.g. payment schemes, setting payout ratio, bonus or consolation prizes

Definitions

  • the present invention relates to a gaming machine and control method of game.
  • Each slot machine is configured to conduct a payout according to a winning state (game result) occurring along with progression of games.
  • game result game result
  • Conventional gaming machines there exit gaming machines which return a profit to players when their losses of game media reach a certain value, as disclosed in U.S. Pat. No. 5,910,048.
  • the first aspect of the present invention provides a gaming machine comprising the following.
  • the above-mentioned gaming machine comprises a controller.
  • the controller is programmed to execute the processing of: (A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets based on the value of the BET game media and the number of the BET-targets, the game result of each of the BET-targets, and a payout value for each of the BET-targets based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the processing (A) by the minimum BET-unit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the processing (B) from the estimated
  • the above-mentioned gaming machine desirably comprises the following.
  • the above-mentioned processing (D) includes (D′) cumulatively accumulating the game media corresponding to the fractional value determined in the processing (B); the controller is further programmed to execute the processing of shifting a mode from a non-insurance mode to an insurance mode on condition that the number of game media cumulatively accumulated in the processing (D′) has reached the predetermined number; and the processing (F) includes paying out the game media cumulatively accumulated in the processing (D′), when the number of unit games counted in the processing (E) has reached the specific number and when the mode is the insurance mode.
  • the above-mentioned gaming machine desirably comprises the following.
  • the above-mentioned processing (E) includes counting the number of unit games in which game media are BET in number equal to a maximum number of BETs.
  • the above-mentioned gaming machine desirably provides the following.
  • the above-mentioned processing (E) includes counting the number of unit games in which the fractional value determined in the processing (B) has become larger than 0.
  • the above-mentioned gaming machine desirably comprises the following.
  • the above-mentioned gaming machine comprises a payout device capable of physically paying out game media, wherein the processing (F) includes paying out, from the payout device, the game media cumulatively accumulated in the processing (D), when the number of unit games counted in the processing (E) has reached the specific number.
  • the second aspect of the present invention provides a gaming machine comprising the following.
  • the above-mentioned gaming machine comprises: a controller.
  • the controller is programmed to execute the processing of: (A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets based on the value of the BET game media and the number of the BET-targets, the game result of each of the BET-targets, and a payout value for each of the BET-targets based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the processing (A) by the minimum BET-unit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the processing (B) from the
  • the above-mentioned gaming machine desirably comprises the following.
  • the processing (D) includes (D′) cumulatively accumulating the game media corresponding to the fractional value determined in the processing (B); the controller is further programmed to execute the processing of shifting a mode from a non-insurance mode to an insurance mode on condition that the number of game media cumulatively accumulated in the processing (D′) has reached the predetermined number; and the processing (F) includes paying out the game media cumulatively accumulated in the processing (D′), when the number of game media counted in the processing (E) has reached the specific number and the mode is the insurance mode.
  • the above-mentioned gaming machine desirably comprises the following.
  • the above-mentioned gaming machine comprises a payout device capable of physically paying out game media, wherein the processing (F) includes paying out, from the payout device, the game media cumulatively accumulated in the processing (D), when the number of game media counted in the processing (E) has reached the specific number.
  • the above-mentioned gaming machine desirably comprises the following.
  • the above-mentioned controller is further programmed to execute the processing of shifting a mode from a non-insurance mode to an insurance mode on condition that the game media have been inserted.
  • the above-mentioned gaming machine desirably comprises the following.
  • the above-mentioned gaming machine comprises a symbol display device to which a plurality of symbols are to be rearranged, wherein the controller is further programmed to execute the processing of executing the unit game in which the plurality of symbols are rearranged to the symbol display device after game media are BET in number equal to or less than the previously determined the maximum number of BETs, and game media are paid out in number according to the rearranged symbols or a combination thereof.
  • the first aspect of the present invention further provides a game control method including the following.
  • the above-mentioned game control method comprises the steps of: (A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets based on the value of the BET game media and the number of the BET-targets, the game result of each of the BET-targets, and a payout value for each of the BET-targets based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the step (A) by the minimum BET-unit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the step (B) from the estimated payout value for a single unit game determined in
  • the third aspect of the present invention provides a gaming machine comprising the following.
  • the above-mentioned gaming machine comprises: a controller.
  • the controller programmed to execute the processing of: (A) determining, when game media is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets; (B) combining the BET-values for each of the BET-targets to determine a total BET-value for a single unit game; (C) determining part of the total BET-value determined in the processing (B) as a BET-fractional-value, the part equal to or less than a previously determined digit number; (D) cumulatively adding the BET-fractional-values determined in the processing (C); (E) counting the number of the unit games executed; and (F) paying out game media corresponding to all or part of the BET-fractional-values cumulatively added in the processing (D) when the number of unit games counted in the processing (E) has reached a specific number.
  • FIG. 1 is a schematic view showing the entire configuration of a game system according to one embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a slot machine according to one embodiment of the present invention.
  • FIG. 3 is a block diagram showing the internal configuration of the slot machine shown in FIG. 1 .
  • FIG. 4 is a view for explaining a payout table in the present embodiment.
  • FIG. 5 is a view showing exemplary symbols displayed in display windows.
  • FIG. 6 is a view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 7 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 8 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 9 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 10 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 11 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 12 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 13 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 14 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 15 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 16 is another view showing exemplary images displayed to the slot machine shown in FIG. 1 .
  • FIG. 17 is a flowchart showing main processing executed in the slot machine shown in FIG. 1 .
  • FIG. 18 is a flowchart showing a subroutine of insurance setting processing.
  • FIG. 19A is a flowchart showing a subroutine of game execution processing A (non-insurance mode).
  • FIG. 19B is another flowchart showing a subroutine of game execution processing A (non-insurance mode).
  • FIG. 20 is a flowchart showing a subroutine of game execution processing B (insurance mode/before reaching of notice set value).
  • FIG. 21 is a flowchart showing a subroutine of game execution processing C (insurance mode/after reaching of notice set value).
  • FIG. 22A is a flowchart showing a subroutine of game execution processing D (insurance mode/at reaching of a specific number).
  • FIG. 22B is another flowchart showing a subroutine of game execution processing D (insurance mode/at reaching of a specific number).
  • FIG. 23 is a flowchart showing a subroutine of processing according to a payout and a fractional value calculation.
  • FIG. 24 is a flowchart showing a procedure of activation processing conducted by the mother board and the gaming board shown in FIG. 2 .
  • FIG. 25 is a flowchart showing a subroutine of to-be-stopped symbol determination processing.
  • FIG. 26 is a flowchart showing a subroutine of reel rotation control processing.
  • FIGS. 27A to 27D are side views for explaining the reel rotating operation.
  • FIG. 28 is a schematic view showing a correspondence table of the number of steps and code No.
  • FIG. 29 is a perspective view schematically showing a slot machine according to another embodiment of the present invention.
  • FIG. 30A is a flowchart showing a subroutine of game execution processing A (non-insurance mode) according to another embodiment of the present invention.
  • FIG. 30B is a flowchart showing a subroutine of game execution processing A (non-insurance mode) according to another embodiment of the present invention.
  • slot machine games are executed.
  • a BET-value for each pay line is determined based on the value of the BET game media (credits) and the number of pay lines on which the BET is placed.
  • designs hereinafter, also referred to as symbols
  • a result of the game is determined;
  • a payout value for each of the pay lines is determined based on the payout rates (the amount of payout per unit amount of game media) determined for each of the pay lines and the BET-value for each pay line; and then the payout values are combined to determine an estimated payout value.
  • the determined estimated payout value is divided by a minimum value of game media that can be BET (one credit, in the present embodiment) to determine a fractional value (a value of game media less than the minimum value of game media that can be BET). Then, game media of the value resulted after subtracting the fractional value from the estimated payout value is paid out as a payout. Further, such fractional values are cumulatively added, and the mode shifts from a non-insurance mode to an insurance mode when the cumulative value reaches a predetermined value (360 credits, in the present embodiment). Also, the number of games, which is with a MAXBET placed thereon and the fractional value being larger than 0, is counted, out of the games having been executed.
  • a MAXBET is a BET placed on a single game by using a maximum number of game media that can be BET (three coins, in the present embodiment).
  • a determined value one credit, in the present embodiment.
  • FIG. 1 is a schematic view showing the entire configuration of a game system according to one embodiment of the present invention.
  • the game system 100 includes a plurality of slot machines 10 and a server 200 connected to these slot machines 10 through a predetermined communication line 101 .
  • Such game system 100 can either be structured in a single game facility such as a bar and a casino in which various types of games can be executed, or be structured among a plurality of game facilities. Further, in the case in which the game system 100 is structured in a single game facility, the game system 100 may be structured on each floor and in each section in this game facility.
  • the communication line 101 There is no particular limitation on the communication line 101 ; the communication line 101 may be either a wired line or a wireless line, and a dedicated line, a switched line, and the like can be adopted.
  • the server 200 controls the plurality of slot machines 10 .
  • each of the slot machines 10 which are connected to the server 200 , transmits data indicative of the fractional value calculated in the slot machine 10 , to the server 200 .
  • the server 200 cumulatively stores the fractional value, based on the data received from each slot machine 10 .
  • the server 200 can be a so-called hall server installed in the game facility having the plurality of slot machines 10 or can be a device having the function as a server capable of collectively controlling a plurality of game facilities.
  • each of the slot machines 10 is provided with a specific identification number, and the server 200 identifies the sources of data transmitted from the respective slot machines 10 according to the identification numbers. Further, in transmission of data to a slot machine 10 , the server 200 specifies the transmission destination using the identification number thereof.
  • FIG. 2 is a perspective view schematically showing a slot machine according to one embodiment of the present invention.
  • a coin, a bill, or electronic valuable information corresponding to those is used as a game medium.
  • the game medium is not particularly limited.
  • the game medium may include a medal, a token, electronic money and a ticket.
  • the ticket is not particularly limited, and examples thereof may include a ticket with a barcode as described later.
  • the slot machine 10 comprises a cabinet 11 , a top box 12 installed on the upper side of the cabinet 11 , and a main door 13 provided at the front face of the cabinet 11 .
  • a cabinet 11 Inside the cabinet 11 , three reels 14 ( 14 L, 14 C, 14 R) as a symbol display device are rotatably provided.
  • a symbol sequence consisting of 22 figures (hereinafter also referred to as symbols) is drawn.
  • a lower image display panel 16 is provided at the front of the respective reels 14 on the main door 13 .
  • the lower image display panel 16 is provided with a transparent liquid crystal panel to which a variety of information concerning a game, an effect image and the like are displayed during the game.
  • the lower image display panel 16 corresponds to the image display device of the present invention.
  • three display windows 15 are formed in which their back faces are visible, and three symbols drawn on the peripheral face of each of the reels 14 are respectively displayed via each of the display windows 15 .
  • a total of five pay lines L namely three pay lines L horizontally crossing over the three display windows 15 , and two pay lines L diagonally crossing over the display windows 15 , are formed.
  • the pay lines L are for determining a combination of symbols. When the combination of symbols that are stop-displayed along a pay line L is a predetermined combination, a payout value for each of the pay lines L is determined based on the combination and the BET-value for each of the pay lines L. Then, based on the payout value for each of the pay lines L, an estimated payout value and a fractional value are determined.
  • a touch panel 69 is provided at the front face of the lower image display panel 16 .
  • the player can operate the touch panel 69 to input a variety of commands.
  • a control panel 20 comprised of a plurality of buttons 23 to 27 with each of which a command according to game progress is inputted by the player, a coin receiving slot 21 through which a coin is accepted into the cabinet 11 , and a bill validator 22 .
  • the control panel 20 is provided with a spin button 23 , a change button 24 , a CASHOUT button 25 , a 1-BET button 26 and a maximum BET button 27 .
  • the spin button 23 is used for inputting a command to start rotation of the reels 14 .
  • the change button 24 is used for making a request of staff in the recreation facility for exchange.
  • the CASHOUT button 25 is used for inputting a command to pay out credited coins to a coin tray 18 .
  • the 1-BET button 26 is used for inputting a command to bet one coin on a game out of credited coins.
  • the maximum BET button 27 is used for inputting a command to bet the maximum number of coins that can be bet on one game (three coins in the present embodiment) out of credited coins.
  • the maximum number of BETs may be configured so as to be set by the operator, staff or the like of the casino.
  • the bill validator 22 not only discriminates a regular bill from a false bill, but also accepts the regular bill into the cabinet 11 . It is to be noted that the bill validator 22 may be configured so as to be capable of reading a later-described ticket 39 with a barcode.
  • a belly glass 34 At the lower front of the main door 13 , namely below the control panel 20 , there is provided a belly glass 34 on which a character or the like of the slot machine 10 is drawn.
  • An upper image display panel 33 is provided at the front face of the top box 12 .
  • the upper image display panel 33 is provided with a liquid crystal panel to display, for example, an effect image, an image representing introduction of contents of a game, and explanation of a rule of the game.
  • the upper image display panel 33 corresponds to the image display device of the present invention.
  • a speaker 29 is provided on the top box 12 .
  • a ticket printer 35 Under the upper image display panel 33 , there are provided a ticket printer 35 , a card reader 36 , a data display 37 , and a key pad 38 .
  • the ticket printer 35 prints on a ticket a barcode as coded data of the number of credits, a date, an identification number of the slot machine 10 , and the like, and outputs the ticket as the ticket 39 with a barcode.
  • the player can make another slot machine read the ticket 39 with a barcode to play a game thereon, or exchange the ticket 39 with a barcode with a bill or the like at a predetermined place in the recreation facility (e.g. a cashier in a casino).
  • the card reader 36 reads data from a smart card and writes data into the smart card.
  • the smart card is a card owned by the player, and for example, data for identifying the player and data concerning a history of games played by the player are stored therein. Data corresponding to a coin, a bill or a credit may be stored in the smart card. Further, a magnetic stripe card may be adopted in place of the smart card.
  • the data display 37 is comprised of a fluorescent display and the like, and displays, for example, data read by the card reader 36 or data inputted by the player via the key pad 38 .
  • the key pad 38 is used for inputting a command and data concerning issuing of a ticket, and the like.
  • FIG. 3 is a block diagram showing the internal configuration of the slot machine shown in FIG. 2 .
  • a gaming board 50 is provided with a CPU (Central Processing Unit) 51 , a ROM 55 , and a boot ROM 52 which are interconnected to one another by an internal bus, a card slot 53 S corresponding to a memory card 53 , and an IC socket 54 S corresponding to a GAL (Generic Array Logic) 54 .
  • a CPU Central Processing Unit
  • ROM 55 a ROM 55
  • boot ROM 52 which are interconnected to one another by an internal bus
  • a card slot 53 S corresponding to a memory card 53
  • an IC socket 54 S corresponding to a GAL (Generic Array Logic) 54 .
  • GAL Generic Array Logic
  • the memory card 53 is comprised of a nonvolatile memory such as CompactFlash (registered trade mark), and stores a game program and a game system program.
  • the game program includes a to-be-stopped symbol determination program.
  • the to-be-stopped symbol determination program is a program for determining a symbol (code No. corresponding to the symbol) on each of the reels 14 to be rearranged along the pay lines L.
  • the to-be-stopped symbol determination program includes symbol weighing data respectively corresponding to a plurality of types of payout ratios (e.g. 80%, 84%, 88%).
  • the symbol weighing data is data showing the corresponding relation between code No. of each symbol (see FIG.
  • the payout ratio is set based on payout ratio setting data which is outputted from a GAL 54 , and a symbol to be rearranged is determined based on the symbol weighing data corresponding to the payout ratio.
  • the card slot 53 S is configured so as to allow the memory card 53 to be inserted thereinto or ejected therefrom, and is connected to the mother board 40 by an IDE bus. Therefore, the memory card 53 can be ejected from the card slot 53 S, and then another game program and another game system program are written into the memory card 53 , and the memory card 53 can be inserted into the card slot 53 S, to change the type and contents of a game played on the slot machine 10 . Further, the memory card 53 storing one game program and one game system program can be exchanged with the memory card 53 storing another game program and another game system program, to change the type and contents of a game played on the slot machine 10 .
  • the game program includes a program according to progression of the game. Further, the game program includes image data and sound data to be outputted during the game, and image data and sound data for notifying that the mode has been shifted to the insurance mode, and the like.
  • the GAL 54 is a type of a PLD having an OR fixed type array structure.
  • the GAL 54 is provided with a plurality of input ports and output ports. When predetermined data is inputted into the input port, the GAL 54 outputs, from the output port, data corresponding to the inputted data.
  • the data outputted from the output port is the above-mentioned payout ratio setting data.
  • the IC socket 54 S is configured such that the GAL 54 can be mounted thereonto and removed therefrom, and the IC socket 54 S is connected to the mother board 40 through the PCI bus. Therefore, the GAL 54 can be removed from the IC socket 54 S, and then a program to be stored into the GAL 54 is rewritten, and the GAL 54 is then mounted onto the IC socket 54 S, to change the payout ratio setting data outputted from the GAL 54 . Further, the GAL 54 can be exchanged with another GAL 54 to change the payout ratio setting data.
  • the CPU 51 , the ROM 55 and the boot ROM 52 interconnected to one another by an internal bus are connected to the mother board 40 through the PCI bus.
  • the PCI bus not only conducts signal transmission between the mother board 40 and the gaming board 50 , but also supplies power from the mother board 40 to the gaming board 50 .
  • country identification information and an authentication program are stored in the ROM 55 .
  • boot ROM 52 an auxiliary authentication program and a program (boot code) to be used by the CPU 51 for activating the auxiliary authentication program, and the like are stored.
  • the authentication program is a program (falsification check program) for authenticating a game program and a game system program.
  • the authentication program is written along a procedure (authentication procedure) for checking and proving that a game program and a game system program to be subject to authentication loading processing have not been falsified, namely authenticating the game program and the game system program.
  • the auxiliary authentication program is a program for authenticating the above-mentioned authentication program.
  • the auxiliary authentication program is written along a procedure (authentication procedure) for proving that an authentication program to be subject to the authentication processing has not been falsified, namely authenticating the authentication program.
  • the mother board 40 is configured using a commercially available general-purpose mother board (a print wiring board on which fundamental components of a personal computer are mounted), and comprises a main CPU 41 , a ROM (Read Only Memory) 42 , a RAM (Random Access Memory) 43 , and a communication interface 44 .
  • the main CPU 41 , the ROM 42 and the RAM 43 mounted on the mother board 40 constitute the controller of the present invention.
  • the ROM 42 is comprised of a memory device such as a flash memory, and stores a program such as a BIOS (Basic Input/Output System) executed by the main CPU 41 and permanent data.
  • BIOS Basic Input/Output System
  • processing for initializing a predetermined peripheral device is conducted, concurrently with start of processing for loading the game program and the game system stored in the memory card 53 via the gaming board 50 .
  • the ROM 42 may or may not be data rewritable one.
  • the RAM 43 stores data and a program to be used at the time of operation of the main CPU 41 . Further, the RAM 43 is capable of storing an authentication program to be read via the gaming board 50 , a game program and a game system program.
  • the RAM 43 is provided with a storage area for an insurance mode flag.
  • the insurance mode flag is a flag for indicating whether the mode is the insurance mode or the non-insurance mode.
  • the storage area for the insurance mode flag is, for example, composed of a storage area of a predetermined number of bits, and the insurance mode flag is turned “ON” or “OFF” according to the stored contents of the storage area.
  • the insurance mode flag being “ON” indicates the insurance mode
  • the insurance mode flag being “OFF” indicates the non-insurance mode.
  • the RAM 43 is provided with a storage area for data showing the number-of-games C.
  • the RAM 43 stores data of the number of credits, the number of coin-ins and coin-outs in one game, and the like.
  • the communication interface 44 serves to communicate with an external device such as a server of the casino, via the communication line 101 .
  • the mother board 40 is connected with a later-described body PCB (Printed Circuit Board) 60 and a door PCB 80 through respective USBs. Further, the mother board 40 is connected with a power supply unit 45 . When power is supplied from the power supply unit 45 to the mother board 40 , the main CPU 41 of the mother board 40 is activated concurrently with supply of power to the gaming board 50 via the PCI bus to activate the CPU 51 .
  • PCB Print Circuit Board
  • the body PCB 60 and the door PCB 80 are connected with an equipment and a device that generate an input signal to be inputted into the main CPU 41 and an equipment and a device operations of which are controlled by a control signal outputted from the main CPU 41 .
  • the main CPU 41 executes the game program and the game system program stored in the RAM 43 based on the input signal inputted into the main CPU 41 , and thereby executes the predetermined arithmetic processing, stores the result thereof into the RAM 43 , or transmits a control signal to each equipment and device as processing for controlling each equipment and device.
  • the body PCB 60 is connected with a lamp 30 , a sub CPU 61 , a hopper 66 , a coin detecting portion 67 , a graphic board 68 , a speaker 29 , a touch panel 69 , a bill validator 22 , a ticket printer 35 , a card reader 36 , a key switch 38 S and a data display 37 .
  • the lamp 30 is lighted in a predetermined pattern based on a control signal outputted from the main CPU 41 .
  • the sub CPU 61 serves to control rotation and stop of the reels 14 ( 14 L, 14 C, 14 R).
  • a motor driving circuit 62 having an FPGA (Field Programmable Gate Array) 63 and a driver 64 are connected to the sub CPU 61 .
  • the FPGA 63 is an electronic circuit such as a programmable LSI, and functions as a control circuit of a stepping motor 70 .
  • the driver 64 functions as an amplification circuit of a pulse to be inputted into the stepping motors 70 .
  • the stepping motors 70 ( 70 L, 70 C, 70 R) for rotating the respective reels 14 are connected to the motor driving circuit 62 .
  • the stepping motor 70 is a one-two phase excitation stepping motor.
  • the excitation method of the stepping motor is not particularly limited, and for example, a two phase excitation method, one phase excitation method or the like may be adopted.
  • a DC motor may be adopted in place of the stepping motor.
  • a deviation counter, a D/A converter, and a servo amplifier are sequentially connected to the sub CPU 61 , and the DC motor is connected to the servo amplifier.
  • a rotational position of the DC motor is detected by a rotary encoder, and a current rotational position of the DC motor is supplied as data from the rotary encoder to the deviation counter.
  • an index detecting circuit 65 and a position-change detecting circuit 71 are connected to the sub CPU 61 .
  • the index detecting circuit 65 detects the position (later-described index) of the reels 14 during rotation, and is further capable of detecting a loss of synchronism of the reels 14 . It should be noted that the control of rotation and stoppage of reels 14 will be described later in detail using the figures.
  • the position-change detecting circuit 71 detects the change of the stop positions of the reel 14 , after the stop of the rotation of the reels 14 .
  • the position-change detecting circuit 71 detects the change of the stop positions of the reels 14 , in a case such that a player forcibly changes the stop positions of reels 14 to create a combination of symbols in a winning state, even though the actual combination of symbols is not in the winning state, or in some other cases.
  • the position-change detecting circuit 71 is configured, for example, to detect fins (not shown) mounted to the inner sides of the reels 14 at predetermined intervals so as to detect the change of the stop positions of the reels 14 .
  • the hopper 66 is installed inside the cabinet 11 , and pays out a predetermined number of coins based on the control signal outputted from the main CPU 41 , from the coin payout exit 19 to the coin tray 18 .
  • the hopper 66 corresponds to the payout device of the present invention.
  • the coin detecting portion 67 is provided inside the coin payout exit 19 , and outputs an input signal to the main CPU 41 in the case of detecting payout of the predetermined number of coins from the coin payout exit 19 .
  • the graphic board 68 controls image display to the upper image display panel 33 and the lower image display panel 16 based on the control signal outputted from the main CPU 41 .
  • the number of credits stored in the RAM 43 is displayed to the number-of-credits display portion 31 of the lower image display panel 16 . Further, the number of payouts of coins is displayed to the number-of-payouts display portion 32 of the lower image display panel 16 .
  • the graphic board 68 comprises a VDP (Video Display Processor) for generating image data based on the control signal outputted from the main CPU 41 , a video RAM for temporarily storing image data generated by the VDP, and the like. It is to be noted that image data used in generation of the image data by the VDP is included in the game program read from the memory card 53 and stored into the RAM 43 .
  • VDP Video Display Processor
  • the bill validator 22 not only discriminates a regular bill from a false bill, but also accepts the regular bill into the cabinet 11 . Upon acceptance of the regular bill, the bill validator 22 outputs an input signal to the main CPU 41 based on a face amount of the bill. The main CPU 41 stores in the RAM 43 the number of credits corresponding to the face amount of the bill transmitted with the input signal.
  • the ticket printer 35 based on the control signal outputted from the main CPU 41 , prints on a ticket a barcode formed by encoding data such as the number of credits stored in the RAM 43 , a date, and an identification number of the slot machine 10 , and outputs the ticket as the ticket 39 with a barcode.
  • the card reader 36 reads data from the smart card and transmits the read data to the main CPU 41 , and writes data onto the smart card based on the control signal from the main CPU 41 .
  • the key switch 38 S is provided on the key pad 38 , and outputs a predetermined input signal to the main CPU 41 when the key pad 38 is operated by the player.
  • the data display 37 displays data read by the card reader 36 and data inputted by the player via the key pad 38 based on the control signal outputted from the main CPU 41 .
  • the door PCB 80 is connected with a control panel 20 , a reverter 21 S, a coin counter 21 C, and a cold cathode tube 81 .
  • the control panel 20 is provided with a spin switch 23 S corresponding to the spin button 23 , a change switch 24 S corresponding to the change button 24 , a CASHOUT switch 25 S corresponding to the CASHOUT button 25 , a 1-BET switch 26 S corresponding to the 1-BET button 26 , and the maximum BET switch 27 S corresponding to the maximum BET button 27 .
  • the respective switches 23 S to 27 S output input signals to the main CPU 41 when each of the buttons 23 to 27 corresponding thereto is operated by the player.
  • the coin counter 21 C is provided inside the coin receiving slot 21 , and discriminates a regular coin from a false coin inserted into the coin receiving slot 21 by the player. Coins other than the regular coin are discharged from the coin payout exit 19 . Further, the coin counter 21 C outputs an input signal to the main CPU 41 in detection of the regular coin.
  • the reverter 21 S operates based on the control signal outputted from the main CPU 41 , and distributes a coin recognized by the coin counter 21 C as the regular coin into a cash box (not shown) or the hopper 66 , which are disposed in the slot machine 10 . Namely, when the hopper 66 is filled with coins, the regular coin is distributed into the cash box by the reverter 21 S. On the other hand, when the hopper 66 is not filled with coins, the regular coin is distributed into the hopper 66 .
  • the cold cathode tube 81 functions as a back light installed on the rear face side of the lower image display panel 16 and the upper image display panel 33 , and is lit up based on the control signal outputted from the main CPU 41 .
  • FIG. 4 is a view for explaining a payout table in the present embodiment.
  • SMILE”, “HEART”, “SUN”, “BAR”, “MOON”, “STAR”, “CROWN”, “JEWEL”, and “RIBBON” in the payout table represent types of symbols drawn on the reels 14 . It is to be noted that, other than the above-mentioned symbols, a jackpot trigger, which is a symbol corresponding to “GIFT BONUS”, and other symbols are also drawn on the reels 14 .
  • Combinations shown in the payout table represent winning combinations, and a payout ratio is set for each of the winning combinations.
  • the payout value for this pay line L is the value resulted by multiplying the BET-value for this pay line L by the payout ratio for this winning combination.
  • a numeric value corresponding to “GIFT BONUS” in the payout table indicates an expectation value of the number of coin-outs, and is constant regardless of the number of BETs. Therefore, a setting is made such that the probability for establishing “GIFT BONUS” is high and the number of coin-outs is small in the case of 1BET whereas the probability for establishing “GIFT BONUS” is low and the number of coin-outs is large in the case of the MAXBET. It should be noted that this probability setting is made by using symbol weighing data.
  • jackpots “GRAND”, “MAJOR”, “MINOR” and “MINI” are provided in decreasing order of the number of coin-outs.
  • a variety of winning combinations are previously set based on the respective combinations of symbols, and when the combination of symbols corresponding to the winning combination stops along the pay lines L, a payout value for each of the pay lines according to the winning combination is determined, and then an estimated payout value in this game is determined by combining the payout values for the respective pay lines. Further, a payout value, which is calculated based on the estimated payout value, is added to the credits owned by the player.
  • a payout value which is calculated based on the estimated payout value
  • FIG. 5 is a view showing exemplary symbols displayed in the display windows.
  • a total of nine symbols of three columns and three rows are displayed in the display windows 15 ( 15 L, 15 C and 15 R). Further, across the display windows 15 , there are set three pay lines L (pay lines L 17 a , 17 b and 17 c ) along the respective columns. Also, there are set two pay lines L ( 17 d and 17 e ) diagonally crossing the display windows. Namely, in the present embodiment, there are set a total of five pay lines L.
  • the pay lines L correspond to BET-targets according to the present invention.
  • the payout value for each pay line L is the value equal to the BET-value for each pay line L multiplied by the payout rate determined for the winning combination established along this pay line L.
  • the fractional value according to the present invention is a remainder resulted from the division of the estimated payout value by the minimum BET-unit (the value of game media that can be BET).
  • the minimum BET-unit is one credit. Accordingly, the fractional value is the part which is after the decimal point. In the example shown in FIG. 5 , the fractional value is 0.2 credit.
  • Such a fractional value determined as described above is cumulatively added along with the progress of a game and is stored as a cumulative fractional value in the RAM 43 .
  • the BET-value for each pay line L is the value resulted from the division of the total BET-value placed on a single game by the number of pay lines L; therefore, the BET-values are the same on all the pay lines L.
  • the method for determining the BET-value for each pay line L is not limited to this example. For example, it may be configured so as to allow the player to operate to divide arbitrarily the total BET-value placed on a single game to the respective pay lines L.
  • the slot machine 10 has two modes: the insurance mode “RESCUE PAY ON”; and the non-insurance mode “RESCUE PAY OFF”.
  • the non-insurance mode is set immediately after the power is turned on in the slot machine 10 , and the mode is then shifted to the insurance mode when the above-described cumulative fractional value reaches 360 credits.
  • a player can also insure a game by inserting a game medium. Namely, when one credit of a game medium is inserted, the mode shifts from a non-insurance mode to an insurance mode.
  • the number of games played is counted. Games to be counted are those games played with a MAXBET placed thereon and the fractional value having become larger than 0.
  • the payout of credits may be conducted from the credits other than the cumulative fractional value.
  • FIGS. 6 to 16 are views showing images displayed to the upper image display panel 33 and the lower image display panel 16 provided in the slot machine 10 .
  • a numeral 15 denotes a display window.
  • a numeral 31 denotes a number-of-credits display portion.
  • a numeral 32 denotes a number-of-payouts display portion.
  • a symbol L denotes a pay line.
  • an image 92 a showing “RESCUE OFF” is displayed to the upper image display panel 33 .
  • the image 92 a is an image showing that the current gaming state is the non-insurance mode.
  • a normal effect image 94 a is displayed to the lower image display panel 16 .
  • a button type image 90 a showing “BET FOR RESCUE PAY MORE INFO” is displayed to the lower right portion of the lower image display panel 16 .
  • the image 90 a is an image to request an input of a command to output information concerning the insurance mode.
  • the player can input the command to output information concerning the insurance mode by touching a predetermined place of the touch panel 69 (not shown) corresponding to the display area of the button type image 90 a.
  • a cumulative-fractional-value display portion 80 which indicates the current cumulative fractional value (insurance value). Further, in the cumulative-fractional-value display portion 80 , there is displayed a button type image 81 indicating “MORE INFO”.
  • the button type image 81 is an image which requires the player to input a command for an output of information about the cumulative fractional value.
  • a cumulative-fractional-value information image 82 as shown in [P 01 ′] is displayed.
  • the cumulative-fractional-value information image 82 includes information indicating that the mode shifts to the insurance mode when the cumulative fractional value reaches 360 credits.
  • an image 91 showing information concerning the insurance mode is displayed to the lower image display panel 16 .
  • the image 91 includes information concerning the insurance mode as follows:
  • the image 91 includes information to make a request for an option as to whether or not to shift the mode from the non-insurance mode to the insurance mode, a button type image “YES” 91 a , and a button type image “NO” 91 b.
  • an image 92 b showing “RESCUE ON” is displayed to the upper image display panel 33 .
  • the image 92 b is an image showing that the current gaming state is the insurance mode.
  • a normal effect image 94 b is displayed to the lower image display panel 16 . While the normal effect image 94 b in the insurance mode differs from a normal effect image 94 a in the non-insurance mode, these are selected randomly by using random numbers, not based on whether the mode is the insurance mode or the non-insurance mode.
  • a button type image 90 b showing “RESCUE ON MORE INFORMATION” is displayed to the lower right portion of the lower image display panel 16 .
  • the button type image 90 b is an image for showing that the current gaming state is the insurance mode and also for inputting a command to output information concerning the insurance mode.
  • the value of credits to be paid out (here, 1210.15) when “RESCUE PAY” occurs, i.e. an image 85 indicating the fractional value cumulatively added in the server 200 , is displayed.
  • the value of credits indicated by the image 85 changes according to the fractional value stored in the server 200 .
  • a normal effect image 94 c is displayed to the lower image display panel 16 , and the button type image 90 b , the button type image 81 , the cumulative-fractional-display portion 80 , and the image 85 are continuously displayed.
  • the cumulative-fractional-value display portion 80 shows that the current cumulative fractional value is 1215.20 credits
  • the image 85 shows that 1215.20 credits are to be paid out when “RESCUE PAY” occurs.
  • a normal effect image 94 d is displayed, and the button type image 81 , the cumulative-fractional-value display portion 80 , and the image 85 are also continuously displayed.
  • the cumulative-fractional-value display portion 80 shows that the current cumulative fractional value is 1225.55 credits
  • the image 85 shows that 1225.55 credits are to be paid out when the “RESCUE PAY” occurs.
  • the cumulative fractional value has increased by 10.35 credits during the period after the end of the first game until the end of the second game. This is because, during the time period, a fractional value of 10.35 credits has been generated in this slot machine 10 and the other slot machines 10 connected thereto through the communication line 101 , and this fractional value has been accumulated as the cumulative fractional value.
  • the normal effect image 94 is displayed until the number of games in which the MAXBET is placed thereon and the fractional value is larger than 0 reaches 990 (a notice set value).
  • the image 92 b is displayed which shows that the current gaming state is the insurance mode and an image 96 is displayed which shows that the number of games left to be played until the number of games to be counted reaches the specific number is ten.
  • an image 97 is displayed which shows that the number of games left to be played until the number of games to be counted reaches the specific number is ten.
  • a specific effect image 95 a is displayed to the lower image display panel 16 .
  • the specific effect image 95 is displayed after the number of games to be counted has reached the notice set value, in the insurance mode.
  • the image 93 is displayed which shows that the number of games left to be played until the number of games to be counted reaches the specific number is nine.
  • the value of credits in this case, 1620.81 credits
  • the remaining number of games is counted down in the image 93 .
  • a specific effect image 95 b is displayed to the lower image display panel 16 .
  • the specific effect image 95 b is a video picture with its contents continued from the specific effect image 95 a in [P 06 ]
  • the specific effect image 95 is a video picture where a character (angel) performs a series of actions (action of appearing and spreading her wings), and specific effect images 95 a to 95 j are made by dividing the specific effect image 95 into a plurality of images along the time axis.
  • an image 97 a is displayed to the upper image display panel 33 , the image 97 a showing that coins are being paid out based on that the number of games in the insurance mode has reached the specific number. Further, a similar image 97 b is also displayed to the lower left side of the lower image display panel 16 .
  • an image 97 c is displayed to the lower left side of the lower image display panel 16 , the image 97 c showing that coins are being paid out according to the above-mentioned winning combination.
  • the number of games is cleared, and the mode is shifted from the insurance mode to the non-insurance mode.
  • an image 98 showing “RESCUE OFF” is displayed to the lower image display panel 16 .
  • the image 98 is an image showing that the mode has been shifted from the insurance mode to the non-insurance mode.
  • the image 97 d is an image showing the number of coins to be paid out according to the combination of symbols “BAR”-“BAR”-“BAR”.
  • the image 92 b showing “RESCUE ON” is displayed to the upper image display panel 33 .
  • the image 92 b is an image showing that the current gaming state is the insurance mode.
  • An effect image 94 e corresponding to “BAR”-“BAR”-“BAR” is displayed to the lower image display panel 16 .
  • the image 85 is displayed which shows the value of credits to be paid out when the number of games to be counted reaches the specific number
  • the image 97 c is displayed which shows the number of coin-outs according to the combination of symbols “BAR”-“BAR”-“BAR”.
  • an effect image 94 e corresponding to the combination of symbols “BAR”-“BAR”-“BAR” is not displayed, and the specific effect image 95 c is displayed as in [P 08 ] (see FIG. 11 ).
  • Other images are also displayed as in [P 08 ].
  • FIG. 17 is a flowchart showing main processing performed in the slot machine 10 .
  • activation processing is conducted in the slot machine 10 (step S 101 ).
  • the activation processing is specifically described later by using FIG. 24 .
  • the main CPU 41 upon receipt of a detection signal outputted from the coin counter 21 C when a coin inserted into the coin receiving slot 21 is detected by the coin counter 21 C after the activation processing, the main CPU 41 conducts processing for adding the amount of inserted coins to the number of credits stored in the RAM 43 as interruption processing.
  • the non-insurance mode is displayed in the slot machine 10 (step S 102 ).
  • the main CPU 41 transmits a drawing command of the non-insurance mode image to the graphic board 68 .
  • the VDP extracts image data from the RAM 43 , expands it into a video RAM, generates image data of one frame, and outputs this image data to the upper image display panel 33 and the lower image display panel 16 .
  • the main CPU 41 sets the number-of-games C to 0 and starts counting down the number of games (step S 103 ).
  • the main CPU 41 determines whether or not the current gaming state is the insurance mode, namely whether or not the insurance mode flag stored in the RAM 43 is “ON” (step S 104 ).
  • step S 200 the main CPU 41 executes game execution processing A (non-insurance mode) (step S 200 ), and then returns the processing to step S 104 .
  • the game execution processing A is specifically described later by using FIG. 19A and FIG. 19B .
  • step S 104 when determining that the current gaming state is the insurance mode in step S 104 , the main CPU 41 then determines whether or not the number-of-games C stored in the RAM 43 is less than the notice set value (990 in the present embodiment) (step S 105 ).
  • step S 105 When determining that the number-of-games C is less than the notice set value in step S 105 , the main CPU 41 executes game execution processing B (insurance mode/before reaching the notice set value) (step S 300 ), and then returns the processing to step S 103 .
  • the game execution processing B is specifically described later by using FIG. 20 .
  • the main CPU 41 determines whether or not the number-of-games C stored in the RAM 43 is less than a value (999) smaller than the specific number by one (step S 106 ).
  • step S 106 When determining that the number-of-games C is less than the value smaller than the specific number by one in step S 106 , the main CPU 41 executes game execution processing C (insurance mode/after reaching the notice set value) (step S 400 ) since the number-of-games C will not reach the specific number in the next game, and then main CPU 41 returns the processing to step S 104 .
  • the game execution processing C is specifically described later by using FIG. 21 .
  • step S 500 the main CPU 41 executes game execution processing D (insurance mode/at reaching of specific number) since the number-of-games C may reach the specific number in the next game, and then the main CPU 41 returns the processing to step S 104 .
  • the game execution processing D is specifically described later by using FIG. 22A and FIG. 22B .
  • the processing for executing game execution processing A, game execution processing, game execution processing C, or game execution processing D corresponds to processing for executing a unit game in the present invention.
  • insurance setting processing is conducted in a predetermined cycle when the non-insurance mode image is displayed (see [P 01 ] in FIG. 6 ) as described above.
  • the insurance setting processing is processing executed when the player insure the game by inserting a game medium as an insurance premium.
  • FIG. 18 is a flowchart showing a subroutine of the insurance setting processing.
  • the main CPU 41 determines whether or not the button type image “RESCUE PAY” 90 a included in the image shown in [P 01 ] displayed to the lower image display panel 16 has been touched, namely, whether or not to have received a detection signal that is outputted from the touch panel 69 when a predetermined place of the touch panel 69 corresponding to the display area of the button type image 90 a is touched (step S 110 ).
  • the main CPU 41 determines that the button type image 90 a has not been touched, the present subroutine is terminated.
  • the main CPU 41 displays an insurance information image (see [P 02 ] in FIG. 7 ), including the button type image “YES” 91 a and the button type image “NO” 91 b for responding to “RESCUE ON”, to the lower image display panel 16 (step S 111 ).
  • the main CPU 41 determines whether or not the button type image “YES” 91 a has been touched (step S 112 ). When determining that the button type image “YES” 91 a has not been touched in step S 112 , the main CPU 41 then determines whether or not the button type image “NO” 91 b has been touched (step S 113 ). When the main CPU 41 determines that the image “NO” 91 b has been touched, the present subroutine is terminated. On the other hand, when the main CPU 41 determines that the image “NO” 91 b has not been touched, the processing is returned to step S 111 .
  • the main CPU 41 conducts processing for subtracting a predetermined number of credits (one, in the present embodiment) from the number of credits stored in the RAM 43 (step S 114 ).
  • the main CPU 41 sets the insurance mode flag stored in the RAM 43 to “ON” so as to shift the mode to the insurance mode (step S 115 ).
  • step S 116 the present subroutine is terminated.
  • FIG. 19A and FIG. 19B are a flowchart showing a subroutine of the game execution processing A called and executed in step S 200 of the subroutine shown in FIG. 17 .
  • the main CPU 41 conducts processing for displaying the non-insurance mode image (see [P 01 ] in FIG. 6 ) to the upper image display panel 33 and the lower image display panel 16 (step S 201 ).
  • the main CPU 41 determines whether or not a coin has been BET (step S 202 ). In this processing, the main CPU 41 determines whether or not to have received an input signal that is outputted from the 1-BET switch 26 S when the 1-BET button 26 is operated, or an input signal that is outputted from a maximum BET switch 27 S when the maximum BET button 27 is operated. When the main CPU 41 determines that the coin has not been BET, the processing is returned to step S 202 .
  • step S 203 the main CPU 41 conducts processing for making a subtraction from the number of credits stored in the RAM 43 according to the number of coins BET (step S 203 ) It is to be noted that, when the number of coins BET is larger than the number of credits stored in the RAM 43 , the main CPU 41 does not conduct the processing for making a subtraction from the number of credits stored in the RAM 43 , and the processing is returned to step S 202 .
  • the main CPU 41 does not conduct the processing for making a subtraction from the number of credits stored in the RAM 43 , and the processing is proceeded to step S 204 .
  • the main CPU 41 determines the BET-value for each of the pay lines L (step S 204 ). Specifically, the main CPU 41 determines the value resulted from dividing the number of credits BET in step S 202 by the number of pay lines L (in the present embodiment, five) as the BET-value for each of the pay lines L.
  • the main CPU 41 determines whether or not the spin button 23 has been turned ON (step S 205 ). In this processing, the main CPU 41 determines whether or not to have received an input signal that is outputted from the spin switch 23 S when the spin button 23 is pressed.
  • step S 202 When the main CPU 41 determines that the spin button 23 has not been turned on, the processing is returned to step S 202 .
  • the main CPU 41 cancels a subtraction result in step S 203 .
  • step S 202 the processing for making a subtraction from the number of credits is conducted (step S 203 ) before it is determined whether or not the spin button 23 has been turned ON (step S 205 ).
  • the present invention is not limited to this example. For example, it may be determined whether or not the spin button 23 has been turned ON (step S 205 ) after a coin is BET (step S 202 ), and when it is determined that the spin button 23 has been turned ON (step S 205 : YES), the processing for making a subtraction from the number of credits may be conducted (step S 203 ).
  • the main CPU 41 conducts processing for displaying a normal effect image (e.g. the normal effect image 94 a ) (step S 206 ).
  • a normal effect image e.g. the normal effect image 94 a
  • the normal effect image 94 had been displayed before the spin button 23 is turned ON, and another normal effect image 94 is displayed after the spin button 23 is turned ON. It should be noted that, in the present invention, the normal effect image 94 may be displayed after the spin button 23 is turned ON.
  • the main CPU 41 conducts to-be-stopped symbol determination processing (step S 207 ).
  • the main CPU 41 (arithmetic processing unit) executes a to-be-stopped symbol determination program stored in the RAM 43 (storage device) so as to determine a code No. in stopping the reels 14 . Thereby, a combination of symbols to be rearranged is determined.
  • This processing is specifically described later by using FIGS. 25 and 28 .
  • a combination of symbols to be rearranged is determined so as to determine one winning combination out of a plurality of types of winning combinations.
  • a random number may be used first so as to determine one winning combination to be selected randomly from the plurality of types of winning combinations, and thereafter, a combination of symbols to be rearranged may be determined based on the above-mentioned winning combination.
  • step S 208 the main CPU 41 conducts reel rotation control processing. This is the processing for starting rotation of all the reels 14 and then stopping rotation of the reels 14 so that the combination of symbols corresponding to the winning combination determined in step S 207 is rearranged along the pay line L. This processing is specifically described later by using of FIGS. 26 to 28 .
  • the main CPU 41 displays to the lower image display panel 16 an effect image according to stop-displayed symbols or a combination thereof (step S 209 ).
  • the main CPU 41 determines whether or not a combination of jackpot triggers has been established (step S 220 ). When it is determined that the combination of jackpot triggers has been established, a single jackpot is selected out of four types of jackpots “GRAND”, “MAJOR”, “MINOR” and “MINI”, and the number of coins set with respect to the selected jackpot is paid out (step S 221 ). In the case of accumulating coins, the main CPU 41 conducts processing for adding a predetermined number of credits to the number of credits stored in the RAM 43 . On the other hand, in the case of paying out coins, the main CPU 41 transmits a control signal to the hopper 66 in order to pay out a predetermined number of coins.
  • the coin detecting portion 67 counts the number of coins paid out from the hopper 66 , and when the counted value reaches a designated number, the coin detecting portion 67 transmits a payout completion signal to the main CPU 41 . Thereby, the main CPU 41 stops driving of the hopper 66 and ends the coin payout processing. Thereafter, the present subroutine is terminated.
  • step S 220 when determining that the combination of jackpot triggers has not been established, the main CPU 41 determines whether or not a winning combination has been established on any of the pay lines L (step S 222 ). When it is determined that a winning combination has not been established on any of the pay lines L, i.e. when the game is lost, the present subroutine is terminated.
  • the main CPU 41 determines the payout value for each of the pay lines L along which a winning combination has been established (step S 223 ). More specifically, the main CPU 41 determines the value obtainable from multiplication of the BET-value for each pay line L determined in step S 204 by the payout rate set for each winning combination (see FIG. 4 ), as the payout value for each of the pay lines L.
  • the main CPU 41 combines the payout values for the respective pay lines L determined in step S 223 to determine the estimated payout value for this game (step S 224 ).
  • the main CPU 41 determines the credits after the decimal point as a fractional value, out of the estimated payout value determined in step S 224 (step S 225 ).
  • the main CPU 41 executes processing for paying out, to the player, coins of the value obtained by subtracting the fractional value determined in step S 225 from the estimated payout value determined in step S 224 (step S 226 ).
  • step S 225 determines whether or not the fractional value determined in step S 225 is 0 (step S 227 ). When determining that the fractional value is 0, then the main CPU 41 ends the present subroutine.
  • the main CPU 41 executes processing for transmitting the data indicative of the fractional value determined in step S 225 to the server 200 to add this fractional value to the cumulative fractional value stored in the server 200 (step S 228 ).
  • the main CPU 41 determines whether or not the total of the fractional values has reached a predetermined value (360 credits, in the present embodiment) (step S 229 ).
  • the main CPU 41 sets the insurance mode flag stored in the RAM 43 to “ON”, to shift the mode to the insurance mode (step S 230 ).
  • the main CPU 41 displays insurance mode images shown in [P 03 ] (see FIG. 8 ) to the upper image display panel 33 and the lower image display panel 16 (step S 231 ).
  • step S 229 When determining in step S 229 that the total of fractional values has not reached the predetermined value, or when executing the processing of step S 231 , the main CPU 41 determines whether or not the game has been played with a MAXBET (step S 232 ). When determining that the game has not been executed with a MAXBET, the main CPU 41 ends the present subroutine.
  • FIG. 20 is a flowchart showing a subroutine of the game execution processing B which is called and executed in step S 300 of the subroutine shown in FIG. 17 .
  • the main CPU 41 conducts processing for displaying the insurance mode image (see [P 03 ] in FIG. 8 ) to the upper image display panel 33 and the lower image display panel 16 (step S 301 ).
  • steps S 302 to S 308 are conducted, and the processing are similar to the processing of steps S 202 to S 208 shown in FIG. 19A .
  • the main CPU 41 displays to the lower image display panel 16 an effect image (see [P 04 ], [P 05 ] in FIG. 9 ) according to the rearranged symbols or a combination thereof (step S 309 ).
  • step S 320 the main CPU 41 executes processing according to a payout and a fractional value addition.
  • This processing is processing for conducting a payout according to the establishment of a combination of jackpot triggers and a winning combination, calculation of the fractional value, cumulative addition of the fractional value and the like, and will be described later in more detail, with reference to FIG. 23 .
  • step S 321 the main CPU 41 determines whether or not the game has been executed with a MAXBET and also the fractional value resulted in the processing of step S 320 is larger than 0.
  • the main CPU 41 ends the present subroutine.
  • FIG. 21 is a flowchart showing a subroutine of the game execution processing C which is called and executed in step S 400 of the subroutine shown in FIG. 17 .
  • the main CPU 41 conducts processing for displaying the insurance mode image to the upper image display panel 33 and the lower image display panel 16 (step S 401 ).
  • steps S 402 to S 405 are conducted, and the processing of those steps is similar to the processing of steps S 202 to S 205 shown in FIG. 19A .
  • the main CPU 41 displays specific effect images 95 a to 95 i (see [P 06 ] to [P 14 ] in FIGS. 10 to 13 ) to the lower image display panel 16 (step S 406 ).
  • the specific effect image 95 is a video picture of an action of an angel as a character who appears and spreads her wings, and the specific effect images 95 a to 95 j are made by dividing the specific effect image 95 into a plurality of images along the time axis.
  • steps S 407 and S 408 are performed, and the processing of these steps is similar to the processing of steps S 207 and S 208 shown in FIG. 19A .
  • step S 408 the main CPU 41 conducts processing for continuously displaying the specific effect image 95 even after rotation of the reels 14 has been stopped (step S 409 ).
  • the main CPU 41 does not display the effect image 94 e which is displayed according to the symbols or the combination thereof as shown in [P 19 ] (see FIG. 16 ). In place of that, the main CPU 41 displays the image 97 c showing the number of coin-outs according to the symbols or the combination thereof while displaying the specific effect image 95 as shown in [P 20 ] (see FIG. 16 ).
  • steps S 420 to S 422 are conducted, and the processing of these steps are similar to the processing of steps S 320 to S 322 shown in FIG. 20 , respectively.
  • FIG. 22A and FIG. 22B are flowcharts showing a subroutine of the game execution processing D which is called and executed in step S 500 of the subroutine shown in FIG. 17 .
  • the main CPU 41 conducts processing for displaying the insurance mode image to the upper image display panel 33 and the lower image display panel 16 (step S 501 ).
  • steps S 502 to S 505 are conducted, and the processing of these steps is similar to the processing of steps S 202 to S 205 shown in FIG. 19A .
  • the main CPU 41 displays a specific effect image 95 j (see [P 15 ] in FIG. 14 ) to the lower image display panel 16 (step S 506 ).
  • the specific effect image 95 j has contents continued from the specific effect images 95 a to 95 i , and displays an action of the angel as the character having spread her wings.
  • steps S 507 to S 508 are conducted, and the processing of these steps is similar to the processing of steps S 207 to S 208 shown in FIG. 18A .
  • step S 508 the main CPU 41 conducts processing for continuously displaying the specific effect image 95 j even after rotation of the reels 14 has stopped (step S 509 ).
  • the main CPU 41 displays the image 97 c showing the number of coin-outs according to the symbols or the combination thereof while displaying the specific effect image 95 as shown in [P 20 ] (see FIG. 16 )
  • the main CPU 41 conducts processing according to a payout and a fractional value addition (step S 520 ).
  • step S 521 the main CPU 41 determines whether or not the current game is a game with a MAXBET and the fractional value obtained in step S 520 is larger than 0 (step S 521 ).
  • the present subroutine ends.
  • the main CPU 41 displays an image shown in [P 16 ] to the upper image display panel 33 and the lower image display panel 16 (step S 523 ).
  • the image 97 a is displayed to the upper image display panel 33 , the image 97 a showing that coins are being paid out based on that the number of games has reached a specific number, and the similar image 97 b is also displayed to the lower left side of the lower image display panel 16 .
  • the specific effect image 95 h with contents continued from the specific effect images 95 a to 95 j is displayed to the lower image display panel 16 . Furthermore, the specific effect image 95 h ′ is displayed in the display windows 15 ( 15 L, 15 C, 15 R).
  • the main CPU 41 determines whether or not the cumulative fractional value is equal to or more than a predetermined value (360 credits) (step S 524 ). When determining that the cumulative fractional value is less than the predetermined value, the main CPU 41 pays out game media of a predetermined value (360 credits) out of the game media the manager of the game facility has accumulated in advance, while displaying an image shown in [P 16 ] (step S 525 ). At this time, 360 coins are paid out from the hopper 66 .
  • a predetermined value 360 credits
  • step S 524 When determining in step S 524 that the cumulative fractional value is equal to or more than the predetermined value (360 credits), the main CPU 41 pays out game media of a value corresponding to the full value of the cumulative fractional value stored in the server 200 (step S 526 ). At this time, coins in number corresponding to the full value of the cumulative fractional value are paid out from the hopper 66 .
  • step S 525 or step S 526 the main CPU 41 stops display of the specific effect image 95 h ′ in the display windows 15 while displaying the specific effect image 95 h to the lower image display panel 16 so as to display the specific effect image 95 in such a manner as to make the reels 14 visible (step S 527 ).
  • the main CPU 41 sets the insurance mode flag stored in the RAM 43 to “OFF” so as to shift the mode to the non-insurance mode (step S 528 ).
  • the main CPU 41 displays, to the lower image display panel 16 , the image 98 (see [P 18 ] in FIG. 15 ) showing that the mode has been shifted from the insurance mode to the non-insurance mode (step S 530 ), and the present subroutine is terminated.
  • FIG. 23 is a flow chart showing the subroutine of the processing according to a payout and a fractional value addition which is called and executed in step S 320 in FIG. 20 , step S 420 in FIG. 21 and step S 520 in FIG. 22B .
  • the main CPU 41 determines whether or not a combination of jackpot triggers has been established (step S 61 ). When determining that a combination of jackpot triggers has been established, the main CPU 41 conducts jackpot payout processing (step S 62 ). After conducting the processing of step S 62 , the main CPU 41 ends the present subroutine.
  • step S 61 when determining in step S 61 that a combination of jackpot triggers has not been established, the main CPU 41 determines whether or not a winning combination has been established along any of the pay lines L (step S 63 ). When determining that a winning combination has not been established along any of the pay lines L, the main CPU 41 ends the present subroutine.
  • the main CPU 41 determines the payout value for each of the pay lines L along which the winning combination has been established (step S 64 ).
  • the main CPU 41 combines the payout values for the respective pay lines L determined in step S 64 to determine the estimated payout value for this game (step S 65 ).
  • the main CPU 41 determines the credits after the decimal point of the estimated payout value determined in step S 65 , as a fractional value (step S 66 ).
  • the main CPU 41 conducts processing for paying out, to the player, coins of the value obtained by subtracting the fractional value determined in step S 66 from the estimated payout value determined in step S 65 (step S 67 ).
  • step S 68 the main CPU 41 determines whether or not the fractional value determined in step S 66 is 0 (step S 68 ). When determining that the fractional value is 0, the main CPU 41 ends the present subroutine.
  • the main CPU 41 conducts processing for transmitting data indicative of the fractional value determined in step S 66 to the server 200 , to add this fractional value to the cumulative fractional value stored in the RAM 43 (step S 69 ).
  • step S 69 After conducting the processing of step S 69 , the main CPU 41 ends the present subroutine.
  • FIG. 24 is a flowchart showing a procedure called and executed in step S 101 of the flowchart shown in FIG. 17 .
  • This activation processing is the processing conducted by the mother board 40 and the gaming board 50 . It should be noted that the memory card 53 is inserted into the card slot 53 S in the gaming board 50 , and the GAL 54 is mounted onto an IC socket 54 S.
  • the mother board 40 and the gaming board 50 are activated (steps S 1 - 1 , S 2 - 1 ). Inactivation of the mother board 40 and the gaming board 50 , respective individual processing is executed in parallel. Namely, in the gaming board 50 , the CPU 51 reads the auxiliary authentication program stored in the boot ROM 52 , and conducts auxiliary authentication according to the read auxiliary authentication program, to previously check and prove that the authentication program is not falsified before loading the program to the mother board 40 (step S 2 - 2 ).
  • the main CPU 41 executes the BIOS stored in the ROM 42 , and expands compressed data which is incorporated in the BIOS into the RAM 43 (step S 1 - 2 ).
  • the main CPU 41 then executes the BIOS expanded into the RAM 43 to diagnose and initialize a variety of peripheral devices (step S 1 - 3 ).
  • the main CPU 41 Since the ROM 55 of the gaming board 50 is connected to the main CPU 41 via the PCI bus, the main CPU 41 reads the authentication program stored in the ROM 55 , and stores the read authentication program into the RAM 43 (steps S 1 - 4 ). At this time, according to the standard BIOS function of BIOS, the main CPU 41 takes a checksum by ADDSUM system (normal checking system) and stores the authentication program into the RAM 43 , while conducting processing for confirming whether or not the storage is certainly conducted.
  • ADDSUM system normal checking system
  • the main CPU 41 accesses, via the IDE bus, the memory card 53 inserted in the card slot 53 S, to read a game program or a game system program from the memory card 53 .
  • the main CPU 41 reads data constituting the game program and the game system program by 4 bytes.
  • the main CPU 41 conducts authentication to check and prove that the read game program and game system program have not been falsified, following the authentication program stored in the RAM 43 (step S 1 -S).
  • the main CPU 41 writes and stores the game program and the game system program, which have been the authentication targets (which have been authenticated), into the RAM 43 (step S 1 - 6 ).
  • the main CPU 41 accesses, via the PCI bus, the GAL 54 mounted on the IC socket 54 S, reads payout ratio setting data from the GAL 54 , and writes and stores the data into the RAM 43 (step S 1 - 7 ). Subsequently, the main CPU 41 conducts processing for reading country identification information stored in the ROM 55 of the gaming board 50 via the PCI bus, and writes and stores the read country identification information into the RAM 43 (step S 1 - 8 ).
  • the main CPU 41 sequentially reads and executes the game program and the game system program, to execute the processing shown in FIG. 17 .
  • FIG. 25 is a flowchart showing a subroutine of the to-be-stopped symbol determination processing called and executed in step S 207 of the subroutine shown in FIG. 19A . This is the processing conducted such that the main CPU 41 executes the to-be-stopped symbol determination program stored in the RAM 43 .
  • the main CPU 41 executes a random number generation program included in the to-be-stopped symbol determination program, to select random numbers respectively corresponding to the three reels 14 , out of the numbers falling in the numeric range of 0 to 255 (step S 31 ).
  • a random number generator may be provided and random numbers may be extracted from the random number generator (a so-called hardware random number may be used).
  • the main CPU 41 determines a code No. (see FIG. 28 ) of the respective reels 14 based on the selected three random numbers, by referring to symbol weighing data according to the payout ratio setting data outputted from GAL 54 and stored in the RAM 43 (storage device) (step S 32 ).
  • the code Nos. of the respective reels 14 correspond to code Nos. of symbols to be rearranged along the pay lines L. It should be noted that later-described reel rotation control processing is conducted based on these code Nos. of the reels.
  • FIG. 26 is a flowchart showing the reel rotation control processing called and executed in step S 208 of the subroutine shown in FIG. 19A . It is to be noted that this is the processing conducted between the main CPU 41 and the sub CPU 61 .
  • the main CPU 41 transmits to the sub CPU 61 a start signal to start rotation of the reels (step S 40 ).
  • the sub CPU 61 conducts the reel rotation processing (step S 51 ).
  • the sub CPU 61 supplies a pulse to the motor driving circuit 62 .
  • the pulse outputted from the sub CPU 61 is amplified by the driver 64 , and then supplied to each of the stepping motors 70 ( 70 L, 70 C, 70 R). This results in rotation of each of the stepping motors 70 , along with which each of the reels 14 ( 14 L, 14 C, 14 R) is rotated.
  • a step angle is 0.9 degrees and the number of steps per rotation is 400. Therefore, when 400 pulses are supplied to the stepping motor 70 , the reel 14 rotates one turn.
  • the sub CPU 61 supplies a low frequency pulse to the motor driving circuit 62 , and gradually increases the pulse frequency. Along with this, a rotational speed of the reels 14 increases. After a lapse of a predetermined period of time, the pulse frequency is made constant. This results in rotation of the reel 14 at a constant speed.
  • FIGS. 27A to 27D the rotational operation of the reel 14 is described by using FIGS. 27A to 27D .
  • FIGS. 27A to 27D are side views for explaining the rotational operation of the reel 14 .
  • a semicircular metal plate 14 a is provided on the side face of the reel 14 .
  • the metal plate 14 a is rotated along with the reel 14 .
  • 22 symbols are provided on the peripheral face of the reel 14 .
  • Three symbols out of the 22 symbols drawn on the peripheral face of the reel 14 become visually identifiable via the display window 15 formed in front of the reel 14 .
  • heavy-line arrows indicate the rotational direction of the reel 14 .
  • an adjacent sensor 65 a is provided on the side face of the reel 14 .
  • the adjacent sensor 65 a is for detecting the metal plate 14 a .
  • the adjacent sensor 65 a does not move or rotate along with rotation of the reel 14 .
  • FIG. 27A shows a position (hereinafter also referred to as position A) of the metal plate 14 a at the time point when the adjacent sensor 65 a starts detecting the metal plate 14 a .
  • position A a position of the metal plate 14 a at the time point when the adjacent sensor 65 a starts detecting the metal plate 14 a .
  • FIG. 27B shows a position (hereinafter also referred to as position B) of the metal plate 14 a when the adjacent sensor 65 a is detecting the metal plate 14 a .
  • position B shows a position of the metal plate 14 a when the adjacent sensor 65 a is detecting the metal plate 14 a .
  • FIG. 27C shows a position (hereinafter also referred to as position C) of the metal plate 14 a at the time point when the adjacent sensor 65 a stops detecting the metal plate 14 a.
  • FIG. 27D shows a position (hereinafter also referred to as position D) of the metal plate 14 a when the adjacent sensor 65 a is not detecting the metal plate 14 a .
  • position D a position of the metal plate 14 a when the adjacent sensor 65 a is not detecting the metal plate 14 a .
  • the metal plate 14 a returns to the position A.
  • the position of the metal plate 14 a changes sequentially from the position A, the position B, the position C, the position D, the position A, and so forth, along with rotation of the reel 14 .
  • the adjacent sensor 65 a constitutes the index detecting circuit 65 (see FIG. 3 ). Assuming that the state where the adjacent sensor 65 a is detecting the metal plate 14 a is referred to as “High” and the state where the adjacent sensor 65 a is not detecting the metal plate 14 a is referred to as “Low”, the index detecting circuit 65 is in the “High” state when the metal plate 14 a is located in the position A ⁇ the position B ⁇ the position C, and the index detecting circuit 65 is in the “Low” state when the metal plate 14 a is located in the position C ⁇ the position D ⁇ the position A.
  • the sub CPU 61 identifies the rotational position of the reel 14 such that a leading edge from “Low” to “High” as index (original point) 1 and a falling edge from “High” to “Low” as index (original point) 2 .
  • step S 41 After transmitting a start signal to the sub CPU 61 in step S 40 , the main CPU 41 executes effects in rotation of the reels (step S 41 ). This is the processing for displaying an image to the lower image display panel 16 , outputting sound from the speaker 29 , and the like, during a period (e.g. 3 seconds) set according to a result of the to-be-stopped symbol determination processing ( FIG. 19A , step S 207 ) or the like.
  • the main CPU 41 determines whether or not the current time point is the timing for instructing to stop rotation of the reels 14 (step S 42 ).
  • the timing for instructing to stop rotation of the reels 14 is the timing before the time point of stopping the performance of effects in rotation of the reels only by the minimum time required for stopping rotation of the reels 14 . It is to be noted that the minimum time required for stopping rotation of the reels 14 is previously set.
  • step S 42 when determining that the current time point is not the timing for instructing to stop rotation of the reels 14 , the main CPU 41 returns the processing to step S 42 , and continuously executes the performance of effects in rotation of the reels.
  • the main CPU 41 transmits code No. stored in the RAM 43 to the sub CPU 61 (step S 43 ).
  • the sub CPU 61 converts code No. into the stop position (the number of steps) of each reel from the index, based on the correspondence table of the number of steps stored in ROM (not shown) comprised in CPU 61 and code No. (step S 52 ).
  • FIG. 28 is a schematic view showing a correspondence table of the number of steps and code No. Each code No. is corresponded to index and the number of steps.
  • each code No. corresponds to a symbol drawn on the peripheral face of the reel 14 .
  • Symbols of code No. “00” to “10” correspond to index 1 .
  • Symbols of code No. “11” to “21” correspond to index 2 .
  • the numbers of steps in the correspondence table shown in FIG. 28 are the numbers of steps set with index 1 as a reference. For example, when code No. is “08”, a position 145 steps from index 1 is the stop position of the reel. Further, when code No. is “12”, a position 218 steps from index 1 is the stop position of the reel.
  • the sub CPU 61 executes a reel stoppage processing (step S 53 ).
  • the sub CPU 61 detects the leading edge (index 1 ) from “Low” to “High” of each reel 14 in the index detecting circuit 65 , and supplies the index detecting circuit 65 with pulses corresponding to the number of steps into which code No. has been converted in step S 52 , at the timing of detecting index 1 , and thereafter, the supply of the pulse is stopped.
  • the sub CPU 61 supplies the index detecting circuit 65 with 145 pulses at the timing of detecting index 1 , and then stops the supply of the pulse. Further, in step S 52 , when it is determined that the stop position of the reel is a position 218 steps from index 1 , the sub CPU 61 supplies the index detecting circuit 65 with 218 pulses at the timing of detecting index 1 .
  • the reels 14 stop with the code numbers as determined in step S 32 in FIG. 25 , and a combination of symbols corresponding to the winning combination determined in step S 32 in FIG. 25 is rearranged along the pay lines L. Meanwhile, the main CPU 41 ends the performance of effects in rotation of the reels. After completing the processing of steps S 44 and S 53 , the present processing is terminated.
  • step S 43 when index corresponding to code No. transmitted in step S 43 differs from index detected by the index detecting circuit 65 in stopping rotation of the reels 14 , a loss of synchronism has occurred in the reels 14 , and therefore, the main CPU 41 conducts processing for displaying an error message to the lower image display panel 16 , or the like, to discontinue the game.
  • the game is discontinued.
  • the slot machine 10 includes the mother board 40 (a controller).
  • the mother board 40 is programmed to conduct processing of: (A) determining, when game media of a value corresponding to a natural-number multiple of one credit is BET on a plurality of pay lines L for which game results are individually determined, a BET-value for each of the pay lines L based on the value of the BET game media and the number of the pay lines L, the game result of each of the pay lines L, and a payout value for each of the pay lines L based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the processing (A) by one credit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the processing (B) from the estimated payout value for a single unit game determined in the processing (A),
  • games to be counted are games with a MAXBET placed thereon and the obtained fractional value being larger than 0.
  • games to be counted are not limited to this example.
  • a game in which a fractional value is larger than 0 may be counted regardless of the number of BETs, or a game with a MAXBET placed thereon may be counted regardless of whether or not the fractional value is larger than 0.
  • only the games executed in the insurance mode may be the counting targets. Further, all the games actually executed may be counted.
  • coins are to be paid out when the number of counted games reaches 1000.
  • the specific number is not limited to this example. Further, for example, the specific number may be set randomly by using a random number every time the mode is shifted to the insurance mode. Moreover, the specific number may be set according to the number of credits such that the larger the number of credits for shifting the mode from the non-insurance mode to the insurance mode, the smaller the specific number is set.
  • the game media to be paid out when the number of counted games reaches the specific number there is no particular limitation on the game media to be paid out when the number of counted games reaches the specific number, provided that the game media are game media which have been cumulatively accumulated during games.
  • the game media are game media which have been cumulatively accumulated during games.
  • part of cumulatively accumulated game media may be paid out, when the number of counted games reaches the specific number.
  • a returned profit of game media when the number of games with a MAXBET placed thereon and the obtained fractional value being larger than 0 reaches 1000.
  • the condition to be satisfied for offering a returned profit is not limited to this example. Examples of a condition to be satisfied for offering a returned profit include: the condition that the number of games with no predetermined bonuses such as a bonus game, a free game (a game that can be executed without inserting a game medium), mystery bonus, and the like generating therein reaches a specific number; and the condition that the number of games with no specific winning combinations (e.g.
  • a winning combination for which a payout of 180 or more coins is conducted) being established therein reaches a specific number.
  • the mode may shift from the insurance mode to the non-insurance mode and also the number of counted games may be cleared (set to 0), or the mode may shift from the insurance mode to the non-insurance mode while the number of counted games is maintained.
  • Another exemplary condition for offering a returned profit is the condition that the total of the numbers of game media BET in games reaches a specific number. In this case, only game media BET in the insurance mode may be counted, or all the game media BET thereon may be counted.
  • the gaming machine may be configured so as to enable the player to insure a game, on condition that the number of games with no predetermined bonuses (e.g., bonus games and free games) generating therein or the number of games with no specific winning combinations (e.g., a winning combination for which a payout of 180 or more coins is conducted) being established therein has reached a specific number, or on condition that the total of the numbers of game media BET in games has reached a specific number.
  • bonuses e.g., bonus games and free games
  • the number of games with no specific winning combinations e.g., a winning combination for which a payout of 180 or more coins is conducted
  • the mode may be shifted to the insurance mode only when the cumulative fractional value has reached the predetermined value.
  • game media may be paid out when the number of games reaches a specific number or when the total of the numbers of game media BET in games reaches a specific number, regardless of whether or not the cumulative fractional value has reached the predetermined value or whether or not game media have been inserted.
  • the slot machine is configured such that coins are paid out from the hopper 66 when a winning combination is established in a game or when the condition required for offering a returned profit of the insurance is satisfied.
  • the slot machine when a winning combination is established, credits may be cumulatively added to the credits stored in the RAM and coins and the like may be collectively paid out at the end of games.
  • the slot machine when the condition required for offering a returned profit of insurance is satisfied, the slot machine is desirably configured so as to physically pay out coins, medals, bills and like at the timing when the condition is established. This configuration can strongly impress, on the player, the fact that a returned profit of insurance is conducted.
  • the gaming machines 10 While, in the present embodiment, there has been described a case where the slot machines 10 are communicably connected to the server 200 through the communication line 101 and the server 200 stores the cumulative fractional values, the gaming machines according to the present invention may be of a standalone type and store the cumulative fractional values therein.
  • FIG. 29 is a perspective view schematically showing a slot machine according to another embodiment of the present invention.
  • a slot machine 300 has substantially the same appearance, circuit configuration and the like as those of the slot machine 10 , and the flowchart of the slot machine 300 is substantially the same as that of the slot machine 10 . Therefore, descriptions of the slot machine 300 are omitted except for a description of symbol display. Further, constituents corresponding to those of the slot machine 10 are provided with the same numerals as in the slot machine 10 .
  • the lower image display panel 16 included in the slot machine 300 is provided with symbol display areas 250 of three columns and three rows, and one symbol is displayed in each symbol display area.
  • the scroll-display of symbols may be displayed to the lower image display panel 16 in place of the reel rotation control by the sub CPU 61 .
  • the slot machines 10 are employed as gaming machines and BETs are placed on the plurality of pay lines L as BET-targets.
  • the gaming machines according to the present invention are not limited to slot machines; for example, roulette gaming machines may be adopted.
  • the BET-targets are a plurality of methods such as Straight BET and Split BET, in which BETs are placed on number pockets included in a roulette wheel, and payout rates are to be set for the respective BET methods.
  • the fractional value according to the condition required for shifting from the non-insurance mode to the insurance mode is determined based on the value according to the estimated payout value, namely the value with respect to the payout.
  • the value according to the condition required for shifting from the non-insurance mode to the insurance mode is not limited to this example.
  • a slot machine which will be described below is the same as the slot machine according to the above-mentioned embodiment, except that a BET-fractional-value is used in addition to the fractional value described in the above-mentioned embodiment as the value related to the condition required for shifting the mode from the non-insurance mode to the insurance mode, and that a BET can be placed on each of the pay lines L.
  • the slot machine which will be described hereinafter has substantially a similar external appearance, a similar circuit configuration and the like as those of the slot machine 10 described in the above-mentioned embodiment, and executes substantially a similar flowcharts.
  • a MAXBET is 3 BETs. The player can input an arbitrary number of BETs, out of 1 BET, 2 BETs and 3 BETs, for each pay line L.
  • the digits after the decimal point that is to be the BET-fractional-value is 0.5 dollar, since the total BET-value is 2.5 dollars.
  • FIG. 30A and FIG. 30B are flowcharts showing the subroutine of game execution processing A (non-insurance mode) according to another embodiment.
  • step S 240 the main CPU 41 combines the BET-values for the respective pay lines L to determine the total BET-value.
  • step S 250 the main CPU 41 determines the BET-fractional-value.
  • the value after the decimal point of the total BET-value for a single game is the BET-fractional-value.
  • the fractional value which is less than 1 dollar is determined as a BET-fractional-value, using a currency unit of dollar.
  • Such an idea can be applied to other currencies such as euro, yen, won and ruble, and the BET-fractional-value can be determined through calculation processing by determining the value which is equal to or less than a certain place in a unit such as dollar, as a fractional value.
  • the main CPU 41 determines the value after the decimal point of the total BET-value determined in step S 240 , as a BET-fractional-value.
  • step S 260 the main CPU 41 conducts processing for transmitting data indicative of the BET-fractional-value determined in step S 250 to the server 200 to add this BET-fractional-value to the cumulative fractional value stored in the server 200 .
  • the cumulative fractional value is the sum of the BET-fractional-values and the fractional values which are cumulatively added.
  • step S 270 the main CPU 41 determines whether or not the total of the BET-fractional-values and the fractional values cumulatively added (the cumulative fractional value) has reached a predetermined value (10 credits, for example). When determining that the cumulative fractional value has reached the predetermined value, the main CPU 41 shifts the processing to step S 230 . On the other hand, when the main CPU 41 determines that the cumulative fractional value has not reached the predetermined value, the main CPU 41 shifts the processing to step S 232 .
  • the total of BET-fractional-value and fractional value is cumulatively added as a cumulative fractional value.
  • the cumulative fractional value is related to the condition required for shifting the mode from the non-insurance mode to the insurance mode.
  • the condition required for shifting the mode from the non-insurance mode to the insurance mode is not limited to this example.
  • the total of BET-fractional-values may be stored separately from the total of fractional values, and when the total of BET-fractional-values reaches a predetermined value, the mode may shift from the non-insurance mode to the insurance mode.
  • a condition with respect to the fractional values may or may not be employed as a condition required for shifting the mode from the non-insurance mode to the insurance mode.
  • the player is enabled to input the number of BETs for the respective pay lines L. Further, calculation processing is conducted for combining the BET-values BET on a single or a plurality of pay lines L to determine the total BET-value, and the value of the part less than a specific digit of the total BET-value (the value less than 1 dollar, in the present embodiment) is cumulatively added and stored as an insurance BET. Further, when the number of games cumulatively incremented reaches a specific number, game media corresponding to a predetermined value, out of the cumulatively stored value as an insurance BET, are paid out. Namely, the BET-fractional-value is treated as an insurance BET.
  • processing for shifting the mode from the non-insurance mode to the insurance mode may be conducted every time the above-mentioned BET-fractional-value is generated.
  • the insurance mode can be set on a full-time basis.
  • the calculation processing for the BET-fractional-value can be properly changed as required; for example, as another BET-mode, in a case where a BET of a constant value is placed on some lines, the constant value is divided by the number of pay lines, and the part of the resultant value which is less than one credit is treated as a BET-fractional-value.
  • the calculation processing for BET-fractional-values can be properly designed and changed as required, provided that: part of the total of BETs placed by the player is calculated as a BET-fractional-value through some calculation processing; part of the BET-fractional-value is cumulatively stored as an insurance BET; a condition such that the cumulative number of games reaches a predetermined number of games is set as a predetermined condition; and game media are paid out from the value of the cumulative insurance BET when the predetermined condition is established.
  • an object of the abstract is to enable a patent office, a general public institution, an engineer belonging to the technical field who is unfamiliar with patent, technical jargon or legal jargon, and the like, to smoothly determine technical contents and an essence of the present application with simple investigation. Accordingly, the abstract is not intended to restrict the scope of the invention which should be evaluated by recitations of the claims. Furthermore, for thorough understanding of an object of the present invention and an effect specific to the present invention, it is desired to make interpretation in full consideration of documents already disclosed and the like.

Abstract

A slot machine of the present invention comprises: a controller, the controller programmed to execute the processing of: (A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets based on the value of the BET game media and the number of the BET-targets, the game result of each of the BET-targets, and a payout value for each of the BET-targets based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the processing (A) by the minimum BET-unit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the processing (B) from the estimated payout value for a single unit game determined in the processing (A), as an award for a single unit game; (D) cumulatively accumulating the game media corresponding to the game media BET in the unit game and/or the fractional value determined in the processing (B); (E) counting the number of game media BET in the unit game; and (F) paying out the game media cumulatively accumulated in the processing (D), when the number of game media counted in the processing (E) has reached a specific number.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of priority based on U.S. Provisional Patent Application No. 60/907,672 filed on Apr. 13, 2007. The contents of this application are incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a gaming machine and control method of game.
  • 2. Discussion of the Background
  • Conventionally, in a facility where a gaming machine such as a slot machine is installed, a variety of game media such as coins or cash are inserted into the slot machine to play a game, as disclosed in U.S. Pat. No. 5,820,459, U.S. Pat. No. 6,695,697, US 2003/0069073-A1, EP 1192975-A, U.S. Pat. No. 6,254,483, U.S. Pat. No. 5,611,730, U.S. Pat. No. 5,639,088, U.S. Pat. No. 6,257,981, U.S. Pat. No. 6,234,896, U.S. Pat. No. 6,001,016, U.S. Pat. No. 6,273,820, U.S. Pat. No. 6,224,482, U.S. Pat. No. 4,669,731, U.S. Pat. No. 6,244,957, U.S. Pat. No. 5,910,048, U.S. Pat. No. 5,695,402, U.S. Pat. No. 6,003,013, U.S. Pat. No. 4,283,709, EP 0631798-A, DE 4137010-A1, GB 2326830-A, DE 3712841-A1, U.S. Pat. No. 4,964,638, U.S. Pat. No. 6,089,980, U.S. Pat. No. 5,280,909, U.S. Pat. No. 5,702,303, U.S. Pat. No. 6,270,409, U.S. Pat. No. 5,770,533, U.S. Pat. No. 5,836,817, U.S. Pat. No. 6,932,704, U.S. Pat. No. 6,932,707, U.S. Pat. No. 4,837,728, EP 1302914-A, U.S. Pat. No. 4,624,459, U.S. Pat. No. 5,564,700, WO 03/083795-A, DE 3242890-A1, EP 0840264-A, DE 10049444-A1, WO 04/095383-A, EP 1544811-A, U.S. Pat. No. 5,890,963, EP 1477947-A, and EP 1351180-A. Each slot machine is configured to conduct a payout according to a winning state (game result) occurring along with progression of games. Among these conventional gaming machines, there exit gaming machines which return a profit to players when their losses of game media reach a certain value, as disclosed in U.S. Pat. No. 5,910,048.
  • Further, in recent years, there have been slot machines in which game media are collected as insurance premiums to insure the game, and a returned profit of a predetermined game media is offered when the number of games executed in the effective insurance mode reaches a specific number.
  • It is an object of the present invention to provide a gaming machine and a control method of a game which have the function of offering returned profits, thereby offering new entertainments.
  • The contents of U.S. Pat. No. 5,820,459, U.S. Pat. No. 6,695,697, US 2003/0069073-A1, EP 1192975-A, U.S. Pat. No. 6,254,483, U.S. Pat. No. 5,611,730, U.S. Pat. No. 5,639,088, U.S. Pat. No. 6,257,981, U.S. Pat. No. 6,234,896, U.S. Pat. No. 6,001,016, U.S. Pat. No. 6,273,820, U.S. Pat. No. 6,224,482, U.S. Pat. No. 4,669,731, U.S. Pat. No. 6,244,957, U.S. Pat. No. 5,910,048, U.S. Pat. No. 5,695,402, U.S. Pat. No. 6,003,013, U.S. Pat. No. 4,283,709, EP 0631798-A, DE 4137010-A1, GB 2326830-A, DE 3712841-A1, U.S. Pat. No. 4,964,638, U.S. Pat. No. 6,089,980, U.S. Pat. No. 5,280,909, U.S. Pat. No. 5,702,303, U.S. Pat. No. 6,270,409, U.S. Pat. No. 5,770,533, U.S. Pat. No. 5,836,817, U.S. Pat. No. 6,932,704, U.S. Pat. No. 6,932,707, U.S. Pat. No. 4,837,728, EP 1302914-A, U.S. Pat. No. 4,624,459, U.S. Pat. No. 5,564,700, WO 03/083795-A, DE 3242890-A1, EP 0840264-A, DE 10049444-A1, WO 04/095383-A, EP 1544811-A, U.S. Pat. No. 5,890,963, EP1477947-A, and EP 1351180-A are incorporated herein by reference in their entirety.
  • SUMMARY OF THE INVENTION
  • The first aspect of the present invention provides a gaming machine comprising the following.
  • Namely, the above-mentioned gaming machine comprises a controller. The controller is programmed to execute the processing of: (A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets based on the value of the BET game media and the number of the BET-targets, the game result of each of the BET-targets, and a payout value for each of the BET-targets based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the processing (A) by the minimum BET-unit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the processing (B) from the estimated payout value for a single unit game determined in the processing (A), as an award for a single unit game; (D) cumulatively accumulating the game media corresponding to the game media BET in the unit game and/or the fractional value determined in the processing (B); (E) counting the number of the unit games executed; and (F) paying out the game media cumulatively accumulated in the processing (D), when the number of unit games counted in the processing (E) has reached a specific number.
  • Further, the above-mentioned gaming machine desirably comprises the following.
  • Namely, the above-mentioned processing (D) includes (D′) cumulatively accumulating the game media corresponding to the fractional value determined in the processing (B); the controller is further programmed to execute the processing of shifting a mode from a non-insurance mode to an insurance mode on condition that the number of game media cumulatively accumulated in the processing (D′) has reached the predetermined number; and the processing (F) includes paying out the game media cumulatively accumulated in the processing (D′), when the number of unit games counted in the processing (E) has reached the specific number and when the mode is the insurance mode.
  • Further, the above-mentioned gaming machine desirably comprises the following.
  • Namely, the above-mentioned processing (E) includes counting the number of unit games in which game media are BET in number equal to a maximum number of BETs.
  • Further, the above-mentioned gaming machine desirably provides the following.
  • Namely, the above-mentioned processing (E) includes counting the number of unit games in which the fractional value determined in the processing (B) has become larger than 0.
  • Further, the above-mentioned gaming machine desirably comprises the following.
  • Namely, the above-mentioned gaming machine comprises a payout device capable of physically paying out game media, wherein the processing (F) includes paying out, from the payout device, the game media cumulatively accumulated in the processing (D), when the number of unit games counted in the processing (E) has reached the specific number.
  • The second aspect of the present invention provides a gaming machine comprising the following.
  • Namely, the above-mentioned gaming machine comprises: a controller. The controller is programmed to execute the processing of: (A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets based on the value of the BET game media and the number of the BET-targets, the game result of each of the BET-targets, and a payout value for each of the BET-targets based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the processing (A) by the minimum BET-unit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the processing (B) from the estimated payout value for a single unit game determined in the processing (A), as an award for a single unit game; (D) cumulatively accumulating the game media corresponding to the game media BET in the unit game and/or the fractional value determined in the processing (B); (E) counting the number of game media BET in the unit game; and (F) paying out the game media cumulatively accumulated in the processing (D), when the number of game media counted in the processing (E) has reached a specific number.
  • Further, the above-mentioned gaming machine desirably comprises the following.
  • Namely, the processing (D) includes (D′) cumulatively accumulating the game media corresponding to the fractional value determined in the processing (B); the controller is further programmed to execute the processing of shifting a mode from a non-insurance mode to an insurance mode on condition that the number of game media cumulatively accumulated in the processing (D′) has reached the predetermined number; and the processing (F) includes paying out the game media cumulatively accumulated in the processing (D′), when the number of game media counted in the processing (E) has reached the specific number and the mode is the insurance mode.
  • Further, the above-mentioned gaming machine desirably comprises the following.
  • Namely, the above-mentioned gaming machine comprises a payout device capable of physically paying out game media, wherein the processing (F) includes paying out, from the payout device, the game media cumulatively accumulated in the processing (D), when the number of game media counted in the processing (E) has reached the specific number.
  • Further, the above-mentioned gaming machine desirably comprises the following.
  • Namely, the above-mentioned controller is further programmed to execute the processing of shifting a mode from a non-insurance mode to an insurance mode on condition that the game media have been inserted.
  • Further, the above-mentioned gaming machine desirably comprises the following.
  • Namely, the above-mentioned gaming machine comprises a symbol display device to which a plurality of symbols are to be rearranged, wherein the controller is further programmed to execute the processing of executing the unit game in which the plurality of symbols are rearranged to the symbol display device after game media are BET in number equal to or less than the previously determined the maximum number of BETs, and game media are paid out in number according to the rearranged symbols or a combination thereof.
  • The first aspect of the present invention further provides a game control method including the following.
  • Namely, the above-mentioned game control method comprises the steps of: (A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets based on the value of the BET game media and the number of the BET-targets, the game result of each of the BET-targets, and a payout value for each of the BET-targets based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the step (A) by the minimum BET-unit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the step (B) from the estimated payout value for a single unit game determined in the step (A), as an award for a single unit game; (D) cumulatively accumulating the game media corresponding to the game media BET in the unit game and/or the fractional value determined in the step (B); (E) counting the number of the unit games executed; and (F) paying out the game media cumulatively accumulated in the step (D), when the number of unit games counted in the step (E) has reached a specific number.
  • The third aspect of the present invention provides a gaming machine comprising the following.
  • Namely, the above-mentioned gaming machine comprises: a controller. The controller programmed to execute the processing of: (A) determining, when game media is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of the BET-targets; (B) combining the BET-values for each of the BET-targets to determine a total BET-value for a single unit game; (C) determining part of the total BET-value determined in the processing (B) as a BET-fractional-value, the part equal to or less than a previously determined digit number; (D) cumulatively adding the BET-fractional-values determined in the processing (C); (E) counting the number of the unit games executed; and (F) paying out game media corresponding to all or part of the BET-fractional-values cumulatively added in the processing (D) when the number of unit games counted in the processing (E) has reached a specific number.
  • BRIEF DESCRIPTIONS OF DRAWINGS
  • FIG. 1 is a schematic view showing the entire configuration of a game system according to one embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a slot machine according to one embodiment of the present invention.
  • FIG. 3 is a block diagram showing the internal configuration of the slot machine shown in FIG. 1.
  • FIG. 4 is a view for explaining a payout table in the present embodiment.
  • FIG. 5 is a view showing exemplary symbols displayed in display windows.
  • FIG. 6 is a view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 7 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 8 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 9 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 10 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 11 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 12 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 13 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 14 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 15 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 16 is another view showing exemplary images displayed to the slot machine shown in FIG. 1.
  • FIG. 17 is a flowchart showing main processing executed in the slot machine shown in FIG. 1.
  • FIG. 18 is a flowchart showing a subroutine of insurance setting processing.
  • FIG. 19A is a flowchart showing a subroutine of game execution processing A (non-insurance mode).
  • FIG. 19B is another flowchart showing a subroutine of game execution processing A (non-insurance mode).
  • FIG. 20 is a flowchart showing a subroutine of game execution processing B (insurance mode/before reaching of notice set value).
  • FIG. 21 is a flowchart showing a subroutine of game execution processing C (insurance mode/after reaching of notice set value).
  • FIG. 22A is a flowchart showing a subroutine of game execution processing D (insurance mode/at reaching of a specific number).
  • FIG. 22B is another flowchart showing a subroutine of game execution processing D (insurance mode/at reaching of a specific number).
  • FIG. 23 is a flowchart showing a subroutine of processing according to a payout and a fractional value calculation.
  • FIG. 24 is a flowchart showing a procedure of activation processing conducted by the mother board and the gaming board shown in FIG. 2.
  • FIG. 25 is a flowchart showing a subroutine of to-be-stopped symbol determination processing.
  • FIG. 26 is a flowchart showing a subroutine of reel rotation control processing.
  • FIGS. 27A to 27D are side views for explaining the reel rotating operation.
  • FIG. 28 is a schematic view showing a correspondence table of the number of steps and code No.
  • FIG. 29 is a perspective view schematically showing a slot machine according to another embodiment of the present invention.
  • FIG. 30A is a flowchart showing a subroutine of game execution processing A (non-insurance mode) according to another embodiment of the present invention.
  • FIG. 30B is a flowchart showing a subroutine of game execution processing A (non-insurance mode) according to another embodiment of the present invention.
  • DESCRIPTION OF THE EMBODIMENTS
  • An embodiment of the present invention will be described, with reference to the drawings.
  • In the present embodiment, slot machine games are executed. When a BET is placed on a plurality of pay lines, a BET-value for each pay line is determined based on the value of the BET game media (credits) and the number of pay lines on which the BET is placed. Then, designs (hereinafter, also referred to as symbols) are rearranged; a result of the game is determined; a payout value for each of the pay lines is determined based on the payout rates (the amount of payout per unit amount of game media) determined for each of the pay lines and the BET-value for each pay line; and then the payout values are combined to determine an estimated payout value. Further, the determined estimated payout value is divided by a minimum value of game media that can be BET (one credit, in the present embodiment) to determine a fractional value (a value of game media less than the minimum value of game media that can be BET). Then, game media of the value resulted after subtracting the fractional value from the estimated payout value is paid out as a payout. Further, such fractional values are cumulatively added, and the mode shifts from a non-insurance mode to an insurance mode when the cumulative value reaches a predetermined value (360 credits, in the present embodiment). Also, the number of games, which is with a MAXBET placed thereon and the fractional value being larger than 0, is counted, out of the games having been executed. When the number of counted games has reached a specific number (1000, in the present embodiment) in the insurance mode, game media corresponding to the full value of the cumulatively added fractional values are paid out. Further, a MAXBET is a BET placed on a single game by using a maximum number of game media that can be BET (three coins, in the present embodiment). Moreover, in the present embodiment, even when the fractional value has not reached the predetermined value, it is possible to shift the mode to the insurance mode by inserting game media of a determined value (one credit, in the present embodiment).
  • FIG. 1 is a schematic view showing the entire configuration of a game system according to one embodiment of the present invention.
  • The game system 100 includes a plurality of slot machines 10 and a server 200 connected to these slot machines 10 through a predetermined communication line 101. Such game system 100 can either be structured in a single game facility such as a bar and a casino in which various types of games can be executed, or be structured among a plurality of game facilities. Further, in the case in which the game system 100 is structured in a single game facility, the game system 100 may be structured on each floor and in each section in this game facility. There is no particular limitation on the communication line 101; the communication line 101 may be either a wired line or a wireless line, and a dedicated line, a switched line, and the like can be adopted.
  • The server 200 controls the plurality of slot machines 10. In the present embodiment, each of the slot machines 10, which are connected to the server 200, transmits data indicative of the fractional value calculated in the slot machine 10, to the server 200. The server 200 cumulatively stores the fractional value, based on the data received from each slot machine 10. The server 200 can be a so-called hall server installed in the game facility having the plurality of slot machines 10 or can be a device having the function as a server capable of collectively controlling a plurality of game facilities. Further, each of the slot machines 10 is provided with a specific identification number, and the server 200 identifies the sources of data transmitted from the respective slot machines 10 according to the identification numbers. Further, in transmission of data to a slot machine 10, the server 200 specifies the transmission destination using the identification number thereof.
  • FIG. 2 is a perspective view schematically showing a slot machine according to one embodiment of the present invention.
  • In a slot machine 10, a coin, a bill, or electronic valuable information corresponding to those is used as a game medium. However, in the present invention, the game medium is not particularly limited. Examples of the game medium may include a medal, a token, electronic money and a ticket. It is to be noted that the ticket is not particularly limited, and examples thereof may include a ticket with a barcode as described later.
  • The slot machine 10 comprises a cabinet 11, a top box 12 installed on the upper side of the cabinet 11, and a main door 13 provided at the front face of the cabinet 11. Inside the cabinet 11, three reels 14 (14L, 14C, 14R) as a symbol display device are rotatably provided. On the peripheral face of each of the reels 14, a symbol sequence consisting of 22 figures (hereinafter also referred to as symbols) is drawn.
  • A lower image display panel 16 is provided at the front of the respective reels 14 on the main door 13. The lower image display panel 16 is provided with a transparent liquid crystal panel to which a variety of information concerning a game, an effect image and the like are displayed during the game. The lower image display panel 16 corresponds to the image display device of the present invention.
  • On the lower image display panel 16, three display windows 15 (15L, 15C, 15R) are formed in which their back faces are visible, and three symbols drawn on the peripheral face of each of the reels 14 are respectively displayed via each of the display windows 15. On the lower image display panel 16, a total of five pay lines L, namely three pay lines L horizontally crossing over the three display windows 15, and two pay lines L diagonally crossing over the display windows 15, are formed. The pay lines L are for determining a combination of symbols. When the combination of symbols that are stop-displayed along a pay line L is a predetermined combination, a payout value for each of the pay lines L is determined based on the combination and the BET-value for each of the pay lines L. Then, based on the payout value for each of the pay lines L, an estimated payout value and a fractional value are determined. These determination methods will be described in detail later using FIG. 4.
  • Moreover, although not shown, a touch panel 69 is provided at the front face of the lower image display panel 16. The player can operate the touch panel 69 to input a variety of commands.
  • Below the lower image display panel 16, there are provided a control panel 20 comprised of a plurality of buttons 23 to 27 with each of which a command according to game progress is inputted by the player, a coin receiving slot 21 through which a coin is accepted into the cabinet 11, and a bill validator 22.
  • The control panel 20 is provided with a spin button 23, a change button 24, a CASHOUT button 25, a 1-BET button 26 and a maximum BET button 27. The spin button 23 is used for inputting a command to start rotation of the reels 14. The change button 24 is used for making a request of staff in the recreation facility for exchange. The CASHOUT button 25 is used for inputting a command to pay out credited coins to a coin tray 18.
  • The 1-BET button 26 is used for inputting a command to bet one coin on a game out of credited coins. The maximum BET button 27 is used for inputting a command to bet the maximum number of coins that can be bet on one game (three coins in the present embodiment) out of credited coins. In addition, the maximum number of BETs may be configured so as to be set by the operator, staff or the like of the casino.
  • The bill validator 22 not only discriminates a regular bill from a false bill, but also accepts the regular bill into the cabinet 11. It is to be noted that the bill validator 22 may be configured so as to be capable of reading a later-described ticket 39 with a barcode. At the lower front of the main door 13, namely below the control panel 20, there is provided a belly glass 34 on which a character or the like of the slot machine 10 is drawn.
  • An upper image display panel 33 is provided at the front face of the top box 12. The upper image display panel 33 is provided with a liquid crystal panel to display, for example, an effect image, an image representing introduction of contents of a game, and explanation of a rule of the game. The upper image display panel 33 corresponds to the image display device of the present invention.
  • Also, a speaker 29 is provided on the top box 12. Under the upper image display panel 33, there are provided a ticket printer 35, a card reader 36, a data display 37, and a key pad 38. The ticket printer 35 prints on a ticket a barcode as coded data of the number of credits, a date, an identification number of the slot machine 10, and the like, and outputs the ticket as the ticket 39 with a barcode. The player can make another slot machine read the ticket 39 with a barcode to play a game thereon, or exchange the ticket 39 with a barcode with a bill or the like at a predetermined place in the recreation facility (e.g. a cashier in a casino).
  • The card reader 36 reads data from a smart card and writes data into the smart card. The smart card is a card owned by the player, and for example, data for identifying the player and data concerning a history of games played by the player are stored therein. Data corresponding to a coin, a bill or a credit may be stored in the smart card. Further, a magnetic stripe card may be adopted in place of the smart card. The data display 37 is comprised of a fluorescent display and the like, and displays, for example, data read by the card reader 36 or data inputted by the player via the key pad 38. The key pad 38 is used for inputting a command and data concerning issuing of a ticket, and the like.
  • FIG. 3 is a block diagram showing the internal configuration of the slot machine shown in FIG. 2.
  • A gaming board 50 is provided with a CPU (Central Processing Unit) 51, a ROM 55, and a boot ROM 52 which are interconnected to one another by an internal bus, a card slot 53S corresponding to a memory card 53, and an IC socket 54S corresponding to a GAL (Generic Array Logic) 54.
  • The memory card 53 is comprised of a nonvolatile memory such as CompactFlash (registered trade mark), and stores a game program and a game system program. The game program includes a to-be-stopped symbol determination program. The to-be-stopped symbol determination program is a program for determining a symbol (code No. corresponding to the symbol) on each of the reels 14 to be rearranged along the pay lines L. The to-be-stopped symbol determination program includes symbol weighing data respectively corresponding to a plurality of types of payout ratios (e.g. 80%, 84%, 88%). The symbol weighing data is data showing the corresponding relation between code No. of each symbol (see FIG. 28) and one or a plurality of random numbers belonging to a predetermined numerical range (0 to 255), for each of the three reels 14. The payout ratio is set based on payout ratio setting data which is outputted from a GAL 54, and a symbol to be rearranged is determined based on the symbol weighing data corresponding to the payout ratio.
  • Further, the card slot 53S is configured so as to allow the memory card 53 to be inserted thereinto or ejected therefrom, and is connected to the mother board 40 by an IDE bus. Therefore, the memory card 53 can be ejected from the card slot 53S, and then another game program and another game system program are written into the memory card 53, and the memory card 53 can be inserted into the card slot 53S, to change the type and contents of a game played on the slot machine 10. Further, the memory card 53 storing one game program and one game system program can be exchanged with the memory card 53 storing another game program and another game system program, to change the type and contents of a game played on the slot machine 10.
  • The game program includes a program according to progression of the game. Further, the game program includes image data and sound data to be outputted during the game, and image data and sound data for notifying that the mode has been shifted to the insurance mode, and the like.
  • The GAL 54 is a type of a PLD having an OR fixed type array structure. The GAL 54 is provided with a plurality of input ports and output ports. When predetermined data is inputted into the input port, the GAL 54 outputs, from the output port, data corresponding to the inputted data. The data outputted from the output port is the above-mentioned payout ratio setting data.
  • Further, the IC socket 54S is configured such that the GAL 54 can be mounted thereonto and removed therefrom, and the IC socket 54S is connected to the mother board 40 through the PCI bus. Therefore, the GAL 54 can be removed from the IC socket 54S, and then a program to be stored into the GAL 54 is rewritten, and the GAL 54 is then mounted onto the IC socket 54S, to change the payout ratio setting data outputted from the GAL 54. Further, the GAL 54 can be exchanged with another GAL 54 to change the payout ratio setting data.
  • The CPU 51, the ROM 55 and the boot ROM 52 interconnected to one another by an internal bus are connected to the mother board 40 through the PCI bus. The PCI bus not only conducts signal transmission between the mother board 40 and the gaming board 50, but also supplies power from the mother board 40 to the gaming board 50. In the ROM 55, country identification information and an authentication program are stored. In the boot ROM 52, an auxiliary authentication program and a program (boot code) to be used by the CPU 51 for activating the auxiliary authentication program, and the like are stored.
  • The authentication program is a program (falsification check program) for authenticating a game program and a game system program. The authentication program is written along a procedure (authentication procedure) for checking and proving that a game program and a game system program to be subject to authentication loading processing have not been falsified, namely authenticating the game program and the game system program. The auxiliary authentication program is a program for authenticating the above-mentioned authentication program. The auxiliary authentication program is written along a procedure (authentication procedure) for proving that an authentication program to be subject to the authentication processing has not been falsified, namely authenticating the authentication program.
  • The mother board 40 is configured using a commercially available general-purpose mother board (a print wiring board on which fundamental components of a personal computer are mounted), and comprises a main CPU 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, and a communication interface 44. The main CPU 41, the ROM 42 and the RAM 43 mounted on the mother board 40 constitute the controller of the present invention.
  • The ROM 42 is comprised of a memory device such as a flash memory, and stores a program such as a BIOS (Basic Input/Output System) executed by the main CPU 41 and permanent data. When the BIOS is executed by the main CPU 41, processing for initializing a predetermined peripheral device is conducted, concurrently with start of processing for loading the game program and the game system stored in the memory card 53 via the gaming board 50. It should be noted that, in the present invention, the ROM 42 may or may not be data rewritable one.
  • The RAM 43 stores data and a program to be used at the time of operation of the main CPU 41. Further, the RAM 43 is capable of storing an authentication program to be read via the gaming board 50, a game program and a game system program.
  • Further, the RAM 43 is provided with a storage area for an insurance mode flag. The insurance mode flag is a flag for indicating whether the mode is the insurance mode or the non-insurance mode. The storage area for the insurance mode flag is, for example, composed of a storage area of a predetermined number of bits, and the insurance mode flag is turned “ON” or “OFF” according to the stored contents of the storage area. The insurance mode flag being “ON” indicates the insurance mode, and the insurance mode flag being “OFF” indicates the non-insurance mode.
  • Further, the RAM 43 is provided with a storage area for data showing the number-of-games C.
  • Moreover, the RAM 43 stores data of the number of credits, the number of coin-ins and coin-outs in one game, and the like. The communication interface 44 serves to communicate with an external device such as a server of the casino, via the communication line 101.
  • Moreover, the mother board 40 is connected with a later-described body PCB (Printed Circuit Board) 60 and a door PCB 80 through respective USBs. Further, the mother board 40 is connected with a power supply unit 45. When power is supplied from the power supply unit 45 to the mother board 40, the main CPU 41 of the mother board 40 is activated concurrently with supply of power to the gaming board 50 via the PCI bus to activate the CPU 51.
  • The body PCB 60 and the door PCB 80 are connected with an equipment and a device that generate an input signal to be inputted into the main CPU 41 and an equipment and a device operations of which are controlled by a control signal outputted from the main CPU 41. The main CPU 41 executes the game program and the game system program stored in the RAM 43 based on the input signal inputted into the main CPU 41, and thereby executes the predetermined arithmetic processing, stores the result thereof into the RAM 43, or transmits a control signal to each equipment and device as processing for controlling each equipment and device.
  • The body PCB 60 is connected with a lamp 30, a sub CPU 61, a hopper 66, a coin detecting portion 67, a graphic board 68, a speaker 29, a touch panel 69, a bill validator 22, a ticket printer 35, a card reader 36, a key switch 38S and a data display 37. The lamp 30 is lighted in a predetermined pattern based on a control signal outputted from the main CPU 41.
  • The sub CPU 61 serves to control rotation and stop of the reels 14 (14L, 14C, 14R). A motor driving circuit 62 having an FPGA (Field Programmable Gate Array) 63 and a driver 64 are connected to the sub CPU 61. The FPGA 63 is an electronic circuit such as a programmable LSI, and functions as a control circuit of a stepping motor 70. The driver 64 functions as an amplification circuit of a pulse to be inputted into the stepping motors 70. The stepping motors 70 (70L, 70C, 70R) for rotating the respective reels 14 are connected to the motor driving circuit 62. The stepping motor 70 is a one-two phase excitation stepping motor.
  • In the present invention, the excitation method of the stepping motor is not particularly limited, and for example, a two phase excitation method, one phase excitation method or the like may be adopted. Further, a DC motor may be adopted in place of the stepping motor. In the case of adopting the DC motor, a deviation counter, a D/A converter, and a servo amplifier are sequentially connected to the sub CPU 61, and the DC motor is connected to the servo amplifier. Further, a rotational position of the DC motor is detected by a rotary encoder, and a current rotational position of the DC motor is supplied as data from the rotary encoder to the deviation counter.
  • Further, an index detecting circuit 65 and a position-change detecting circuit 71 are connected to the sub CPU 61. The index detecting circuit 65 detects the position (later-described index) of the reels 14 during rotation, and is further capable of detecting a loss of synchronism of the reels 14. It should be noted that the control of rotation and stoppage of reels 14 will be described later in detail using the figures.
  • The position-change detecting circuit 71 detects the change of the stop positions of the reel 14, after the stop of the rotation of the reels 14. For example, the position-change detecting circuit 71 detects the change of the stop positions of the reels 14, in a case such that a player forcibly changes the stop positions of reels 14 to create a combination of symbols in a winning state, even though the actual combination of symbols is not in the winning state, or in some other cases. The position-change detecting circuit 71 is configured, for example, to detect fins (not shown) mounted to the inner sides of the reels 14 at predetermined intervals so as to detect the change of the stop positions of the reels 14.
  • The hopper 66 is installed inside the cabinet 11, and pays out a predetermined number of coins based on the control signal outputted from the main CPU 41, from the coin payout exit 19 to the coin tray 18. The hopper 66 corresponds to the payout device of the present invention. The coin detecting portion 67 is provided inside the coin payout exit 19, and outputs an input signal to the main CPU 41 in the case of detecting payout of the predetermined number of coins from the coin payout exit 19.
  • The graphic board 68 controls image display to the upper image display panel 33 and the lower image display panel 16 based on the control signal outputted from the main CPU 41. The number of credits stored in the RAM 43 is displayed to the number-of-credits display portion 31 of the lower image display panel 16. Further, the number of payouts of coins is displayed to the number-of-payouts display portion 32 of the lower image display panel 16.
  • The graphic board 68 comprises a VDP (Video Display Processor) for generating image data based on the control signal outputted from the main CPU 41, a video RAM for temporarily storing image data generated by the VDP, and the like. It is to be noted that image data used in generation of the image data by the VDP is included in the game program read from the memory card 53 and stored into the RAM 43.
  • The bill validator 22 not only discriminates a regular bill from a false bill, but also accepts the regular bill into the cabinet 11. Upon acceptance of the regular bill, the bill validator 22 outputs an input signal to the main CPU 41 based on a face amount of the bill. The main CPU 41 stores in the RAM 43 the number of credits corresponding to the face amount of the bill transmitted with the input signal.
  • The ticket printer 35, based on the control signal outputted from the main CPU 41, prints on a ticket a barcode formed by encoding data such as the number of credits stored in the RAM 43, a date, and an identification number of the slot machine 10, and outputs the ticket as the ticket 39 with a barcode. The card reader 36 reads data from the smart card and transmits the read data to the main CPU 41, and writes data onto the smart card based on the control signal from the main CPU 41. The key switch 38S is provided on the key pad 38, and outputs a predetermined input signal to the main CPU 41 when the key pad 38 is operated by the player. The data display 37 displays data read by the card reader 36 and data inputted by the player via the key pad 38 based on the control signal outputted from the main CPU 41.
  • The door PCB 80 is connected with a control panel 20, a reverter 21S, a coin counter 21C, and a cold cathode tube 81. The control panel 20 is provided with a spin switch 23S corresponding to the spin button 23, a change switch 24S corresponding to the change button 24, a CASHOUT switch 25S corresponding to the CASHOUT button 25, a 1-BET switch 26S corresponding to the 1-BET button 26, and the maximum BET switch 27S corresponding to the maximum BET button 27. The respective switches 23S to 27S output input signals to the main CPU 41 when each of the buttons 23 to 27 corresponding thereto is operated by the player.
  • The coin counter 21C is provided inside the coin receiving slot 21, and discriminates a regular coin from a false coin inserted into the coin receiving slot 21 by the player. Coins other than the regular coin are discharged from the coin payout exit 19. Further, the coin counter 21C outputs an input signal to the main CPU 41 in detection of the regular coin.
  • The reverter 21S operates based on the control signal outputted from the main CPU 41, and distributes a coin recognized by the coin counter 21C as the regular coin into a cash box (not shown) or the hopper 66, which are disposed in the slot machine 10. Namely, when the hopper 66 is filled with coins, the regular coin is distributed into the cash box by the reverter 21S. On the other hand, when the hopper 66 is not filled with coins, the regular coin is distributed into the hopper 66. The cold cathode tube 81 functions as a back light installed on the rear face side of the lower image display panel 16 and the upper image display panel 33, and is lit up based on the control signal outputted from the main CPU 41.
  • FIG. 4 is a view for explaining a payout table in the present embodiment.
  • “SMILE”, “HEART”, “SUN”, “BAR”, “MOON”, “STAR”, “CROWN”, “JEWEL”, and “RIBBON” in the payout table represent types of symbols drawn on the reels 14. It is to be noted that, other than the above-mentioned symbols, a jackpot trigger, which is a symbol corresponding to “GIFT BONUS”, and other symbols are also drawn on the reels 14.
  • Combinations shown in the payout table represent winning combinations, and a payout ratio is set for each of the winning combinations. When a winning combination has been established along any of the pay lines L, the payout value for this pay line L is the value resulted by multiplying the BET-value for this pay line L by the payout ratio for this winning combination.
  • When a combination of symbols rearranged on each of the reels 14 is the combination of “GIFT BONUS” jackpot triggers, a predetermined number of coins is paid out as a jackpot. It is to be noted that a numeric value corresponding to “GIFT BONUS” in the payout table indicates an expectation value of the number of coin-outs, and is constant regardless of the number of BETs. Therefore, a setting is made such that the probability for establishing “GIFT BONUS” is high and the number of coin-outs is small in the case of 1BET whereas the probability for establishing “GIFT BONUS” is low and the number of coin-outs is large in the case of the MAXBET. It should be noted that this probability setting is made by using symbol weighing data.
  • Further, four types of jackpots “GRAND”, “MAJOR”, “MINOR” and “MINI” are provided in decreasing order of the number of coin-outs. The larger the number of coin-outs, the lower the jackpot occurrence ratio is set, and which jackpot is to be established is determined randomly using a random number. It should be noted that the expectation value of the number of coin-outs according to each jackpot is constant.
  • When a game is started by pressing of the spin button 23 after pressing of a 1-BET button 26 or a maximum BET button 27, the sequence of symbols drawn on each of the reels 14 is scroll-displayed downwardly from the top in the display windows 15 with rotation of the reels 14, and after the lapse of a predetermined period of time, the sequence of symbols drawn on each of the reels 14 is rearranged in the display windows 15 with the stop of rotation of the reels 14. Further, a variety of winning combinations are previously set based on the respective combinations of symbols, and when the combination of symbols corresponding to the winning combination stops along the pay lines L, a payout value for each of the pay lines according to the winning combination is determined, and then an estimated payout value in this game is determined by combining the payout values for the respective pay lines. Further, a payout value, which is calculated based on the estimated payout value, is added to the credits owned by the player. When the combination of “GIFT BONUS” jackpot triggers is established, a predetermined number of coin-outs is added to the credits owned by the player.
  • FIG. 5 is a view showing exemplary symbols displayed in the display windows.
  • In the present embodiment, a total of nine symbols of three columns and three rows are displayed in the display windows 15 (15L, 15C and 15R). Further, across the display windows 15, there are set three pay lines L (pay lines L17 a, 17 b and 17 c) along the respective columns. Also, there are set two pay lines L (17 d and 17 e) diagonally crossing the display windows. Namely, in the present embodiment, there are set a total of five pay lines L.
  • Hereinafter, there will be described the fractional value according to the present invention.
  • As an example, there will be described a case where a MAXBET is placed as a BET and symbols shown in FIG. 5 are rearranged.
  • First, when a MAXBET is placed on the five pay lines L, i.e. when three coins (three credits) are BET thereon, this BET is evenly assigned to the respective five pay lines L. Namely, a BET of 3/5=0.6 credit is assigned to each of the pay lines L. The pay lines L correspond to BET-targets according to the present invention.
  • When a BET is placed, symbol sequences are rearranged in the display windows 15 along with the rotation and the stoppage of the reels 14. In the example shown in FIG. 5, a combination of “STAR”-“STAR”-“STAR” is established along the pay line L17 b, and a combination of “JEWEL”-“JEWEL”-“JEWEL” is established along the pay line L17 c. As shown in FIG. 3, the payout rate for a combination of “STAR”-“STAR”-“STAR” is 8, and the payout rate for a combination of “JEWEL”-“JEWEL”-“JEWEL” is 4.
  • In this case, the payout value for each pay line L is the value equal to the BET-value for each pay line L multiplied by the payout rate determined for the winning combination established along this pay line L.
  • In the example shown in FIG. 5, the payout value for the pay line L17 b is 0.6×8=4.8 credits. Further, the payout value for the pay line L17 c is 0.6×4=2.4 credits.
  • After the payout values for the respective pay lines L are determined, these payout values are combined to determine the estimated payout value for this game. In the example shown in FIG. 5, the estimated payout value is 4.8+2.4=7.2 credits.
  • The fractional value according to the present invention is a remainder resulted from the division of the estimated payout value by the minimum BET-unit (the value of game media that can be BET). In the present embodiment, the minimum BET-unit is one credit. Accordingly, the fractional value is the part which is after the decimal point. In the example shown in FIG. 5, the fractional value is 0.2 credit. Such a fractional value determined as described above is cumulatively added along with the progress of a game and is stored as a cumulative fractional value in the RAM 43.
  • In the present embodiment, the BET-value for each pay line L is the value resulted from the division of the total BET-value placed on a single game by the number of pay lines L; therefore, the BET-values are the same on all the pay lines L. However, in the present invention, the method for determining the BET-value for each pay line L is not limited to this example. For example, it may be configured so as to allow the player to operate to divide arbitrarily the total BET-value placed on a single game to the respective pay lines L.
  • Here, insurance in the slot machine 10 is described.
  • As for the insurance, the slot machine 10 has two modes: the insurance mode “RESCUE PAY ON”; and the non-insurance mode “RESCUE PAY OFF”.
  • The non-insurance mode is set immediately after the power is turned on in the slot machine 10, and the mode is then shifted to the insurance mode when the above-described cumulative fractional value reaches 360 credits.
  • Further, in the present embodiment, a player can also insure a game by inserting a game medium. Namely, when one credit of a game medium is inserted, the mode shifts from a non-insurance mode to an insurance mode.
  • Furthermore, in the present embodiment, the number of games played is counted. Games to be counted are those games played with a MAXBET placed thereon and the fractional value having become larger than 0.
  • When the number of games counted in the insurance mode reaches 1000, a payout (RESCUE PAY) of coins in number corresponding to the full value of the cumulative fractional value is conducted.
  • It should be noted that, when insuring a game by inserting a game medium, the payout of credits may be conducted from the credits other than the cumulative fractional value.
  • Next, the flow [P01] to [P20] of a game played on the slot machine 10 is described by using FIGS. 6 to 16.
  • FIGS. 6 to 16 are views showing images displayed to the upper image display panel 33 and the lower image display panel 16 provided in the slot machine 10.
  • In the figures, a numeral 15 (15L, 15C, 15R) denotes a display window. A numeral 31 denotes a number-of-credits display portion. A numeral 32 denotes a number-of-payouts display portion. A symbol L denotes a pay line.
  • [P01]
  • In the non-insurance mode, as shown in FIG. 6, an image 92 a showing “RESCUE OFF” is displayed to the upper image display panel 33. The image 92 a is an image showing that the current gaming state is the non-insurance mode.
  • Further, a normal effect image 94 a is displayed to the lower image display panel 16.
  • Moreover, a button type image 90 a showing “BET FOR RESCUE PAY MORE INFO” is displayed to the lower right portion of the lower image display panel 16. The image 90 a is an image to request an input of a command to output information concerning the insurance mode. The player can input the command to output information concerning the insurance mode by touching a predetermined place of the touch panel 69 (not shown) corresponding to the display area of the button type image 90 a.
  • Further, at a lower left portion of the lower image display panel 16, there is provided a cumulative-fractional-value display portion 80 which indicates the current cumulative fractional value (insurance value). Further, in the cumulative-fractional-value display portion 80, there is displayed a button type image 81 indicating “MORE INFO”. The button type image 81 is an image which requires the player to input a command for an output of information about the cumulative fractional value. When the player touches the predetermined portion of the touch panel 69 corresponding to the display area of the button type image 81, a cumulative-fractional-value information image 82 as shown in [P01′] is displayed. The cumulative-fractional-value information image 82 includes information indicating that the mode shifts to the insurance mode when the cumulative fractional value reaches 360 credits.
  • [P02]
  • When the above-mentioned command is inputted, an image 91 showing information concerning the insurance mode is displayed to the lower image display panel 16.
  • The image 91 includes information concerning the insurance mode as follows:
  • (I) the number of games to reach for paying out a predetermined number of coins, namely, a specific number (1000);
  • (II) the number of coin-outs (in FIG. 7, at least 360) when the number of games reaches the specific number; and
  • (III) the minimum number (1) of credits necessary when the player inserts a game medium as an insurance premium, to shift the mode from the non-insurance mode to the insurance mode.
  • Further, the image 91 includes information to make a request for an option as to whether or not to shift the mode from the non-insurance mode to the insurance mode, a button type image “YES” 91 a, and a button type image “NO” 91 b.
  • When a predetermined area of the touch panel 69 corresponding to the button type image “NO” 91 b is touched by the player, an image shown in [P01] is displayed to the lower image display panel 16. On the other hand, when a predetermined area of the touch panel 69 corresponding to the button type image “YES” 91 a is touched by the player, the mode is shifted from the non-insurance mode to the insurance mode.
  • [P03]
  • When the mode is shifted to the insurance mode, as shown in FIG. 8, an image 92 b showing “RESCUE ON” is displayed to the upper image display panel 33. The image 92 b is an image showing that the current gaming state is the insurance mode.
  • Further, a normal effect image 94 b is displayed to the lower image display panel 16. While the normal effect image 94 b in the insurance mode differs from a normal effect image 94 a in the non-insurance mode, these are selected randomly by using random numbers, not based on whether the mode is the insurance mode or the non-insurance mode.
  • Further, a button type image 90 b showing “RESCUE ON MORE INFORMATION” is displayed to the lower right portion of the lower image display panel 16. The button type image 90 b is an image for showing that the current gaming state is the insurance mode and also for inputting a command to output information concerning the insurance mode.
  • When a predetermined place of the touch panel 69 corresponding to the display area of the button type image 90 b is touched by the player, an image shown in [P02] is displayed to the lower image display panel 16.
  • Further, below the button type image 90 b, the value of credits to be paid out (here, 1210.15) when “RESCUE PAY” occurs, i.e. an image 85 indicating the fractional value cumulatively added in the server 200, is displayed. The value of credits indicated by the image 85 changes according to the fractional value stored in the server 200.
  • Moreover, to the lower left portion of the lower image display panel 16, there are displayed the cumulative-fractional-value display portion 80 and the button type image 81 indicating “MORE INFO”.
  • [P04]
  • When the game is started in the insurance mode, in a first game in the insurance mode, a normal effect image 94 c is displayed to the lower image display panel 16, and the button type image 90 b, the button type image 81, the cumulative-fractional-display portion 80, and the image 85 are continuously displayed. The cumulative-fractional-value display portion 80 shows that the current cumulative fractional value is 1215.20 credits, and the image 85 shows that 1215.20 credits are to be paid out when “RESCUE PAY” occurs.
  • [P05]
  • In a second game in the insurance mode, a normal effect image 94 d is displayed, and the button type image 81, the cumulative-fractional-value display portion 80, and the image 85 are also continuously displayed. The cumulative-fractional-value display portion 80 shows that the current cumulative fractional value is 1225.55 credits, and the image 85 shows that 1225.55 credits are to be paid out when the “RESCUE PAY” occurs.
  • Here, the cumulative fractional value has increased by 10.35 credits during the period after the end of the first game until the end of the second game. This is because, during the time period, a fractional value of 10.35 credits has been generated in this slot machine 10 and the other slot machines 10 connected thereto through the communication line 101, and this fractional value has been accumulated as the cumulative fractional value.
  • It should be noted that, in the insurance mode, the normal effect image 94 is displayed until the number of games in which the MAXBET is placed thereon and the fractional value is larger than 0 reaches 990 (a notice set value).
  • [P06]
  • When the number of games in the insurance mode reaches 990 (notice set value), as shown in FIG. 10, to the upper image display panel 33, the image 92 b is displayed which shows that the current gaming state is the insurance mode and an image 96 is displayed which shows that the number of games left to be played until the number of games to be counted reaches the specific number is ten.
  • Further, also to the lower image display panel 16, an image 97 is displayed which shows that the number of games left to be played until the number of games to be counted reaches the specific number is ten.
  • Moreover, a specific effect image 95 a is displayed to the lower image display panel 16. The specific effect image 95 is displayed after the number of games to be counted has reached the notice set value, in the insurance mode.
  • [P07]
  • When the number of games played in the insurance mode becomes 991, the number of games left to be played which is shown by the image 96 displayed to the upper image display panel 33 changes from ten to nine.
  • Further, to the lower image display panel 16, the image 93 is displayed which shows that the number of games left to be played until the number of games to be counted reaches the specific number is nine. In the image 93, the value of credits (in this case, 1620.81 credits) to be paid out when the number of games to be counted reaches a specific number. Thereafter, the remaining number of games is counted down in the image 93.
  • Moreover, a specific effect image 95 b is displayed to the lower image display panel 16.
  • The specific effect image 95 b is a video picture with its contents continued from the specific effect image 95 a in [P06]
  • [P08] to [P15]
  • Subsequently, as the number of games in the insurance mode increases, the number of games left to be played shown by the image 96 displayed to the upper image display panel 33 gradually decreases as shown in FIGS. 11 to 14. Further, in the lower image display panel 16, the number of remaining games shown by image 93 is gradually decreased. Moreover, to the lower image display panel 16, specific effect images 95 c to 95 j are sequentially displayed according to the number of games left to be played.
  • The specific effect image 95 is a video picture where a character (angel) performs a series of actions (action of appearing and spreading her wings), and specific effect images 95 a to 95 j are made by dividing the specific effect image 95 into a plurality of images along the time axis.
  • [P16]
  • When the number of games in the insurance mode reaches the specific number, coins in number corresponding to the fractional value (1810.50 in [P16]) stored in the server 200 at the time are paid out. When the number of games reaches the specific number, coins are physically paid out from the hopper 66.
  • At this time, as shown in FIG. 15, an image 97 a is displayed to the upper image display panel 33, the image 97 a showing that coins are being paid out based on that the number of games in the insurance mode has reached the specific number. Further, a similar image 97 b is also displayed to the lower left side of the lower image display panel 16.
  • Moreover, to the lower image display panel 16, a specific effect image 95 h with its contents continued from the specific effect images 95 a to 95 j. Furthermore, a specific effect image 95 h′ is displayed in the display windows 15 (15L, 15C, 15R).
  • [P17]
  • It should be noted that, when a predetermined winning combination is established in a game with which the number of games has reached the specific number, coins are paid out based on that the number of games has reached the specific number, and thereafter, coins are paid out based on the above-mentioned winning combination.
  • At this time, while the specific effect image 95 h is continuously displayed to the lower image display panel 16, the specific effect image 95 h′ in the display windows 15 disappears so that the reels 14 becomes visible.
  • Further, an image 97 c is displayed to the lower left side of the lower image display panel 16, the image 97 c showing that coins are being paid out according to the above-mentioned winning combination.
  • [P18]
  • At the end of the game with which the number of games has reached the specific number, the number of games is cleared, and the mode is shifted from the insurance mode to the non-insurance mode.
  • At this time, an image 98 showing “RESCUE OFF” is displayed to the lower image display panel 16. The image 98 is an image showing that the mode has been shifted from the insurance mode to the non-insurance mode.
  • [P19]
  • In a case where the number of games has not reached 990 (notice set value), when the combination of symbols “BAR”-“BAR”-“BAR” accompanied by coin-outs is established, an image 97 d showing “45 CREDITS” is displayed to the upper image display panel 33 as shown in FIG. 16.
  • The image 97 d is an image showing the number of coins to be paid out according to the combination of symbols “BAR”-“BAR”-“BAR”.
  • Further, the image 92 b showing “RESCUE ON” is displayed to the upper image display panel 33. The image 92 b is an image showing that the current gaming state is the insurance mode.
  • An effect image 94 e corresponding to “BAR”-“BAR”-“BAR” is displayed to the lower image display panel 16.
  • Moreover, to the lower image display panel 16, the image 85 is displayed which shows the value of credits to be paid out when the number of games to be counted reaches the specific number, and the image 97 c is displayed which shows the number of coin-outs according to the combination of symbols “BAR”-“BAR”-“BAR”.
  • [P20]
  • After the number of games has reached 990 (notice set value), when the combination of symbols “BAR”-“BAR”-“BAR” accompanied by coin-outs is established as in [P19], the image 97 c is displayed to the lower image display panel 16, the image 97 c showing the number of coin-outs according to the combination of symbols “BAR”-“BAR”-“BAR”.
  • However, an effect image 94 e corresponding to the combination of symbols “BAR”-“BAR”-“BAR” is not displayed, and the specific effect image 95 c is displayed as in [P08] (see FIG. 11). Other images are also displayed as in [P08].
  • Next, processing conducted in the slot machine 10 is described.
  • [Main Processing]
  • FIG. 17 is a flowchart showing main processing performed in the slot machine 10.
  • First, activation processing is conducted in the slot machine 10 (step S101). The activation processing is specifically described later by using FIG. 24.
  • It is to be noted that, upon receipt of a detection signal outputted from the coin counter 21C when a coin inserted into the coin receiving slot 21 is detected by the coin counter 21C after the activation processing, the main CPU 41 conducts processing for adding the amount of inserted coins to the number of credits stored in the RAM 43 as interruption processing.
  • After the processing of step S101, the non-insurance mode is displayed in the slot machine 10 (step S102). In this processing, the main CPU 41 transmits a drawing command of the non-insurance mode image to the graphic board 68. On the graphic board 68, based on the above-mentioned drawing command, the VDP extracts image data from the RAM 43, expands it into a video RAM, generates image data of one frame, and outputs this image data to the upper image display panel 33 and the lower image display panel 16. This results in display of an image, for example as shown in [P01] (see FIG. 4), to the upper image display panel 33 and the lower image display panel 16.
  • Next, in the storage area for data indicating the number-of-games C which is provided in the RAM 43, the main CPU 41 sets the number-of-games C to 0 and starts counting down the number of games (step S103).
  • Next, the main CPU 41 determines whether or not the current gaming state is the insurance mode, namely whether or not the insurance mode flag stored in the RAM 43 is “ON” (step S104).
  • When determining that the current gaming state is not the insurance mode in step S104, the main CPU 41 executes game execution processing A (non-insurance mode) (step S200), and then returns the processing to step S104. The game execution processing A is specifically described later by using FIG. 19A and FIG. 19B.
  • On the other hand, when determining that the current gaming state is the insurance mode in step S104, the main CPU 41 then determines whether or not the number-of-games C stored in the RAM 43 is less than the notice set value (990 in the present embodiment) (step S105).
  • When determining that the number-of-games C is less than the notice set value in step S105, the main CPU 41 executes game execution processing B (insurance mode/before reaching the notice set value) (step S300), and then returns the processing to step S103. The game execution processing B is specifically described later by using FIG. 20.
  • On the other hand, when determining that the number-of-games C is not less than the notice set value in step S105, namely the number-of-games C is equal to or more than the notice set value, the main CPU 41 determines whether or not the number-of-games C stored in the RAM 43 is less than a value (999) smaller than the specific number by one (step S106).
  • When determining that the number-of-games C is less than the value smaller than the specific number by one in step S106, the main CPU 41 executes game execution processing C (insurance mode/after reaching the notice set value) (step S400) since the number-of-games C will not reach the specific number in the next game, and then main CPU 41 returns the processing to step S104. The game execution processing C is specifically described later by using FIG. 21.
  • When determining that the number-of-games C is the value smaller than the specific number by one in step S106, the main CPU 41 executes game execution processing D (insurance mode/at reaching of specific number) (step S500) since the number-of-games C may reach the specific number in the next game, and then the main CPU 41 returns the processing to step S104. The game execution processing D is specifically described later by using FIG. 22A and FIG. 22B.
  • The processing for executing game execution processing A, game execution processing, game execution processing C, or game execution processing D corresponds to processing for executing a unit game in the present invention.
  • [Insurance Setting Processing]
  • Further, in the slot machine 10, insurance setting processing is conducted in a predetermined cycle when the non-insurance mode image is displayed (see [P01] in FIG. 6) as described above. The insurance setting processing is processing executed when the player insure the game by inserting a game medium as an insurance premium.
  • FIG. 18 is a flowchart showing a subroutine of the insurance setting processing.
  • First, the main CPU 41 determines whether or not the button type image “RESCUE PAY” 90 a included in the image shown in [P01] displayed to the lower image display panel 16 has been touched, namely, whether or not to have received a detection signal that is outputted from the touch panel 69 when a predetermined place of the touch panel 69 corresponding to the display area of the button type image 90 a is touched (step S110). When the main CPU 41 determines that the button type image 90 a has not been touched, the present subroutine is terminated.
  • On the other hand, when determining that the button type image 90 a has been touched, the main CPU 41 displays an insurance information image (see [P02] in FIG. 7), including the button type image “YES” 91 a and the button type image “NO” 91 b for responding to “RESCUE ON”, to the lower image display panel 16 (step S111).
  • Next, the main CPU 41 determines whether or not the button type image “YES” 91 a has been touched (step S112). When determining that the button type image “YES” 91 a has not been touched in step S112, the main CPU 41 then determines whether or not the button type image “NO” 91 b has been touched (step S113). When the main CPU 41 determines that the image “NO” 91 b has been touched, the present subroutine is terminated. On the other hand, when the main CPU 41 determines that the image “NO” 91 b has not been touched, the processing is returned to step S111.
  • When determining that the button type image “YES” 91 a has been touched in step S112, the main CPU 41 conducts processing for subtracting a predetermined number of credits (one, in the present embodiment) from the number of credits stored in the RAM 43 (step S114).
  • It should be noted that bills or coins that correspond to the number of credits may be inserted in place of subtracting the number of credits.
  • Next, the main CPU 41 sets the insurance mode flag stored in the RAM 43 to “ON” so as to shift the mode to the insurance mode (step S115).
  • Subsequently, the main CPU 41 displays the insurance mode images shown in [P03] (see FIG. 8) to the upper image display panel 33 and the lower image display panel 16 (step S116). After the processing of step S116, the present subroutine is terminated.
  • [Game Execution Processing A (Non-Insurance Mode)]
  • FIG. 19A and FIG. 19B are a flowchart showing a subroutine of the game execution processing A called and executed in step S200 of the subroutine shown in FIG. 17.
  • First, the main CPU 41 conducts processing for displaying the non-insurance mode image (see [P01] in FIG. 6) to the upper image display panel 33 and the lower image display panel 16 (step S201).
  • Next, the main CPU 41 determines whether or not a coin has been BET (step S202). In this processing, the main CPU 41 determines whether or not to have received an input signal that is outputted from the 1-BET switch 26S when the 1-BET button 26 is operated, or an input signal that is outputted from a maximum BET switch 27S when the maximum BET button 27 is operated. When the main CPU 41 determines that the coin has not been BET, the processing is returned to step S202.
  • On the other hand, when determining that the coin has been BET in step S202, the main CPU 41 conducts processing for making a subtraction from the number of credits stored in the RAM 43 according to the number of coins BET (step S203) It is to be noted that, when the number of coins BET is larger than the number of credits stored in the RAM 43, the main CPU 41 does not conduct the processing for making a subtraction from the number of credits stored in the RAM 43, and the processing is returned to step S202. Further, when the number of coins BET exceeds the upper limit of the number of coins that can be BET in one game (three coins in the present embodiment), the main CPU 41 does not conduct the processing for making a subtraction from the number of credits stored in the RAM 43, and the processing is proceeded to step S204.
  • Next, the main CPU 41 determines the BET-value for each of the pay lines L (step S204). Specifically, the main CPU 41 determines the value resulted from dividing the number of credits BET in step S202 by the number of pay lines L (in the present embodiment, five) as the BET-value for each of the pay lines L.
  • Next, the main CPU 41 determines whether or not the spin button 23 has been turned ON (step S205). In this processing, the main CPU 41 determines whether or not to have received an input signal that is outputted from the spin switch 23S when the spin button 23 is pressed.
  • When the main CPU 41 determines that the spin button 23 has not been turned on, the processing is returned to step S202.
  • It is to be noted that, when the spin button 23 is not turned ON (e.g. when the spin button 23 is not turned ON and a command to end the game is inputted), the main CPU 41 cancels a subtraction result in step S203.
  • In the present embodiment, a case is described where, after a coin is BET (step S202), the processing for making a subtraction from the number of credits is conducted (step S203) before it is determined whether or not the spin button 23 has been turned ON (step S205). However, the present invention is not limited to this example. For example, it may be determined whether or not the spin button 23 has been turned ON (step S205) after a coin is BET (step S202), and when it is determined that the spin button 23 has been turned ON (step S205: YES), the processing for making a subtraction from the number of credits may be conducted (step S203).
  • On the other hand, when determining that the spin button 23 has been turned ON in step S205 in FIG. 19A, the main CPU 41 conducts processing for displaying a normal effect image (e.g. the normal effect image 94 a) (step S206). In the present embodiment, the normal effect image 94 had been displayed before the spin button 23 is turned ON, and another normal effect image 94 is displayed after the spin button 23 is turned ON. It should be noted that, in the present invention, the normal effect image 94 may be displayed after the spin button 23 is turned ON.
  • Next, the main CPU 41 conducts to-be-stopped symbol determination processing (step S207). In this to-be-stopped symbol determination processing, the main CPU 41 (arithmetic processing unit) executes a to-be-stopped symbol determination program stored in the RAM 43 (storage device) so as to determine a code No. in stopping the reels 14. Thereby, a combination of symbols to be rearranged is determined. This processing is specifically described later by using FIGS. 25 and 28.
  • It should be noted that, in the present embodiment, a case is described where a combination of symbols to be rearranged is determined so as to determine one winning combination out of a plurality of types of winning combinations. However, in the present invention, for example, a random number may be used first so as to determine one winning combination to be selected randomly from the plurality of types of winning combinations, and thereafter, a combination of symbols to be rearranged may be determined based on the above-mentioned winning combination.
  • Next, the main CPU 41 conducts reel rotation control processing (step S208). This is the processing for starting rotation of all the reels 14 and then stopping rotation of the reels 14 so that the combination of symbols corresponding to the winning combination determined in step S207 is rearranged along the pay line L. This processing is specifically described later by using of FIGS. 26 to 28. Next, the main CPU 41 displays to the lower image display panel 16 an effect image according to stop-displayed symbols or a combination thereof (step S209).
  • Next, the main CPU 41 determines whether or not a combination of jackpot triggers has been established (step S220). When it is determined that the combination of jackpot triggers has been established, a single jackpot is selected out of four types of jackpots “GRAND”, “MAJOR”, “MINOR” and “MINI”, and the number of coins set with respect to the selected jackpot is paid out (step S221). In the case of accumulating coins, the main CPU 41 conducts processing for adding a predetermined number of credits to the number of credits stored in the RAM 43. On the other hand, in the case of paying out coins, the main CPU 41 transmits a control signal to the hopper 66 in order to pay out a predetermined number of coins. At that time, the coin detecting portion 67 counts the number of coins paid out from the hopper 66, and when the counted value reaches a designated number, the coin detecting portion 67 transmits a payout completion signal to the main CPU 41. Thereby, the main CPU 41 stops driving of the hopper 66 and ends the coin payout processing. Thereafter, the present subroutine is terminated.
  • On the other hand, in step S220, when determining that the combination of jackpot triggers has not been established, the main CPU 41 determines whether or not a winning combination has been established on any of the pay lines L (step S222). When it is determined that a winning combination has not been established on any of the pay lines L, i.e. when the game is lost, the present subroutine is terminated.
  • On the other hand, when determining that a winning combination has been established on any of the pay lines L, the main CPU 41 determines the payout value for each of the pay lines L along which a winning combination has been established (step S223). More specifically, the main CPU 41 determines the value obtainable from multiplication of the BET-value for each pay line L determined in step S204 by the payout rate set for each winning combination (see FIG. 4), as the payout value for each of the pay lines L.
  • Next, the main CPU 41 combines the payout values for the respective pay lines L determined in step S223 to determine the estimated payout value for this game (step S224).
  • Subsequently, the main CPU 41 determines the credits after the decimal point as a fractional value, out of the estimated payout value determined in step S224 (step S225).
  • Then, the main CPU 41 executes processing for paying out, to the player, coins of the value obtained by subtracting the fractional value determined in step S225 from the estimated payout value determined in step S224 (step S226).
  • Next, the main CPU 41 determines whether or not the fractional value determined in step S225 is 0 (step S227). When determining that the fractional value is 0, then the main CPU 41 ends the present subroutine.
  • On the other hand, when determining that the fractional value is not 0, the main CPU 41 executes processing for transmitting the data indicative of the fractional value determined in step S225 to the server 200 to add this fractional value to the cumulative fractional value stored in the server 200 (step S228).
  • Next, the main CPU 41 determines whether or not the total of the fractional values has reached a predetermined value (360 credits, in the present embodiment) (step S229). When determining that the total of the fractional values has reached the predetermined value, the main CPU 41 sets the insurance mode flag stored in the RAM 43 to “ON”, to shift the mode to the insurance mode (step S230).
  • Next, the main CPU 41 displays insurance mode images shown in [P03] (see FIG. 8) to the upper image display panel 33 and the lower image display panel 16 (step S231).
  • When determining in step S229 that the total of fractional values has not reached the predetermined value, or when executing the processing of step S231, the main CPU 41 determines whether or not the game has been played with a MAXBET (step S232). When determining that the game has not been executed with a MAXBET, the main CPU 41 ends the present subroutine.
  • On the other hand, when determining that the game has been executed with a MAXBET, the main CPU 41 increments the number-of-games C (C=C+1) stored in the RAM 43 (step S233). After conducting the processing in step S233, the main CPU 41 ends the present subroutine.
  • [Game Execution Processing B (Insurance Mode/Before Reaching Of Notice Set Value)]
  • FIG. 20 is a flowchart showing a subroutine of the game execution processing B which is called and executed in step S300 of the subroutine shown in FIG. 17.
  • First, the main CPU 41 conducts processing for displaying the insurance mode image (see [P03] in FIG. 8) to the upper image display panel 33 and the lower image display panel 16 (step S301).
  • Subsequently, processing of steps S302 to S308 are conducted, and the processing are similar to the processing of steps S202 to S208 shown in FIG. 19A.
  • Next, the main CPU 41 displays to the lower image display panel 16 an effect image (see [P04], [P05] in FIG. 9) according to the rearranged symbols or a combination thereof (step S309).
  • Next, the main CPU 41 executes processing according to a payout and a fractional value addition (step S320). This processing is processing for conducting a payout according to the establishment of a combination of jackpot triggers and a winning combination, calculation of the fractional value, cumulative addition of the fractional value and the like, and will be described later in more detail, with reference to FIG. 23.
  • Next, in step S321, the main CPU 41 determines whether or not the game has been executed with a MAXBET and also the fractional value resulted in the processing of step S320 is larger than 0. When determining that the game has not been executed with a MAXBET or the fractional value is 0, the main CPU 41 ends the present subroutine.
  • On the other hand, when determining that the game has been executed with a MAXBET placed thereon and the fractional value is larger than 0, the main CPU 41 increments the number-of-games C stored in the RAM 43 (C=C+1) (step S322). After conducting the processing in step S322, the main CPU 41 ends the present subroutine.
  • [Game Execution Processing C (Insurance Mode/after Reaching of Notice Set Value)]
  • FIG. 21 is a flowchart showing a subroutine of the game execution processing C which is called and executed in step S400 of the subroutine shown in FIG. 17.
  • First, the main CPU 41 conducts processing for displaying the insurance mode image to the upper image display panel 33 and the lower image display panel 16 (step S401).
  • Subsequently, processing of steps S402 to S405 are conducted, and the processing of those steps is similar to the processing of steps S202 to S205 shown in FIG. 19A.
  • Next, the main CPU 41 displays specific effect images 95 a to 95 i (see [P06] to [P14] in FIGS. 10 to 13) to the lower image display panel 16 (step S406).
  • As described above, the specific effect image 95 is a video picture of an action of an angel as a character who appears and spreads her wings, and the specific effect images 95 a to 95 j are made by dividing the specific effect image 95 into a plurality of images along the time axis.
  • Therefore, with increase in number of games, the action of the angel as the character who appears and gradually spreads her wings is displayed by the specific effect image 95.
  • Subsequently, processing for steps S407 and S408 are performed, and the processing of these steps is similar to the processing of steps S207 and S208 shown in FIG. 19A.
  • After the processing of step S408, the main CPU 41 conducts processing for continuously displaying the specific effect image 95 even after rotation of the reels 14 has been stopped (step S409).
  • It is to be noted that, in the processing shown in FIG. 21, when symbols or a combination thereof, accompanied by coin-outs, is established, the main CPU 41 does not display the effect image 94 e which is displayed according to the symbols or the combination thereof as shown in [P19] (see FIG. 16). In place of that, the main CPU 41 displays the image 97 c showing the number of coin-outs according to the symbols or the combination thereof while displaying the specific effect image 95 as shown in [P20] (see FIG. 16).
  • Subsequently, steps S420 to S422 are conducted, and the processing of these steps are similar to the processing of steps S320 to S322 shown in FIG. 20, respectively.
  • [Game Execution Processing D (Insurance Mode/at Reaching of Specific Number)]
  • FIG. 22A and FIG. 22B are flowcharts showing a subroutine of the game execution processing D which is called and executed in step S500 of the subroutine shown in FIG. 17.
  • First, the main CPU 41 conducts processing for displaying the insurance mode image to the upper image display panel 33 and the lower image display panel 16 (step S501).
  • Subsequently, processing of steps S502 to S505 are conducted, and the processing of these steps is similar to the processing of steps S202 to S205 shown in FIG. 19A.
  • Next, the main CPU 41 displays a specific effect image 95 j (see [P15] in FIG. 14) to the lower image display panel 16 (step S506).
  • The specific effect image 95 j has contents continued from the specific effect images 95 a to 95 i, and displays an action of the angel as the character having spread her wings.
  • Subsequently, processing of steps S507 to S508 is conducted, and the processing of these steps is similar to the processing of steps S207 to S208 shown in FIG. 18A.
  • After the processing of step S508, the main CPU 41 conducts processing for continuously displaying the specific effect image 95 j even after rotation of the reels 14 has stopped (step S509).
  • It is to be noted that in the processing shown in FIG. 22A and FIG. 22B, as in FIG. 21, when symbols or a combination thereof, accompanied by coin-outs, is established, the main CPU 41 displays the image 97 c showing the number of coin-outs according to the symbols or the combination thereof while displaying the specific effect image 95 as shown in [P20] (see FIG. 16)
  • Next, the main CPU 41 conducts processing according to a payout and a fractional value addition (step S520).
  • Next, in step S521, the main CPU 41 determines whether or not the current game is a game with a MAXBET and the fractional value obtained in step S520 is larger than 0 (step S521). When determining that the game has not been executed with the MAXBET or that the fractional value is 0, the present subroutine ends.
  • On the other hand, when determining that the game is a game with a MAXBET and the fractional value is a value larger than 0, the main CPU 41 increments the number-of-games C=999 (C=C+1) (step S522) stored in the RAM 43. Thereby, the number-of-games C reaches the specific number 1000.
  • Next, the main CPU 41 displays an image shown in [P16] to the upper image display panel 33 and the lower image display panel 16 (step S523).
  • Namely, the image 97 a is displayed to the upper image display panel 33, the image 97 a showing that coins are being paid out based on that the number of games has reached a specific number, and the similar image 97 b is also displayed to the lower left side of the lower image display panel 16.
  • Moreover, the specific effect image 95 h with contents continued from the specific effect images 95 a to 95 j is displayed to the lower image display panel 16. Furthermore, the specific effect image 95 h′ is displayed in the display windows 15 (15L, 15C, 15R).
  • Next, the main CPU 41 determines whether or not the cumulative fractional value is equal to or more than a predetermined value (360 credits) (step S524). When determining that the cumulative fractional value is less than the predetermined value, the main CPU 41 pays out game media of a predetermined value (360 credits) out of the game media the manager of the game facility has accumulated in advance, while displaying an image shown in [P16] (step S525). At this time, 360 coins are paid out from the hopper 66.
  • When determining in step S524 that the cumulative fractional value is equal to or more than the predetermined value (360 credits), the main CPU 41 pays out game media of a value corresponding to the full value of the cumulative fractional value stored in the server 200 (step S526). At this time, coins in number corresponding to the full value of the cumulative fractional value are paid out from the hopper 66.
  • After conducting the processing of step S525 or step S526, the main CPU 41 stops display of the specific effect image 95 h′ in the display windows 15 while displaying the specific effect image 95 h to the lower image display panel 16 so as to display the specific effect image 95 in such a manner as to make the reels 14 visible (step S527).
  • Next, the main CPU 41 sets the insurance mode flag stored in the RAM 43 to “OFF” so as to shift the mode to the non-insurance mode (step S528).
  • Thereafter, in the storage area of data showing the number-of-games C which is provided in the RAM 43, the main CPU 41 sets the number-of-games C to zero (C=0) so as to clear the number of games (step S529).
  • Subsequently, the main CPU 41 displays, to the lower image display panel 16, the image 98 (see [P18] in FIG. 15) showing that the mode has been shifted from the insurance mode to the non-insurance mode (step S530), and the present subroutine is terminated.
  • [Processing According to a Payout and a Fractional Value Addition]
  • FIG. 23 is a flow chart showing the subroutine of the processing according to a payout and a fractional value addition which is called and executed in step S320 in FIG. 20, step S420 in FIG. 21 and step S520 in FIG. 22B.
  • First, the main CPU 41 determines whether or not a combination of jackpot triggers has been established (step S61). When determining that a combination of jackpot triggers has been established, the main CPU 41 conducts jackpot payout processing (step S62). After conducting the processing of step S62, the main CPU 41 ends the present subroutine.
  • On the other hand, when determining in step S61 that a combination of jackpot triggers has not been established, the main CPU 41 determines whether or not a winning combination has been established along any of the pay lines L (step S63). When determining that a winning combination has not been established along any of the pay lines L, the main CPU 41 ends the present subroutine.
  • When determines that a winning combination has been established along any of the pay lines L, the main CPU 41 determines the payout value for each of the pay lines L along which the winning combination has been established (step S64).
  • Next, the main CPU 41 combines the payout values for the respective pay lines L determined in step S64 to determine the estimated payout value for this game (step S65).
  • Subsequently, the main CPU 41 determines the credits after the decimal point of the estimated payout value determined in step S65, as a fractional value (step S66).
  • Then, the main CPU 41 conducts processing for paying out, to the player, coins of the value obtained by subtracting the fractional value determined in step S66 from the estimated payout value determined in step S65 (step S67).
  • Next, the main CPU 41 determines whether or not the fractional value determined in step S66 is 0 (step S68). When determining that the fractional value is 0, the main CPU 41 ends the present subroutine.
  • On the other hand, when determining that the fractional value is not 0, the main CPU 41 conducts processing for transmitting data indicative of the fractional value determined in step S66 to the server 200, to add this fractional value to the cumulative fractional value stored in the RAM 43 (step S69).
  • After conducting the processing of step S69, the main CPU 41 ends the present subroutine.
  • [Activation Processing]
  • FIG. 24 is a flowchart showing a procedure called and executed in step S101 of the flowchart shown in FIG. 17. This activation processing is the processing conducted by the mother board 40 and the gaming board 50. It should be noted that the memory card 53 is inserted into the card slot 53S in the gaming board 50, and the GAL 54 is mounted onto an IC socket 54S.
  • First, when a power switch is turned on (power is turned on) in the power supply unit 45, the mother board 40 and the gaming board 50 are activated (steps S1-1, S2-1). Inactivation of the mother board 40 and the gaming board 50, respective individual processing is executed in parallel. Namely, in the gaming board 50, the CPU 51 reads the auxiliary authentication program stored in the boot ROM 52, and conducts auxiliary authentication according to the read auxiliary authentication program, to previously check and prove that the authentication program is not falsified before loading the program to the mother board 40 (step S2-2). Meanwhile, in the mother board 40, the main CPU 41 executes the BIOS stored in the ROM 42, and expands compressed data which is incorporated in the BIOS into the RAM 43 (step S1-2). The main CPU 41 then executes the BIOS expanded into the RAM 43 to diagnose and initialize a variety of peripheral devices (step S1-3).
  • Since the ROM 55 of the gaming board 50 is connected to the main CPU 41 via the PCI bus, the main CPU 41 reads the authentication program stored in the ROM 55, and stores the read authentication program into the RAM 43 (steps S1-4). At this time, according to the standard BIOS function of BIOS, the main CPU 41 takes a checksum by ADDSUM system (normal checking system) and stores the authentication program into the RAM 43, while conducting processing for confirming whether or not the storage is certainly conducted.
  • Next, after confirming what is connected to the IDE bus, the main CPU 41 accesses, via the IDE bus, the memory card 53 inserted in the card slot 53S, to read a game program or a game system program from the memory card 53. In this case, the main CPU 41 reads data constituting the game program and the game system program by 4 bytes. Subsequently, the main CPU 41 conducts authentication to check and prove that the read game program and game system program have not been falsified, following the authentication program stored in the RAM 43 (step S1-S). When this authentication processing is normally completed, the main CPU 41 writes and stores the game program and the game system program, which have been the authentication targets (which have been authenticated), into the RAM 43 (step S1-6). Next, the main CPU 41 accesses, via the PCI bus, the GAL 54 mounted on the IC socket 54S, reads payout ratio setting data from the GAL 54, and writes and stores the data into the RAM 43 (step S1-7). Subsequently, the main CPU 41 conducts processing for reading country identification information stored in the ROM 55 of the gaming board 50 via the PCI bus, and writes and stores the read country identification information into the RAM 43 (step S1-8).
  • After conducting the above-mentioned processing, the main CPU 41 sequentially reads and executes the game program and the game system program, to execute the processing shown in FIG. 17.
  • [To-be-Stopped Symbol Determination Processing]
  • FIG. 25 is a flowchart showing a subroutine of the to-be-stopped symbol determination processing called and executed in step S207 of the subroutine shown in FIG. 19A. This is the processing conducted such that the main CPU 41 executes the to-be-stopped symbol determination program stored in the RAM 43.
  • First, the main CPU 41 executes a random number generation program included in the to-be-stopped symbol determination program, to select random numbers respectively corresponding to the three reels 14, out of the numbers falling in the numeric range of 0 to 255 (step S31). In the present embodiment, the case of generating random numbers on the program (the case of using a so-called software random number) is described. However, in the present invention, a random number generator may be provided and random numbers may be extracted from the random number generator (a so-called hardware random number may be used).
  • Next, the main CPU 41 (arithmetic processing unit) determines a code No. (see FIG. 28) of the respective reels 14 based on the selected three random numbers, by referring to symbol weighing data according to the payout ratio setting data outputted from GAL 54 and stored in the RAM 43 (storage device) (step S32). The code Nos. of the respective reels 14 correspond to code Nos. of symbols to be rearranged along the pay lines L. It should be noted that later-described reel rotation control processing is conducted based on these code Nos. of the reels.
  • [Reel Rotation Control Processing]
  • FIG. 26 is a flowchart showing the reel rotation control processing called and executed in step S208 of the subroutine shown in FIG. 19A. It is to be noted that this is the processing conducted between the main CPU 41 and the sub CPU 61.
  • First, the main CPU 41 transmits to the sub CPU 61 a start signal to start rotation of the reels (step S40). Upon receipt of the start signal from the main CPU 41, the sub CPU 61 conducts the reel rotation processing (step S51). In this processing, the sub CPU 61 supplies a pulse to the motor driving circuit 62. The pulse outputted from the sub CPU 61 is amplified by the driver 64, and then supplied to each of the stepping motors 70 (70L, 70C, 70R). This results in rotation of each of the stepping motors 70, along with which each of the reels 14 (14L, 14C, 14R) is rotated. In the one-two phase excitation stepping motor 70, a step angle is 0.9 degrees and the number of steps per rotation is 400. Therefore, when 400 pulses are supplied to the stepping motor 70, the reel 14 rotates one turn.
  • In starting rotation of the reels 14, the sub CPU 61 supplies a low frequency pulse to the motor driving circuit 62, and gradually increases the pulse frequency. Along with this, a rotational speed of the reels 14 increases. After a lapse of a predetermined period of time, the pulse frequency is made constant. This results in rotation of the reel 14 at a constant speed.
  • Here, the rotational operation of the reel 14 is described by using FIGS. 27A to 27D.
  • FIGS. 27A to 27D are side views for explaining the rotational operation of the reel 14.
  • As shown in FIG. 27A, a semicircular metal plate 14 a is provided on the side face of the reel 14. The metal plate 14 a is rotated along with the reel 14. Further, 22 symbols are provided on the peripheral face of the reel 14. Three symbols out of the 22 symbols drawn on the peripheral face of the reel 14 become visually identifiable via the display window 15 formed in front of the reel 14. In the figure, heavy-line arrows indicate the rotational direction of the reel 14. Further, an adjacent sensor 65 a is provided on the side face of the reel 14. The adjacent sensor 65 a is for detecting the metal plate 14 a. The adjacent sensor 65 a does not move or rotate along with rotation of the reel 14.
  • FIG. 27A shows a position (hereinafter also referred to as position A) of the metal plate 14 a at the time point when the adjacent sensor 65 a starts detecting the metal plate 14 a. When the reel 14 rotates with the metal plate 14 a located in the position A, the metal plate 14 a moves to a position shown in FIG. 27B. FIG. 27B shows a position (hereinafter also referred to as position B) of the metal plate 14 a when the adjacent sensor 65 a is detecting the metal plate 14 a. When the reel 14 rotates with the metal plate 14 a located in the position B, the metal plate 14 a moves to a position shown in FIG. 27C. FIG. 27C shows a position (hereinafter also referred to as position C) of the metal plate 14 a at the time point when the adjacent sensor 65 a stops detecting the metal plate 14 a.
  • When the reel 14 rotates with the metal plate 14 a located in the position C, the metal plate 14 a moves to a position shown in FIG. 27D. FIG. 27D shows a position (hereinafter also referred to as position D) of the metal plate 14 a when the adjacent sensor 65 a is not detecting the metal plate 14 a. When the reel 14 rotates with the metal plate 14 a located in the position D, the metal plate 14 a returns to the position A. As thus described, the position of the metal plate 14 a changes sequentially from the position A, the position B, the position C, the position D, the position A, and so forth, along with rotation of the reel 14.
  • The adjacent sensor 65 a constitutes the index detecting circuit 65 (see FIG. 3). Assuming that the state where the adjacent sensor 65 a is detecting the metal plate 14 a is referred to as “High” and the state where the adjacent sensor 65 a is not detecting the metal plate 14 a is referred to as “Low”, the index detecting circuit 65 is in the “High” state when the metal plate 14 a is located in the position A→the position B→the position C, and the index detecting circuit 65 is in the “Low” state when the metal plate 14 a is located in the position C→the position D→the position A. It is to be noted that the sub CPU 61 identifies the rotational position of the reel 14 such that a leading edge from “Low” to “High” as index (original point) 1 and a falling edge from “High” to “Low” as index (original point) 2.
  • After transmitting a start signal to the sub CPU 61 in step S40, the main CPU 41 executes effects in rotation of the reels (step S41). This is the processing for displaying an image to the lower image display panel 16, outputting sound from the speaker 29, and the like, during a period (e.g. 3 seconds) set according to a result of the to-be-stopped symbol determination processing (FIG. 19A, step S207) or the like.
  • Next, the main CPU 41 determines whether or not the current time point is the timing for instructing to stop rotation of the reels 14 (step S42).
  • Here, the timing for instructing to stop rotation of the reels 14 is the timing before the time point of stopping the performance of effects in rotation of the reels only by the minimum time required for stopping rotation of the reels 14. It is to be noted that the minimum time required for stopping rotation of the reels 14 is previously set.
  • In step S42, when determining that the current time point is not the timing for instructing to stop rotation of the reels 14, the main CPU 41 returns the processing to step S42, and continuously executes the performance of effects in rotation of the reels. On the other hand, when determining that the current time point is the timing for instructing to stop rotation of the reels 14 in step S42, the main CPU 41 transmits code No. stored in the RAM 43 to the sub CPU 61 (step S43). Upon receipt of code No. of the reels from the main CPU 41, the sub CPU 61 converts code No. into the stop position (the number of steps) of each reel from the index, based on the correspondence table of the number of steps stored in ROM (not shown) comprised in CPU 61 and code No. (step S52).
  • FIG. 28 is a schematic view showing a correspondence table of the number of steps and code No. Each code No. is corresponded to index and the number of steps.
  • It should be noted that each code No. corresponds to a symbol drawn on the peripheral face of the reel 14. Symbols of code No. “00” to “10” correspond to index 1. Symbols of code No. “11” to “21” correspond to index 2. Further, the numbers of steps in the correspondence table shown in FIG. 28 are the numbers of steps set with index 1 as a reference. For example, when code No. is “08”, a position 145 steps from index 1 is the stop position of the reel. Further, when code No. is “12”, a position 218 steps from index 1 is the stop position of the reel.
  • Next, the sub CPU 61 executes a reel stoppage processing (step S53). In this processing, the sub CPU 61 detects the leading edge (index 1) from “Low” to “High” of each reel 14 in the index detecting circuit 65, and supplies the index detecting circuit 65 with pulses corresponding to the number of steps into which code No. has been converted in step S52, at the timing of detecting index 1, and thereafter, the supply of the pulse is stopped.
  • For example, when it is determined that the stop position of the reel is a position 145 steps from index 1 in step S52, the sub CPU 61 supplies the index detecting circuit 65 with 145 pulses at the timing of detecting index 1, and then stops the supply of the pulse. Further, in step S52, when it is determined that the stop position of the reel is a position 218 steps from index 1, the sub CPU 61 supplies the index detecting circuit 65 with 218 pulses at the timing of detecting index 1. As a result, the reels 14 stop with the code numbers as determined in step S32 in FIG. 25, and a combination of symbols corresponding to the winning combination determined in step S32 in FIG. 25 is rearranged along the pay lines L. Meanwhile, the main CPU 41 ends the performance of effects in rotation of the reels. After completing the processing of steps S44 and S53, the present processing is terminated.
  • It is to be noted that, when index corresponding to code No. transmitted in step S43 differs from index detected by the index detecting circuit 65 in stopping rotation of the reels 14, a loss of synchronism has occurred in the reels 14, and therefore, the main CPU 41 conducts processing for displaying an error message to the lower image display panel 16, or the like, to discontinue the game.
  • For example, when the index 1 is detected by the index detecting circuit 65 in stopping rotation of the reels 14 although the main CPU 41 conducts the processing for stopping reels 14 at code No. 12 which is corresponding to index 2, the game is discontinued.
  • As described above, the slot machine 10 according to the present embodiment includes the mother board 40 (a controller). The mother board 40 is programmed to conduct processing of: (A) determining, when game media of a value corresponding to a natural-number multiple of one credit is BET on a plurality of pay lines L for which game results are individually determined, a BET-value for each of the pay lines L based on the value of the BET game media and the number of the pay lines L, the game result of each of the pay lines L, and a payout value for each of the pay lines L based on the BET-value and the game result, and combining the payout values to determine an estimated payout value for a single unit game; (B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in the processing (A) by one credit; (C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in the processing (B) from the estimated payout value for a single unit game determined in the processing (A), as a payout for a single unit game; (D) cumulatively accumulating the game media corresponding to the game media BET in the unit game and/or the fractional value determined in the processing (B); (E) counting the number of the unit games executed; and (F) paying out the game media cumulatively accumulated in the processing (D), when the number of unit games counted in the processing (E) has reached 1000.
  • In the present embodiment, there has been described a case where games to be counted are games with a MAXBET placed thereon and the obtained fractional value being larger than 0. However, in the present invention, games to be counted are not limited to this example. For example, a game in which a fractional value is larger than 0 may be counted regardless of the number of BETs, or a game with a MAXBET placed thereon may be counted regardless of whether or not the fractional value is larger than 0. Alternatively, for example, only the games executed in the insurance mode may be the counting targets. Further, all the games actually executed may be counted.
  • In the present embodiment, coins are to be paid out when the number of counted games reaches 1000. However, in the present invention, the specific number is not limited to this example. Further, for example, the specific number may be set randomly by using a random number every time the mode is shifted to the insurance mode. Moreover, the specific number may be set according to the number of credits such that the larger the number of credits for shifting the mode from the non-insurance mode to the insurance mode, the smaller the specific number is set.
  • Further, in the present embodiment, there has been described a case where coins in number corresponding to the full value of the cumulative fractional value are paid out when the number of counted games reaches 1000.
  • However, in the present invention, there is no particular limitation on the game media to be paid out when the number of counted games reaches the specific number, provided that the game media are game media which have been cumulatively accumulated during games. For example, it may be possible to pay out credits resulted from cumulatively accumulating all or part of credits equal to or less than a maximum number of BETs which have been BET in games, or credits resulted from cumulatively accumulating part of credits paid out when a winning combinations is established. Alternatively, for example, it may be possible to pay out game media, which are a combination of credits of the value resulted from cumulatively adding the fractional values and game media as exemplified above.
  • Further, in the present invention, part of cumulatively accumulated game media may be paid out, when the number of counted games reaches the specific number.
  • Further, in the present embodiment, there has been described a case where a returned profit of game media is offered, when the number of games with a MAXBET placed thereon and the obtained fractional value being larger than 0 reaches 1000. However, in the present invention, the condition to be satisfied for offering a returned profit is not limited to this example. Examples of a condition to be satisfied for offering a returned profit include: the condition that the number of games with no predetermined bonuses such as a bonus game, a free game (a game that can be executed without inserting a game medium), mystery bonus, and the like generating therein reaches a specific number; and the condition that the number of games with no specific winning combinations (e.g. a winning combination for which a payout of 180 or more coins is conducted) being established therein reaches a specific number. In such a configuration, when a predetermined bonus occurs or a specific winning combination is established by the time the number of games reaches the specific number, for example, the mode may shift from the insurance mode to the non-insurance mode and also the number of counted games may be cleared (set to 0), or the mode may shift from the insurance mode to the non-insurance mode while the number of counted games is maintained.
  • Another exemplary condition for offering a returned profit is the condition that the total of the numbers of game media BET in games reaches a specific number. In this case, only game media BET in the insurance mode may be counted, or all the game media BET thereon may be counted.
  • Further, in the present invention, the gaming machine may be configured so as to enable the player to insure a game, on condition that the number of games with no predetermined bonuses (e.g., bonus games and free games) generating therein or the number of games with no specific winning combinations (e.g., a winning combination for which a payout of 180 or more coins is conducted) being established therein has reached a specific number, or on condition that the total of the numbers of game media BET in games has reached a specific number.
  • Further, in the present embodiment, there has been described a case where it is possible to shift the mode from the non-insurance mode to the insurance mode by inserting a game medium even when the cumulative fractional value has not reached the predetermined value (360 credits). However, in the present invention, the mode may be shifted to the insurance mode only when the cumulative fractional value has reached the predetermined value.
  • Further, in the present embodiment, there has been described a case where the mode is shifted to the insurance mode when the cumulative fractional value reaches the predetermined value or when a game medium as an insurance premium is inserted. However, in the present invention, game media may be paid out when the number of games reaches a specific number or when the total of the numbers of game media BET in games reaches a specific number, regardless of whether or not the cumulative fractional value has reached the predetermined value or whether or not game media have been inserted.
  • Further, in the present embodiment, the slot machine is configured such that coins are paid out from the hopper 66 when a winning combination is established in a game or when the condition required for offering a returned profit of the insurance is satisfied.
  • In the present invention, when a winning combination is established, credits may be cumulatively added to the credits stored in the RAM and coins and the like may be collectively paid out at the end of games. However, as in the present embodiment, when the condition required for offering a returned profit of insurance is satisfied, the slot machine is desirably configured so as to physically pay out coins, medals, bills and like at the timing when the condition is established. This configuration can strongly impress, on the player, the fact that a returned profit of insurance is conducted.
  • While, in the present embodiment, there has been described a case where the slot machines 10 are communicably connected to the server 200 through the communication line 101 and the server 200 stores the cumulative fractional values, the gaming machines according to the present invention may be of a standalone type and store the cumulative fractional values therein.
  • In the above-mentioned example, the case of using mechanical reels 14 has been described. However, in the present invention, symbols may be displayed to a display device such as a liquid crystal display device in place of the mechanical reels.
  • FIG. 29 is a perspective view schematically showing a slot machine according to another embodiment of the present invention.
  • Except for displaying symbols to a lower image display panel, a slot machine 300 has substantially the same appearance, circuit configuration and the like as those of the slot machine 10, and the flowchart of the slot machine 300 is substantially the same as that of the slot machine 10. Therefore, descriptions of the slot machine 300 are omitted except for a description of symbol display. Further, constituents corresponding to those of the slot machine 10 are provided with the same numerals as in the slot machine 10.
  • The lower image display panel 16 included in the slot machine 300 is provided with symbol display areas 250 of three columns and three rows, and one symbol is displayed in each symbol display area. In such a configuration, the scroll-display of symbols may be displayed to the lower image display panel 16 in place of the reel rotation control by the sub CPU 61.
  • In the present embodiment, there has been described a case where the slot machines 10 are employed as gaming machines and BETs are placed on the plurality of pay lines L as BET-targets. However, the gaming machines according to the present invention are not limited to slot machines; for example, roulette gaming machines may be adopted. In this case, the BET-targets are a plurality of methods such as Straight BET and Split BET, in which BETs are placed on number pockets included in a roulette wheel, and payout rates are to be set for the respective BET methods.
  • In the above-mentioned embodiment, there has been described a case where the mode shifts from the non-insurance mode to the insurance mode when a predetermined condition with respect to the fractional value is established (when the cumulative fractional value reaches a predetermined value, or when the number of games with a fractional value generated therein reaches a specific number). Further, the fractional value according to the condition required for shifting from the non-insurance mode to the insurance mode is determined based on the value according to the estimated payout value, namely the value with respect to the payout. However, in the present invention, the value according to the condition required for shifting from the non-insurance mode to the insurance mode is not limited to this example.
  • Hereinafter, there will be described a case where the value according to the condition required for shifting from the non-insurance mode to the insurance mode is determined based on the value with respect to BETs. Here, this value will be referred to as a BET-fractional-value.
  • A slot machine which will be described below is the same as the slot machine according to the above-mentioned embodiment, except that a BET-fractional-value is used in addition to the fractional value described in the above-mentioned embodiment as the value related to the condition required for shifting the mode from the non-insurance mode to the insurance mode, and that a BET can be placed on each of the pay lines L. Namely, the slot machine which will be described hereinafter has substantially a similar external appearance, a similar circuit configuration and the like as those of the slot machine 10 described in the above-mentioned embodiment, and executes substantially a similar flowcharts. Accordingly, hereinafter, there will be described only the parts different from those of the above-mentioned embodiment, namely only the parts relating to the BET-fractional-values and the parts relating to the BET methods. Further, the components corresponding to those of the slot machine 10 will be designated by an identical reference characters, in the following description.
  • Hereinafter, there will be described the BET method and the BET-fractional-value according to another embodiment.
  • In the slot machine according to the present embodiment, a BET-unit (1 BET=1 credit=0.5 dollar, in the present embodiment) is previously set for each pay line L. A MAXBET is 3 BETs. The player can input an arbitrary number of BETs, out of 1 BET, 2 BETs and 3 BETs, for each pay line L.
  • The BET-fractional-value is the value of the digits after the decimal point of the total BET-value per game in the case of placing a BET on a single or a plurality of pay lines L. For example, when 50 cents (0.5 dollar), which is the 1 BET-unit, is BET on 3 pay lines L, the total BET-value is 1.50 dollars and, therefore, 0.50 dollar, which is the part thereof less than 1 dollar, is the BET-fractional-value. Also, as another example, the BET-fractional-value is determined as follows. For example, when the player places 1 BET on each of the 5 pay lines L, the total BET-value is 0.5 dollar×1 BET×5 lines=2.5 dollars. In this case, the digits after the decimal point that is to be the BET-fractional-value is 0.5 dollar, since the total BET-value is 2.5 dollars. Further, when the player places 2 BETs on each pay line, the total BET-value is 5 dollars×2 BETs×5 lines=5 dollars. In this case, the BET-fractional-value is 5.0 dollars−5.0 dollars=0 dollar, thereby resulting in no fractional value. Further, when the player places a MAXBET (3 BETs) on each pay line L, the total BET-value is 0.5 dollar×3 BETs×5 lines=7.5 dollars. In this case, the BET-fractional-value is 7.5−7.0=0.5 dollar.
  • Hereinafter, with reference to FIG. 30A and FIG. 30B, there will be described the shift from the non-insurance mode to the insurance mode according to another embodiment.
  • FIG. 30A and FIG. 30B are flowcharts showing the subroutine of game execution processing A (non-insurance mode) according to another embodiment.
  • Hereinafter, there will be described only steps S240, S250, S260 and S270, while other processing will not be described since it is the same as that described in the above-mentioned embodiment.
  • In step S240, the main CPU 41 combines the BET-values for the respective pay lines L to determine the total BET-value.
  • Next, in step S250, the main CPU 41 determines the BET-fractional-value.
  • As described above, the value after the decimal point of the total BET-value for a single game is the BET-fractional-value. Namely, in the present embodiment, the fractional value which is less than 1 dollar is determined as a BET-fractional-value, using a currency unit of dollar. Such an idea can be applied to other currencies such as euro, yen, won and ruble, and the BET-fractional-value can be determined through calculation processing by determining the value which is equal to or less than a certain place in a unit such as dollar, as a fractional value. In the case of determining the value less than 100 dollars as a fractional value, when 50 dollars corresponding to 1 BET-unit are BET on 3 pay lines, the total BET-value is 150 dollars; therefore, the BET-fractional-value is 50 dollars. As described above, the main CPU 41 determines the value after the decimal point of the total BET-value determined in step S240, as a BET-fractional-value.
  • Next, in step S260, the main CPU 41 conducts processing for transmitting data indicative of the BET-fractional-value determined in step S250 to the server 200 to add this BET-fractional-value to the cumulative fractional value stored in the server 200. In the present embodiment, the cumulative fractional value is the sum of the BET-fractional-values and the fractional values which are cumulatively added.
  • In step S270, the main CPU 41 determines whether or not the total of the BET-fractional-values and the fractional values cumulatively added (the cumulative fractional value) has reached a predetermined value (10 credits, for example). When determining that the cumulative fractional value has reached the predetermined value, the main CPU 41 shifts the processing to step S230. On the other hand, when the main CPU 41 determines that the cumulative fractional value has not reached the predetermined value, the main CPU 41 shifts the processing to step S232.
  • As described above, in the present embodiment, the total of BET-fractional-value and fractional value is cumulatively added as a cumulative fractional value. Further, the cumulative fractional value is related to the condition required for shifting the mode from the non-insurance mode to the insurance mode. However, in the present invention, the condition required for shifting the mode from the non-insurance mode to the insurance mode is not limited to this example. For example, the total of BET-fractional-values may be stored separately from the total of fractional values, and when the total of BET-fractional-values reaches a predetermined value, the mode may shift from the non-insurance mode to the insurance mode. In the case of employing the configuration, a condition with respect to the fractional values may or may not be employed as a condition required for shifting the mode from the non-insurance mode to the insurance mode.
  • Further, in the present embodiment, the player is enabled to input the number of BETs for the respective pay lines L. Further, calculation processing is conducted for combining the BET-values BET on a single or a plurality of pay lines L to determine the total BET-value, and the value of the part less than a specific digit of the total BET-value (the value less than 1 dollar, in the present embodiment) is cumulatively added and stored as an insurance BET. Further, when the number of games cumulatively incremented reaches a specific number, game media corresponding to a predetermined value, out of the cumulatively stored value as an insurance BET, are paid out. Namely, the BET-fractional-value is treated as an insurance BET.
  • Further, processing for shifting the mode from the non-insurance mode to the insurance mode may be conducted every time the above-mentioned BET-fractional-value is generated. In the case of treating the BET-fractional-value as an insurance BET, the player does not consciously insurance a game; therefore, the insurance mode can be set on a full-time basis.
  • Further, the calculation processing for the BET-fractional-value can be properly changed as required; for example, as another BET-mode, in a case where a BET of a constant value is placed on some lines, the constant value is divided by the number of pay lines, and the part of the resultant value which is less than one credit is treated as a BET-fractional-value. The calculation processing for BET-fractional-values can be properly designed and changed as required, provided that: part of the total of BETs placed by the player is calculated as a BET-fractional-value through some calculation processing; part of the BET-fractional-value is cumulatively stored as an insurance BET; a condition such that the cumulative number of games reaches a predetermined number of games is set as a predetermined condition; and game media are paid out from the value of the cumulative insurance BET when the predetermined condition is established.
  • Although the embodiments of the present invention were described above, they were just illustrations of specific examples, and hence do not particularly restrict the present invention. A specific configuration of each step and the like is appropriately changeable in terms of design. Further, the effects described in the embodiments of the present invention are just recitations of the most suitable effects generated from the present invention. The effects of the present invention are thus not limited to those described in the embodiments of the present invention.
  • Further, the foregoing detailed descriptions centered the characteristic parts of the present invention in order to facilitate understanding of the present invention. The present invention is not limited to the embodiments in the foregoing specific descriptions but applicable to other embodiments with a variety of application ranges. Further, terms and phrases in the present specification were used not for restricting interpretation of the present invention but for precisely describing the present invention. It is considered easy for the skilled in the art to conceive other configurations, systems, methods and the like included in the concept of the present invention from the concept of the invention described in the specification. Therefore, it should be considered that recitations of the claims include uniform configurations in a range not departing from the range of technical principles of the present invention. Moreover, an object of the abstract is to enable a patent office, a general public institution, an engineer belonging to the technical field who is unfamiliar with patent, technical jargon or legal jargon, and the like, to smoothly determine technical contents and an essence of the present application with simple investigation. Accordingly, the abstract is not intended to restrict the scope of the invention which should be evaluated by recitations of the claims. Furthermore, for thorough understanding of an object of the present invention and an effect specific to the present invention, it is desired to make interpretation in full consideration of documents already disclosed and the like.
  • The foregoing detailed descriptions include processing executed on a computer or a computer network. Explanations and expressions above are described with the aim of being most efficiently understood by the skilled person in the art. In the specification, each step for use in deriving one result should be understood as the self-consistent processing. Further, in each step, transmission/reception, recording or the like of an electrical or magnetic signal is performed. While such a signal is expressed by using a bit, a value, a symbol, a letter, a term, a number or the like in processing of each step, it should be noted that those are used simply for the sake of convenience in description. While there are cases where processing in each step may be described using an expression in common with that of action of a human, processing described in the specification is essentially executed by a variety of devices. Further, another configuration requested for performing each step becomes apparent from the above descriptions.

Claims (12)

1. A gaming machine comprising
a controller,
said controller programmed to execute the processing of:
(A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined,
a BET-value for each of said BET-targets based on the value of the BET game media and the number of said BET-targets,
said game result of each of said BET-targets, and
a payout value for each of said BET-targets based on said BET-value and said game result, and
combining said payout values to determine an estimated payout value for a single unit game;
(B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in said processing (A) by said minimum BET-unit;
(C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in said processing (B) from the estimated payout value for a single unit game determined in said processing (A), as an award for a single unit game;
(D) cumulatively accumulating the game media corresponding to the game media BET in said unit game and/or the fractional value determined in said processing (B);
(E) counting the number of said unit games executed; and
(F) paying out the game media cumulatively accumulated in said processing (D), when the number of unit games counted in said processing (E) has reached a specific number.
2. The gaming machine according to claim 1,
wherein
said processing (D) includes
(D′) cumulatively accumulating the game media corresponding to the fractional value determined in said processing (B);
said controller is further programmed to execute the processing of
shifting a mode from a non-insurance mode to an insurance mode on condition that the number of game media cumulatively accumulated in said processing (D′) has reached the predetermined number; and
said processing (F) includes
paying out the game media cumulatively accumulated in said processing (D′), when the number of unit games counted in said processing (E) has reached the specific number and when the mode is said insurance mode.
3. The gaming machine according to claim 1,
wherein
said processing (E) includes
counting the number of unit games in which game media are BET in number equal to a maximum number of BETs.
4. The gaming machine according to claim 1,
wherein
said processing (E) includes
counting the number of unit games in which the fractional value determined in said processing (B) has become larger than 0.
5. The gaming machine according to claim 1, further comprising a payout device capable of physically paying out game media,
wherein
said processing (F) includes
paying out, from said payout device, the game media cumulatively accumulated in said processing (D), when the number of unit games counted in said processing (E) has reached the specific number.
6. A gaming machine comprising
a controller,
said controller programmed to execute the processing of:
(A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined,
a BET-value for each of said BET-targets based on the value of the BET game media and the number of said BET-targets,
said game result of each of said BET-targets, and
a payout value for each of said BET-targets based on said BET-value and said game result, and
combining said payout values to determine an estimated payout value for a single unit game;
(B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in said processing (A) by said minimum BET-unit;
(C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in said processing (B) from the estimated payout value for a single unit game determined in said processing (A), as an award for a single unit game;
(D) cumulatively accumulating the game media corresponding to the game media BET in said unit game and/or the fractional value determined in said processing (B);
(E) counting the number of game media BET in said unit game; and
(F) paying out the game media cumulatively accumulated in said processing (D), when the number of game media counted in said processing (E) has reached a specific number.
7. The gaming machine according to claim 6,
wherein
said processing (D) includes
(D′) cumulatively accumulating the game media corresponding to the fractional value determined in said processing (B);
said controller is further programmed to execute the processing of
shifting a mode from a non-insurance mode to an insurance mode on condition that the number of game media cumulatively accumulated in said processing (D′) has reached the predetermined number; and
said processing (F) includes
paying out the game media cumulatively accumulated in said processing (D′), when the number of game media counted in said processing (E) has reached the specific number and the mode is said insurance mode.
8. The gaming machine according to claim 6, further comprising a payout device capable of physically paying out game media,
wherein
said processing (F) includes
paying out, from said payout device, the game media cumulatively accumulated in said processing (D), when the number of game media counted in said processing (E) has reached the specific number.
9. The gaming machine according to claim 2,
wherein
said controller is further programmed to execute the processing of
shifting a mode from a non-insurance mode to an insurance mode on condition that the game media have been inserted.
10. The gaming machine according to claim 1, further comprising a symbol display device to which a plurality of symbols are to be rearranged,
wherein
said controller is further programmed to execute the processing of
executing said unit game in which said plurality of symbols are rearranged to said symbol display device after game media are BET in number equal to or less than the previously determined said maximum number of BETs, and game media are paid out in number according to the rearranged symbols or a combination thereof.
11. A game control method comprising the steps of:
(A) determining, when game media of a value corresponding to a natural-number multiple of a previously determined minimum BET-unit is BET on a plurality of BET-targets for which game results are individually determined,
a BET-value for each of said BET-targets based on the value of the BET game media and the number of said BET-targets,
said game result of each of said BET-targets, and
a payout value for each of said BET-targets based on said BET-value and said game result, and
combining said payout values to determine an estimated payout value for a single unit game;
(B) determining a fractional value which is obtained by dividing the estimated payout value for a single unit game determined in said step (A) by said minimum BET-unit;
(C) paying out, to a player, game media of a value obtained by subtracting the fractional value determined in said step (B) from the estimated payout value for a single unit game determined in said step (A), as an award for a single unit game;
(D) cumulatively accumulating the game media corresponding to the game media BET in said unit game and/or the fractional value determined in said step (B);
(E) counting the number of said unit games executed; and
(F) paying out the game media cumulatively accumulated in said step (D), when the number of unit games counted in said step (E) has reached a specific number.
12. A gaming machine comprising
a controller,
said controller programmed to execute the processing of:
(A) determining, when game media is BET on a plurality of BET-targets for which game results are individually determined, a BET-value for each of said BET-targets;
(B) combining said BET-values for each of said BET-targets to determine a total BET-value for a single unit game;
(C) determining part of said total BET-value determined in said processing (B) as a BET-fractional-value, the part equal to or less than a previously determined digit number;
(D) cumulatively adding said BET-fractional-values determined in said processing (C);
(E) counting the number of said unit games executed; and
(F) paying out game media corresponding to all or part of the BET-fractional-values cumulatively added in said processing (D), when the number of unit games counted in said processing (E) has reached a specific number.
US11/932,816 2007-04-13 2007-10-31 Gaming machine and control method of game Abandoned US20080254867A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/932,816 US20080254867A1 (en) 2007-04-13 2007-10-31 Gaming machine and control method of game
AU2008201026A AU2008201026A1 (en) 2007-04-13 2008-03-04 Gaming machine and control method of game
JP2008056861A JP2008259827A (en) 2007-04-13 2008-03-06 Gaming machine and control method of game

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90767207P 2007-04-13 2007-04-13
US11/932,816 US20080254867A1 (en) 2007-04-13 2007-10-31 Gaming machine and control method of game

Publications (1)

Publication Number Publication Date
US20080254867A1 true US20080254867A1 (en) 2008-10-16

Family

ID=39854218

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/932,816 Abandoned US20080254867A1 (en) 2007-04-13 2007-10-31 Gaming machine and control method of game

Country Status (4)

Country Link
US (1) US20080254867A1 (en)
JP (1) JP2008259827A (en)
AU (1) AU2008201026A1 (en)
ZA (1) ZA200803082B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254868A1 (en) * 2007-04-13 2008-10-16 Aruze Corp. Gaming machine and control method of game
US20080254857A1 (en) * 2007-04-13 2008-10-16 Aruze Corp. Gaming machine and control method of game
US20110212766A1 (en) * 2008-10-31 2011-09-01 Wms Gaming, Inc. Controlling and rewarding wagering game skill
US8282479B2 (en) 2011-02-04 2012-10-09 Video Gaming Technologies, Inc. Gaming machine with screen split and merge feature
US8657673B2 (en) 2011-02-04 2014-02-25 Video Gaming Technologies, Inc. Gaming machine with wager reallocation feature
US9430900B2 (en) 2012-09-25 2016-08-30 Igt Gaming system and method for providing a symbol matrix with a moveable symbol display window

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852576A (en) * 1972-03-29 1974-12-03 K Rudd Premium allocation device
US4283709A (en) * 1980-01-29 1981-08-11 Summit Systems, Inc. (Interscience Systems) Cash accounting and surveillance system for games
US4624459A (en) * 1985-09-12 1986-11-25 Bally Manufacturing Corporation Gaming device having random multiple payouts
US4669731A (en) * 1985-01-11 1987-06-02 Kabushiki Kaisha Universal Slot machine which pays out upon predetermined number of consecutive lost games
US4837728A (en) * 1984-01-25 1989-06-06 Igt Multiple progressive gaming system that freezes payouts at start of game
US4964638A (en) * 1988-05-16 1990-10-23 Kabushiki Kaisha Universal Control apparatus for game machines
US5083785A (en) * 1989-08-30 1992-01-28 Kabushiki Kaisha Universal Win control method and apparatus for game machines
US5178390A (en) * 1991-01-28 1993-01-12 Kabushiki Kaisha Universal Game machine
US5280909A (en) * 1992-02-06 1994-01-25 Mikohn, Inc. Gaming system with progressive jackpot
US5564700A (en) * 1995-02-10 1996-10-15 Trump Taj Mahal Associates Proportional payout method for progressive linked gaming machines
US5611730A (en) * 1995-04-25 1997-03-18 Casino Data Systems Progressive gaming system tailored for use in multiple remote sites: apparatus and method
US5639088A (en) * 1995-08-16 1997-06-17 United Games, Inc. Multiple events award system
US5695402A (en) * 1996-04-10 1997-12-09 Stupak; Bob Game of chance
US5702303A (en) * 1992-03-10 1997-12-30 Kabushiki Kaisha Ace Denken Game machine having a playing display screen
US5770533A (en) * 1994-05-02 1998-06-23 Franchi; John Franco Open architecture casino operating system
US5820459A (en) * 1994-10-12 1998-10-13 Acres Gaming, Inc. Method and apparatus for operating networked gaming devices
US5890963A (en) * 1996-09-30 1999-04-06 Yen; Wei System and method for maintaining continuous and progressive game play in a computer network
US5910048A (en) * 1996-11-29 1999-06-08 Feinberg; Isadore Loss limit method for slot machines
US6003013A (en) * 1996-05-24 1999-12-14 Harrah's Operating Company, Inc. Customer worth differentiation by selective activation of physical instrumentalities within the casino
US6001016A (en) * 1996-12-31 1999-12-14 Walker Asset Management Limited Partnership Remote gaming device
US6089980A (en) * 1996-06-18 2000-07-18 Atronic Casino Technology Distribution Gmbh Method for the determination of a shared jackpot winning
US6213877B1 (en) * 1997-10-08 2001-04-10 Walker Digital, Llc Gaming method and apparatus having a proportional payout
US6224482B1 (en) * 1997-09-10 2001-05-01 Aristocrat Technologies Australia Pty Ltd Slot machine game-progressive jackpot with decrementing jackpot
US6234896B1 (en) * 1997-04-11 2001-05-22 Walker Digital, Llc Slot driven video story
US6244957B1 (en) * 1996-12-30 2001-06-12 Walker Digital, Llc Automated play gaming device
US6254482B1 (en) * 1997-02-21 2001-07-03 Walker Digital, Llc System and method for generating and executing insurance policies for gambling losses
US6270077B1 (en) * 1999-12-20 2001-08-07 Gene D. Cohen Non-competitive memory enhancement game
US6270409B1 (en) * 1999-02-09 2001-08-07 Brian Shuster Method and apparatus for gaming
US6273820B1 (en) * 1999-02-04 2001-08-14 Haste, Iii Thomas E. Virtual player gaming method
US20030069073A1 (en) * 2001-10-05 2003-04-10 Kazuo Okada Game server, game control method, and game machine
US6695697B1 (en) * 1999-09-10 2004-02-24 Aruze Co., Ltd. Game device and medium memorizing a game program and readable by a computer for support players′ technical intervention without changing fundemental specification of the game device
US6869362B2 (en) * 1997-02-21 2005-03-22 Walker Digital, Llc Method and apparatus for providing insurance policies for gambling losses
US6932707B2 (en) * 2000-02-24 2005-08-23 Labtronix Concept Inc. Method of choosing and distributing enhanced odds
US6932704B2 (en) * 1998-03-31 2005-08-23 Walker Digital, Llc Method and apparatus for operating a gaming device to dispense a specified amount
US20060183530A1 (en) * 2003-10-17 2006-08-17 Dynamite Games Pty Ltd Gaming apparatus and systems
US20060258424A1 (en) * 2003-01-24 2006-11-16 Unitab Limited Gaming systems
US20070060254A1 (en) * 2005-08-17 2007-03-15 Igt Gaming device and method providing a near miss insurance pool or fund
US7291068B2 (en) * 2000-05-03 2007-11-06 Aristocrat Technologies Australia Gaming machine with loyalty bonus
US7318774B2 (en) * 2000-05-03 2008-01-15 Aristocrat Technologies Austalia Pty. Ltd. Gaming machine-membership reward system
US20080076532A1 (en) * 2006-09-27 2008-03-27 Igt Server based gaming system having system triggered loyalty award sequences
US7465232B2 (en) * 2001-10-02 2008-12-16 Aruze Co., Ltd. Game server, game machine, and game control method
US20090131159A1 (en) * 2005-05-31 2009-05-21 Englman Allon G Adjustment of awards in progressive system based on wager
US7575517B2 (en) * 2004-12-15 2009-08-18 Gaming Enhancements, Inc. Techniques for generating random awards using a plurality of average values

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852576A (en) * 1972-03-29 1974-12-03 K Rudd Premium allocation device
US4283709A (en) * 1980-01-29 1981-08-11 Summit Systems, Inc. (Interscience Systems) Cash accounting and surveillance system for games
US4837728A (en) * 1984-01-25 1989-06-06 Igt Multiple progressive gaming system that freezes payouts at start of game
US4669731A (en) * 1985-01-11 1987-06-02 Kabushiki Kaisha Universal Slot machine which pays out upon predetermined number of consecutive lost games
US4624459A (en) * 1985-09-12 1986-11-25 Bally Manufacturing Corporation Gaming device having random multiple payouts
US4964638A (en) * 1988-05-16 1990-10-23 Kabushiki Kaisha Universal Control apparatus for game machines
US5083785A (en) * 1989-08-30 1992-01-28 Kabushiki Kaisha Universal Win control method and apparatus for game machines
US5178390A (en) * 1991-01-28 1993-01-12 Kabushiki Kaisha Universal Game machine
US5280909A (en) * 1992-02-06 1994-01-25 Mikohn, Inc. Gaming system with progressive jackpot
US5702303A (en) * 1992-03-10 1997-12-30 Kabushiki Kaisha Ace Denken Game machine having a playing display screen
US5770533A (en) * 1994-05-02 1998-06-23 Franchi; John Franco Open architecture casino operating system
US6254483B1 (en) * 1994-10-12 2001-07-03 Acres Gaming Incorporated Method and apparatus for controlling the cost of playing an electronic gaming device
US5820459A (en) * 1994-10-12 1998-10-13 Acres Gaming, Inc. Method and apparatus for operating networked gaming devices
US5836817A (en) * 1994-10-12 1998-11-17 Acres Gaming, Inc. Method and apparatus for operating networked gaming devices
US6257981B1 (en) * 1994-10-12 2001-07-10 Acres Gaming Incorporated Computer network for controlling and monitoring gaming devices
US5564700A (en) * 1995-02-10 1996-10-15 Trump Taj Mahal Associates Proportional payout method for progressive linked gaming machines
US5611730A (en) * 1995-04-25 1997-03-18 Casino Data Systems Progressive gaming system tailored for use in multiple remote sites: apparatus and method
US5639088A (en) * 1995-08-16 1997-06-17 United Games, Inc. Multiple events award system
US5695402A (en) * 1996-04-10 1997-12-09 Stupak; Bob Game of chance
US6003013A (en) * 1996-05-24 1999-12-14 Harrah's Operating Company, Inc. Customer worth differentiation by selective activation of physical instrumentalities within the casino
US6089980A (en) * 1996-06-18 2000-07-18 Atronic Casino Technology Distribution Gmbh Method for the determination of a shared jackpot winning
US5890963A (en) * 1996-09-30 1999-04-06 Yen; Wei System and method for maintaining continuous and progressive game play in a computer network
US5910048A (en) * 1996-11-29 1999-06-08 Feinberg; Isadore Loss limit method for slot machines
US6244957B1 (en) * 1996-12-30 2001-06-12 Walker Digital, Llc Automated play gaming device
US6001016A (en) * 1996-12-31 1999-12-14 Walker Asset Management Limited Partnership Remote gaming device
US6869362B2 (en) * 1997-02-21 2005-03-22 Walker Digital, Llc Method and apparatus for providing insurance policies for gambling losses
US6254482B1 (en) * 1997-02-21 2001-07-03 Walker Digital, Llc System and method for generating and executing insurance policies for gambling losses
US6234896B1 (en) * 1997-04-11 2001-05-22 Walker Digital, Llc Slot driven video story
US6224482B1 (en) * 1997-09-10 2001-05-01 Aristocrat Technologies Australia Pty Ltd Slot machine game-progressive jackpot with decrementing jackpot
US6213877B1 (en) * 1997-10-08 2001-04-10 Walker Digital, Llc Gaming method and apparatus having a proportional payout
US6932704B2 (en) * 1998-03-31 2005-08-23 Walker Digital, Llc Method and apparatus for operating a gaming device to dispense a specified amount
US6273820B1 (en) * 1999-02-04 2001-08-14 Haste, Iii Thomas E. Virtual player gaming method
US6270409B1 (en) * 1999-02-09 2001-08-07 Brian Shuster Method and apparatus for gaming
US6695697B1 (en) * 1999-09-10 2004-02-24 Aruze Co., Ltd. Game device and medium memorizing a game program and readable by a computer for support players′ technical intervention without changing fundemental specification of the game device
US6270077B1 (en) * 1999-12-20 2001-08-07 Gene D. Cohen Non-competitive memory enhancement game
US6932707B2 (en) * 2000-02-24 2005-08-23 Labtronix Concept Inc. Method of choosing and distributing enhanced odds
US7291068B2 (en) * 2000-05-03 2007-11-06 Aristocrat Technologies Australia Gaming machine with loyalty bonus
US7318774B2 (en) * 2000-05-03 2008-01-15 Aristocrat Technologies Austalia Pty. Ltd. Gaming machine-membership reward system
US7465232B2 (en) * 2001-10-02 2008-12-16 Aruze Co., Ltd. Game server, game machine, and game control method
US20030069073A1 (en) * 2001-10-05 2003-04-10 Kazuo Okada Game server, game control method, and game machine
US20060258424A1 (en) * 2003-01-24 2006-11-16 Unitab Limited Gaming systems
US20060183530A1 (en) * 2003-10-17 2006-08-17 Dynamite Games Pty Ltd Gaming apparatus and systems
US7575517B2 (en) * 2004-12-15 2009-08-18 Gaming Enhancements, Inc. Techniques for generating random awards using a plurality of average values
US20090131159A1 (en) * 2005-05-31 2009-05-21 Englman Allon G Adjustment of awards in progressive system based on wager
US20070060254A1 (en) * 2005-08-17 2007-03-15 Igt Gaming device and method providing a near miss insurance pool or fund
US7585222B2 (en) * 2005-08-17 2009-09-08 Igt Gaming device and method providing a near miss insurance pool or fund
US20080076532A1 (en) * 2006-09-27 2008-03-27 Igt Server based gaming system having system triggered loyalty award sequences
US7674180B2 (en) * 2006-09-27 2010-03-09 Igt Server based gaming system having system triggered loyalty award sequences

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254868A1 (en) * 2007-04-13 2008-10-16 Aruze Corp. Gaming machine and control method of game
US20080254857A1 (en) * 2007-04-13 2008-10-16 Aruze Corp. Gaming machine and control method of game
US7976383B2 (en) * 2007-04-13 2011-07-12 Universal Entertainment Corporation Gaming machine and control method that accumulatively adds a fractional value
US7985135B2 (en) * 2007-04-13 2011-07-26 Universal Entertainment Corporation Gaming machine and control method that accumulatively adds a value less than one credit as a fractional value
US8337300B2 (en) 2008-10-31 2012-12-25 WMS Gaming. Inc. Controlling and rewarding wagering game skill
US20110212766A1 (en) * 2008-10-31 2011-09-01 Wms Gaming, Inc. Controlling and rewarding wagering game skill
US8282479B2 (en) 2011-02-04 2012-10-09 Video Gaming Technologies, Inc. Gaming machine with screen split and merge feature
US8657673B2 (en) 2011-02-04 2014-02-25 Video Gaming Technologies, Inc. Gaming machine with wager reallocation feature
US9257003B2 (en) 2011-02-04 2016-02-09 Video Gaming Technologies, Inc. Gaming machine with screen split and merge feature
US9361750B2 (en) 2011-02-04 2016-06-07 Video Gaming Technologies, Inc. Gaming machine with screen split and merge feature
US9361749B2 (en) 2011-02-04 2016-06-07 Video Gaming Technologies, Inc. Gaming machine with screen split and merge feature
US9430900B2 (en) 2012-09-25 2016-08-30 Igt Gaming system and method for providing a symbol matrix with a moveable symbol display window
US9852574B2 (en) 2012-09-25 2017-12-26 Igt Gaming system and method for providing a symbol matrix with a moveable symbol display window
US10102711B2 (en) 2012-09-25 2018-10-16 Igt Gaming system and method for providing a symbol matrix with a moveable symbol display window

Also Published As

Publication number Publication date
ZA200803082B (en) 2008-12-31
AU2008201026A1 (en) 2008-10-30
JP2008259827A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US8033907B2 (en) Slot machine and control method of game
US8292722B2 (en) Slot machine and control method of game
US8177623B2 (en) Slot machine and control method of game
US8083580B2 (en) Slot machine and control method of game
US8342936B2 (en) Slot machine and control method of game
US8083579B2 (en) Slot machine and control method of game
JPWO2007026396A1 (en) Game machine, game control method, and game system
US8371926B2 (en) Slot machine and control method of game
JPWO2007026402A1 (en) Game machine, game control method, and game system
US7985131B2 (en) Slot machine and control method of game
US8172664B2 (en) Slot machine and control method of game
US8142278B2 (en) Gaming machine with locking function and insurance feature
US7976383B2 (en) Gaming machine and control method that accumulatively adds a fractional value
US20080214275A1 (en) Slot machine and control method of game
US20080064473A1 (en) Slot machine and control method of game
US20080254867A1 (en) Gaming machine and control method of game
US7985135B2 (en) Gaming machine and control method that accumulatively adds a value less than one credit as a fractional value
US7972208B2 (en) Slot machine and control method of game
US20090233680A1 (en) Slot Machine Providing Return And Control Method Thereof
US20080254864A1 (en) Gaming machine and control method of game
US20090233679A1 (en) Slot Machine Providing Return And Control Method Thereof
US8062118B2 (en) Slot machine and control method of game
US8235802B2 (en) Slot machine with insurance function and control method thereof
JP2008023160A (en) Game machine, management server and game control method
US20080254865A1 (en) Gaming machine and control method of game

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARUZE CORP., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUJIMOTO, JUN;INAMURA, YUKINORI;REEL/FRAME:020819/0175

Effective date: 20080414

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION