US20080199348A1 - Elemental material and alloy - Google Patents

Elemental material and alloy Download PDF

Info

Publication number
US20080199348A1
US20080199348A1 US12/079,023 US7902308A US2008199348A1 US 20080199348 A1 US20080199348 A1 US 20080199348A1 US 7902308 A US7902308 A US 7902308A US 2008199348 A1 US2008199348 A1 US 2008199348A1
Authority
US
United States
Prior art keywords
titanium
sodium
powder
metal
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/079,023
Inventor
Donn Reynolds Armstrong
Stanley S. Borys
Richard Paul Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Pigments USA Inc
Original Assignee
International Titanium Powder LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/125,988 external-priority patent/US7435282B2/en
Application filed by International Titanium Powder LLC filed Critical International Titanium Powder LLC
Priority to US12/079,023 priority Critical patent/US20080199348A1/en
Assigned to INTERNATIONAL TITANIUM POWDER, LLC reassignment INTERNATIONAL TITANIUM POWDER, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDERSON, RICHARD P, BORYS, STANLEY S., ARMSTRONG, DONN R
Assigned to THE NATIONAL TITANIUM DIOXIDE CO. LTD. reassignment THE NATIONAL TITANIUM DIOXIDE CO. LTD. SECURITY AGREEMENT Assignors: INTERNATIONAL TITANIUM POWDER, L.L.C.
Publication of US20080199348A1 publication Critical patent/US20080199348A1/en
Assigned to INTERNATIONAL TITANIUM POWDER, LLC reassignment INTERNATIONAL TITANIUM POWDER, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE NATIONAL TITANIUM DIOXIDE CO. LTD.
Assigned to CRISTAL US, INC. reassignment CRISTAL US, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL TITANIUM POWDER, L.L.C.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1218Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes
    • C22B34/1222Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes using a halogen containing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates to the production of elemental material from the halides thereof and has particular applicability to those metals and non-metals for which the reduction of the halide to the element is exothermic.
  • Particular interest exists for titanium and the present invention will be described with particular reference to titanium, but is applicable to other metals and non-metals such as Al, As, Sb, Sn, Be, B, Ta, Ge, V, Nb, Mo, Ga, Ir, Os, U and Re, all of which produce significant heat upon reduction from the halide to the metal.
  • elemental materials include those metals and non-metals listed above or in Table 1.
  • titanium production is by reduction of titanium tetrachloride, which is made by chlorinating relatively high-grade titanium dioxide ore. Ores containing rutile can be physically concentrated to produce a satisfactory chlorination feed material; other sources of titanium dioxide, such as ilmenite, titaniferous iron ores and most other titanium source materials, require chemical beneficiation.
  • the Kroll process and the Hunter process are the two present day methods of producing titanium commercially.
  • titanium tetrachloride is chemically reduced by magnesium at about 1000° C.
  • the process is conducted in a batch fashion in a metal retort with an inert atmosphere, either helium or argon.
  • Magnesium is charged into the vessel and heated to prepare a molten magnesium bath.
  • Liquid titanium tetrachloride at room temperature is dispersed drop wise above the molten magnesium bath.
  • the liquid titanium tetrachloride vaporizes in the gaseous zone above the molten magnesium bath.
  • a reaction occurs on the molten magnesium surface to form titanium and magnesium chloride.
  • the Hunter process is similar to the Kroll process, but uses sodium instead of magnesium to reduce the titanium tetrachloride to titanium metal and produces sodium chloride as a by product.
  • the reaction is uncontrolled and sporadic and promotes the growth of dendritic titanium metal.
  • the titanium fuses into a mass that encapsulates some of the molten magnesium (or sodium) chloride. This fused mass is called titanium sponge.
  • the solidified titanium sponge metal is broken up, crushed, purified and then dried in a stream of hot nitrogen.
  • Metal ingots are made by compacting the sponge, welding pieces into an electrode and then melting it into an ingot in a high vacuum arc furnace. High purity ingots require multiple arc melting operations.
  • Powder titanium is usually produced from the sponge through grinding, shot casting or centrifugal processes. A common technique is to first react the titanium with hydrogen to make brittle titanium hydride to facilitate the grinding process. After formation of the powder titanium hydride, the particles are dehydrogenated to produce a usable metal powder product. The processing of the titanium sponge into a usable form is difficult, labor intensive, and increases the product cost by a factor of two to three.
  • an object of the present invention is to provide a method and system for producing non-metals or metals or alloys thereof which is continuous having significant capital and operating costs advantages over existing batch technologies.
  • Another object of the present invention is to provide an improved batch or semi-batch process for producing non-metals or metals or alloys thereof where continuous operations are not warranted by the scale of the production.
  • Another object of the present invention is to provide a method and system for producing metals and non-metals from the exothermic reduction of the halide while preventing the metal or non-metal from sintering into large masses or onto the apparatus used to produce same.
  • Still another object of the invention is to provide a method and system for producing non-metal or metal from the halides thereof wherein the process and system recycles the reducing agent and removes the heat of reaction for use as process heat or for power generation, thereby substantially reducing the environmental impact of the process.
  • FIG. 1 is a process flow diagram showing the continuous process for producing as an example titanium metal from titanium tetrachloride
  • FIG. 2 is an example of a burner reaction chamber for a continuous process
  • FIG. 3 is a process diagram of a batch process reaction
  • FIG. 4 is a diagram of the apparatus used to produce titanium.
  • FIGS. 5-15 are SEM's of Ti powder inherently produced by the inventive method described in FIG. 2 .
  • the process of the invention may be practiced with the use of any alkali or alkaline earth metal depending upon the metal or non-metal to be reduced. In some cases, combinations of an alkali or alkaline earth metals may be used. Moreover, any halide or combinations of halides may be used with the present invention although in most circumstances chlorine, being the cheapest and most readily available, is preferred. Of the alkali or alkaline earth metals, by way of example, sodium will be chosen not for purposes of limitation but merely purposes of illustration, because it is cheapest and preferred, as has chlorine been chosen for the same purpose.
  • non-metals or metals to be reduced it is possible to reduce a single metal such as titanium or tantalum or zirconium, selected from the list set forth hereafter. It is also possible to make alloys of a predetermined composition by providing mixed metal halides at the beginning of the process in the required molecular ratio.
  • Table 1 sets forth heats of reaction per gram of liquid sodium for the reduction of a stoichiometric amount of a vapor of a non-metal or metal halides applicable to the inventive process.
  • FIG. 1 A summary process flow sheet is shown in FIG. 1 .
  • Sodium and titanium tetrachloride are combined in a reaction chamber 14 where titanium tetrachloride vapor from a source thereof in the form of a boiler 22 is injected within a flowing sodium stream from a continuously cycling loop thereof including a sodium pump 11 .
  • the sodium stream is replenished by sodium provided by an electrolytic cell 16 .
  • the reduction reaction is highly exothermic, forming molten reaction products of titanium and sodium chloride. The molten reaction products are quenched in the bulk sodium stream.
  • Particle sizes and reaction rates are controlled by metering of the titanium tetrachloride vapor flow rate (by controlling the supply pressure), dilution of the titanium tetrachloride vapor with an inert gas, such as He or Ar, and the sodium flow characteristics and mixing parameters in the reaction chamber which includes a nozzle for the titanium tetrachloride and a surrounding conduit for the liquid sodium.
  • the vapor is intimately mixed with the liquid in a zone enclosed by the liquid, i.e., a liquid continuum, and the resultant temperature, significantly affected by the heat of reaction, is controlled by the quantity of flowing sodium and maintained below the sintering temperature of the produced metal, such as for titanium at about 1000° C.
  • the temperature of the sodium away from the location of halide introduction is maintained in the range of from about 200° C. to about 600° C.
  • Products leaving the reaction zone are quenched in the surrounding liquid before contact with the walls of the reaction chamber and preferably before contact with other product particles. This precludes sintering and wall erosion.
  • the surrounding sodium stream then carries the titanium and sodium chloride reaction products away from the reaction region.
  • These reaction products are removed from the bulk sodium stream by conventional separators 15 such as cyclones, particulate filters, magnetic separators or vacuum stills.
  • the first option removes the titanium and sodium chloride products in separate steps. This is accomplished by maintaining the bulk stream temperature such that the titanium is solid but the sodium chloride is molten through control of the ratio of titanium tetrachloride and sodium flowrates to the reaction chamber 14 .
  • the titanium is removed first, the bulk stream cooled to solidify the sodium chloride, then the sodium chloride is removed from separator 12 .
  • a lower ratio of titanium tetrachloride to sodium flow rate would be maintained in the reaction chamber 14 so that the bulk sodium temperature would remain below the sodium chloride solidification temperature.
  • titanium and sodium chloride would be removed simultaneously using conventional separators. The sodium chloride and any residual sodium present on the particles would then be removed in a water-alcohol wash.
  • the solid cake of salt, Ti and Na is vacuum distilled to remove the Na. Thereafter, the Ti particles are passivated by passing a gas containing some O 2 over the mixture of salt and Ti followed by a water wash to remove the salt leaving Ti particles with surfaces of TiO 2 , which can be removed by conventional methods.
  • the sodium chloride is then recycled to the electrolytic cell 16 to be regenerated.
  • the sodium is returned to the bulk process stream for introduction to reaction chamber 14 and the chlorine is used in the ore chlorinator 17 .
  • electrolysis of sodium chloride and subsequent ore chlorination will be performed using technology well known in the art, such integration and recycle of the reaction by-product directly into the process is not possible with the Kroll or Hunter process because of the batch nature of those processes and the production of titanium sponge as an intermediate product.
  • excess process heat is removed in heat exchanger 10 for co-generation of power.
  • the integration of these separate processes enabled by the inventive chemical manufacturing process has significant benefits with respect to both improved economy of operation and substantially reduced environmental impact achieved by recycle of both energy and chemical waste streams.
  • Chlorine from the electrolytic cell 16 is used to chlorinate titanium ore (rutile, anatase or ilmenite) in the chlorinator 17 .
  • the titanium ore is blended with coke and chemically converted in the presence of chlorine in a fluidized-bed or other suitable kiln chlorinator.
  • the titanium dioxide contained in the raw material reacts to form titanium tetrachloride, while the oxygen forms carbon dioxide with the coke. Iron and other impurity metals present in the ore are also converted during chlorination to their corresponding chlorides.
  • the titanium chloride is then condensed and purified by means of distillation in column 18 . With current practice, the purified titanium chloride vapor would be condensed again and sold to titanium manufacturers; however, in this integrated process, the titanium tetrachloride vapor stream is used directly in the manufacturing process via a feed pump 21 and boiler 22 .
  • the temperature of the bulk process stream is adjusted to the desired temperature for the reaction chamber 14 at heat exchanger 10 , and then combined with the regenerated sodium recycle stream, and injected into the reaction chamber.
  • the recovered heat from heat exchangers 19 and 20 may be used to vaporize liquid halide from the source thereof to produce halide vapor to react with the metal or the non-metal. It should be understood that various pumps, filters, traps, monitors and the like will be added as needed by those skilled in the art.
  • the titanium that is removed from the separator 15 be at or below the sintering temperature of titanium in order to preclude and prevent the solidification of the titanium on the surfaces of the equipment and the agglomeration of titanium particles into large masses, which is one of the fundamental difficulties with the commercial processes used presently.
  • the titanium will not attach to the walls of the equipment or itself as it occurs with prior art and, therefore, the physical removal of the same will be obviated.
  • This is an important aspect of this invention and is obtained by the use of sufficient sodium metal or diluent gas or both to control the temperature of the elemental (or alloy) product.
  • FIG. 1 is illustrative of the types of design parameters which may be used to produce titanium metal in a continuous process which avoids the problems with the prior art.
  • FIG. 2 there is disclosed a typical reaction chamber in which a choke flow or injection nozzle 23 , completely submerged in a flowing liquid metal stream, introduces the halide vapor from a boiler 22 in a controlled manner into the liquid metal reductant stream 13 .
  • the reaction process is controlled through the use of a choke-flow (sonic or critical flow) nozzle.
  • a choke-flow nozzle is a vapor injection nozzle that achieves sonic velocity of the vapor at the nozzle throat.
  • the velocity of the vapor is equal to the speed of sound in the vapor medium at the prevailing temperature and pressure of the vapor at the nozzle throat.
  • the downstream pressure may then be reduced indefinitely without increasing or decreasing the discharge.
  • the minimum upstream pressure required for choke flow is proportioned to the downstream pressure and termed the critical pressure ratio. This ratio may be calculated by standard methods.
  • the choke flow nozzle serves two purposes: (1) it isolates the vapor generator from the liquid metal system, precluding the possibility of liquid metal backing up in the halide feed system and causing potentially dangerous contact with the liquid halide feedstock, and (2) it delivers the vapor at a fixed rate, independent of temperature and pressure fluctuations in the reaction zone, allowing easy and absolute control of the reaction kinetics.
  • the liquid metal stream also has multiple functional uses: (1) it rapidly chills the reaction products, forming product powder without sintering, (2) it transports the chilled reaction products to a separator, (3) it serves as a heat transfer medium allowing useful recovery of the considerable reaction heat, and (4) it feeds one of the reactants to the reaction zone.
  • the sodium 13 entering the reaction chamber is at 200° C. having a flow rate of 38.4 kilograms per minute.
  • the titanium tetrachloride from the boiler 22 is at 2 atmospheres and at a temperature of 164° C., the flow rate through the line was 1.1 kg/min.
  • Higher pressures may be used, but it is important that back flow be prevented, so the minimum pressure should be above that determined by the critical pressure ratio for sonic conditions, or about two times the absolute pressure of the sodium stream (two atmospheres if the sodium is at atmospheric pressure) is preferred to ensure that flow through the reaction chamber nozzle is critical or choked.
  • the batch process illustrated in FIG. 3 shows a subsurface introduction of titanium tetrachloride vapor through an injection or an injector or a choke flow nozzle 23 submerged in liquid sodium contained in a reaction vessel 24 .
  • the halide vapor from the boiler 22 is injected in a controlled manner where it reacts producing titanium powder and sodium chloride.
  • the reaction products fall to the bottom of the tank 25 where they are collected for removal.
  • the tank walls are cooled via cooling colis 24 and a portion of the sodium in the tank is pumped out via pump 11 and recycled through a heat exchanger 10 and line 5 back to the tank to control the temperature of the sodium in the reaction vessel.
  • Process temperatures and pressures are similar to the continuous flow case with bulk sodium temperature of 200° C., titanium tetrachloride vapor of 164° C., and the feed pressure of the titanium tetrachloride vapor about twice the pressure in the reaction vessel.
  • FIG. 3 is illustrative of the types of design parameters which may be used to produce titanium metal in a batch process which avoids agglomeration problems inherent in the batch process presently in use commercially.
  • FIG. 4 shows a schematic depiction of a loop used to produce titanium metal powder.
  • the parts of the loop of most importance to the operation are a large (10 liter) reaction vessel 29 with a collection funnel 28 at the bottom feeding into a recycle stream.
  • the recycle stream has a low volume, low head, electromagnetic pump 11 and a flow meter 25 .
  • a titanium tetrachloride injection system consisted of a heated transfer line, leading from a heated tank 30 with a large heat capacity, to a submerged choke flow nozzle 23 .
  • the system could be removed completely from the sodium loop for filling and cleaning. It should be understood that some commercial grades of Na have Ca or other alkaline earth metals therein. This has no substantial affect on the invention.
  • the injection of titanium tetrachloride was monitored by measuring the pressure in the titanium tetrachloride system.
  • a pressure transducer 31 was installed and a continuous measurement of pressure was recorded on a strip chart.
  • a filtration scheme was used to remove products from the bulk sodium at the end of the test.
  • the recycle stream system was removed from the sodium loop.
  • a filter 26 consisting of two 5 cm diameter screens with 100 ⁇ m holes in a housing 20 cm long, was plumbed into a direct line connecting the outlet of the reaction vessel to the sodium receiver tank. All of the sodium was transferred to the transfer tank 27 .
  • the reaction product was washed with ethyl alcohol to remove residual sodium and then passivated with an oxygen containing gas and washed with water to remove the sodium chloride by-product.
  • Particle size of the substantially pure titanium ranged between about 0.1 and about 10 ⁇ m with a mean size of about 5.5 ⁇ m.
  • the titanium powder produced in the apparatus was readily separable from the sodium and sodium chloride by-product.
  • the invention has been illustrated by reference to titanium alone and titanium tetrachloride as a feedstock, in combination with sodium as the reducing metal.
  • the foregoing was for illustrative purposes only and the invention clearly pertains to those metals and non-metals in Table 1, which of course include the fluorides of uranium and rhenium and well as other halides such as bromides.
  • sodium while being the preferred reducing metal because of cost and availability, is clearly not the only available reductant.
  • Lithium, potassium as well as magnesium, calcium and other alkaline earth metals are available and thermodynamically feasible.
  • combinations of alkali metals and alkaline earth metals have been used, such as Na and Ca.
  • the two most common reducing agents for the production of Ti are Na and Mg, so mixtures of these two metals may be used, along with Ca, which is present in some Na as a by product of the method of producing Na. It is well within the skill of the art to determine from the thermodynamic Tables which metals are capable of acting as a reducing agent in the foregoing reactions, the principal applications of the process being to those illustrated in Table 1 when the chloride or halide is reduced to the metal. Moreover, it is well within the skill of the art and it is contemplated in this invention that alloys can be made by the process of the subject invention by providing a suitable halide feed in the molecular ratio of the desired alloy.
  • the Ti powder produced according to the above referenced portion of the patents after washing and separation has a packing fraction of between about 4% to about 11% as determined by a tap density measurements in which the Ti powder is introduced into a graduated test tube and tapped until the powder is fully settled. Thereafter, the weight of the powder is measured and the packing fraction or percent of theoretical density is calculated.
  • a sample of particles produced by the inventive method which do not readily settle in minutes are classified as fines.
  • both agglomerated particles and unagglomerated particles are inherently produced. For instance, when the Na temperature after the reaction downstream of the tip of nozzle 23 is near 350° C., the agglomerates are small on average about 0.2 mm in any one direction, whereas when the Na temperature after the reaction downstream of the top of nozzle 23 is higher, for instance about 450° C., the agglomerates are larger, on average of about 1.6 mm in any one direction.
  • Prior art Ti powder has been made by one of two processes, either a hydride/dehydride process which produced flake shaped powder or a process in which Ti is melted followed by atomization which results in spherical shaped powders.
  • Low quality (high impurity) fines are produced in the Hunter process.
  • the Ti and Ti alloy powder inherently made by the process disclosed herein is neither flake-shaped nor spherical shaped, but rather is sponge or porous shaped, as defined in Powder Metallurgy Science, by Randall M. German, second edition, ⁇ Metal Powder Industries Federation 1984, 1994 page 63, a standard reference book. It is understood by those of ordinary skill in the art that the use of the term “sponge” in describing the particle morphology does not relate to the use of the term “sponge” in describing the product of the Kroll or Hunter process.
  • FIGS. 5-15 there is shown a series of SEM's of powder produced according to the portions of the '761 and '106 patents referenced above.
  • the SEM's of FIGS. 5-9 , 12 , 13 and 15 are at 3000 magnification.
  • the SEM's of FIGS. 10 and 14 are at 9000 magnification and FIG. 11 is at 27 magnification.
  • the powders are agglomerated and are neither flake shaped nor spherical, but rather are sponge or porous shaped as defined in the above identified reference by Randall M. German.

Abstract

A Ti powder is made b y the subsurface reduction of TiCl4 by a stream of liquid of sodium in excess of stoichiometric sufficient to maintain substantially all the reactive products below the sintering temperatures thereof followed by distillation to produce a powder with a packing fraction in the range of from about 4% to about 11%. Also disclosed is a solid product made from the Ti powder.

Description

    RELATED APPLICATIONS
  • This application is a continuation of Ser. No. 08/691,423 filed Aug. 2, 1996, now U.S. Pat. No. 5,797,761, which was a file wrapper continuation of Ser. No. 08/283,358 filed Aug. 1, 1994, now abandoned; and is a continuation application of our previously filed application Ser. No. 09/264,577 filed Mar. 8, 1999, now U.S. Pat. No. 6,409,797 issued Jun. 25, 2002, which was a continuation-in-part of Ser. No. 08/782,816, filed Jan. 13, 1997, now U.S. Pat. No. 5,958,106 issued Sep. 28, 1999, which was a continuation-in-part of Ser. No. 08/691,423, filed Aug. 2, 1996, now U.S. Pat. No. 5,779,761 issued Jul. 14, 1998, which was a file wrapper continuation of Ser. No. 08/283,358, filed Aug. 1, 1994, now abandoned. The disclosures of each of U.S. Pat. Nos. 5,779,769 and 5,958,106 and 6,409,797 are incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • This invention relates to the production of elemental material from the halides thereof and has particular applicability to those metals and non-metals for which the reduction of the halide to the element is exothermic. Particular interest exists for titanium and the present invention will be described with particular reference to titanium, but is applicable to other metals and non-metals such as Al, As, Sb, Sn, Be, B, Ta, Ge, V, Nb, Mo, Ga, Ir, Os, U and Re, all of which produce significant heat upon reduction from the halide to the metal. For the purposes of this application, elemental materials include those metals and non-metals listed above or in Table 1.
  • At present titanium production is by reduction of titanium tetrachloride, which is made by chlorinating relatively high-grade titanium dioxide ore. Ores containing rutile can be physically concentrated to produce a satisfactory chlorination feed material; other sources of titanium dioxide, such as ilmenite, titaniferous iron ores and most other titanium source materials, require chemical beneficiation.
  • The reduction of titanium tetrachloride to metal has been attempted using a number of reducing agents including hydrogen, carbon, sodium, calcium, aluminum and magnesium. Both the magnesium and sodium reduction of titanium tetrachloride have proved to be commercial methods for producing titanium metal. However, current commercial methods use batch processing which requires significant material handling with resulting opportunities for contamination and gives quality variation from batch to batch. The greatest potential for decreasing production cost is the development of a continuous reduction process with attendant reduction in material handling. There is a strong demand for both the development of a process that enables continuous economical production of titanium metal and for the production of metal powder suitable for use without additional processing for application to powder metallurgy or for vacuum-arc melting to ingot form.
  • The Kroll process and the Hunter process are the two present day methods of producing titanium commercially. In the Kroll process, titanium tetrachloride is chemically reduced by magnesium at about 1000° C. The process is conducted in a batch fashion in a metal retort with an inert atmosphere, either helium or argon. Magnesium is charged into the vessel and heated to prepare a molten magnesium bath. Liquid titanium tetrachloride at room temperature is dispersed drop wise above the molten magnesium bath. The liquid titanium tetrachloride vaporizes in the gaseous zone above the molten magnesium bath. A reaction occurs on the molten magnesium surface to form titanium and magnesium chloride. The Hunter process is similar to the Kroll process, but uses sodium instead of magnesium to reduce the titanium tetrachloride to titanium metal and produces sodium chloride as a by product.
  • For both processes, the reaction is uncontrolled and sporadic and promotes the growth of dendritic titanium metal. The titanium fuses into a mass that encapsulates some of the molten magnesium (or sodium) chloride. This fused mass is called titanium sponge. After cooling of the metal retort, the solidified titanium sponge metal is broken up, crushed, purified and then dried in a stream of hot nitrogen. Metal ingots are made by compacting the sponge, welding pieces into an electrode and then melting it into an ingot in a high vacuum arc furnace. High purity ingots require multiple arc melting operations. Powder titanium is usually produced from the sponge through grinding, shot casting or centrifugal processes. A common technique is to first react the titanium with hydrogen to make brittle titanium hydride to facilitate the grinding process. After formation of the powder titanium hydride, the particles are dehydrogenated to produce a usable metal powder product. The processing of the titanium sponge into a usable form is difficult, labor intensive, and increases the product cost by a factor of two to three.
  • The processes discussed above have several intrinsic problems that contribute heavily to the high cost of titanium production. Batch process production is inherently capital and labor intensive. Titanium sponge requires substantial additional processing to produce titanium in a usable form; thereby increasing cost, increasing hazard to workers and exacerbating batch quality control difficulties. Neither process utilizes the large exothermic energy reaction, requiring substantial energy input for titanium production (approximately 6 kW-hr/kg product metal). In addition, the processes generate significant production wastes that are of environmental concern.
  • SUMMARY OF THE INVENTION
  • Accordingly, an object of the present invention is to provide a method and system for producing non-metals or metals or alloys thereof which is continuous having significant capital and operating costs advantages over existing batch technologies.
  • Another object of the present invention is to provide an improved batch or semi-batch process for producing non-metals or metals or alloys thereof where continuous operations are not warranted by the scale of the production.
  • Another object of the present invention is to provide a method and system for producing metals and non-metals from the exothermic reduction of the halide while preventing the metal or non-metal from sintering into large masses or onto the apparatus used to produce same.
  • Still another object of the invention is to provide a method and system for producing non-metal or metal from the halides thereof wherein the process and system recycles the reducing agent and removes the heat of reaction for use as process heat or for power generation, thereby substantially reducing the environmental impact of the process.
  • The invention consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For the purpose of facilitating an understanding of the invention, there is illustrated in the accompanying drawings a preferred embodiment thereof, from an inspection of which, when considered in connection with the following description, the invention, its construction and operation, and many of its advantages should be readily understood and appreciated.
  • FIG. 1 is a process flow diagram showing the continuous process for producing as an example titanium metal from titanium tetrachloride;
  • FIG. 2 is an example of a burner reaction chamber for a continuous process;
  • FIG. 3 is a process diagram of a batch process reaction;
  • FIG. 4 is a diagram of the apparatus used to produce titanium; and
  • FIGS. 5-15 are SEM's of Ti powder inherently produced by the inventive method described in FIG. 2.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The process of the invention may be practiced with the use of any alkali or alkaline earth metal depending upon the metal or non-metal to be reduced. In some cases, combinations of an alkali or alkaline earth metals may be used. Moreover, any halide or combinations of halides may be used with the present invention although in most circumstances chlorine, being the cheapest and most readily available, is preferred. Of the alkali or alkaline earth metals, by way of example, sodium will be chosen not for purposes of limitation but merely purposes of illustration, because it is cheapest and preferred, as has chlorine been chosen for the same purpose.
  • Regarding the non-metals or metals to be reduced, it is possible to reduce a single metal such as titanium or tantalum or zirconium, selected from the list set forth hereafter. It is also possible to make alloys of a predetermined composition by providing mixed metal halides at the beginning of the process in the required molecular ratio. By way of example, Table 1 sets forth heats of reaction per gram of liquid sodium for the reduction of a stoichiometric amount of a vapor of a non-metal or metal halides applicable to the inventive process.
  • TABLE 1
    FEEDSTOCK HEAT kJ/g
    TiCl
    4 10
    AlCL3 9
    SnCl2 4
    SbCl 3 14
    BeCl 2 10
    BCl 3 12
    TaCl 5 11
    ZrCl4 9
    VCl 4 12
    NbCl 5 12
    MoCl 4 14
    GaCl 3 11
    UF 6 10
    ReF 6 17

    The process will be illustrated, again for purposes of illustration and not for limitation, with a single metal titanium being produced from the tetrachloride.
  • A summary process flow sheet is shown in FIG. 1. Sodium and titanium tetrachloride are combined in a reaction chamber 14 where titanium tetrachloride vapor from a source thereof in the form of a boiler 22 is injected within a flowing sodium stream from a continuously cycling loop thereof including a sodium pump 11. The sodium stream is replenished by sodium provided by an electrolytic cell 16. The reduction reaction is highly exothermic, forming molten reaction products of titanium and sodium chloride. The molten reaction products are quenched in the bulk sodium stream. Particle sizes and reaction rates are controlled by metering of the titanium tetrachloride vapor flow rate (by controlling the supply pressure), dilution of the titanium tetrachloride vapor with an inert gas, such as He or Ar, and the sodium flow characteristics and mixing parameters in the reaction chamber which includes a nozzle for the titanium tetrachloride and a surrounding conduit for the liquid sodium. The vapor is intimately mixed with the liquid in a zone enclosed by the liquid, i.e., a liquid continuum, and the resultant temperature, significantly affected by the heat of reaction, is controlled by the quantity of flowing sodium and maintained below the sintering temperature of the produced metal, such as for titanium at about 1000° C. Preferably, the temperature of the sodium away from the location of halide introduction is maintained in the range of from about 200° C. to about 600° C. Products leaving the reaction zone are quenched in the surrounding liquid before contact with the walls of the reaction chamber and preferably before contact with other product particles. This precludes sintering and wall erosion.
  • The surrounding sodium stream then carries the titanium and sodium chloride reaction products away from the reaction region. These reaction products are removed from the bulk sodium stream by conventional separators 15 such as cyclones, particulate filters, magnetic separators or vacuum stills.
  • Three separate options for separation of the titanium and the sodium chloride exist. The first option removes the titanium and sodium chloride products in separate steps. This is accomplished by maintaining the bulk stream temperature such that the titanium is solid but the sodium chloride is molten through control of the ratio of titanium tetrachloride and sodium flowrates to the reaction chamber 14. For this option, the titanium is removed first, the bulk stream cooled to solidify the sodium chloride, then the sodium chloride is removed from separator 12.
  • In the second option for reaction product removal, a lower ratio of titanium tetrachloride to sodium flow rate would be maintained in the reaction chamber 14 so that the bulk sodium temperature would remain below the sodium chloride solidification temperature. For this option, titanium and sodium chloride would be removed simultaneously using conventional separators. The sodium chloride and any residual sodium present on the particles would then be removed in a water-alcohol wash.
  • In the third, and preferred option for product removal, the solid cake of salt, Ti and Na is vacuum distilled to remove the Na. Thereafter, the Ti particles are passivated by passing a gas containing some O2 over the mixture of salt and Ti followed by a water wash to remove the salt leaving Ti particles with surfaces of TiO2, which can be removed by conventional methods.
  • Following separation, the sodium chloride is then recycled to the electrolytic cell 16 to be regenerated. The sodium is returned to the bulk process stream for introduction to reaction chamber 14 and the chlorine is used in the ore chlorinator 17. It is important to note that while both electrolysis of sodium chloride and subsequent ore chlorination will be performed using technology well known in the art, such integration and recycle of the reaction by-product directly into the process is not possible with the Kroll or Hunter process because of the batch nature of those processes and the production of titanium sponge as an intermediate product. In addition, excess process heat is removed in heat exchanger 10 for co-generation of power. The integration of these separate processes enabled by the inventive chemical manufacturing process has significant benefits with respect to both improved economy of operation and substantially reduced environmental impact achieved by recycle of both energy and chemical waste streams.
  • Chlorine from the electrolytic cell 16 is used to chlorinate titanium ore (rutile, anatase or ilmenite) in the chlorinator 17. In the chlorination stage, the titanium ore is blended with coke and chemically converted in the presence of chlorine in a fluidized-bed or other suitable kiln chlorinator. The titanium dioxide contained in the raw material reacts to form titanium tetrachloride, while the oxygen forms carbon dioxide with the coke. Iron and other impurity metals present in the ore are also converted during chlorination to their corresponding chlorides. The titanium chloride is then condensed and purified by means of distillation in column 18. With current practice, the purified titanium chloride vapor would be condensed again and sold to titanium manufacturers; however, in this integrated process, the titanium tetrachloride vapor stream is used directly in the manufacturing process via a feed pump 21 and boiler 22.
  • After providing process heat for the distillation step in heat exchangers 19 and 20, the temperature of the bulk process stream is adjusted to the desired temperature for the reaction chamber 14 at heat exchanger 10, and then combined with the regenerated sodium recycle stream, and injected into the reaction chamber. The recovered heat from heat exchangers 19 and 20 may be used to vaporize liquid halide from the source thereof to produce halide vapor to react with the metal or the non-metal. It should be understood that various pumps, filters, traps, monitors and the like will be added as needed by those skilled in the art.
  • In all aspects, for the process of FIG. 1, it is important that the titanium that is removed from the separator 15 be at or below the sintering temperature of titanium in order to preclude and prevent the solidification of the titanium on the surfaces of the equipment and the agglomeration of titanium particles into large masses, which is one of the fundamental difficulties with the commercial processes used presently. By maintaining the temperature of the titanium metal below the sintering temperature of titanium metal, the titanium will not attach to the walls of the equipment or itself as it occurs with prior art and, therefore, the physical removal of the same will be obviated. This is an important aspect of this invention and is obtained by the use of sufficient sodium metal or diluent gas or both to control the temperature of the elemental (or alloy) product. In other aspects, FIG. 1, is illustrative of the types of design parameters which may be used to produce titanium metal in a continuous process which avoids the problems with the prior art. Referring now to FIG. 2, there is disclosed a typical reaction chamber in which a choke flow or injection nozzle 23, completely submerged in a flowing liquid metal stream, introduces the halide vapor from a boiler 22 in a controlled manner into the liquid metal reductant stream 13. The reaction process is controlled through the use of a choke-flow (sonic or critical flow) nozzle. A choke-flow nozzle is a vapor injection nozzle that achieves sonic velocity of the vapor at the nozzle throat. That is the velocity of the vapor is equal to the speed of sound in the vapor medium at the prevailing temperature and pressure of the vapor at the nozzle throat. When sonic conditions are achieved, any change in downstream conditions that causes a pressure change cannot propagate upstream to affect the discharge. The downstream pressure may then be reduced indefinitely without increasing or decreasing the discharge. Under choke flow conditions only the upstream conditions need to be controlled to control the flow rate. The minimum upstream pressure required for choke flow is proportioned to the downstream pressure and termed the critical pressure ratio. This ratio may be calculated by standard methods.
  • The choke flow nozzle serves two purposes: (1) it isolates the vapor generator from the liquid metal system, precluding the possibility of liquid metal backing up in the halide feed system and causing potentially dangerous contact with the liquid halide feedstock, and (2) it delivers the vapor at a fixed rate, independent of temperature and pressure fluctuations in the reaction zone, allowing easy and absolute control of the reaction kinetics.
  • The liquid metal stream also has multiple functional uses: (1) it rapidly chills the reaction products, forming product powder without sintering, (2) it transports the chilled reaction products to a separator, (3) it serves as a heat transfer medium allowing useful recovery of the considerable reaction heat, and (4) it feeds one of the reactants to the reaction zone.
  • For instance in FIG. 2, the sodium 13 entering the reaction chamber is at 200° C. having a flow rate of 38.4 kilograms per minute. The titanium tetrachloride from the boiler 22 is at 2 atmospheres and at a temperature of 164° C., the flow rate through the line was 1.1 kg/min. Higher pressures may be used, but it is important that back flow be prevented, so the minimum pressure should be above that determined by the critical pressure ratio for sonic conditions, or about two times the absolute pressure of the sodium stream (two atmospheres if the sodium is at atmospheric pressure) is preferred to ensure that flow through the reaction chamber nozzle is critical or choked.
  • The batch process illustrated in FIG. 3 shows a subsurface introduction of titanium tetrachloride vapor through an injection or an injector or a choke flow nozzle 23 submerged in liquid sodium contained in a reaction vessel 24. The halide vapor from the boiler 22 is injected in a controlled manner where it reacts producing titanium powder and sodium chloride. The reaction products fall to the bottom of the tank 25 where they are collected for removal. The tank walls are cooled via cooling colis 24 and a portion of the sodium in the tank is pumped out via pump 11 and recycled through a heat exchanger 10 and line 5 back to the tank to control the temperature of the sodium in the reaction vessel. Process temperatures and pressures are similar to the continuous flow case with bulk sodium temperature of 200° C., titanium tetrachloride vapor of 164° C., and the feed pressure of the titanium tetrachloride vapor about twice the pressure in the reaction vessel.
  • In the flow diagrams of FIGS. 1 and 3, sodium make-up is indicated by the line 13 and this may come from an electrolytic cell 16 or some other entirely different source of sodium. In other aspects, FIG. 3 is illustrative of the types of design parameters which may be used to produce titanium metal in a batch process which avoids agglomeration problems inherent in the batch process presently in use commercially.
  • BRIEF DESCRIPTION OF THE PRODUCTION OF TITANIUM
  • FIG. 4 shows a schematic depiction of a loop used to produce titanium metal powder. The parts of the loop of most importance to the operation are a large (10 liter) reaction vessel 29 with a collection funnel 28 at the bottom feeding into a recycle stream. The recycle stream has a low volume, low head, electromagnetic pump 11 and a flow meter 25.
  • A titanium tetrachloride injection system consisted of a heated transfer line, leading from a heated tank 30 with a large heat capacity, to a submerged choke flow nozzle 23. The system could be removed completely from the sodium loop for filling and cleaning. It should be understood that some commercial grades of Na have Ca or other alkaline earth metals therein. This has no substantial affect on the invention.
  • Operation
  • A typical operating procedure follows:
      • 1. Raise temperature of sodium loop to desired point (200° C.).
      • 2. Open titanium tetrachloride tank and fill with titanium tetrachloride.
      • 3. Insert the nozzle into the airlock above the ball valve 33.
      • 4. Heat titanium tetrachloride tank to desired temperature (168° C.) as determined by vapor pressure curve (2 atm.) and the required critical flow pressure.
      • 5. Start an argon purge through the nozzle.
      • 6. Open ball valve 33 and lower the nozzle into sodium.
      • 7. Stop the purge and open valve 32 allowing titanium tetrachloride to flow through the nozzle into the sodium.
      • 8. When titanium tetrachloride pressure drops close to the critical pressure ratio, close the valve 32 and withdraw the nozzle above valve 33.
      • 9. Close valve 33 and let the nozzle cool to room temperature.
      • 10. Remove the titanium tetrachloride delivery system and clean.
  • The injection of titanium tetrachloride was monitored by measuring the pressure in the titanium tetrachloride system. A pressure transducer 31 was installed and a continuous measurement of pressure was recorded on a strip chart.
  • A filtration scheme was used to remove products from the bulk sodium at the end of the test. The recycle stream system was removed from the sodium loop. In its place, a filter 26 consisting of two 5 cm diameter screens with 100 μm holes in a housing 20 cm long, was plumbed into a direct line connecting the outlet of the reaction vessel to the sodium receiver tank. All of the sodium was transferred to the transfer tank 27.
  • The reaction product was washed with ethyl alcohol to remove residual sodium and then passivated with an oxygen containing gas and washed with water to remove the sodium chloride by-product. Particle size of the substantially pure titanium ranged between about 0.1 and about 10 μm with a mean size of about 5.5 μm. The titanium powder produced in the apparatus was readily separable from the sodium and sodium chloride by-product.
  • The invention has been illustrated by reference to titanium alone and titanium tetrachloride as a feedstock, in combination with sodium as the reducing metal. However, it should be understood that the foregoing was for illustrative purposes only and the invention clearly pertains to those metals and non-metals in Table 1, which of course include the fluorides of uranium and rhenium and well as other halides such as bromides. Moreover, sodium while being the preferred reducing metal because of cost and availability, is clearly not the only available reductant. Lithium, potassium as well as magnesium, calcium and other alkaline earth metals are available and thermodynamically feasible. Moreover, combinations of alkali metals and alkaline earth metals have been used, such as Na and Ca. The two most common reducing agents for the production of Ti are Na and Mg, so mixtures of these two metals may be used, along with Ca, which is present in some Na as a by product of the method of producing Na. It is well within the skill of the art to determine from the thermodynamic Tables which metals are capable of acting as a reducing agent in the foregoing reactions, the principal applications of the process being to those illustrated in Table 1 when the chloride or halide is reduced to the metal. Moreover, it is well within the skill of the art and it is contemplated in this invention that alloys can be made by the process of the subject invention by providing a suitable halide feed in the molecular ratio of the desired alloy.
  • In the process described in the '761 patent, FIG. 2 and the description thereof as well as in the '106 patent, FIG. 2 and the description thereof as well as in FIG. 2 and the description thereof in the parent application Ser. No. 09/264,877, there is inherently produced Ti powder and Ti alloy powder having unique properties.
  • Moreover, the Ti powder produced according to the above referenced portion of the patents, after washing and separation has a packing fraction of between about 4% to about 11% as determined by a tap density measurements in which the Ti powder is introduced into a graduated test tube and tapped until the powder is fully settled. Thereafter, the weight of the powder is measured and the packing fraction or percent of theoretical density is calculated.
  • By separation of fines, we mean that a sample of particles produced by the inventive method which do not readily settle in minutes are classified as fines. During the production of the Ti powder by the inventive method both agglomerated particles and unagglomerated particles are inherently produced. For instance, when the Na temperature after the reaction downstream of the tip of nozzle 23 is near 350° C., the agglomerates are small on average about 0.2 mm in any one direction, whereas when the Na temperature after the reaction downstream of the top of nozzle 23 is higher, for instance about 450° C., the agglomerates are larger, on average of about 1.6 mm in any one direction.
  • Prior art Ti powder has been made by one of two processes, either a hydride/dehydride process which produced flake shaped powder or a process in which Ti is melted followed by atomization which results in spherical shaped powders. Low quality (high impurity) fines are produced in the Hunter process. The Ti and Ti alloy powder inherently made by the process disclosed herein is neither flake-shaped nor spherical shaped, but rather is sponge or porous shaped, as defined in Powder Metallurgy Science, by Randall M. German, second edition, © Metal Powder Industries Federation 1984, 1994 page 63, a standard reference book. It is understood by those of ordinary skill in the art that the use of the term “sponge” in describing the particle morphology does not relate to the use of the term “sponge” in describing the product of the Kroll or Hunter process.
  • Referring to FIGS. 5-15, there is shown a series of SEM's of powder produced according to the portions of the '761 and '106 patents referenced above. The SEM's of FIGS. 5-9, 12, 13 and 15 are at 3000 magnification. The SEM's of FIGS. 10 and 14 are at 9000 magnification and FIG. 11 is at 27 magnification. As seen from FIGS. 5-15, the powders are agglomerated and are neither flake shaped nor spherical, but rather are sponge or porous shaped as defined in the above identified reference by Randall M. German.
  • It has been well known in the powder metallurgy art prior to Aug. 1, 1994, how to convert metal powder to solid shapes by a variety of processes, such as powder injection molding, metal injection molding, powder to plate, continuous casting techniques by way of example, only. These well known methods, prior to Aug. 1, 1994, had been used to convert titanium powder to solid product as well as a wide variety of other metals and metal alloy powders.
  • While there has been disclosed what is considered to be the preferred embodiment of the present invention, it is understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.

Claims (5)

1-62. (canceled)
63. A Ti powder made by the subsurface reduction of TiCl4 by a stream of liquid of sodium in excess of stoichiometric sufficient to maintain substantially all the reactive products below the sintering temperatures thereof followed by distillation, whereby the packing fraction of the powder is in the range of from about 4% to about 11%.
64. A solid product made from the Ti powder of claim 63.
65. An agglomerated Ti powder substantially all of which has a SEM substantially as disclosed in one or more of FIGS. 5 to 15, wherein the packing fraction of the powder is in the range of from about 4% to about 11%.
66. A solid product made from the Ti powder of claim 65, and containing Ti.
US12/079,023 1994-08-01 2008-04-24 Elemental material and alloy Abandoned US20080199348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/079,023 US20080199348A1 (en) 1994-08-01 2008-04-24 Elemental material and alloy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US28335894A 1994-08-01 1994-08-01
US08/691,423 US5779761A (en) 1994-08-01 1996-08-02 Method of making metals and other elements
US10/125,988 US7435282B2 (en) 1994-08-01 2002-04-20 Elemental material and alloy
US12/079,023 US20080199348A1 (en) 1994-08-01 2008-04-24 Elemental material and alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/125,988 Continuation US7435282B2 (en) 1994-08-01 2002-04-20 Elemental material and alloy

Publications (1)

Publication Number Publication Date
US20080199348A1 true US20080199348A1 (en) 2008-08-21

Family

ID=23085667

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/691,423 Expired - Lifetime US5779761A (en) 1994-08-01 1996-08-02 Method of making metals and other elements
US12/079,023 Abandoned US20080199348A1 (en) 1994-08-01 2008-04-24 Elemental material and alloy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/691,423 Expired - Lifetime US5779761A (en) 1994-08-01 1996-08-02 Method of making metals and other elements

Country Status (13)

Country Link
US (2) US5779761A (en)
EP (1) EP0777753B1 (en)
JP (1) JP3391461B2 (en)
KR (1) KR100241134B1 (en)
CN (1) CN1076759C (en)
AU (1) AU686444B2 (en)
BR (1) BR9508497A (en)
CA (1) CA2196534C (en)
DE (1) DE69521432T2 (en)
ES (1) ES2161297T3 (en)
NO (1) NO316604B1 (en)
RU (1) RU2152449C1 (en)
WO (1) WO1996004407A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753989B2 (en) 2006-12-22 2010-07-13 Cristal Us, Inc. Direct passivation of metal powder
US8821611B2 (en) 2005-10-06 2014-09-02 Cristal Metals Inc. Titanium boride
US8894738B2 (en) 2005-07-21 2014-11-25 Cristal Metals Inc. Titanium alloy
US9127333B2 (en) 2007-04-25 2015-09-08 Lance Jacobsen Liquid injection of VCL4 into superheated TiCL4 for the production of Ti-V alloy powder
US10450634B2 (en) 2015-02-11 2019-10-22 Scandium International Mining Corporation Scandium-containing master alloys and method for making the same

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435282B2 (en) * 1994-08-01 2008-10-14 International Titanium Powder, Llc Elemental material and alloy
US5958106A (en) * 1994-08-01 1999-09-28 International Titanium Powder, L.L.C. Method of making metals and other elements from the halide vapor of the metal
US6861038B2 (en) * 1994-08-01 2005-03-01 International Titanium Powder, Llc. Ceramics and method of producing ceramics
US6409797B2 (en) * 1994-08-01 2002-06-25 International Titanium Powder Llc Method of making metals and other elements from the halide vapor of the metal
BR9508497A (en) * 1994-08-01 1997-12-23 Kroftt Brakston International Processes for producing an elementary material or an alloy thereof from a halide or mixtures thereof and for continuously producing a metal or non-metal or an alloy of the same
US6428823B1 (en) * 2001-03-28 2002-08-06 Council Of Scientific & Industrial Research Biologically active aqueous fraction of an extract obtained from a mangrove plant Salvadora persica L
US7442227B2 (en) 2001-10-09 2008-10-28 Washington Unniversity Tightly agglomerated non-oxide particles and method for producing the same
US6737017B2 (en) * 2002-06-14 2004-05-18 General Electric Company Method for preparing metallic alloy articles without melting
US7419528B2 (en) 2003-02-19 2008-09-02 General Electric Company Method for fabricating a superalloy article without any melting
US7329381B2 (en) 2002-06-14 2008-02-12 General Electric Company Method for fabricating a metallic article without any melting
US7410610B2 (en) * 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US7037463B2 (en) * 2002-12-23 2006-05-02 General Electric Company Method for producing a titanium-base alloy having an oxide dispersion therein
US6921510B2 (en) * 2003-01-22 2005-07-26 General Electric Company Method for preparing an article having a dispersoid distributed in a metallic matrix
US7416697B2 (en) * 2002-06-14 2008-08-26 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
US6884279B2 (en) 2002-07-25 2005-04-26 General Electric Company Producing metallic articles by reduction of nonmetallic precursor compounds and melting
CN100482820C (en) * 2002-09-07 2009-04-29 国际钛金属粉末公司 Process for separating Ti from a Ti slurry
CA2498024A1 (en) * 2002-09-07 2004-03-18 International Titanium Powder, Llc. Method and apparatus for controlling the size of powder produced by the armstrong process
UA79310C2 (en) * 2002-09-07 2007-06-11 Int Titanium Powder Llc Methods for production of alloys or ceramics with the use of armstrong method and device for their realization
US20050284824A1 (en) * 2002-09-07 2005-12-29 International Titanium Powder, Llc Filter cake treatment apparatus and method
WO2004026511A2 (en) * 2002-09-07 2004-04-01 International Titanium Powder, Llc. Method and apparatus for controlling the size of powder produced by the armstrong process
US6902601B2 (en) * 2002-09-12 2005-06-07 Millennium Inorganic Chemicals, Inc. Method of making elemental materials and alloys
US20060107790A1 (en) * 2002-10-07 2006-05-25 International Titanium Powder, Llc System and method of producing metals and alloys
AU2003263082A1 (en) * 2002-10-07 2004-05-04 International Titanium Powder, Llc. System and method of producing metals and alloys
TW591499B (en) * 2002-11-13 2004-06-11 Mitac Technology Corp Signal filtering system of remote control for computer system
UA78623C2 (en) * 2002-11-20 2007-04-10 Int Titanium Powder Llc Method of separating, meant for separation of metal powder from a slurry (variants) and separating system for realization the same
US7510680B2 (en) * 2002-12-13 2009-03-31 General Electric Company Method for producing a metallic alloy by dissolution, oxidation and chemical reduction
US7727462B2 (en) * 2002-12-23 2010-06-01 General Electric Company Method for meltless manufacturing of rod, and its use as a welding rod
US7001443B2 (en) * 2002-12-23 2006-02-21 General Electric Company Method for producing a metallic alloy by the oxidation and chemical reduction of gaseous non-oxide precursor compounds
US6849229B2 (en) * 2002-12-23 2005-02-01 General Electric Company Production of injection-molded metallic articles using chemically reduced nonmetallic precursor compounds
US7897103B2 (en) 2002-12-23 2011-03-01 General Electric Company Method for making and using a rod assembly
US6955703B2 (en) * 2002-12-26 2005-10-18 Millennium Inorganic Chemicals, Inc. Process for the production of elemental material and alloys
US6968990B2 (en) * 2003-01-23 2005-11-29 General Electric Company Fabrication and utilization of metallic powder prepared without melting
US7553383B2 (en) * 2003-04-25 2009-06-30 General Electric Company Method for fabricating a martensitic steel without any melting
US6926755B2 (en) * 2003-06-12 2005-08-09 General Electric Company Method for preparing aluminum-base metallic alloy articles without melting
US6926754B2 (en) * 2003-06-12 2005-08-09 General Electric Company Method for preparing metallic superalloy articles having thermophysically melt incompatible alloying elements, without melting
US20070180951A1 (en) * 2003-09-03 2007-08-09 Armstrong Donn R Separation system, method and apparatus
ATE473305T1 (en) * 2003-09-19 2010-07-15 Stanford Res Inst Int METHOD AND DEVICES FOR PRODUCING METALLIC COMPOSITIONS BY REDUCING METAL HALIDES
JP4395386B2 (en) 2003-10-10 2010-01-06 株式会社大阪チタニウムテクノロジーズ Method for producing Ti or Ti alloy by circulating Ca source
EP1683877A4 (en) * 2003-10-10 2008-06-25 Osaka Titanium Technologies Co METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
US7984566B2 (en) * 2003-10-27 2011-07-26 Staples Wesley A System and method employing turbofan jet engine for drying bulk materials
JP4347089B2 (en) * 2004-03-01 2009-10-21 株式会社大阪チタニウムテクノロジーズ Method for producing Ti or Ti alloy by Ca reduction
US7604680B2 (en) * 2004-03-31 2009-10-20 General Electric Company Producing nickel-base, cobalt-base, iron-base, iron-nickel-base, or iron-nickel-cobalt-base alloy articles by reduction of nonmetallic precursor compounds and melting
US20050220656A1 (en) * 2004-03-31 2005-10-06 General Electric Company Meltless preparation of martensitic steel articles having thermophysically melt incompatible alloying elements
US7531021B2 (en) * 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US7833472B2 (en) 2005-06-01 2010-11-16 General Electric Company Article prepared by depositing an alloying element on powder particles, and making the article from the particles
US20070141374A1 (en) * 2005-12-19 2007-06-21 General Electric Company Environmentally resistant disk
US20080031766A1 (en) * 2006-06-16 2008-02-07 International Titanium Powder, Llc Attrited titanium powder
US8051586B2 (en) * 2006-07-07 2011-11-08 Nike, Inc. Customization system for an article of footwear
US7465333B1 (en) * 2006-08-17 2008-12-16 Gm Global Technology Operations, Inc. Cavitation process for products from precursor halides
US7455713B1 (en) * 2006-08-17 2008-11-25 Gm Global Technology Operations, Inc. Cavitation process for titanium products from precursor halides
LV13528B (en) * 2006-09-25 2007-03-20 Ervins Blumbergs Method and apparatus for continuous producing of metallic tifanium and titanium-bases alloys
WO2008067614A1 (en) * 2006-12-08 2008-06-12 Commonwealth Scientific And Industrial Research Organisation Separation method for metal recovery
DE102008005781A1 (en) * 2008-01-23 2009-07-30 Tradium Gmbh Phlegmatized metal powder or alloy powder and method or reaction vessel for the production thereof
US20100092328A1 (en) * 2008-10-09 2010-04-15 Glenn Thomas High velocity adiabatic impact powder compaction
US8206488B2 (en) * 2008-10-31 2012-06-26 General Electric Company Fluoride ion cleaning method
US8007562B2 (en) * 2008-12-29 2011-08-30 Adma Products, Inc. Semi-continuous magnesium-hydrogen reduction process for manufacturing of hydrogenated, purified titanium powder
US8147588B2 (en) * 2009-10-06 2012-04-03 Basf Corporation Lower reactivity adsorbent and higher oxygenate capacity for removal of oxygenates from olefin streams
CN102465210A (en) * 2010-11-02 2012-05-23 北京有色金属研究总院 Method for preparing high purity rare earth metal and its apparatus
EP2726236A1 (en) * 2011-07-01 2014-05-07 General Electric Company Continuous process for the production of titanium alloy powders
US9067264B2 (en) * 2012-05-24 2015-06-30 Vladimir S. Moxson Method of manufacturing pure titanium hydride powder and alloyed titanium hydride powders by combined hydrogen-magnesium reduction of metal halides
US9095904B2 (en) * 2012-09-12 2015-08-04 GM Global Technology Operations LLC Titanium metal powder produced from titanium tetrachloride using an ionic liquid and high-shear mixing
US10190191B2 (en) 2013-08-19 2019-01-29 University Of Utah Research Foundation Producing a titanium product
JP2018502218A (en) 2014-12-02 2018-01-25 ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション Deoxidation of powdered metal with molten salt
CN104400006B (en) * 2014-12-16 2017-02-22 中国科学院合肥物质科学研究院 Device and process for preparing superfine uranium powder
US9669464B1 (en) 2016-02-10 2017-06-06 University Of Utah Research Foundation Methods of deoxygenating metals having oxygen dissolved therein in a solid solution
CN110524003A (en) * 2019-10-09 2019-12-03 攀钢集团攀枝花钢铁研究院有限公司 The preparation method of nearly ball-type titanium valve
CN110668409B (en) * 2019-10-14 2022-04-05 攀钢集团攀枝花钢铁研究院有限公司 Method for preparing TiN by taking electrolyte for electrorefining titanium as raw material
US10907239B1 (en) 2020-03-16 2021-02-02 University Of Utah Research Foundation Methods of producing a titanium alloy product
CN113772715B (en) * 2021-10-18 2023-06-23 天津包钢稀土研究院有限责任公司 Anhydrous samarium chloride and preparation method thereof

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1771928A (en) * 1927-05-02 1930-07-29 Jung Hans Filter press
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2607675A (en) * 1948-09-06 1952-08-19 Int Alloys Ltd Distillation of metals
US2647826A (en) * 1950-02-08 1953-08-04 Jordan James Fernando Titanium smelting process
US2823991A (en) * 1954-06-23 1958-02-18 Nat Distillers Chem Corp Process for the manufacture of titanium metal
US2827371A (en) * 1951-11-01 1958-03-18 Ici Ltd Method of producing titanium in an agitated solids bed
US2835567A (en) * 1954-11-22 1958-05-20 Du Pont Method of producing granular refractory metal
US2846303A (en) * 1953-08-11 1958-08-05 Nat Res Corp Method of producing titanium
US2882143A (en) * 1953-04-16 1959-04-14 Nat Lead Co Continuous process for the production of titanium metal
US2882144A (en) * 1955-08-22 1959-04-14 Allied Chem Method of producing titanium
US2890112A (en) * 1954-10-15 1959-06-09 Du Pont Method of producing titanium metal
US2895823A (en) * 1956-03-20 1959-07-21 Peter Spence & Sons Ltd Method of further reducing the reaction products of a titanium tetrachloride reduction reaction
US2941867A (en) * 1957-10-14 1960-06-21 Du Pont Reduction of metal halides
US2944888A (en) * 1956-01-17 1960-07-12 Ici Ltd Manufacture of titanium
US3085871A (en) * 1958-02-24 1963-04-16 Griffiths Kenneth Frank Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium
US3085872A (en) * 1958-07-01 1963-04-16 Griffiths Kenneth Frank Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium
US3331666A (en) * 1966-10-28 1967-07-18 William C Robinson One-step method of converting uranium hexafluoride to uranium compounds
US3519258A (en) * 1966-07-23 1970-07-07 Hiroshi Ishizuka Device for reducing chlorides
US3650681A (en) * 1968-08-08 1972-03-21 Mizusawa Industrial Chem Method of treating a titanium or zirconium salt of a phosphorus oxyacid
US3801307A (en) * 1972-07-26 1974-04-02 F Hurd Metal reduction process
US3825415A (en) * 1971-07-28 1974-07-23 Electricity Council Method and apparatus for the production of liquid titanium from the reaction of vaporized titanium tetrachloride and a reducing metal
US3867515A (en) * 1971-04-01 1975-02-18 Ppg Industries Inc Treatment of titanium tetrachloride dryer residue
US3943751A (en) * 1974-05-08 1976-03-16 Doryokuro Kakunenryo Kaihatsu Jigyodan Method and apparatus for continuously measuring hydrogen concentration in argon gas
US3966460A (en) * 1974-09-06 1976-06-29 Amax Specialty Metal Corporation Reduction of metal halides
US4007055A (en) * 1975-05-09 1977-02-08 Exxon Research And Engineering Company Preparation of stoichiometric titanium disulfide
US4009007A (en) * 1975-07-14 1977-02-22 Fansteel Inc. Tantalum powder and method of making the same
US4017302A (en) * 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
US4070252A (en) * 1977-04-18 1978-01-24 Scm Corporation Purification of crude titanium tetrachloride
US4141719A (en) * 1977-05-31 1979-02-27 Fansteel Inc. Tantalum metal powder
US4149876A (en) * 1978-06-06 1979-04-17 Fansteel Inc. Process for producing tantalum and columbium powder
US4190442A (en) * 1978-06-15 1980-02-26 Eutectic Corporation Flame spray powder mix
US4331477A (en) * 1978-10-04 1982-05-25 Nippon Electric Co., Ltd. Porous titanium-aluminum alloy and method for producing the same
US4379718A (en) * 1981-05-18 1983-04-12 Rockwell International Corporation Process for separating solid particulates from a melt
US4425217A (en) * 1980-08-18 1984-01-10 Diamond Shamrock Corporation Anode with lead base and method of making same
US4432813A (en) * 1982-01-11 1984-02-21 Williams Griffith E Process for producing extremely low gas and residual contents in metal powders
US4445931A (en) * 1980-10-24 1984-05-01 The United States Of America As Represented By The Secretary Of The Interior Production of metal powder
US4454169A (en) * 1982-04-05 1984-06-12 Diamond Shamrock Corporation Catalytic particles and process for their manufacture
US4518426A (en) * 1983-04-11 1985-05-21 Metals Production Research, Inc. Process for electrolytic recovery of titanium metal sponge from its ore
US4519837A (en) * 1981-10-08 1985-05-28 Westinghouse Electric Corp. Metal powders and processes for production from oxides
US4521281A (en) * 1983-10-03 1985-06-04 Olin Corporation Process and apparatus for continuously producing multivalent metals
US4725312A (en) * 1986-02-28 1988-02-16 Rhone-Poulenc Chimie Production of metals by metallothermia
US4828008A (en) * 1987-05-13 1989-05-09 Lanxide Technology Company, Lp Metal matrix composites
US4830665A (en) * 1979-07-05 1989-05-16 Cockerill S.A. Process and unit for preparing alloyed and non-alloyed reactive metals by reduction
US4839120A (en) * 1987-02-24 1989-06-13 Ngk Insulators, Ltd. Ceramic material extruding method and apparatus therefor
US4897116A (en) * 1988-05-25 1990-01-30 Teledyne Industries, Inc. High purity Zr and Hf metals and their manufacture
US4902341A (en) * 1987-08-24 1990-02-20 Toho Titanium Company, Limited Method for producing titanium alloy
US4915729A (en) * 1985-04-16 1990-04-10 Battelle Memorial Institute Method of manufacturing metal powders
US4923577A (en) * 1988-09-12 1990-05-08 Westinghouse Electric Corp. Electrochemical-metallothermic reduction of zirconium in molten salt solutions
US4940490A (en) * 1987-11-30 1990-07-10 Cabot Corporation Tantalum powder
US4941646A (en) * 1988-11-23 1990-07-17 Bethlehem Steel Corporation Air cooled gas injection lance
US4985069A (en) * 1986-09-15 1991-01-15 The United States Of America As Represented By The Secretary Of The Interior Induction slag reduction process for making titanium
US4987116A (en) * 1988-10-12 1991-01-22 Alfons Karl Method of preparing a coarse-pored formed carbon
US5028491A (en) * 1989-07-03 1991-07-02 General Electric Company Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation
US5032176A (en) * 1989-05-24 1991-07-16 N.K.R. Company, Ltd. Method for manufacturing titanium powder or titanium composite powder
US5082491A (en) * 1989-09-28 1992-01-21 V Tech Corporation Tantalum powder with improved capacitor anode processing characteristics
US5176810A (en) * 1990-06-05 1993-01-05 Outokumpu Oy Method for producing metal powders
US5176741A (en) * 1990-10-11 1993-01-05 Idaho Research Foundation, Inc. Producing titanium particulates from in situ titanium-zinc intermetallic
US5211741A (en) * 1987-11-30 1993-05-18 Cabot Corporation Flaked tantalum powder
US5427602A (en) * 1994-08-08 1995-06-27 Aluminum Company Of America Removal of suspended particles from molten metal
US5498446A (en) * 1994-05-25 1996-03-12 Washington University Method and apparatus for producing high purity and unagglomerated submicron particles
USH1642H (en) * 1995-03-20 1997-04-01 The United States Of America As Represented By The Secretary Of The Navy Wear and impact tolerant plow blade
US5637816A (en) * 1995-08-22 1997-06-10 Lockheed Martin Energy Systems, Inc. Metal matrix composite of an iron aluminide and ceramic particles and method thereof
US5779761A (en) * 1994-08-01 1998-07-14 Kroftt-Brakston International, Inc. Method of making metals and other elements
US5897830A (en) * 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
US5914440A (en) * 1997-03-18 1999-06-22 Noranda Inc. Method and apparatus removal of solid particles from magnesium chloride electrolyte and molten magnesium by filtration
US6010661A (en) * 1999-03-11 2000-01-04 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
US6027585A (en) * 1995-03-14 2000-02-22 The Regents Of The University Of California Office Of Technology Transfer Titanium-tantalum alloys
US6040975A (en) * 1997-06-30 2000-03-21 Nec Corporation Tantalum powder and solid electrolytic capacitor using the same
US6180258B1 (en) * 1997-06-04 2001-01-30 Chesapeake Composites Corporation Metal-matrix composites and method for making such composites
US6193779B1 (en) * 1997-02-19 2001-02-27 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
US6210461B1 (en) * 1998-08-10 2001-04-03 Guy R. B. Elliott Continuous production of titanium, uranium, and other metals and growth of metallic needles
US6238456B1 (en) * 1997-02-19 2001-05-29 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
US20020050185A1 (en) * 1999-02-03 2002-05-02 Show A Cabot Supermetals K.K. Tantalum powder for capacitors
US6409797B2 (en) * 1994-08-01 2002-06-25 International Titanium Powder Llc Method of making metals and other elements from the halide vapor of the metal
US6502623B1 (en) * 1999-09-22 2003-01-07 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Process of making a metal matrix composite (MMC) component
US20030061907A1 (en) * 1994-08-01 2003-04-03 Kroftt-Brakston International, Inc. Gel of elemental material or alloy and liquid metal and salt
US6727005B2 (en) * 1999-12-20 2004-04-27 Centro Sviluppo Materiali S.P.A. Process for the manufacture of low-density components, having a polymer or metal matrix substrate and ceramics and/or metal-ceramics coating and low density components of high surface strength thus obtained
US6745930B2 (en) * 1999-11-17 2004-06-08 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Ges.M.B.H. Method of attaching a body made of metal matrix composite (MMC) material or copper to a ceramic member
US20040123700A1 (en) * 2002-12-26 2004-07-01 Ling Zhou Process for the production of elemental material and alloys
US6861038B2 (en) * 1994-08-01 2005-03-01 International Titanium Powder, Llc. Ceramics and method of producing ceramics
US20050081682A1 (en) * 2002-09-07 2005-04-21 International Titanium Powder, Llc Method and apparatus for controlling the size of powder produced by the Armstrong Process
US6884522B2 (en) * 2002-04-17 2005-04-26 Ceramics Process Systems Corp. Metal matrix composite structure and method
US6902601B2 (en) * 2002-09-12 2005-06-07 Millennium Inorganic Chemicals, Inc. Method of making elemental materials and alloys
US20050150576A1 (en) * 2004-01-08 2005-07-14 Sridhar Venigalla Passivation of tantalum and other metal powders using oxygen
US6921510B2 (en) * 2003-01-22 2005-07-26 General Electric Company Method for preparing an article having a dispersoid distributed in a metallic matrix
US20060086435A1 (en) * 2002-11-20 2006-04-27 International Titanium Powder, Llc Separation system of metal powder from slurry and process
US7041150B2 (en) * 2002-09-07 2006-05-09 The University Of Chicago Preparation of alloys by the Armstrong method
US20060102255A1 (en) * 2004-11-12 2006-05-18 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US20060107790A1 (en) * 2002-10-07 2006-05-25 International Titanium Powder, Llc System and method of producing metals and alloys
US20060123950A1 (en) * 2002-09-07 2006-06-15 Anderson Richard P Process for separating ti from a ti slurry
US20070017319A1 (en) * 2005-07-21 2007-01-25 International Titanium Powder, Llc. Titanium alloy
US20070079908A1 (en) * 2005-10-06 2007-04-12 International Titanium Powder, Llc Titanium boride
US20080031766A1 (en) * 2006-06-16 2008-02-07 International Titanium Powder, Llc Attrited titanium powder
US7351272B2 (en) * 2002-09-07 2008-04-01 International Titanium Powder, Llc Method and apparatus for controlling the size of powder produced by the Armstrong process
US20080152533A1 (en) * 2006-12-22 2008-06-26 International Titanium Powder, Llc Direct passivation of metal powder

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2846304A (en) * 1953-08-11 1958-08-05 Nat Res Corp Method of producing titanium
US3067025A (en) * 1957-04-05 1962-12-04 Dow Chemical Co Continuous production of titanium sponge
US3058820A (en) * 1958-07-25 1962-10-16 Bert W Whitehurst Method of producing titanium metal
US3535109A (en) * 1967-06-22 1970-10-20 Dal Y Ingersoll Method for producing titanium and other reactive metals
US3847596A (en) * 1968-02-28 1974-11-12 Halomet Ag Process of obtaining metals from metal halides
US4401467A (en) * 1980-12-15 1983-08-30 Jordan Robert K Continuous titanium process
US4556420A (en) * 1982-04-30 1985-12-03 Westinghouse Electric Corp. Process for combination metal reduction and distillation
US4687632A (en) * 1984-05-11 1987-08-18 Hurd Frank W Metal or alloy forming reduction process and apparatus
AU587782B2 (en) * 1984-05-25 1989-08-31 William Reginald Bulmer Martin Reducing of metals with liquid metal reducing agents
JPS6415334A (en) * 1987-07-09 1989-01-19 Toho Titanium Co Ltd Production of metal from metal halide
CA1328561C (en) * 1987-07-17 1994-04-19 Toho Titanium Co., Ltd. Method for producing metallic titanium and apparatus therefor
US5259862A (en) * 1992-10-05 1993-11-09 The United States Of America As Represented By The Secretary Of The Interior Continuous production of granular or powder Ti, Zr and Hf or their alloy products
US5460642A (en) * 1994-03-21 1995-10-24 Teledyne Industries, Inc. Aerosol reduction process for metal halides

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1771928A (en) * 1927-05-02 1930-07-29 Jung Hans Filter press
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2607675A (en) * 1948-09-06 1952-08-19 Int Alloys Ltd Distillation of metals
US2647826A (en) * 1950-02-08 1953-08-04 Jordan James Fernando Titanium smelting process
US2827371A (en) * 1951-11-01 1958-03-18 Ici Ltd Method of producing titanium in an agitated solids bed
US2882143A (en) * 1953-04-16 1959-04-14 Nat Lead Co Continuous process for the production of titanium metal
US2846303A (en) * 1953-08-11 1958-08-05 Nat Res Corp Method of producing titanium
US2823991A (en) * 1954-06-23 1958-02-18 Nat Distillers Chem Corp Process for the manufacture of titanium metal
US2890112A (en) * 1954-10-15 1959-06-09 Du Pont Method of producing titanium metal
US2835567A (en) * 1954-11-22 1958-05-20 Du Pont Method of producing granular refractory metal
US2882144A (en) * 1955-08-22 1959-04-14 Allied Chem Method of producing titanium
US2944888A (en) * 1956-01-17 1960-07-12 Ici Ltd Manufacture of titanium
US2895823A (en) * 1956-03-20 1959-07-21 Peter Spence & Sons Ltd Method of further reducing the reaction products of a titanium tetrachloride reduction reaction
US2941867A (en) * 1957-10-14 1960-06-21 Du Pont Reduction of metal halides
US3085871A (en) * 1958-02-24 1963-04-16 Griffiths Kenneth Frank Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium
US3085872A (en) * 1958-07-01 1963-04-16 Griffiths Kenneth Frank Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium
US3519258A (en) * 1966-07-23 1970-07-07 Hiroshi Ishizuka Device for reducing chlorides
US3331666A (en) * 1966-10-28 1967-07-18 William C Robinson One-step method of converting uranium hexafluoride to uranium compounds
US3650681A (en) * 1968-08-08 1972-03-21 Mizusawa Industrial Chem Method of treating a titanium or zirconium salt of a phosphorus oxyacid
US3867515A (en) * 1971-04-01 1975-02-18 Ppg Industries Inc Treatment of titanium tetrachloride dryer residue
US3825415A (en) * 1971-07-28 1974-07-23 Electricity Council Method and apparatus for the production of liquid titanium from the reaction of vaporized titanium tetrachloride and a reducing metal
US3801307A (en) * 1972-07-26 1974-04-02 F Hurd Metal reduction process
US3943751A (en) * 1974-05-08 1976-03-16 Doryokuro Kakunenryo Kaihatsu Jigyodan Method and apparatus for continuously measuring hydrogen concentration in argon gas
US3966460A (en) * 1974-09-06 1976-06-29 Amax Specialty Metal Corporation Reduction of metal halides
US4007055A (en) * 1975-05-09 1977-02-08 Exxon Research And Engineering Company Preparation of stoichiometric titanium disulfide
US4009007A (en) * 1975-07-14 1977-02-22 Fansteel Inc. Tantalum powder and method of making the same
US4017302A (en) * 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
US4070252A (en) * 1977-04-18 1978-01-24 Scm Corporation Purification of crude titanium tetrachloride
US4141719A (en) * 1977-05-31 1979-02-27 Fansteel Inc. Tantalum metal powder
US4149876A (en) * 1978-06-06 1979-04-17 Fansteel Inc. Process for producing tantalum and columbium powder
US4190442A (en) * 1978-06-15 1980-02-26 Eutectic Corporation Flame spray powder mix
US4331477A (en) * 1978-10-04 1982-05-25 Nippon Electric Co., Ltd. Porous titanium-aluminum alloy and method for producing the same
US4830665A (en) * 1979-07-05 1989-05-16 Cockerill S.A. Process and unit for preparing alloyed and non-alloyed reactive metals by reduction
US4425217A (en) * 1980-08-18 1984-01-10 Diamond Shamrock Corporation Anode with lead base and method of making same
US4445931A (en) * 1980-10-24 1984-05-01 The United States Of America As Represented By The Secretary Of The Interior Production of metal powder
US4379718A (en) * 1981-05-18 1983-04-12 Rockwell International Corporation Process for separating solid particulates from a melt
US4519837A (en) * 1981-10-08 1985-05-28 Westinghouse Electric Corp. Metal powders and processes for production from oxides
US4432813A (en) * 1982-01-11 1984-02-21 Williams Griffith E Process for producing extremely low gas and residual contents in metal powders
US4454169A (en) * 1982-04-05 1984-06-12 Diamond Shamrock Corporation Catalytic particles and process for their manufacture
US4518426A (en) * 1983-04-11 1985-05-21 Metals Production Research, Inc. Process for electrolytic recovery of titanium metal sponge from its ore
US4521281A (en) * 1983-10-03 1985-06-04 Olin Corporation Process and apparatus for continuously producing multivalent metals
US4915729A (en) * 1985-04-16 1990-04-10 Battelle Memorial Institute Method of manufacturing metal powders
US4725312A (en) * 1986-02-28 1988-02-16 Rhone-Poulenc Chimie Production of metals by metallothermia
US4985069A (en) * 1986-09-15 1991-01-15 The United States Of America As Represented By The Secretary Of The Interior Induction slag reduction process for making titanium
US4839120A (en) * 1987-02-24 1989-06-13 Ngk Insulators, Ltd. Ceramic material extruding method and apparatus therefor
US4828008A (en) * 1987-05-13 1989-05-09 Lanxide Technology Company, Lp Metal matrix composites
US4902341A (en) * 1987-08-24 1990-02-20 Toho Titanium Company, Limited Method for producing titanium alloy
US4940490A (en) * 1987-11-30 1990-07-10 Cabot Corporation Tantalum powder
US5211741A (en) * 1987-11-30 1993-05-18 Cabot Corporation Flaked tantalum powder
US4897116A (en) * 1988-05-25 1990-01-30 Teledyne Industries, Inc. High purity Zr and Hf metals and their manufacture
US4923577A (en) * 1988-09-12 1990-05-08 Westinghouse Electric Corp. Electrochemical-metallothermic reduction of zirconium in molten salt solutions
US4987116A (en) * 1988-10-12 1991-01-22 Alfons Karl Method of preparing a coarse-pored formed carbon
US4941646A (en) * 1988-11-23 1990-07-17 Bethlehem Steel Corporation Air cooled gas injection lance
US5032176A (en) * 1989-05-24 1991-07-16 N.K.R. Company, Ltd. Method for manufacturing titanium powder or titanium composite powder
US5028491A (en) * 1989-07-03 1991-07-02 General Electric Company Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation
US5082491A (en) * 1989-09-28 1992-01-21 V Tech Corporation Tantalum powder with improved capacitor anode processing characteristics
US5176810A (en) * 1990-06-05 1993-01-05 Outokumpu Oy Method for producing metal powders
US5176741A (en) * 1990-10-11 1993-01-05 Idaho Research Foundation, Inc. Producing titanium particulates from in situ titanium-zinc intermetallic
US5498446A (en) * 1994-05-25 1996-03-12 Washington University Method and apparatus for producing high purity and unagglomerated submicron particles
US5779761A (en) * 1994-08-01 1998-07-14 Kroftt-Brakston International, Inc. Method of making metals and other elements
US6409797B2 (en) * 1994-08-01 2002-06-25 International Titanium Powder Llc Method of making metals and other elements from the halide vapor of the metal
US6861038B2 (en) * 1994-08-01 2005-03-01 International Titanium Powder, Llc. Ceramics and method of producing ceramics
US20030061907A1 (en) * 1994-08-01 2003-04-03 Kroftt-Brakston International, Inc. Gel of elemental material or alloy and liquid metal and salt
US5427602A (en) * 1994-08-08 1995-06-27 Aluminum Company Of America Removal of suspended particles from molten metal
US6027585A (en) * 1995-03-14 2000-02-22 The Regents Of The University Of California Office Of Technology Transfer Titanium-tantalum alloys
USH1642H (en) * 1995-03-20 1997-04-01 The United States Of America As Represented By The Secretary Of The Navy Wear and impact tolerant plow blade
US5637816A (en) * 1995-08-22 1997-06-10 Lockheed Martin Energy Systems, Inc. Metal matrix composite of an iron aluminide and ceramic particles and method thereof
US5897830A (en) * 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
US6193779B1 (en) * 1997-02-19 2001-02-27 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
US6238456B1 (en) * 1997-02-19 2001-05-29 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
US5914440A (en) * 1997-03-18 1999-06-22 Noranda Inc. Method and apparatus removal of solid particles from magnesium chloride electrolyte and molten magnesium by filtration
US6180258B1 (en) * 1997-06-04 2001-01-30 Chesapeake Composites Corporation Metal-matrix composites and method for making such composites
US6040975A (en) * 1997-06-30 2000-03-21 Nec Corporation Tantalum powder and solid electrolytic capacitor using the same
US6210461B1 (en) * 1998-08-10 2001-04-03 Guy R. B. Elliott Continuous production of titanium, uranium, and other metals and growth of metallic needles
US20020050185A1 (en) * 1999-02-03 2002-05-02 Show A Cabot Supermetals K.K. Tantalum powder for capacitors
US6689187B2 (en) * 1999-02-03 2004-02-10 Cabot Supermetals K.K. Tantalum powder for capacitors
US6010661A (en) * 1999-03-11 2000-01-04 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
US6502623B1 (en) * 1999-09-22 2003-01-07 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Process of making a metal matrix composite (MMC) component
US6745930B2 (en) * 1999-11-17 2004-06-08 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Ges.M.B.H. Method of attaching a body made of metal matrix composite (MMC) material or copper to a ceramic member
US6727005B2 (en) * 1999-12-20 2004-04-27 Centro Sviluppo Materiali S.P.A. Process for the manufacture of low-density components, having a polymer or metal matrix substrate and ceramics and/or metal-ceramics coating and low density components of high surface strength thus obtained
US6884522B2 (en) * 2002-04-17 2005-04-26 Ceramics Process Systems Corp. Metal matrix composite structure and method
US7351272B2 (en) * 2002-09-07 2008-04-01 International Titanium Powder, Llc Method and apparatus for controlling the size of powder produced by the Armstrong process
US7501089B2 (en) * 2002-09-07 2009-03-10 Cristal Us, Inc. Method and apparatus for controlling the size of powder produced by the Armstrong Process
US20050081682A1 (en) * 2002-09-07 2005-04-21 International Titanium Powder, Llc Method and apparatus for controlling the size of powder produced by the Armstrong Process
US7041150B2 (en) * 2002-09-07 2006-05-09 The University Of Chicago Preparation of alloys by the Armstrong method
US20060123950A1 (en) * 2002-09-07 2006-06-15 Anderson Richard P Process for separating ti from a ti slurry
US20060150769A1 (en) * 2002-09-07 2006-07-13 International Titanium Powder, Llc Preparation of alloys by the armstrong method
US6902601B2 (en) * 2002-09-12 2005-06-07 Millennium Inorganic Chemicals, Inc. Method of making elemental materials and alloys
US20060107790A1 (en) * 2002-10-07 2006-05-25 International Titanium Powder, Llc System and method of producing metals and alloys
US20060086435A1 (en) * 2002-11-20 2006-04-27 International Titanium Powder, Llc Separation system of metal powder from slurry and process
US7501007B2 (en) * 2002-11-20 2009-03-10 Cristal Us, Inc. Separation system of metal powder from slurry and process
US20040123700A1 (en) * 2002-12-26 2004-07-01 Ling Zhou Process for the production of elemental material and alloys
US6921510B2 (en) * 2003-01-22 2005-07-26 General Electric Company Method for preparing an article having a dispersoid distributed in a metallic matrix
US20050150576A1 (en) * 2004-01-08 2005-07-14 Sridhar Venigalla Passivation of tantalum and other metal powders using oxygen
US20060102255A1 (en) * 2004-11-12 2006-05-18 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US20070017319A1 (en) * 2005-07-21 2007-01-25 International Titanium Powder, Llc. Titanium alloy
US20070079908A1 (en) * 2005-10-06 2007-04-12 International Titanium Powder, Llc Titanium boride
US20080031766A1 (en) * 2006-06-16 2008-02-07 International Titanium Powder, Llc Attrited titanium powder
US20080152533A1 (en) * 2006-12-22 2008-06-26 International Titanium Powder, Llc Direct passivation of metal powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894738B2 (en) 2005-07-21 2014-11-25 Cristal Metals Inc. Titanium alloy
US9630251B2 (en) 2005-07-21 2017-04-25 Cristal Metals Inc. Titanium alloy
US8821611B2 (en) 2005-10-06 2014-09-02 Cristal Metals Inc. Titanium boride
US7753989B2 (en) 2006-12-22 2010-07-13 Cristal Us, Inc. Direct passivation of metal powder
US9127333B2 (en) 2007-04-25 2015-09-08 Lance Jacobsen Liquid injection of VCL4 into superheated TiCL4 for the production of Ti-V alloy powder
US10450634B2 (en) 2015-02-11 2019-10-22 Scandium International Mining Corporation Scandium-containing master alloys and method for making the same

Also Published As

Publication number Publication date
WO1996004407A1 (en) 1996-02-15
CN1161064A (en) 1997-10-01
MX9700827A (en) 1997-09-30
DE69521432T2 (en) 2002-05-29
BR9508497A (en) 1997-12-23
NO970444L (en) 1997-03-26
ES2161297T3 (en) 2001-12-01
EP0777753B1 (en) 2001-06-20
JP3391461B2 (en) 2003-03-31
CA2196534A1 (en) 1996-02-15
EP0777753A4 (en) 1997-11-26
AU3320195A (en) 1996-03-04
EP0777753A1 (en) 1997-06-11
DE69521432D1 (en) 2001-07-26
RU2152449C1 (en) 2000-07-10
NO970444D0 (en) 1997-01-31
NO316604B1 (en) 2004-03-08
JPH10502418A (en) 1998-03-03
CN1076759C (en) 2001-12-26
CA2196534C (en) 2001-04-10
AU686444B2 (en) 1998-02-05
KR100241134B1 (en) 2000-03-02
US5779761A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
US20080199348A1 (en) Elemental material and alloy
US6409797B2 (en) Method of making metals and other elements from the halide vapor of the metal
US5958106A (en) Method of making metals and other elements from the halide vapor of the metal
US20080187455A1 (en) Titanium and titanium alloys
US6955703B2 (en) Process for the production of elemental material and alloys
US5032176A (en) Method for manufacturing titanium powder or titanium composite powder
US4356029A (en) Titanium product collection in a plasma reactor
US2941867A (en) Reduction of metal halides
US3252823A (en) Process for aluminum reduction of metal halides in preparing alloys and coatings
RU97103145A (en) METHOD FOR PRODUCING METALS AND OTHER ELEMENTS
US20030061907A1 (en) Gel of elemental material or alloy and liquid metal and salt
AU2008246253A1 (en) Metalothermic reduction of refractory metal oxides
EP0444577B1 (en) Reactive spray forming process
JP4132526B2 (en) Method for producing powdered titanium
US7435282B2 (en) Elemental material and alloy
US20030145682A1 (en) Gel of elemental material or alloy and liquid metal and salt
US7445658B2 (en) Titanium and titanium alloys
AU2007210276A1 (en) Metal matrix with ceramic particles dispersed therein
US2825642A (en) Method of producing group iv-a metals
Turner et al. Low cost titanium--myth or reality
KR101023225B1 (en) Method of preparing for metal powder
JPS6137338B2 (en)
KR101082124B1 (en) Apparatus for preparing metal powder by using arc-heat and method for preparing metal powder using the same
MXPA97000827A (en) Method for obtaining metals and other elemen

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL TITANIUM POWDER, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARMSTRONG, DONN R;BORYS, STANLEY S.;ANDERSON, RICHARD P;REEL/FRAME:020973/0111;SIGNING DATES FROM 20080328 TO 20080408

AS Assignment

Owner name: THE NATIONAL TITANIUM DIOXIDE CO. LTD., MARYLAND

Free format text: SECURITY AGREEMENT;ASSIGNOR:INTERNATIONAL TITANIUM POWDER, L.L.C.;REEL/FRAME:021127/0493

Effective date: 20080602

AS Assignment

Owner name: INTERNATIONAL TITANIUM POWDER, LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE NATIONAL TITANIUM DIOXIDE CO. LTD.;REEL/FRAME:021824/0319

Effective date: 20081111

AS Assignment

Owner name: CRISTAL US, INC., MARYLAND

Free format text: MERGER;ASSIGNOR:INTERNATIONAL TITANIUM POWDER, L.L.C.;REEL/FRAME:021877/0426

Effective date: 20081016

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION