US20080247959A1 - Form of administration secured against misuse - Google Patents

Form of administration secured against misuse Download PDF

Info

Publication number
US20080247959A1
US20080247959A1 US12/140,444 US14044408A US2008247959A1 US 20080247959 A1 US20080247959 A1 US 20080247959A1 US 14044408 A US14044408 A US 14044408A US 2008247959 A1 US2008247959 A1 US 2008247959A1
Authority
US
United States
Prior art keywords
dosage form
form according
component
optionally
abuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/140,444
Inventor
Johannes Bartholomaus
Heinrich Kugelmann
Elisabeth Arkenau-Maric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gruenenthal GmbH
Original Assignee
Gruenenthal GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34112032&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080247959(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US12/140,444 priority Critical patent/US20080247959A1/en
Application filed by Gruenenthal GmbH filed Critical Gruenenthal GmbH
Publication of US20080247959A1 publication Critical patent/US20080247959A1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT CONFIRMATORY GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS (EXCLUSIVELY LICENSED PATENTS) Assignors: ENDO PHARMACEUTICALS INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS Assignors: ENDO PHARMACEUTICALS INC.
Assigned to ENDO PHARMACEUTICALS INC. reassignment ENDO PHARMACEUTICALS INC. RELEASE OF SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS RECORDED AT REEL/FRAME 25456/172 Assignors: JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT
Priority to US14/085,085 priority patent/US20140080858A1/en
Assigned to ENDO PHARMACEUTICALS SOLUTIONS INC. reassignment ENDO PHARMACEUTICALS SOLUTIONS INC. RELEASE OF PATENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT GRANT OF SECURITY INTEREST IN LICENSED PATENTS Assignors: ENDO PHARMACEUTICALS, INC.
Assigned to ENDO PHARMACEUTICALS INC. reassignment ENDO PHARMACEUTICALS INC. CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF RECEIVING PARTY IN RELEASE OF PATENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS PREVIOUSLY RECORDED ON REEL 032380 FRAME 0157. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS.. Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT
Priority to US15/248,188 priority patent/US20160361308A1/en
Assigned to ENDO PHARMACEUTICALS, INC., ENDO PHARMACEUTICALS SOLUTIONS, INC., ASTORA WOMEN'S HEALTH HOLDINGS, LLC reassignment ENDO PHARMACEUTICALS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • A61K31/515Barbituric acids; Derivatives thereof, e.g. sodium pentobarbital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2068Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration

Definitions

  • the present invention relates to an abuse-proofed dosage form thermoformed without extrusion containing, in addition to one or more active ingredients with abuse potential (A) optionally together with physiologically acceptable auxiliary substances (B), at least one synthetic or natural polymer (C) and optionally at least one wax (D), wherein component (C) and the optionally present component (D) in each case exhibits a breaking strength of at least 500 N, and to a process for the production of the dosage form according to the invention.
  • A active ingredients with abuse potential
  • B physiologically acceptable auxiliary substances
  • C synthetic or natural polymer
  • D optionally at least one wax
  • the corresponding dosage forms such as tablets or capsules are comminuted, for example ground in a mortar, by the abuser, the active ingredient is extracted from the resultant powder using a preferably aqueous liquid and the resultant solution, optionally after being filtered through cotton wool or cellulose wadding, is administered parenterally, in particular intravenously.
  • An additional phenomenon of this kind of administration in comparison with abusive oral administration, is a further accelerated increase in active ingredient levels giving the abuser the desired effect, namely the “kick” or “rush”.
  • This kick is also obtained if the powdered dosage form is administered nasally, i.e. is sniffed. Since controlled-release dosage forms containing active ingredients with abuse potential do not give rise to the kick desired by the abuser when taken orally even in abusively high quantities, such dosage forms are also comminuted and extracted in order to be abused.
  • U.S. Pat. No. 4,070,494 proposed adding a swellable agent to the dosage form in order to prevent abuse. When water is added to extract the active ingredient, this agent swells and ensures that the filtrate separated from the gel contains only a small quantity of active ingredient.
  • the multilayer tablet disclosed in WO 95/20947 is based on a similar approach to preventing parenteral abuse, said tablet containing the active ingredient with abuse potential and at least one gel former, each in different layers.
  • WO 03/015531 A2 discloses another approach to preventing parenteral abuse.
  • a dosage form containing an analgesic opioid and a dye as an aversive agent is described therein.
  • the colour released by tampering with the dosage form is intended to discourage the abuser from using the dosage form which has been tampered with.
  • naloxone or naltexone in the case of opioids
  • compounds which cause a physiological defence response such as for example ipecacuanha (ipecac) root.
  • the abuse-proofed dosage form thermoformed without extrusion according to the invention which contains, in addition to one or more active ingredients with abuse potential (A), at least one synthetic or natural polymer (C) and optionally at least one wax (D), wherein component (C) and the optionally present component (D) in each case exhibits a breaking strength of at least 500 N.
  • polymers having the stated minimum breaking strength preferably in quantities such that the dosage form also exhibits such a minimum breaking strength of at least 500N, means that pulverisation of the dosage form is considerably more difficult using conventional means, so considerably complicating or preventing the subsequent abuse.
  • comminution is taken to mean pulverisation of the dosage form with conventional means which are available to an abuser, such as for example a mortar and pestle, a hammer, a mallet or other usual means for pulverisation by application of force.
  • the dosage form according to the invention is thus suitable for preventing parenteral, nasal and/or oral abuse of active ingredients, preferably of pharmaceutical active ingredients with abuse potential.
  • compositions with abuse potential are known to the person skilled in the art, as are the quantities thereof to be used and processes for the production thereof, and may be present in the dosage form according to the invention as such, in the form of the corresponding derivatives thereof, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof, as racemates or stereoisomers.
  • the dosage form according to the invention is also suitable for the administration of two or more pharmaceutical active ingredients.
  • the dosage form preferably contains only one specific active ingredient.
  • the dosage form according to the invention is in particular suitable for preventing abuse of a pharmaceutical active ingredient selected from the group comprising opioids, tranquillisers, preferably benzodiazepines, barbiturates, stimulants and other narcotics.
  • a pharmaceutical active ingredient selected from the group comprising opioids, tranquillisers, preferably benzodiazepines, barbiturates, stimulants and other narcotics.
  • the dosage form according to the invention is very particularly suitable for preventing abuse of an opioid, tranquilliser or another narcotic selected from the group comprising N- ⁇ 1-[2-(4-ethyl-5-oxo-2-tetrazolin-1-yl)ethyl]-4-methoxymethyl-4-piperidyl ⁇ propionanilide (alfentanil), 5,5-diallylbarbituric acid (allobarbital), allylprodine, alphaprodine, 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]-benzodiazepine (alprazolam), 2-diethylaminopropiophenone (amfepramone), ( ⁇ )-a-methyl-phenethylamine (amphetamine), 2-(a-methylphenethylamino)-2-phenylacetonitrile (amphetaminil), 5-ethyl-5-isopenty
  • the dosage form according to the invention is in particular suitable for preventing abuse of an opioid active ingredient selected from the group comprising oxycodone, hydromorphone, morphine, tramadol and the physiologically acceptable derivatives or compounds thereof, preferably the salts and solvates thereof, preferably the hydrochlorides thereof.
  • the dosage form according to the invention is furthermore in particular suitable for preventing abuse of an opioid active ingredient selected from the group comprising (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (2R,3R)-1-dimethylamino-3-(3-methoxy-phenyl)-2-methyl-pentan-3-ol, (1RS,3RS,6RS)-6-dimethylaminomethyl-1-(3-methoxy-phenyl)-cyclohexane-1,3-diol, (1R,2R)-3-(2-dimethylaminoethyl-cyclohexyl)-phenol, the physiologically acceptable salts thereof, preferably hydrochlorides, physiologically acceptable enantiomers, stereoisomers, diastereomers and racemates and the physiologically acceptable derivatives thereof, preferably ethers, esters or amides.
  • an opioid active ingredient selected from the group comprising (1R,2
  • At least one synthetic or natural polymer (C) which has a breaking strength, measured using the method disclosed in the present application, of at least 500 N.
  • At least one polymer selected from the group comprising polyalkylene oxides, preferably polymethylene oxide, polyethylene oxide, polypropylene oxide; polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, copolymers thereof, and mixtures of at least two of the stated polymers is preferably used for this purpose.
  • High molecular weight thermoplastic polyalkylene oxides are preferred.
  • High molecular weight polyethylene oxides with a molecular weight of at least 0.5 million, preferably of at least 1 million up to 15 million, determined by rheological measurements, are particularly preferred.
  • These polymers have a viscosity at 25° C. of 4500 to 17600 cP, measured on a 5 wt. % aqueous solution using a model RVF Brookfield viscosimeter (spindle no. 2/rotational speed 2 rpm), of 400 to 4000 cP, measured on a 2 wt. % aqueous solution using the stated viscosimeter (spindle no. 1 or 3/rotational speed 10 rpm) or of 1650 to 10000 cP, measured on a 1 wt. % aqueous solution using the stated viscosimeter (spindle no. 2/rotational speed 2 rpm).
  • the polymers are preferably used in powder form. They may be soluble in water.
  • Waxes with a softening point of at least 60° C. are preferred.
  • Carnauba wax and beeswax are particularly preferred.
  • Carnauba wax is very particularly preferred.
  • Carnauba wax is a natural wax which is obtained from the leaves of the carnauba palm and has a softening point of at least 80° C.
  • the wax component is additionally used, it is used together with at least one polymer (C) in quantities such that the dosage form has a breaking strength of at least 500 N.
  • Component (C) is preferably used in an amount of 35 to 99.9 wt. %, particularly preferably of at least 50 wt. %, very particularly preferably of at least 60 wt. %, relative to the total weight of the dosage form.
  • Auxiliary substances (B) which may be used are those known auxiliary substances which are conventional for the formulation of solid dosage forms. These are preferably plasticisers, such as polyethylene glycol, auxiliary substances which influence active ingredient release, preferably hydrophobic or hydrophilic, preferably hydrophilic polymers, very particularly preferably hydroxypropylcellulose, and/or antioxidants. Suitable antioxidants are ascorbic acid, butylhydroxyanisole, butylhydroxytoluene, salts of ascorbic acid, monothioglycerol, phosphorous acid, vitamin C, vitamin E and the derivatives thereof, sodium bisulfite, particularly preferably butylhydroxytoluene (BHT) or butylhydroxyanisole (BHA) and ⁇ -tocopherol.
  • plasticisers such as polyethylene glycol
  • auxiliary substances which influence active ingredient release preferably hydrophobic or hydrophilic, preferably hydrophilic polymers, very particularly preferably hydroxypropylcellulose, and/or antioxidants.
  • Suitable antioxidants are ascor
  • the antioxidant is preferably used in quantities of 0.01 to 10 wt. %, preferably of 0003 to 5 wt. %, relative to the total weight of the dosage form.
  • the dosage forms according to the invention are distinguished in that, due their hardness, they cannot be pulverised, for example by grinding in a mortar and pestle. This virtually rules out oral or parenteral, in particular intravenous or nasal abuse.
  • the dosage forms according to the invention may, in a preferred embodiment, contain further agents which complicate or prevent abuse as auxiliary substances (B).
  • the abuse-proofed dosage form according to the invention which comprises, apart from one or more active ingredients with abuse potential, at least one hardening polymer (C) and optionally at least one wax (D), may accordingly also comprise at least one of the following components (a)-(e) as auxiliary substances (B):
  • Components (a) to (f) are additionally each individually suitable for abuse-proofing the dosage form according to the invention. Accordingly, component (a) is preferably suitable for proofing the dosage form against nasal, oral and/or parenteral, preferably intravenous abuse, component (b) is preferably suitable for proofing against parenteral, particularly preferably intravenous and/or nasal abuse, component (c) is preferably suitable for proofing against nasal and/or parenteral, particularly preferably intravenous, abuse, component (d) is preferably suitable for proofing against parenteral, particularly preferably intravenous, and/or oral and/or nasal abuse, component (e) is suitable as a visual deterrent against oral or parenteral abuse and component (f) is suitable for proofing against oral or nasal abuse.
  • component (a) is preferably suitable for proofing the dosage form against nasal, oral and/or parenteral, preferably intravenous abuse
  • component (b) is preferably suitable for proofing against parenteral, particularly preferably intravenous and/or nasal abuse
  • the dosage form according to the invention may also comprise two or more of components (a)-(f) in a combination, preferably (a), (b) and optionally (c) and/or (f) and/or (e) or (a), (b) and optionally (d) and/or (f) and/or (e).
  • the dosage form according to the invention may comprise all of components (a)-(f).
  • substances which irritate the nasal passages and/or pharynx which may be considered according to the invention are any substances which, when administered via the nasal passages and/or pharynx, bring about a physical reaction which is either so unpleasant for the abuser that he/she does not wish to or cannot continue administration, for example burning, or physiologically counteracts taking of the corresponding active ingredient, for example due to increased nasal secretion or sneezing.
  • These substances which conventionally irritate the nasal passages and/or pharynx may also bring about a very unpleasant sensation or even unbearable pain when administered parenterally, in particular intravenously, such that the abuser does not wish to or cannot continue taking the substance.
  • Particularly suitable substances which irritate the nasal passages and/or pharynx are those which cause burning, itching, an urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli.
  • Appropriate substances and the quantities thereof which are conventionally to be used are known per se to the person skilled or may be identified by simple preliminary testing.
  • the substance which irritates the nasal passages and/or pharynx of component (a) is preferably based on one or more constituents or one or more plant parts of at least one hot substance drug.
  • a dosage unit is taken to mean a separate or separable administration unit, such as for example a tablet or a capsule.
  • One or more constituents of at least one hot substance drug selected from the group consisting of Allii sativi bulbus (garlic), Asari rhizoma cum herba (Asarum root and leaves), Calami rhizoma (calamus root), Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper), Curcumae longae rhizoma (turmeric root), Curcumae xanthorrhizae rhizoma (Javanese turmeric root), Galangae rhizoma (galangal root), Myristicae semen (nutmeg), Piperis nigri fructus (pepper), Sinapis albae semen (white mustard seed), Sinapis nigri semen (black mustard seed), Zedoariae rhizoma (zedoary root) and Zi-ngiberis rhizoma (ginger root), particularly preferably from the group consisting of Capsici fructus
  • the constituents of the hot substance drugs preferably comprise o-methoxy(methyl)phenol compounds, acid amide compounds, mustard oils or sulfide compounds or compounds derived therefrom.
  • At least one constituent of the hot substance drugs is selected from the group consisting of myristicin, elemicin, isoeugenol, ⁇ -asarone, safrole, gingerols, xanthorrhizol, capsaicinoids, preferably capsaicin, capsaicin derivatives, such as N-vanillyl-9E-octadecenamide, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, norcapsaicin and nomorcapsaicin, piperine, preferably trans-piperine, glucosinolates, preferably based on non-volatile mustard oils, particularly preferably based on p-hydroxybenzyl mustard oil, methylmercapto mustard oil or methylsulfonyl mustard oil, and compounds derived from these constituents.
  • the dosage form according to the invention may preferably contain the plant parts of the corresponding hot substance drugs in a quantity of 0.01 to 30 wt. %, particularly preferably of 0.1 to 0.5 wt. %, in each case relative to the total weight of the dosage unit.
  • the quantity thereof in a dosage unit according to the invention preferably amounts to 0.001 to 0.005 wt. %, relative to the total weight of the dosage unit.
  • Another option for preventing abuse of the dosage form according to the invention consists in adding at least one viscosity-increasing agent as a further abuse-preventing component (b) to the dosage form, which, with the assistance of a necessary minimum quantity of an aqueous liquid, forms a gel with the extract obtained from the dosage form, which gel is virtually impossible to administer safely and preferably remains visually distinguishable when introduced into a further quantity of an aqueous liquid.
  • visually distinguishable means that the active ingredient-containing gel formed with the assistance of a necessary minimum quantity of aqueous liquid, when introduced, preferably with the assistance of a hypodermic needle, into a further quantity of aqueous liquid at 37° C., remains substantially insoluble and cohesive and cannot straightforwardly be dispersed in such a manner that it can safely be administered parenterally, in particular intravenously.
  • the material preferably remains visually distinguishable for at least one minute, preferably for at least 10 minutes.
  • the increased viscosity of the extract makes it more difficult or even impossible for it to be passed through a needle or injected. If the gel remains visually distinguishable, this means that the gel obtained on introduction into a further quantity of aqueous liquid, for example by injection into blood, initially remains in the form of a largely cohesive threads which, while it may indeed be broken up into smaller fragments, cannot be dispersed or even dissolved in such a manner that it can safely be administered parenterally, in particular intravenously. In combination with at least one optionally present component (a) to (e), this additionally leads to unpleasant burning, vomiting, bad flavour and/or visual deterrence.
  • Intravenous administration of such a gel would most probably result in obstruction of blood vessels, associated with serious harm to the health of the abuser.
  • the active ingredient is mixed with the viscosity-increasing agent and suspended in 10 ml of water at a temperature of 25° C. If this results in the formation of a gel which fulfils the above-stated conditions, the corresponding viscosity-increasing agent is suitable for preventing or averting abuse of the dosage forms according to the invention.
  • one or more viscosity-increasing agents are used which are selected from the group comprising microcrystalline cellulose with 11 wt. % carboxymethylcellulose sodium (Avicel® RC 591), carboxymethylcellulose sodium (Blanose®, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300 P®), polyacrylic acid (Carbopol® 980 NF, Carbopol® 981), locust bean flour (Cesagum® LA-200, Cesagum® LID/150, Cesagum® LN-1), pectins, preferably from citrus fruits or apples (Cesapectin® HM Medium Rapid Set), waxy maize starch (C*Gel 04201®), sodium alginate (Frimulsion ALG (E401)®), guar flour (Frimulsion BM®, Polygum 26/1-75®), iota carrageen
  • Xanthans are particularly preferred.
  • the names stated in brackets are the trade names by which the materials are known commercially.
  • a quantity of 0.1 to 20 wt. %, particularly preferably of 0.1 to 15 wt. % of the stated viscosity-increasing agent(s) is sufficient to fulfil the above-stated conditions.
  • viscosity-increasing agents are preferably present in the dosage form according to the invention in quantities of ⁇ 5 mg per dosage unit, i.e. per administration unit.
  • the viscosity-increasing agents used as component (b) are those which, on extraction from the dosage form with the necessary minimum quantity of aqueous liquid, form a gel-which encloses air bubbles.
  • the resultant gels are distinguished by a turbid appearance, which provides the potential abuser with an additional optical warning and discourages him/her from administering the gel parenterally.
  • Component (C) may also optionally serves as an additional viscosity-increasing agent which, with the assistance of a minimum necessary quantity of an aqueous liquid, forms a gel.
  • the dosage form according to the invention may furthermore comprise component (c), namely one or more antagonists for the active ingredient or active ingredients with abuse potential, wherein the antagonists are preferably spatially separated from the remaining constituents of the invention dosage according to the form and, when correctly used, do not exert any effect.
  • component (c) namely one or more antagonists for the active ingredient or active ingredients with abuse potential, wherein the antagonists are preferably spatially separated from the remaining constituents of the invention dosage according to the form and, when correctly used, do not exert any effect.
  • Suitable antagonists for preventing abuse of the active ingredients are known per se to the person skilled in the art and may be present in the dosage form according to the invention as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.
  • the antagonist used is preferably an antagonist selected from the group comprising naloxone, naltrexone, nalmefene, nalid, nalmexone, nalorphine or naluphine, in each case optionally in the form of a corresponding physiologically acceptable compound, in particular in the form of a base, a salt or solvate.
  • the corresponding antagonists, where component (c) is provided are preferably used in a quantity of 21 mg, particularly preferably in a quantity of 3 to 100 mg, very particularly preferably in a quantity of 5 to 50 mg per dosage form, i.e. per administration unit.
  • the antagonist is preferably a neuroleptic, preferably at least one compound selected from the group consisting of haloperidol, promethazine, fluphenazine, perphenazine, levomepromazine, thioridazine, perazine, chlorpromazine, chlorprothixine, zuclopentixol, flupentixol, prothipendyl, zotepine, benperidol, pipamperone, melperone and bromperidol.
  • a neuroleptic preferably at least one compound selected from the group consisting of haloperidol, promethazine, fluphenazine, perphenazine, levomepromazine, thioridazine, perazine, chlorpromazine, chlorprothixine, zuclopentixol, flupentixol, prothipendyl, zotepine, benperidol, pipamperone, melperone and bro
  • the dosage form according to the invention preferably comprises these antagonists in a conventional therapeutic dose known to the person skilled in the art, particularly preferably in a quantity of twice to four times the conventional dose per administration unit.
  • the combination to discourage and prevent abuse of the dosage form according to the invention comprises component (d), it may comprise at least one emetic, which is preferably present in a spatially separated arrangement from the other components of the dosage form according to the invention and, when correctly used, is intended not to exert its effect in the body.
  • Suitable emetics for preventing abuse of an active ingredient are known per se to the person skilled in the art and may be present in the dosage form according to the invention as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.
  • ipecacuanha (ipecac) root preferably based on the constituent emetine may preferably be considered in the dosage form according to the invention, as are, for example, described in “Pharmazeutician Biologie—Drogen und Strukturbericht” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart, New York, 1982
  • the corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure.
  • the dosage form according to the invention may preferably comprise the emetic emetine as component (d), preferably in a quantity of ⁇ 3 mg, particularly preferably of ⁇ 10 mg and very particularly preferably in a quantity of ⁇ 20 mg per dosage form, i.e. administration unit.
  • Apomorphine may likewise preferably be used as an emetic in the abuse-proofing according to the invention, preferably in a quantity of preferably ⁇ 3 mg, particularly preferably of ⁇ 5 mg and very particularly preferably of ⁇ 7 mg per administration unit.
  • the dosage form according to the invention contains component (e) as a further abuse-preventing auxiliary substance
  • a such a dye brings about an intense coloration of a corresponding aqueous solution, in particular when the attempt is made to extract the active ingredient for parenteral, preferably intravenous administration, which coloration may act as a deterrent to the potential abuser.
  • Oral abuse which conventionally begins by means of aqueous extraction of the active ingredient, may also be prevented by this coloration.
  • Suitable dyes and the quantities required for the necessary deterrence may be found in WO 03/015531, wherein the corresponding disclosure should be deemed to be part of the present disclosure and is hereby introduced as a reference.
  • the dosage form according to the invention contains component (f) as a further abuse-preventing auxiliary substance, this addition of at least one bitter substance and the consequent impairment of the flavour of the dosage form additionally prevents oral and/or nasal abuse.
  • Suitable bitter substances and the quantities effective for use may be found in US-2003/0064099 A1, the corresponding disclosure of which should be deemed to be the disclosure of the present application and is hereby introduced as a reference.
  • Suitable bitter substances are preferably aromatic oils, preferably peppermint oil, eucalyptus oil, bitter almond oil, menthol, fruit aroma substances, preferably aroma substances from lemons, oranges, limes, grapefruit or mixtures thereof, and/or denatonium benzoate (Bitrex®). Denatonium benzoate is particularly preferred.
  • the solid dosage form according to the invention is suitable to be taken orally, vaginally or rectally, preferably orally.
  • the dosage form is preferably not in film form.
  • the dosage form according to the invention may assume multiparticulate form, preferably in the form of microtablets, microcapsules, micropellets, granules, spheroids, beads or pellets, optionally packaged in capsules or pressed into tablets, preferably for oral administration.
  • the multiparticulate forms preferably have a size or size distribution in the range from 0.1 to 3 mm, particularly preferably in the range from 0.5 to 2 mm.
  • conventional auxiliary substances (B) are optionally also used for the formulation of the dosage form.
  • the solid, abuse-proofed dosage form according to the invention is preferably produced without using an extruder by mixing components (A), (B), (C) and optionally (D) and optionally at least one of the optionally present further abuse-preventing components (a)-(f) or, if necessary, by separate mixing with the addition of component (C) and optionally component (D), and, optionally after granulation, shaping the resultant mixture or mixtures by application of force to yield the dosage form with preceding or simultaneous exposure to heat.
  • Heating and application of force for the production of the dosage form proceed without using an extruder.
  • Mixing of components (A), (B), (C) and optionally (D) and of the optionally present further components (a)-(f) and optionally of components (C) and the optionally present component (D) proceeds optionally in each case in a mixer known to the person skilled in the art.
  • the mixer may, for example, be a roll mixer, shaking mixer, shear mixer or compulsory mixer.
  • the resultant mixture is preferably shaped directly by application of force to yield the dosage form according to the invention with preceding or simultaneous exposure to heat.
  • the mixture may, for example, be formed into tablets by direct tabletting.
  • the tabletting tool i.e. bottom punch, top punch and die are briefly heated at least to the softening temperature of the polymer component (C) and pressed together.
  • the material to be pressed is heated immediately prior to tabletting at least to the softening temperature of component (C) and then pressed with the tabletting tool.
  • the resultant mixture of components (A), (B), (C) and optionally (D) and the optionally present components (a) to (f) or the mixture of at least one of these components (a) to (f) with component (C) may also first be granulated and then be shaped by application of force with preceding or simultaneous exposure to heat to yield the dosage form according to the invention.
  • Granulation may be performed in known granulators by wet granulation or melt granulation.
  • the dosage form according to the invention assumes the form of a tablet, a capsule or is in the form of an oral osmotic therapeutic system (OROS), preferably if at least one further abuse-preventing component (a)-(f) is also present.
  • OROS oral osmotic therapeutic system
  • components (c) and/or (d) and/or (f) are present in the dosage form according to the invention, care must be taken to ensure that they are formulated in such a manner or are present in such a low dose that, when correctly administered, said components are able to bring about virtually no effect which impairs the patient or the efficacy of the active ingredient.
  • the dosage form according to the invention contains component (d) and/or (f), the dosage must be selected such that, when correctly orally administered, no negative effect is caused. If, however, the intended dosage of the dosage form is exceeded in the event of abuse, nausea or an inclination to vomit or a bad flavour are produced.
  • the particular quantity of component (d) and/or (f) which can still be tolerated by the patient in the event of correct oral administration may be determined by the person skilled in the art by simple preliminary testing.
  • the dosage form containing the components (c) and/or (d) and/or (f) is provided with protection, these components should preferably be used at a dosage which is sufficiently high that, when abusively administered, they bring about an intense negative effect on the abuser.
  • the dosage form according to the invention comprises at least 2 of components (c) and (d) or (f), these may each be present in the same or different subunits (Y). Preferably, when present, all the components (c) and (d) and (f) are present in one and the same subunit (Y).
  • subunits are solid formulations, which in each case, apart from conventional auxiliary substances known to the person skilled in the art, contain the active ingredient(s), at least one polymer (C) and the optionally present component (D) and optionally at least one of the optionally present components (a) and/or (b) and/or (e) or in each case at least one polymer (C) and optionally (D) and the antagonist(s) and/or emetic(s) and/or component (e) and/or component (f) and optionally at least one of the optionally present components (a) and/or (b). Care must here be taken to ensure that each of the subunits is formulated in accordance with the above-stated process.
  • One substantial advantage of the separated formulation of active ingredients from components (c) or (d) or (f) in subunits (X) and (Y) of the dosage form according to the invention is that, when correctly administered, components (c) and/or (d) and/or (f) are hardly released on taking and/or in the body or are released in such small quantities that they exert no effect which impairs the patient or therapeutic success or, on passing through the patient's body, they are only liberated in locations where they cannot be sufficiently absorbed to be effective.
  • the dosage form is correctly administered, preferably hardly any of components (c) and/or (d) and/or (f) is released into the patient's body or they go unnoticed by the patient.
  • each subunit contains the polymer (C) and optionally component (D) and has been formulated in the above-stated manner.
  • a dosage form which comprises components (c) and/or (e) and/or (d) and/or (f) in subunits (Y), for the purpose of abusing the active ingredient and obtain a powder which is extracted with a suitable extracting agent, not only the active ingredient but also the particular component (c) and/or (e) and/or (f) and/or (d) will be obtained in a form in which it cannot readily be separated from the active ingredient, such that when the dosage form which has been tampered with is administered, in particular by oral and/or parenteral administration, it will exert its effect on taking and/or in the body combined with an additional negative effect on the abuser corresponding to component (c) and/or (d) and/or (f) or, when the attempt is made to extract the active ingredient, the coloration will act as a deterrent and so prevent abuse of the dosage form.
  • a dosage form according to the invention in which the active ingredient or active ingredients is/are spatially separated from components (c), (d) and/or (e), preferably by formulation in different subunits, may be formulated in many different ways, wherein the corresponding subunits may each be present in the dosage form according to the invention in any desired spatial arrangement relative to one another, provided that the above-stated conditions for the release of components (c) and/or (d) are fulfilled.
  • component(s) (a) and/or (b) which are optionally also present may preferably be formulated in the dosage form according to the invention both in the particular subunits (X) and (Y) and in the form of independent subunits corresponding to subunits (X) and (Y), provided that neither the abuse-proofing nor the active ingredient release in the event of correct administration is impaired by the nature of the formulation and the polymer (C) and optionally (D) is included in the formulation and formulation is carried out in accordance with the above-stated process in order to achieve the necessary hardness.
  • subunits (X) and (Y) are present in multiparticulate form, wherein microtablets, microcapsules, micropellets, granules, spheroids, beads or pellets are preferred and the same form, i.e. shape, is selected for both subunit (X) and subunit (Y), such that it is not possible to separate subunits (X) from (Y) by mechanical selection.
  • the multiparticulate forms are preferably of a size in the range from 0.1 to 3 mm, preferably of 0.5 to 2 mm.
  • the subunits (X) and (Y) in multiparticulate form may also preferably be packaged in a capsule or be pressed into a tablet, wherein the final formulation in each case proceeds in such a manner that the subunits (X) and (Y) are also retained in the resultant dosage form.
  • the multiparticulate subunits (X) and (Y) of identical shape should also not be visually distinguishable from one another so that the abuser cannot separate them from one another by simple sorting. This may, for example, be achieved by the application of identical-coatings which, apart from this disguising function, may also incorporate further functions, such as, for example, controlled release of one or more active ingredients or provision of a finish resistant to gastric juices on the particular subunits.
  • the multiparticulate subunits may also be formulated as an oral dosage form as a slurry or suspension in pharmaceutically safe suspending media.
  • subunits (X) and (Y) are in each case arranged in layers relative to one another.
  • the layered subunits (X) and (Y) are preferably arranged for this purpose vertically or horizontally relative to one another in the dosage form according to the invention, wherein in each case one or more layered subunits (X) and one or more layered subunits (Y) may be present in the dosage form, such that, apart from the preferred layer sequences (X) —(Y) or (X) —(Y)—(X), any desired other layer sequences may be considered, optionally in combination with layers containing components (a) and/or (b).
  • Another preferred dosage form according to the invention is one in which subunit (Y) forms a core which is completely enclosed by subunit (X), wherein a separation layer (Z) may be present between said layers.
  • a separation layer (Z) may be present between said layers.
  • Such a structure is preferably also suitable for the above-stated multiparticulate forms, wherein both subunits (X) and (Y) and an optionally present separation layer (Z), which must satisfy the hardness requirement according to the invention, are formulated in one and the same multiparticulate form.
  • the subunit (X) forms a core, which is enclosed by subunit (Y), wherein the latter comprises at least one channel which leads from the core to the surface of the dosage form.
  • the dosage form according to the invention may comprise, between one layer of the subunit (X) and one layer of the subunit (Y), in each case one or more, preferably one, optionally swellable separation layer (Z) which serves to separate subunit (X) spatially from (Y).
  • the dosage form according to the invention comprises the layered subunits (X) and (Y) and an optionally present separation layer (Z) in an at least partially vertical or horizontal arrangement
  • the dosage form preferably takes the form of a tablet, a coextrudate or a laminate.
  • the entirety of the free surface of subunit (Y) and optionally at least part of the free surface of subunit(s) (X) and optionally at least part of the free surface of the optionally present separation layer(s) (Z) may be coated with at least one barrier layer (Z′) which prevents release of component (c) and/or (e) and/or (d) and/or (f).
  • the barrier layer (Z′) must also fulfil the hardness conditions according to the invention.
  • Another particularly preferred embodiment of the dosage form according to the invention comprises a vertical or horizontal arrangement of the layers of subunits (X) and (Y) and at least one push layer (p) arranged therebetween, and optionally a separation layer (Z), in which dosage form the entirety of the free surface of layer structure consisting of subunits (X) and (Y), the push layer and the optionally present separation layer (Z) is provided with a semipermeable coating (E), which is permeable to a release medium, i.e. conventionally a physiological liquid, but substantially impermeable to the active ingredient and to component (c) and/or (d) and/or (f), and wherein this coating (E) comprises at least one opening for release of the active ingredient in the area of subunit (X).
  • a semipermeable coating which is permeable to a release medium, i.e. conventionally a physiological liquid, but substantially impermeable to the active ingredient and to component (c) and/or (d) and/or (f)
  • a corresponding dosage form is known to the person skilled in the art, for example under the name oral osmotic therapeutic system (OROS), as are suitable materials and methods for the production thereof, inter alia from U.S. Pat. No. 4,612,008, U.S. Pat. No. 4,765,989 and U.S. Pat. No. 4,783,337.
  • OROS oral osmotic therapeutic system
  • the subunit (X) of the dosage form according to the invention is in the form of a tablet, the edge face of which and optionally one of the two main faces is covered with a barrier layer (Z′) containing component (c) and/or (d) and/or (f).
  • auxiliary substances of the subunit(s) (X) or (Y) and of the optionally present separation layer(s) (Z) and/or of the barrier layer(s) (Z′) used in formulating the dosage form according to the invention will vary as a function of the arrangement thereof in the dosage form according to the invention, the mode of administration and as a function of the particular active ingredient of the optionally present components (a) and/or (b) and/or (e) and of component (c) and/or (d) and/or (f).
  • the materials which have the requisite properties are in each case known per se to the person skilled in the art.
  • the subunit may consist of conventional materials known to the person skilled in the art, providing that it contains at least one polymer (C) and optionally (D) to fulfil the hardness condition of the dosage form according to the invention.
  • a corresponding barrier layer (Z′) is not provided to prevent release of component (c) and/or (d) and/or (f)
  • the materials of the subunits should be selected such that release of the particular component (c) and/or (d) from subunit (Y) is virtually ruled out.
  • the materials which are stated below to be suitable for production of the barrier layer may preferably be used for this purpose.
  • Preferred materials are those which are selected from the group comprising alkylcelluloses, hydroxyalkylcelluloses, glucans, scleroglucans, mannans, xanthans, copolymers of poly[bis (p-carboxyphenoxy)propane and sebacic acid, preferably in a molar ratio of 20:80 (commercially available under the name Polifeprosan 200), carboxymethylcelluloses, cellulose ethers, cellulose esters, nitrocelluloses, polymers based on (meth)acrylic acid and the esters thereof, polyamides, polycarbonates, polyalkylenes, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, halogenated polyvinyls, polyglycolides, polysiloxanes and polyurethanes and the copolymers thereof.
  • Particularly suitable materials may be selected from the group comprising methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxybutylmethylcellulose, cellulose acetate, cellulose propionate (of low, medium or high molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethylcellulose, cellulose triacetate, sodium cellulose sulfate, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyisobutyl methacrylate, polyhexyl methacrylate, polyisodecyl methacrylate, polylauryl methacrylate, polyphenyl methacrylate, polymethyl acrylate, polyisopropyl acrylate, polyisobutyl acrylate, polyoctadecyl acrylate, polyethylene, low density polyethylene, high density polyethylene, polypropylene, polyethylene glycol
  • Particularly suitable copolymers may be selected from the group comprising copolymers of butyl methacrylate and isobutyl methacrylate, copolymers of methyl vinyl ether and maleic acid with high molecular weight, copolymers of methyl vinyl ether and maleic acid monoethyl ester, copolymers of methyl vinyl ether and maleic anhydride and copolymers of vinyl alcohol and vinyl acetate.
  • barrier layer Further materials which are particularly suitable for formulating the barrier layer are starch-filled polycaprolactone (WO98/20073), aliphatic polyesteramides (DE 19 753 534 A1, DE 19 800 698 A1, EP 0 820 698 A1), aliphatic and aromatic polyester urethanes (DE 19822979), polyhydroxyalkanoates, in particular polyhydroxybutyrates, polyhydroxyvalerates, casein (DE 4 309 528), polylactides and copolylactides (EP 0 980 894 A1).
  • WO98/20073 starch-filled polycaprolactone
  • aliphatic polyesteramides DE 19 753 534 A1, DE 19 800 698 A1, EP 0 820 698 A1
  • aliphatic and aromatic polyester urethanes DE 19822979
  • polyhydroxyalkanoates in particular polyhydroxybutyrates
  • polyhydroxyvalerates polyhydroxyvalerates
  • casein DE 4 309 528
  • polylactides and copolylactides
  • auxiliary substances known to the person skilled in the art, preferably selected from the group comprising glyceryl monostearate, semi-synthetic triglyceride derivatives, semi-synthetic glycerides, hydrogenated castor oil, glyceryl palmitostearate, glyceryl behenate, polyvinylpyrrolidone, gelatine, magnesium stearate, stearic acid, sodium stearate, talcum, sodium benzoate, boric acid and colloidal silica, fatty acids, substituted triglycerides, glycerides, polyoxyalkylene glycols and the derivatives thereof.
  • the dosage form according to the invention comprises a separation layer (Z′), said layer, like the uncovered subunit (Y), may preferably consist of the above-stated materials described for the barrier layer.
  • release of the active ingredient or of component (c) and/or (d) from the particular subunit may be controlled by the thickness of the separation layer.
  • the dosage form according to the invention exhibits controlled release of the active ingredient. It is preferably suitable for twice daily administration to patients.
  • the dosage form according to the invention may comprise one or more active ingredients at least partially in controlled release form, wherein controlled release may be achieved with the assistance of conventional materials and methods known to the person skilled in the art, for example by embedding the active ingredient in a controlled release matrix or by the application of one or more controlled release coatings.
  • Active ingredient release must, however, be controlled such that the above-stated conditions are fulfilled in each case, for example that, in the event of correct administration of the dosage form, the active ingredient or active ingredients are virtually completely released before the optionally present component (c) and/or (d) can exert an impairing effect. Addition of materials effecting controlled release must moreover not impair the necessary hardness.
  • Controlled release from the dosage form according to the invention is preferably achieved by embedding the active ingredient in a matrix.
  • the auxiliary substances acting as matrix materials control active ingredient release.
  • Matrix materials may, for example, be hydrophilic, gel-forming materials, from which active ingredient release proceeds mainly by diffusion, or hydrophobic materials, from which active ingredient release proceeds mainly by diffusion from the pores in the matrix.
  • hydrophobic materials which are known to the person skilled in the art may be used as matrix materials.
  • Polymers particularly preferably cellulose ethers, cellulose esters and/or acrylic resins are preferably used as hydrophilic matrix materials.
  • Ethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, poly(meth)acrylic acid and/or the derivatives thereof, such as the salts, amides or esters thereof are very particularly preferably used as matrix materials.
  • Matrix materials prepared from hydrophobic materials such as hydrophobic polymers, waxes, fats, long-chain fatty acids, fatty alcohols or corresponding esters or ethers or mixtures thereof are also preferred.
  • Mono- or diglycerides of C12-C30 fatty acids and/or C12-C30 fatty alcohols and/or waxes or mixtures thereof are particularly preferably used as hydrophobic materials.
  • compositions of the above-stated hydrophilic and hydrophobic materials are matrix materials.
  • Component (C) and the optionally present component (D), which serve to achieve the breaking strength of at least 500 N which is necessary according to the invention may furthermore also optionally serve as additional matrix materials.
  • the dosage form according to the invention may also preferably comprise a coating which is resistant to gastric juices and dissolves as a function of the pH value of the release environment By means of this coating, it is possible to ensure that the dosage form according to the invention passes through the stomach undissolved and the active ingredient is only released in the intestines.
  • the coating which is resistant to gastric juices preferably dissolves at a pH value of between 5 and 7.5.
  • a polymer may be used as component (C) or (D)
  • the polymer is pressed to form a tablet with a diameter of 10 mm and a height of 5 mm using a force of 150 N at a temperature which at least corresponds to the softening point of the polymer and is determined with the assistance of a DSC diagram of the polymer.
  • breaking strength is determined with the apparatus described below in accordance with the method for determining the breaking strength of tablets published in the European Pharmacopoeia 1997, page 143-144, method no. 2.9.8.
  • FIG. 1 shows the measurement of the breaking strength of a tablet, in particular the tablet ( 4 ) adjustment device ( 6 ) used for this purpose before and during the measurement.
  • the tablet ( 4 ) is held between the upper pressure plate ( 1 ) and the lower pressure plate ( 3 ) of the force application apparatus (not shown) with the assistance of two 2-part clamping devices, which are in each case firmly fastened (not shown) with the upper and lower pressure plate once the spacing ( 5 ) necessary for accommodating and centring the tablet to be measured has been established.
  • the spacing ( 5 ) may be established by moving the 2-part clamping devices horizontally outwards or inwards in each case on the pressure plate on which they are mounted.
  • the tablets deemed to be resistant to breaking under a specific load include not only those which have not broken but also those which may have suffered plastic deformation under the action of the force.
  • breaking strength is determined in accordance with the stated method, dosage forms other than tablets also being tested.
  • Tramadol hydrochloride was used as the active ingredient in a series of Examples. Tramadol hydrochloride was used, despite tramadol not being an active ingredient which conventionally has abuse potential, because it is not governed by German narcotics legislation, so simplifying the experimental work. Tramadol is moreover a member of the opioid class with excellent water solubility.
  • Tramadol hydrochloride and polyethylene oxide powder were mixed in a free-fall mixer.
  • a tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 80° C. in a heating cabinet. 300 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablet could not be comminuted using a hammer, nor with the assistance of a mortar and pestle.
  • Raw material Per tablet Complete batch Tramadol hydrochloride 50 mg 100 g Polyethylene oxide, NF, 100 mg 200 g MW 7 000 000 (Polyox WSR 303, Dow Chemicals) Total weight 150 mg 300 g
  • Tramadol hydrochloride and the above-stated components were mixed in a free-fall mixer.
  • a tabletting tool with top punch, bottom punch and die for tablets with a diameter of 7 mm was heated to 80° C. in a heating cabinet.
  • 150 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N.
  • Tramadol hydrochloride, xanthan and polyethylene oxide were mixed in a free-fall mixer.
  • a tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 80° C. in a heating cabinet. 300 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablets did suffer a little plastic deformation.
  • the tablets could be cut up with a knife into pieces of an edge length of as small as approx. 2 mm. No further comminution proceeding as far as pulverisation was possible.
  • a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 09 mm injection cannula. When the gel was injected into water, the gel did not spontaneously mix with water, but remained visually distinguishable.
  • Tramadol hydrochloride, xanthan and polyethylene oxide were mixed in a free-fall mixer.
  • a tabletting tool with a top punch, bottom punch and die for oblong tablets 10 mm in length and 5 mm in width was heated to 90° C. in a heating cabinet.
  • 150 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablets did suffer a little plastic deformation.
  • the tablets could be cut up with a knife into pieces of an edge length of as small as approx 2 mm, but could not be pulverised.
  • a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 0.9 mm injection cannula. When the gel was injected into water, the gel did not spontaneously mix with water, but remained visually distinguishable.
  • the breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablets could be cut up with a knife into pieces of an edge length of as small as approx. 2 mm, but could not be pulverised.
  • a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 0.9 mm injection cannula.
  • the gel did not spontaneously mix with water, but remained visually distinguishable.
  • the tablets were produced using the same method as stated in Example 1. Round punches (diameter 10 mm) with a radius of curvature of 8 mm were used.
  • the breaking strength of the tablets was determined in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablets could not be comminuted either with a hammer or with the assistance of a mortar and pestle.
  • the individual components were mixed for 15 min in a freefall mixer.
  • the tablets were produced in accordance with Example 1 using a hot tabletting tool. Round punches (diameter 10 mm) with a radius of curvature of 8 mm were used.
  • the breaking strength of the tablets was determined in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablets could not be comminuted either with a hammer or with the is assistance of a mortar and pestle.

Abstract

The invention relates to a form of administration which is thermoformed without extrusion, comprising at least one synthetic or natural polymer having a resistance to breaking of at least 500 N in addition to one or several active ingredients with a misuse potential and, optionally physiologically compatible auxiliary substances. The invention also relates to a method for the production thereof.

Description

  • The present invention relates to an abuse-proofed dosage form thermoformed without extrusion containing, in addition to one or more active ingredients with abuse potential (A) optionally together with physiologically acceptable auxiliary substances (B), at least one synthetic or natural polymer (C) and optionally at least one wax (D), wherein component (C) and the optionally present component (D) in each case exhibits a breaking strength of at least 500 N, and to a process for the production of the dosage form according to the invention.
  • Many pharmaceutical active ingredients, in addition to having excellent activity in their appropriate application, also have abuse potential, i.e. they can be used by an abuser to bring about effects other than those intended. Opiates, for example, which are highly active in combating severe to very severe pain, are frequently used by abusers to induce a state of narcosis or euphoria.
  • In order to make abuse possible, the corresponding dosage forms, such as tablets or capsules are comminuted, for example ground in a mortar, by the abuser, the active ingredient is extracted from the resultant powder using a preferably aqueous liquid and the resultant solution, optionally after being filtered through cotton wool or cellulose wadding, is administered parenterally, in particular intravenously. An additional phenomenon of this kind of administration, in comparison with abusive oral administration, is a further accelerated increase in active ingredient levels giving the abuser the desired effect, namely the “kick” or “rush”. This kick is also obtained if the powdered dosage form is administered nasally, i.e. is sniffed. Since controlled-release dosage forms containing active ingredients with abuse potential do not give rise to the kick desired by the abuser when taken orally even in abusively high quantities, such dosage forms are also comminuted and extracted in order to be abused.
  • U.S. Pat. No. 4,070,494 proposed adding a swellable agent to the dosage form in order to prevent abuse. When water is added to extract the active ingredient, this agent swells and ensures that the filtrate separated from the gel contains only a small quantity of active ingredient.
  • The multilayer tablet disclosed in WO 95/20947 is based on a similar approach to preventing parenteral abuse, said tablet containing the active ingredient with abuse potential and at least one gel former, each in different layers.
  • WO 03/015531 A2 discloses another approach to preventing parenteral abuse. A dosage form containing an analgesic opioid and a dye as an aversive agent is described therein. The colour released by tampering with the dosage form is intended to discourage the abuser from using the dosage form which has been tampered with.
  • Another known option for complicating abuse involves adding antagonists to the active ingredients to the dosage form, for example naloxone or naltexone in the case of opioids, or compounds which cause a physiological defence response, such as for example ipecacuanha (ipecac) root.
  • However, since in most cases of abuse it is still necessary to pulverise the dosage form comprising an active ingredient suitable for abuse, it was the object of the present invention to complicate or prevent the pulverisation preceding abuse of the dosage form using the means conventionally available to a potential abuser and accordingly to provide a dosage form for active ingredients with abuse potential which ensures the desired therapeutic effect when correctly administered, but from which the active ingredients cannot be converted into a form suitable for abuse simply by pulverisation.
  • Said object has been achieved by the provision of the abuse-proofed dosage form thermoformed without extrusion according to the invention which contains, in addition to one or more active ingredients with abuse potential (A), at least one synthetic or natural polymer (C) and optionally at least one wax (D), wherein component (C) and the optionally present component (D) in each case exhibits a breaking strength of at least 500 N.
  • The use of polymers having the stated minimum breaking strength (measured as stated in the application), preferably in quantities such that the dosage form also exhibits such a minimum breaking strength of at least 500N, means that pulverisation of the dosage form is considerably more difficult using conventional means, so considerably complicating or preventing the subsequent abuse.
  • If comminution is inadequate, parenteral, in particular intravenous, administration cannot be performed safely or extraction of the active ingredient therefrom takes too long for the abuser or there is no “kick” when taken orally, as release is not instantaneous.
  • According to the invention, comminution is taken to mean pulverisation of the dosage form with conventional means which are available to an abuser, such as for example a mortar and pestle, a hammer, a mallet or other usual means for pulverisation by application of force.
  • The dosage form according to the invention is thus suitable for preventing parenteral, nasal and/or oral abuse of active ingredients, preferably of pharmaceutical active ingredients with abuse potential.
  • Pharmaceutical active ingredients with abuse potential are known to the person skilled in the art, as are the quantities thereof to be used and processes for the production thereof, and may be present in the dosage form according to the invention as such, in the form of the corresponding derivatives thereof, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof, as racemates or stereoisomers. The dosage form according to the invention is also suitable for the administration of two or more pharmaceutical active ingredients. The dosage form preferably contains only one specific active ingredient.
  • The dosage form according to the invention is in particular suitable for preventing abuse of a pharmaceutical active ingredient selected from the group comprising opioids, tranquillisers, preferably benzodiazepines, barbiturates, stimulants and other narcotics.
  • The dosage form according to the invention is very particularly suitable for preventing abuse of an opioid, tranquilliser or another narcotic selected from the group comprising N-{1-[2-(4-ethyl-5-oxo-2-tetrazolin-1-yl)ethyl]-4-methoxymethyl-4-piperidyl}propionanilide (alfentanil), 5,5-diallylbarbituric acid (allobarbital), allylprodine, alphaprodine, 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]-benzodiazepine (alprazolam), 2-diethylaminopropiophenone (amfepramone), (±)-a-methyl-phenethylamine (amphetamine), 2-(a-methylphenethylamino)-2-phenylacetonitrile (amphetaminil), 5-ethyl-5-isopentylbarbituric acid (amobarbital) anileridine, apocodeine, 5,5-diethylbarbituric acid (barbital) benzylmorphine, bezitramide, 7-bromo-5-(2-pyridyl)-1H-1,4-benzodiazepine-2(3H)-one (bromazepam), 2-bromo-4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo-[4,3-a][1,4]diazepine (brotizolam), 17-cyclopropylmethyl-4,5a-epoxy-7a[(S)-1-hydroxy-1,2,2-trimethyl-propyl]-6-methoxy-6,14-endo-ethanomorphinan-3-ol (buprenorphine), 5-butyl-5-ethylbarbituric acid (butobarbital), butorphanol, (7-chloro-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl) dimethylcarbamate (camazepam), (1S,2S)-2-amino-1-phenyl-1-propanol (cathine/D-norpseudoephedrine), 7-chloro-N-methyl-5-phenyl-3H-1,4-benzodiazepin-2-ylamine 4-oxide (chlordiazepoxide), 7-chloro-1-methyl-5-phenyl-1H-1,5-benzodiazepine-2,4(3H,5H)-dione (clobazam), 5-(2-chlorophenyl)-7-nitro-1H-1,4-benzodiazepin-2(3H)-one (clonazepam), clonitazene, 7-chloro-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepine-3-carboxylic acid (clorazepate), 5-(2-chlorophenyl)-7-ethyl-1-methyl-1H-thieno[2,3-e][1,4]diazepin-2(3H)-one (clotiazepam), 10-chloro-11b-(2-chlorophenyl)-2,3,7,11b-tetrahydrooxazolo-[3,2-d][1,4]benzodiazepin-6(5H)-one (cloxazolam), (−)-methyl-[3β-benzoyloxy-2β(1aH,5aH)-tropancarboxylate] (cocaine), 4,5a-epoxy-3-methoxy-17-methyl-7-morphinan-6a-ol (codeine), 5-(1-cyclohexenyl)-5-ethylbarbituric acid P (cyclobarbital), cyclorphan, cyprenorphine, 7-chloro-5-(2-chlorophenyl)-1H-1,4-benzodiazepin-2(3H)-one (delorazepam), desomorphine, dextromoramide, (+)-(1-benzyl-3-dimethylamino-2-methyl-1-phenylpropyl)propionate (dextropropoxyphen), dezocine, diampromide, diamorphone, 7-chloro-1-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (diazepam), 4,5a-epoxy-3-methoxy-17-methyl-6a-morphinanol (dihydrocodeine), 4,5α-epoxy-17-methyl-3,6a-morphinandiol (dihydromorphine), dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, (6aR,10aR)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol (dronabinol), eptazocine, 8-chloro-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine (estazolam), ethoheptazine, ethylmethylthiambutene, ethyl [7-chloro-5-(2-fluorophenyl)-2,3-dihydro-2-oxo-1H-1,4-benzodiazepine-3-carboxylate] (ethyl loflazepate), 4,5α-epoxy-3-ethoxy-17-methyl-7-morphinen-6α-ol (ethylmorphine), etonitazene, 4,5α-epoxy-7α-(1-hydroxy-1-methylbutyl)-6-methoxy-17-methyl-6,14-endo-etheno-morphinan-3-ol (etorphine), N-ethyl-3-phenyl-8,9,10-trinorbornan-2-ylamine (fencamfamine), 7-[2-(α-methyl-phenethylamino)ethyl]-theophylline) (fenethylline), 3-(α-methylphenethylamino)propionitrile (fenproporex), N-(1-phenethyl-4-piperidyl)propionanilide (fentanyl), 7-chloro-5-(2-fluorophenyl)-1-methyl-1H-1,4-benzodiazepin-2(3H)-one (fludiazepam), 5-(2-fluorophenyl)-1-methyl-7-nitro-1H-1,4-benzodiazepin-2(3H)-one (flunitrazepam), 7-chloro-1-(2-diethylaminoethyl)-5-(2-fluorophenyl)-1H-1,4-benzodiazepin-2(3H)-one (flurazepam), 7-chloro-5-phenyl-1-(2,2,2-trifluoroethyl)-1-H-1,4-benzodiazepin-2(3H)-one (halazepam), 10-bromo-11b-(2-fluorophenyl)-2,3,7,11b-tetrahydro[1,3]oxazolyl[3,2-d][1,4]benzodiazepin-6(5H)-one (haloxazolam), heroin, 4,5α-epoxy-3-methoxy-17-methyl-6-morphinanone (hydrocodone), 4,5α-epoxy-3-hydroxy-17-methyl-6-morphinanone (hydromorphone), hydroxypethidine, isomethadone, hydroxymethyl morphinane, 11-chloro-8,12b-dihydro-2,8-dimethyl-12b-phenyl-4H-[1,3]oxazino[3,2-d][1,4]benzodiazepine-4,7(6H)-dione (ketazolam), 1-[4-(3-hydroxyphenyl)-1-methyl-4-piperidyl]-1-propanone (ketobemidone), (3S,6S)-6-dimethylamino-4,4-diphenylheptan-3-yl acetate (levacetylmethadol (LAAM)), (−)-6-dimethyl-amino-4,4-diphenol-3-heptanone (levomethadone), (−)-17-methyl-3-morphinanol (levorphanol), levophenacylmorphane, lofentanil, 6-(2-chlorophenyl)-2-(4-methyl-1-piperazinylmethylene)-8-nitro-2H-imidazo[1,2-a][1,4]-benzodiazepin-1(4H)-one (loprazolam), 7-chloro-5-(2-chlorophenyl)-3-hydroxy-1H-1,4-benzodiazepin-2(3H)-one (lorazepamy, 7-chloro-5-(2-chlorophenyl)-3-hydroxy-1-methyl-1H-1,4-benzodiazepin-2(3H)-one (lormetazepam), 5-(4-chlorophenyl)-2,5-dihydro-3H-imidazo[2,1-a]isoindol-5-ol (mazindol), 7-chloro-2,3-dihydro-1-methyl-5-phenyl-1H-1,4-benzodiazepine (medazepam), N-(3-chloropropyl)-α-methylphenethylamine (mefenorex), meperidine, 2-methyl-2-propyltrimethylene dicarbamate (meprobamate), meptazinol, metazocine, methylmorphine, N,α-dimethylphenethylamine (methamphetaamine), (±)-6-dimethylamino-4,4-diphenyl-3-heptanone (methadone), 2-methyl-3-o-tolyl-4(3H)-quinazolinone (methaqualone) methyl [2-phenyl-2-(2-piperidyl)acetate](methylphenidate), 5-ethyl-1-methyl-5-phenylbarbituric acid (methylphenobarbital)/3,3-diethyl-5-methyl-2,4-piperidinedione (methyprylon), metopon, 8-chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5-a][1,4]benzodiazepine (midazolam), 2-(benzhydrylsulfinyl)-acetamide (modafinil), 4,5α-epoxy-17-methyl-7-morphinan-3,6α-diol (morphine), myrophine, (±)-trans-3-(1,1-dimethylheptyl)-7,8,10,10α-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[-b,d]pyran-9(6αH)-one (nabilone), nalbuphine, nalorphine, narceine, nicomorphine, 1-methyl-7-nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (nimetazepam), 7-nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (nitrazepam), 7-chloro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (nordazepam), norlevorphanol, 6-dimethylamino-4,4-diphenyl-3-hexanone (normethadone), normorphine, norpipanone, the exudation for the plants belonging to the species Papaver somniferum (opium), 7-chloro-3-hydroxy-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (oxazepam), (cis-trans)-10-chloro-2,3,7,11b-tetrahydro-2-methyl-11b-phenyloxazolo[3,2-d][1,4]benzodiazepin-6-(5H)-one (oxazolam), 4,5α-epoxy-14-hydroxy-3-methoxy-17-methyl-6-morphinanone (oxycodone), oxymorphone, plants and parts of plants belonging to the species Papaver somniferum (including the subspecies setigerum), papaveretum, 2-imino-5-phenyl-4-oxazolidinone (pernoline), 1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2,6-methano-3-benzazocin-8-ol (pentazocine), 5-ethyl-5-(1-methylbutyl)-barbituric acid (pentobarbital), ethyl (1-methyl-4-phenyl-4-piperidine carboxylate) (pethidine), phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, pholcodine, 3-methyl-2-phenylmorpholine (phermetrazine), 5-ethyl-5-phenylbarbituric acid (phenobarbital), α,α-dimethylphenethylamine (phentermine), 7-chloro-5-phenyl-1-(2-propynyl)-1H-1,4-benzodiazepin-2(3H)-one (pinazepam), α-(2-piperidyl)benzhydryl alcohol (pipradrol) 1-(3-cyano-3,3-diphenylpropyl)[1,4′-bipiperidine]-41-carboxamide (piritramide), 7-chloro-1-(cyclopropylmethyl)-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (prazepam) profadol, proheptazine, promedol, properidine, propoxyphene, N-(1-methyl-2-piperidinoethyl)-N-(2-pyridyl)propionamide, methyl{3-[4-methoxycarbonyl-4-(N-phenylpropanamido)piperidino]propanoate}(remifentanil) 5-sec-butyl-5-ethylbarbituric acid (secbutabarbital), 5-allyl-5-(1-methylbutyl)-barbituric acid (secobarbital), N-{4-methoxymethyl-1 [2-(2-thienyl)ethyl]-4-piperidyl}-propionanilide (sufentanil), 7-chloro-2-hydroxy-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (temazepam), 7-chloro-5-(1-cyclohexenyl)-1-methyl-1H-1,4-benzodiazepin-2(3H)-one (tetrazepam), ethyl (2-dimethylamino-1-phenyl-3-cyclohexene-1-carboxylate) (tilidine (cis and trans)), tramadol, 8-chloro-6-(2-chlorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine (triazolam), 5-(1-methylbutyl)-5-vinylbarbituric acid (vinylbital), (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (1R,2R,4S)-2-(dimethylamino)methyl-4-(p-fluorobenzyloxy)-1-(m-methoxyphenyl)cyclohexanol, (1R,2R)-3-(2-dimethylamino-methylcyclohexyl)phenol, (1S,2S)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (2R,3R)-1-dimethylamino-3(3-methoxyphenyl)-2-methyl-pentan-3-ol, (1RS,3RS,6RS)-6-dimethylaminomethyl-1-(3-methoxyphenyl)-cyclohexan-1,3-diol, preferably as a racemate, 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)phenyl 2-(4-isobutyl-phenyl)-propionate, 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)phenyl 2-(6-methoxy-naphthalen-2-yl)-propionate, 3-(2-dimethylamino-methyl-cyclohex-1-enyl)-phenyl 2-(4-isobutyl-phenyl)-propionate, 3-(2-dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(6-methoxy-naphthalen-2-yl)-propionate, (RR-SS)-2-acetoxy-4-trifluoromethyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-trifluoromethyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-4-chloro-2-hydroxy-benzoic acid 3-(2 dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-methyl-benzoic acid 3-(2-dimethylamino-methyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-methoxy-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-5-nitro-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-21,41-difluoro-3-hydroxy biphenyl-4-carboxylic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester and corresponding stereoisomeric compounds, the corresponding derivatives thereof in each case, in particular amides, esters or ethers, and the physiologically acceptable compounds thereof in each case, in particular the salts and solvates thereof, particularly preferably hydrochlorides.
  • The dosage form according to the invention is in particular suitable for preventing abuse of an opioid active ingredient selected from the group comprising oxycodone, hydromorphone, morphine, tramadol and the physiologically acceptable derivatives or compounds thereof, preferably the salts and solvates thereof, preferably the hydrochlorides thereof.
  • The dosage form according to the invention is furthermore in particular suitable for preventing abuse of an opioid active ingredient selected from the group comprising (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (2R,3R)-1-dimethylamino-3-(3-methoxy-phenyl)-2-methyl-pentan-3-ol, (1RS,3RS,6RS)-6-dimethylaminomethyl-1-(3-methoxy-phenyl)-cyclohexane-1,3-diol, (1R,2R)-3-(2-dimethylaminoethyl-cyclohexyl)-phenol, the physiologically acceptable salts thereof, preferably hydrochlorides, physiologically acceptable enantiomers, stereoisomers, diastereomers and racemates and the physiologically acceptable derivatives thereof, preferably ethers, esters or amides.
  • These compounds and processes for the production thereof are described in EP-A-693475 or EP-A-780369. The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.
  • In order to achieve the necessary breaking strength of the dosage form according to the invention, at least one synthetic or natural polymer (C) is used which has a breaking strength, measured using the method disclosed in the present application, of at least 500 N. At least one polymer selected from the group comprising polyalkylene oxides, preferably polymethylene oxide, polyethylene oxide, polypropylene oxide; polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, copolymers thereof, and mixtures of at least two of the stated polymers is preferably used for this purpose. High molecular weight thermoplastic polyalkylene oxides are preferred. High molecular weight polyethylene oxides with a molecular weight of at least 0.5 million, preferably of at least 1 million up to 15 million, determined by rheological measurements, are particularly preferred. These polymers have a viscosity at 25° C. of 4500 to 17600 cP, measured on a 5 wt. % aqueous solution using a model RVF Brookfield viscosimeter (spindle no. 2/rotational speed 2 rpm), of 400 to 4000 cP, measured on a 2 wt. % aqueous solution using the stated viscosimeter (spindle no. 1 or 3/rotational speed 10 rpm) or of 1650 to 10000 cP, measured on a 1 wt. % aqueous solution using the stated viscosimeter (spindle no. 2/rotational speed 2 rpm).
  • The polymers are preferably used in powder form. They may be soluble in water.
  • In order to achieve the necessary breaking strength of the dosage form according to the invention, it is furthermore possible additionally to use at least one natural or synthetic wax (D) with a breaking strength, measured using the method disclosed in the present application, of at least 500 N. Waxes with a softening point of at least 60° C. are preferred. Carnauba wax and beeswax are particularly preferred. Carnauba wax is very particularly preferred. Carnauba wax is a natural wax which is obtained from the leaves of the carnauba palm and has a softening point of at least 80° C. When the wax component is additionally used, it is used together with at least one polymer (C) in quantities such that the dosage form has a breaking strength of at least 500 N.
  • Component (C) is preferably used in an amount of 35 to 99.9 wt. %, particularly preferably of at least 50 wt. %, very particularly preferably of at least 60 wt. %, relative to the total weight of the dosage form.
  • Auxiliary substances (B) which may be used are those known auxiliary substances which are conventional for the formulation of solid dosage forms. These are preferably plasticisers, such as polyethylene glycol, auxiliary substances which influence active ingredient release, preferably hydrophobic or hydrophilic, preferably hydrophilic polymers, very particularly preferably hydroxypropylcellulose, and/or antioxidants. Suitable antioxidants are ascorbic acid, butylhydroxyanisole, butylhydroxytoluene, salts of ascorbic acid, monothioglycerol, phosphorous acid, vitamin C, vitamin E and the derivatives thereof, sodium bisulfite, particularly preferably butylhydroxytoluene (BHT) or butylhydroxyanisole (BHA) and α-tocopherol.
  • The antioxidant is preferably used in quantities of 0.01 to 10 wt. %, preferably of 0003 to 5 wt. %, relative to the total weight of the dosage form.
  • The dosage forms according to the invention are distinguished in that, due their hardness, they cannot be pulverised, for example by grinding in a mortar and pestle. This virtually rules out oral or parenteral, in particular intravenous or nasal abuse. However, in order to prevent any possible abuse of the dosage form according to the invention, the dosage forms according to the invention may, in a preferred embodiment, contain further agents which complicate or prevent abuse as auxiliary substances (B).
  • The abuse-proofed dosage form according to the invention, which comprises, apart from one or more active ingredients with abuse potential, at least one hardening polymer (C) and optionally at least one wax (D), may accordingly also comprise at least one of the following components (a)-(e) as auxiliary substances (B):
    • (a) at least one substance which irritates the nasal passages and/or pharynx,
    • (b) at least one viscosity-increasing agent, which, with the assistance of a necessary minimum quantity of an aqueous liquid, forms a gel with the extract obtained from the dosage form, which gel preferably remains visually distinguishable when introduced into a further quantity of an aqueous liquid,
    • (c) at least one antagonist for each of the active ingredients with abuse potential,
    • (d) at least one emetic,
    • (e) at least one dye as an aversive agent,
    • (f) at least one bitter substance.
  • Components (a) to (f) are additionally each individually suitable for abuse-proofing the dosage form according to the invention. Accordingly, component (a) is preferably suitable for proofing the dosage form against nasal, oral and/or parenteral, preferably intravenous abuse, component (b) is preferably suitable for proofing against parenteral, particularly preferably intravenous and/or nasal abuse, component (c) is preferably suitable for proofing against nasal and/or parenteral, particularly preferably intravenous, abuse, component (d) is preferably suitable for proofing against parenteral, particularly preferably intravenous, and/or oral and/or nasal abuse, component (e) is suitable as a visual deterrent against oral or parenteral abuse and component (f) is suitable for proofing against oral or nasal abuse. Combined use according to the invention of at least one of the above-stated components makes it possible still more effectively to prevent abuse of dosage forms according to the invention.
  • In one embodiment, the dosage form according to the invention may also comprise two or more of components (a)-(f) in a combination, preferably (a), (b) and optionally (c) and/or (f) and/or (e) or (a), (b) and optionally (d) and/or (f) and/or (e).
  • In another embodiment, the dosage form according to the invention may comprise all of components (a)-(f).
  • If the dosage form according to the invention comprises component (a) to counter abuse, substances which irritate the nasal passages and/or pharynx which may be considered according to the invention are any substances which, when administered via the nasal passages and/or pharynx, bring about a physical reaction which is either so unpleasant for the abuser that he/she does not wish to or cannot continue administration, for example burning, or physiologically counteracts taking of the corresponding active ingredient, for example due to increased nasal secretion or sneezing. These substances which conventionally irritate the nasal passages and/or pharynx may also bring about a very unpleasant sensation or even unbearable pain when administered parenterally, in particular intravenously, such that the abuser does not wish to or cannot continue taking the substance.
  • Particularly suitable substances which irritate the nasal passages and/or pharynx are those which cause burning, itching, an urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli. Appropriate substances and the quantities thereof which are conventionally to be used are known per se to the person skilled or may be identified by simple preliminary testing.
  • The substance which irritates the nasal passages and/or pharynx of component (a) is preferably based on one or more constituents or one or more plant parts of at least one hot substance drug.
  • Corresponding hot substance drugs are known per se to the person skilled in the art and are described, for example, in “Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe” by Prof. Dr Hildebert Wagner, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-New York, 1982, pages 82 et seq. The corresponding description is hereby introduced as a reference and is deemed to be part of the disclosure.
  • A dosage unit is taken to mean a separate or separable administration unit, such as for example a tablet or a capsule.
  • One or more constituents of at least one hot substance drug selected from the group consisting of Allii sativi bulbus (garlic), Asari rhizoma cum herba (Asarum root and leaves), Calami rhizoma (calamus root), Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper), Curcumae longae rhizoma (turmeric root), Curcumae xanthorrhizae rhizoma (Javanese turmeric root), Galangae rhizoma (galangal root), Myristicae semen (nutmeg), Piperis nigri fructus (pepper), Sinapis albae semen (white mustard seed), Sinapis nigri semen (black mustard seed), Zedoariae rhizoma (zedoary root) and Zi-ngiberis rhizoma (ginger root), particularly preferably from the group consisting of Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper) and Piperis nigri fructus (pepper) may preferably be added as component (a) to the dosage form according to the invention.
  • The constituents of the hot substance drugs preferably comprise o-methoxy(methyl)phenol compounds, acid amide compounds, mustard oils or sulfide compounds or compounds derived therefrom.
  • Particularly preferably, at least one constituent of the hot substance drugs is selected from the group consisting of myristicin, elemicin, isoeugenol, α-asarone, safrole, gingerols, xanthorrhizol, capsaicinoids, preferably capsaicin, capsaicin derivatives, such as N-vanillyl-9E-octadecenamide, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, norcapsaicin and nomorcapsaicin, piperine, preferably trans-piperine, glucosinolates, preferably based on non-volatile mustard oils, particularly preferably based on p-hydroxybenzyl mustard oil, methylmercapto mustard oil or methylsulfonyl mustard oil, and compounds derived from these constituents.
  • The dosage form according to the invention may preferably contain the plant parts of the corresponding hot substance drugs in a quantity of 0.01 to 30 wt. %, particularly preferably of 0.1 to 0.5 wt. %, in each case relative to the total weight of the dosage unit.
  • If one or more constituents of corresponding hot substance drugs are used, the quantity thereof in a dosage unit according to the invention preferably amounts to 0.001 to 0.005 wt. %, relative to the total weight of the dosage unit.
  • Another option for preventing abuse of the dosage form according to the invention consists in adding at least one viscosity-increasing agent as a further abuse-preventing component (b) to the dosage form, which, with the assistance of a necessary minimum quantity of an aqueous liquid, forms a gel with the extract obtained from the dosage form, which gel is virtually impossible to administer safely and preferably remains visually distinguishable when introduced into a further quantity of an aqueous liquid.
  • For the purposes of the present invention, visually distinguishable means that the active ingredient-containing gel formed with the assistance of a necessary minimum quantity of aqueous liquid, when introduced, preferably with the assistance of a hypodermic needle, into a further quantity of aqueous liquid at 37° C., remains substantially insoluble and cohesive and cannot straightforwardly be dispersed in such a manner that it can safely be administered parenterally, in particular intravenously. The material preferably remains visually distinguishable for at least one minute, preferably for at least 10 minutes.
  • The increased viscosity of the extract makes it more difficult or even impossible for it to be passed through a needle or injected. If the gel remains visually distinguishable, this means that the gel obtained on introduction into a further quantity of aqueous liquid, for example by injection into blood, initially remains in the form of a largely cohesive threads which, while it may indeed be broken up into smaller fragments, cannot be dispersed or even dissolved in such a manner that it can safely be administered parenterally, in particular intravenously. In combination with at least one optionally present component (a) to (e), this additionally leads to unpleasant burning, vomiting, bad flavour and/or visual deterrence.
  • Intravenous administration of such a gel would most probably result in obstruction of blood vessels, associated with serious harm to the health of the abuser.
  • In order to verify whether a viscosity-increasing agent is suitable as component (b) for use in the dosage form according to the invention, the active ingredient is mixed with the viscosity-increasing agent and suspended in 10 ml of water at a temperature of 25° C. If this results in the formation of a gel which fulfils the above-stated conditions, the corresponding viscosity-increasing agent is suitable for preventing or averting abuse of the dosage forms according to the invention.
  • If component (b) is added to the dosage form according to the invention, one or more viscosity-increasing agents are used which are selected from the group comprising microcrystalline cellulose with 11 wt. % carboxymethylcellulose sodium (Avicel® RC 591), carboxymethylcellulose sodium (Blanose®, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300 P®), polyacrylic acid (Carbopol® 980 NF, Carbopol® 981), locust bean flour (Cesagum® LA-200, Cesagum® LID/150, Cesagum® LN-1), pectins, preferably from citrus fruits or apples (Cesapectin® HM Medium Rapid Set), waxy maize starch (C*Gel 04201®), sodium alginate (Frimulsion ALG (E401)®), guar flour (Frimulsion BM®, Polygum 26/1-75®), iota carrageen (Frimulsion D021®), karaya gum, gellan gum (Kelcogel F®, Kelcogel LT1001), galactomannan (Meyprogat 150®), tara bean flour (Polygum 43/1®), propylene glycol alginate (Protanal-Ester SD-LB®), sodium hyaluronate, tragacanth, tara gum (Vidogum SP 2000), fermented polysaccharide welan gum (K1A96), xanthan gum (Xantural 180®). Xanthans are particularly preferred. The names stated in brackets are the trade names by which the materials are known commercially. In general, a quantity of 0.1 to 20 wt. %, particularly preferably of 0.1 to 15 wt. % of the stated viscosity-increasing agent(s) is sufficient to fulfil the above-stated conditions.
  • The component (b) viscosity-increasing agents, where provided, are preferably present in the dosage form according to the invention in quantities of ≧5 mg per dosage unit, i.e. per administration unit.
  • In a particularly preferred embodiment of the present invention, the viscosity-increasing agents used as component (b) are those which, on extraction from the dosage form with the necessary minimum quantity of aqueous liquid, form a gel-which encloses air bubbles. The resultant gels are distinguished by a turbid appearance, which provides the potential abuser with an additional optical warning and discourages him/her from administering the gel parenterally.
  • Component (C) may also optionally serves as an additional viscosity-increasing agent which, with the assistance of a minimum necessary quantity of an aqueous liquid, forms a gel.
  • It is also possible to formulate the viscosity-increasing agent and the other constituents in the dosage form according to the invention in a mutually spatially separated arrangement.
  • In order to discourage and prevent abuse, the dosage form according to the invention may furthermore comprise component (c), namely one or more antagonists for the active ingredient or active ingredients with abuse potential, wherein the antagonists are preferably spatially separated from the remaining constituents of the invention dosage according to the form and, when correctly used, do not exert any effect.
  • Suitable antagonists for preventing abuse of the active ingredients are known per se to the person skilled in the art and may be present in the dosage form according to the invention as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.
  • If the active ingredient present in the dosage form is an opioid, the antagonist used is preferably an antagonist selected from the group comprising naloxone, naltrexone, nalmefene, nalid, nalmexone, nalorphine or naluphine, in each case optionally in the form of a corresponding physiologically acceptable compound, in particular in the form of a base, a salt or solvate. The corresponding antagonists, where component (c) is provided, are preferably used in a quantity of 21 mg, particularly preferably in a quantity of 3 to 100 mg, very particularly preferably in a quantity of 5 to 50 mg per dosage form, i.e. per administration unit.
  • If the dosage form according to the invention comprises a stimulant as active ingredient, the antagonist is preferably a neuroleptic, preferably at least one compound selected from the group consisting of haloperidol, promethazine, fluphenazine, perphenazine, levomepromazine, thioridazine, perazine, chlorpromazine, chlorprothixine, zuclopentixol, flupentixol, prothipendyl, zotepine, benperidol, pipamperone, melperone and bromperidol.
  • The dosage form according to the invention preferably comprises these antagonists in a conventional therapeutic dose known to the person skilled in the art, particularly preferably in a quantity of twice to four times the conventional dose per administration unit.
  • If the combination to discourage and prevent abuse of the dosage form according to the invention comprises component (d), it may comprise at least one emetic, which is preferably present in a spatially separated arrangement from the other components of the dosage form according to the invention and, when correctly used, is intended not to exert its effect in the body.
  • Suitable emetics for preventing abuse of an active ingredient are known per se to the person skilled in the art and may be present in the dosage form according to the invention as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.
  • An emetic based on one or more constituents of ipecacuanha (ipecac) root, preferably based on the constituent emetine may preferably be considered in the dosage form according to the invention, as are, for example, described in “Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart, New York, 1982 The corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure.
  • The dosage form according to the invention may preferably comprise the emetic emetine as component (d), preferably in a quantity of ≧3 mg, particularly preferably of ≧10 mg and very particularly preferably in a quantity of ≧20 mg per dosage form, i.e. administration unit.
  • Apomorphine may likewise preferably be used as an emetic in the abuse-proofing according to the invention, preferably in a quantity of preferably ≧3 mg, particularly preferably of ≧5 mg and very particularly preferably of ≧7 mg per administration unit.
  • If the dosage form according to the invention contains component (e) as a further abuse-preventing auxiliary substance, the use of a such a dye brings about an intense coloration of a corresponding aqueous solution, in particular when the attempt is made to extract the active ingredient for parenteral, preferably intravenous administration, which coloration may act as a deterrent to the potential abuser. Oral abuse, which conventionally begins by means of aqueous extraction of the active ingredient, may also be prevented by this coloration. Suitable dyes and the quantities required for the necessary deterrence may be found in WO 03/015531, wherein the corresponding disclosure should be deemed to be part of the present disclosure and is hereby introduced as a reference.
  • If the dosage form according to the invention contains component (f) as a further abuse-preventing auxiliary substance, this addition of at least one bitter substance and the consequent impairment of the flavour of the dosage form additionally prevents oral and/or nasal abuse.
  • Suitable bitter substances and the quantities effective for use may be found in US-2003/0064099 A1, the corresponding disclosure of which should be deemed to be the disclosure of the present application and is hereby introduced as a reference. Suitable bitter substances are preferably aromatic oils, preferably peppermint oil, eucalyptus oil, bitter almond oil, menthol, fruit aroma substances, preferably aroma substances from lemons, oranges, limes, grapefruit or mixtures thereof, and/or denatonium benzoate (Bitrex®). Denatonium benzoate is particularly preferred.
  • The solid dosage form according to the invention is suitable to be taken orally, vaginally or rectally, preferably orally. The dosage form is preferably not in film form.
  • The dosage form according to the invention may assume multiparticulate form, preferably in the form of microtablets, microcapsules, micropellets, granules, spheroids, beads or pellets, optionally packaged in capsules or pressed into tablets, preferably for oral administration. The multiparticulate forms preferably have a size or size distribution in the range from 0.1 to 3 mm, particularly preferably in the range from 0.5 to 2 mm. Depending on the desired dosage form, conventional auxiliary substances (B) are optionally also used for the formulation of the dosage form.
  • The solid, abuse-proofed dosage form according to the invention is preferably produced without using an extruder by mixing components (A), (B), (C) and optionally (D) and optionally at least one of the optionally present further abuse-preventing components (a)-(f) or, if necessary, by separate mixing with the addition of component (C) and optionally component (D), and, optionally after granulation, shaping the resultant mixture or mixtures by application of force to yield the dosage form with preceding or simultaneous exposure to heat.
  • Heating and application of force for the production of the dosage form proceed without using an extruder.
  • Mixing of components (A), (B), (C) and optionally (D) and of the optionally present further components (a)-(f) and optionally of components (C) and the optionally present component (D) proceeds optionally in each case in a mixer known to the person skilled in the art. The mixer may, for example, be a roll mixer, shaking mixer, shear mixer or compulsory mixer.
  • The resultant mixture is preferably shaped directly by application of force to yield the dosage form according to the invention with preceding or simultaneous exposure to heat. The mixture may, for example, be formed into tablets by direct tabletting. In direct tabletting with simultaneous exposure to heat, the tabletting tool, i.e. bottom punch, top punch and die are briefly heated at least to the softening temperature of the polymer component (C) and pressed together. In direct tabletting with preceding exposure to heat, the material to be pressed is heated immediately prior to tabletting at least to the softening temperature of component (C) and then pressed with the tabletting tool.
  • The resultant mixture of components (A), (B), (C) and optionally (D) and the optionally present components (a) to (f) or the mixture of at least one of these components (a) to (f) with component (C) may also first be granulated and then be shaped by application of force with preceding or simultaneous exposure to heat to yield the dosage form according to the invention.
  • When force is applied, it is applied until the dosage form has achieved a breaking hardness of at least 500 N.
  • Granulation may be performed in known granulators by wet granulation or melt granulation.
  • Each of the above-mentioned process steps, in particular the heating steps and simultaneous or subsequent application of force for production of the dosage form according to the invention proceeds without using an extruder.
  • In a further preferred embodiment, the dosage form according to the invention assumes the form of a tablet, a capsule or is in the form of an oral osmotic therapeutic system (OROS), preferably if at least one further abuse-preventing component (a)-(f) is also present.
  • If components (c) and/or (d) and/or (f) are present in the dosage form according to the invention, care must be taken to ensure that they are formulated in such a manner or are present in such a low dose that, when correctly administered, said components are able to bring about virtually no effect which impairs the patient or the efficacy of the active ingredient.
  • If the dosage form according to the invention contains component (d) and/or (f), the dosage must be selected such that, when correctly orally administered, no negative effect is caused. If, however, the intended dosage of the dosage form is exceeded in the event of abuse, nausea or an inclination to vomit or a bad flavour are produced. The particular quantity of component (d) and/or (f) which can still be tolerated by the patient in the event of correct oral administration may be determined by the person skilled in the art by simple preliminary testing.
  • If, however, irrespective of the fact that the dosage form according to the invention is virtually impossible to pulverise, the dosage form containing the components (c) and/or (d) and/or (f) is provided with protection, these components should preferably be used at a dosage which is sufficiently high that, when abusively administered, they bring about an intense negative effect on the abuser. This is preferably achieved by spatial separation of at least the active ingredient or active ingredients from components (c) and/or (d) and/or (f), wherein the active ingredient or active ingredients is/are present in at least one subunit (X) and components (c) and/or (d) and/or (f) is/are present in at least one subunit (Y), and wherein, when the dosage form is correctly administered, components (c), (d) and (f) do not exert their effect on taking and/or in the body and the remaining components of the formulation, in particular component (C) and optionally (D), are identical.
  • If the dosage form according to the invention comprises at least 2 of components (c) and (d) or (f), these may each be present in the same or different subunits (Y). Preferably, when present, all the components (c) and (d) and (f) are present in one and the same subunit (Y).
  • For the purposes of the present invention, subunits are solid formulations, which in each case, apart from conventional auxiliary substances known to the person skilled in the art, contain the active ingredient(s), at least one polymer (C) and the optionally present component (D) and optionally at least one of the optionally present components (a) and/or (b) and/or (e) or in each case at least one polymer (C) and optionally (D) and the antagonist(s) and/or emetic(s) and/or component (e) and/or component (f) and optionally at least one of the optionally present components (a) and/or (b). Care must here be taken to ensure that each of the subunits is formulated in accordance with the above-stated process.
  • One substantial advantage of the separated formulation of active ingredients from components (c) or (d) or (f) in subunits (X) and (Y) of the dosage form according to the invention is that, when correctly administered, components (c) and/or (d) and/or (f) are hardly released on taking and/or in the body or are released in such small quantities that they exert no effect which impairs the patient or therapeutic success or, on passing through the patient's body, they are only liberated in locations where they cannot be sufficiently absorbed to be effective. When the dosage form is correctly administered, preferably hardly any of components (c) and/or (d) and/or (f) is released into the patient's body or they go unnoticed by the patient.
  • The person skilled in the art will understand that the above-stated conditions may vary as a function of the particular components (c), (d) and/or (f) used and of the formulation of the subunits or the dosage form. The optimum formulation for the particular dosage form may be determined by simple preliminary testing. What is vital is that each subunit contains the polymer (C) and optionally component (D) and has been formulated in the above-stated manner.
  • Should, contrary to expectations, the abuser succeed in comminuting such a dosage form according to the invention, which comprises components (c) and/or (e) and/or (d) and/or (f) in subunits (Y), for the purpose of abusing the active ingredient and obtain a powder which is extracted with a suitable extracting agent, not only the active ingredient but also the particular component (c) and/or (e) and/or (f) and/or (d) will be obtained in a form in which it cannot readily be separated from the active ingredient, such that when the dosage form which has been tampered with is administered, in particular by oral and/or parenteral administration, it will exert its effect on taking and/or in the body combined with an additional negative effect on the abuser corresponding to component (c) and/or (d) and/or (f) or, when the attempt is made to extract the active ingredient, the coloration will act as a deterrent and so prevent abuse of the dosage form.
  • A dosage form according to the invention, in which the active ingredient or active ingredients is/are spatially separated from components (c), (d) and/or (e), preferably by formulation in different subunits, may be formulated in many different ways, wherein the corresponding subunits may each be present in the dosage form according to the invention in any desired spatial arrangement relative to one another, provided that the above-stated conditions for the release of components (c) and/or (d) are fulfilled.
  • The person skilled in the art will understand that component(s) (a) and/or (b) which are optionally also present may preferably be formulated in the dosage form according to the invention both in the particular subunits (X) and (Y) and in the form of independent subunits corresponding to subunits (X) and (Y), provided that neither the abuse-proofing nor the active ingredient release in the event of correct administration is impaired by the nature of the formulation and the polymer (C) and optionally (D) is included in the formulation and formulation is carried out in accordance with the above-stated process in order to achieve the necessary hardness.
  • In a preferred embodiment of the dosage form according to the invention, subunits (X) and (Y) are present in multiparticulate form, wherein microtablets, microcapsules, micropellets, granules, spheroids, beads or pellets are preferred and the same form, i.e. shape, is selected for both subunit (X) and subunit (Y), such that it is not possible to separate subunits (X) from (Y) by mechanical selection. The multiparticulate forms are preferably of a size in the range from 0.1 to 3 mm, preferably of 0.5 to 2 mm.
  • The subunits (X) and (Y) in multiparticulate form may also preferably be packaged in a capsule or be pressed into a tablet, wherein the final formulation in each case proceeds in such a manner that the subunits (X) and (Y) are also retained in the resultant dosage form.
  • The multiparticulate subunits (X) and (Y) of identical shape should also not be visually distinguishable from one another so that the abuser cannot separate them from one another by simple sorting. This may, for example, be achieved by the application of identical-coatings which, apart from this disguising function, may also incorporate further functions, such as, for example, controlled release of one or more active ingredients or provision of a finish resistant to gastric juices on the particular subunits.
  • The multiparticulate subunits may also be formulated as an oral dosage form as a slurry or suspension in pharmaceutically safe suspending media.
  • In a further preferred embodiment of the present invention, subunits (X) and (Y) are in each case arranged in layers relative to one another.
  • The layered subunits (X) and (Y) are preferably arranged for this purpose vertically or horizontally relative to one another in the dosage form according to the invention, wherein in each case one or more layered subunits (X) and one or more layered subunits (Y) may be present in the dosage form, such that, apart from the preferred layer sequences (X) —(Y) or (X) —(Y)—(X), any desired other layer sequences may be considered, optionally in combination with layers containing components (a) and/or (b).
  • Another preferred dosage form according to the invention is one in which subunit (Y) forms a core which is completely enclosed by subunit (X), wherein a separation layer (Z) may be present between said layers. Such a structure is preferably also suitable for the above-stated multiparticulate forms, wherein both subunits (X) and (Y) and an optionally present separation layer (Z), which must satisfy the hardness requirement according to the invention, are formulated in one and the same multiparticulate form. In a further preferred embodiment of the dosage form according to the invention, the subunit (X) forms a core, which is enclosed by subunit (Y), wherein the latter comprises at least one channel which leads from the core to the surface of the dosage form.
  • The dosage form according to the invention may comprise, between one layer of the subunit (X) and one layer of the subunit (Y), in each case one or more, preferably one, optionally swellable separation layer (Z) which serves to separate subunit (X) spatially from (Y).
  • If the dosage form according to the invention comprises the layered subunits (X) and (Y) and an optionally present separation layer (Z) in an at least partially vertical or horizontal arrangement, the dosage form preferably takes the form of a tablet, a coextrudate or a laminate.
  • In one particularly preferred embodiment, the entirety of the free surface of subunit (Y) and optionally at least part of the free surface of subunit(s) (X) and optionally at least part of the free surface of the optionally present separation layer(s) (Z) may be coated with at least one barrier layer (Z′) which prevents release of component (c) and/or (e) and/or (d) and/or (f). The barrier layer (Z′) must also fulfil the hardness conditions according to the invention.
  • Another particularly preferred embodiment of the dosage form according to the invention comprises a vertical or horizontal arrangement of the layers of subunits (X) and (Y) and at least one push layer (p) arranged therebetween, and optionally a separation layer (Z), in which dosage form the entirety of the free surface of layer structure consisting of subunits (X) and (Y), the push layer and the optionally present separation layer (Z) is provided with a semipermeable coating (E), which is permeable to a release medium, i.e. conventionally a physiological liquid, but substantially impermeable to the active ingredient and to component (c) and/or (d) and/or (f), and wherein this coating (E) comprises at least one opening for release of the active ingredient in the area of subunit (X).
  • A corresponding dosage form is known to the person skilled in the art, for example under the name oral osmotic therapeutic system (OROS), as are suitable materials and methods for the production thereof, inter alia from U.S. Pat. No. 4,612,008, U.S. Pat. No. 4,765,989 and U.S. Pat. No. 4,783,337. The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.
  • In a further preferred embodiment, the subunit (X) of the dosage form according to the invention is in the form of a tablet, the edge face of which and optionally one of the two main faces is covered with a barrier layer (Z′) containing component (c) and/or (d) and/or (f).
  • The person skilled in the art will understand that the auxiliary substances of the subunit(s) (X) or (Y) and of the optionally present separation layer(s) (Z) and/or of the barrier layer(s) (Z′) used in formulating the dosage form according to the invention will vary as a function of the arrangement thereof in the dosage form according to the invention, the mode of administration and as a function of the particular active ingredient of the optionally present components (a) and/or (b) and/or (e) and of component (c) and/or (d) and/or (f). The materials which have the requisite properties are in each case known per se to the person skilled in the art.
  • If release of component (c) and/or (d) and/or (f) from subunit (Y) of the dosage form according to the invention is prevented with the assistance of a cover, preferably a barrier layer, the subunit may consist of conventional materials known to the person skilled in the art, providing that it contains at least one polymer (C) and optionally (D) to fulfil the hardness condition of the dosage form according to the invention.
  • If a corresponding barrier layer (Z′) is not provided to prevent release of component (c) and/or (d) and/or (f), the materials of the subunits should be selected such that release of the particular component (c) and/or (d) from subunit (Y) is virtually ruled out. The materials which are stated below to be suitable for production of the barrier layer may preferably be used for this purpose.
  • Preferred materials are those which are selected from the group comprising alkylcelluloses, hydroxyalkylcelluloses, glucans, scleroglucans, mannans, xanthans, copolymers of poly[bis (p-carboxyphenoxy)propane and sebacic acid, preferably in a molar ratio of 20:80 (commercially available under the name Polifeprosan 200), carboxymethylcelluloses, cellulose ethers, cellulose esters, nitrocelluloses, polymers based on (meth)acrylic acid and the esters thereof, polyamides, polycarbonates, polyalkylenes, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, halogenated polyvinyls, polyglycolides, polysiloxanes and polyurethanes and the copolymers thereof.
  • Particularly suitable materials may be selected from the group comprising methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxybutylmethylcellulose, cellulose acetate, cellulose propionate (of low, medium or high molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethylcellulose, cellulose triacetate, sodium cellulose sulfate, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyisobutyl methacrylate, polyhexyl methacrylate, polyisodecyl methacrylate, polylauryl methacrylate, polyphenyl methacrylate, polymethyl acrylate, polyisopropyl acrylate, polyisobutyl acrylate, polyoctadecyl acrylate, polyethylene, low density polyethylene, high density polyethylene, polypropylene, polyethylene glycol, polyethylene oxide, polyethylene terephthalate, polyvinyl alcohol, polyvinyl isobutyl ether, polyvinyl acetate and polyvinyl chloride.
  • Particularly suitable copolymers may be selected from the group comprising copolymers of butyl methacrylate and isobutyl methacrylate, copolymers of methyl vinyl ether and maleic acid with high molecular weight, copolymers of methyl vinyl ether and maleic acid monoethyl ester, copolymers of methyl vinyl ether and maleic anhydride and copolymers of vinyl alcohol and vinyl acetate.
  • Further materials which are particularly suitable for formulating the barrier layer are starch-filled polycaprolactone (WO98/20073), aliphatic polyesteramides (DE 19 753 534 A1, DE 19 800 698 A1, EP 0 820 698 A1), aliphatic and aromatic polyester urethanes (DE 19822979), polyhydroxyalkanoates, in particular polyhydroxybutyrates, polyhydroxyvalerates, casein (DE 4 309 528), polylactides and copolylactides (EP 0 980 894 A1). The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.
  • The above-stated materials may optionally be blended with further conventional auxiliary substances known to the person skilled in the art, preferably selected from the group comprising glyceryl monostearate, semi-synthetic triglyceride derivatives, semi-synthetic glycerides, hydrogenated castor oil, glyceryl palmitostearate, glyceryl behenate, polyvinylpyrrolidone, gelatine, magnesium stearate, stearic acid, sodium stearate, talcum, sodium benzoate, boric acid and colloidal silica, fatty acids, substituted triglycerides, glycerides, polyoxyalkylene glycols and the derivatives thereof.
  • If the dosage form according to the invention comprises a separation layer (Z′), said layer, like the uncovered subunit (Y), may preferably consist of the above-stated materials described for the barrier layer. The person skilled in the art will understand that release of the active ingredient or of component (c) and/or (d) from the particular subunit may be controlled by the thickness of the separation layer.
  • The dosage form according to the invention exhibits controlled release of the active ingredient. It is preferably suitable for twice daily administration to patients.
  • The dosage form according to the invention may comprise one or more active ingredients at least partially in controlled release form, wherein controlled release may be achieved with the assistance of conventional materials and methods known to the person skilled in the art, for example by embedding the active ingredient in a controlled release matrix or by the application of one or more controlled release coatings. Active ingredient release must, however, be controlled such that the above-stated conditions are fulfilled in each case, for example that, in the event of correct administration of the dosage form, the active ingredient or active ingredients are virtually completely released before the optionally present component (c) and/or (d) can exert an impairing effect. Addition of materials effecting controlled release must moreover not impair the necessary hardness.
  • Controlled release from the dosage form according to the invention is preferably achieved by embedding the active ingredient in a matrix. The auxiliary substances acting as matrix materials control active ingredient release. Matrix materials may, for example, be hydrophilic, gel-forming materials, from which active ingredient release proceeds mainly by diffusion, or hydrophobic materials, from which active ingredient release proceeds mainly by diffusion from the pores in the matrix.
  • Physiologically acceptable, hydrophobic materials which are known to the person skilled in the art may be used as matrix materials. Polymers, particularly preferably cellulose ethers, cellulose esters and/or acrylic resins are preferably used as hydrophilic matrix materials. Ethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, poly(meth)acrylic acid and/or the derivatives thereof, such as the salts, amides or esters thereof are very particularly preferably used as matrix materials.
  • Matrix materials prepared from hydrophobic materials, such as hydrophobic polymers, waxes, fats, long-chain fatty acids, fatty alcohols or corresponding esters or ethers or mixtures thereof are also preferred. Mono- or diglycerides of C12-C30 fatty acids and/or C12-C30 fatty alcohols and/or waxes or mixtures thereof are particularly preferably used as hydrophobic materials.
  • It is also possible to use mixtures of the above-stated hydrophilic and hydrophobic materials as matrix materials. Component (C) and the optionally present component (D), which serve to achieve the breaking strength of at least 500 N which is necessary according to the invention may furthermore also optionally serve as additional matrix materials.
  • If the dosage form according to the invention is intended for oral administration, it may also preferably comprise a coating which is resistant to gastric juices and dissolves as a function of the pH value of the release environment By means of this coating, it is possible to ensure that the dosage form according to the invention passes through the stomach undissolved and the active ingredient is only released in the intestines. The coating which is resistant to gastric juices preferably dissolves at a pH value of between 5 and 7.5.
  • Corresponding materials and methods for the controlled release of active ingredients and for the application of coatings which are resistant to gastric juices are known to the person skilled in the art, for example from “Coated Pharmaceutical Dosage Forms—Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials” by Kurt H. Bauer, K. Lehmann, Hermann P. Osterwald, Rothgang, Gerhart, 1st edition, 1998, Medpharm Scientific Publishers. The corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure.
  • Method for Determining Breaking Strength
  • In order to verify whether a polymer may be used as component (C) or (D), the polymer is pressed to form a tablet with a diameter of 10 mm and a height of 5 mm using a force of 150 N at a temperature which at least corresponds to the softening point of the polymer and is determined with the assistance of a DSC diagram of the polymer. Using tablets produced in this manner, breaking strength is determined with the apparatus described below in accordance with the method for determining the breaking strength of tablets published in the European Pharmacopoeia 1997, page 143-144, method no. 2.9.8. The apparatus used for the measurement is a “Zwick Z 2.5” materials tester, Fmax=2.5 kN with a maximum draw of 1150 nm n, which should be set up with 1 column and 1 spindle, a clearance behind of 100 mm and a test speed adjustable between 0.1 and 800 mm/min together with testControl software. Measurement is performed using a pressure piston with screw-in inserts and a cylinder (diam. 10 mm), a force transducer, Fmax. 1 kN, diameter=8 mm, class 0.5 from 10 N, class 1 from 2 N to ISO 7500-1, with manufacturer's test certificate M to DIN 55350-18 (Zwick gross force Fmax=1.45 kN) (all apparatus from Zwick GmbH & Co. KG, Ulm, Germany) with order no. BTC-FR 2.5 TH. D09 for the tester, order no. BTC-LC 0050N. P01 for the force transducer, order no. BO 70000 S06 for the centring device.
  • FIG. 1 shows the measurement of the breaking strength of a tablet, in particular the tablet (4) adjustment device (6) used for this purpose before and during the measurement. To this end, the tablet (4) is held between the upper pressure plate (1) and the lower pressure plate (3) of the force application apparatus (not shown) with the assistance of two 2-part clamping devices, which are in each case firmly fastened (not shown) with the upper and lower pressure plate once the spacing (5) necessary for accommodating and centring the tablet to be measured has been established. The spacing (5) may be established by moving the 2-part clamping devices horizontally outwards or inwards in each case on the pressure plate on which they are mounted.
  • The tablets deemed to be resistant to breaking under a specific load include not only those which have not broken but also those which may have suffered plastic deformation under the action of the force.
  • In the case of the dosage forms according to the invention, breaking strength is determined in accordance with the stated method, dosage forms other than tablets also being tested.
  • The following Examples illustrate the invention purely by way of example and without restricting the general concept of the invention.
  • EXAMPLES
  • Tramadol hydrochloride was used as the active ingredient in a series of Examples. Tramadol hydrochloride was used, despite tramadol not being an active ingredient which conventionally has abuse potential, because it is not governed by German narcotics legislation, so simplifying the experimental work. Tramadol is moreover a member of the opioid class with excellent water solubility.
  • Example 1
  • Complete
    Components Per tablet batch
    Tramadol hydrochloride 100 mg 100 g
    Polyethylene oxide, NF, 200 mg 200 g
    MW 7 000 000 (Polyox WSR 303, Dow
    Chemicals)
    Total weight 300 mg 300 g
  • Tramadol hydrochloride and polyethylene oxide powder were mixed in a free-fall mixer. A tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 80° C. in a heating cabinet. 300 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N. The tablet could not be comminuted using a hammer, nor with the assistance of a mortar and pestle.
  • In vitro release of the active ingredient from the preparation was determined in a paddle stirrer apparatus in accordance with Pharm. Eur. The temperature of the release medium was 37° C. and the rotational speed of the stirrer 75 min−1. At the beginning of the investigation, each tablet was placed in a 600 ml portion of artificial gastric juice, pH 12. After 30 minutes, the pH value was increased to 2.3 by addition of alkali solution, after a further 90 minutes to pH 6.5 and after a further 60 minutes to pH 7.2. The released quantity of active ingredient present in the dissolution medium at each point in time was determined by spectrophotometry.
  • Time Released quantity
     30 min 15%
    240 min 52%
    480 min 80%
    720 min 99%
  • Example 2
  • 300 mg portions of the powder mixture from Example 1 were heated to 80° C. and in placed in the die of the tabletting tool. Pressing was then performed. The tablet exhibits the same properties such as the tablet in Example 1.
  • Example 3
  • Raw material Per tablet Complete batch
    Tramadol hydrochloride  50 mg 100 g
    Polyethylene oxide, NF, 100 mg 200 g
    MW 7 000 000 (Polyox WSR 303,
    Dow Chemicals)
    Total weight 150 mg 300 g
  • Tramadol hydrochloride and the above-stated components were mixed in a free-fall mixer. A tabletting tool with top punch, bottom punch and die for tablets with a diameter of 7 mm was heated to 80° C. in a heating cabinet. 150 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N.
  • In vitro release of the active ingredient was determined as in Example 1 and was:
  • Time Released quantity
     30 min 15%
    240 min 62%
    480 min 88%
    720 min 99%
  • Example 4
  • Complete
    Raw material Per tablet batch
    Tramadol hydrochloride 100 mg 100 g
    Polyethylene oxide, NF, 180 mg 180 g
    MW 7 000 000 (Polyox WSR
    303, Dow Chemicals)
    Xanthan, NF  20 mg  20 g
    Total weight 300 mg 300 g
  • Tramadol hydrochloride, xanthan and polyethylene oxide were mixed in a free-fall mixer. A tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 80° C. in a heating cabinet. 300 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N. The tablets did suffer a little plastic deformation.
  • In vitro release of the active ingredient was determined as in Example 1 and was:
  • Time Released quantity
     30 min 14%
    240 min 54%
    480 min 81%
    720 min 99%
  • The tablets could be cut up with a knife into pieces of an edge length of as small as approx. 2 mm. No further comminution proceeding as far as pulverisation was possible. When the pieces are combined with water, a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 09 mm injection cannula. When the gel was injected into water, the gel did not spontaneously mix with water, but remained visually distinguishable.
  • Example 5
  • Complete
    Raw material Per tablet batch
    Tramadol hydrochloride  50 mg 100 g
    Polyethylene oxide, NF,  90 mg 180 g
    MW 7 000 000 (Polyox WSR
    303, Dow Chemicals)
    Xanthan, NF  10 mg  20 g
    Total weight 300 mg 300 g
  • Tramadol hydrochloride, xanthan and polyethylene oxide were mixed in a free-fall mixer. A tabletting tool with a top punch, bottom punch and die for oblong tablets 10 mm in length and 5 mm in width was heated to 90° C. in a heating cabinet. 150 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N. The tablets did suffer a little plastic deformation.
  • In vitro release of the active ingredient was determined as in Example 1 and was:
  • Time Released quantity
     30 min 22%
    120 min 50%
    240 min 80%
    360 min 90%
    480 min 99%
  • The tablets could be cut up with a knife into pieces of an edge length of as small as approx 2 mm, but could not be pulverised. When the pieces are combined with water, a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 0.9 mm injection cannula. When the gel was injected into water, the gel did not spontaneously mix with water, but remained visually distinguishable.
  • Example 6
  • A tablet with the following composition was produced as described in Example 1:
  • Components Per tablet Per batch
    Oxycodone hydrochloride  20.0 mg 0.240 g
    Xanthan, NF  20.0 mg 0.240 g
    Polyethylene oxide, NF, 110.0 mg 1.320 g
    MW 7 000 000 (Polyox WSR 303,
    Dow Chemicals)
    Total weight 150.0 mg 1.800 g
  • Release of the active ingredient was determined as follows:
  • In vitro release of the active ingredient from the preparation was determined in a paddle stirrer apparatus in accordance with Pharm. Eur. The temperature of the release medium was 37° C. and the rotational speed 75 rpm. The phosphate buffer, pH 6.8, described in USP served as the release medium. The quantity of active ingredient present in the solvent at the particular time of testing was determined by spectrophotometry.
  • Time Mean
     0 min  0%
     30 min 17%
    240 min 61%
    480 min 90%
    720 min 101.1%  
  • The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method.
  • The tablets did not break when exposed to a force of 500 N. The tablets could be cut up with a knife into pieces of an edge length of as small as approx. 2 mm, but could not be pulverised. When the pieces are combined with water, a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 0.9 mm injection cannula. When the gel was injected into water, the gel did not spontaneously mix with water, but remained visually distinguishable.
  • Example 7
  • Components Per tablet Per batch
    Tramadol HCl 100.0 mg  2.0 g
    Polyethylene oxide, NF, 221.0 mg  4.42 g
    MW 7 000 000 (Polyox WSR 303,
    Dow Chemicals)
    Hydroxypropylmethylcellulose  20.0 mg  0.4 g
    (Metholose 90 SH 100 000 cP from
    ShinEtsu)
    Butylhydroxytoluene (BHT)  0.2 mg 0.004 g
    Total weight 341.2 mg 6.824 g
  • The stated quantity of BHT was dissolved in ethanol (96%), such that a 7.7% (mass/mass) ethanolic solution was obtained. This was mixed with the polyethylene oxide and then dried for 12 h at 40° C.
  • All the further components were added to this dried mixture and mixed for 15 min in a free-fall mixer.
  • The tablets were produced using the same method as stated in Example 1. Round punches (diameter 10 mm) with a radius of curvature of 8 mm were used.
  • The breaking strength of the tablets was determined in accordance with the stated method. The tablets did not break when exposed to a force of 500 N. The tablets could not be comminuted either with a hammer or with the assistance of a mortar and pestle.
  • In vitro release of the active ingredient from the dosage form was determined in accordance with the details in Example 1 in order to determine release.
  • Released quantity of active
    Time ingredient
     30 min 17%
    240 min 59%
    480 min 86%
    720 min 98%
  • Example 8
  • Components Per tablet Per batch
    Tramadol HCl 100.0 mg  2.0 g
    Polyethylene oxide, NF, 221.0 mg 4.42 g
    MW 7 000 000 (Polyox WSR 303,
    Dow Chemicals)
    Hydroxypropylmethylcellulose  20.0 mg  0.4 g
    (Metholose 90 SH 100 000 cP from
    ShinEtsu)
    Total weight 341.0 mg 6.82 g
  • The individual components were mixed for 15 min in a freefall mixer. The tablets were produced in accordance with Example 1 using a hot tabletting tool. Round punches (diameter 10 mm) with a radius of curvature of 8 mm were used.
  • The breaking strength of the tablets was determined in accordance with the stated method. The tablets did not break when exposed to a force of 500 N. The tablets could not be comminuted either with a hammer or with the is assistance of a mortar and pestle.
  • In vitro release of the active ingredient from the preparation was determined as stated in Example 1.
  • Released quantity of active
    Time ingredient
     30 min 16%
    240 min 57%
    480 min 84%
    720 min 96%

Claims (32)

1. An abuse-proofed dosage form thermoformed without extrusion, comprising one or more active ingredients with abuse potential (A), optionally one or more physiologically acceptable auxiliary substances (B), at least one synthetic or natural polymer (C) and optionally at least one wax (D), wherein the one or more active ingredients with abuse potential (A) are selected from the group consisting of oxymorphone, hydromorphone, morphine and physiologically acceptable compounds and derivatives thereof, and wherein the dosage form exhibits a breaking strength of at least 500 N.
2. A dosage form according to claim 1, which is in the form of a tablet.
3. A dosage form according to claim 1, which is in multiparticulate form.
4. A dosage form according to claim 1, which comprises as polymer (C) at least one polymer selected from the group consisting of polyethylene oxide, polymethylene oxide, polypropylene oxide, polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, copolymers and the mixtures thereof.
5. A dosage form according to claim 1, wherein the polymer (C) is a polyethylene oxide (C) having a molecular weight of at least 0.5 million.
6. A dosage according to claim 5, wherein the molecular weight of the polyethylene oxide (C) is at least 1 million.
7. A dosage form according to claim 6, wherein the molecular weight of the polyethylene oxide (C) is 1-15 million.
8. A dosage form according to claim 1, which comprises as the wax (D) at least one natural, semi-synthetic or synthetic wax with a softening point of at least 60° C.
9. A dosage form according to claim 8, wherein the wax (D) is carnauba wax or beeswax.
10. (canceled)
11. (canceled)
12. A dosage form according to claim 1 which additionally comprises at least one of the following components a)-f):
(a) at least one substance which irritates the nasal passages and/or pharynx,
(b) at least one viscosity-increasing agent, which, with the assistance of a necessary minimum quantity of an aqueous liquid, forms a gel with the extract obtained from the dosage form, which gel optionally remains visually distinguishable when introduced into a further quantity of an aqueous liquid,
(c) at least one antagonist for the active ingredient or active ingredients with abuse potential.
(d) at least one emetic,
(e) at least one dye as an aversive agent, and
(f) at least one bitter substance.
13. A dosage form according to claim 12, wherein the component (a) irritant substance causes burning, itching, an urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli.
14. A dosage form according to claim 12, wherein the component (a) irritant substance is based on one or more constituents of at least one hot substance drug.
15. A dosage form according to claim 14, wherein the hot substance drug is at least one drug selected from the group consisting of Allii sativi bulbus (garlic), Asari rhizoma cum herba (Asarum root and leaves), Calami rhizoma (calamus root), Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper), Curcumae longae rhizoma (turmeric root), Curcumae xanthorrhizae rhizoma (Javanese turmeric root), Galangae rhizoma (galangal root), Myristicae semen (nutmeg), Piperis nigri fructus (pepper), Sinapis albae semen (white mustard seed), Sinapis nigri semen (black mustard seed), Zedoariae rhizoma (zedoary root) and Zingiberis rhizoma (ginger root).
16. A dosage form according to claim 14, wherein a constituent of the hot substance drug is an o-methoxy(methyl)phenol compound, an acid amide compound, a mustard oil or a sulfide compound or is derived from such a compound.
17. A dosage form according to claim 14, wherein a constituent of the hot substance drug is at least one constituent selected from the group consisting of myristicin, elemicin, isoeugenol, O-asarone, safrole, gingerols, xanthorrhizol, capsaicinoids and a compound derived from these constituents.
18. A dosage form according to claim 12, wherein component (b) is at least one viscosity-increasing agent selected from the group consisting of microcrystalline cellulose with 11 wt. % carboxymethylcellulose sodium, carboxymethylcellulose sodium, polyacrylic acid, locust bean flour, pectins from citrus fruit or apples, waxy maize starch, sodium alginate, guar flour, iota carrageen, karaya gum, gellan gum, galactomannan, tara bean flour, propylene glycol alginate, apple pectin, sodium hyaluronate, tragacanth, tara gum, fermented polysaccharide welan gum, and xanthan gum.
19. A dosage form according to claim 12, wherein component (c) is at least one opioid antagonist selected from the group consisting of naloxone, naltrexone, nalmefene, nalid, nalmexone, nalorphine, naluphine and a corresponding physiologically acceptable compound derivative thereof.
20. A dosage form according to claim 12, wherein component (c) is at least one neuroleptic as a stimulant antagonist.
21. A dosage form according to claim 12, wherein the component (d) emetic is based on one or more constituents of ipecacuanha (ipecac) root and/or is apomorphine.
22. A dosage form according to claim 12, wherein component (e) is at least one physiologically acceptable dye.
23. A dosage form according to claim 12, wherein component (f) is at least one bitter substance selected from the group consisting of aromatic oils, fruit aroma substances, and denatonium benzoate and mixtures thereof comprising at least 2 components.
24. A dosage form according to claim 12, which comprises at least one of components (c), (d) and/or (f), wherein the active ingredient or active ingredients (A) is/are spatially separated from component (c) and/or (d) and/or (f).
25. A dosage form according to claim 1, which comprises at least one active ingredient at least partially in controlled release form.
26. A dosage form according to claim 25, wherein each of the active ingredients with abuse potential (A) is present in a controlled release matrix.
27. A dosage form according to claim 26, wherein component (C) and/or the optionally present component (D) also serve as a controlled release matrix material.
28. A process for the production of a dosage form according to claim 1, comprising, without using an extruder, mixing components (A), (B), (C) and the optionally present component (D) to form a mixture, granulating the mixture and, optionally after granulation, shaping by application of force with preceding or simultaneous exposure to heat to yield the dosage form.
29. A process according to claim 28, wherein granulation is performed by melt granulation or wet granulation.
30. A dosage form obtained by a process according to claim 28.
31. A dosage form according to claim 1, wherein the physiologically acceptable compounds and derivatives are salts, solvates, esters, ethers and amides.
32. A method of treating pain comprising administering to a patient in need thereof a effective amount to treat pain of one or more active ingredients with abuse potential (A) selected from the group consisting of oxymorphone, hydromorphone, morphine and physiologically acceptable compounds and derivatives thereof, wherein said one or more active ingredients with abuse potential (A) are administered to said patient in the form of a dosage form according to claim 1.
US12/140,444 2003-08-06 2008-06-17 Form of administration secured against misuse Abandoned US20080247959A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/140,444 US20080247959A1 (en) 2003-08-06 2008-06-17 Form of administration secured against misuse
US14/085,085 US20140080858A1 (en) 2003-08-06 2013-11-20 Abuse-proofed dosage forms
US15/248,188 US20160361308A1 (en) 2003-08-06 2016-08-26 Abuse-proofed dosage form

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10336400A DE10336400A1 (en) 2003-08-06 2003-08-06 Anti-abuse dosage form
DE10336400.5 2003-08-06
PCT/EP2004/008793 WO2005016314A1 (en) 2003-08-06 2004-08-05 Form of administration secured against misuse
US11/349,537 US20060193782A1 (en) 2003-08-06 2006-02-06 Abuse-proofed dosage form
US12/140,444 US20080247959A1 (en) 2003-08-06 2008-06-17 Form of administration secured against misuse

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/349,537 Division US20060193782A1 (en) 2003-08-06 2006-02-06 Abuse-proofed dosage form

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/085,085 Continuation US20140080858A1 (en) 2003-08-06 2013-11-20 Abuse-proofed dosage forms

Publications (1)

Publication Number Publication Date
US20080247959A1 true US20080247959A1 (en) 2008-10-09

Family

ID=34112032

Family Applications (14)

Application Number Title Priority Date Filing Date
US10/718,112 Active 2024-10-10 US8114383B2 (en) 2003-08-06 2003-11-20 Abuse-proofed dosage form
US11/349,537 Abandoned US20060193782A1 (en) 2003-08-06 2006-02-06 Abuse-proofed dosage form
US12/140,444 Abandoned US20080247959A1 (en) 2003-08-06 2008-06-17 Form of administration secured against misuse
US13/346,257 Expired - Lifetime US8309060B2 (en) 2003-08-06 2012-01-09 Abuse-proofed dosage form
US13/517,891 Abandoned US20120251637A1 (en) 2003-08-06 2012-06-14 Abuse-proofed dosage form
US14/085,085 Abandoned US20140080858A1 (en) 2003-08-06 2013-11-20 Abuse-proofed dosage forms
US14/087,017 Abandoned US20140080915A1 (en) 2003-08-06 2013-11-22 Abuse-proofed dosage forms
US14/138,323 Abandoned US20140105830A1 (en) 2003-08-06 2013-12-23 Abuse-proofed dosage form
US14/945,598 Abandoned US20160074388A1 (en) 2003-08-06 2015-11-19 Abuse-proofed dosage form
US15/248,188 Abandoned US20160361308A1 (en) 2003-08-06 2016-08-26 Abuse-proofed dosage form
US15/265,263 Expired - Lifetime US10130591B2 (en) 2003-08-06 2016-09-14 Abuse-proofed dosage form
US15/292,366 Abandoned US20170027886A1 (en) 2003-08-06 2016-10-13 Abuse-proofed dosage forms
US16/145,936 Abandoned US20190029976A1 (en) 2003-08-06 2018-09-28 Abuse-proofed dosage form
US16/797,016 Abandoned US20200188333A1 (en) 2003-08-06 2020-02-21 Abuse-proofed dosage form

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/718,112 Active 2024-10-10 US8114383B2 (en) 2003-08-06 2003-11-20 Abuse-proofed dosage form
US11/349,537 Abandoned US20060193782A1 (en) 2003-08-06 2006-02-06 Abuse-proofed dosage form

Family Applications After (11)

Application Number Title Priority Date Filing Date
US13/346,257 Expired - Lifetime US8309060B2 (en) 2003-08-06 2012-01-09 Abuse-proofed dosage form
US13/517,891 Abandoned US20120251637A1 (en) 2003-08-06 2012-06-14 Abuse-proofed dosage form
US14/085,085 Abandoned US20140080858A1 (en) 2003-08-06 2013-11-20 Abuse-proofed dosage forms
US14/087,017 Abandoned US20140080915A1 (en) 2003-08-06 2013-11-22 Abuse-proofed dosage forms
US14/138,323 Abandoned US20140105830A1 (en) 2003-08-06 2013-12-23 Abuse-proofed dosage form
US14/945,598 Abandoned US20160074388A1 (en) 2003-08-06 2015-11-19 Abuse-proofed dosage form
US15/248,188 Abandoned US20160361308A1 (en) 2003-08-06 2016-08-26 Abuse-proofed dosage form
US15/265,263 Expired - Lifetime US10130591B2 (en) 2003-08-06 2016-09-14 Abuse-proofed dosage form
US15/292,366 Abandoned US20170027886A1 (en) 2003-08-06 2016-10-13 Abuse-proofed dosage forms
US16/145,936 Abandoned US20190029976A1 (en) 2003-08-06 2018-09-28 Abuse-proofed dosage form
US16/797,016 Abandoned US20200188333A1 (en) 2003-08-06 2020-02-21 Abuse-proofed dosage form

Country Status (29)

Country Link
US (14) US8114383B2 (en)
EP (2) EP1658055B1 (en)
JP (1) JP4939218B2 (en)
KR (1) KR101266925B1 (en)
CN (2) CN100577150C (en)
AR (1) AR045352A1 (en)
AT (1) ATE356618T1 (en)
AU (1) AU2004264667B2 (en)
BR (1) BRPI0413318B8 (en)
CA (1) CA2534932A1 (en)
CL (1) CL2004002017A1 (en)
CY (2) CY1107644T1 (en)
DE (2) DE10336400A1 (en)
DK (2) DK1658055T3 (en)
EC (1) ECSP066346A (en)
ES (2) ES2285497T3 (en)
HK (3) HK1095082A1 (en)
HR (1) HRP20070272T3 (en)
HU (1) HUE027301T2 (en)
IL (1) IL173478A (en)
NO (1) NO338235B1 (en)
NZ (1) NZ545200A (en)
PE (1) PE20050353A1 (en)
PL (2) PL1658055T3 (en)
PT (1) PT1658055E (en)
RU (1) RU2354357C2 (en)
SI (1) SI1658055T1 (en)
WO (1) WO2005016314A1 (en)
ZA (2) ZA200601090B (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090052818A1 (en) * 2007-07-10 2009-02-26 Jason Matthew Mitmesser Hybrid bearing
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
US8101209B2 (en) 2001-10-09 2012-01-24 Flamel Technologies Microparticulate oral galenical form for the delayed and controlled release of pharmaceutical active principles
US8114383B2 (en) 2003-08-06 2012-02-14 Gruenenthal Gmbh Abuse-proofed dosage form
US8114384B2 (en) 2004-07-01 2012-02-14 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US8192722B2 (en) 2003-08-06 2012-06-05 Grunenthal Gmbh Abuse-proof dosage form
WO2012085657A2 (en) 2010-12-23 2012-06-28 Purdue Pharma L.P. Tamper resistant solid oral dosage forms
US8383152B2 (en) * 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
US8722086B2 (en) 2007-03-07 2014-05-13 Gruenenthal Gmbh Dosage form with impeded abuse
US8808745B2 (en) 2001-09-21 2014-08-19 Egalet Ltd. Morphine polymer release system
US8877241B2 (en) 2003-03-26 2014-11-04 Egalet Ltd. Morphine controlled release system
US9005660B2 (en) 2009-02-06 2015-04-14 Egalet Ltd. Immediate release composition resistant to abuse by intake of alcohol
US9023394B2 (en) 2009-06-24 2015-05-05 Egalet Ltd. Formulations and methods for the controlled release of active drug substances
US9044402B2 (en) 2012-07-06 2015-06-02 Egalet Ltd. Abuse-deterrent pharmaceutical compositions for controlled release
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US9301918B2 (en) 2013-03-15 2016-04-05 Mallinckrodt Llc Abuse deterrent solid dosage form for immediate release with functional score
US9579285B2 (en) 2010-02-03 2017-02-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of an extruder
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US9642809B2 (en) 2007-06-04 2017-05-09 Egalet Ltd. Controlled release pharmaceutical compositions for prolonged effect
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US9694080B2 (en) 2001-09-21 2017-07-04 Egalet Ltd. Polymer release system
US9730885B2 (en) 2012-07-12 2017-08-15 Mallinckrodt Llc Extended release, abuse deterrent pharmaceutical compositions
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US9757338B2 (en) 2010-03-01 2017-09-12 Dexcel Pharma Technologies Ltd. Sustained-release donepezil formulation
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US9993422B2 (en) 2012-04-18 2018-06-12 SpecGx LLC Immediate release, abuse deterrent pharmaceutical compositions
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11478426B2 (en) 2018-09-25 2022-10-25 SpecGx LLC Abuse deterrent immediate release capsule dosage forms
US11517521B2 (en) 2014-07-03 2022-12-06 SpecGx LLC Abuse deterrent immediate release formulations comprising non-cellulose polysaccharides
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068375A1 (en) 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
KR101061351B1 (en) 2002-04-09 2011-08-31 플라멜 테크놀로지스 Oral Suspension of Active Ingredient Microcapsules
US20040202717A1 (en) * 2003-04-08 2004-10-14 Mehta Atul M. Abuse-resistant oral dosage forms and method of use thereof
DE102004020220A1 (en) * 2004-04-22 2005-11-10 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
PT1658054E (en) * 2003-08-06 2007-09-18 Gruenenthal Gmbh Dosage form that is safeguarded from abuse
US7201920B2 (en) 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
CA2916869A1 (en) 2004-06-12 2005-12-29 Jane C. Hirsh Abuse-deterrent drug formulations
DE102004032103A1 (en) * 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
EP1765303B2 (en) 2004-07-01 2022-11-23 Grünenthal GmbH Oral tablet safeguarded against abuse
FR2878161B1 (en) * 2004-11-23 2008-10-31 Flamel Technologies Sa ORAL MEDICINE FORM, SOLID AND DESIGNED TO AVOID MEASUREMENT
FR2878158B1 (en) * 2004-11-24 2009-01-16 Flamel Technologies Sa ORAL PHARMACEUTICAL FORM, SOLID MICROPARTICULAR DESIGNED TO PREVENT MEASUREMENT
US20080152595A1 (en) * 2004-11-24 2008-06-26 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
FR2889810A1 (en) * 2005-05-24 2007-02-23 Flamel Technologies Sa ORAL MEDICINAL FORM, MICROPARTICULAR, ANTI-MEASUREMENT
US20080292665A1 (en) * 2007-05-25 2008-11-27 Kulli John C Simple mechanical procedure and product for deterring substance abuse
US20120301405A1 (en) * 2005-05-02 2012-11-29 Kulli John C Simple Mechanical Procedure and Product for Deterring Substance Abuse.
WO2006133733A1 (en) * 2005-06-13 2006-12-21 Flamel Technologies Oral dosage form comprising an antimisuse system
EP1959923A4 (en) * 2005-08-30 2012-05-02 Piramal Life Sciences Ltd Extended release pharmaceutical composition of metformin and a process for producing it
US8852638B2 (en) 2005-09-30 2014-10-07 Durect Corporation Sustained release small molecule drug formulation
WO2007056142A2 (en) * 2005-11-02 2007-05-18 Theraquest Biosciences, Llc Methods of preventing the serotonin syndrome and compositions for use therefor
US9125833B2 (en) * 2005-11-02 2015-09-08 Relmada Therapeutics, Inc. Multimodal abuse resistant and extended release opioid formulations
US20090082466A1 (en) * 2006-01-27 2009-03-26 Najib Babul Abuse Resistant and Extended Release Formulations and Method of Use Thereof
US8329744B2 (en) * 2005-11-02 2012-12-11 Relmada Therapeutics, Inc. Methods of preventing the serotonin syndrome and compositions for use thereof
US8652529B2 (en) * 2005-11-10 2014-02-18 Flamel Technologies Anti-misuse microparticulate oral pharmaceutical form
US20100172989A1 (en) * 2006-01-21 2010-07-08 Abbott Laboratories Abuse resistant melt extruded formulation having reduced alcohol interaction
US20090317355A1 (en) * 2006-01-21 2009-12-24 Abbott Gmbh & Co. Kg, Abuse resistant melt extruded formulation having reduced alcohol interaction
US20090022798A1 (en) * 2007-07-20 2009-01-22 Abbott Gmbh & Co. Kg Formulations of nonopioid and confined opioid analgesics
AU2012202717B2 (en) * 2006-03-01 2014-06-26 Ethypharm Crush-resistant tablets intended to prevent accidental misuse and unlawful diversion
FR2898056B1 (en) * 2006-03-01 2012-01-20 Ethypharm Sa SQUEEZE-RESISTANT TABLETS TO PREVENT UNLAWFUL MISUSE
FR2901478B1 (en) * 2006-05-24 2015-06-05 Flamel Tech Sa MULTIMICROPARTICULATED ORAL PHARMACEUTICAL FORM WITH PROLONGED RELEASE
US20080069891A1 (en) 2006-09-15 2008-03-20 Cima Labs, Inc. Abuse resistant drug formulation
EP2049087A2 (en) * 2006-07-21 2009-04-22 LAB International SRL Hydrophilic abuse deterrent delivery system
AU2011213804B2 (en) * 2006-08-25 2012-10-18 Purdue Pharma Lp Tamper resistant oral pharmaceutical dosage forms comprising an opioid analgesic
AU2013201010C1 (en) * 2006-08-25 2016-01-07 Purdue Pharma Lp Tamper resistant oral pharmaceutical dosage forms comprising an opioid analgesic
SA07280459B1 (en) 2006-08-25 2011-07-20 بيورديو فارما إل. بي. Tamper Resistant Oral Pharmaceutical Dosage Forms Comprising an Opioid Analgesic
US8445018B2 (en) 2006-09-15 2013-05-21 Cima Labs Inc. Abuse resistant drug formulation
MX354603B (en) 2007-05-25 2018-03-13 Indivior Uk Ltd Sustained delivery formulations of risperidone compounds.
DE102007025858A1 (en) 2007-06-01 2008-12-04 Grünenthal GmbH Process for the preparation of a medicament dosage form
JP5965583B2 (en) * 2007-08-13 2016-08-10 インスピリオン デリバリー テクノロジーズ エルエルシー Abuse resistant pharmaceutical composition, method of use and preparation
DE102007039043A1 (en) 2007-08-17 2009-02-19 Grünenthal GmbH star Hub
PL2200593T3 (en) * 2007-09-13 2017-02-28 Cima Labs Inc. Abuse resistant drug formulation
BRPI0821732A2 (en) 2007-12-17 2015-06-16 Labopharm Inc Controlled release formulations, solid dosage form, and use of controlled release formulation
US9226907B2 (en) 2008-02-01 2016-01-05 Abbvie Inc. Extended release hydrocodone acetaminophen and related methods and uses thereof
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
EP2262484B1 (en) * 2008-03-11 2013-01-23 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
WO2010027716A1 (en) 2008-08-25 2010-03-11 Seeo, Inc Polymer electrolyte materials based on block copolymers
PL2379111T3 (en) * 2008-12-12 2013-08-30 Paladin Labs Inc Narcotic drug formulations with decreased abuse potential
CN102316857A (en) 2008-12-16 2012-01-11 莱博法姆公司 Prevent the controlled release formulation misapplied
WO2010081920A1 (en) * 2009-01-15 2010-07-22 Raquel Miriam Rodriguez Valle Incorporation of an emetic in drugs as a safety system in respect of possible overdoses, particularly in drugs acting on the central nervous system such as benzodiazepine and derivatives, barbiturates... and drugs for paediatric use
GB0909680D0 (en) * 2009-06-05 2009-07-22 Euro Celtique Sa Dosage form
PL399450A1 (en) * 2009-08-31 2013-01-21 Depomed, Inc Remaining in the stomach pharmaceutical compositions for the immediate and prolonged release of acetaminophen
EP2488029B1 (en) 2009-09-30 2016-03-23 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US8597681B2 (en) 2009-12-22 2013-12-03 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
US9198861B2 (en) 2009-12-22 2015-12-01 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
CA2798884C (en) 2010-05-10 2016-09-13 Euro-Celtique S.A. Manufacturing of active-free granules and tablets comprising the same
US9272044B2 (en) 2010-06-08 2016-03-01 Indivior Uk Limited Injectable flowable composition buprenorphine
GB2513060B (en) 2010-06-08 2015-01-07 Rb Pharmaceuticals Ltd Microparticle buprenorphine suspension
FR2962331B1 (en) * 2010-07-06 2020-04-24 Ethypharm PHARMACEUTICAL FORM FOR COMBATING CHEMICAL SUBMISSION, METHOD USING THE SAME
WO2012028317A1 (en) * 2010-09-02 2012-03-08 Grünenthal GmbH Tamper resistant dosage form comprising an anionic polymer
EP2635258A1 (en) * 2010-11-04 2013-09-11 AbbVie Inc. Drug formulations
RU2015140628A (en) 2010-11-04 2018-12-26 Эббви Инк. METHOD FOR PRODUCING MONOLITHIC TABLETS
EP2826467B1 (en) 2010-12-22 2017-08-02 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
CN102150684A (en) * 2011-02-23 2011-08-17 广西田园生化股份有限公司 Ultralow-volume liquid containing ethofenprox
US8658631B1 (en) 2011-05-17 2014-02-25 Mallinckrodt Llc Combination composition comprising oxycodone and acetaminophen for rapid onset and extended duration of analgesia
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
US8741885B1 (en) 2011-05-17 2014-06-03 Mallinckrodt Llc Gastric retentive extended release pharmaceutical compositions
EP2750665A1 (en) 2011-09-02 2014-07-09 Novozymes Biopharma DK A/S Oral formulations containing hyaluronic acid for sustained drug release
ES2641437T3 (en) * 2011-09-16 2017-11-10 Purdue Pharma Lp Pharmaceutical formulations resistant to improper handling
BR112014008120A2 (en) 2011-10-06 2017-04-11 Gruenenthal Gmbh inviolable oral pharmaceutical dosage form comprising opioid agonist and opioid antagonist
MX349725B (en) 2011-11-17 2017-08-10 Gruenenthal Gmbh Tamper-resistant oral pharmaceutical dosage form comprising a pharmacologically active ingredient, an opioid antagonist and/or aversive agent, polyalkylene oxide and anionic polymer.
FR2983409B1 (en) * 2011-12-06 2013-12-27 Ethypharm Sa COMPRESSOR CAPABLE OF COMBATTING INJECTION MISTAKE
WO2013127830A1 (en) 2012-02-28 2013-09-06 Grünenthal GmbH Tamper-resistant pharmaceutical dosage form comprising nonionic surfactant
CA2870012A1 (en) 2012-05-11 2013-11-14 Grunenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
ES2691982T3 (en) 2012-11-30 2018-11-29 Acura Pharmaceuticals, Inc. Self-regulated release of an active pharmaceutical ingredient
EP2953618B1 (en) 2013-02-05 2020-11-11 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10195153B2 (en) 2013-08-12 2019-02-05 Pharmaceutical Manufacturing Research Services, Inc. Extruded immediate release abuse deterrent pill
WO2015051259A1 (en) * 2013-10-04 2015-04-09 Impax Laboratories, Inc. Pharmaceutical compositions and methods of use
WO2015065547A1 (en) 2013-10-31 2015-05-07 Cima Labs Inc. Immediate release abuse-deterrent granulated dosage forms
MX2016006279A (en) 2013-11-13 2016-09-07 Euro Celtique Sa Hydromorphone and naloxone for treatment of pain and opioid bowel dysfunction syndrome.
EP3079676A1 (en) 2013-12-11 2016-10-19 Sun Pharmaceutical Industries Ltd Crush-resistant solid oral dosage form
MX2016007848A (en) 2013-12-16 2016-09-07 Gruenenthal Gmbh Tamper resistant dosage form with bimodal release profile manufactured by co-extrusion.
WO2015095391A1 (en) 2013-12-17 2015-06-25 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
US10632113B2 (en) 2014-02-05 2020-04-28 Kashiv Biosciences, Llc Abuse-resistant drug formulations with built-in overdose protection
GB201404139D0 (en) 2014-03-10 2014-04-23 Rb Pharmaceuticals Ltd Sustained release buprenorphine solution formulations
US9062063B1 (en) 2014-03-21 2015-06-23 Johnson Matthey Public Limited Company Forms of oxymorphone hydrochloride
WO2015145461A1 (en) 2014-03-26 2015-10-01 Sun Pharma Advanced Research Company Ltd. Abuse deterrent immediate release biphasic matrix solid dosage form
CA2910865C (en) 2014-07-15 2016-11-29 Isa Odidi Compositions and methods for reducing overdose
DK3169315T3 (en) 2014-07-17 2020-08-10 Pharmaceutical Manufacturing Res Services In Liquid-filled dosage form to prevent immediate release abuse
US20160022570A1 (en) 2014-07-25 2016-01-28 Robert W. Adams Medical implant
US9132096B1 (en) 2014-09-12 2015-09-15 Alkermes Pharma Ireland Limited Abuse resistant pharmaceutical compositions
US20160106737A1 (en) 2014-10-20 2016-04-21 Pharmaceutical Manufacturing Research Services, Inc. Extended Release Abuse Deterrent Liquid Fill Dosage Form
US9918979B2 (en) 2015-01-29 2018-03-20 Johnson Matthey Public Limited Company Process of preparing low ABUK oxymorphone hydrochloride
JP2018503693A (en) 2015-02-03 2018-02-08 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Anti-modified dosage form containing polyethylene glycol graft copolymer
MA45902A (en) 2015-03-10 2019-06-19 Rhodes Tech BRUPRENORPHINE ACETATE SALT AND PROCEDURES FOR THE PREPARATION OF BRUPRENORPHINE
CA2983640A1 (en) 2015-04-24 2016-10-27 Grunenthal Gmbh Tamper-resistant fixed dose combination providing fast release of two drugs from different particles
WO2016170093A1 (en) 2015-04-24 2016-10-27 Grünenthal GmbH Tamper-resistant fixed dose combination providing fast release of two drugs from particles and a matrix
MX2017013633A (en) 2015-04-24 2018-03-08 Gruenenthal Gmbh Tamper-resistant fixed dose combination providing fast release of two drugs from particles.
WO2017040607A1 (en) 2015-08-31 2017-03-09 Acura Pharmaceuticals, Inc. Methods and compositions for self-regulated release of active pharmaceutical ingredient
WO2017070566A1 (en) 2015-10-23 2017-04-27 Kashiv Pharma Llc Enhanced abuse-deterrent formulations of oxycodone
EP3181124A1 (en) 2015-12-16 2017-06-21 Universität Basel Abuse deterrent pharmaceutical dosage forms
AU2017216904B2 (en) 2016-02-08 2021-11-18 SpecGx LLC Glucomannan containing pharmaceutical compositions with extended release and abuse deterrent properties
BR112018069785A2 (en) 2016-03-31 2019-01-29 SpecGx LLC dissuasive prolonged release abuse dosage forms
US20170296476A1 (en) * 2016-04-15 2017-10-19 Grünenthal GmbH Modified release abuse deterrent dosage forms
US20180064817A1 (en) * 2016-04-23 2018-03-08 Jayendrakumar Dasharathlal Patel Tamper Resistant Pharmaceutical Composition
WO2017222575A1 (en) 2016-06-23 2017-12-28 Collegium Pharmaceutical, Inc. Process of making more stable abuse-deterrent oral formulations
AU2017294524A1 (en) 2016-07-06 2018-12-20 Grünenthal GmbH Reinforced pharmaceutical dosage form
EP3490537A1 (en) 2016-08-01 2019-06-05 Grünenthal GmbH Tamper resistant dosage form comprising an anionic polysaccharide
AU2017310006A1 (en) 2016-08-12 2019-01-31 Grünenthal GmbH Tamper resistant formulation of ephedrine and its derivatives
US10441544B2 (en) 2017-10-10 2019-10-15 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation
US10869838B2 (en) 2017-10-10 2020-12-22 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation
US11471415B2 (en) 2017-10-10 2022-10-18 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation and methods of treatment
CA3078272A1 (en) 2017-10-13 2019-04-18 Grunenthal Gmbh Modified release abuse deterrent dosage forms
EP3473246A1 (en) 2017-10-19 2019-04-24 Capsugel Belgium NV Immediate release abuse deterrent formulations
TW202002957A (en) 2018-02-09 2020-01-16 德商歌林達有限公司 Tamper resistant formulation of ephedrine and its derivatives comprising a conversion inhibitor
EP3698776A1 (en) 2019-02-19 2020-08-26 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
GR1009751B (en) * 2019-03-22 2020-05-29 "Φαρματεν Α.Β.Ε.Ε." Prolonged-release oxalic tapentadol -containing formula and preparation method thereof
US11000488B2 (en) 2019-03-22 2021-05-11 Syntrix Biosystems Inc. Treating pain using desmetramadol
GR1009791B (en) * 2019-03-26 2020-08-03 Φαρματεν Α.Β.Ε.Ε. Prolonged release tapentadol-containing formula - preparation method thereof
EP3965733A4 (en) 2019-05-07 2023-01-11 Clexio Biosciences Ltd. Abuse-deterrent dosage forms containing esketamine
WO2021219576A1 (en) 2020-04-27 2021-11-04 Grünenthal GmbH Multiparticulate dosage form containing eva copolymer and additional excipient
WO2021219577A1 (en) 2020-04-27 2021-11-04 Grünenthal GmbH Dosage form comprising hot-melt extruded pellets containing eva copolymer and gliding agent
CN112402386B (en) * 2020-12-04 2022-06-28 江苏恩华药业股份有限公司 Abuse-preventing opioid oral sustained-release tablet and preparation method thereof

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652589A (en) * 1967-07-27 1972-03-28 Gruenenthal Chemie 1-(m-substituted phenyl)-2-aminomethyl cyclohexanols
US3806603A (en) * 1969-10-13 1974-04-23 W Gaunt Pharmaceutical carriers of plasticized dried milled particles of hydrated cooked rice endosperm
US3865108A (en) * 1971-05-17 1975-02-11 Ortho Pharma Corp Expandable drug delivery device
US4002173A (en) * 1974-07-23 1977-01-11 International Paper Company Diester crosslinked polyglucan hydrogels and reticulated sponges thereof
US4014965A (en) * 1972-11-24 1977-03-29 The Dow Chemical Company Process for scrapless forming of plastic articles
US4070494A (en) * 1975-07-09 1978-01-24 Bayer Aktiengesellschaft Enteral pharmaceutical compositions
US4070497A (en) * 1971-03-09 1978-01-24 Ppg Industries, Inc. Process of applying and curing a plurality of coatings
US4200704A (en) * 1978-09-28 1980-04-29 Union Carbide Corporation Controlled degradation of poly(ethylene oxide)
US4262017A (en) * 1978-05-22 1981-04-14 Basf Aktiengesellschaft Preparation of a vitamin E dry powder
US4427681A (en) * 1982-09-16 1984-01-24 Richardson-Vicks, Inc. Thixotropic compositions easily convertible to pourable liquids
US4427778A (en) * 1982-06-29 1984-01-24 Biochem Technology, Inc. Enzymatic preparation of particulate cellulose for tablet making
US4806337A (en) * 1984-07-23 1989-02-21 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US4892778A (en) * 1987-05-27 1990-01-09 Alza Corporation Juxtaposed laminated arrangement
US4892889A (en) * 1986-11-18 1990-01-09 Basf Corporation Process for making a spray-dried, directly-compressible vitamin powder comprising unhydrolyzed gelatin
US4992279A (en) * 1985-07-03 1991-02-12 Kraft General Foods, Inc. Sweetness inhibitor
US4992278A (en) * 1987-01-14 1991-02-12 Ciba-Geigy Corporation Therapeutic system for sparingly soluble active ingredients
US5004601A (en) * 1988-10-14 1991-04-02 Zetachron, Inc. Low-melting moldable pharmaceutical excipient and dosage forms prepared therewith
US5082668A (en) * 1983-05-11 1992-01-21 Alza Corporation Controlled-release system with constant pushing source
US5190760A (en) * 1989-07-08 1993-03-02 Coopers Animal Health Limited Solid pharmaceutical composition
US5198226A (en) * 1986-01-30 1993-03-30 Syntex (U.S.A.) Inc. Long acting nicardipine hydrochloride formulation
US5200197A (en) * 1989-11-16 1993-04-06 Alza Corporation Contraceptive pill
US5378462A (en) * 1992-08-19 1995-01-03 Kali-Chemie Pharma Gmbh Pancreatin micropellets prepared with polyethylene glycol 4000, paraffin and a lower alcohol by extrusion and rounding
US5508042A (en) * 1991-11-27 1996-04-16 Euro-Celtigue, S.A. Controlled release oxycodone compositions
US5591452A (en) * 1993-05-10 1997-01-07 Euro-Celtique, S.A. Controlled release formulation
US5593694A (en) * 1991-10-04 1997-01-14 Yoshitomi Pharmaceutical Industries, Ltd. Sustained release tablet
US5601842A (en) * 1993-09-03 1997-02-11 Gruenenthal Gmbh Sustained release drug formulation containing a tramadol salt
US5620697A (en) * 1992-12-31 1997-04-15 Orion-Yhtyma Oy Method for preparing matrix-type pharmaceutical compositions through ultrasonic means to accomplish melting
US5707636A (en) * 1994-08-03 1998-01-13 Saitec S.R.L. Apparatus and method for preparing solid forms with controlled release of the active ingredient
US5741519A (en) * 1995-03-21 1998-04-21 Basf Aktiengesellschaft The production of active substance compositions in the form of a solid solution of the active substance in a polymer matrix, and active substance compositions produced by this process
US5866164A (en) * 1996-03-12 1999-02-02 Alza Corporation Composition and dosage form comprising opioid antagonist
US6009690A (en) * 1994-12-23 2000-01-04 Basf Aktiengesellschaft Process and apparatus for the production of divisible tablets
US6340475B2 (en) * 1997-06-06 2002-01-22 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
US20020012701A1 (en) * 2000-06-19 2002-01-31 Karl Kolter Process for producing solid oral dosage forms with sustained release of active ingredient
US6344535B1 (en) * 1997-12-03 2002-02-05 Bayer Aktiengesellschaft Polyether ester amides
US20020015730A1 (en) * 2000-03-09 2002-02-07 Torsten Hoffmann Pharmaceutical formulations and method for making
US6348469B1 (en) * 1995-04-14 2002-02-19 Pharma Pass Llc Solid compositions containing glipizide and polyethylene oxide
US6355656B1 (en) * 1995-12-04 2002-03-12 Celgene Corporation Phenidate drug formulations having diminished abuse potential
US6375957B1 (en) * 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
US6375963B1 (en) * 1999-06-16 2002-04-23 Michael A. Repka Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof
US20030008409A1 (en) * 2001-07-03 2003-01-09 Spearman Steven R. Method and apparatus for determining sunlight exposure
US20030017532A1 (en) * 1998-09-22 2003-01-23 Sanjoy Biswas ndp
US20030015814A1 (en) * 1999-12-15 2003-01-23 Harald Krull Device and method for producing solid shape containing an active ingredient
US20030021546A1 (en) * 2001-07-30 2003-01-30 Tsuguo Sato Optical fiber ferrule assembly and optical module and optical connector using the same
US20030031546A1 (en) * 2001-08-08 2003-02-13 Toshiyuki Araki Lift apparatus
US20030044458A1 (en) * 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US20030044464A1 (en) * 1999-08-31 2003-03-06 Iris Ziegler Sustained-release, oral pharamaceutical forms of formulation
US6534089B1 (en) * 1996-04-05 2003-03-18 Alza Corporation Uniform drug delivery therapy
US20030064099A1 (en) * 2001-08-06 2003-04-03 Benjamin Oshlack Pharmaceutical formulation containing bittering agent
US20030069263A1 (en) * 2001-07-18 2003-04-10 Breder Christopher D. Pharmaceutical combinations of oxycodone and naloxone
US20030068370A1 (en) * 2001-08-06 2003-04-10 Richard Sackler Pharmaceutical formulation containing irritant
US20030068371A1 (en) * 2001-08-06 2003-04-10 Benjamin Oshlack Pharmaceutical formulation containing opioid agonist,opioid antagonist and gelling agent
US20030068276A1 (en) * 2001-09-17 2003-04-10 Lyn Hughes Dosage forms
US20030068392A1 (en) * 2001-08-06 2003-04-10 Richard Sackler Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant
US6547977B1 (en) * 1998-04-02 2003-04-15 Applied Materials Inc. Method for etching low k dielectrics
US6547997B1 (en) * 1997-11-28 2003-04-15 Abbot Laboratories Method for producing solvent-free noncrystalline biologically active substances
US20040010000A1 (en) * 2002-04-29 2004-01-15 Ayer Atul D. Methods and dosage forms for controlled delivery of oxycodone
US20040011806A1 (en) * 2002-07-17 2004-01-22 Luciano Packaging Technologies, Inc. Tablet filler device with star wheel
US6699503B1 (en) * 1992-09-18 2004-03-02 Yamanuchi Pharmaceutical Co., Ltd. Hydrogel-forming sustained-release preparation
US20040052731A1 (en) * 2002-07-05 2004-03-18 Collegium Pharmaceuticals, Inc. Abuse-deterrent pharmaceutical compositions of opiods and other drugs
US20040052844A1 (en) * 2002-09-16 2004-03-18 Fang-Hsiung Hsiao Time-controlled, sustained release, pharmaceutical composition containing water-soluble resins
US6723343B2 (en) * 1999-08-31 2004-04-20 Gruenenthal Gmbh Pharmaceutical tramadol salts
US6723340B2 (en) * 2001-10-25 2004-04-20 Depomed, Inc. Optimal polymer mixtures for gastric retentive tablets
US20040081694A1 (en) * 1994-11-04 2004-04-29 Euro-Celtique, S.A. Melt-extruded orally administrable opioid formulations
US20050015730A1 (en) * 2003-07-14 2005-01-20 Srimanth Gunturi Systems, methods and computer program products for identifying tab order sequence of graphically represented elements
US20050031546A1 (en) * 2003-08-06 2005-02-10 Johannes Bartholomaus Abuse-proffed dosage form
US20050089475A1 (en) * 2001-08-06 2005-04-28 Thomas Gruber Pharmaceutical formulation containing dye
US20060004034A1 (en) * 2002-11-11 2006-01-05 Gruenenthal Gmbh Spirocyclic cyclohexane compounds
US20060002859A1 (en) * 2004-07-01 2006-01-05 Elisabeth Arkenau Process for production of an abuse-proofed solid dosage form
US20060002860A1 (en) * 2004-07-01 2006-01-05 Johannes Bartholomaus Abuse-proofed oral dosage form
US20060039864A1 (en) * 2004-07-01 2006-02-23 Johannes Bartholomaus Abuse-proofed oral dosage form
US20070003616A1 (en) * 2003-12-24 2007-01-04 Elisabeth Arkenau-Maric Process for the production of an abuse-proofed dosage form
US20070020335A1 (en) * 2005-07-07 2007-01-25 Farnam Companies, Inc. Sustained release pharmaceutical compositions for highly water soluble drugs
US7176251B1 (en) * 1996-11-05 2007-02-13 Novamont S.P.A. Biodegradable polymeric compositions comprising starch and a thermoplastic polymer
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
US20070065365A1 (en) * 2004-04-21 2007-03-22 Gruenenthal Gmbh Abuse-resistant transdermal system
US7201920B2 (en) * 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
USRE39593E1 (en) * 1994-07-23 2007-04-24 Gruenenthal Gmbh 1-phenyl-3-dimethylaminopropane compounds with a pharmacological effects
US20070092573A1 (en) * 2005-10-24 2007-04-26 Laxminarayan Joshi Stabilized extended release pharmaceutical compositions comprising a beta-adrenoreceptor antagonist
US20080069871A1 (en) * 2006-07-21 2008-03-20 Vaughn Jason M Hydrophobic abuse deterrent delivery system
US20080081290A1 (en) * 2006-09-25 2008-04-03 Fujifilm Corporation Resist composition, resin for use in the resist composition, compound for use in the synthesis of the resin, and pattern-forming method using the resist composition
US20090004267A1 (en) * 2007-03-07 2009-01-01 Gruenenthal Gmbh Dosage Form with Impeded Abuse
US20090017121A1 (en) * 2001-10-25 2009-01-15 Bret Berner Gastric retained gabapentin dosage form
US20090081290A1 (en) * 2006-08-25 2009-03-26 Purdue Pharma L.P. Tamper resistant dosage forms
US20100015223A1 (en) * 2006-03-01 2010-01-21 Ethypharm Sa Crush-Resistant Tablets Intended to Prevent Accidental Misuse and Unlawful Diversion
US7674799B2 (en) * 2004-03-30 2010-03-09 Purdue Pharma L.P. Oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone
US20100098758A1 (en) * 2002-10-25 2010-04-22 Gruenenthal Gmbh Abuse-Resistant Dosage Form
US20110020454A1 (en) * 2008-03-13 2011-01-27 Rosa Lamarca Casado Novel dosage and formulation
US20110020451A1 (en) * 2009-07-22 2011-01-27 Grunenthal Gmbh Tamper-resistant dosage form for oxidation-sensitive opioids
US20110038930A1 (en) * 2009-07-22 2011-02-17 Grunenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US20110082214A1 (en) * 2008-05-09 2011-04-07 Gruenthal Gmbh Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US20110097404A1 (en) * 2000-02-08 2011-04-28 Purdue Pharma L.P. Tamper-resistant oral opioid agonist formulations
US8114838B2 (en) * 2000-05-23 2012-02-14 Acorda Therapeutics, Inc. Methods for protecting dopaminergic neurons from stress and promoting proliferation and differentiation of oligodendrocyte progenitors by NRG-2

Family Cites Families (445)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA722109A (en) 1965-11-23 W. Mock Henry Extrusion of ethylene oxide polymers
US2524855A (en) 1950-10-10 Process for the manufacture of
GB156727A (en) 1919-08-02 1921-12-22 Lewin David Perry Improvements in steam boilers
US3035053A (en) * 1955-07-19 1962-05-15 Albright & Wilson Mfg Ltd Tris-aminomethylphosphines
US2806033A (en) 1955-08-03 1957-09-10 Lewenstein Morphine derivative
US2987445A (en) 1958-10-10 1961-06-06 Rohm & Haas Drug composition
US3094812A (en) * 1959-06-22 1963-06-25 Lawrence F Peeler Precast unit for forming a hyperbolic paraboloidal roof structure
US3035029A (en) * 1959-09-21 1962-05-15 Exxon Research Engineering Co Thioamide cure of halogenated copolymers
US3053417A (en) * 1960-03-21 1962-09-11 Dudley T Box Accessories for automatic washing machines
US3370035A (en) 1961-06-23 1968-02-20 Takeda Chemical Industries Ltd Stabilization of polyalkylene oxide
US3332950A (en) 1963-03-23 1967-07-25 Endo Lab 14-hydroxydihydronormorphinone derivatives
GB1147210A (en) 1965-06-30 1969-04-02 Eastman Kodak Co Improvements in or relating to vitamins
US3966747A (en) 1972-10-26 1976-06-29 Bristol-Myers Company 9-Hydroxy-6,7-benzomorphans
US3980766A (en) 1973-08-13 1976-09-14 West Laboratories, Inc. Orally administered drug composition for therapy in the treatment of narcotic drug addiction
US3941865A (en) 1973-12-10 1976-03-02 Union Carbide Corporation Extrusion of ethylene oxide resins
JPS603286B2 (en) 1977-03-03 1985-01-26 日本化薬株式会社 Constant-dissolution formulation
US4207893A (en) 1977-08-29 1980-06-17 Alza Corporation Device using hydrophilic polymer for delivering drug to biological environment
US4175119A (en) * 1978-01-11 1979-11-20 Porter Garry L Composition and method to prevent accidental and intentional overdosage with psychoactive drugs
US4211681A (en) 1978-08-16 1980-07-08 Union Carbide Corporation Poly(ethylene oxide) compositions
NO793297L (en) 1978-10-19 1980-04-22 Mallinckrodt Inc PROCEDURE FOR THE MANUFACTURE OF OXYMORPHONE
US4258027A (en) 1979-03-26 1981-03-24 Mead Johnson & Company Multi-fractionable tablet structure
US4215104A (en) 1979-03-26 1980-07-29 Mead Johnson & Company Multi-fractionable tablet structure
CA1146866A (en) 1979-07-05 1983-05-24 Yamanouchi Pharmaceutical Co. Ltd. Process for the production of sustained release pharmaceutical composition of solid medical material
US4353887A (en) 1979-08-16 1982-10-12 Ciba-Geigy Corporation Divisible tablet having controlled and delayed release of the active substance
CH648754A5 (en) 1979-08-16 1985-04-15 Ciba Geigy Ag Pharmaceutical slow release tablet
US4457933A (en) 1980-01-24 1984-07-03 Bristol-Myers Company Prevention of analgesic abuse
JPS56169622A (en) 1980-06-03 1981-12-26 Kissei Pharmaceut Co Ltd Method of making solid preparation from oily substance
DE3024416C2 (en) 1980-06-28 1982-04-15 Gödecke AG, 1000 Berlin Process for the production of medicaments with sustained release of active substances
US4473640A (en) 1982-06-03 1984-09-25 Combie Joan D Detection of morphine and its analogues using enzymatic hydrolysis
US4462941A (en) 1982-06-10 1984-07-31 The Regents Of The University Of California Dynorphin amide analogs
US4485211A (en) 1982-09-15 1984-11-27 The B. F. Goodrich Company Poly(glycidyl ether)block copolymers and process for their preparation
US4529583A (en) 1983-03-07 1985-07-16 Clear Lake Development Group Composition and method of immobilizing emetics and method of treating human beings with emetics
US4603143A (en) 1983-05-02 1986-07-29 Basf Corporation Free-flowing, high density, fat soluble vitamin powders with improved stability
US4783337A (en) 1983-05-11 1988-11-08 Alza Corporation Osmotic system comprising plurality of members for dispensing drug
US4765989A (en) 1983-05-11 1988-08-23 Alza Corporation Osmotic device for administering certain drugs
US4612008A (en) 1983-05-11 1986-09-16 Alza Corporation Osmotic device with dual thermodynamic activity
US4599342A (en) 1984-01-16 1986-07-08 The Procter & Gamble Company Pharmaceutical products providing enhanced analgesia
AU592065B2 (en) 1984-10-09 1990-01-04 Dow Chemical Company, The Sustained release dosage form based on highly plasticized cellulose ether gels
GB8507779D0 (en) 1985-03-26 1985-05-01 Fujisawa Pharmaceutical Co Drug carrier
ZA864681B (en) 1985-06-24 1987-02-25 Ici Australia Ltd Ingestible capsules
DE3665262D1 (en) 1985-06-28 1989-10-05 Carrington Lab Inc Processes for preparation of aloe products, products produced thereby and compositions thereof
US4851521A (en) 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
US4765999A (en) * 1985-07-26 1988-08-23 Presto Products, Incorporated Polyester/copolyester coextruded packaging film
DE3689650T2 (en) 1985-12-17 1994-05-26 United States Surgical Corp High molecular weight bioabsorbable polymers and implants thereof.
US5229164A (en) 1985-12-19 1993-07-20 Capsoid Pharma Gmbh Process for producing individually dosed administration forms
US4711894A (en) 1986-01-16 1987-12-08 Henkel Corporation Stabilized tocopherol in dry, particulate, free-flowing form
US4940556A (en) 1986-01-30 1990-07-10 Syntex (U.S.A.) Inc. Method of preparing long acting formulation
US4764378A (en) 1986-02-10 1988-08-16 Zetachron, Inc. Buccal drug dosage form
EP0239973A3 (en) 1986-03-31 1989-11-08 Union Carbide Corporation Catalyst and process for alkylene oxide polymerization
DE3612211A1 (en) 1986-04-11 1987-10-15 Basf Ag CONTINUOUS TABLET METHOD
US4667013A (en) * 1986-05-02 1987-05-19 Union Carbide Corporation Process for alkylene oxide polymerization
US4713243A (en) 1986-06-16 1987-12-15 Johnson & Johnson Products, Inc. Bioadhesive extruded film for intra-oral drug delivery and process
USRE33093E (en) 1986-06-16 1989-10-17 Johnson & Johnson Consumer Products, Inc. Bioadhesive extruded film for intra-oral drug delivery and process
USRE34990E (en) 1986-08-07 1995-07-04 Ciba-Geigy Corporation Oral therapeutic system having systemic action
CA1335748C (en) 1986-09-25 1995-05-30 Jeffrey Lawrence Finnan Crosslinked gelatins
US5227157A (en) 1986-10-14 1993-07-13 Board Of Regents, The University Of Texas System Delivery of therapeutic agents
ES2032802T5 (en) 1986-11-10 2004-01-16 Biopure Corporation SUCEDANEO OF EXTRAPUR SEMISINTETIC BLOOD.
JPH0831303B2 (en) 1986-12-01 1996-03-27 オムロン株式会社 Chip type fuse
US5051261A (en) 1987-11-24 1991-09-24 Fmc Corporation Method for preparing a solid sustained release form of a functionally active composition
EP0391959B1 (en) 1987-12-17 1993-01-27 The Upjohn Company Tri-scored drug tablet
DE3812567A1 (en) 1988-04-15 1989-10-26 Basf Ag METHOD FOR PRODUCING PHARMACEUTICAL MIXTURES
US4954346A (en) 1988-06-08 1990-09-04 Ciba-Geigy Corporation Orally administrable nifedipine solution in a solid light resistant dosage form
US4960814A (en) 1988-06-13 1990-10-02 Eastman Kodak Company Water-dispersible polymeric compositions
US5350741A (en) 1988-07-30 1994-09-27 Kanji Takada Enteric formulations of physiologically active peptides and proteins
JPH0249719A (en) 1988-08-11 1990-02-20 Dai Ichi Kogyo Seiyaku Co Ltd Oil soluble-vitamin powder having readily water-dispersible and soluble performance
GB8820327D0 (en) 1988-08-26 1988-09-28 May & Baker Ltd New compositions of matter
DE3830353A1 (en) 1988-09-07 1990-03-15 Basf Ag METHOD FOR THE CONTINUOUS PRODUCTION OF SOLID PHARMACEUTICAL FORMS
US5139790A (en) 1988-10-14 1992-08-18 Zetachron, Inc. Low-melting moldable pharmaceutical excipient and dosage forms prepared therewith
US4957668A (en) 1988-12-07 1990-09-18 General Motors Corporation Ultrasonic compacting and bonding particles
US5169645A (en) 1989-10-31 1992-12-08 Duquesne University Of The Holy Ghost Directly compressible granules having improved flow properties
GB8926612D0 (en) 1989-11-24 1990-01-17 Erba Farmitalia Pharmaceutical compositions
EP0449775A3 (en) 1990-03-29 1992-09-02 Ciba-Geigy Ag Polyether-polyester block copolymers and their use as dispersing agents
SU1759445A1 (en) 1990-06-15 1992-09-07 Ленинградский Технологический Институт Им.Ленсовета Method of producing encapsulated hydrophobic substances
FR2664851B1 (en) 1990-07-20 1992-10-16 Oreal METHOD OF COMPACTING A POWDER MIXTURE FOR OBTAINING A COMPACT ABSORBENT OR PARTIALLY DELITABLE PRODUCT AND PRODUCT OBTAINED BY THIS PROCESS.
EP0477135A1 (en) 1990-09-07 1992-03-25 Warner-Lambert Company Chewable spheroidal coated microcapsules and methods for preparing same
US5126151A (en) 1991-01-24 1992-06-30 Warner-Lambert Company Encapsulation matrix
US5273758A (en) 1991-03-18 1993-12-28 Sandoz Ltd. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms
US5149538A (en) 1991-06-14 1992-09-22 Warner-Lambert Company Misuse-resistive transdermal opioid dosage form
JP3073054B2 (en) 1991-07-11 2000-08-07 住友精化株式会社 Method for producing alkylene oxide polymer
JP3126384B2 (en) 1991-08-30 2001-01-22 昭和薬品化工株式会社 Dry gel composition
WO1993006723A1 (en) 1991-10-04 1993-04-15 Olin Corporation Fungicide tablet
DE4138513A1 (en) 1991-11-23 1993-05-27 Basf Ag SOLID PHARMACEUTICAL RETARD FORM
CA2125148C (en) 1991-12-05 1999-05-11 Siva N. Raman A carbohydrate glass matrix for the sustained release of a therapeutic agent
US5200194A (en) 1991-12-18 1993-04-06 Alza Corporation Oral osmotic device
ES2109377T3 (en) 1991-12-18 1998-01-16 Warner Lambert Co PROCESS FOR THE PREPARATION OF A SOLID DISPERSION.
US5225417A (en) 1992-01-21 1993-07-06 G. D. Searle & Co. Opioid agonist compounds
IL105553A (en) 1992-05-06 1998-01-04 Janssen Pharmaceutica Inc Solid dosage form comprising a porous network of matrix forming material which disperses rapidly in water
EP0641195B1 (en) 1992-05-22 1996-04-10 Gödecke Aktiengesellschaft Process for preparing delayed-action medicinal compositions
GB9217295D0 (en) 1992-08-14 1992-09-30 Wellcome Found Controlled released tablets
DE4229085C2 (en) 1992-09-01 1996-07-11 Boehringer Mannheim Gmbh Elongated, divisible tablet
US5472943A (en) 1992-09-21 1995-12-05 Albert Einstein College Of Medicine Of Yeshiva University, Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other opioid agonists
FI101039B (en) 1992-10-09 1998-04-15 Eeva Kristoffersson Method for preparing medicated pellets
AU679937B2 (en) 1992-11-18 1997-07-17 Johnson & Johnson Consumer Products, Inc. Extrudable compositions for topical or transdermal drug delivery
JP3459421B2 (en) 1992-12-23 2003-10-20 サイテック ソチエタ レスポンサビリタ リミテ Process for the preparation of controlled open pharmaceutical forms and the pharmaceutical forms thus obtained
US6071970A (en) 1993-02-08 2000-06-06 Nps Pharmaceuticals, Inc. Compounds active at a novel site on receptor-operated calcium channels useful for treatment of neurological disorders and diseases
US5914132A (en) 1993-02-26 1999-06-22 The Procter & Gamble Company Pharmaceutical dosage form with multiple enteric polymer coatings for colonic delivery
DE4309528C2 (en) 1993-03-24 1998-05-20 Doxa Gmbh Casein film or film tube, process for their production and their use
IL109944A (en) 1993-07-01 1998-12-06 Euro Celtique Sa Sustained release dosage unit forms containing morphine and a method of preparing these sustained release dosage unit forms
EP1442745A1 (en) 1993-10-07 2004-08-04 Euro-Celtique Orally administrable opioid formulations having extended duration of effect
KR100354702B1 (en) * 1993-11-23 2002-12-28 유로-셀티크 소시에떼 아노뉨 Manufacturing method and sustained release composition of pharmaceutical composition
DE69429710T2 (en) 1993-11-23 2002-08-08 Euro Celtique Sa Process for the preparation of a drug composition with delayed drug delivery
AU1266895A (en) 1993-12-20 1995-07-10 Procter & Gamble Company, The Process for making laxatives containing dioctyl sulfosuccinate
IL112106A0 (en) 1993-12-22 1995-03-15 Ergo Science Inc Accelerated release composition containing bromocriptine
GB9401894D0 (en) 1994-02-01 1994-03-30 Rhone Poulenc Rorer Ltd New compositions of matter
CA2182282C (en) 1994-02-16 2006-04-18 Jacqueline E. Briskin Process for preparing fine particle pharmaceutical formulations
SE9503924D0 (en) 1995-08-18 1995-11-07 Astra Ab Novel opioid peptides
US5458887A (en) 1994-03-02 1995-10-17 Andrx Pharmaceuticals, Inc. Controlled release tablet formulation
DE4413350A1 (en) 1994-04-18 1995-10-19 Basf Ag Retard matrix pellets and process for their production
RO114740B1 (en) 1994-05-06 1999-07-30 Pfizer Controlled release composition, process for preparing the same and method of treatment
AT403988B (en) 1994-05-18 1998-07-27 Lannacher Heilmittel SOLID ORAL RETARDED PREPARATION
US5460826A (en) 1994-06-27 1995-10-24 Alza Corporation Morphine therapy
JP3285452B2 (en) 1994-08-11 2002-05-27 サンスター株式会社 Toothpaste composition
US5837790A (en) 1994-10-24 1998-11-17 Amcol International Corporation Precipitation polymerization process for producing an oil adsorbent polymer capable of entrapping solid particles and liquids and the product thereof
AUPM897594A0 (en) 1994-10-25 1994-11-17 Daratech Pty Ltd Controlled release container
DE19504832A1 (en) 1995-02-14 1996-08-22 Basf Ag Solid drug preparations
US5945125A (en) 1995-02-28 1999-08-31 Temple University Controlled release tablet
US6117453A (en) 1995-04-14 2000-09-12 Pharma Pass Solid compositions containing polyethylene oxide and an active ingredient
US5900425A (en) 1995-05-02 1999-05-04 Bayer Aktiengesellschaft Pharmaceutical preparations having controlled release of active compound and processes for their preparation
DE19522899C1 (en) 1995-06-23 1996-12-19 Hexal Pharmaforschung Gmbh Process for the continuous sintering of a granulate
US5759583A (en) 1995-08-30 1998-06-02 Syntex (U.S.A.) Inc. Sustained release poly (lactic/glycolic) matrices
US6063405A (en) 1995-09-29 2000-05-16 L.A.M. Pharmaceuticals, Llc Sustained release delivery system
US5811126A (en) 1995-10-02 1998-09-22 Euro-Celtique, S.A. Controlled release matrix for pharmaceuticals
DE19539361A1 (en) 1995-10-23 1997-04-24 Basf Ag Process for the preparation of multilayer, solid pharmaceutical forms for oral or rectal administration
US5908850A (en) 1995-12-04 1999-06-01 Celgene Corporation Method of treating attention deficit disorders with d-threo methylphenidate
DE19547766A1 (en) 1995-12-20 1997-06-26 Gruenenthal Gmbh 1-phenyl-2-dimethylaminomethyl-cyclohexan-1-ol compounds as active pharmaceutical ingredients
US6461644B1 (en) 1996-03-25 2002-10-08 Richard R. Jackson Anesthetizing plastics, drug delivery plastics, and related medical products, systems and methods
US20020114838A1 (en) 1996-04-05 2002-08-22 Ayer Atul D. Uniform drug delivery therapy
EP2253327A1 (en) 1996-04-05 2010-11-24 Takeda Pharmaceutical Company Limited Pharmaceutical composition containing a compound having angiotensin II antagonistic activity in combination with another compound
US5817343A (en) 1996-05-14 1998-10-06 Alkermes, Inc. Method for fabricating polymer-based controlled-release devices
CN1147291C (en) 1996-06-06 2004-04-28 拜福丹公司 Enteric coating, comprising alginic acid, for an oral preparation
EP1014941B2 (en) 1996-06-26 2017-05-17 The Board Of Regents, The University Of Texas System Hot-melt extrudable pharmaceutical formulation
EP0859603B1 (en) 1996-07-08 2008-12-17 Penwest Pharmaceuticals Co. Sustained release matrix for high-dose insoluble drugs
DE19629753A1 (en) 1996-07-23 1998-01-29 Basf Ag Process for the production of solid dosage forms
NL1003684C2 (en) 1996-07-25 1998-01-28 Weterings B V H Device for dispensing a liquid.
DE19630236A1 (en) 1996-07-26 1998-01-29 Wolff Walsrode Ag Biaxially stretched, biodegradable and compostable sausage casing
BE1010353A5 (en) 1996-08-14 1998-06-02 Boss Pharmaceuticals Ag Method for manufacture of pharmaceutical products, device for such a method and pharmaceutical products obtained.
US5991799A (en) 1996-12-20 1999-11-23 Liberate Technologies Information retrieval system using an internet multiplexer to focus user selection
DE19705538C1 (en) 1997-02-14 1998-08-27 Goedecke Ag Process for the separation of active substances in solid pharmaceutical preparations
US5948787A (en) 1997-02-28 1999-09-07 Alza Corporation Compositions containing opiate analgesics
DE19710008A1 (en) 1997-03-12 1998-09-17 Basf Ag Solid, at least two-phase formulations of a sustained-release opioid analgesic
DE19710009A1 (en) 1997-03-12 1998-09-24 Knoll Ag Multi-phase preparation forms containing active ingredients
DE19710213A1 (en) 1997-03-12 1998-09-17 Basf Ag Process for the manufacture of solid combination dosage forms
US6139770A (en) 1997-05-16 2000-10-31 Chevron Chemical Company Llc Photoinitiators and oxygen scavenging compositions
DE19721467A1 (en) 1997-05-22 1998-11-26 Basf Ag Process for the preparation of small-scale preparations of biologically active substances
US6635280B2 (en) 1997-06-06 2003-10-21 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
PT1009387E (en) 1997-07-02 2006-08-31 Euro Celtique Sa STABILIZED CONTROLLED FREQUENCY FORMULATIONS OF TRAMADOL
IE970588A1 (en) 1997-08-01 2000-08-23 Elan Corp Plc Controlled release pharmaceutical compositions containing tiagabine
CN1290239A (en) 1997-09-10 2001-04-04 联合讯号公司 Injection molding of structure zirconia-based materials by aqueous process
US6009390A (en) 1997-09-11 1999-12-28 Lucent Technologies Inc. Technique for selective use of Gaussian kernels and mixture component weights of tied-mixture hidden Markov models for speech recognition
DE19753534A1 (en) 1997-12-03 1999-06-10 Bayer Ag Biodegradable thermoplastic polyester-amides with good mechanical properties for molding, film and fiber, useful for e.g. compostable refuse bag
AU755790B2 (en) 1997-12-22 2002-12-19 Euro-Celtique S.A. A method of preventing abuse of opioid dosage forms
DE19800698A1 (en) 1998-01-10 1999-07-15 Bayer Ag Biodegradable polyester amides with block-like polyester and polyamide segments
DE19800689C1 (en) 1998-01-10 1999-07-15 Deloro Stellite Gmbh Shaped body made of a wear-resistant material
US6251430B1 (en) 1998-02-04 2001-06-26 Guohua Zhang Water insoluble polymer based sustained release formulation
EP0980894B1 (en) 1998-03-05 2004-06-23 Mitsui Chemicals, Inc. Polylactic acid composition and film thereof
US6245357B1 (en) 1998-03-06 2001-06-12 Alza Corporation Extended release dosage form
US6090411A (en) 1998-03-09 2000-07-18 Temple University Monolithic tablet for controlled drug release
US6110500A (en) 1998-03-25 2000-08-29 Temple University Coated tablet with long term parabolic and zero-order release kinetics
ES2221370T3 (en) 1998-04-03 2004-12-16 Egalet A/S COMPOSITION OF CONTROLLED RELEASE.
US5962488A (en) 1998-04-08 1999-10-05 Roberts Laboratories, Inc. Stable pharmaceutical formulations for treating internal bowel syndrome containing isoxazole derivatives
DE19822979A1 (en) 1998-05-25 1999-12-02 Kalle Nalo Gmbh & Co Kg Film with starch or starch derivatives and polyester urethanes and process for their production
US6333087B1 (en) * 1998-08-27 2001-12-25 Chevron Chemical Company Llc Oxygen scavenging packaging
DE19841244A1 (en) 1998-09-09 2000-03-16 Knoll Ag Method and device for making tablets
WO2000023073A1 (en) 1998-10-20 2000-04-27 Korea Institute Of Science And Technology Bioflavonoids as plasma high density lipoprotein level increasing agent
US6322819B1 (en) 1998-10-21 2001-11-27 Shire Laboratories, Inc. Oral pulsed dose drug delivery system
US20060240105A1 (en) 1998-11-02 2006-10-26 Elan Corporation, Plc Multiparticulate modified release composition
ES2141688B1 (en) 1998-11-06 2001-02-01 Vita Invest Sa NEW ESTERS DERIVED FROM SUBSTITUTED FENIL-CICLOHEXIL COMPOUNDS.
DE19855440A1 (en) 1998-12-01 2000-06-08 Basf Ag Process for the production of solid dosage forms by melt extrusion
DE19856147A1 (en) 1998-12-04 2000-06-08 Knoll Ag Divisible solid dosage forms and methods for their preparation
EP1005863A1 (en) * 1998-12-04 2000-06-07 Synthelabo Controlled-release dosage forms comprising a short acting hypnotic or a salt thereof
US6238697B1 (en) * 1998-12-21 2001-05-29 Pharmalogix, Inc. Methods and formulations for making bupropion hydrochloride tablets using direct compression
WO2000040205A2 (en) 1999-01-05 2000-07-13 Copley Pharmaceutical Inc. Sustained release formulation with reduced moisture sensitivity
EP1070504A4 (en) 1999-02-04 2004-03-10 Nichimo Kk Materials for preventing arteriosclerosis, immunopotentiating materials, vertebrates fed with these materials and eggs thereof
US7374779B2 (en) 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US20030118641A1 (en) * 2000-07-27 2003-06-26 Roxane Laboratories, Inc. Abuse-resistant sustained-release opioid formulation
MXPA02000725A (en) 1999-07-29 2003-07-14 Roxane Lab Inc Opioid sustained released formulation.
US6562375B1 (en) 1999-08-04 2003-05-13 Yamanouchi Pharmaceuticals, Co., Ltd. Stable pharmaceutical composition for oral use
CA2387705C (en) 1999-08-04 2009-06-30 Yamanouchi Pharmaceutical Co., Ltd. Stable pharmaceutical composition for oral use
KR100345214B1 (en) 1999-08-17 2002-07-25 이강춘 The nasal transmucosal delivery of peptides conjugated with biocompatible polymers
NZ517559A (en) 1999-08-31 2004-08-27 Gruenenthal Chemie Sustained release pharmaceutical composition containing tramadol saccharinate
ES2160534B1 (en) 1999-12-30 2002-04-16 Vita Invest Sa NEW ESTERS DERIVED FROM (RR, SS) -2-HYDROXIBENZOATE 3- (2-DIMETHYLMINOME-1-HYDROXICICLOHEXIL) PHENYL.
US6680070B1 (en) 2000-01-18 2004-01-20 Albemarle Corporation Particulate blends and compacted products formed therefrom, and the preparation thereof
DE10015479A1 (en) 2000-03-29 2001-10-11 Basf Ag Solid oral dosage forms with delayed release of active ingredient and high mechanical stability
US8012504B2 (en) 2000-04-28 2011-09-06 Reckitt Benckiser Inc. Sustained release of guaifenesin combination drugs
US6572887B2 (en) 2000-05-01 2003-06-03 National Starch And Chemical Investment Holding Corporation Polysaccharide material for direct compression
US6419954B1 (en) 2000-05-19 2002-07-16 Yamanouchi Pharmaceutical Co., Ltd. Tablets and methods for modified release of hydrophilic and other active agents
US6488962B1 (en) 2000-06-20 2002-12-03 Depomed, Inc. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms
US6607748B1 (en) 2000-06-29 2003-08-19 Vincent Lenaerts Cross-linked high amylose starch for use in controlled-release pharmaceutical formulations and processes for its manufacture
JP2002042339A (en) 2000-07-19 2002-02-08 Teac Corp Optical disk recorder
DE10036400A1 (en) 2000-07-26 2002-06-06 Mitsubishi Polyester Film Gmbh White, biaxially oriented polyester film
FR2812906B1 (en) 2000-08-10 2002-09-20 Snecma Moteurs AXIAL RETAINER RING OF A FLANGE ON A DISC
WO2002026262A2 (en) 2000-09-25 2002-04-04 Pro-Pharmaceuticals, Inc. Compositions for reducing side effects in chemotherapeutic treatments
WO2002026061A1 (en) 2000-09-27 2002-04-04 Danisco A/S Antimicrobial agent
AU2001294902A1 (en) 2000-09-28 2002-04-08 The Dow Chemical Company Polymer composite structures useful for controlled release systems
GB0026137D0 (en) 2000-10-25 2000-12-13 Euro Celtique Sa Transdermal dosage form
US6344215B1 (en) 2000-10-27 2002-02-05 Eurand America, Inc. Methylphenidate modified release formulations
EP2283829A1 (en) * 2000-10-30 2011-02-16 Euro-Celtique S.A. Controlled release hydrocodone formulations
AU2002226098A1 (en) 2000-10-30 2002-05-15 The Board Of Regents, The University Of Texas System Spherical particles produced by a hot-melt extrusion/spheronization process
DE10109763A1 (en) 2001-02-28 2002-09-05 Gruenenthal Gmbh Pharmaceutical salts
JP2002265592A (en) 2001-03-07 2002-09-18 Sumitomo Seika Chem Co Ltd Process for producing alkylene oxide polymer
WO2002071860A1 (en) 2001-03-13 2002-09-19 L.A. Dreyfus Co. Gum base and gum manufacturing using particulated gum base ingredients
JP3967554B2 (en) 2001-03-15 2007-08-29 株式会社ポッカコーポレーション Flavonoid compound and method for producing the same
EP1241110A1 (en) 2001-03-16 2002-09-18 Pfizer Products Inc. Dispensing unit for oxygen-sensitive drugs
US20020132395A1 (en) 2001-03-16 2002-09-19 International Business Machines Corporation Body contact in SOI devices by electrically weakening the oxide under the body
US20020187192A1 (en) 2001-04-30 2002-12-12 Yatindra Joshi Pharmaceutical composition which reduces or eliminates drug abuse potential
DE60211885T2 (en) 2001-05-01 2006-11-02 Union Carbide Chemicals & Plastics Technology Corp., Danbury PHARMACEUTICAL COMPOSITION CONTAINING POLYALKYLENE OXIDES WITH REDUCED AMOIC ACID AND ANTIC ACID DERIVATIVES
UA81224C2 (en) 2001-05-02 2007-12-25 Euro Celtic S A Dosage form of oxycodone and use thereof
US6852891B2 (en) 2001-05-08 2005-02-08 The Johns Hopkins University Method of inhibiting methaphetamine synthesis
CN1525851A (en) 2001-05-11 2004-09-01 ������ҩ�����޹�˾ Abuse-resistant controlled-release opioid dosage form
US6623754B2 (en) 2001-05-21 2003-09-23 Noveon Ip Holdings Corp. Dosage form of N-acetyl cysteine
AU2002339378A1 (en) * 2001-05-22 2002-12-03 Euro-Celtique Compartmentalized dosage form
US20030064122A1 (en) 2001-05-23 2003-04-03 Endo Pharmaceuticals, Inc. Abuse resistant pharmaceutical composition containing capsaicin
WO2003002100A1 (en) 2001-06-26 2003-01-09 Farrell John J Tamper-proof narcotic delivery system
ES2292775T3 (en) 2001-07-06 2008-03-16 Penwest Pharmaceuticals Co. FORMULATIONS OF PROLONGED RELEASE OF OXIMORPHONE.
US8329216B2 (en) 2001-07-06 2012-12-11 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
EP2311460A1 (en) 2001-07-06 2011-04-20 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
JP2003020517A (en) 2001-07-10 2003-01-24 Calp Corp Resin composition for compound fiber
US7144587B2 (en) * 2001-08-06 2006-12-05 Euro-Celtique S.A. Pharmaceutical formulation containing opioid agonist, opioid antagonist and bittering agent
WO2003013479A1 (en) 2001-08-06 2003-02-20 Euro-Celtique S.A. Compositions and methods to prevent abuse of opioids
US20030068375A1 (en) * 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
WO2003013433A2 (en) 2001-08-06 2003-02-20 Euro-Celtique S.A. Sequestered antagonist formulations
IL160217A0 (en) 2001-08-06 2004-07-25 Euro Celtique Sa Compositions and methods to prevent abuse of opioids
US20030049272A1 (en) 2001-08-30 2003-03-13 Yatindra Joshi Pharmaceutical composition which produces irritation
US20030059467A1 (en) 2001-09-14 2003-03-27 Pawan Seth Pharmaceutical composition comprising doxasozin
US6691698B2 (en) 2001-09-14 2004-02-17 Fmc Technologies Inc. Cooking oven having curved heat exchanger
US20030092724A1 (en) 2001-09-18 2003-05-15 Huaihung Kao Combination sustained release-immediate release oral dosage forms with an opioid analgesic and a non-opioid analgesic
US20050019399A1 (en) 2001-09-21 2005-01-27 Gina Fischer Controlled release solid dispersions
EP1429744A1 (en) 2001-09-21 2004-06-23 Egalet A/S Morphine polymer release system
JP2005523876A (en) 2001-09-26 2005-08-11 ペンウェスト ファーマシューティカルズ カンパニー Opioid formulations with reduced potential for abuse
AU2002342755A1 (en) 2001-09-26 2003-04-14 Klaus-Jurgen Steffens Method and device for producing granulates that comprise at least one pharmaceutical active substance
US6837696B2 (en) 2001-09-28 2005-01-04 Mcneil-Ppc, Inc. Apparatus for manufacturing dosage forms
NZ532568A (en) 2001-09-28 2005-07-29 Mcneil Ppc Inc Modified release dosage forms
WO2003031546A1 (en) 2001-10-09 2003-04-17 The Procter & Gamble Company Aqueous compositions for treating a surface
US6592901B2 (en) 2001-10-15 2003-07-15 Hercules Incorporated Highly compressible ethylcellulose for tableting
JP2003125706A (en) 2001-10-23 2003-05-07 Lion Corp Mouth freshening preparation
PE20030527A1 (en) 2001-10-24 2003-07-26 Gruenenthal Chemie DELAYED-RELEASE PHARMACEUTICAL FORMULATION CONTAINING 3- (3-DIMETHYLAMINO-1-ETHYL-2-METHYL-PROPYL) PHENOL OR A PHARMACEUTICALLY ACCEPTABLE SALT OF THE SAME AND ORAL TABLETS CONTAINING IT
US20030091630A1 (en) 2001-10-25 2003-05-15 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral dosage form using in vitro disintegration test data
US20030104052A1 (en) 2001-10-25 2003-06-05 Bret Berner Gastric retentive oral dosage form with restricted drug release in the lower gastrointestinal tract
CA2409552A1 (en) 2001-10-25 2003-04-25 Depomed, Inc. Gastric retentive oral dosage form with restricted drug release in the lower gastrointestinal tract
US20030152622A1 (en) 2001-10-25 2003-08-14 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral diuretic
EP1441703B1 (en) 2001-10-29 2018-01-03 Massachusetts Institute of Technology Zero-order release profile dosage form manufactured by three-dimensional printing
US20030125347A1 (en) 2001-11-02 2003-07-03 Elan Corporation Plc Pharmaceutical composition
US20040126428A1 (en) 2001-11-02 2004-07-01 Lyn Hughes Pharmaceutical formulation including a resinate and an aversive agent
CA2484528A1 (en) 2001-12-06 2003-06-19 Michael P. Hite Isoflavone composition for oral delivery
FR2833838B1 (en) 2001-12-21 2005-09-16 Ellipse Pharmaceuticals METHOD FOR MANUFACTURING A TABLET INCLUDING A MORPHINIC ANALGESIC AND TABLET OBTAINED
AUPS044502A0 (en) 2002-02-11 2002-03-07 Commonwealth Scientific And Industrial Research Organisation Novel catalysts and processes for their preparation
US20040033253A1 (en) 2002-02-19 2004-02-19 Ihor Shevchuk Acyl opioid antagonists
US20030158265A1 (en) 2002-02-20 2003-08-21 Ramachandran Radhakrishnan Orally administrable pharmaceutical formulation comprising pseudoephedrine hydrochloride and process for preparing the same
US20030190343A1 (en) 2002-03-05 2003-10-09 Pfizer Inc. Palatable pharmaceutical compositions for companion animals
US6572889B1 (en) 2002-03-07 2003-06-03 Noveon Ip Holdings Corp. Controlled release solid dosage carbamazepine formulations
US6753009B2 (en) 2002-03-13 2004-06-22 Mcneil-Ppc, Inc. Soft tablet containing high molecular weight polyethylene oxide
LT2425821T (en) 2002-04-05 2017-07-25 Euro-Celtique S.A. Pharmaceutical preparation containing oxycodone and naloxone
DE10217232B4 (en) 2002-04-18 2004-08-19 Ticona Gmbh Process for the production of filled granules from polyethylene of high or ultra-high molecular weight
WO2003089506A1 (en) 2002-04-22 2003-10-30 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
US20050106249A1 (en) 2002-04-29 2005-05-19 Stephen Hwang Once-a-day, oral, controlled-release, oxycodone dosage forms
AU2003234395B2 (en) 2002-05-13 2008-01-24 Endo Pharmaceuticals Inc. Abuse-resistant opioid solid dosage form
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
DE10250083A1 (en) 2002-06-17 2003-12-24 Gruenenthal Gmbh Dosage form protected against abuse
US20070196481A1 (en) 2002-07-25 2007-08-23 Amidon Gregory E Sustained-release tablet composition
US20050191340A1 (en) 2002-08-09 2005-09-01 Gruenenthal Gmbh Opioid-receptor antagonists in transdermal systems having buprenorphine
WO2004017947A1 (en) 2002-08-21 2004-03-04 Phoqus Pharmaceuticals Limited Use of an aqueous solution of citric acid and a water-soluble sugar like lactitol as granulation liquid in the manufacture of tablets
US7388068B2 (en) 2002-08-21 2008-06-17 Clariant Produkte (Deutschland) Gmbh Copolymers made of alkylene oxides and glycidyl ethers and use thereof as polymerizable emulsifiers
MXPA05002828A (en) 2002-09-17 2005-05-27 Wyeth Corp Oral formulations.
EP1539098B1 (en) 2002-09-20 2011-08-10 Fmc Corporation Cosmetic composition containing microcrystalline cellulose
EP1555022B1 (en) 2002-09-21 2008-02-20 Shuyi Zhang Sustained release formulation of acetaminophen and tramadol
US8623412B2 (en) 2002-09-23 2014-01-07 Elan Pharma International Limited Abuse-resistant pharmaceutical compositions
WO2004037222A2 (en) 2002-10-25 2004-05-06 Labopharm Inc. Sustained-release tramadol formulations with 24-hour efficacy
DE10250088A1 (en) 2002-10-25 2004-05-06 Grünenthal GmbH Dosage form protected against abuse
US20050191244A1 (en) 2002-10-25 2005-09-01 Gruenenthal Gmbh Abuse-resistant pharmaceutical dosage form
DE10250084A1 (en) 2002-10-25 2004-05-06 Grünenthal GmbH Dosage form protected against abuse
DE10250087A1 (en) 2002-10-25 2004-05-06 Grünenthal GmbH Dosage form protected against abuse
US20040091528A1 (en) 2002-11-12 2004-05-13 Yamanouchi Pharma Technologies, Inc. Soluble drug extended release system
US20040185097A1 (en) 2003-01-31 2004-09-23 Glenmark Pharmaceuticals Ltd. Controlled release modifying complex and pharmaceutical compositions thereof
US7442387B2 (en) 2003-03-06 2008-10-28 Astellas Pharma Inc. Pharmaceutical composition for controlled release of active substances and manufacturing method thereof
ATE454169T1 (en) 2003-03-13 2010-01-15 Controlled Chemicals Inc OXYCODONE CONJUGATES WITH LOWER ABUSE POTENTIAL AND EXTENDED DURATION
DE602004031096D1 (en) 2003-03-26 2011-03-03 Egalet As MORPHINE SYSTEM WITH CONTROLLED RELEASE
EP2186510B1 (en) 2003-03-26 2013-07-10 Egalet Ltd. Matrix compositions for controlled delivery of drug substances
TWI347201B (en) 2003-04-21 2011-08-21 Euro Celtique Sa Pharmaceutical products,uses thereof and methods for preparing the same
WO2004093819A2 (en) 2003-04-21 2004-11-04 Euro-Celtique, S.A. Tamper resistant dosage form comprising co-extruded, adverse agent particles and process of making same
US8778382B2 (en) 2003-04-30 2014-07-15 Purdue Pharma L.P. Tamper resistant transdermal dosage form
US8906413B2 (en) 2003-05-12 2014-12-09 Supernus Pharmaceuticals, Inc. Drug formulations having reduced abuse potential
CN1473562A (en) 2003-06-27 2004-02-11 辉 刘 Mouth cavity quick dissolving quick disintegrating freeze-dried tablet and its preparing method
US20050005870A1 (en) * 2003-07-11 2005-01-13 The Clorox Company Composite absorbent particles
DE102004020220A1 (en) 2004-04-22 2005-11-10 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
CL2004002016A1 (en) 2003-08-06 2005-05-20 Gruenenthal Chemie THERMOFORMED DOSAGE FORM FOR PROOF OF ABUSE CONTAINING (A) ONE OR MORE SUSCEPTIBLE ACTIVE PRINCIPLES OF ABUSE, (B) OPTIONALLY AUXILIARY SUBSTANCES, (C) AT LEAST A DEFINED SYNTHETIC OR NATURAL POLYMER AND (D) OPTIONALLY AT LEAST
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
RU2339365C2 (en) 2003-08-06 2008-11-27 Грюненталь Гмбх Drug dosage form, protected from unintended application
DE102005005446A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Break-resistant dosage forms with sustained release
PT1658054E (en) 2003-08-06 2007-09-18 Gruenenthal Gmbh Dosage form that is safeguarded from abuse
US20050063214A1 (en) 2003-09-22 2005-03-24 Daisaburo Takashima Semiconductor integrated circuit device
PT1663229E (en) 2003-09-25 2010-07-13 Euro Celtique Sa Pharmaceutical combinations of hydrocodone and naltrexone
WO2005032524A2 (en) 2003-09-30 2005-04-14 Alza Corporation Osmotically driven active agent delivery device providing an ascending release profile
US20060172006A1 (en) 2003-10-10 2006-08-03 Vincent Lenaerts Sustained-release tramadol formulations with 24-hour clinical efficacy
US20060009478A1 (en) 2003-10-15 2006-01-12 Nadav Friedmann Methods for the treatment of back pain
WO2005041968A2 (en) 2003-10-29 2005-05-12 Alza Corporation Once-a-day, oral, controlled-release, oxycodone dosage forms
JP2007513147A (en) 2003-12-04 2007-05-24 ファイザー・プロダクツ・インク Spray congealing process for producing a multiparticulate crystalline pharmaceutical composition, preferably containing poloxamer and glyceride, using an extruder
WO2005055981A2 (en) 2003-12-09 2005-06-23 Euro-Celtique S.A. Tamper resistant co-extruded dosage form containing an active agent and an adverse agent and process of making same
WO2005060942A1 (en) 2003-12-19 2005-07-07 Aurobindo Pharma Ltd Extended release pharmaceutical composition of metformin
DE10360792A1 (en) 2003-12-23 2005-07-28 Grünenthal GmbH Spirocyclic cyclohexane derivatives
CA2551815A1 (en) 2003-12-29 2005-07-21 Alza Corporation Novel drug compositions and dosage forms
WO2005079752A2 (en) 2004-02-11 2005-09-01 Rubicon Research Private Limited Controlled release pharmaceutical compositions with improved bioavailability
GB0403098D0 (en) 2004-02-12 2004-03-17 Euro Celtique Sa Extrusion
TWI350762B (en) 2004-02-12 2011-10-21 Euro Celtique Sa Particulates
GB0403100D0 (en) 2004-02-12 2004-03-17 Euro Celtique Sa Particulates
CN1921814B (en) 2004-02-23 2012-02-29 欧洲凯尔特公司 Abuse resistance opioid transdermal delivery device and its pharmaceutical use
US20050220877A1 (en) 2004-03-31 2005-10-06 Patel Ashish A Bilayer tablet comprising an antihistamine and a decongestant
PL1740156T3 (en) 2004-04-22 2011-12-30 Gruenenthal Gmbh Method for the production of an abuse-proof, solid form of administration
WO2005105036A1 (en) 2004-04-28 2005-11-10 Natco Pharma Limited Controlled release mucoadhesive matrix formulation containing tolterodine and a process for its preparation
TWI356036B (en) 2004-06-09 2012-01-11 Smithkline Beecham Corp Apparatus and method for pharmaceutical production
PL1612203T3 (en) 2004-06-28 2007-12-31 Gruenenthal Gmbh Crystalline forms of (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methylpropyl)-phenol hydrochloride
ITMI20041317A1 (en) 2004-06-30 2004-09-30 Ibsa Inst Biochimique Sa PHARMACEUTICAL FORMULATIONS FOR THE SAFE ADMINISTRATION OF DRUGS USED IN THE TREATMENT OF DRUG ADDICTION AND PROCEDURE FOR THEIR OBTAINING
EP1765303B2 (en) 2004-07-01 2022-11-23 Grünenthal GmbH Oral tablet safeguarded against abuse
KR101204657B1 (en) 2004-07-01 2012-11-27 그뤼넨탈 게엠베하 Oral dosage form safeguarded against abuse containing 1r,2r-3-3-dimethylamino-1-ethyl-2-methyl-propyl-phenol
EP1765298B1 (en) 2004-07-01 2012-10-24 Gruenenthal Gmbh Method for producing a solid dosage form, which is safeguarded against abuse, while using a planetary gear extruder
ES2306167T3 (en) 2004-07-27 2008-11-01 Unilever N.V. COMPOSITIONS FOR HAIR CARE.
US20060068009A1 (en) 2004-09-30 2006-03-30 Scolr Pharma, Inc. Modified release ibuprofen dosage form
US20070077297A1 (en) 2004-09-30 2007-04-05 Scolr Pharma, Inc. Modified release ibuprofen dosage form
US20070231268A1 (en) 2004-11-24 2007-10-04 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20060177380A1 (en) 2004-11-24 2006-08-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20080152595A1 (en) 2004-11-24 2008-06-26 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
CA2594713A1 (en) 2005-01-26 2006-08-03 Taiho Pharmaceutical Co., Ltd. Anticancer drug containing .alpha.,.alpha.,.alpha.-trifluorothymidine and thymidine phosphorylase inhibitor
EP2319499A1 (en) 2005-01-28 2011-05-11 Euro-Celtique S.A. Alcohol resistant dosage forms
DE102005005449A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Process for producing an anti-abuse dosage form
US7292616B2 (en) 2005-02-09 2007-11-06 Ultratech, Inc. CO2 laser stabilization systems and methods
RU2007133601A (en) 2005-02-10 2009-03-20 Лайфсайкл Фарма А/С (Dk) SUSTAINABLE PHARMACEUTICAL COMPOSITION CONTAINING A FIXED DOSE OF A COMBINATION OF Phenofibrate and an HMG-CoA reductase inhibitor
US20060194759A1 (en) 2005-02-25 2006-08-31 Eidelson Stewart G Topical compositions and methods for treating pain and inflammation
EP1695700A1 (en) 2005-02-28 2006-08-30 Euro-Celtique S.A. Dosage form containing oxycodone and naloxone
SI1861405T1 (en) 2005-03-04 2009-10-31 Euro Celtique Sa Method of reducing alpha, beta- unsaturated ketones in opioid compositions
US7732427B2 (en) 2005-03-31 2010-06-08 University Of Delaware Multifunctional and biologically active matrices from multicomponent polymeric solutions
JP5256425B2 (en) 2005-04-08 2013-08-07 リングアル コンセグナ ピーティーワイ エルティーディー Oral delivery system
RU2405539C2 (en) 2005-05-10 2010-12-10 Новартис Аг Method of obtaining compositions by extrusion of resistant to pressing pharmaceutical substances
CN101188999B (en) 2005-06-03 2012-07-18 尹格莱特股份有限公司 A pharmaceutical delivery system for delivering active component dispersed in dispersion medium
WO2007005716A2 (en) 2005-06-30 2007-01-11 Cinergen, Llc Methods of treatment and compositions for use thereof
DE102005032806A1 (en) 2005-07-12 2007-01-18 Röhm Gmbh Use of a partially neutralized, anionic (meth) acrylate copolymer as a coating for the preparation of a dosage form with a release of active ingredient at reduced pH values
US8858993B2 (en) 2005-07-25 2014-10-14 Metrics, Inc. Coated tablet with zero-order or near zero-order release kinetics
CN101232871A (en) 2005-08-03 2008-07-30 伊士曼化工公司 Tocopheryl polyethylene glycol succinate powder and process for preparing same
ZA200803414B (en) 2005-10-14 2009-09-30 Kitasato Inst Novel dihydropseudoerythromycin derivatives
PL116330U1 (en) 2005-10-31 2007-04-02 Alza Corp Method for the reduction of alcohol provoked rapid increase in the released dose of the orally administered opioide with prolonged liberation
US9125833B2 (en) 2005-11-02 2015-09-08 Relmada Therapeutics, Inc. Multimodal abuse resistant and extended release opioid formulations
US8329744B2 (en) 2005-11-02 2012-12-11 Relmada Therapeutics, Inc. Methods of preventing the serotonin syndrome and compositions for use thereof
FR2892937B1 (en) 2005-11-10 2013-04-05 Flamel Tech Sa MICROPARTICULAR ORAL PHARMACEUTICAL FORM ANTI-MEASURING
US8652529B2 (en) 2005-11-10 2014-02-18 Flamel Technologies Anti-misuse microparticulate oral pharmaceutical form
US20070190142A1 (en) 2006-01-21 2007-08-16 Abbott Gmbh & Co. Kg Dosage forms for the delivery of drugs of abuse and related methods
US20100172989A1 (en) 2006-01-21 2010-07-08 Abbott Laboratories Abuse resistant melt extruded formulation having reduced alcohol interaction
US20090022798A1 (en) 2007-07-20 2009-01-22 Abbott Gmbh & Co. Kg Formulations of nonopioid and confined opioid analgesics
US20090317355A1 (en) 2006-01-21 2009-12-24 Abbott Gmbh & Co. Kg, Abuse resistant melt extruded formulation having reduced alcohol interaction
EP1813276A1 (en) 2006-01-27 2007-08-01 Euro-Celtique S.A. Tamper resistant dosage forms
US20100226855A1 (en) 2006-03-02 2010-09-09 Spherics, Inc. Rate-Controlled Oral Dosage Formulations
AU2007224221B2 (en) 2006-03-02 2013-02-14 SpecGx LLC Processes for preparing morphinan-6-one products with low levels of alpha, beta-unsaturated ketone compounds
US20070224637A1 (en) 2006-03-24 2007-09-27 Mcauliffe Joseph C Oxidative protection of lipid layer biosensors
MX2008012265A (en) 2006-03-24 2009-02-20 Auxilium Int Holdings Inc Process for the preparation of a hot-melt extruded laminate.
CA2932389A1 (en) 2006-03-24 2007-10-04 Auxilium International Holdings, Inc. Stabilized compositions containing alkaline labile drugs
US10960077B2 (en) 2006-05-12 2021-03-30 Intellipharmaceutics Corp. Abuse and alcohol resistant drug composition
US9023400B2 (en) 2006-05-24 2015-05-05 Flamel Technologies Prolonged-release multimicroparticulate oral pharmaceutical form
US20070292508A1 (en) 2006-06-05 2007-12-20 Balchem Corporation Orally disintegrating dosage forms
US20080069891A1 (en) 2006-09-15 2008-03-20 Cima Labs, Inc. Abuse resistant drug formulation
CN101091721A (en) 2006-06-22 2007-12-26 孙明 Method for preparing new type asshide
JP4029109B1 (en) 2006-07-18 2008-01-09 タマ生化学株式会社 Complex powder of vitamin E and proline and method for producing the same
US8445018B2 (en) 2006-09-15 2013-05-21 Cima Labs Inc. Abuse resistant drug formulation
US8187636B2 (en) 2006-09-25 2012-05-29 Atlantic Pharmaceuticals, Inc. Dosage forms for tamper prone therapeutic agents
US20080085304A1 (en) 2006-10-10 2008-04-10 Penwest Pharmaceuticals Co. Robust sustained release formulations
GB0624880D0 (en) 2006-12-14 2007-01-24 Johnson Matthey Plc Improved method for making analgesics
DE102006062120A1 (en) 2006-12-22 2008-06-26 Grünenthal GmbH Pharmaceutical composition for acne treatment
WO2008086804A2 (en) 2007-01-16 2008-07-24 Egalet A/S Use of i) a polyglycol and n) an active drug substance for the preparation of a pharmaceutical composition for i) mitigating the risk of alcohol induced dose dumping and/or ii) reducing the risk of drug abuse
US20080181932A1 (en) 2007-01-30 2008-07-31 Drugtech Corporation Compositions for oral delivery of pharmaceuticals
CN100579525C (en) 2007-02-02 2010-01-13 东南大学 Sustained release preparation of licardipine hydrochloride and its preparing process
CN101057849A (en) 2007-02-27 2007-10-24 齐齐哈尔医学院 Slow-releasing preparation containing metformin hydrochloride and glipizide and its preparation method
JP5452236B2 (en) 2007-03-02 2014-03-26 ファーナム・カンパニーズ・インコーポレーテッド Sustained release composition using wax-like substance
EP1980245A1 (en) 2007-04-11 2008-10-15 Cephalon France Bilayer lyophilized pharmaceutical compositions and methods of making and using same
US20080260836A1 (en) 2007-04-18 2008-10-23 Thomas James Boyd Films Comprising a Plurality of Polymers
WO2008132707A1 (en) 2007-04-26 2008-11-06 Sigmoid Pharma Limited Manufacture of multiple minicapsules
WO2008142627A2 (en) 2007-05-17 2008-11-27 Ranbaxy Laboratories Limited Multilayered modified release formulation comprising amoxicillin and clavulanate
US8202542B1 (en) 2007-05-31 2012-06-19 Tris Pharma Abuse resistant opioid drug-ion exchange resin complexes having hybrid coatings
WO2008148798A2 (en) 2007-06-04 2008-12-11 Egalet A/S Controlled release pharmaceutical compositions for prolonged effect
US20100035886A1 (en) 2007-06-21 2010-02-11 Veroscience, Llc Parenteral formulations of dopamine agonists
DE102007030308A1 (en) 2007-06-29 2009-01-02 Printed Systems Gmbh Method for producing a memory structure
JP2010532358A (en) 2007-07-01 2010-10-07 ピーター ハバウシ,ジョセフ Formulation with chewable outer layer
JP2010534204A (en) 2007-07-20 2010-11-04 アボット ゲーエムベーハー ウント カンパニー カーゲー Formulation of non-opioid analgesics and entrapped opioid analgesics
WO2009034541A2 (en) 2007-09-11 2009-03-19 Ranbaxy Laboratories Limited Controlled release pharmaceutical dosage forms of trimetazidine
PL2200593T3 (en) 2007-09-13 2017-02-28 Cima Labs Inc. Abuse resistant drug formulation
WO2009051819A1 (en) 2007-10-17 2009-04-23 Axxia Pharmaceuticals, Llc Polymeric drug delivery systems and thermoplastic extrusion processes for producing such systems
ES2619329T3 (en) 2007-11-23 2017-06-26 Grünenthal GmbH Tapentadol compositions
EP2067471B1 (en) 2007-12-06 2018-02-14 Durect Corporation Oral pharmaceutical dosage forms
BRPI0820770A2 (en) 2007-12-12 2015-06-16 Basf Se Water-soluble polymeric drug salt, solid administration form, and method for producing water-soluble polymeric drug salt.
BRPI0821732A2 (en) 2007-12-17 2015-06-16 Labopharm Inc Controlled release formulations, solid dosage form, and use of controlled release formulation
CA2713128C (en) 2008-01-25 2016-04-05 Gruenenthal Gmbh Pharmaceutical dosage form
KR100970665B1 (en) 2008-02-04 2010-07-15 삼일제약주식회사 Sustained release tablet containing alfuzosin or its salt
JP2011513391A (en) 2008-03-05 2011-04-28 パナセア バイオテック リミテッド Sustained release pharmaceutical composition containing mycophenolate and method thereof
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
MX2010014566A (en) 2008-07-03 2011-02-15 Novartis Ag Melt granulation process.
MX2011001864A (en) 2008-08-20 2011-06-20 Univ Texas Hot-melt extrusion of modified release multi-particulates.
WO2010044842A1 (en) 2008-10-16 2010-04-22 University Of Tennessee Research Foundation Tamper resistant oral dosage forms containing an embolizing agent
US20100104638A1 (en) 2008-10-27 2010-04-29 Wei-Guo Dai Extended release oral acetaminophen/tramadol dosage form
EP2376065A2 (en) 2008-11-14 2011-10-19 Portola Pharmaceuticals, Inc. Solid composition for controlled release of ionizable active agents with poor aqueous solubility at low ph and methods of use thereof
PL2379111T3 (en) 2008-12-12 2013-08-30 Paladin Labs Inc Narcotic drug formulations with decreased abuse potential
CN102316857A (en) 2008-12-16 2012-01-11 莱博法姆公司 Prevent the controlled release formulation misapplied
EP2700400A1 (en) 2009-01-26 2014-02-26 Egalet Ltd. Controlled release formulation with continuous efficacy
US8603526B2 (en) 2009-02-06 2013-12-10 Egalet Ltd. Pharmaceutical compositions resistant to abuse
SI2408436T1 (en) 2009-03-18 2017-06-30 Evonik Roehm Gmbh Controlled release pharmaceutical composition with resistance against the influence of ethanol employing a coating comprising neutral vinyl polymers and excipients
EP2246063A1 (en) 2009-04-29 2010-11-03 Ipsen Pharma S.A.S. Sustained release formulations comprising GnRH analogues
GB0909680D0 (en) 2009-06-05 2009-07-22 Euro Celtique Sa Dosage form
EP2445487A2 (en) 2009-06-24 2012-05-02 Egalet Ltd. Controlled release formulations
WO2011008298A2 (en) 2009-07-16 2011-01-20 Nectid, Inc. Novel axomadol dosage forms
EP2488029B1 (en) 2009-09-30 2016-03-23 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse
EP2506838A1 (en) 2009-12-01 2012-10-10 Noven Pharmaceuticals, INC. Transdermal testosterone device and delivery
US9579285B2 (en) 2010-02-03 2017-02-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of an extruder
AU2011224350B2 (en) 2010-03-09 2015-07-02 Alkermes Pharma Ireland Limited Alcohol resistant enteric pharmaceutical compositions
CA2795158C (en) 2010-04-02 2019-10-22 Alltranz Inc. Abuse-deterrent transdermal formulations of opiate agonists and agonist-antagonists
GB201006200D0 (en) 2010-04-14 2010-06-02 Ayanda As Composition
US10463633B2 (en) 2010-04-23 2019-11-05 Kempharm, Inc. Therapeutic formulation for reduced drug side effects
FR2960775A1 (en) 2010-06-07 2011-12-09 Ethypharm Sa MICROGRANULES RESISTANT TO MISMATCH
WO2012028317A1 (en) 2010-09-02 2012-03-08 Grünenthal GmbH Tamper resistant dosage form comprising an anionic polymer
EP2611425B1 (en) 2010-09-02 2014-07-02 Grünenthal GmbH Tamper resistant dosage form comprising an anionic polymer
WO2012028319A1 (en) 2010-09-02 2012-03-08 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
EP2635258A1 (en) 2010-11-04 2013-09-11 AbbVie Inc. Drug formulations
US20120231083A1 (en) 2010-11-18 2012-09-13 The Board Of Trustees Of The University Of Illinois Sustained release cannabinoid medicaments
GB201020895D0 (en) 2010-12-09 2011-01-26 Euro Celtique Sa Dosage form
AU2011346758C1 (en) 2010-12-23 2015-09-03 Purdue Pharma L.P. Tamper resistant solid oral dosage forms
AU2012219322A1 (en) 2011-02-17 2013-05-09 QRxPharma Ltd. Technology for preventing abuse of solid dosage forms
EP3685827A1 (en) 2011-03-04 2020-07-29 Grünenthal GmbH Aqueous pharmaceutical formulation of tapentadol for oral administration
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
ES2628303T3 (en) 2011-06-01 2017-08-02 Fmc Corporation Solid dose controlled release forms
EP2726065A4 (en) 2011-06-30 2014-11-26 Neos Therapeutics Lp Abuse resistant drug forms
CN103841964A (en) 2011-07-29 2014-06-04 格吕伦塔尔有限公司 Tamper-resistant tablet providing immediate drug release
WO2013017242A1 (en) 2011-07-29 2013-02-07 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
FR2979242A1 (en) 2011-08-29 2013-03-01 Sanofi Sa COMPRESSES AGAINST ABUSIVE USE, BASED ON PARACETAMOL AND OXYCODONE
BR112014008120A2 (en) 2011-10-06 2017-04-11 Gruenenthal Gmbh inviolable oral pharmaceutical dosage form comprising opioid agonist and opioid antagonist
MX349725B (en) 2011-11-17 2017-08-10 Gruenenthal Gmbh Tamper-resistant oral pharmaceutical dosage form comprising a pharmacologically active ingredient, an opioid antagonist and/or aversive agent, polyalkylene oxide and anionic polymer.
CA2858868C (en) 2011-12-09 2017-08-22 Purdue Pharma L.P. Pharmaceutical dosage forms comprising poly (epsilon-caprolactone) and polyethylene oxide
WO2013127830A1 (en) 2012-02-28 2013-09-06 Grünenthal GmbH Tamper-resistant pharmaceutical dosage form comprising nonionic surfactant
US20130225697A1 (en) 2012-02-28 2013-08-29 Grunenthal Gmbh Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
NZ629468A (en) 2012-03-02 2017-08-25 Rhodes Pharmaceuticals Lp Tamper resistant immediate release formulations
TR201815502T4 (en) 2012-04-18 2018-11-21 Gruenenthal Gmbh Tamper or pharmaceutical dosage form that is resistant and resistant to dose discharge.
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
CA2870012A1 (en) 2012-05-11 2013-11-14 Grunenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
WO2014059512A1 (en) 2012-10-15 2014-04-24 Isa Odidi Oral drug delivery formulations
CN105209021A (en) 2013-03-15 2015-12-30 马林克罗特有限公司 Compositions comprising an opioid and an additional active pharmaceutical ingredient for rapid onset and extended duration of analgesia that may be administered without regard to food
WO2014191396A1 (en) 2013-05-29 2014-12-04 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
MX371432B (en) 2013-05-29 2020-01-30 Gruenenthal Gmbh Tamper-resistant dosage form containing one or more particles.
CA2817728A1 (en) 2013-05-31 2014-11-30 Pharmascience Inc. Abuse deterrent immediate release formulation
KR20160031526A (en) 2013-07-12 2016-03-22 그뤼넨탈 게엠베하 Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US9770514B2 (en) 2013-09-03 2017-09-26 ExxPharma Therapeutics LLC Tamper-resistant pharmaceutical dosage forms
WO2015065547A1 (en) 2013-10-31 2015-05-07 Cima Labs Inc. Immediate release abuse-deterrent granulated dosage forms
US10744131B2 (en) 2013-12-31 2020-08-18 Kashiv Biosciences, Llc Abuse-resistant drug formulations
US20160089439A1 (en) 2014-09-28 2016-03-31 Satara Pharmaceuticals, LLC Prevention of Illicit Manufacutre of Methamphetamine from Pseudoephedrine Using Food Flavor Excipients

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652589A (en) * 1967-07-27 1972-03-28 Gruenenthal Chemie 1-(m-substituted phenyl)-2-aminomethyl cyclohexanols
US3806603A (en) * 1969-10-13 1974-04-23 W Gaunt Pharmaceutical carriers of plasticized dried milled particles of hydrated cooked rice endosperm
US4070497A (en) * 1971-03-09 1978-01-24 Ppg Industries, Inc. Process of applying and curing a plurality of coatings
US3865108A (en) * 1971-05-17 1975-02-11 Ortho Pharma Corp Expandable drug delivery device
US4014965A (en) * 1972-11-24 1977-03-29 The Dow Chemical Company Process for scrapless forming of plastic articles
US4002173A (en) * 1974-07-23 1977-01-11 International Paper Company Diester crosslinked polyglucan hydrogels and reticulated sponges thereof
US4070494A (en) * 1975-07-09 1978-01-24 Bayer Aktiengesellschaft Enteral pharmaceutical compositions
US4262017A (en) * 1978-05-22 1981-04-14 Basf Aktiengesellschaft Preparation of a vitamin E dry powder
US4200704A (en) * 1978-09-28 1980-04-29 Union Carbide Corporation Controlled degradation of poly(ethylene oxide)
US4427778A (en) * 1982-06-29 1984-01-24 Biochem Technology, Inc. Enzymatic preparation of particulate cellulose for tablet making
US4427681A (en) * 1982-09-16 1984-01-24 Richardson-Vicks, Inc. Thixotropic compositions easily convertible to pourable liquids
US5082668A (en) * 1983-05-11 1992-01-21 Alza Corporation Controlled-release system with constant pushing source
US4806337A (en) * 1984-07-23 1989-02-21 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US4992279A (en) * 1985-07-03 1991-02-12 Kraft General Foods, Inc. Sweetness inhibitor
US5198226A (en) * 1986-01-30 1993-03-30 Syntex (U.S.A.) Inc. Long acting nicardipine hydrochloride formulation
US4892889A (en) * 1986-11-18 1990-01-09 Basf Corporation Process for making a spray-dried, directly-compressible vitamin powder comprising unhydrolyzed gelatin
US4992278A (en) * 1987-01-14 1991-02-12 Ciba-Geigy Corporation Therapeutic system for sparingly soluble active ingredients
US4892778A (en) * 1987-05-27 1990-01-09 Alza Corporation Juxtaposed laminated arrangement
US5004601A (en) * 1988-10-14 1991-04-02 Zetachron, Inc. Low-melting moldable pharmaceutical excipient and dosage forms prepared therewith
US5190760A (en) * 1989-07-08 1993-03-02 Coopers Animal Health Limited Solid pharmaceutical composition
US5200197A (en) * 1989-11-16 1993-04-06 Alza Corporation Contraceptive pill
US5593694A (en) * 1991-10-04 1997-01-14 Yoshitomi Pharmaceutical Industries, Ltd. Sustained release tablet
US5508042A (en) * 1991-11-27 1996-04-16 Euro-Celtigue, S.A. Controlled release oxycodone compositions
US5378462A (en) * 1992-08-19 1995-01-03 Kali-Chemie Pharma Gmbh Pancreatin micropellets prepared with polyethylene glycol 4000, paraffin and a lower alcohol by extrusion and rounding
US6699503B1 (en) * 1992-09-18 2004-03-02 Yamanuchi Pharmaceutical Co., Ltd. Hydrogel-forming sustained-release preparation
US5620697A (en) * 1992-12-31 1997-04-15 Orion-Yhtyma Oy Method for preparing matrix-type pharmaceutical compositions through ultrasonic means to accomplish melting
US5591452A (en) * 1993-05-10 1997-01-07 Euro-Celtique, S.A. Controlled release formulation
US5601842A (en) * 1993-09-03 1997-02-11 Gruenenthal Gmbh Sustained release drug formulation containing a tramadol salt
USRE39593E1 (en) * 1994-07-23 2007-04-24 Gruenenthal Gmbh 1-phenyl-3-dimethylaminopropane compounds with a pharmacological effects
US5707636A (en) * 1994-08-03 1998-01-13 Saitec S.R.L. Apparatus and method for preparing solid forms with controlled release of the active ingredient
US20040081694A1 (en) * 1994-11-04 2004-04-29 Euro-Celtique, S.A. Melt-extruded orally administrable opioid formulations
US6009690A (en) * 1994-12-23 2000-01-04 Basf Aktiengesellschaft Process and apparatus for the production of divisible tablets
US5741519A (en) * 1995-03-21 1998-04-21 Basf Aktiengesellschaft The production of active substance compositions in the form of a solid solution of the active substance in a polymer matrix, and active substance compositions produced by this process
US6348469B1 (en) * 1995-04-14 2002-02-19 Pharma Pass Llc Solid compositions containing glipizide and polyethylene oxide
US6355656B1 (en) * 1995-12-04 2002-03-12 Celgene Corporation Phenidate drug formulations having diminished abuse potential
US5866164A (en) * 1996-03-12 1999-02-02 Alza Corporation Composition and dosage form comprising opioid antagonist
US6534089B1 (en) * 1996-04-05 2003-03-18 Alza Corporation Uniform drug delivery therapy
US7176251B1 (en) * 1996-11-05 2007-02-13 Novamont S.P.A. Biodegradable polymeric compositions comprising starch and a thermoplastic polymer
US6340475B2 (en) * 1997-06-06 2002-01-22 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
US6547997B1 (en) * 1997-11-28 2003-04-15 Abbot Laboratories Method for producing solvent-free noncrystalline biologically active substances
US6344535B1 (en) * 1997-12-03 2002-02-05 Bayer Aktiengesellschaft Polyether ester amides
US6375957B1 (en) * 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
US6547977B1 (en) * 1998-04-02 2003-04-15 Applied Materials Inc. Method for etching low k dielectrics
US20030017532A1 (en) * 1998-09-22 2003-01-23 Sanjoy Biswas ndp
US6375963B1 (en) * 1999-06-16 2002-04-23 Michael A. Repka Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof
US20030044464A1 (en) * 1999-08-31 2003-03-06 Iris Ziegler Sustained-release, oral pharamaceutical forms of formulation
US6723343B2 (en) * 1999-08-31 2004-04-20 Gruenenthal Gmbh Pharmaceutical tramadol salts
US20030015814A1 (en) * 1999-12-15 2003-01-23 Harald Krull Device and method for producing solid shape containing an active ingredient
US20110097404A1 (en) * 2000-02-08 2011-04-28 Purdue Pharma L.P. Tamper-resistant oral opioid agonist formulations
US20020015730A1 (en) * 2000-03-09 2002-02-07 Torsten Hoffmann Pharmaceutical formulations and method for making
US8114838B2 (en) * 2000-05-23 2012-02-14 Acorda Therapeutics, Inc. Methods for protecting dopaminergic neurons from stress and promoting proliferation and differentiation of oligodendrocyte progenitors by NRG-2
US20020012701A1 (en) * 2000-06-19 2002-01-31 Karl Kolter Process for producing solid oral dosage forms with sustained release of active ingredient
US20030008409A1 (en) * 2001-07-03 2003-01-09 Spearman Steven R. Method and apparatus for determining sunlight exposure
US20030069263A1 (en) * 2001-07-18 2003-04-10 Breder Christopher D. Pharmaceutical combinations of oxycodone and naloxone
US20030021546A1 (en) * 2001-07-30 2003-01-30 Tsuguo Sato Optical fiber ferrule assembly and optical module and optical connector using the same
US20030064099A1 (en) * 2001-08-06 2003-04-03 Benjamin Oshlack Pharmaceutical formulation containing bittering agent
US20050089475A1 (en) * 2001-08-06 2005-04-28 Thomas Gruber Pharmaceutical formulation containing dye
US20030068370A1 (en) * 2001-08-06 2003-04-10 Richard Sackler Pharmaceutical formulation containing irritant
US20030068371A1 (en) * 2001-08-06 2003-04-10 Benjamin Oshlack Pharmaceutical formulation containing opioid agonist,opioid antagonist and gelling agent
US20070020188A1 (en) * 2001-08-06 2007-01-25 Purdue Pharma L.P. Pharmaceutical formulation containing irritant
US20030068392A1 (en) * 2001-08-06 2003-04-10 Richard Sackler Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant
US7157103B2 (en) * 2001-08-06 2007-01-02 Euro-Celtique S.A. Pharmaceutical formulation containing irritant
US20030044458A1 (en) * 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US20030031546A1 (en) * 2001-08-08 2003-02-13 Toshiyuki Araki Lift apparatus
US20030068276A1 (en) * 2001-09-17 2003-04-10 Lyn Hughes Dosage forms
US20090017121A1 (en) * 2001-10-25 2009-01-15 Bret Berner Gastric retained gabapentin dosage form
US6723340B2 (en) * 2001-10-25 2004-04-20 Depomed, Inc. Optimal polymer mixtures for gastric retentive tablets
US20040010000A1 (en) * 2002-04-29 2004-01-15 Ayer Atul D. Methods and dosage forms for controlled delivery of oxycodone
US20040052731A1 (en) * 2002-07-05 2004-03-18 Collegium Pharmaceuticals, Inc. Abuse-deterrent pharmaceutical compositions of opiods and other drugs
US20040011806A1 (en) * 2002-07-17 2004-01-22 Luciano Packaging Technologies, Inc. Tablet filler device with star wheel
US20040052844A1 (en) * 2002-09-16 2004-03-18 Fang-Hsiung Hsiao Time-controlled, sustained release, pharmaceutical composition containing water-soluble resins
US20100098758A1 (en) * 2002-10-25 2010-04-22 Gruenenthal Gmbh Abuse-Resistant Dosage Form
US20060004034A1 (en) * 2002-11-11 2006-01-05 Gruenenthal Gmbh Spirocyclic cyclohexane compounds
US20050015730A1 (en) * 2003-07-14 2005-01-20 Srimanth Gunturi Systems, methods and computer program products for identifying tab order sequence of graphically represented elements
US20050031546A1 (en) * 2003-08-06 2005-02-10 Johannes Bartholomaus Abuse-proffed dosage form
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
US8114383B2 (en) * 2003-08-06 2012-02-14 Gruenenthal Gmbh Abuse-proofed dosage form
US7201920B2 (en) * 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US20070003616A1 (en) * 2003-12-24 2007-01-04 Elisabeth Arkenau-Maric Process for the production of an abuse-proofed dosage form
US20090005408A1 (en) * 2003-12-24 2009-01-01 Grunenthal Gmbh Process for the production of an abuse-proofed dosage form
US7683072B2 (en) * 2004-03-30 2010-03-23 Purdue Pharma L.P. Oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone
US7674800B2 (en) * 2004-03-30 2010-03-09 Purdue Pharma L.P. Oxycodone hydrochloride having less than 25 PPM 14-hydroxycodeinone
US7674799B2 (en) * 2004-03-30 2010-03-09 Purdue Pharma L.P. Oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone
US20070065365A1 (en) * 2004-04-21 2007-03-22 Gruenenthal Gmbh Abuse-resistant transdermal system
US20060039864A1 (en) * 2004-07-01 2006-02-23 Johannes Bartholomaus Abuse-proofed oral dosage form
US20060002859A1 (en) * 2004-07-01 2006-01-05 Elisabeth Arkenau Process for production of an abuse-proofed solid dosage form
US20060002860A1 (en) * 2004-07-01 2006-01-05 Johannes Bartholomaus Abuse-proofed oral dosage form
US8114384B2 (en) * 2004-07-01 2012-02-14 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US20070020335A1 (en) * 2005-07-07 2007-01-25 Farnam Companies, Inc. Sustained release pharmaceutical compositions for highly water soluble drugs
US20070092573A1 (en) * 2005-10-24 2007-04-26 Laxminarayan Joshi Stabilized extended release pharmaceutical compositions comprising a beta-adrenoreceptor antagonist
US20100015223A1 (en) * 2006-03-01 2010-01-21 Ethypharm Sa Crush-Resistant Tablets Intended to Prevent Accidental Misuse and Unlawful Diversion
US20080069871A1 (en) * 2006-07-21 2008-03-20 Vaughn Jason M Hydrophobic abuse deterrent delivery system
US20090081290A1 (en) * 2006-08-25 2009-03-26 Purdue Pharma L.P. Tamper resistant dosage forms
US20080081290A1 (en) * 2006-09-25 2008-04-03 Fujifilm Corporation Resist composition, resin for use in the resist composition, compound for use in the synthesis of the resin, and pattern-forming method using the resist composition
US20090004267A1 (en) * 2007-03-07 2009-01-01 Gruenenthal Gmbh Dosage Form with Impeded Abuse
US20110020454A1 (en) * 2008-03-13 2011-01-27 Rosa Lamarca Casado Novel dosage and formulation
US20110082214A1 (en) * 2008-05-09 2011-04-07 Gruenthal Gmbh Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US20110038930A1 (en) * 2009-07-22 2011-02-17 Grunenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US20110020451A1 (en) * 2009-07-22 2011-01-27 Grunenthal Gmbh Tamper-resistant dosage form for oxidation-sensitive opioids

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808745B2 (en) 2001-09-21 2014-08-19 Egalet Ltd. Morphine polymer release system
US9707179B2 (en) 2001-09-21 2017-07-18 Egalet Ltd. Opioid polymer release system
US9694080B2 (en) 2001-09-21 2017-07-04 Egalet Ltd. Polymer release system
US8101209B2 (en) 2001-10-09 2012-01-24 Flamel Technologies Microparticulate oral galenical form for the delayed and controlled release of pharmaceutical active principles
US10369109B2 (en) 2002-06-17 2019-08-06 Grünenthal GmbH Abuse-proofed dosage form
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US8877241B2 (en) 2003-03-26 2014-11-04 Egalet Ltd. Morphine controlled release system
US9375428B2 (en) 2003-03-26 2016-06-28 Egalet Ltd. Morphine controlled release system
US9884029B2 (en) 2003-03-26 2018-02-06 Egalet Ltd. Morphine controlled release system
US8309060B2 (en) 2003-08-06 2012-11-13 Grunenthal Gmbh Abuse-proofed dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US8114383B2 (en) 2003-08-06 2012-02-14 Gruenenthal Gmbh Abuse-proofed dosage form
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
US8192722B2 (en) 2003-08-06 2012-06-05 Grunenthal Gmbh Abuse-proof dosage form
US10130591B2 (en) 2003-08-06 2018-11-20 Grünenthal GmbH Abuse-proofed dosage form
US8420056B2 (en) 2003-08-06 2013-04-16 Grunenthal Gmbh Abuse-proofed dosage form
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form
US8114384B2 (en) 2004-07-01 2012-02-14 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US8323889B2 (en) 2004-07-01 2012-12-04 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US10675278B2 (en) 2005-02-04 2020-06-09 Grünenthal GmbH Crush resistant delayed-release dosage forms
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US8722086B2 (en) 2007-03-07 2014-05-13 Gruenenthal Gmbh Dosage form with impeded abuse
US9642809B2 (en) 2007-06-04 2017-05-09 Egalet Ltd. Controlled release pharmaceutical compositions for prolonged effect
US20090052818A1 (en) * 2007-07-10 2009-02-26 Jason Matthew Mitmesser Hybrid bearing
US9750701B2 (en) 2008-01-25 2017-09-05 Grünenthal GmbH Pharmaceutical dosage form
US8383152B2 (en) * 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US9358295B2 (en) 2009-02-06 2016-06-07 Egalet Ltd. Immediate release composition resistant to abuse by intake of alcohol
US9005660B2 (en) 2009-02-06 2015-04-14 Egalet Ltd. Immediate release composition resistant to abuse by intake of alcohol
US9023394B2 (en) 2009-06-24 2015-05-05 Egalet Ltd. Formulations and methods for the controlled release of active drug substances
US10493033B2 (en) 2009-07-22 2019-12-03 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10080721B2 (en) 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US9579285B2 (en) 2010-02-03 2017-02-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of an extruder
US9757338B2 (en) 2010-03-01 2017-09-12 Dexcel Pharma Technologies Ltd. Sustained-release donepezil formulation
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
WO2012085657A2 (en) 2010-12-23 2012-06-28 Purdue Pharma L.P. Tamper resistant solid oral dosage forms
US10864164B2 (en) 2011-07-29 2020-12-15 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US9993422B2 (en) 2012-04-18 2018-06-12 SpecGx LLC Immediate release, abuse deterrent pharmaceutical compositions
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US9044402B2 (en) 2012-07-06 2015-06-02 Egalet Ltd. Abuse-deterrent pharmaceutical compositions for controlled release
US11096887B2 (en) 2012-07-12 2021-08-24 SpecGx LLC Extended release, abuse deterrent pharmaceutical compositions
US9730885B2 (en) 2012-07-12 2017-08-15 Mallinckrodt Llc Extended release, abuse deterrent pharmaceutical compositions
US10485753B2 (en) 2012-07-12 2019-11-26 SpecGx LLC Extended release, abuse deterrent pharmaceutical compositions
US9301918B2 (en) 2013-03-15 2016-04-05 Mallinckrodt Llc Abuse deterrent solid dosage form for immediate release with functional score
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US9737490B2 (en) 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US11517521B2 (en) 2014-07-03 2022-12-06 SpecGx LLC Abuse deterrent immediate release formulations comprising non-cellulose polysaccharides
US11583493B2 (en) 2014-07-03 2023-02-21 SpecGx LLC Abuse deterrent immediate release formulations comprising non-cellulose polysaccharides
US11617712B2 (en) 2014-07-03 2023-04-04 SpecGx LLC Abuse deterrent immediate release formulations comprising non-cellulose polysaccharides
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US9943513B1 (en) 2015-10-07 2018-04-17 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US10478429B2 (en) 2015-10-07 2019-11-19 Patheon Softgels, Inc. Abuse deterrent dosage forms
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions
US11478426B2 (en) 2018-09-25 2022-10-25 SpecGx LLC Abuse deterrent immediate release capsule dosage forms

Also Published As

Publication number Publication date
US20050031546A1 (en) 2005-02-10
KR20060069832A (en) 2006-06-22
EP1859789A1 (en) 2007-11-28
CN100577150C (en) 2010-01-06
JP2007501202A (en) 2007-01-25
US20190029976A1 (en) 2019-01-31
DK1658055T3 (en) 2007-07-02
BRPI0413318B1 (en) 2019-05-14
US20140080858A1 (en) 2014-03-20
CL2004002017A1 (en) 2005-05-20
HK1115051A1 (en) 2008-11-21
ES2285497T3 (en) 2007-11-16
DK1859789T3 (en) 2016-04-11
RU2354357C2 (en) 2009-05-10
ATE356618T1 (en) 2007-04-15
AU2004264667A1 (en) 2005-02-24
KR101266925B1 (en) 2013-05-31
PL1859789T3 (en) 2016-08-31
JP4939218B2 (en) 2012-05-23
AU2004264667B2 (en) 2008-11-06
CN1863513A (en) 2006-11-15
ZA200601090B (en) 2007-05-30
PT1658055E (en) 2007-07-24
EP1658055A1 (en) 2006-05-24
NO338235B1 (en) 2016-08-08
US20200188333A1 (en) 2020-06-18
PE20050353A1 (en) 2005-07-10
NO20061055L (en) 2006-03-03
RU2006106726A (en) 2007-12-20
US20060193782A1 (en) 2006-08-31
IL173478A (en) 2011-02-28
US20170000739A1 (en) 2017-01-05
CN1863514A (en) 2006-11-15
US20140105830A1 (en) 2014-04-17
US20160074388A1 (en) 2016-03-17
SI1658055T1 (en) 2007-08-31
HUE027301T2 (en) 2016-10-28
US10130591B2 (en) 2018-11-20
WO2005016314A1 (en) 2005-02-24
IL173478A0 (en) 2006-06-11
NZ545200A (en) 2009-11-27
ES2572166T3 (en) 2016-05-30
CY1117294T1 (en) 2017-04-26
EP1859789B1 (en) 2016-02-17
BRPI0413318A (en) 2006-10-10
US20170027886A1 (en) 2017-02-02
HK1095081A1 (en) 2007-04-27
AR045352A1 (en) 2005-10-26
HRP20070272T3 (en) 2007-07-31
DE502004003234D1 (en) 2007-04-26
US8114383B2 (en) 2012-02-14
US20140080915A1 (en) 2014-03-20
ZA200601087B (en) 2007-04-25
US20120251637A1 (en) 2012-10-04
CA2534932A1 (en) 2005-02-24
DE10336400A1 (en) 2005-03-24
EP1658055B1 (en) 2007-03-14
CY1107644T1 (en) 2013-04-18
HK1095082A1 (en) 2007-04-27
PL1658055T3 (en) 2007-08-31
ECSP066346A (en) 2006-08-30
US20160361308A1 (en) 2016-12-15
BRPI0413318B8 (en) 2021-05-25
US20120107250A1 (en) 2012-05-03
CN1863513B (en) 2013-01-16
US8309060B2 (en) 2012-11-13

Similar Documents

Publication Publication Date Title
US10130591B2 (en) Abuse-proofed dosage form
US10729658B2 (en) Process for the production of an abuse-proofed dosage form
US20180243237A1 (en) Abuse-proofed dosage form
US8420056B2 (en) Abuse-proofed dosage form
US20170049706A1 (en) Process for the production of an abuse-proofed dosage form

Legal Events

Date Code Title Description
AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: CONFIRMATORY GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS (EXCLUSIVELY LICENSED PATENTS);ASSIGNOR:ENDO PHARMACEUTICALS INC.;REEL/FRAME:025456/0172

Effective date: 20101130

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRA

Free format text: SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS;ASSIGNOR:ENDO PHARMACEUTICALS INC.;REEL/FRAME:026561/0978

Effective date: 20110617

AS Assignment

Owner name: ENDO PHARMACEUTICALS INC., PENNSYLVANIA

Free format text: RELEASE OF SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS RECORDED AT REEL/FRAME 25456/172;ASSIGNOR:JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026577/0357

Effective date: 20110617

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ENDO PHARMACEUTICALS SOLUTIONS INC., PENNSYLVANIA

Free format text: RELEASE OF PATENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT;REEL/FRAME:032380/0157

Effective date: 20140228

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG

Free format text: GRANT OF SECURITY INTEREST IN LICENSED PATENTS;ASSIGNOR:ENDO PHARMACEUTICALS, INC.;REEL/FRAME:032491/0620

Effective date: 20140228

AS Assignment

Owner name: ENDO PHARMACEUTICALS INC., PENNSYLVANIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF RECEIVING PARTY IN RELEASE OF PATENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS PREVIOUSLY RECORDED ON REEL 032380 FRAME 0157. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS.;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT;REEL/FRAME:032513/0255

Effective date: 20140228

AS Assignment

Owner name: ASTORA WOMEN'S HEALTH HOLDINGS, LLC, PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001

Effective date: 20170427

Owner name: ENDO PHARMACEUTICALS SOLUTIONS, INC., PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001

Effective date: 20170427

Owner name: ENDO PHARMACEUTICALS, INC., PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001

Effective date: 20170427