US20080248796A1 - Wireless communication system having adaptive threshold for timing deviation measurement and method - Google Patents

Wireless communication system having adaptive threshold for timing deviation measurement and method Download PDF

Info

Publication number
US20080248796A1
US20080248796A1 US12/139,953 US13995308A US2008248796A1 US 20080248796 A1 US20080248796 A1 US 20080248796A1 US 13995308 A US13995308 A US 13995308A US 2008248796 A1 US2008248796 A1 US 2008248796A1
Authority
US
United States
Prior art keywords
midamble
received
wtru
burst
timing deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/139,953
Inventor
Hyun-Seok Oh
Kalpendu R. Pasad
John W. Haim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to US12/139,953 priority Critical patent/US20080248796A1/en
Publication of US20080248796A1 publication Critical patent/US20080248796A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to an apparatus and method of wireless communication where a determined received signal timing deviation is used to generate a timing advance for adjusting wireless transmit receive unit (WTRU) transmissions.
  • WTRU wireless transmit receive unit
  • Wireless communication systems are well known in the prior art.
  • the communication stations can be referred to as wireless transmit receive units (WTRUs) whether they are used by a single user or used to support communications with multiple users.
  • WTRUs wireless transmit receive units
  • base stations are referred to as Node Bs and a user communicates with a Node B via a User Equipment (UE).
  • UE User Equipment
  • a standard 3GPP system radio frame has a duration of ten milliseconds and is divided into multiple timeslots which are selectively allocated for transmission and reception of communication signals.
  • Transmissions from a Node B to UEs are commonly referred to as Downlink (DL) transmissions and transmissions from UEs to a Node B are commonly referred to as Uplink (UL) transmissions.
  • DL Downlink
  • UL Uplink
  • Timing deviation arises due to the fact that wireless communication signals are not instantaneous. Although traveling at the speed of light, there is a measurable amount of time between transmission of a signal and its reception. That time is directly related to the distance the signal travels and, for mobile users, that time will change as a mobile UE moves if the distance from the mobile UE to a Node B changes.
  • the travel time of communication signals needs to be taken into account in order for UL and DL communications to be maintained in designated timeslots and other time windows within system time frames.
  • a radio network is composed of one or more mobile terminals or user equipment (UE), and a UMTS Terrestrial Radio Access Network (UTRAN).
  • the UTRAN includes cells, Node-B's for handling the radio interface in a group of one or more cells, and Radio Network Controllers (RNCs) which controls activity within the radio network.
  • RNCs Radio Network Controllers
  • a connection through the UTRAN involves routing through one or more RNC, a Node-B, and a cell.
  • the role played by an RNC depends upon its relative position in the connection of a particular UE to the UTRAN. These roles are Serving RNC (SRNC), Drift RNC (DRNC), and Controlling RNC (CRNC).
  • SRNC Serving RNC
  • DRNC Drift RNC
  • CRNC Controlling RNC
  • the SRNC is in charge of the radio link between the UTRAN and the UE.
  • the software entities of the SRNC are found within the RNC through which the connection originated (or an RNC selected through the relocation process).
  • the software components within the DRNC provide radio resources to remote SRNC components.
  • the CRNC controls the logical resources of its Node-B's. When a connection is established, its SRNC and CRNC are co-located within the same RNC. In this case, no DRNC exists. If the connection is handed over from one (original) RNC to another (new), the SRNC functionality exists on the original RNC and the DRNC and CRNC functionalities exist on the new RNC. Additional architectural overview may be found in TS 25.401 V3.3.0.
  • a Time Division Duplex (TDD) radio frame is composed of intermixed UL and DL timeslots in which communication signals in the form of UL and DL bursts are transmitted.
  • a clocking signal for a cell is broadcast on a Synchronization Channel (SCH) by a Node B and defines the Node B's frame of reference with which downlink bursts are synchronized.
  • the UE derives its cell timing from the received SCH signal, delayed by the Node B-UE one-way propagation time. Nominally, with no Timing Advance applied, the UE begins an UL burst at the start of an UL timeslot with respect to its own frame of reference. If there were zero propagation delay, i.e. instantaneous communication, the start of that UL burst would be received at the Node B at exactly the start of the UL timeslot at the Node B's frame of reference. This is depicted in FIG. 1 a.
  • the UE derived clock which defines the UE's frame of reference, is delayed from the reference clock in the Node B by the one-way propagation time.
  • the burst is received at the Node B delayed by the Node B-UE two-way propagation time. This is depicted in FIG. 1 b from the Node B's frame of reference.
  • Timing Advance means that the UE sends its UL bursts earlier than it otherwise would, i.e., before the start of an UL timeslot in the UE's frame of reference, such that its UL bursts are received at the Node B within that time window in order to facilitate detection and minimize or eliminate signal degradation.
  • the UL and DL bursts are, at the Node B's frame of reference, as reflected in FIG. 1 a. Note that the system utilizes a guard period GP so that it can still function if the Timing Advance adjustment does not exactly compensate for the two-way propagation delay.
  • Timing Advance is conventionally determined with respect to the Node B's frame of reference based on the difference in timing of the received UL burst and the timeslot for which it is designated which is known as Timing Deviation. Because the propagation delay is a function of the travel time of the communication signal, it can change during the course of a communication. This is quite often the case with mobile UEs which change location while being used. Accordingly, after a timing advance is initially set it needs to be adjusted based on changes in Timing Deviation.
  • the amount of Timing Advance is determined in a Radio Network Controller (RNC) associated with the Node B and signaled to the UE.
  • RNC Radio Network Controller
  • the UE either 1) autonomously determines the amount of timing advance to use in the new cell or 2) applies no Timing Advance in the new cell if it temporarily utilizes a timeslot which, because of a larger than nominal guard period, is more tolerant of large timing deviations.
  • Timing Advance is preferably controlled by a closed loop between the UE, Node B and RNC, as follows:
  • Node B measures the Timing Deviation of the received bursts, generally once per frame.
  • Node B reports (non-zero) Timing Deviation measurements to the RNC.
  • the RNC initially determines or updates the amount of Timing Advance the UE shall apply.
  • the RNC signals via the Node B, to the UE the amount of Timing Advance to apply. Updates are sent only infrequently.
  • the UE applies the signaled amount of Timing Advance.
  • the timing deviation measurement is the estimate of the difference in time between when the start of an UL burst is received in a Node B and the start time of its timeslot. Because of multipath, the first chip of a burst can, in effect, arrive at multiple times, the time of the earliest received instance of the UL burst forms the basis of the timing deviation measurement.
  • the UE transmission timing is adjusted with timing advance.
  • the initial value for timing advance is preferably determined by measurement of the timing of a Physical Random Access Channel (PRACH).
  • PRACH Physical Random Access Channel
  • Communication transmission bursts in 3GPP systems are specified to contain an identifying midamble.
  • the midamble is used for channel estimation and from this the timing deviation measurement is conventionally made.
  • DCH Dedicated Channel
  • An uplink burst is “found” by a conventional Channel Estimation function using the Steiner algorithm which, in effect, searches within a time window for the midamble of the burst. Since the start of the midamble is a fixed distance from the start of the burst, detecting the start of the midamble is equivalent to detecting the start of the burst.
  • Multipath in the propagation channel causes numerous reflections or instances of the burst to be received with various delays; the midambles of these delayed reflections are also detected.
  • the position of the earliest instance of the burst within the detection window forms the basis of the Timing Deviation measurement.
  • Timing Deviation As both a measured quantity accurate to ⁇ 1 ⁇ 2 chip accuracy and resolution of 1 ⁇ 4 and a signaled quantity with resolution of four chips. To distinguish these, “Timing Delay” is sometimes used to refer to the measurement itself and then “Timing Deviation” is used to refer to the signaled measurement.
  • the concept of the detection window is derived from the Steiner channel estimation algorithm, a correlator-like algorithm which yields the time of a midamble detection.
  • the midamble shifts enable multiple UEs to transmit to a Node B in the same timeslot.
  • the Steiner algorithm process enables each UE's signals to be separated from the others based on the shift of that UE's midamble and allows for the Timing Delay measurement of any given received midamble, provided two UE's are not using the same midamble shift at the same time. Accordingly, the five examples illustrated could represent different instances of received signals from one particular UE depending on the two-way propagation distance and the amount of applied Timing Advance.
  • the midamble denoted ( 1 ) occurs before the correlator start and is only partially within the correlator extent, the midambles denoted ( 2 ) through ( 4 ) are fully within the correlator extent and the midamble denoted ( 5 ) is, as is midamble ( 1 ), only partially within the correlator extent.
  • FIG. 2 b depicts the superposition of the ideal channel responses to these five midambles.
  • Midamble ( 2 ) results in an impulse at the start of the channel estimation output
  • midamble ( 3 ) results in an impulse in the middle
  • midamble ( 4 ) results in an impulse at the end.
  • Midambles ( 1 ) and ( 5 ) being not fully contained within the correlator extent, yield nothing in the channel response of the proper midamble shift; dashed lines represent where they appear in the channel responses for adjacent midamble shifts.
  • FIG. 2 a illustrates that a midamble starting at any one of the first W (57) chip positions results in a corresponding impulse in the channel response, since the entire midamble is detected within the correlator extent. This is what is referred to as the detection window. Note that by utilizing this concept, the actual midamble length is not needed in the analysis of midamble arrival time and the window can be viewed as that time within which the start of the midamble occurs or arrives. Since the midamble is always a fixed number of chips from the start of the burst, by finding the start position, i.e. start time, of the midamble, the arrival time of the start of the burst becomes known. Although these two arrival times are clearly different, they are often referenced interchangeably due to their direct correlation with each other.
  • Detection windows are the time periods in which a single instance of the Steiner algorithm searches for midambles.
  • the Steiner algorithm searches for the start of K midambles (in actuality, K distinct circular shifts of one midamble code) within a given temporal detection window.
  • the size of the detection window is a function of burst type and whether extended midambles are enabled.
  • the “detection” window extent includes the midamble length, but for the purpose of Timing Deviation it is easier to think of the window as being that in which the start of the midamble may occur.
  • a midamble starting anywhere within the length-W detection window will yield, in the absence of noise and interference, a detection with energy proportional to the square of the length of the correlator (K ⁇ W) for its midamble shift k.
  • K ⁇ W the length of the correlator
  • a midamble start occurring (even one chip) before the start of the window or W or more chips after the start of the detection window will yield no detection of midamble shift k, and instead will result in a detection of midamble shift k ⁇ 1 or k+1.
  • the length of the Detection Windows is a function of midamble length and maximum number of midamble shifts.
  • 3GPP specified bursts are given in Table 1.
  • FIG. 3 shows the magnitude-square of a complex channel estimate for a k th one of the K shifted midambles output from the Steiner algorithm. Note that a practical implementation can use an approximation for the magnitude square, e.g. sum(max(1,Q)+min(1,Q)/2).
  • the horizontal axis of the X-Y plot represents the time duration of the detection window. Depicted are three impulses crossing a threshold based on some ambient noise level. These three impulses are detections of three instances of the k th midamble shift.
  • the distance of each impulse from the left edge of the window is the start time of the midamble shift instance with respect to the start time of the detection window, or the time offset; the height shows the energy attributed to the midamble shift.
  • the start of the window is not necessarily the start of the uplink timeslot.
  • the leftmost impulse is the earliest of the three and thus its time offset is used for the Timing Deviation measurement.
  • a later detection is received with more energy than the earliest one, whose time is tagged as t delay .
  • the relative energies of the detections are not a factor; that an energy measurement of the channel estimate crosses the threshold is sufficient.
  • the Node B receiver operates at 2 ⁇ oversampling, i.e., sampling at twice the chip rate or a sampling period of one-half chip.
  • the Channel Estimation function takes the half-chip sampled sequence and separates it into two (alternating even and odd) chip-rate sequences, each of which is separately input to an instance of the Steiner algorithm. This results in two length-K ⁇ W channel estimates per burst.
  • the two channel estimates can be interleaved to form one length-2KW, half-chip sampled channel estimate, and used to compute Timing Deviation.
  • the Timing Deviation can easily be determined to the desired accuracy and the precision of current 3GPP standards.
  • FIG. 5 shows an example of the magnitude-squared interleaved channel estimate for a propagation channel similar to that shown in FIG. 3 .
  • the distinct pulses, or clusters, in FIG. 5 represent multipath reflections that are many chips apart.
  • Standard propagation models currently used by Working Group 4 (WAG) generally have multipath reflections at single-chip distances. In these cases, the response is the coherent sum of partially overlapped pulses. An example of this is depicted as the response in FIG. 6 , in which the individual pulses cannot be resolved.
  • receiver diversity is used in the Node B, there are, in effect, two instances of the receiver shown in FIG. 4 .
  • the simplest scheme for measuring timing deviation given in a diversity receiver is to simply employ two instances of the algorithms for each of the two receivers and choose the earlier measurement to report as timing deviation.
  • Measuring timing offset using the interleaved channel response requires identifying the earliest midamble detection, noting its time offset and, if necessary, refining the measurement to the required precision. When these steps have been completed, the final Timing Deviation measurement is formed.
  • the first step in measuring time offset from the interleaved channel estimate is identical to that in the simplified (non-interleaved) example described above, e.g., find the earliest midamble shift instance above the threshold and note its timing offset. Once found, it is tagged as t delay . This is depicted in FIG. 7 . To avoid applying too much Timing Advance, the measurement is preferably rounded-down.
  • the full range of the Timing Deviation measurement is ⁇ 256 chips as set forth in TS25.427 V4.4.0 sect 6.3.3.7 and TS 25.435 V4.4.0 sect 6.2.7.6.
  • Negative Timing Deviation means that a burst is being received before the start of the timeslot. This occurs when too much Timing Advance is applied by a UE for UL bursts.
  • the detection window must start before the start of the timeslot, or an additional search must be performed before the time of the search which begins at the start of the timeslot.
  • Timing Deviation measurement assumes a single timing offset measurement from a single channel estimate. In 3GPP systems, however, there are several cases in which there are multiple opportunities to measure timing offset which must yield one Timing Deviation measurement.
  • One value of Timing Deviation for dedicated channels (DCHs) of one connection is reported once per radio frame per TS25.427 V4.4.0 sect 5.6, but there are many measurement opportunities of timing delay per radio frame: the UE can, theoretically, transmit one or two midambles per UL timeslot in up to 13 UL timeslots per frame, or 26 such opportunities.
  • DCHs dedicated channels
  • the threshold depicted in FIG. 5 and FIG. 6 plays the crucial role for measuring the timing deviation.
  • the Channel Estimation Post-Processing function detects midambles using a CFAR-type threshold. Conventionally this threshold is based on an interference noise estimate.
  • the working assumption for Post Processing is that the nominal value of the threshold should correspond to a 10 ⁇ 2 False Alarm rate (FAR).
  • FAR False Alarm rate
  • a 10 ⁇ 2 FAR threshold means that, on average, approximately one out of every two to four (depending on W) channel estimates will contain one false detection of a midamble along with however many true detections there are. However, a false detection will only result in an incorrect timing deviation measurement if it occurs before the true first detection; this reduces the rate of incorrect timing deviation reports. Reducing the distance between the Timing Advance setpoint and the left edge of the window, further reduces that rate. An intuitive guess is that the 10 ⁇ 2 FAR rate is probably acceptable.
  • each path yields an RRC shaped response. If there is a true path, then two out of three consecutive samples should be above the threshold. The sample location that contains the maximum energy out of three samples is declared as a true timing delay.
  • An apparatus and method of wireless communication determines received signal timing deviation which is used to generate a timing advance for adjusting User Equipment (UE) transmissions.
  • An adaptive threshold for measuring the timing deviation is set based on the energy level of received UE signals. UE signal samples which exceed the threshold are evaluated to determine timing deviation.
  • the UEs transmit signals in bursts designated for specific timeslots of system time frames as specified in 3GPP standards and the energy level of at least a portion of a received UE burst is computed to determine the energy level used to set the Timing Deviation threshold.
  • the preferred UE bursts include a midamble and the energy level of the midamble of a received UE burst, which includes all received multipath instances, is computed to determine the energy level used to set the threshold.
  • the system has a receiver for receiving UE transmissions and associated processing circuitry which processes received UE signals and sets a threshold for measuring timing deviation of a received UE signal based on the energy level of the received UE signal and compares signal samples which exceed the threshold to determine timing deviation.
  • the processing circuitry is configured to define a reception window based on the type of UE burst received and a timeslot designated for reception, to sample UE burst midambles received within the defined window, to perform channel estimation to determine midamble channel impulse responses, to compute the energy level of the midamble of a received UE burst based on a selected combination of elements of the midamble channel impulse response, to determine a threshold based on the midamble channel impulse response, and to apply that threshold to measure the timing deviation.
  • the preferred processing circuitry is configured to sample UE burst midambles at twice the chip rate of the UE bursts, perform channel estimation on even and odd samples of received midambles to produce oversampled midamble channel impulse responses, compute the energy level of the midamble of a received UE burst based on a summation of the squares, i.e. magnitude square, of the oversampled midamble channel impulse responses and determine timing deviation based on oversampled midamble channel impulse responses whose square exceeds the threshold.
  • the preferred processing circuitry is configured to sample the k received UE burst midambles at twice the chip rate, perform channel estimation using the Steiner algorithm on even and odd samples of received midambles to produce oversampled midamble channel impulse responses for each of the k received midambles, compute the energy level of the midamble of at least one of the k received UE bursts based on a summation of the squares of the oversampled midamble channel impulse responses for that burst and determine timing deviation based on the oversampled midamble channel impulse responses for that burst whose squares exceeds the threshold.
  • the processing circuitry is preferably configured to set the threshold at a value equal to the computed energy level multiplied by a
  • the processing circuitry is also preferably configured to use the determined timing deviation to generate a timing advance signal.
  • the preferred system includes a transmitter which transmits the generated timing advance signal to the UE which transmitted the burst for which the timing deviation was determined.
  • the processing circuitry is embodied in a Radio Network Controller (RNC) and the receiver and transmitter are embodied in a Node B of a Third Generation Partnership Project (3GPP) system. After transmitting the generated timing advance signal to the UE which transmitted the burst for which the timing deviation was determined, that UE uses the received timing advance signal to adjust the timing of the UE's transmissions.
  • RNC Radio Network Controller
  • 3GPP Third Generation Partnership Project
  • FIG. 1 a is a schematic diagram of uplink (UL) and downlink (DL) communication bursts within consecutive time slots at a base station having zero propagation delay or a perfect timing advance.
  • FIG. 1 b is a schematic diagram of uplink (UL) and downlink (DL) communication bursts within consecutive time slots at a base station having a propagation delay without timing advance applied.
  • FIGS. 2 a and 2b are graphic illustrations representing five transmission burst midambles with respect to a detection window of a correlator extent.
  • FIG. 3 is a graphic illustration of a joint channel response.
  • FIG. 4 is a schematic diagram of a communication system which receives UL bursts and computes timing deviation.
  • FIG. 5 is a graphic illustration of an interleaved joint channel response similar to FIG. 3 .
  • FIG. 6 is a graphic illustration of a realistic channel response for a WG4 propagation channel.
  • FIG. 7 is a graphic illustration of the determination of timing deviation based on the joint channel response of FIG. 6 .
  • FIG. 8 is a schematic illustration of multiple UEs communicating with a Node B of a 3GPP system showing two different cell sizes.
  • a timing deviation measurement is an estimate of the difference in time between when the start of an UL burst is received in a Node B and the start time of its timeslot.
  • Uplink bursts are found by channel estimation preferably the Steiner algorithm where multiple bursts having different midamble shifts are received.
  • a simplified example of determining the timing deviation measurement is to find the earliest path of the channel impulse response above a predetermined threshold. Where 2 ⁇ oversampling is employed, a single instance of a midamble in a magnitude-squared interleaved channel impulse response appears as a root-raised cosine (RRC) pulse shape.
  • RRC root-raised cosine
  • the desired accuracy of the timing deviation measurement is ⁇ 1 ⁇ 2 chip accuracy and granularity is 1 ⁇ 4 chip.
  • a preferred procedure of the timing deviation measurement where 2 ⁇ oversampling is used in a 3GPP system is as follows:
  • Step 1 For UL bursts received in a selected timeslot, compute the midamble energy of each, i.e.,
  • h i (k) represents the oversampled channel impulse response of the kth midamble of up to K bursts, each having a different midamble shift, where K is the number of available midamble shifts for the type of UL burst, where each h term has been subjected to a threshold to eliminate likely noise-only terms.
  • Step 3 Find the maximum among three samples and its time index. This time index is declared as the earliest path in this channel impulse response of the kth midamble.
  • the constant c is preferably set based on conducting simulations.
  • c is preferably between 0.01 and 0.05 with 0.025 or 2.5% of midamble energy being a presently preferred value. Simulations may be used to optimize the value of c, but as reflected below, the method performs well with different values of c in the given range.
  • the timing deviation is measured for the kth midamble.
  • the novel threshold determination which is adaptively set based on the determined midamble energy provides a reliable method of timing deviation measurement which is readily implemented in an RNC processor in conjunction with processing channel estimation as illustrated in FIG. 4 .
  • the processor is configured to compute timing deviation in a conventional manner, but to first make the additional computations set forth in Steps 1 and 2 above to determine the threshold used in the timing deviation computation.
  • a UE has a multiple midamble, there are several methods to measure the timing deviation: (1) Coherently combine the multiple midambles and then proceed with timing deviation measurement, (2) Select one midamble and proceed with timing deviation measurement and (3) Proceed with timing deviation measurement for each midamble and select earliest. Similarly, in the receiver diversity the above mentioned methods can be applied. In all cases the adaptive threshold procedure can be employed.

Abstract

Apparatus and method of wireless communication that determines received signal timing deviation which is used to generate a timing advance for adjusting wireless transmit receive unit (WTRU) transmissions. An adaptive threshold for measuring the timing deviation is set based on the energy level of received WTRU signals. WTRU signal samples which exceed the threshold are evaluated to determine timing deviation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/000,304, filed Nov. 30, 2004, now U.S. Pat. No. 7,388,933, which is a continuation of U.S. patent application Ser. No. 10/209,398, filed Jul. 30, 2002, now U.S. Pat. No.6,873,662, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/357,033, filed Feb. 14, 2002, all of which are incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates to an apparatus and method of wireless communication where a determined received signal timing deviation is used to generate a timing advance for adjusting wireless transmit receive unit (WTRU) transmissions.
  • BACKGROUND
  • Wireless communication systems are well known in the prior art. In state-of-the-art multi-user systems, it is common to have multiple users communicate with a common base station where communication signals are transmitted in selectively defined timeslots of system time frames, or radio frames. Generically, the communication stations can be referred to as wireless transmit receive units (WTRUs) whether they are used by a single user or used to support communications with multiple users. In the systems specified in the Third Generation Partnership Project (3GPP), base stations are referred to as Node Bs and a user communicates with a Node B via a User Equipment (UE). A standard 3GPP system radio frame has a duration of ten milliseconds and is divided into multiple timeslots which are selectively allocated for transmission and reception of communication signals. Transmissions from a Node B to UEs are commonly referred to as Downlink (DL) transmissions and transmissions from UEs to a Node B are commonly referred to as Uplink (UL) transmissions.
  • Timing deviation arises due to the fact that wireless communication signals are not instantaneous. Although traveling at the speed of light, there is a measurable amount of time between transmission of a signal and its reception. That time is directly related to the distance the signal travels and, for mobile users, that time will change as a mobile UE moves if the distance from the mobile UE to a Node B changes. The travel time of communication signals needs to be taken into account in order for UL and DL communications to be maintained in designated timeslots and other time windows within system time frames.
  • As currently specified for 3GPP systems, a radio network is composed of one or more mobile terminals or user equipment (UE), and a UMTS Terrestrial Radio Access Network (UTRAN). The UTRAN includes cells, Node-B's for handling the radio interface in a group of one or more cells, and Radio Network Controllers (RNCs) which controls activity within the radio network. A connection through the UTRAN involves routing through one or more RNC, a Node-B, and a cell. The role played by an RNC depends upon its relative position in the connection of a particular UE to the UTRAN. These roles are Serving RNC (SRNC), Drift RNC (DRNC), and Controlling RNC (CRNC). The SRNC is in charge of the radio link between the UTRAN and the UE. The software entities of the SRNC are found within the RNC through which the connection originated (or an RNC selected through the relocation process). The software components within the DRNC provide radio resources to remote SRNC components. The CRNC controls the logical resources of its Node-B's. When a connection is established, its SRNC and CRNC are co-located within the same RNC. In this case, no DRNC exists. If the connection is handed over from one (original) RNC to another (new), the SRNC functionality exists on the original RNC and the DRNC and CRNC functionalities exist on the new RNC. Additional architectural overview may be found in TS 25.401 V3.3.0.
  • In a 3GPP system, a Time Division Duplex (TDD) radio frame is composed of intermixed UL and DL timeslots in which communication signals in the form of UL and DL bursts are transmitted. A clocking signal for a cell is broadcast on a Synchronization Channel (SCH) by a Node B and defines the Node B's frame of reference with which downlink bursts are synchronized. The UE derives its cell timing from the received SCH signal, delayed by the Node B-UE one-way propagation time. Nominally, with no Timing Advance applied, the UE begins an UL burst at the start of an UL timeslot with respect to its own frame of reference. If there were zero propagation delay, i.e. instantaneous communication, the start of that UL burst would be received at the Node B at exactly the start of the UL timeslot at the Node B's frame of reference. This is depicted in FIG. 1 a.
  • Since it does in fact takes some time for the transmitted signals to travel to the receiver, there is a propagation delay. Accordingly, the UE derived clock, which defines the UE's frame of reference, is delayed from the reference clock in the Node B by the one-way propagation time. In the nominal case of the UE starting an UL burst at the start of an UL timeslot in its own frame of reference, which is already delayed with respect to the Node B's frame of reference, the burst is received at the Node B delayed by the Node B-UE two-way propagation time. This is depicted in FIG. 1 b from the Node B's frame of reference.
  • If the UL bursts shown in FIG. 1 b arrive at the Node B beyond some time window, they may not be detected; if they are detected, they may be received with degraded quality. Timing Advance means that the UE sends its UL bursts earlier than it otherwise would, i.e., before the start of an UL timeslot in the UE's frame of reference, such that its UL bursts are received at the Node B within that time window in order to facilitate detection and minimize or eliminate signal degradation. With a Timing Advance adjustment that exactly compensates for the two-way propogation delay, the UL and DL bursts are, at the Node B's frame of reference, as reflected in FIG. 1 a. Note that the system utilizes a guard period GP so that it can still function if the Timing Advance adjustment does not exactly compensate for the two-way propagation delay.
  • Timing Advance is conventionally determined with respect to the Node B's frame of reference based on the difference in timing of the received UL burst and the timeslot for which it is designated which is known as Timing Deviation. Because the propagation delay is a function of the travel time of the communication signal, it can change during the course of a communication. This is quite often the case with mobile UEs which change location while being used. Accordingly, after a timing advance is initially set it needs to be adjusted based on changes in Timing Deviation.
  • Nominally, the amount of Timing Advance is determined in a Radio Network Controller (RNC) associated with the Node B and signaled to the UE. When handing over to a new cell which supports Timing Advance, the UE either 1) autonomously determines the amount of timing advance to use in the new cell or 2) applies no Timing Advance in the new cell if it temporarily utilizes a timeslot which, because of a larger than nominal guard period, is more tolerant of large timing deviations. Once handover is complete, the nominal procedure applies. For the non-handover case, Timing Advance is preferably controlled by a closed loop between the UE, Node B and RNC, as follows:
  • Uplink bursts are received at Node B.
  • Node B measures the Timing Deviation of the received bursts, generally once per frame.
  • Node B reports (non-zero) Timing Deviation measurements to the RNC.
  • From the Timing Deviation measurements, the RNC initially determines or updates the amount of Timing Advance the UE shall apply.
  • The RNC signals, via the Node B, to the UE the amount of Timing Advance to apply. Updates are sent only infrequently.
  • The UE applies the signaled amount of Timing Advance.
  • In a 3GPP system, the timing deviation measurement is the estimate of the difference in time between when the start of an UL burst is received in a Node B and the start time of its timeslot. Because of multipath, the first chip of a burst can, in effect, arrive at multiple times, the time of the earliest received instance of the UL burst forms the basis of the timing deviation measurement. The UE transmission timing is adjusted with timing advance. The initial value for timing advance is preferably determined by measurement of the timing of a Physical Random Access Channel (PRACH).
  • Communication transmission bursts in 3GPP systems are specified to contain an identifying midamble. The midamble is used for channel estimation and from this the timing deviation measurement is conventionally made. Usually there is one timing deviation measurement per UE per frame. Thus, for a Dedicated Channel (DCH) having multiple midambles per frame, either one channel response must be selected for the timing deviation measurement or several or all channel responses integrated and a single timing deviation measurement derived.
  • An uplink burst is “found” by a conventional Channel Estimation function using the Steiner algorithm which, in effect, searches within a time window for the midamble of the burst. Since the start of the midamble is a fixed distance from the start of the burst, detecting the start of the midamble is equivalent to detecting the start of the burst.
  • Multipath in the propagation channel causes numerous reflections or instances of the burst to be received with various delays; the midambles of these delayed reflections are also detected. The position of the earliest instance of the burst within the detection window forms the basis of the Timing Deviation measurement.
  • The current 3GPP standard inconsistently refers to “Timing Deviation” as both a measured quantity accurate to ±½ chip accuracy and resolution of ¼ and a signaled quantity with resolution of four chips. To distinguish these, “Timing Delay” is sometimes used to refer to the measurement itself and then “Timing Deviation” is used to refer to the signaled measurement.
  • The concept of the detection window is derived from the Steiner channel estimation algorithm, a correlator-like algorithm which yields the time of a midamble detection. FIG. 2 shows five examples of midambles at increasing points in time with respect to the correlator extent. Shown is the parameter notation of the 3GPP standard and numerical examples of these parameters in parentheses for the case of a 3GPP Burst Type 1 which permits eight midamble shifts, KCELL=8. The midamble shifts enable multiple UEs to transmit to a Node B in the same timeslot. The Steiner algorithm process enables each UE's signals to be separated from the others based on the shift of that UE's midamble and allows for the Timing Delay measurement of any given received midamble, provided two UE's are not using the same midamble shift at the same time. Accordingly, the five examples illustrated could represent different instances of received signals from one particular UE depending on the two-way propagation distance and the amount of applied Timing Advance.
  • In FIG. 2 a, the midamble denoted (1) occurs before the correlator start and is only partially within the correlator extent, the midambles denoted (2) through (4) are fully within the correlator extent and the midamble denoted (5) is, as is midamble (1), only partially within the correlator extent. FIG. 2 b depicts the superposition of the ideal channel responses to these five midambles. Midamble (2) results in an impulse at the start of the channel estimation output, midamble (3) results in an impulse in the middle and midamble (4) results in an impulse at the end. Midambles (1) and (5), being not fully contained within the correlator extent, yield nothing in the channel response of the proper midamble shift; dashed lines represent where they appear in the channel responses for adjacent midamble shifts.
  • FIG. 2 a illustrates that a midamble starting at any one of the first W (57) chip positions results in a corresponding impulse in the channel response, since the entire midamble is detected within the correlator extent. This is what is referred to as the detection window. Note that by utilizing this concept, the actual midamble length is not needed in the analysis of midamble arrival time and the window can be viewed as that time within which the start of the midamble occurs or arrives. Since the midamble is always a fixed number of chips from the start of the burst, by finding the start position, i.e. start time, of the midamble, the arrival time of the start of the burst becomes known. Although these two arrival times are clearly different, they are often referenced interchangeably due to their direct correlation with each other.
  • Detection windows are the time periods in which a single instance of the Steiner algorithm searches for midambles. The Steiner algorithm searches for the start of K midambles (in actuality, K distinct circular shifts of one midamble code) within a given temporal detection window. The size of the detection window is a function of burst type and whether extended midambles are enabled. Literally, the “detection” window extent includes the midamble length, but for the purpose of Timing Deviation it is easier to think of the window as being that in which the start of the midamble may occur.
  • A midamble starting anywhere within the length-W detection window will yield, in the absence of noise and interference, a detection with energy proportional to the square of the length of the correlator (K×W) for its midamble shift k. A midamble start occurring (even one chip) before the start of the window or W or more chips after the start of the detection window will yield no detection of midamble shift k, and instead will result in a detection of midamble shift k−1 or k+1.
  • The length of the Detection Windows is a function of midamble length and maximum number of midamble shifts. Various examples for 3GPP specified bursts are given in Table 1.
  • TABLE 1
    Detection Window and Midamble Lengths
    Maximum Channel Response
    Number of Midamble and Detection
    Burst Midamble Length, Lm, Window Length, W,
    Type Shifts, K chips chips
    1 8 512 57
    1 16 512 28 or 29
    2 3 256 64
    2 6 256 32
    3 4 512 114
  • Note that for the case of Burst Type 1, K=16, the Detection Window size is given as “28/29.” This is because of an anomaly of the midamble shift allocation scheme inherent to the Steiner algorithm, in which the first eight midamble shifts (k=1 through 8) have channel responses of 29 chips and the second eight (k=9 through 16) have channel responses of 28 chips.
  • A simplified example of determining the Timing Delay measurement from the channel estimate is given in FIG. 3 which shows the magnitude-square of a complex channel estimate for a kth one of the K shifted midambles output from the Steiner algorithm. Note that a practical implementation can use an approximation for the magnitude square, e.g. sum(max(1,Q)+min(1,Q)/2). The horizontal axis of the X-Y plot represents the time duration of the detection window. Depicted are three impulses crossing a threshold based on some ambient noise level. These three impulses are detections of three instances of the kth midamble shift.
  • The distance of each impulse from the left edge of the window is the start time of the midamble shift instance with respect to the start time of the detection window, or the time offset; the height shows the energy attributed to the midamble shift. Note that the start of the window is not necessarily the start of the uplink timeslot. The leftmost impulse is the earliest of the three and thus its time offset is used for the Timing Deviation measurement.
  • In the example shown in FIG. 3, a later detection is received with more energy than the earliest one, whose time is tagged as tdelay. The relative energies of the detections are not a factor; that an energy measurement of the channel estimate crosses the threshold is sufficient.
  • Preferably, the Node B receiver operates at 2× oversampling, i.e., sampling at twice the chip rate or a sampling period of one-half chip. The Channel Estimation function takes the half-chip sampled sequence and separates it into two (alternating even and odd) chip-rate sequences, each of which is separately input to an instance of the Steiner algorithm. This results in two length-K×W channel estimates per burst. Conceptually, i.e., not necessarily physically, the two channel estimates can be interleaved to form one length-2KW, half-chip sampled channel estimate, and used to compute Timing Deviation. Using the half-chip channel estimate, the Timing Deviation can easily be determined to the desired accuracy and the precision of current 3GPP standards. These functions are depicted in FIG. 4.
  • Because of the 2× oversampling, a single instance of a midamble in the magnitude-squared interleaved channel estimate will appear not as a single line as depicted in FIG. 3, but as a pulse with some time extent whose shape is related to the root raised cosine chip pulse. FIG. 5 shows an example of the magnitude-squared interleaved channel estimate for a propagation channel similar to that shown in FIG. 3. As in FIG. 3, the distinct pulses, or clusters, in FIG. 5 represent multipath reflections that are many chips apart. Standard propagation models currently used by Working Group 4 (WAG) generally have multipath reflections at single-chip distances. In these cases, the response is the coherent sum of partially overlapped pulses. An example of this is depicted as the response in FIG. 6, in which the individual pulses cannot be resolved.
  • If receiver diversity is used in the Node B, there are, in effect, two instances of the receiver shown in FIG. 4. The simplest scheme for measuring timing deviation given in a diversity receiver is to simply employ two instances of the algorithms for each of the two receivers and choose the earlier measurement to report as timing deviation.
  • Measuring timing offset using the interleaved channel response requires identifying the earliest midamble detection, noting its time offset and, if necessary, refining the measurement to the required precision. When these steps have been completed, the final Timing Deviation measurement is formed.
  • The first step in measuring time offset from the interleaved channel estimate is identical to that in the simplified (non-interleaved) example described above, e.g., find the earliest midamble shift instance above the threshold and note its timing offset. Once found, it is tagged as tdelay. This is depicted in FIG. 7. To avoid applying too much Timing Advance, the measurement is preferably rounded-down.
  • In 3GPP systems, the full range of the Timing Deviation measurement is ±256 chips as set forth in TS25.427 V4.4.0 sect 6.3.3.7 and TS 25.435 V4.4.0 sect 6.2.7.6. The possible “negative” value and the extent significantly exceeds the width of the largest detection window, which is 64 chips. Negative Timing Deviation means that a burst is being received before the start of the timeslot. This occurs when too much Timing Advance is applied by a UE for UL bursts. To measure negative Timing Deviation, either the detection window must start before the start of the timeslot, or an additional search must be performed before the time of the search which begins at the start of the timeslot.
  • The above description of the Timing Deviation measurement assumes a single timing offset measurement from a single channel estimate. In 3GPP systems, however, there are several cases in which there are multiple opportunities to measure timing offset which must yield one Timing Deviation measurement. One value of Timing Deviation for dedicated channels (DCHs) of one connection is reported once per radio frame per TS25.427 V4.4.0 sect 5.6, but there are many measurement opportunities of timing delay per radio frame: the UE can, theoretically, transmit one or two midambles per UL timeslot in up to 13 UL timeslots per frame, or 26 such opportunities. There are several possible schemes for creating one Timing Deviation measurement from the possibly many opportunities:
  • 1. Choose just one of the many opportunities.
  • 2. Make the up to 26 independent measurements of timing delay and combine them with some function, possibly picking the minimum or the average value.
  • 3. For two midambles per timeslot, coherently combine the two channel estimates and make one measurement of timing delay, and choose the minimum timing delay for the up to 13 UL timeslots, as in 1) above
  • 4. Coherently combine the up to 26 channel estimates and make a single measurement of timing delay.
  • Performance of the schemes can be determined by simulation study, although experience suggests that coherent combination is the preferred scheme.
  • The threshold depicted in FIG. 5 and FIG. 6 plays the crucial role for measuring the timing deviation. The Channel Estimation Post-Processing function detects midambles using a CFAR-type threshold. Conventionally this threshold is based on an interference noise estimate. The working assumption for Post Processing is that the nominal value of the threshold should correspond to a 10−2 False Alarm rate (FAR). However, it is not clear that the 10−2 FAR threshold value allows the Timing Deviation algorithm to meet the “90% of the time” accuracy requirement specified in TS 25.123. V4.4.0 sect 9 for the Timing Deviation measurement.
  • A 10−2 FAR threshold means that, on average, approximately one out of every two to four (depending on W) channel estimates will contain one false detection of a midamble along with however many true detections there are. However, a false detection will only result in an incorrect timing deviation measurement if it occurs before the true first detection; this reduces the rate of incorrect timing deviation reports. Reducing the distance between the Timing Advance setpoint and the left edge of the window, further reduces that rate. An intuitive guess is that the 10−2 FAR rate is probably acceptable.
  • Applicants' have discovered that a variable threshold which is set depending on the channel energy improves the detection performance significantly. In the oversampled case, each path yields an RRC shaped response. If there is a true path, then two out of three consecutive samples should be above the threshold. The sample location that contains the maximum energy out of three samples is declared as a true timing delay.
  • SUMMARY
  • An apparatus and method of wireless communication determines received signal timing deviation which is used to generate a timing advance for adjusting User Equipment (UE) transmissions. An adaptive threshold for measuring the timing deviation is set based on the energy level of received UE signals. UE signal samples which exceed the threshold are evaluated to determine timing deviation.
  • Preferably, the UEs transmit signals in bursts designated for specific timeslots of system time frames as specified in 3GPP standards and the energy level of at least a portion of a received UE burst is computed to determine the energy level used to set the Timing Deviation threshold. Specifically, the preferred UE bursts include a midamble and the energy level of the midamble of a received UE burst, which includes all received multipath instances, is computed to determine the energy level used to set the threshold.
  • The system has a receiver for receiving UE transmissions and associated processing circuitry which processes received UE signals and sets a threshold for measuring timing deviation of a received UE signal based on the energy level of the received UE signal and compares signal samples which exceed the threshold to determine timing deviation. Preferably, the processing circuitry is configured to define a reception window based on the type of UE burst received and a timeslot designated for reception, to sample UE burst midambles received within the defined window, to perform channel estimation to determine midamble channel impulse responses, to compute the energy level of the midamble of a received UE burst based on a selected combination of elements of the midamble channel impulse response, to determine a threshold based on the midamble channel impulse response, and to apply that threshold to measure the timing deviation.
  • Specifically, the preferred processing circuitry is configured to sample UE burst midambles at twice the chip rate of the UE bursts, perform channel estimation on even and odd samples of received midambles to produce oversampled midamble channel impulse responses, compute the energy level of the midamble of a received UE burst based on a summation of the squares, i.e. magnitude square, of the oversampled midamble channel impulse responses and determine timing deviation based on oversampled midamble channel impulse responses whose square exceeds the threshold. Where the UE bursts have a midamble sequence of one of K shifts of a predetermined sequence, a number k, which is ≦K, of UE bursts are received within the same designated timeslot, each having a different midamble shift, the preferred processing circuitry is configured to sample the k received UE burst midambles at twice the chip rate, perform channel estimation using the Steiner algorithm on even and odd samples of received midambles to produce oversampled midamble channel impulse responses for each of the k received midambles, compute the energy level of the midamble of at least one of the k received UE bursts based on a summation of the squares of the oversampled midamble channel impulse responses for that burst and determine timing deviation based on the oversampled midamble channel impulse responses for that burst whose squares exceeds the threshold. In such cases, the processing circuitry is preferably configured to set the threshold at a value equal to the computed energy level multiplied by a constant which is in the range of 0.01 and 0.05, preferably 0.025.
  • The processing circuitry is also preferably configured to use the determined timing deviation to generate a timing advance signal. The preferred system includes a transmitter which transmits the generated timing advance signal to the UE which transmitted the burst for which the timing deviation was determined. Preferably, the processing circuitry is embodied in a Radio Network Controller (RNC) and the receiver and transmitter are embodied in a Node B of a Third Generation Partnership Project (3GPP) system. After transmitting the generated timing advance signal to the UE which transmitted the burst for which the timing deviation was determined, that UE uses the received timing advance signal to adjust the timing of the UE's transmissions.
  • Other objects and advantages of the present invention will be apparent to those of ordinary skill in the art from the following description of a presently preferred embodiment.
  • BRIEF DESCRIPTION OF THE DRAWING(S)
  • FIG. 1 a is a schematic diagram of uplink (UL) and downlink (DL) communication bursts within consecutive time slots at a base station having zero propagation delay or a perfect timing advance.
  • FIG. 1 b is a schematic diagram of uplink (UL) and downlink (DL) communication bursts within consecutive time slots at a base station having a propagation delay without timing advance applied.
  • FIGS. 2 a and 2b are graphic illustrations representing five transmission burst midambles with respect to a detection window of a correlator extent.
  • FIG. 3 is a graphic illustration of a joint channel response.
  • FIG. 4 is a schematic diagram of a communication system which receives UL bursts and computes timing deviation.
  • FIG. 5 is a graphic illustration of an interleaved joint channel response similar to FIG. 3.
  • FIG. 6 is a graphic illustration of a realistic channel response for a WG4 propagation channel.
  • FIG. 7 is a graphic illustration of the determination of timing deviation based on the joint channel response of FIG. 6.
  • FIG. 8 is a schematic illustration of multiple UEs communicating with a Node B of a 3GPP system showing two different cell sizes.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • A timing deviation measurement is an estimate of the difference in time between when the start of an UL burst is received in a Node B and the start time of its timeslot. Uplink bursts are found by channel estimation preferably the Steiner algorithm where multiple bursts having different midamble shifts are received. A simplified example of determining the timing deviation measurement is to find the earliest path of the channel impulse response above a predetermined threshold. Where 2× oversampling is employed, a single instance of a midamble in a magnitude-squared interleaved channel impulse response appears as a root-raised cosine (RRC) pulse shape. In 3GPP, the desired accuracy of the timing deviation measurement is ±½ chip accuracy and granularity is ¼ chip.
  • In accordance with the present invention, a preferred procedure of the timing deviation measurement where 2× oversampling is used in a 3GPP system is as follows:
  • Step 1: For UL bursts received in a selected timeslot, compute the midamble energy of each, i.e.,
  • E k = i = 0 2 W - 1 h i ( k ) 2 ,
  • where hi (k) represents the oversampled channel impulse response of the kth midamble of up to K bursts, each having a different midamble shift, where K is the number of available midamble shifts for the type of UL burst, where each h term has been subjected to a threshold to eliminate likely noise-only terms.
  • Step 2: Set the threshold as η=cEk, where c is a selected constant, and find the earliest path window, i.e., if two out of three consecutive samples are above the threshold then these sample indices and their energy are stored.
  • Step 3: Find the maximum among three samples and its time index. This time index is declared as the earliest path in this channel impulse response of the kth midamble.
  • The constant c is preferably set based on conducting simulations. For the oversampling case above, c is preferably between 0.01 and 0.05 with 0.025 or 2.5% of midamble energy being a presently preferred value. Simulations may be used to optimize the value of c, but as reflected below, the method performs well with different values of c in the given range.
  • Using the above procedures, the timing deviation is measured for the kth midamble. The novel threshold determination which is adaptively set based on the determined midamble energy provides a reliable method of timing deviation measurement which is readily implemented in an RNC processor in conjunction with processing channel estimation as illustrated in FIG. 4. The processor is configured to compute timing deviation in a conventional manner, but to first make the additional computations set forth in Steps 1 and 2 above to determine the threshold used in the timing deviation computation.
  • A variety of simulations were conducted based on the above described preferred method. These included simulations using an Additive White Gaussian Noise (AWGN) channel and three different channels as specified by 3GPP Working Group 4 (WG4), known in the art as WG4 Case 1, WG4 Case 2 and WG4 Case 3 channels.
  • If a UE has a multiple midamble, there are several methods to measure the timing deviation: (1) Coherently combine the multiple midambles and then proceed with timing deviation measurement, (2) Select one midamble and proceed with timing deviation measurement and (3) Proceed with timing deviation measurement for each midamble and select earliest. Similarly, in the receiver diversity the above mentioned methods can be applied. In all cases the adaptive threshold procedure can be employed.
  • While the invention has been described in conjunction with a preferred embodiment based on current 3GPP specifications, it is readily adaptable by one of ordinary skill in the art beyond the specifically described embodiment.

Claims (21)

1. A wireless transmit receive unit (WTRU) configured to determine signal timing deviation comprising:
a receiver configured to receive wireless signals; and
processing circuitry configured to process signals received from another WTRU and to set a threshold for measuring timing deviation of the signals received from the other WTRU based on an energy level of the received signals;
said processing circuitry configured to compare signal samples which exceed the threshold to determine timing deviation; and
a transmitter configured to transmit to the other WTRU a signal to control the other WTRU's transmission timing based on the determined timing deviation.
2. The WTRU according to claim 1 wherein the receiver is configured to receive wireless signals from the other WTRU in bursts designated for specific timeslots of system time frames and the processing circuitry is configured to compute an energy level of at least a portion of a received burst to determine the energy level used to set the threshold.
3. The WTRU according to claim 2 wherein the receiver is configured to receive wireless signals from the other WTRU in bursts that include a midamble and the processing circuitry is configured to compute an energy level of the midamble of a received burst to determine the energy level used to set the threshold.
4. The WTRU according to claim 3 wherein the processing circuitry is configured to define a reception window based on a type of burst received and a timeslot designated for reception, to sample burst midambles received within the defined window, to perform channel estimation to determine midamble channel impulse responses, to compute the energy level of the midamble of a received burst based on a selected combination of the midamble channel impulse responses and to determine timing deviation based on a relationship of midamble channel impulse responses to the threshold.
5. The WTRU according to claim 4 further wherein the receiver is configured to receive wireless signals from the other WTRU in bursts that have a predefined chip rate and the processing circuitry is configured to sample burst midambles at twice the chip rate, to perform channel estimation on even and odd samples of received midambles to produce oversampled midamble channel impulse responses, to compute the energy level of the midamble of a received burst based on a summation of squares of non-noise oversampled midamble channel impulse responses and to determine timing deviation based on oversampled midamble channel impulse responses whose square exceeds the threshold.
6. The WTRU according to claim 4 wherein the receiver is configured to receive wireless signals from the other WTRU in bursts that have a predefined chip rate and a midamble sequence of one of K shifts of a predetermined sequence, a number k, which is ≦K, of bursts are received within the same designated timeslot, each having a different midamble shift, and the processing circuitry is configured to sample the k received burst midambles at twice the chip rate, to perform channel estimation using the Steiner algorithm on even and odd samples of received midambles to produce oversampled midamble channel impulse responses for each of the k received midambles, to compute the energy level of the midamble of at least one of the k received bursts based on a summation of squares of oversampled midamble channel impulse responses for that burst and to determine timing deviation based on the oversampled midamble channel impulse responses for that burst whose squares exceeds the threshold.
7. The WTRU according to claim 6 wherein the processing circuitry is configured to use the determined timing deviation to generate a timing advance signal and the transmitter is configured to transmit the generated timing advance signal to the other WTRU.
8. The WTRU according to claim 7 wherein the processing circuitry is embodied in a Radio Network Controller (RNC) and the receiver and transmitter are embodied in a Node b.
9. The WTRU according to claim 1 configured as a UMTS Terrestrial Radio Access Network (UTRAN) of a Third Generation Partnership Project type system that communicates with other WTRUs configured as User Equipments (UEs) wherein:
the receiver is configured to receive wireless signals from UEs in bursts that include a midamble;
the processing circuitry is configured to compute the energy level of the midamble of bursts received from respective UEs to determine the energy level used to set respective thresholds for measuring timing deviation of signals received from the respective UEs based on respective energy levels of the received signals;
the processing circuitry is configured to compare respective signal samples which exceed the respective threshold to determine timing deviation for the respective UEs; and
the transmitter is configured to transmit to the respective UEs a signal to control transmission timing based on the respective determined timing deviation.
10. The UTRAN according to claim 9 wherein said processing circuitry is configured to define respective reception windows based on a type of burst received and a timeslot designated for reception, to sample burst midambles received within the defined windows, to perform channel estimation to determine midamble channel impulse responses, to compute energy levels of the midambles of received bursts based on a selected combination of midamble channel impulse responses and to determine respective timing deviation based a relationship of midamble channel impulse responses to the respective threshold.
11. The UTRAN according to claim 10 wherein the receiver is configured to receive wireless signals from the respective UEs in bursts that bursts have a predefined chip rate and the processing circuitry is configured to sample respective burst midambles at twice the chip rate, to perform channel estimation on even and odd samples of respective received midambles to produce respective oversampled midamble channel impulse responses, to compute respective energy levels of the midamble of received bursts based on a summation of the squares of respective non-noise oversampled midamble channel impulse responses and to determine respective timing deviation based on respective oversampled midamble channel impulse responses whose square exceeds the respective threshold.
12. The UTRAN according to claim 11 wherein said processing circuitry is configured to set the respective thresholds at a value equal to the respective computed energy level multiplied by a constant.
13. The UTRAN according to claim 12 wherein said processing circuitry is embodied in a Radio Network Controller (RNC) and the receiver and transmitter are embodied in a Node B.
14. A method of wireless communication to determine signal timing deviation and to facilitate signal timing adjustment comprising:
receiving a wireless signal from a wireless transmit receive unit (WTRU);
setting a threshold for measuring the timing deviation based on an energy level of signal received from the WTRU;
evaluating signal samples which exceed the threshold to determine timing deviation; and
transmitting to the WTRU a signal to control transmission timing of the WTRU based on the determined timing deviation.
15. The method according to claim 14 wherein the receiving of wireless signals from the WTRU includes receiving signals in bursts designated for specific timeslots of system time frames and the setting a threshold includes computing an energy level of at least a portion of a received burst to determine the energy level used to set the threshold.
16. The method according to claim 15 wherein the receiving of wireless signals from the WTRU includes receiving signals in bursts that include a midamble and an energy level of the midamble of a received burst is computed to determine the energy level used to set the threshold.
17. The method according to claim 16 further comprising defining a reception window based on type of burst received and a timeslot designated for reception, sampling burst midambles received within the defined window and performing channel estimation to determine midamble channel impulse responses wherein the energy level of the midamble of a received burst is computed based on a selected combination of elements of the midamble channel impulse responses and the timing deviation is determined based on a relationship of midamble channel impulse responses to the threshold.
18. The method according to claim 17 wherein the receiving of wireless signals from the WTRU includes receiving signals in bursts that have a predefined chip rate, the sampling of burst midambles is at twice the chip rate, the channel estimation is performed on even and odd samples of received midambles to produce oversampled midamble channel impulse responses, the energy level of the midamble of a received UE burst is computed based on a summation of squares of non-noise oversampled midamble channel impulse response elements and the timing deviation is determined based on oversampled midamble channel impulse responses whose square exceeds the threshold.
18. The method according to claim 16 wherein the receiving of wireless signals from the WTRU includes receiving signals in bursts that have a predefined chip rate and a midamble sequence of one of K shifts of a predetermined sequence, a number k, which is ≦K, of bursts are received within the same designated timeslot, each having a different midamble shift, the sampling of the k received burst midambles is at twice the chip rate, the channel estimation is performed using the Steiner algorithm on even and odd samples of received midambles to produce oversampled midamble channel impulse responses for each of the k received midambles, the energy level of the midamble of at least one of the k received bursts is computed based on a summation of squares of non-noise oversampled midamble channel impulse responses for that burst and the timing deviation is determined based on the oversampled midamble channel impulse responses for that burst whose squares exceeds the threshold.
19. The method according to claim 18 further comprising using the determined timing deviation to generate a timing advance signal and transmitting the generated timing advance signal to the WTRU.
20. A method of wireless communication to determine signal timing deviation and to facilitate signal timing adjustment comprising:
receiving a wireless signal from a plurality of wireless transmit receive unit (WTRUs);
setting respective thresholds for measuring timing deviation based on respective energy levels of signals received from the respective WTRUs;
evaluating respective signal samples which exceed the respective thresholds to determine respective timing deviations; and
transmitting to the respective WTRUs respective signals to control transmission timing of the respective WTRUs based on the respective determined timing deviation.
US12/139,953 2002-02-14 2008-06-16 Wireless communication system having adaptive threshold for timing deviation measurement and method Abandoned US20080248796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/139,953 US20080248796A1 (en) 2002-02-14 2008-06-16 Wireless communication system having adaptive threshold for timing deviation measurement and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US35703302P 2002-02-14 2002-02-14
US10/209,398 US6873662B2 (en) 2002-02-14 2002-07-30 Wireless communication system having adaptive threshold for timing deviation measurement and method
US11/000,304 US7388933B2 (en) 2002-02-14 2004-11-30 Wireless communication system having adaptive threshold for timing deviation measurement and method
US12/139,953 US20080248796A1 (en) 2002-02-14 2008-06-16 Wireless communication system having adaptive threshold for timing deviation measurement and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/000,304 Continuation US7388933B2 (en) 2002-02-14 2004-11-30 Wireless communication system having adaptive threshold for timing deviation measurement and method

Publications (1)

Publication Number Publication Date
US20080248796A1 true US20080248796A1 (en) 2008-10-09

Family

ID=27668314

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/209,398 Expired - Fee Related US6873662B2 (en) 2002-02-14 2002-07-30 Wireless communication system having adaptive threshold for timing deviation measurement and method
US11/000,304 Expired - Fee Related US7388933B2 (en) 2002-02-14 2004-11-30 Wireless communication system having adaptive threshold for timing deviation measurement and method
US12/139,953 Abandoned US20080248796A1 (en) 2002-02-14 2008-06-16 Wireless communication system having adaptive threshold for timing deviation measurement and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/209,398 Expired - Fee Related US6873662B2 (en) 2002-02-14 2002-07-30 Wireless communication system having adaptive threshold for timing deviation measurement and method
US11/000,304 Expired - Fee Related US7388933B2 (en) 2002-02-14 2004-11-30 Wireless communication system having adaptive threshold for timing deviation measurement and method

Country Status (9)

Country Link
US (3) US6873662B2 (en)
EP (1) EP1483862B9 (en)
AT (1) ATE347195T1 (en)
AU (1) AU2003219757A1 (en)
DE (1) DE60310043T2 (en)
ES (1) ES2278153T3 (en)
HK (1) HK1074122A1 (en)
TW (4) TWI331463B (en)
WO (1) WO2003069789A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080207141A1 (en) * 2005-03-30 2008-08-28 Freescale Semiconductor , Inc. Method and Device For Transmitting a Sequence of Transmission Bursts
US20100029291A1 (en) * 2006-10-04 2010-02-04 Iwajlo Angelow Method for the time-based control of an upward signal transmission in a radio communication system
US20100097964A1 (en) * 2007-02-23 2010-04-22 Telefonaktiebolaget L M Ericsson (Publ) Method And A Device For Enhanced Performance In A Cellular Wireless TDD System
US20100097963A1 (en) * 2007-01-16 2010-04-22 David Astely Method and a Device for Enhanced Performance in a Cellular Wireless TDD System
US20110116533A1 (en) * 2005-10-27 2011-05-19 Qualcomm Incorporated Apparatus and methods for reducing channel estimation noise in a wireless transceiver
US20110200032A1 (en) * 2010-02-15 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in radio communication systems
CN103795667A (en) * 2012-11-02 2014-05-14 普天信息技术研究院有限公司 Timing compensation method based on OFDM (Orthogonal Frequency Division Multiplexing) system
US8982892B2 (en) 2010-08-13 2015-03-17 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in a base station for time division duplexed wireless communications
KR101770209B1 (en) 2009-12-03 2017-08-22 엘지전자 주식회사 Method and apparatus for reducing inter-cell interference in a wireless communication system

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873662B2 (en) * 2002-02-14 2005-03-29 Interdigital Technology Corporation Wireless communication system having adaptive threshold for timing deviation measurement and method
US7428278B2 (en) * 2002-05-09 2008-09-23 Interdigital Technology Corporation Method and apparatus for parallel midamble cancellation
US7260056B2 (en) * 2002-05-29 2007-08-21 Interdigital Technology Corporation Channel estimation in a wireless communication system
US8743837B2 (en) * 2003-04-10 2014-06-03 Qualcomm Incorporated Modified preamble structure for IEEE 802.11A extensions to allow for coexistence and interoperability between 802.11A devices and higher data rate, MIMO or otherwise extended devices
US7916803B2 (en) 2003-04-10 2011-03-29 Qualcomm Incorporated Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices
US7058378B2 (en) * 2003-11-18 2006-06-06 Interdigital Technology Corporation Method and apparatus for automatic frequency correction of a local oscilator with an error signal derived from an angle value of the conjugate product and sum of block correlator outputs
US7539260B2 (en) * 2004-05-27 2009-05-26 Qualcomm Incorporated Detecting the number of transmit antennas in wireless communication systems
EP1608100A1 (en) 2004-06-17 2005-12-21 Mitsubishi Electric Information Technology Centre Europe B.V. Method for transmitting TDD frames with increased data payload
US7844232B2 (en) * 2005-05-25 2010-11-30 Research In Motion Limited Joint space-time optimum filters (JSTOF) with at least one antenna, at least one channel, and joint filter weight and CIR estimation
FI20065197A0 (en) 2006-03-27 2006-03-27 Nokia Corp Inference of the uplink synchronization parameter validity in a packet radio system
KR101495107B1 (en) * 2006-06-20 2015-02-25 인터디지탈 테크날러지 코포레이션 Methods and system for performing handover in a wireless communication system
KR100937423B1 (en) 2006-09-26 2010-01-18 엘지전자 주식회사 Method For Generating Repeated Sequence, And Method For Transmitting Signal Using The Same
WO2008103089A1 (en) * 2007-02-22 2008-08-28 Telefonaktiebolaget Lm Ericsson (Publ) A method and a device for reduced interference in a cellular access system
US8243634B2 (en) * 2007-03-07 2012-08-14 Telefonaktiebolaget L M Ericsson (Publ) Random access in time division duplex communication systems
US7995694B2 (en) * 2007-03-19 2011-08-09 Sharp Laboratories Of America, Inc. Systems and methods for detecting a specific timing from a synchronization channel
CN101690359B (en) 2007-06-21 2015-02-04 交互数字技术公司 Handover related measurement reporting for E-UTRAN
ES2558879T3 (en) 2007-08-08 2016-02-09 Huawei Technologies Co., Ltd. Temporary alignment in a radiocommunication system
CN101425839B (en) * 2007-10-31 2011-09-14 电信科学技术研究院 Method, system and apparatus for transmission offset determination
WO2009111233A1 (en) 2008-03-04 2009-09-11 Interdigital Patent Holdings, Inc. Method and apparatus for accessing a random access channel by selectively using dedicated or contention-based preambles during handover
JP5153395B2 (en) * 2008-03-17 2013-02-27 株式会社日立製作所 Base station and mobile station of cellular radio communication system
US8712415B2 (en) 2008-03-20 2014-04-29 Interdigital Patent Holdings, Inc. Timing and cell specific system information handling for handover in evolved UTRA
JP5107465B2 (en) 2008-06-30 2012-12-26 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for performing handover in E-UTRAN (Evolved Universal Terrestrial Radio Access Network)
CN101790188B (en) * 2009-01-24 2014-10-08 华为技术有限公司 Time offset adjusting method and user terminal
US20100265904A1 (en) * 2009-04-21 2010-10-21 Industrial Technology Research Institute Method, apparatus and computer program product for interference avoidance in uplink coordinated multi-point reception
CN102577175B (en) * 2009-08-21 2015-12-02 韩国电子通信研究院 The method of adjusting signal transmission starting point of terminal in wireless network and device
US9131402B2 (en) * 2010-12-10 2015-09-08 The Trustees Of Columbia University In The City Of New York Methods, systems, and media for detecting usage of a radio channel
US9479372B2 (en) 2012-03-08 2016-10-25 The Trustees Of Columbia University In The City Of New York Methods, systems, and media for determining whether a signal of interest is present
CN106105056B (en) * 2014-03-11 2019-07-12 Lg电子株式会社 The method and apparatus that D2D user equipment sends discovery signal in a communications system
CN113708913B (en) * 2021-09-03 2023-04-11 四川安迪科技实业有限公司 Method for judging validity of symmetric halved search estimation value of timing deviation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251233A (en) * 1990-12-20 1993-10-05 Motorola, Inc. Apparatus and method for equalizing a corrupted signal in a receiver
US5642377A (en) * 1995-07-25 1997-06-24 Nokia Mobile Phones, Ltd. Serial search acquisition system with adaptive threshold and optimal decision for spread spectrum systems
US5884187A (en) * 1996-03-13 1999-03-16 Ziv; Noam A. Method and apparatus for providing centralized power control administration for a set of base stations
US5905757A (en) * 1996-10-04 1999-05-18 Motorola, Inc. Filter co-processor
US6144709A (en) * 1995-12-29 2000-11-07 Nokia Telecommunications Oy Method of detecting a call set-up burst, and a receiver
US20010036168A1 (en) * 2000-04-06 2001-11-01 Terry Stephen E. Synchronization of timing advance and deviation
US20020071415A1 (en) * 2000-12-08 2002-06-13 Roland Soulabail Frame structure forcellular telecommunications systems
US6618452B1 (en) * 1998-06-08 2003-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Burst carrier frequency synchronization and iterative frequency-domain frame synchronization for OFDM
US20050020296A1 (en) * 1999-01-16 2005-01-27 Baker Matthew P.J. Radio communication system
US6873662B2 (en) * 2002-02-14 2005-03-29 Interdigital Technology Corporation Wireless communication system having adaptive threshold for timing deviation measurement and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3286885B2 (en) 1995-11-07 2002-05-27 三菱電機株式会社 Timing recovery means and diversity communication device
IT1293447B1 (en) 1997-07-14 1999-03-01 Cselt Centro Studi Lab Telecom PROCEDURE AND SYSTEM FOR RECEPTION OF DIGITAL SIGNALS
JP2894342B1 (en) * 1998-03-13 1999-05-24 日本電気株式会社 Slot timing detection method and detection circuit, mobile station and mobile communication system
US6389087B1 (en) 1999-06-23 2002-05-14 At&T Wireless Services, Inc. Apparatus and method for synchronization in a multiple-carrier communication system by observing energy within a guard band
US6930995B1 (en) 1999-06-23 2005-08-16 Cingular Wireless Ii, Llc Apparatus and method for synchronization in a multiple-carrier communication system by observing a plurality of synchronization indicators
JP4390938B2 (en) 1999-12-10 2009-12-24 株式会社日立国際電気 Wireless access system
JP2001339359A (en) 2000-05-25 2001-12-07 Matsushita Electric Ind Co Ltd Wireless communication synchronization method and wireless communication system
JP2002016529A (en) 2000-06-29 2002-01-18 Toshiba Corp Mobile wireless unit
JP3583355B2 (en) * 2000-07-28 2004-11-04 松下電器産業株式会社 Base station apparatus and channel allocation method
DE10050125A1 (en) * 2000-10-11 2002-04-25 Zeiss Carl Device for temperature compensation for thermally stressed bodies with low thermal conductivity, in particular for supports of reflective layers or substrates in optics

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251233A (en) * 1990-12-20 1993-10-05 Motorola, Inc. Apparatus and method for equalizing a corrupted signal in a receiver
US5642377A (en) * 1995-07-25 1997-06-24 Nokia Mobile Phones, Ltd. Serial search acquisition system with adaptive threshold and optimal decision for spread spectrum systems
US6144709A (en) * 1995-12-29 2000-11-07 Nokia Telecommunications Oy Method of detecting a call set-up burst, and a receiver
US5884187A (en) * 1996-03-13 1999-03-16 Ziv; Noam A. Method and apparatus for providing centralized power control administration for a set of base stations
US5905757A (en) * 1996-10-04 1999-05-18 Motorola, Inc. Filter co-processor
US6618452B1 (en) * 1998-06-08 2003-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Burst carrier frequency synchronization and iterative frequency-domain frame synchronization for OFDM
US20050020296A1 (en) * 1999-01-16 2005-01-27 Baker Matthew P.J. Radio communication system
US20010036168A1 (en) * 2000-04-06 2001-11-01 Terry Stephen E. Synchronization of timing advance and deviation
US20020071415A1 (en) * 2000-12-08 2002-06-13 Roland Soulabail Frame structure forcellular telecommunications systems
US6873662B2 (en) * 2002-02-14 2005-03-29 Interdigital Technology Corporation Wireless communication system having adaptive threshold for timing deviation measurement and method
US7388933B2 (en) * 2002-02-14 2008-06-17 Interdigital Technology Corporation Wireless communication system having adaptive threshold for timing deviation measurement and method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175548B2 (en) * 2005-03-30 2012-05-08 Freescale Semiconductor, Inc. Method and device for transmitting a sequence of transmission bursts
US20080207141A1 (en) * 2005-03-30 2008-08-28 Freescale Semiconductor , Inc. Method and Device For Transmitting a Sequence of Transmission Bursts
US8442146B2 (en) * 2005-10-27 2013-05-14 Qualcomm Incorporated Apparatus and methods for reducing channel estimation noise in a wireless transceiver
US20110116533A1 (en) * 2005-10-27 2011-05-19 Qualcomm Incorporated Apparatus and methods for reducing channel estimation noise in a wireless transceiver
US20100029291A1 (en) * 2006-10-04 2010-02-04 Iwajlo Angelow Method for the time-based control of an upward signal transmission in a radio communication system
US8509122B2 (en) * 2007-01-16 2013-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Method and a device for enhanced performance in a cellular wireless TDD system
US20100097963A1 (en) * 2007-01-16 2010-04-22 David Astely Method and a Device for Enhanced Performance in a Cellular Wireless TDD System
US20100097964A1 (en) * 2007-02-23 2010-04-22 Telefonaktiebolaget L M Ericsson (Publ) Method And A Device For Enhanced Performance In A Cellular Wireless TDD System
US8537688B2 (en) 2007-02-23 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and a device for enhanced performance in a cellular wireless TDD system
KR101770209B1 (en) 2009-12-03 2017-08-22 엘지전자 주식회사 Method and apparatus for reducing inter-cell interference in a wireless communication system
US20110200032A1 (en) * 2010-02-15 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in radio communication systems
US9137765B2 (en) * 2010-02-15 2015-09-15 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in radio communication systems
US8982892B2 (en) 2010-08-13 2015-03-17 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in a base station for time division duplexed wireless communications
US9204455B2 (en) 2010-08-13 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in time division duplexed wireless communication
US9357556B2 (en) 2010-08-13 2016-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Automatic guard period adjustment in a base station for time division duplexed wireless communications
CN103795667A (en) * 2012-11-02 2014-05-14 普天信息技术研究院有限公司 Timing compensation method based on OFDM (Orthogonal Frequency Division Multiplexing) system

Also Published As

Publication number Publication date
EP1483862B9 (en) 2007-02-28
TW200703999A (en) 2007-01-16
EP1483862A2 (en) 2004-12-08
HK1074122A1 (en) 2005-10-28
EP1483862A4 (en) 2005-04-06
ES2278153T3 (en) 2007-08-01
US6873662B2 (en) 2005-03-29
TWI331463B (en) 2010-10-01
EP1483862B1 (en) 2006-11-29
US20050078771A1 (en) 2005-04-14
ATE347195T1 (en) 2006-12-15
WO2003069789A2 (en) 2003-08-21
WO2003069789A3 (en) 2004-07-15
TW200405735A (en) 2004-04-01
TW200421886A (en) 2004-10-16
DE60310043D1 (en) 2007-01-11
TW201001969A (en) 2010-01-01
US7388933B2 (en) 2008-06-17
AU2003219757A1 (en) 2003-09-04
AU2003219757A8 (en) 2003-09-04
TWI263448B (en) 2006-10-01
TWI308463B (en) 2009-04-01
US20030153275A1 (en) 2003-08-14
DE60310043T2 (en) 2007-07-05
TWI323099B (en) 2010-04-01

Similar Documents

Publication Publication Date Title
US7388933B2 (en) Wireless communication system having adaptive threshold for timing deviation measurement and method
EP1276248B1 (en) Search window delay tracking in code division multiple access communication systems
EP1230751B1 (en) Method and system for maintaining uplink synchronization in cdma based mobile communication systems
US6600773B2 (en) Method for outer loop/weighted open loop power control apparatus employed by a base station
EP2015466B1 (en) Weighted open loop power control in a time division duplex communication system
US7899014B2 (en) Method for determining user channel impulse response in TD-SCDMA system
KR101102411B1 (en) Initial synchronization for receivers
JP2000049700A (en) Repeated signal-to-interference ratio estimation for wcdma
KR100925763B1 (en) A Method of Uplink Synchronization Establishment Based on the United Transmission Technology and the Transmission Matrix thereof
WO1999017481A1 (en) Method and apparatus for correcting a measured round-trip delay time in a wireless communication system
EP1900242A1 (en) Method and system for extracting channel impulse response for mobile terminals from a neighboring cell
EP1234466A1 (en) Synchronization of diversity handover destination base station
KR20060073646A (en) Efficient frame tracking in mobile receivers
US20080186868A1 (en) Method and Apparatus Using Varying Length Training Sequences in Radio Communication
JP2007513542A (en) Method and apparatus for uplink synchronization in wireless communication
EP1496622B1 (en) Method and apparatus for detecting active downlink channelization codes in a TD-CDMA mobile communication system
EP1763157A2 (en) Wireless communication system having an adaptive threshold for timing deviation measurement and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE