US20080224032A1 - Micromachined field asymmetric ion mobility filter and detection system - Google Patents

Micromachined field asymmetric ion mobility filter and detection system Download PDF

Info

Publication number
US20080224032A1
US20080224032A1 US11/894,760 US89476007A US2008224032A1 US 20080224032 A1 US20080224032 A1 US 20080224032A1 US 89476007 A US89476007 A US 89476007A US 2008224032 A1 US2008224032 A1 US 2008224032A1
Authority
US
United States
Prior art keywords
filter
flow path
ions
electrodes
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/894,760
Inventor
Raanan A. Miller
Erkinjon G. Nazarov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Charles Stark Draper Laboratory Inc
Sionex Corp
Original Assignee
Sionex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/358,312 external-priority patent/US6495823B1/en
Application filed by Sionex Corp filed Critical Sionex Corp
Priority to US11/894,760 priority Critical patent/US20080224032A1/en
Assigned to CHARLES STARK DRAPER LABORATORY INC., THE reassignment CHARLES STARK DRAPER LABORATORY INC., THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MILLER, RAANAN A., NAZAROV, ERKINJON G.
Publication of US20080224032A1 publication Critical patent/US20080224032A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/624Differential mobility spectrometry [DMS]; Field asymmetric-waveform ion mobility spectrometry [FAIMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/44Separation by mass spectrography

Definitions

  • FIG. 7 is an exploded view, similar to FIG. 6 , in which the array of filters is stacked and one filter and detector is associated with a single flow path.

Abstract

A micromechanical field asymmetric ion mobility filter for a detection system includes a pair of spaced substrates defining between them a flow path between a sample inlet and an outlet; an ion filter disposed in the path and including a pair of spaced filter electrodes, one electrode associated with each substrate; and an electrical controller for applying a bias voltage and an asymmetric periodic voltage across the ion filter electrodes for controlling the paths of ions through the filter.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 11/331,333, filed Jan. 11, 2006, which is a continuation of U.S. application Ser. No. 10/866,645, filed Jun. 10, 2004, which is a continuation of U.S. application Ser. No. 10/321,822, filed Dec. 16, 2002, now U.S. Pat. No. 6,806,463, which is a continuation-in-part of U.S. application Ser. No. 09/358,312 filed Jul. 21, 1999, now U.S. Pat. No. 6,495,823. The entire teachings of the above applications are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a Field Asymmetric Ion Mobility (FAIM) filter, and more particularly, to a micromachined FAIM filter and spectrometer.
  • The ability to detect and identify explosives, drugs, chemical and biological agents as well as air quality has become increasingly more critical given increasing terrorist and military activities and environmental concerns. Previous detection of such agents was accomplished with conventional mass spectrometers, time of flight ion mobility spectrometers and conventionally machined FAIM spectrometers.
  • Mass spectrometers are very sensitive, highly selective and provide a fast response time. Mass spectrometers, however, are large and require significant amounts of power to operate. They also require a powerful vacuum pump to maintain a high vacuum in order to isolate the ions from neutral molecules and permit detection of the selected ions, and are also very expensive.
  • Another spectrometric technique which is less complex is time of flight ion mobility spectrometry which is the method currently implemented in most portable chemical weapons and explosives detectors. The detection is based not solely on mass, but on charge and cross-section of the molecule as well. However, because of these different characteristics, molecular species identification is not as conclusive and accurate as the mass spectrometer. Time of flight ion mobility spectrometers typically have unacceptable resolution and sensitivity limitations when attempting to reduce their size, that is a drift tube length less than 2 inches. In time of flight ion mobility, the resolution is proportional to the length of the drift tube. The longer the tube the better the resolution, provided the drift tube is also wide enough to prevent all ions from being lost to the side walls due to diffusion. Thus, fundamentally, miniaturization of time of flight ion mobility systems leads to a degradation in system performance. While these devices are relatively inexpensive and reliable, they suffer from several limitations. First, the sample volume through the detector is small, so to increase spectrometer sensitivity either the detector electronics must have extremely high sensitivity, requiring expensive electronics, or a concentrator is required, adding to system complexity. In addition, a gate and gating electronics are usually needed to control the injection of ions into the drift tube.
  • FAIM spectrometry was developed in the former Soviet Union in the 1980's. FAIM spectrometry allows a selected ion to pass through a filter while blocking the passage of undesirable ions. Conventional FAIM spectrometers are large and expensive, e.g., the entire device is nearly a cubic foot in size and costs over $25,000. These systems are not suitable for use in applications requiring small detectors. They are also relatively slow, taking as much as one minute to produce a complete spectrum of the sample gas, are difficult to manufacture and are not mass producible.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of this invention to provide a FAIM filter and detection system which can more quickly and accurately control the flow of selected ions to produce a sample spectrum than conventional FAIM devices.
  • It is a further object of this invention to provide such a filter and detection system which can detect multiple pre-selected ions without having to sweep the bias voltage.
  • It is a further object of this invention to provide such a filter and detection system which can even detect selected ions without a bias voltage.
  • It is a further object of this invention to provide such a filter and detection system which can detect ions spatially based on the ions' trajectories.
  • It is a further object of this invention to provide such a filter and detection system which has a very high resolution.
  • It is a further object of this invention to provide such a filter and detection system which can detect selected ions faster than conventional detection devices.
  • It is a further object of this invention to provide such a filter and detection system which has a sensitivity of parts per billion to parts per trillion.
  • It is a further object of this invention to provide such a filter and detections system which may be packaged in a single chip.
  • It is further object of this invention to provide such filter and detection system which is cost effective to implement and produce.
  • The invention results from the realization that an extremely small, accurate and fast FAIM filter and detection system can be achieved by defining a flow path between a sample inlet and an outlet using a pair of spaced substrates and disposing an ion filter within the flow path, the filter including a pair of spaced electrodes, one electrode associated with each substrate and a controller for selectively applying a bias voltage and an asymmetric periodic voltage across the electrodes to control the path of ions through the filter.
  • The invention results from the further realization that by providing an array of filters, each filter associated with a different bias voltage, the filter may be used to detect multiple selected ions without sweeping the bias voltage.
  • The invention results from the realization that by varying the duty cycle of the periodic voltage, no bias voltage is required.
  • The invention results from the further realization that by segmenting the detector, ion detection may be achieved with greater accuracy and resolution by detecting ions spatially according to the ions' trajectories as the ions exit the filter.
  • This invention features a micromechanical field asymmetric ion mobility filter for a detection system. There is a pair of spaced substrates defining between them a flow path between a sample inlet and an outlet, an ion filter disposed in the path and including a pair of spaced filter electrodes, one electrode associated with each substrate and an electrical controller for applying a bias voltage and an asymmetric periodic voltage across the ion filter electrodes for controlling the paths of ions through the filter.
  • In a preferred embodiment there may be a detector, downstream from the ion filter, for detecting ions that exit the filter. The detector may include a plurality of segments, the segments separated along the flow path to spatially separate the ions according to their trajectories. There may be confining electrodes, responsive to the electrical controller, for concentrating selected ions as they pass through the filter. The confining electrodes may be silicon. The silicon electrodes may act as spaces for spacing the substrates. There may be heater for heating the flow path. The heater may include the ion filter electrodes. The electrical controller may include means for selectively applying a current through the filter electrodes to heat the filter electrodes. The substrate may be glass. The glass may be Pyrex®. There may be an ionization source, upstream from the filter, for ionizing a fluid flow from the sample inlet. The ionization source may include a radioactive source. The ionization source may include an ultraviolet lamp. The ionization source may include a corona discharge device. There may be a clean air outlet for introducing purified air into the flow path. There may be a pump in communication with the flow path, for regulating a fluid flow through the flow path.
  • The invention also features a field asymmetric ion mobility filter and detection system. There is a housing having a flow path between a sample inlet and an outlet, an ion filter disposed in the flow path and including a pair of spaced filter electrodes, an electrical controller for applying a bias voltage and an asymmetric periodic voltage across the ion filter electrodes for controlling the path of ions through the filter, and a segmented detector, downstream from the ion filter, its segments separated along the flow path to spatially separate the ions according to their trajectories.
  • In a preferred embodiment there may be confining electrodes, responsive to the electrical controller, for concentrating the ions as they pass through the filter. The confining electrode may be silicon. The silicon electrodes may act as a spacer for spacing the filter electrodes. There may be a heater for heating the flow path. The heater may include the ion filter electrodes. The electrical controller may include means for selectively applying current through the filter electrodes to heat the filter electrodes. There may be an ionization source upstream from the filter for ionizing fluid flow from the sample inlet. The ionization source may include a radioactive source. The ionization source may include an ultraviolet lamp. The ionization source may include a corona discharge device. There may be a clean air inlet for introducing purified air into the flow path. There may be a pump in communication with the flow path for regulating a fluid flow through the flow path.
  • The invention also features a field asymmetric ion mobility filter array. There is a housing defining at least one flow path between a sample inlet and an outlet, a plurality of ion filters disposed within the housing, each ion filter including a pair spaced filter electrodes, and an electrical controller for applying a bias voltage and an asymmetric periodic voltage across each pair of ion filter electrodes for controller the path of ions through each filter.
  • In a preferred embodiment each ion filter may be associated with one of the flow paths. There may be a detector downstream from each ion filter for detecting ions that exit each said filter. Each detector may include a plurality of segments, the segments separated along the flow path to spatially separate the ions according to their trajectories. There may be a plurality of confining electrodes, responsive to the electrical controller, for concentrating the ions as they pass through each filter. Each confining electrode may be silicon. The silicon electrode may act as a spacer for spacing the filter electrodes. There may be a heater fro heating the at least one flow path. The heater may include each pair of ion filter electrodes. The electrical controller may include means for selectively applying a current through each pair of filter electrodes to heat the filter electrodes. There may be an ionization source upstream from each filter for ionizing a fluid flow from the sample inlet. The ionization source may be a radioactive source. The ionization source may be an ultraviolet lamp. The ionization source may be a corona discharge device. There may be a clean air inlet for introducing purified air into at least one flow path. There may be a pump in communication with each flow path for regulating a fluid flow through each flow path.
  • The invention also features an uncompensated field asymmetric ion mobility filter for a detection system. There is a housing having a flow path between a sample inlet and an outlet, an ion filter disposed in the path and including a pair of spaced filter electrodes, an electrical controller for applying an uncompensated asymmetric periodic voltage across the ion filter for controlling the path of ions through the ion filter, and a selection circuit for selectively adjusting the duty cycle of the periodic voltage to target a selected specie or species of ion to be detected.
  • In a preferred embodiment there may be a detector downstream from the ion filter for detecting ions that exit the filter. The detector may include a plurality of segments, the segments separated along the flow path to spatially separate the ions according to their trajectories. There may be a confining electrode, responsive to the electrical controller, for concentrating the ions as they pass through the filter. The confining electrode may be silicon. The silicon electrode may act as a spacer for spacing the filter electrodes. There may be a heater for heating the flow path. The heater may include the ion filter electrodes. The electrical controller may include means for selectively applying a current through the filter electrodes to heat the filter electrodes. There may be an ionization source, upstream from the filter, for ionizing a fluid flow from sample inlet. The ionization source may include a radioactive source. The ionization source may include an ultraviolet lamp. The ionization source may include a corona discharge device. There may be a clean air inlet for introducing purified air into the flow path. There may be a pump in communication with the flow path for regulating a fluid flow through the flow path.
  • The invention also features a field asymmetric ion mobility filter. There is a housing having a flow path between a sample inlet and an outlet, an ion filter disposed in the flow path and including a pair of spaced filter electrodes, a pair of confining electrodes transverse to the flow path, and an electrical controller for applying a first bias voltage and an asymmetric periodic voltage across the ion filter electrodes and for applying a second bias voltage across the confining electrodes for controlling the path of ions through the filter.
  • In a preferred embodiment there may be a detector downstream from the ion filter for detecting ions that exit the filter. The detector may include a plurality of segments, the segments separated along the flow path to spatially separate the ions according to their trajectories. The confining electrodes may be silicon. The silicon electrodes may act as a spacer for spacing the filter electrodes. There may be a heater for heating the flow path. The heater may include the ion filter electrodes. The heater may include the confining electrodes. The electrical controller may include means for selectively applying a current through the filter electrodes to heat the filter electrodes. The electrical controller may include means for selectively applying a current through the confining electrodes to heat the confining electrodes. There may be an ionization source upstream from the filter for ionizing fluid flow from the sample inlet. The ionization source may include a radiation source. The ionization source may include an ultraviolet lamp. The ionization source may be a corona discharge device. There may be a clean air inlet for introducing purified air into the flow path. There may be a pump in communication with the flow path for regulating a fluid flow through the flow path.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
  • Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
  • FIG. 1 is a schematic block diagram of the micromachined filter and detection system according to the present invention;
  • FIG. 2 is a schematic representation of the ions as they pass through the filter electrodes of FIG. 1 toward the detector;
  • FIG. 3A is a graphical representation of the bias voltage required to detect acetone and the sensitivity obtainable;
  • FIG. 3B is a representation, similar to FIG. 3A, of the bias voltage required to detect Diethyl methyl amine;
  • FIG. 4 is a cross sectional of the view of the spaced, micromachined filter according to the present invention;
  • FIG. 5 is a three dimensional view of the packaged micromachined filter and detection system, including fluid flow pumps, demonstrating the miniaturized size which maybe realized;
  • FIG. 6 is an exploded view of one embodiment according to the present invention in which an array of filters and detectors are disposed in a single flow path;
  • FIG. 7 is an exploded view, similar to FIG. 6, in which the array of filters is stacked and one filter and detector is associated with a single flow path.
  • FIG. 8 is a cross sectional representation of a single flow path of the arrayed filter and detector system of FIG. 7;
  • FIG. 9 is a graphical representation demonstrating simultaneous multiple detections of benzene and acetone;
  • FIG. 10 is a schematic block diagram, similar FIG. 1, in which the filter is not compensated by a bias voltage and the duty cycle of the periodic voltage is instead varied to control the flow of ions through the filter;
  • FIG. 11 is a graphical representation of an asymmetric periodic voltage having a varying duty cycle which is applied to the filter of FIG. 9 to filter selected ions without a bias voltage; and
  • FIG. 12 is a schematic diagram of a filter and detector system in which the detector is segmented to spatially detect ions as they exit the filter.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A description of preferred embodiments of the invention follows.
  • FAIM spectrometer 10, FIG. 1, operates by drawing a gas, indicated by arrow 12, via pump 14, through inlet 16 into ionization region 18. The ionized gas is passed between parallel electrode plates 20 and 22, which comprise ion filter 24, following flow path 26. As the gas ions pass between plates 20 and 22, they are exposed to an asymmetric oscillating electric field between electrode plates 20 and 22 induced by a voltage applied to the plates by voltage generator 28 in response to electronic controller
  • As ions pass through filter 24, some are neutralized by plates 20 and 22 while others pass through and are sensed by detector 32. Detector 32 includes a top electrode 33 at a predetermined voltage and a bottom electrode 35, typically at ground. Top electrode 33 deflects ions downward to electrode 35. However either electrode may detect ions depending on the ion and the voltage applied to the electrodes. Moreover, Multiple ions may be detected by using top electrode 33 as one detector and bottom electrode 35 as a second detector. Electronic controller 30 may include for example, amplifier 34 and microprocessor 36. Amplifier 34 amplifies the output of detector 32, which is a function of the charge collected by detector 34, and provides the output to microprocessor 36 for analysis. Similarly, amplifier 34′, shown in phantom, may be provided where electrode 33 is also utilized as a detector.
  • As ions 38, FIG. 2, pass through alternating asymmetric electric field 40, which is transverse to gas flow 12, electric field 40, causes the ions to “wiggle” along paths 42 a, 42 b and 42 c. Field 40 is typically in the range of ±(1000-2000) volts dc and has a maximum field strength of 40,000 V/cm. The path taken by a particular ion is a function of its mass, size, cross-section and charge. Once an ion reaches electrode 20 or 22, it is neutralized. A second, bias or compensation field 44, typically in the range of ±2000 V/cm or ±100 volts dc, is concurrently induced between electrodes 20 and 22 by as bias voltage applied to plates 20 and 22, also by voltage generator 28, FIG. 1, in response to microprocessor 36 to enable a preselected ion species to pass through filter 24 to detector 32. Compensation field 44 is a constant bias which offsets alternating asymmetric field 40 to allow the preselected ions, such as ion 38 c to pass to detector 32. Thus, with the proper bias voltage, a particular species of ion will follow path 42 c while undesirable ions will follow paths 42 a and 42 b to be neutralized as they encounter electrode plates 20 and 22.
  • The output of FAIM spectrometer 10 is a measure of the amount of charge on detector 32 for a given bias voltage 44. The longer filter 24 is set at a given compensation bias voltage, the more charge will accumulate on detector 32. However, by sweeping compensation voltage 44 over a predetermined voltage range, a complete spectrum for sample gas 23 can be achieved. The FAIM spectrometer according to the present invention requires typically less than thirty seconds and as little as one second to produce a complete spectrum for a given gas sample.
  • By varying compensation bias voltage 44 the species to be detected can be varied to provide a complete spectrum of the gas sample. For example, with a bias voltage of −3.5 volts acetone was detected as demonstrated by concentration peaks 46, FIG. 3A in concentrations as low as 83 parts per billion. In contrast, at a bias voltage of −6.5 volts, diethyl methyl amine, peaks 48, FIG. 3B, was detected in concentrations as low as 280 parts per billion.
  • Filter 24, FIG. 4, is on the order of one inch is size. Spectrometer 10 includes spaced substrates 52 and 54, for example glass such as Pyrex® available from Corning Glass, Corning, N.Y., and electrodes 20 and 22, which may be example gold, titanium, or platinum, mounted or formed on substrates 52 and 54, respectively. Substrates 52 and 54 are separated by spacers 56 a and 56 b which may be formed by etching or dicing silicon wafer. The thickness of spacers 56 a and 56 b defines the distance between electrodes 20 and 22. Moreover, applying the same voltage to silicon spacers 56 a-b, typically ±(10-1000 volts dc) transforms spacers 56 a-b into electrodes which produce a confining electric field 58, which guides or confines the ions' paths to the center of flow path 26. This increases the sensitivity of the system by preserving more ions so that more ions strike detector 34. However, this is not a necessary limitation of the invention.
  • To maintain accurate and reliable operation of spectrometer 10, neutralized ions which accumulate on electrode plates 20 and 22 must be purged. This may be accomplished by heating flow path 26. For example, controller 30, FIG. 1, may include current source 29, shown in phantom, which provides, in response to microprocessor 36, a current I to electrode plates 20 and 22 to heat the plates, removing accumulated molecules. Similarly, current I may instead be applied to spacer electrodes 56 a and 56 b, FIG. 4, to heat flow path 26 and clean plates 20 and 22.
  • Packaged FAIM spectrometer 10, FIG. 5, may be reduced in size to one inch by one inch by one inch. Pump 14 is mounted on substrate 52 for drawing a gas sample 12 into inlet 16. Clean dry air may be introduced into flow path 26, FIG. 1, by recirculation pump 14 a prior to or after ionization of the gas sample. Electronic controller 30 may be etched into silicon control layer 60 which combines with substrates 52 and 54 to form a housing for spectrometer 10. Substrates 52 and 54 and control layer 60 may be bonded together, for example, using anodic bonding, to provide an extremely small FAIM spectrometer. Micro pumps 14 and 14 a provide a high volume thoughput which further expedites the analysis of gas sample 12. Pumps 14 and 14 a may be, for example, conventional miniature disk drive motors fitted with small centrifugal air compressor rotors or micromachined pumps, which produce flow rates of 1 to 4 liters per minute. One example of pump 14 is available from Sensidyne, Inc., Clearwater, Fla.
  • While the FAIM spectrometer according to the present invention quickly produces a spectrum for a particular gas sample, the time for doing so may be further reduced with an array of filters 32. FAIM spectrometer 10, FIG. 6, may include filter array 62, a single inlet 16 and single flow path 26. Sample gas 23 is guided by confining electrodes 56 a-h to filter array 62 after passing by ionization source 18, which may include an ultraviolet light source, a radioactive device or corona discharge device. Filter array 62 includes, for example, paired filter electrodes 20 a-d and 22 a-e and may simultaneously detect different ion species by applying a different compensation bias voltage 44, FIG. 2, to each electrode pair and sweeping each electrode pair over a different voltage range greatly reducing the sweep time. However, array 62 may include any number of filters depending on the size of the spectrometer. Detector array 64, which includes detectors 32 a-e, detects multiple selected ion species simultaneously, thereby reduce the time necessary to obtain a spectrum of the gas sample 12. The electrode pairs share the same asymmetric periodic ac voltage 40.
  • Clean dry air may be introduced into flow path 26 through clean air inlet 66 via recirculator pump 14 a, FIG. 5. Drawing in clean dry air assists in reducing the FAIM spectrometer's sensitivity to humidity. Moreover, if the spectrometer is operated without clean dry air and a known gas sample is introduced in the device, the device can be used as a humidity sensor since the resulting spectrum will change with moisture concentration from the standardized spectrum for the given sample.
  • However, rather than each filter 32 a-e of filter array 62 sharing the same flow path 26, individual flow paths 26 a-e, FIG. 7, may be provided so that each flow path has associated with it, for example, inlet 16 a, ionization region 18 a, confining electrodes 56 a′, 56 b′, ion filter electrode pair 20 a, 22 a, detector electrode pair 33 a, 35 a, and exit port 68 a.
  • In operation, sample gas 12 enters sample inlet 16 a, FIG. 8, and is ionized by, for example, a corona discharge device 18 a. The ionized sample is guided towards ion filter 24 a by confining electrodes 56 a. As ions pass between ion filter electrodes 20 a and 22 a, undesirable ions will be neutralized while selected ions will pass through filter 24 a to be detected by detector 32 a.
  • As shown in FIG. 9, multiple, simultaneous detections were made of Benzene, peaks 50 and acetone peaks 51, demonstrating the advantage of the arrayed filters and detectors according to the present invention.
  • It has also been found that a compensation bias voltage is not necessary to detect a selected specie or species of ion. By varying the duty cycle of the asymmetric periodic voltage applied to electrodes 20 and 22 of filter 24, FIG. 10, there is no need to apply a constant bias voltage to plate electrodes 20 and 22. Voltage generator 28, in response to control electronics 30 varies the duty cycle of asymmetric alternating voltage 40. By varying the duty cycle of periodic voltage 40, FIG. 11, the path of selected ion 32 c may be controlled. As an example, rather than a limitation, the duty cycle of field 40 may be one quarter: 25% high, peak 70, and 75% low, valley 72, and ion 38 c approaches plate 20 to be neutralized. However, by varying the duty cycle of voltage 40 a to 40%, peak 70 a, ion 38 c passes through plates 20 and 22 without being neutralized. Typically the duty cycle is variable from 10-50% high and 90-50% low. Accordingly, by varying the duty cycle of field 40, an ion's path may be controlled without the need of a bias voltage.
  • To improve FAIM spectrometry resolution even further, detector 32, FIG. 12, may be segmented. Thus as ions pass through filter 24 between filter electrodes 20 and 22, the individual ions 38 c′-38 c″″ may be detected spatially, the ions having their trajectories 42′-42′″ determined according to their size, charge and cross section. Thus detector segment 32′ will have one a concentration of one species of ion while detector segment 32″ will have a different ion species concentration, increasing the spectrum resolution as each segment may detect a particular ion species.
  • Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention.
  • Other embodiments will occur to those skilled in the art and are within the following claims:
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims (21)

1. (canceled)
2. A field asymmetric ion mobility filter for a detection system comprising:
a housing including a flow path between a sample inlet and an outlet,
a micromechanical ion mobility based filter disposed in the flow path and including a pair of spaced filter electrodes, at least one filter electrode being formed on a substrate, and
an electrical controller for applying a bias voltage and an asymmetric periodic voltage across the ion filter electrodes for controlling the paths of ions while the ions are flowing through the ion mobility based filter.
3. The system of claim 2 comprising a detector for detecting ions exiting the filter and generating an ion detection current.
4. The system of claim 3, wherein the detector includes at least one detector electrode.
5. The system of claim 4, wherein the at least one detector electrode is formed on a substrate.
6. The system of claim 2 comprising a spacer for separating the filter electrodes.
7. The system of claim 6, wherein the spacer includes silicon.
8. The system of claim 7, wherein the spacer is formed from at least one of dicing and etching.
9. The system of claim 6, wherein the spacer defines the distance between the filter electrodes.
10. The system of claim 2 comprising a heater within the flow path.
11. The system of claim 2 comprising a pump in communications with the flow path for supporting, at least in part, the flow of ions along the flow path.
12. A method of filtering ions comprising:
providing a housing including a flow path between a sample inlet and an outlet,
disposing a micromechanical ion mobility based filter in the flow path, the filter including a pair of spaced filter electrodes, at least one filter electrode being formed on a substrate, and
applying a bias voltage and an asymmetric periodic voltage across the ion filter electrodes for controlling the paths of ions while the ions are flowing through the ion mobility based filter.
13. The method of claim 12 comprising detecting ions exiting the filter and generating an ion detection current.
14. The method of claim 13, wherein the detecting is performed by at least one detector electrode.
15. The method of claim 14, wherein the at least one detector electrode is formed on a substrate.
16. The method of claim 12 comprising separating the filter electrodes using a spacer.
17. The method of claim 16, wherein the spacer includes silicon.
18. The method of claim 17, wherein the spacer is formed from at least one of dicing and etching.
19. The method of claim 16 comprising defining the distance between the filter electrodes using the spacer.
20. The method of claim 12 comprising heating a portion of the flow path.
21. The method of claim 12 comprising interfacing a pump with the flow path for supporting, at least in part, the flow of ions along the flow path.
US11/894,760 1999-07-21 2007-08-20 Micromachined field asymmetric ion mobility filter and detection system Abandoned US20080224032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/894,760 US20080224032A1 (en) 1999-07-21 2007-08-20 Micromachined field asymmetric ion mobility filter and detection system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/358,312 US6495823B1 (en) 1999-07-21 1999-07-21 Micromachined field asymmetric ion mobility filter and detection system
US10/321,822 US6806463B2 (en) 1999-07-21 2002-12-16 Micromachined field asymmetric ion mobility filter and detection system
US10/866,645 US7030372B2 (en) 1999-07-21 2004-06-10 Micromachined field asymmetric ion mobility filter and detection system
US11/331,333 US7435950B2 (en) 1999-07-21 2006-01-11 Micromachined field asymmetric ion mobility filter and detection system
US11/894,760 US20080224032A1 (en) 1999-07-21 2007-08-20 Micromachined field asymmetric ion mobility filter and detection system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/331,333 Continuation US7435950B2 (en) 1999-07-21 2006-01-11 Micromachined field asymmetric ion mobility filter and detection system

Publications (1)

Publication Number Publication Date
US20080224032A1 true US20080224032A1 (en) 2008-09-18

Family

ID=34107315

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/321,822 Expired - Lifetime US6806463B2 (en) 1999-07-21 2002-12-16 Micromachined field asymmetric ion mobility filter and detection system
US10/866,645 Expired - Lifetime US7030372B2 (en) 1999-07-21 2004-06-10 Micromachined field asymmetric ion mobility filter and detection system
US11/331,333 Expired - Lifetime US7435950B2 (en) 1999-07-21 2006-01-11 Micromachined field asymmetric ion mobility filter and detection system
US11/894,760 Abandoned US20080224032A1 (en) 1999-07-21 2007-08-20 Micromachined field asymmetric ion mobility filter and detection system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/321,822 Expired - Lifetime US6806463B2 (en) 1999-07-21 2002-12-16 Micromachined field asymmetric ion mobility filter and detection system
US10/866,645 Expired - Lifetime US7030372B2 (en) 1999-07-21 2004-06-10 Micromachined field asymmetric ion mobility filter and detection system
US11/331,333 Expired - Lifetime US7435950B2 (en) 1999-07-21 2006-01-11 Micromachined field asymmetric ion mobility filter and detection system

Country Status (1)

Country Link
US (4) US6806463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001044A1 (en) * 2009-07-02 2011-01-06 Tricorn Tech Corporation Integrated ion separation spectrometer
US8502138B2 (en) 2011-07-29 2013-08-06 Sharp Kabushiki Kaisha Integrated ion mobility spectrometer

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806463B2 (en) 1999-07-21 2004-10-19 The Charles Stark Draper Laboratory, Inc. Micromachined field asymmetric ion mobility filter and detection system
US7098449B1 (en) 1999-07-21 2006-08-29 The Charles Stark Draper Laboratory, Inc. Spectrometer chip assembly
US7399958B2 (en) 1999-07-21 2008-07-15 Sionex Corporation Method and apparatus for enhanced ion mobility based sample analysis using various analyzer configurations
US7129482B2 (en) * 1999-07-21 2006-10-31 Sionex Corporation Explosives detection using differential ion mobility spectrometry
US7157700B2 (en) * 2001-06-30 2007-01-02 Sionex Corporation System for collection of data and identification of unknown ion species in an electric field
US7057168B2 (en) * 1999-07-21 2006-06-06 Sionex Corporation Systems for differential ion mobility analysis
US7148477B2 (en) * 1999-07-21 2006-12-12 Sionex Corporation System for trajectory-based ion species identification
US6815669B1 (en) * 1999-07-21 2004-11-09 The Charles Stark Draper Laboratory, Inc. Longitudinal field driven ion mobility filter and detection system
US6690004B2 (en) * 1999-07-21 2004-02-10 The Charles Stark Draper Laboratory, Inc. Method and apparatus for electrospray-augmented high field asymmetric ion mobility spectrometry
US6815668B2 (en) * 1999-07-21 2004-11-09 The Charles Stark Draper Laboratory, Inc. Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry
US7005632B2 (en) * 2002-04-12 2006-02-28 Sionex Corporation Method and apparatus for control of mobility-based ion species identification
US7119328B2 (en) * 2001-06-30 2006-10-10 Sionex Corporation System for DMS peak resolution
WO2003005016A1 (en) * 2001-06-30 2003-01-16 Sionex Corporation System for collection of data and identification of unknown ion species in an electric field
US7091481B2 (en) 2001-08-08 2006-08-15 Sionex Corporation Method and apparatus for plasma generation
US7274015B2 (en) * 2001-08-08 2007-09-25 Sionex Corporation Capacitive discharge plasma ion source
US6727496B2 (en) * 2001-08-14 2004-04-27 Sionex Corporation Pancake spectrometer
US7005633B2 (en) * 2002-02-08 2006-02-28 Ionalytics Corporation Method and apparatus for desolvating ions for introduction into a FAIMS analyzer region
US7122794B1 (en) * 2002-02-21 2006-10-17 Sionex Corporation Systems and methods for ion mobility control
WO2004040257A2 (en) * 2002-10-12 2004-05-13 Sionex Corporation NOx MONITOR USING DIFFERENTIAL MOBILITY SPECTROMETRY
US7364553B2 (en) * 2002-12-20 2008-04-29 Amidex, Inc. Breath aerosol management and collection system
EP1601948A2 (en) * 2003-03-10 2005-12-07 Sionex Corporation Systems for differential ion mobility analysis
US20050085740A1 (en) * 2003-04-01 2005-04-21 Davis Cristina E. Non-invasive breath analysis using field asymmetric ion mobility spectrometry
US7470898B2 (en) * 2003-04-01 2008-12-30 The Charles Stark Draper Laboratory, Inc. Monitoring drinking water quality using differential mobility spectrometry
CA2539484A1 (en) * 2003-09-17 2005-03-31 Sionex Corporation Solid-state flow generator and related systems, applications, and methods
EP1690074A2 (en) * 2003-11-25 2006-08-16 Sionex Corporation Mobility based apparatus and methods using dispersion characteristics, sample fragmentation, and/or pressure control to improve analysis of a sample
WO2005060696A2 (en) * 2003-12-18 2005-07-07 Sionex Corporation Methods and apparatus for enhanced ion based sample detection using selective pre-separation and amplification
CA2551991A1 (en) * 2004-01-13 2005-07-28 Sionex Corporation Methods and apparatus for enhanced sample identification based on combined analytical techniques
US7456394B2 (en) * 2004-02-02 2008-11-25 Sionex Corporation Compact sample analysis systems and related methods of using combined chromatography and mobility spectrometry techniques
EP1756561A1 (en) * 2004-04-28 2007-02-28 Sionex Corporation System and method for ion species analysis with enhanced condition control and data interpretation using differential mobility spectrometers
CA2575556A1 (en) * 2004-07-30 2006-02-09 Sionex Corporation Systems and methods for ion mobility control
WO2006012747A1 (en) * 2004-08-05 2006-02-09 Ionalytics Corporation Low field mobility separation of ions using segmented cylindrical faims
WO2006060807A1 (en) * 2004-12-03 2006-06-08 Sionex Corporation Method and apparatus for enhanced ion based sample filtering and detection
EP1920243B1 (en) * 2005-04-29 2015-09-09 DH Technologies Development Pte. Ltd. Compact gas chromatography and ion mobility based sample analysis systems, methods, and devices
US20080217526A1 (en) * 2005-05-06 2008-09-11 Colby Steven M Metastable CID
US7312444B1 (en) 2005-05-24 2007-12-25 Chem - Space Associates, Inc. Atmosperic pressure quadrupole analyzer
WO2007014303A2 (en) 2005-07-26 2007-02-01 Sionex Corporation Ultra compact ion mobility based analyzer system and method
GB0808344D0 (en) * 2008-05-08 2008-06-18 Owlstone Ltd Sensor
US7358487B2 (en) * 2005-09-19 2008-04-15 Owlstone Nanotech, Inc. Ion gate
US7449683B2 (en) * 2005-09-28 2008-11-11 Battelle Memorial Institute Method and apparatus for high-order differential mobility separations
US7727206B2 (en) * 2005-12-27 2010-06-01 Gorres Geoffrey H Device for monitoring a patient for a urinary tract infection
WO2007120373A2 (en) * 2006-01-26 2007-10-25 Sionex Corporation Differential mobility spectrometer analyzer and pre-filter apparatus, methods and systems
US20070205359A1 (en) * 2006-03-01 2007-09-06 Ulrich Bonne Electronic gas pump
US7758316B2 (en) * 2006-03-30 2010-07-20 Honeywell International Inc. Ion micro pump
US7964017B2 (en) * 2006-05-05 2011-06-21 General Dynamics Armament And Technical Products, Inc. Systems and methods for controlling moisture level in a gas
US7714277B2 (en) * 2006-07-20 2010-05-11 Owlstone Nanotech, Inc. Smart FAIMS sensor
US20080017790A1 (en) * 2006-07-20 2008-01-24 Owlstone Nanotech Inc. Smart FAIMS sensor
NZ549911A (en) * 2006-10-19 2009-04-30 Syft Technologies Ltd Improvements in or relating to SIFT-MS instruments
US7550717B1 (en) * 2006-11-30 2009-06-23 Thermo Finnigan Llc Quadrupole FAIMS apparatus
JP5362586B2 (en) 2007-02-01 2013-12-11 サイオネックス コーポレイション Differential mobility spectrometer prefilter for mass spectrometer
WO2008101998A2 (en) * 2007-02-24 2008-08-28 Sociedad Europea De Análisis Diferencial De Movilidad, S.L. Method to accurately discriminate gas phase ions with several filtering devices in tandem
US20100120073A1 (en) * 2007-05-08 2010-05-13 Superior Medical Llc Methods and devices for detecting organisms causing urinary tract infections
US7963146B2 (en) 2007-05-14 2011-06-21 General Dynamics Armament And Technical Products, Inc. Method and system for detecting vapors
US7767959B1 (en) * 2007-05-21 2010-08-03 Northrop Grumman Corporation Miniature mass spectrometer for the analysis of chemical and biological solid samples
US7847240B2 (en) * 2007-06-11 2010-12-07 Dana-Farber Cancer Institute, Inc. Mass spectroscopy system and method including an excitation gate
US8412093B2 (en) * 2008-10-22 2013-04-02 Mediatek Inc. Receiver applying channel selection filter for receiving satellite signal and receiving method thereof
US20100224770A1 (en) * 2009-03-06 2010-09-09 Ensco, Inc. Method for configuring an ion mobility spectrometer system
EP2418933A4 (en) 2009-04-12 2017-04-05 Lely Patent N.V. Sensing techniques for on-farm analysis of milk components
US8507844B2 (en) * 2010-08-31 2013-08-13 Waters Technologies Corporation Techniques for sample analysis
JP5722125B2 (en) * 2011-06-03 2015-05-20 株式会社日立ハイテクノロジーズ Mass spectrometer
US9366649B2 (en) 2012-03-29 2016-06-14 Owlstone Nanotech Inc Field asymmetric ion mobility spectrometry system
US9459199B2 (en) * 2012-09-14 2016-10-04 Primex Process Specialists, Inc. Humidity sensing system
CN104377100B (en) * 2013-08-13 2018-01-09 中国科学院苏州纳米技术与纳米仿生研究所 A kind of preparation method of transference tube
MX2018003147A (en) * 2015-09-14 2018-09-06 Essenlix Corp Device and system for collecting and analyzing vapor condensate, particularly exhaled breath condensate, as well as method of using the same.
US10782265B2 (en) * 2018-03-30 2020-09-22 Sharp Kabushiki Kaisha Analysis apparatus
GB2584334B (en) * 2019-05-31 2022-02-16 Owlstone Med Ltd Sensor system

Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615135A (en) * 1950-06-20 1952-10-21 Jr William E Glenn Mass analyzing apparatus
US3511986A (en) * 1966-07-21 1970-05-12 Varian Associates Ion cyclotron double resonance spectrometer employing resonance in the ion source and analyzer
US3648046A (en) * 1970-05-18 1972-03-07 Granville Phillips Co Quadrupole gas analyzer comprising four flat plate electrodes
US3931589A (en) * 1974-03-21 1976-01-06 The United States Of America As Represented By The Secretary Of The Navy Perforated wall hollow-cathode ion laser
US4019989A (en) * 1974-11-25 1977-04-26 U.S. Philips Corporation Wien filter
US4025818A (en) * 1976-04-20 1977-05-24 Hughes Aircraft Company Wire ion plasma electron gun
US4136280A (en) * 1976-01-20 1979-01-23 University Of Virginia Positive and negative ion recording system for mass spectrometer
US4163151A (en) * 1977-12-28 1979-07-31 Hughes Aircraft Company Separated ion source
US4167668A (en) * 1976-09-07 1979-09-11 Thomson-Csf Process and apparatus for separating isotopes
US4201921A (en) * 1978-07-24 1980-05-06 International Business Machines Corporation Electron beam-capillary plasma flash x-ray device
US4315153A (en) * 1980-05-19 1982-02-09 Hughes Aircraft Company Focusing ExB mass separator for space-charge dominated ion beams
US4517462A (en) * 1981-10-21 1985-05-14 Commissariat A L'energie Atomique Device for measuring an ion current produced by an ion beam
US4761545A (en) * 1986-05-23 1988-08-02 The Ohio State University Research Foundation Tailored excitation for trapped ion mass spectrometry
US4931640A (en) * 1989-05-19 1990-06-05 Marshall Alan G Mass spectrometer with reduced static electric field
US5019706A (en) * 1989-05-05 1991-05-28 Spectrospin Ag Ion cyclotron resonance spectrometer
US5047723A (en) * 1986-06-03 1991-09-10 Pertti Puumalainen Method for detection of foreign matter contents in gases
US5144127A (en) * 1991-08-02 1992-09-01 Williams Evan R Surface induced dissociation with reflectron time-of-flight mass spectrometry
US5218203A (en) * 1991-03-22 1993-06-08 Georgia Tech Research Corporation Ion source and sample introduction method and apparatus using two stage ionization for producing sample gas ions
US5281494A (en) * 1990-05-04 1994-01-25 Inco Limited Nickel hydroxide
US5298745A (en) * 1992-12-02 1994-03-29 Hewlett-Packard Company Multilayer multipole
US5420424A (en) * 1994-04-29 1995-05-30 Mine Safety Appliances Company Ion mobility spectrometer
US5455417A (en) * 1994-05-05 1995-10-03 Sacristan; Emilio Ion mobility method and device for gas analysis
US5479815A (en) * 1994-02-24 1996-01-02 Kraft Foods, Inc. Method and apparatus for measuring volatiles released from food products
US5492867A (en) * 1993-09-22 1996-02-20 Westinghouse Elect. Corp. Method for manufacturing a miniaturized solid state mass spectrograph
US5508204A (en) * 1995-01-12 1996-04-16 Norman Clinical Laboratories, Inc. Multiple sample sequential chemical analysis
US5536939A (en) * 1993-09-22 1996-07-16 Northrop Grumman Corporation Miniaturized mass filter
US5541408A (en) * 1993-11-01 1996-07-30 Rosemount Analytical Inc. Micromachined mass spectrometer
US5644131A (en) * 1996-05-22 1997-07-01 Hewlett-Packard Co. Hyperbolic ion trap and associated methods of manufacture
US5654544A (en) * 1995-08-10 1997-08-05 Analytica Of Branford Mass resolution by angular alignment of the ion detector conversion surface in time-of-flight mass spectrometers with electrostatic steering deflectors
US5723861A (en) * 1996-04-04 1998-03-03 Mine Safety Appliances Company Recirculating filtration system for use with a transportable ion mobility spectrometer
US5736739A (en) * 1996-04-04 1998-04-07 Mine Safety Appliances Company Recirculating filtration system for use with a transportable ion mobility spectrometer in gas chromatography applications
US5763876A (en) * 1996-04-04 1998-06-09 Mine Safety Appliances Company Inlet heating device for ion mobility spectrometer
US5789745A (en) * 1997-10-28 1998-08-04 Sandia Corporation Ion mobility spectrometer using frequency-domain separation
US5801379A (en) * 1996-03-01 1998-09-01 Mine Safety Appliances Company High voltage waveform generator
US5811059A (en) * 1995-10-16 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automated, on-demand ion mobility spectrometry analysis of gas chromatograph effluents
US5869344A (en) * 1996-07-19 1999-02-09 Micromass Uk Limited Apparatus and methods for the analysis of trace constituents in gases
US5881059A (en) * 1995-11-16 1999-03-09 Alcatel Usa, Inc. System and method for a multi-host subscriber loop
US5965882A (en) * 1997-10-07 1999-10-12 Raytheon Company Miniaturized ion mobility spectrometer sensor cell
US6049052A (en) * 1997-06-03 2000-04-11 California Institute Of Technology Miniature micromachined quadrupole mass spectrometer array and method of making the same
US6051832A (en) * 1996-08-20 2000-04-18 Graseby Dynamics Limited Drift chambers
US6055151A (en) * 1997-03-06 2000-04-25 Sarnoff Corp Multilayer ceramic circuit boards including embedded components
US6066848A (en) * 1998-06-09 2000-05-23 Combichem, Inc. Parallel fluid electrospray mass spectrometer
US6107628A (en) * 1998-06-03 2000-08-22 Battelle Memorial Institute Method and apparatus for directing ions and other charged particles generated at near atmospheric pressures into a region under vacuum
US6107624A (en) * 1997-07-18 2000-08-22 Bruker-Saxonia Analytik Gmbh Ion mobility spectrometer with switchable electrodes
US6124592A (en) * 1998-03-18 2000-09-26 Technispan Llc Ion mobility storage trap and method
US6180414B1 (en) * 1997-01-03 2001-01-30 Oridion Medical Ltd. Breath test for detection of drug metabolism
US6188067B1 (en) * 1997-06-03 2001-02-13 California Institute Of Technology Miniature micromachined quadrupole mass spectrometer array and method of making the same
US6200539B1 (en) * 1998-01-08 2001-03-13 The University Of Tennessee Research Corporation Paraelectric gas flow accelerator
US20020070338A1 (en) * 2000-12-08 2002-06-13 Loboda Alexander V. Ion mobility spectrometer incorporating an ion guide in combination with an MS device
US20020134932A1 (en) * 1998-08-05 2002-09-26 Roger Guevremont Apparatus and method for desolvating and focussing ions for introduction into a mass spectrometer
US6509562B1 (en) * 1999-09-16 2003-01-21 Rae Systems, Inc. Selective photo-ionization detector using ion mobility spectrometry
US6512226B1 (en) * 1997-12-04 2003-01-28 University Of Manitoba Method of and apparatus for selective collision-induced dissociation of ions in a quadrupole ion guide
US6512224B1 (en) * 1999-07-21 2003-01-28 The Charles Stark Draper Laboratory, Inc. Longitudinal field driven field asymmetric ion mobility filter and detection system
US20030020012A1 (en) * 2000-03-14 2003-01-30 Roger Guevremont Tandem high field asymmetric waveform ion mobility spectrometry (faims)tandem mass spectrometry
US20030052263A1 (en) * 2001-06-30 2003-03-20 Sionex Corporation System for collection of data and identification of unknown ion species in an electric field
US6540691B1 (en) * 1999-01-12 2003-04-01 Michael Phillips Breath test for the detection of various diseases
US20030070913A1 (en) * 2001-08-08 2003-04-17 Sionex Corporation Capacitive discharge plasma ion source
US20030089847A1 (en) * 2000-03-14 2003-05-15 Roger Guevremont Tandem high field asymmetric waveform ion mobility spectrometry ( faims)/ion mobility spectrometry
US20030132380A1 (en) * 1999-07-21 2003-07-17 Sionex Corporation Micromachined field asymmetric ion mobility filter and detection system
US6608463B1 (en) * 2002-06-24 2003-08-19 Delphi Technologies, Inc. Solid-oxide fuel cell system having an integrated air supply system
US6618712B1 (en) * 1999-05-28 2003-09-09 Sandia Corporation Particle analysis using laser ablation mass spectroscopy
US6621077B1 (en) * 1998-08-05 2003-09-16 National Research Council Canada Apparatus and method for atmospheric pressure-3-dimensional ion trapping
US6690004B2 (en) * 1999-07-21 2004-02-10 The Charles Stark Draper Laboratory, Inc. Method and apparatus for electrospray-augmented high field asymmetric ion mobility spectrometry
US6713758B2 (en) * 1998-08-05 2004-03-30 National Research Council Of Canada Spherical side-to-side FAIMS
US6727496B2 (en) * 2001-08-14 2004-04-27 Sionex Corporation Pancake spectrometer
US20040094704A1 (en) * 2002-04-12 2004-05-20 Sionex Corporation Method and apparatus for control of mobility-based ion species identification
US6753522B2 (en) * 2002-02-08 2004-06-22 Ionalytics Corporation FAIMS apparatus having plural ion inlets and method therefore
US20040136872A1 (en) * 2002-10-12 2004-07-15 Sionex Corporation NOx monitor using differential mobility spectrometry
US20050029449A1 (en) * 1999-07-21 2005-02-10 Miller Raanan A. System for trajectory-based ion species identification
US20050051719A1 (en) * 1999-07-21 2005-03-10 Sionex Corporation Systems for differential ion mobility analysis
US20050056780A1 (en) * 2003-09-17 2005-03-17 Sionex Corporation Solid-state gas flow generator and related systems, applications, and methods
US20050121607A1 (en) * 2001-08-08 2005-06-09 Miller Raanan A. Method and apparatus for plasma generation
US20050133716A1 (en) * 1999-07-21 2005-06-23 Miller Raanan A. Explosives detection using differential ion mobility spectrometry
US20050139762A1 (en) * 2003-11-25 2005-06-30 Sionex Corporation Mobility based apparatus and methods using dispersion characteristics, sample fragmentation, and/or pressure control to improve analysis of a sample
US20050167583A1 (en) * 2003-12-18 2005-08-04 Sionex Corporation Methods and apparatus for enhanced ion based sample detection using selective pre-separation and amplification
US20050173629A1 (en) * 2001-06-30 2005-08-11 Miller Raanan A. Methods and apparatus for enhanced sample identification based on combined analytical techniques
US20050194527A1 (en) * 2004-03-03 2005-09-08 Ionalytics Corporation Method and apparatus for selecting inlets of a multiple inlet FAIMS
US20060027746A1 (en) * 2004-08-05 2006-02-09 Ionalytics Corporation Low field mobility separation of ions using segmented cylindrical FAIMS
US7098449B1 (en) * 1999-07-21 2006-08-29 The Charles Stark Draper Laboratory, Inc. Spectrometer chip assembly
US20070029477A1 (en) * 2005-04-29 2007-02-08 Sionex Corporation Compact gas chromatography and ion mobility based sample analysis systems, methods, and devices
US7176453B2 (en) * 1999-07-21 2007-02-13 The Charles Stark Draper Laboratory, Inc. Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry
US7339164B2 (en) * 2002-02-21 2008-03-04 Sionex Corporation Systems and methods for ion mobility control
US7381944B2 (en) * 2004-04-28 2008-06-03 Sionex Corporation Systems and methods for ion species analysis with enhanced condition control and data interpretation
US7399958B2 (en) * 1999-07-21 2008-07-15 Sionex Corporation Method and apparatus for enhanced ion mobility based sample analysis using various analyzer configurations

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2818507A (en) 1946-03-22 1957-12-31 Roy J Britten Velocity selector method for the separation of isotopes
US2919348A (en) 1956-07-05 1959-12-29 Bierman Aron Device for the separation of gas ions
US3621240A (en) 1969-05-27 1971-11-16 Franklin Gro Corp Apparatus and methods for detecting and identifying trace gases
US3619605A (en) 1969-06-25 1971-11-09 Phillips Petroleum Co Mass spectrometer method and apparatus employing high energy metastable ions to generate sample ions
SU966583A1 (en) 1980-03-10 1982-10-15 Предприятие П/Я А-1342 Method of analysis of impurities in gases
SU1337934A2 (en) 1986-04-09 1987-09-15 Предприятие П/Я А-1882 Method of analysis of impurities in gases
SU1412447A1 (en) 1986-11-03 1998-06-20 И.А. Буряков Drift spectrometer to detect microimpurities of substances in gases
US4885500A (en) 1986-11-19 1989-12-05 Hewlett-Packard Company Quartz quadrupole for mass filter
SU1485808A1 (en) 1987-03-30 1998-06-10 И.А. Буряков Method of analyzing traces of substances in gases
SU1627984A2 (en) 1988-07-20 1991-02-15 Предприятие П/Я А-1882 Method of gas analysis for impurities
EP0556411B1 (en) 1991-09-11 1998-12-09 Sumitomo Electric Industries, Ltd. Quadrupole electrode and manufacture thereof
DE4134212A1 (en) 1991-10-16 1993-04-22 Leonhardt Juergen W Prof Dr Micro-ionisation sensor to detect pollutants in air - comprises ion source, gas passage, ion path, control system, collector electrodes, amplifier and conductor system formed within cylindrical semiconductor element
KR0156602B1 (en) 1994-07-08 1998-12-01 황해웅 Ion mobility analyzer
GB2296369A (en) 1994-12-22 1996-06-26 Secr Defence Radio frequency ion source
US5852302A (en) 1996-01-30 1998-12-22 Shimadzu Corporation Cylindrical multiple-pole mass filter with CVD-deposited electrode layers
WO1997038302A1 (en) 1996-04-04 1997-10-16 Mine Safety Appliances Company Recirculating filtration system for use with a transportable ion mobility spectrometer
US5838003A (en) 1996-09-27 1998-11-17 Hewlett-Packard Company Ionization chamber and mass spectrometry system containing an asymmetric electrode
DE19650612C2 (en) 1996-12-06 2002-06-06 Eads Deutschland Gmbh Ion-mobility spectrometer
US6498342B1 (en) * 1997-06-02 2002-12-24 Advanced Research & Technology Institute Ion separation instrument
US6323482B1 (en) 1997-06-02 2001-11-27 Advanced Research And Technology Institute, Inc. Ion mobility and mass spectrometer
US6157031A (en) 1997-09-17 2000-12-05 California Institute Of Technology Quadropole mass analyzer with linear ion trap
EP1025577A1 (en) 1997-10-22 2000-08-09 IDS Intelligent Detection Systems, Inc. A sample trapping ion mobility spectrometer for portable molecular detection
DE19861106B4 (en) 1998-04-07 2008-01-10 Eads Deutschland Gmbh Ionization chamber for an ion mobility spectrometer (IMS)
ATE308751T1 (en) 1998-08-05 2005-11-15 Ca Nat Research Council DEVICE AND METHOD FOR THREE-DIMENSIONAL ION STORAGE UNDER ATMOSPHERIC PRESSURE
US6815669B1 (en) 1999-07-21 2004-11-09 The Charles Stark Draper Laboratory, Inc. Longitudinal field driven ion mobility filter and detection system
US6495823B1 (en) 1999-07-21 2002-12-17 The Charles Stark Draper Laboratory, Inc. Micromachined field asymmetric ion mobility filter and detection system
WO2001022049A2 (en) 1999-09-24 2001-03-29 Haley Lawrence V A novel ion-mobility based device using an oscillatory high-field ion separator with a multi-channel array charge collector
WO2001069216A2 (en) 2000-03-14 2001-09-20 National Research Council Canada Improved parallel plate geometry faims apparatus and method
JP4063676B2 (en) 2001-04-17 2008-03-19 ザ・チャールズ・スターク・ドレイパー・ラボラトリー・インコーポレイテッド High field asymmetric ion mobility spectrometer using electrospray
US7119328B2 (en) 2001-06-30 2006-10-10 Sionex Corporation System for DMS peak resolution
US7034286B2 (en) 2002-02-08 2006-04-25 Ionalytics Corporation FAIMS apparatus having plural ion inlets and method therefore
WO2004029614A1 (en) 2002-09-25 2004-04-08 Ionalytics Corporation Faims apparatus and method for separating ions

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615135A (en) * 1950-06-20 1952-10-21 Jr William E Glenn Mass analyzing apparatus
US3511986A (en) * 1966-07-21 1970-05-12 Varian Associates Ion cyclotron double resonance spectrometer employing resonance in the ion source and analyzer
US3648046A (en) * 1970-05-18 1972-03-07 Granville Phillips Co Quadrupole gas analyzer comprising four flat plate electrodes
US3931589A (en) * 1974-03-21 1976-01-06 The United States Of America As Represented By The Secretary Of The Navy Perforated wall hollow-cathode ion laser
US4019989A (en) * 1974-11-25 1977-04-26 U.S. Philips Corporation Wien filter
US4136280A (en) * 1976-01-20 1979-01-23 University Of Virginia Positive and negative ion recording system for mass spectrometer
US4025818A (en) * 1976-04-20 1977-05-24 Hughes Aircraft Company Wire ion plasma electron gun
US4167668A (en) * 1976-09-07 1979-09-11 Thomson-Csf Process and apparatus for separating isotopes
US4163151A (en) * 1977-12-28 1979-07-31 Hughes Aircraft Company Separated ion source
US4201921A (en) * 1978-07-24 1980-05-06 International Business Machines Corporation Electron beam-capillary plasma flash x-ray device
US4315153A (en) * 1980-05-19 1982-02-09 Hughes Aircraft Company Focusing ExB mass separator for space-charge dominated ion beams
US4517462A (en) * 1981-10-21 1985-05-14 Commissariat A L'energie Atomique Device for measuring an ion current produced by an ion beam
US4761545A (en) * 1986-05-23 1988-08-02 The Ohio State University Research Foundation Tailored excitation for trapped ion mass spectrometry
US5047723A (en) * 1986-06-03 1991-09-10 Pertti Puumalainen Method for detection of foreign matter contents in gases
US5019706A (en) * 1989-05-05 1991-05-28 Spectrospin Ag Ion cyclotron resonance spectrometer
US4931640A (en) * 1989-05-19 1990-06-05 Marshall Alan G Mass spectrometer with reduced static electric field
US5281494A (en) * 1990-05-04 1994-01-25 Inco Limited Nickel hydroxide
US5218203A (en) * 1991-03-22 1993-06-08 Georgia Tech Research Corporation Ion source and sample introduction method and apparatus using two stage ionization for producing sample gas ions
US5144127A (en) * 1991-08-02 1992-09-01 Williams Evan R Surface induced dissociation with reflectron time-of-flight mass spectrometry
US5298745A (en) * 1992-12-02 1994-03-29 Hewlett-Packard Company Multilayer multipole
US5492867A (en) * 1993-09-22 1996-02-20 Westinghouse Elect. Corp. Method for manufacturing a miniaturized solid state mass spectrograph
US5536939A (en) * 1993-09-22 1996-07-16 Northrop Grumman Corporation Miniaturized mass filter
US5541408A (en) * 1993-11-01 1996-07-30 Rosemount Analytical Inc. Micromachined mass spectrometer
US5479815A (en) * 1994-02-24 1996-01-02 Kraft Foods, Inc. Method and apparatus for measuring volatiles released from food products
US5420424A (en) * 1994-04-29 1995-05-30 Mine Safety Appliances Company Ion mobility spectrometer
US5455417A (en) * 1994-05-05 1995-10-03 Sacristan; Emilio Ion mobility method and device for gas analysis
US5508204A (en) * 1995-01-12 1996-04-16 Norman Clinical Laboratories, Inc. Multiple sample sequential chemical analysis
US5654544A (en) * 1995-08-10 1997-08-05 Analytica Of Branford Mass resolution by angular alignment of the ion detector conversion surface in time-of-flight mass spectrometers with electrostatic steering deflectors
US5811059A (en) * 1995-10-16 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automated, on-demand ion mobility spectrometry analysis of gas chromatograph effluents
US5881059A (en) * 1995-11-16 1999-03-09 Alcatel Usa, Inc. System and method for a multi-host subscriber loop
US5801379A (en) * 1996-03-01 1998-09-01 Mine Safety Appliances Company High voltage waveform generator
US5736739A (en) * 1996-04-04 1998-04-07 Mine Safety Appliances Company Recirculating filtration system for use with a transportable ion mobility spectrometer in gas chromatography applications
US5763876A (en) * 1996-04-04 1998-06-09 Mine Safety Appliances Company Inlet heating device for ion mobility spectrometer
US5723861A (en) * 1996-04-04 1998-03-03 Mine Safety Appliances Company Recirculating filtration system for use with a transportable ion mobility spectrometer
US5644131A (en) * 1996-05-22 1997-07-01 Hewlett-Packard Co. Hyperbolic ion trap and associated methods of manufacture
US5869344A (en) * 1996-07-19 1999-02-09 Micromass Uk Limited Apparatus and methods for the analysis of trace constituents in gases
US6051832A (en) * 1996-08-20 2000-04-18 Graseby Dynamics Limited Drift chambers
US6180414B1 (en) * 1997-01-03 2001-01-30 Oridion Medical Ltd. Breath test for detection of drug metabolism
US6055151A (en) * 1997-03-06 2000-04-25 Sarnoff Corp Multilayer ceramic circuit boards including embedded components
US6281494B1 (en) * 1997-06-03 2001-08-28 California Institute Of Technology Miniature micromachined quadrupole mass spectrometer array and method of making the same
US6262416B1 (en) * 1997-06-03 2001-07-17 California Institute Of Technology Miniature micromachined quadrupole mass spectrometer array and method of making the same
US6049052A (en) * 1997-06-03 2000-04-11 California Institute Of Technology Miniature micromachined quadrupole mass spectrometer array and method of making the same
US6188067B1 (en) * 1997-06-03 2001-02-13 California Institute Of Technology Miniature micromachined quadrupole mass spectrometer array and method of making the same
US6107624A (en) * 1997-07-18 2000-08-22 Bruker-Saxonia Analytik Gmbh Ion mobility spectrometer with switchable electrodes
US5965882A (en) * 1997-10-07 1999-10-12 Raytheon Company Miniaturized ion mobility spectrometer sensor cell
US5789745A (en) * 1997-10-28 1998-08-04 Sandia Corporation Ion mobility spectrometer using frequency-domain separation
US6512226B1 (en) * 1997-12-04 2003-01-28 University Of Manitoba Method of and apparatus for selective collision-induced dissociation of ions in a quadrupole ion guide
US6200539B1 (en) * 1998-01-08 2001-03-13 The University Of Tennessee Research Corporation Paraelectric gas flow accelerator
US6124592A (en) * 1998-03-18 2000-09-26 Technispan Llc Ion mobility storage trap and method
US6107628A (en) * 1998-06-03 2000-08-22 Battelle Memorial Institute Method and apparatus for directing ions and other charged particles generated at near atmospheric pressures into a region under vacuum
US6066848A (en) * 1998-06-09 2000-05-23 Combichem, Inc. Parallel fluid electrospray mass spectrometer
US6713758B2 (en) * 1998-08-05 2004-03-30 National Research Council Of Canada Spherical side-to-side FAIMS
US20020134932A1 (en) * 1998-08-05 2002-09-26 Roger Guevremont Apparatus and method for desolvating and focussing ions for introduction into a mass spectrometer
US6504149B2 (en) * 1998-08-05 2003-01-07 National Research Council Canada Apparatus and method for desolvating and focussing ions for introduction into a mass spectrometer
US6621077B1 (en) * 1998-08-05 2003-09-16 National Research Council Canada Apparatus and method for atmospheric pressure-3-dimensional ion trapping
US6770875B1 (en) * 1998-08-05 2004-08-03 National Research Council Canada Apparatus and method for desolvating and focussing ions for introduction into a mass spectrometer
US6540691B1 (en) * 1999-01-12 2003-04-01 Michael Phillips Breath test for the detection of various diseases
US6618712B1 (en) * 1999-05-28 2003-09-09 Sandia Corporation Particle analysis using laser ablation mass spectroscopy
US20050133716A1 (en) * 1999-07-21 2005-06-23 Miller Raanan A. Explosives detection using differential ion mobility spectrometry
US7176453B2 (en) * 1999-07-21 2007-02-13 The Charles Stark Draper Laboratory, Inc. Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry
US7098449B1 (en) * 1999-07-21 2006-08-29 The Charles Stark Draper Laboratory, Inc. Spectrometer chip assembly
US7075068B2 (en) * 1999-07-21 2006-07-11 The Charles Stark Draper Laboratory, Inc. Method and apparatus for electrospray augmented high field asymmetric ion mobility spectrometry
US20030132380A1 (en) * 1999-07-21 2003-07-17 Sionex Corporation Micromachined field asymmetric ion mobility filter and detection system
US7365316B2 (en) * 1999-07-21 2008-04-29 The Charles Stark Draper Laboratory Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry
US7399958B2 (en) * 1999-07-21 2008-07-15 Sionex Corporation Method and apparatus for enhanced ion mobility based sample analysis using various analyzer configurations
US6512224B1 (en) * 1999-07-21 2003-01-28 The Charles Stark Draper Laboratory, Inc. Longitudinal field driven field asymmetric ion mobility filter and detection system
US6690004B2 (en) * 1999-07-21 2004-02-10 The Charles Stark Draper Laboratory, Inc. Method and apparatus for electrospray-augmented high field asymmetric ion mobility spectrometry
US20080185512A1 (en) * 1999-07-21 2008-08-07 Sionex Corporation Method and apparatus for enhanced ion mobility based sample analysis using various analyzer configurations
US20050051719A1 (en) * 1999-07-21 2005-03-10 Sionex Corporation Systems for differential ion mobility analysis
US20050029449A1 (en) * 1999-07-21 2005-02-10 Miller Raanan A. System for trajectory-based ion species identification
US6509562B1 (en) * 1999-09-16 2003-01-21 Rae Systems, Inc. Selective photo-ionization detector using ion mobility spectrometry
US6703609B2 (en) * 2000-03-14 2004-03-09 National Research Council Canada Tandem FAIMS/ion-trapping apparatus and method
US6774360B2 (en) * 2000-03-14 2004-08-10 National Research Council Canada FAIMS apparatus and method using carrier gas of mixed composition
US20030020012A1 (en) * 2000-03-14 2003-01-30 Roger Guevremont Tandem high field asymmetric waveform ion mobility spectrometry (faims)tandem mass spectrometry
US20030038235A1 (en) * 2000-03-14 2003-02-27 Roger Guevremont Tandem faims/ion-trapping apparatus and method
US20030089847A1 (en) * 2000-03-14 2003-05-15 Roger Guevremont Tandem high field asymmetric waveform ion mobility spectrometry ( faims)/ion mobility spectrometry
US20020070338A1 (en) * 2000-12-08 2002-06-13 Loboda Alexander V. Ion mobility spectrometer incorporating an ion guide in combination with an MS device
US6744043B2 (en) * 2000-12-08 2004-06-01 Mds Inc. Ion mobilty spectrometer incorporating an ion guide in combination with an MS device
US20050173629A1 (en) * 2001-06-30 2005-08-11 Miller Raanan A. Methods and apparatus for enhanced sample identification based on combined analytical techniques
US20030052263A1 (en) * 2001-06-30 2003-03-20 Sionex Corporation System for collection of data and identification of unknown ion species in an electric field
US20030070913A1 (en) * 2001-08-08 2003-04-17 Sionex Corporation Capacitive discharge plasma ion source
US20050121607A1 (en) * 2001-08-08 2005-06-09 Miller Raanan A. Method and apparatus for plasma generation
US6727496B2 (en) * 2001-08-14 2004-04-27 Sionex Corporation Pancake spectrometer
US6753522B2 (en) * 2002-02-08 2004-06-22 Ionalytics Corporation FAIMS apparatus having plural ion inlets and method therefore
US6787765B2 (en) * 2002-02-08 2004-09-07 Ionalytics Corporation FAIMS with non-destructive detection of selectively transmitted ions
US20080121794A1 (en) * 2002-02-21 2008-05-29 Sionex Corporation Systems and methods for ion mobility control
US7339164B2 (en) * 2002-02-21 2008-03-04 Sionex Corporation Systems and methods for ion mobility control
US20040094704A1 (en) * 2002-04-12 2004-05-20 Sionex Corporation Method and apparatus for control of mobility-based ion species identification
US6608463B1 (en) * 2002-06-24 2003-08-19 Delphi Technologies, Inc. Solid-oxide fuel cell system having an integrated air supply system
US20040136872A1 (en) * 2002-10-12 2004-07-15 Sionex Corporation NOx monitor using differential mobility spectrometry
US20050056780A1 (en) * 2003-09-17 2005-03-17 Sionex Corporation Solid-state gas flow generator and related systems, applications, and methods
US20050139762A1 (en) * 2003-11-25 2005-06-30 Sionex Corporation Mobility based apparatus and methods using dispersion characteristics, sample fragmentation, and/or pressure control to improve analysis of a sample
US20050167583A1 (en) * 2003-12-18 2005-08-04 Sionex Corporation Methods and apparatus for enhanced ion based sample detection using selective pre-separation and amplification
US20050194527A1 (en) * 2004-03-03 2005-09-08 Ionalytics Corporation Method and apparatus for selecting inlets of a multiple inlet FAIMS
US20050194532A1 (en) * 2004-03-03 2005-09-08 Ionalytics Corporation Method and apparatus for selecting inlets of a multiple inlet FAIMS
US7381944B2 (en) * 2004-04-28 2008-06-03 Sionex Corporation Systems and methods for ion species analysis with enhanced condition control and data interpretation
US7368709B2 (en) * 2004-08-05 2008-05-06 Thermo Finnigan Llc Low field mobility separation of ions using segmented cylindrical FAIMS
US20060027746A1 (en) * 2004-08-05 2006-02-09 Ionalytics Corporation Low field mobility separation of ions using segmented cylindrical FAIMS
US20070029477A1 (en) * 2005-04-29 2007-02-08 Sionex Corporation Compact gas chromatography and ion mobility based sample analysis systems, methods, and devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001044A1 (en) * 2009-07-02 2011-01-06 Tricorn Tech Corporation Integrated ion separation spectrometer
US8716655B2 (en) * 2009-07-02 2014-05-06 Tricorntech Corporation Integrated ion separation spectrometer
US20140224977A1 (en) * 2009-07-02 2014-08-14 Tricorntech Corporation Integrated ion separation spectrometer
US8502138B2 (en) 2011-07-29 2013-08-06 Sharp Kabushiki Kaisha Integrated ion mobility spectrometer

Also Published As

Publication number Publication date
US6806463B2 (en) 2004-10-19
US7435950B2 (en) 2008-10-14
US7030372B2 (en) 2006-04-18
US20030132380A1 (en) 2003-07-17
US20050023457A1 (en) 2005-02-03
US20060118717A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US7435950B2 (en) Micromachined field asymmetric ion mobility filter and detection system
US6495823B1 (en) Micromachined field asymmetric ion mobility filter and detection system
US6512224B1 (en) Longitudinal field driven field asymmetric ion mobility filter and detection system
US7456390B2 (en) Longitudinal field driven ion mobility filter and detection system
JP5362586B2 (en) Differential mobility spectrometer prefilter for mass spectrometer
Miller et al. A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection
US7498570B2 (en) Ion mobility spectrometer
US8502138B2 (en) Integrated ion mobility spectrometer
US20090189064A1 (en) Ultra compact ion mobility based analyzer apparatus, method, and system
WO2001022049A9 (en) A novel ion-mobility based device using an oscillatory high-field ion separator with a multi-channel array charge collector
EP1839049A1 (en) Micromachined field asymmetric ion mobility spectrometer
GB2423414A (en) Ion mobility spectrometer with parallel-running drift gas and ion carrier gas flow
GB2428872A (en) Ion mobility spectrometer with parallel-running drift gas and ion carrier gas flow

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHARLES STARK DRAPER LABORATORY INC., THE, MASSACH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILLER, RAANAN A.;NAZAROV, ERKINJON G.;REEL/FRAME:020620/0426;SIGNING DATES FROM 20080107 TO 20080108

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE