US20080198132A1 - Input pointer and input device - Google Patents

Input pointer and input device Download PDF

Info

Publication number
US20080198132A1
US20080198132A1 US12/104,673 US10467308A US2008198132A1 US 20080198132 A1 US20080198132 A1 US 20080198132A1 US 10467308 A US10467308 A US 10467308A US 2008198132 A1 US2008198132 A1 US 2008198132A1
Authority
US
United States
Prior art keywords
switch
protrusion
main body
input pointer
switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/104,673
Inventor
Yutaka Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/104,673 priority Critical patent/US20080198132A1/en
Publication of US20080198132A1 publication Critical patent/US20080198132A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03543Mice or pucks

Definitions

  • the present invention relates to input devices used as pointing devices and to input pointers for use in input devices.
  • One possible approach for preventing the operability of a mouse from decreasing is to provide switches at sites other than the top surface and the lateral surfaces of the mouse so that the switches are not disposed close to one another.
  • a mouse provided with a switch on the bottom surface is described in, for example, Japanese Unexamined Patent Application Publication No. 10-11211 (pages 2 to 3 and FIG. 1).
  • the mouse in Japanese Unexamined Patent Application Publication No. 10-11211 cannot have a switch disposed on the top surface of the main body due to its structure, and thus only a small number of switches are available with this mouse. More specifically, to operate the mouse in Japanese Unexamined Patent Application Publication No.
  • the main body of the mouse needs to be tilted by pressing the left-front shoulder portion or the right-front shoulder portion of the mouse.
  • the front portion of the mouse refers to the portion in contact with the user's fingertips, where switches are generally arranged.
  • the switch on the top surface would also be pressed when the switch on the bottom surface is pressed.
  • the structure of the mouse in Japanese Unexamined Patent Application Publication No. 10-11211 does not assume that a switch is arranged on the top surface. Therefore, a method employed with the above-described mouse, that is, a method for providing switches on the bottom surface of the mouse does not achieve an object of providing a mouse with many switches while still maintaining high operability.
  • an object of the present invention is to provide a highly operable and multifunctional pointing device.
  • an input pointer for pointing and inputting the coordinates or the moving direction and the amount of movement thereof in a predetermined operating area includes a main body, at least one top-surface switch on the top surface of the main body, a protrusion on an imaginary center line on the bottom surface of the main body, and at least one bottom-surface switch at a side (to the left and/or right) of the protrusion.
  • the imaginary center line extends in the longitudinal direction, that is, in the front/back direction, of the main body.
  • the bottom-surface switch is operated by tilting the main body in the lateral direction, that is, perpendicular to the longitudinal direction, about the protrusion (fulcrum) on the imaginary center line.
  • the bottom-surface switch is operated in a different manner and is subjected to force in a different direction from the top-surface switch, because the top-surface switch receives downward force when pressed by a user's finger for operation. For this reason, the user can clearly distinguish the operation between the top-surface switch and the bottom-surface switch.
  • the input pointer according to the present invention can carry out a wide variety of functions with many switches while still maintaining high operability, because the switches are operated in a different manner and subjected to force in a different direction from one another, and hence the number of incorrect switch operations is minimized. Furthermore, the user is not forced to perform a particular action in a particular direction only. This lessens strain on the user fingertips.
  • the bottom-surface switch may extend longitudinally along the imaginary center line.
  • the bottom-surface switch is pressed even when the main body of the input pointer is tilted in a diagonal direction to the imaginary center line. This ensures that the bottom-surface switch is activated even when the user tilts the main body in a diagonal direction.
  • more than one bottom-surface switch may be provided so as to extend in line on an imaginary line parallel to the imaginary center line.
  • At least one of the bottom-surface switches is pressed even when the main body of the input pointer is tilted in a diagonal direction to the imaginary center line.
  • the protrusion may extend longitudinally along the imaginary center line.
  • the main body can be tilted easily about the protrusion, and thus can be tilted reliably in the lateral direction.
  • the bottom-surface switch can be reliably depressed with easy operation.
  • the highest portion of the protrusion may be flat.
  • the bottom surface of the main body may have an angle of 2° or more relative to an imaginary plane passing through the protrusion and a tip of the bottom-surface switch and may have an angle of 5° or less relative to an imaginary plane passing through the protrusion and a lateral edge on the bottom surface of the main body, when the bottom-surface switch is not pressed.
  • an input device includes one of the above-described input pointers and a detector which includes an operating area and detects the position of the input pointer in the operation area and an operation status of a switch on the input pointer.
  • the input device When the input device with this structure is used in combination with a computer, the input device can carry out a wide variety of functions of the computer while still maintaining high operability.
  • a pointing device that can carry out a wide variety of functions with many switches while still maintaining superior operability can be provided.
  • FIG. 1 is a front view of an input pointer according to an embodiment of the present invention
  • FIG. 2 is a right side view of the input pointer shown in FIG. 1 ;
  • FIG. 3 is a bottom plan view of the input pointer shown in FIG. 1 ;
  • FIG. 4 is a magnified view of the view shown in FIG. 1 ;
  • FIG. 5 is a diagram showing a circuit structure of an input device including the input pointer shown in FIG. 1 ;
  • FIG. 6 is a bottom plan view of an input pointer according to another embodiment of the present invention.
  • FIGS. 1 to 3 show the structure of an input pointer 10 according to an embodiment of the present invention.
  • FIGS. 1 , 2 , and 3 are a front view, a right side view, and a bottom plan view, respectively, of the input pointer 10 .
  • the surface shown in FIG. 1 is defined as the front surface of the input pointer 10 .
  • the left lateral surface of the input pointer 10 is opposed to the right lateral surface.
  • the input pointer 10 includes a substantially oval main body 11 including top-surface switches 21 and 22 and a rotary switch 23 .
  • the main body 11 further includes a flat bottom surface 12 .
  • On this bottom surface 12 is provided a protrusion 13 .
  • Bottom-surface switches 31 and 32 are arranged at the sides of the protrusion 13 .
  • the top-surface switches 21 and 22 are arranged in the region from the top surface to the front surface of the main body 11 . This region accommodates a user's fingertip when the input pointer 10 is operated, and the top-surface switches 21 and 22 are turned ON when they are depressed with the user's finger.
  • the rotary switch 23 is disposed between the top-surface switches 21 and 22 near the rear ends of the top-surface switches 21 and 22 .
  • the rotary switch 23 is rotatable with respect to the main body 11 , and turns ON/OFF electric current each time it is rotated by a predetermined angle.
  • the protrusion 13 is a raised portion with a predetermined transverse height from the bottom surface 12 .
  • the height of the protrusion 13 is the distance from the bottom surface 12 to the lowest portion of the protrusion 13 when seen in FIG. 2 .
  • the protrusion 13 is formed integrally with the bottom surface 12 or by fixing a substantially rectangular plate on the bottom surface 12 .
  • the center of the protrusion 13 is most raised and formed into a flat surface, whereas the lateral portions of the protrusion 13 are formed into curved surfaces.
  • the highest portion of transversely projecting protrusion 13 defines a substantially flat bearing surface straddled by contoured shoulders as best seen in FIGS. 1 and 4 .
  • An imaginary center line 14 shown in FIG. 3 extends in the longitudinal direction of the main body 11 at the center in the lateral direction on the bottom surface 12 .
  • the protrusion 13 extends along the imaginary center line 14 such that the center line on the most raised portion of the protrusion 13 is aligned with the imaginary center line 14 .
  • the input pointer 10 when the input pointer 10 is placed on an operating or working surface, such as a desktop surface, with the top-surface switch 21 facing up and the bottom surface 12 facing down (hereinafter referred to as a ready mode), the protrusion 13 is in contact with the above-described operating or working surface. In his ready mode, the input pointer 10 is tiltable to the left and right on the protrusion 13 (as a fulcrum), that is, on the imaginary center line 14 .
  • the bottom-surface switches 31 and 32 are substantially rectangular switches disposed symmetrically relative to the protrusion 13 . They are actuated or turned ON when depressed.
  • the bottom-surface switches 31 and 32 are arranged along the imaginary center line 14 . The lengths of the bottom-surface switches 31 and 32 should not differ greatly from that of the protrusion 13 .
  • FIG. 4 is a magnified view of the front surface of the input pointer 10 and illustrates the radiussed or rounded contour of the surface of protrusion 13 .
  • a horizontal plane R is represented by dashed lines
  • an imaginary plane S defined as a plane just passing through the surfaces of the protrusion 13 and the bottom-surface switch 32 is represented by chain lines
  • an imaginary plane T defined as a plane just passing through the surface of the protrusion 13 and the lateral edge of the bottom surface 12 is represented by two-dot chain lines.
  • the bottom surface 12 of the input pointer 10 is formed flat, and therefore is parallel to the horizontal plane R in the status shown in FIG. 4 .
  • the imaginary plane S has an angle of 2° relative to the horizontal plane R. That is, the bottom-surface switch 32 is turned ON when the main body 11 is tilted by 2° or more. In other words, the bottom-surface switch 32 is OFF as long as the titling angle is less than 2°.
  • the bottom-surface switch 31 is designed to satisfy the same condition.
  • the imaginary plane T has an angle of 5° relative to the horizontal plane R. That is, any attempt to tilt the main body 11 by more than 5° is made in vain, because the lateral edge of the bottom surface 12 comes into contact with the operating surface when a tilting angle of 5° is reached.
  • tilting the main body II less than 2° does not turn ON the bottom-surface switches 31 and 32 .
  • This range of 0° to 2° functions as a “slack”.
  • the “slack” is large, it is necessary to tilt the main body 11 greatly. This increases strain on the user's wrist. Therefore, it is preferable to secure a slack of 2° for the activation of the bottom-surface switches 31 and 32 , as disclosed in this embodiment, to prevent the operability from degrading due to frequent incorrect operation and also to avoid excess strain on the user's wrist.
  • the bottom-surface switch 31 or 32 When the main body 11 is tilted by more than 2° to the right or left, the bottom-surface switch 31 or 32 is compressed against the operating surface to turn ON. When the main body 11 is titled further, the main body 11 reaches the stop point at a tilting angle of 5° as described above. At this point, even if an attempt is made to tilt the main body 11 further by applying more force to the main body 11 , the compression force is not applied to the bottom surface switch 31 or 32 . This advantageously prevents the bottom-surface switches 31 and 32 from being damaged, that is, makes the bottom-surface switches 31 and 32 more durable.
  • FIG. 5 is a circuit diagram showing the structure of an input device 1 that uses the input pointer 10 shown in FIGS. 1 to 4 .
  • the input device 1 includes the input pointer 10 and a detector 50 that detects the location of the input pointer 10 and the operation status of each switch on the input pointer 10 .
  • the detector 50 is called a tablet.
  • the detector 50 includes a plate section of a predetermined size which has many loop coils embedded therein. This plate section is used as an operating surface (operating area) in which the input pointer 10 is moved.
  • the detector 50 detects the position coordinates of the input pointer 10 in the plate section by using the above-described loop coils. Furthermore, the detector 50 detects the operation statuses of the switches on the input pointer 10 and produces an operation signal indicating the detected coordinates and operation statuses of the switches to output the signal to an external apparatus such as a computer (not shown in figures).
  • a computer not shown in figures.
  • the detector 50 includes 40 loop coils X 1 to X 40 and 40 loop coils Y 1 to Y 40 embedded in the above-described plate section, a selection circuit 51 , a transmission/reception switching circuit 52 , an oscillator 53 , a transmission amplifier 54 , a reception amplifier 55 , and a signal-detecting circuit 56 .
  • An X axis and a Y axis are preset in the plate section of the detector 50 .
  • the loop coils X 1 to X 40 extend in the X axis direction, and both ends of the loop coils X 1 to X 40 are connected to the selection circuit 51 .
  • the loop coils Y 1 to Y 40 extend in the Y axis direction, and both ends of the loop coils Y 1 to Y 40 are connected to the selection circuit 51 .
  • the selection circuit 51 selects one of the loop coils X 1 to X 40 and the loop coils Y 1 to Y 40 .
  • the transmission/reception switching circuit 52 switches between a transmission mode where a signal input from the transmission amplifier 54 is output to the selection circuit 51 and a reception mode where a signal input from the selection circuit 51 is output to the reception amplifier 55 .
  • the oscillator 53 produces a signal with a predetermined oscillation frequency and outputs it to the transmission amplifier 54 .
  • the transmission amplifier 54 amplifies the signal input from the oscillator 53 and outputs it to the transmission/reception switching circuit 52 .
  • the reception amplifier 55 amplifies a signal input from the transmission/reception switching circuit 52 and outputs it to the signal-detecting circuit 56 .
  • the signal-detecting circuit 56 analyzes the signal input from the reception amplifier 55 , detects the position of the input pointer 10 in the plate section and the operation statuses of the switches on the input pointer 10 , and generates an operation signal indicating the position of the input pointer 10 and the operation statuses of the switches to output the signal to an external apparatus such as a computer (not shown in figures).
  • the input pointer 10 includes a resonant circuit 60 , as shown in FIG. 5 .
  • the resonant circuit 60 includes a coil 61 and a capacitor 62 connected in parallel.
  • the resonant circuit 60 further includes a switch 63 and a capacitor 64 connected in series to the switch 63 , which is opened/closed according to the operation of the top-surface switches 21 and 22 , the rotary switch 23 , and the bottom-surface switches 31 and 32 shown in FIGS. 1 to 3 .
  • Radio wave means an electro-magnetic wave or electric wave.
  • the capacitor 62 is charged by the radio wave transmitted from the loop coil X 1 .
  • the transmission/reception switching circuit 52 of the detector 50 When the transmission/reception switching circuit 52 of the detector 50 is switched to the reception mode after the transmission mode is continued for a predetermined period of time, the transmission of the radio wave from the loop coil X 1 ends. In the resonant circuit 60 , a radio wave is transmitted from the coil 61 as a result of the capacitor 62 discharging.
  • the radio wave transmitted from the coil 61 is received by the loop coil X 1 , amplified by the reception amplifier 55 , and analyzed by the signal-detecting circuit 56 .
  • the above-described operation in the transmission mode and the reception mode is sequentially performed for all loop coils from the loop coils X 1 to X 40 and from the loop coils Y 1 to Y 40 , so that the loop coil disposed closest to the resonant circuit 60 can be identified by analyzing the intensity of the signal when each loop coil receives a radio wave from the resonant circuit 60 .
  • the position coordinates of the input pointer 10 in the plate section having the embedded loop coils X 1 to X 40 and the loop coils Y 1 to Y 40 can be identified.
  • the switch 63 when the switch 63 is closed in the resonant circuit 60 , the capacitor 62 and the capacitor 64 are connected in parallel. In this status, the capacitance of the resonant circuit 60 is equivalent to the combined capacitance of the capacitor 62 and the capacitor 64 .
  • the resonant circuit 60 includes a variable capacitor with a capacitance variable depending on the open/close status of the switch 63 .
  • a change in the capacitance in the resonant circuit 60 causes the resonant frequency in the resonant circuit 60 to change, which thereby causes the phase of a radio wave transmitted from the resonant circuit 60 to the detector 50 to change.
  • the detector 50 can detect the open/close status of the switch 63 by detecting a change in the phase of a radio wave according to a change in the resonant frequency in the resonant circuit 60 .
  • the detector 50 can detect the operation statuses of the top-surface switches 21 and 22 , rotary switch 23 , and bottom-surface switches 31 and 32 on the input pointer 10 .
  • the detector 50 shown in FIG. 5 may be constructed so as to output an operation signal indicating the amount of movement and the movement direction of the input pointer 10 per unit of time by detecting the coordinates of the input pointer 10 .
  • the number of switches 63 included in the resonant circuit 60 is not limited to one.
  • the resonant circuit 60 may include a plurality of switches corresponding to the top-surface switches 21 and 22 , rotary switch 23 , and bottom-surface switches 31 and 32 on the input pointer 10 .
  • the type of switch 63 or the number of contacts is not restricted.
  • the input device 1 with the above-described structure can use a total of five switches including the top-surface switches 21 and 22 and the rotary switch 23 on the top surface and the bottom-surface switches 31 and 32 on the bottom surface 12 of the input pointer 10 . This enables the input device 1 to point and input a wide variety of functions.
  • the top-surface switches 21 and 22 and the rotary switch 23 are operated by the movement of the user's finger.
  • the bottom-surface switches 31 and 32 provided on the bottom surface 12 are operated by the turning of the user's wrist, because the bottom-surface switches 31 and 32 are actuated or turned ON by rocking or tilting the main body 11 of the input pointer 10 .
  • the main body 11 is tilted in the lateral direction, that is, perpendicular to the imaginary center line 14 , about the protrusion 13 (fulcrum) provided on the imaginary center line 14 .
  • the switches provided on the input pointer 10 are operated in a completely different manner from one another, the user can clearly distinguish the operation between the top-surface switches 21 and 22 , the rotary switch 23 , and the bottom-surface switches 31 and 32 .
  • This ensures that the bottom-surface switches 31 and 32 are not mistakenly turned ON when the top-surface switches 21 and 22 are operated or the top-surface switches 21 and 22 are not mistakenly turned ON when the bottom-surface switches 31 and 32 are operated.
  • an increase in the number of incorrect operations can be restricted, that is, superior operability can be achieved despite there being many switches.
  • the user is not forced to perform a particular action in a particular direction only. This lessens strain on the user fingertips.
  • the protrusion 13 is elongated longitudinally along the imaginary center line 14 , and hence the main body 11 does not slope in the longitudinal direction.
  • the main body 11 can be rocked or tilted easily about the protrusion 13 (fulcrum), and thus can be tilted reliably in the lateral direction.
  • the bottom-surface switches 31 and 32 can be reliably depressed with easy operation.
  • the bottom-surface switches 31 and 32 are longitudinally elongated members arranged along the imaginary center line 14 , they are turned ON not only when the main body 11 is tilted in the lateral direction, but also even when only part of each of the bottom-surface switches 31 and 32 is depressed as a result of the main body 11 being titled in a diagonal direction to the imaginary center line 14 .
  • the bottom-surface switches 31 and 32 are reliably turned ON even when the user operates the main body 11 in a diagonal direction to the imaginary center line 14 .
  • the main body 11 can easily be maintained horizontal and is easily moved by a sliding motion across the work surface. More specifically, since the bottom-surface switches 31 and 32 can easily be maintained in the OFF status, the user does not have to pay attention to keep the main body 11 horizontal to prevent the bottom-surface switches 31 and 32 from being turned ON mistakenly. In addition, since the bottom-surface switches 31 and 32 are arranged such that a “slack” of 2° is secured, incorrect operation is more unlikely to occur.
  • the main body 11 cannot be tilted beyond a tilting angle of 5°, an excessively strong compression force is not applied to the bottom-surface switches 31 and 32 , and therefore they are not damaged or deformed, that is, they can be made more durable. For this reason, the user can use the input device 1 reliably.
  • the input device 1 detects the position coordinates of the input pointer 10 and the operation status of each switch on the input pointer 10 by the detector 50 to output an operation signal to an external apparatus, such as a computer, from the detector 50 .
  • an external apparatus such as a computer
  • the input device 1 may be constructed such that the input pointer 10 itself outputs an operation signal to an external apparatus.
  • the input pointer 10 itself may be provided with a ball (not shown) which protrudes from the protrusion 13 , a detection circuit which detects the rotation direction and the amount of rotation of the ball, a switch-detection circuit that detects the operation of each switch on the input pointer 10 , and a control circuit that outputs the rotation direction and the amount of rotation of the ball and the operation status of each switch detected by the detection circuit and the switch-detection circuit.
  • a circuit that detects the movement direction and the amount of movement of the main body 1 by illuminating the operating surface with light and then detecting the reflected light may be provided in place of the ball and the detection circuit.
  • the movement direction and the amount of movement or the position coordinates of the input pointer 10 may also be detected by another method.
  • the input pointer 10 includes the top-surface switches 21 and 22 and rotary switch 23 , in addition to the bottom-surface switches 31 and 32 .
  • the number of switches provided on the input pointer 10 can be changed.
  • the bottom-surface switches 31 and 32 are described to extend longitudinally along the imaginary center line 14 .
  • the present invention is not limited to this structure. Instead, for example, a plurality of round switches may be used. Another embodiment where a plurality of round switches is used will now be described with reference to FIG. 6 .
  • the input pointer 10 includes bottom-surface round switches 41 , 42 , and 43 and bottom-surface round switches 44 , 45 , and 46 in place of the bottom-surface switches 31 and 32 .
  • the bottom-surface switches 41 , 42 , and 43 are arranged in line on an imaginary line 15 parallel to the imaginary center line 14 .
  • the bottom-surface switches 41 , 42 , and 43 are actuated or turned ON when they are pressed.
  • the bottom-surface switches 44 , 45 , and 46 are arranged in line on an imaginary line 16 parallel to the imaginary center line 14 , and are actuated or turned ON when they are pressed.
  • the heights of the bottom-surface switches 41 , 42 , and 43 are the same as that of the bottom-surface switch 31 .
  • an imaginary plane passing through the surface of the protrusion 13 and the surfaces of the bottom-surface switches 41 , 42 , and 43 has an angle of 2° relative to the bottom surface 12 .
  • the input pointer 10 provided with the bottom-surface switches 41 , 42 , and 43 in place of the bottom-surface switch 31 can offer the same advantages as in the embodiment shown in FIG. 1 by outputting, when at least one of the bottom-surface switches 41 , 42 , and 43 is turned ON, the same signal as that output when the bottom-surface switch 31 is turned ON.
  • the main body 11 of the input pointer 10 is not necessarily tilted right about the imaginary center line 14 .
  • it may be tilted in a diagonal direction to the imaginary center line 14 .
  • the bottom-surface switches 31 and 32 are formed to extend longitudinally so as to be responsive even when the main body 11 is tilted in a diagonal direction.
  • not all the bottom-surface switches 41 , 42 , and 43 may be depressed when the main body 11 is tilted in a diagonal direction.
  • a structure such that a response is made when any of the bottom-surface switches 41 , 42 , and 43 is pressed is employed to ensure that any one or two of the three switches being turned ON brings about the same effect as when all three switches are turned ON.
  • the same advantages as when the longitudinally elongated bottom-surface switch 31 is used can be offered by employing the above-described structure that ensures a predetermined response is made when at least one of the three switches is pressed.
  • the same advantages as when the bottom-surface switch 32 is used can be offered by employing a structure where the same response is made when at least one of the bottom-surface switches 44 , 45 , and 46 is pressed.
  • a total of six switches including the bottom-surface switches 41 , 42 , and 43 and the bottom-surface switches 44 , 45 , and 46 are used.
  • the number of bottom-surface switches that can be used is not restricted.

Abstract

An input pointer includes two top-surface switches and a rotary switch on the top surface of the main body, a protrusion on an imaginary center line on the bottom surface of the main body, and two bottom-surface switches at the sides of the protrusion. The two top-surface switches and the rotary switch are turned ON when pressed by a user's finger, whereas the bottom-surface switches are turned ON when the main body is tilted about the protrusion.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS AND CLAIM TO PRIORITY
  • This application claims the benefit under 35 U.S.C. § 119 of application no. 2003-180581, filed Jun. 25, 2003 in Japan, the entire disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to input devices used as pointing devices and to input pointers for use in input devices.
  • 2. Description of the Related Art As computers have become more multifunctional in recent years, there is a growing need for pointing devices, functioning as computer input devices, that are capable of carrying out more functions of the computer. For example, some mice, the most widely used pointing devices, are provided with switches on the lateral surfaces of the main body, as well as on the top surface.
  • Many switches disposed adjacent to one another on a mouse, however, are more likely to cause the user to press an incorrect switch, which decreases the mouse operability. For this reason, there has been a demand for a mouse which is provided with many switches while still maintaining easy operability.
  • One possible approach for preventing the operability of a mouse from decreasing is to provide switches at sites other than the top surface and the lateral surfaces of the mouse so that the switches are not disposed close to one another. A mouse provided with a switch on the bottom surface is described in, for example, Japanese Unexamined Patent Application Publication No. 10-11211 (pages 2 to 3 and FIG. 1). The mouse in Japanese Unexamined Patent Application Publication No. 10-11211, however, cannot have a switch disposed on the top surface of the main body due to its structure, and thus only a small number of switches are available with this mouse. More specifically, to operate the mouse in Japanese Unexamined Patent Application Publication No. 10-11211, the main body of the mouse needs to be tilted by pressing the left-front shoulder portion or the right-front shoulder portion of the mouse. The front portion of the mouse refers to the portion in contact with the user's fingertips, where switches are generally arranged. Thus, if a switch were arranged on the top surface of the main body of the mouse in Japanese Unexamined Patent Application Publication No. 10-11211, the switch on the top surface would also be pressed when the switch on the bottom surface is pressed. This means that the structure of the mouse in Japanese Unexamined Patent Application Publication No. 10-11211 does not assume that a switch is arranged on the top surface. Therefore, a method employed with the above-described mouse, that is, a method for providing switches on the bottom surface of the mouse does not achieve an object of providing a mouse with many switches while still maintaining high operability.
  • This is the reason there has been a growing need for pointing devices that are highly operable although provided with many switches for carrying out many functions of the computer.
  • SUMMARY OF THE INVENTION
  • In view of the above-described problem, an object of the present invention is to provide a highly operable and multifunctional pointing device.
  • According to an aspect of the present invention, an input pointer for pointing and inputting the coordinates or the moving direction and the amount of movement thereof in a predetermined operating area includes a main body, at least one top-surface switch on the top surface of the main body, a protrusion on an imaginary center line on the bottom surface of the main body, and at least one bottom-surface switch at a side (to the left and/or right) of the protrusion. The imaginary center line extends in the longitudinal direction, that is, in the front/back direction, of the main body.
  • With the above-described structure, the bottom-surface switch is operated by tilting the main body in the lateral direction, that is, perpendicular to the longitudinal direction, about the protrusion (fulcrum) on the imaginary center line. Thus, the bottom-surface switch is operated in a different manner and is subjected to force in a different direction from the top-surface switch, because the top-surface switch receives downward force when pressed by a user's finger for operation. For this reason, the user can clearly distinguish the operation between the top-surface switch and the bottom-surface switch.
  • This ensures that the bottom-surface switch is not mistakenly turned ON when the top-surface switch is operated or the top-surface switch is not mistakenly turned ON when the bottom-surface switch is operated. As a result, the input pointer according to the present invention can carry out a wide variety of functions with many switches while still maintaining high operability, because the switches are operated in a different manner and subjected to force in a different direction from one another, and hence the number of incorrect switch operations is minimized. Furthermore, the user is not forced to perform a particular action in a particular direction only. This lessens strain on the user fingertips.
  • In the input pointer, the bottom-surface switch may extend longitudinally along the imaginary center line.
  • With this structure, the bottom-surface switch is pressed even when the main body of the input pointer is tilted in a diagonal direction to the imaginary center line. This ensures that the bottom-surface switch is activated even when the user tilts the main body in a diagonal direction.
  • In the input pointer, more than one bottom-surface switch may be provided so as to extend in line on an imaginary line parallel to the imaginary center line.
  • With this structure, at least one of the bottom-surface switches is pressed even when the main body of the input pointer is tilted in a diagonal direction to the imaginary center line.
  • This ensures that the bottom-surface switch is activated even when the user tilts the main body in a diagonal direction.
  • In the input pointer, the protrusion may extend longitudinally along the imaginary center line.
  • With this structure, the main body can be tilted easily about the protrusion, and thus can be tilted reliably in the lateral direction. As a result, the bottom-surface switch can be reliably depressed with easy operation.
  • In the input pointer, the highest portion of the protrusion may be flat.
  • With this structure, since the bottom-surface switch can easily be maintained in the OFF status, the user does not have to exercise care to keep the main body horizontal to prevent the bottom-surface switch from being turned ON mistakenly.
  • In the input pointer, the bottom surface of the main body may have an angle of 2° or more relative to an imaginary plane passing through the protrusion and a tip of the bottom-surface switch and may have an angle of 5° or less relative to an imaginary plane passing through the protrusion and a lateral edge on the bottom surface of the main body, when the bottom-surface switch is not pressed.
  • With this structure, since the bottom-surface switch is not turned ON within tilting angles of 0° to 2°, incorrect operation is unlikely to occur. Furthermore, since the main body cannot be tilted beyond a tilting angle of 5°, an excessively strong compression force is not applied to the bottom-surface switch, and therefore, the bottom-surface switch is not damaged or deformed.
  • According to another aspect of the present invention, an input device includes one of the above-described input pointers and a detector which includes an operating area and detects the position of the input pointer in the operation area and an operation status of a switch on the input pointer.
  • When the input device with this structure is used in combination with a computer, the input device can carry out a wide variety of functions of the computer while still maintaining high operability.
  • As described above, according to the present invention, a pointing device that can carry out a wide variety of functions with many switches while still maintaining superior operability can be provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front view of an input pointer according to an embodiment of the present invention;
  • FIG. 2 is a right side view of the input pointer shown in FIG. 1;
  • FIG. 3 is a bottom plan view of the input pointer shown in FIG. 1;
  • FIG. 4 is a magnified view of the view shown in FIG. 1;
  • FIG. 5 is a diagram showing a circuit structure of an input device including the input pointer shown in FIG. 1; and
  • FIG. 6 is a bottom plan view of an input pointer according to another embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Preferred embodiments of the present invention will now be described with reference to the attached drawings.
  • FIGS. 1 to 3 show the structure of an input pointer 10 according to an embodiment of the present invention. FIGS. 1, 2, and 3 are a front view, a right side view, and a bottom plan view, respectively, of the input pointer 10. In the following description, the surface shown in FIG. 1 is defined as the front surface of the input pointer 10. The left lateral surface of the input pointer 10 is opposed to the right lateral surface.
  • Referring to FIGS. 1 to 3, the input pointer 10 includes a substantially oval main body 11 including top- surface switches 21 and 22 and a rotary switch 23. The main body 11 further includes a flat bottom surface 12. On this bottom surface 12 is provided a protrusion 13. Bottom- surface switches 31 and 32 are arranged at the sides of the protrusion 13.
  • The top- surface switches 21 and 22 are arranged in the region from the top surface to the front surface of the main body 11. This region accommodates a user's fingertip when the input pointer 10 is operated, and the top- surface switches 21 and 22 are turned ON when they are depressed with the user's finger. The rotary switch 23 is disposed between the top- surface switches 21 and 22 near the rear ends of the top- surface switches 21 and 22. The rotary switch 23 is rotatable with respect to the main body 11, and turns ON/OFF electric current each time it is rotated by a predetermined angle.
  • The protrusion 13 is a raised portion with a predetermined transverse height from the bottom surface 12. The height of the protrusion 13 is the distance from the bottom surface 12 to the lowest portion of the protrusion 13 when seen in FIG. 2.
  • The protrusion 13 is formed integrally with the bottom surface 12 or by fixing a substantially rectangular plate on the bottom surface 12. The center of the protrusion 13 is most raised and formed into a flat surface, whereas the lateral portions of the protrusion 13 are formed into curved surfaces. The highest portion of transversely projecting protrusion 13 defines a substantially flat bearing surface straddled by contoured shoulders as best seen in FIGS. 1 and 4.
  • An imaginary center line 14 shown in FIG. 3 extends in the longitudinal direction of the main body 11 at the center in the lateral direction on the bottom surface 12. The protrusion 13 extends along the imaginary center line 14 such that the center line on the most raised portion of the protrusion 13 is aligned with the imaginary center line 14.
  • Thus, when the input pointer 10 is placed on an operating or working surface, such as a desktop surface, with the top-surface switch 21 facing up and the bottom surface 12 facing down (hereinafter referred to as a ready mode), the protrusion 13 is in contact with the above-described operating or working surface. In his ready mode, the input pointer 10 is tiltable to the left and right on the protrusion 13 (as a fulcrum), that is, on the imaginary center line 14.
  • The bottom- surface switches 31 and 32 are substantially rectangular switches disposed symmetrically relative to the protrusion 13. They are actuated or turned ON when depressed. The bottom- surface switches 31 and 32 are arranged along the imaginary center line 14. The lengths of the bottom- surface switches 31 and 32 should not differ greatly from that of the protrusion 13.
  • The relationships among the heights of the protrusion 13 and the bottom- surface switches 31 and 32 will now be described with reference to FIG. 4. FIG. 4 is a magnified view of the front surface of the input pointer 10 and illustrates the radiussed or rounded contour of the surface of protrusion 13.
  • Referring to FIG. 4, a horizontal plane R is represented by dashed lines, an imaginary plane S defined as a plane just passing through the surfaces of the protrusion 13 and the bottom-surface switch 32 is represented by chain lines, and an imaginary plane T defined as a plane just passing through the surface of the protrusion 13 and the lateral edge of the bottom surface 12 is represented by two-dot chain lines. As described above, the bottom surface 12 of the input pointer 10 is formed flat, and therefore is parallel to the horizontal plane R in the status shown in FIG. 4.
  • As shown in FIG. 4, the imaginary plane S has an angle of 2° relative to the horizontal plane R. That is, the bottom-surface switch 32 is turned ON when the main body 11 is tilted by 2° or more. In other words, the bottom-surface switch 32 is OFF as long as the titling angle is less than 2°. The bottom-surface switch 31 is designed to satisfy the same condition.
  • On the other hand, the imaginary plane T has an angle of 5° relative to the horizontal plane R. That is, any attempt to tilt the main body 11 by more than 5° is made in vain, because the lateral edge of the bottom surface 12 comes into contact with the operating surface when a tilting angle of 5° is reached.
  • As described above, tilting the main body II less than 2° does not turn ON the bottom- surface switches 31 and 32. This range of 0° to 2° functions as a “slack”. The smaller the “slack”, the smaller tilting angle is sufficient to turn ON the bottom- surface switches 31 and 32. This, however, easily causes an incorrect operation. In contrast if the “slack” is large, it is necessary to tilt the main body 11 greatly. This increases strain on the user's wrist. Therefore, it is preferable to secure a slack of 2° for the activation of the bottom- surface switches 31 and 32, as disclosed in this embodiment, to prevent the operability from degrading due to frequent incorrect operation and also to avoid excess strain on the user's wrist.
  • When the main body 11 is tilted by more than 2° to the right or left, the bottom- surface switch 31 or 32 is compressed against the operating surface to turn ON. When the main body 11 is titled further, the main body 11 reaches the stop point at a tilting angle of 5° as described above. At this point, even if an attempt is made to tilt the main body 11 further by applying more force to the main body 11, the compression force is not applied to the bottom surface switch 31 or 32. This advantageously prevents the bottom- surface switches 31 and 32 from being damaged, that is, makes the bottom- surface switches 31 and 32 more durable.
  • FIG. 5 is a circuit diagram showing the structure of an input device 1 that uses the input pointer 10 shown in FIGS. 1 to 4. The input device 1 includes the input pointer 10 and a detector 50 that detects the location of the input pointer 10 and the operation status of each switch on the input pointer 10.
  • The detector 50 is called a tablet. The detector 50 includes a plate section of a predetermined size which has many loop coils embedded therein. This plate section is used as an operating surface (operating area) in which the input pointer 10 is moved. The detector 50 detects the position coordinates of the input pointer 10 in the plate section by using the above-described loop coils. Furthermore, the detector 50 detects the operation statuses of the switches on the input pointer 10 and produces an operation signal indicating the detected coordinates and operation statuses of the switches to output the signal to an external apparatus such as a computer (not shown in figures). Thus, the use of the detector 50 enables the input pointer 10 to point and input to, for example, a computer.
  • Referring to FIG. 5, the detector 50 includes 40 loop coils X1 to X40 and 40 loop coils Y1 to Y40 embedded in the above-described plate section, a selection circuit 51, a transmission/reception switching circuit 52, an oscillator 53, a transmission amplifier 54, a reception amplifier 55, and a signal-detecting circuit 56.
  • An X axis and a Y axis are preset in the plate section of the detector 50. The loop coils X1 to X40 extend in the X axis direction, and both ends of the loop coils X1 to X40 are connected to the selection circuit 51. Similarly, the loop coils Y1 to Y40 extend in the Y axis direction, and both ends of the loop coils Y1 to Y40 are connected to the selection circuit 51.
  • The selection circuit 51 selects one of the loop coils X1 to X40 and the loop coils Y1 to Y40. The transmission/reception switching circuit 52 switches between a transmission mode where a signal input from the transmission amplifier 54 is output to the selection circuit 51 and a reception mode where a signal input from the selection circuit 51 is output to the reception amplifier 55. The oscillator 53 produces a signal with a predetermined oscillation frequency and outputs it to the transmission amplifier 54. The transmission amplifier 54 amplifies the signal input from the oscillator 53 and outputs it to the transmission/reception switching circuit 52.
  • The reception amplifier 55 amplifies a signal input from the transmission/reception switching circuit 52 and outputs it to the signal-detecting circuit 56. The signal-detecting circuit 56 analyzes the signal input from the reception amplifier 55, detects the position of the input pointer 10 in the plate section and the operation statuses of the switches on the input pointer 10, and generates an operation signal indicating the position of the input pointer 10 and the operation statuses of the switches to output the signal to an external apparatus such as a computer (not shown in figures).
  • On the other hand, the input pointer 10 includes a resonant circuit 60, as shown in FIG. 5. The resonant circuit 60 includes a coil 61 and a capacitor 62 connected in parallel. The resonant circuit 60 further includes a switch 63 and a capacitor 64 connected in series to the switch 63, which is opened/closed according to the operation of the top- surface switches 21 and 22, the rotary switch 23, and the bottom- surface switches 31 and 32 shown in FIGS. 1 to 3.
  • The operation of the input device 1 will now be described.
  • First, when the loop coil X1 is selected by the selection circuit 51 and the transmission/reception switching circuit 52 of the detector 50 is switched to the transmission mode, a radio wave in accordance with the resonant frequency of the resonant circuit 60 is transmitted from the loop coil X1, “Radio wave”, as used here, means an electro-magnetic wave or electric wave.
  • In the resonant circuit 60, the capacitor 62 is charged by the radio wave transmitted from the loop coil X1.
  • When the transmission/reception switching circuit 52 of the detector 50 is switched to the reception mode after the transmission mode is continued for a predetermined period of time, the transmission of the radio wave from the loop coil X1 ends. In the resonant circuit 60, a radio wave is transmitted from the coil 61 as a result of the capacitor 62 discharging.
  • The radio wave transmitted from the coil 61 is received by the loop coil X1, amplified by the reception amplifier 55, and analyzed by the signal-detecting circuit 56.
  • The above-described operation in the transmission mode and the reception mode is sequentially performed for all loop coils from the loop coils X1 to X40 and from the loop coils Y1 to Y40, so that the loop coil disposed closest to the resonant circuit 60 can be identified by analyzing the intensity of the signal when each loop coil receives a radio wave from the resonant circuit 60. As a result, the position coordinates of the input pointer 10 in the plate section having the embedded loop coils X1 to X40 and the loop coils Y1 to Y40 can be identified.
  • Furthermore, when the switch 63 is closed in the resonant circuit 60, the capacitor 62 and the capacitor 64 are connected in parallel. In this status, the capacitance of the resonant circuit 60 is equivalent to the combined capacitance of the capacitor 62 and the capacitor 64.
  • In other words, the resonant circuit 60 includes a variable capacitor with a capacitance variable depending on the open/close status of the switch 63. A change in the capacitance in the resonant circuit 60 causes the resonant frequency in the resonant circuit 60 to change, which thereby causes the phase of a radio wave transmitted from the resonant circuit 60 to the detector 50 to change.
  • Thus, the detector 50 can detect the open/close status of the switch 63 by detecting a change in the phase of a radio wave according to a change in the resonant frequency in the resonant circuit 60. In other words, the detector 50 can detect the operation statuses of the top- surface switches 21 and 22, rotary switch 23, and bottom- surface switches 31 and 32 on the input pointer 10.
  • The detector 50 shown in FIG. 5 may be constructed so as to output an operation signal indicating the amount of movement and the movement direction of the input pointer 10 per unit of time by detecting the coordinates of the input pointer 10. Furthermore, the number of switches 63 included in the resonant circuit 60 is not limited to one. The resonant circuit 60 may include a plurality of switches corresponding to the top- surface switches 21 and 22, rotary switch 23, and bottom- surface switches 31 and 32 on the input pointer 10. In addition, the type of switch 63 or the number of contacts is not restricted.
  • The input device 1 with the above-described structure can use a total of five switches including the top- surface switches 21 and 22 and the rotary switch 23 on the top surface and the bottom- surface switches 31 and 32 on the bottom surface 12 of the input pointer 10. This enables the input device 1 to point and input a wide variety of functions.
  • The top- surface switches 21 and 22 and the rotary switch 23 are operated by the movement of the user's finger. In contrast, the bottom- surface switches 31 and 32 provided on the bottom surface 12 are operated by the turning of the user's wrist, because the bottom- surface switches 31 and 32 are actuated or turned ON by rocking or tilting the main body 11 of the input pointer 10.
  • Furthermore, in order to operate the bottom- surface switches 31 and 32, the main body 11 is tilted in the lateral direction, that is, perpendicular to the imaginary center line 14, about the protrusion 13 (fulcrum) provided on the imaginary center line 14. This eliminates a possibility of the top- surface switches 21 and 22 and the rotary switch 23 provided in the front of the main body 11 being operated mistakenly when the bottom- surface switches 31 and 32 are operated.
  • As described above, since the switches provided on the input pointer 10 are operated in a completely different manner from one another, the user can clearly distinguish the operation between the top- surface switches 21 and 22, the rotary switch 23, and the bottom- surface switches 31 and 32. This ensures that the bottom- surface switches 31 and 32 are not mistakenly turned ON when the top- surface switches 21 and 22 are operated or the top- surface switches 21 and 22 are not mistakenly turned ON when the bottom- surface switches 31 and 32 are operated. For this reason, an increase in the number of incorrect operations can be restricted, that is, superior operability can be achieved despite there being many switches. Furthermore, the user is not forced to perform a particular action in a particular direction only. This lessens strain on the user fingertips.
  • In addition, the protrusion 13 is elongated longitudinally along the imaginary center line 14, and hence the main body 11 does not slope in the longitudinal direction. In other words, the main body 11 can be rocked or tilted easily about the protrusion 13 (fulcrum), and thus can be tilted reliably in the lateral direction. As a result the bottom- surface switches 31 and 32 can be reliably depressed with easy operation.
  • Furthermore, since the bottom- surface switches 31 and 32 are longitudinally elongated members arranged along the imaginary center line 14, they are turned ON not only when the main body 11 is tilted in the lateral direction, but also even when only part of each of the bottom- surface switches 31 and 32 is depressed as a result of the main body 11 being titled in a diagonal direction to the imaginary center line 14. Thus, the bottom- surface switches 31 and 32 are reliably turned ON even when the user operates the main body 11 in a diagonal direction to the imaginary center line 14.
  • In addition, since the most raised portion of the protrusion 13 is formed flat, the main body 11 can easily be maintained horizontal and is easily moved by a sliding motion across the work surface. More specifically, since the bottom- surface switches 31 and 32 can easily be maintained in the OFF status, the user does not have to pay attention to keep the main body 11 horizontal to prevent the bottom- surface switches 31 and 32 from being turned ON mistakenly. In addition, since the bottom- surface switches 31 and 32 are arranged such that a “slack” of 2° is secured, incorrect operation is more unlikely to occur.
  • Furthermore, since the main body 11 cannot be tilted beyond a tilting angle of 5°, an excessively strong compression force is not applied to the bottom- surface switches 31 and 32, and therefore they are not damaged or deformed, that is, they can be made more durable. For this reason, the user can use the input device 1 reliably.
  • In this embodiment, the input device 1 detects the position coordinates of the input pointer 10 and the operation status of each switch on the input pointer 10 by the detector 50 to output an operation signal to an external apparatus, such as a computer, from the detector 50. The present invention, however, is not limited to this structure. For example, the input device 1 may be constructed such that the input pointer 10 itself outputs an operation signal to an external apparatus.
  • More specifically, in an alternative embodiment, the input pointer 10 itself may be provided with a ball (not shown) which protrudes from the protrusion 13, a detection circuit which detects the rotation direction and the amount of rotation of the ball, a switch-detection circuit that detects the operation of each switch on the input pointer 10, and a control circuit that outputs the rotation direction and the amount of rotation of the ball and the operation status of each switch detected by the detection circuit and the switch-detection circuit. Furthermore, with the above-described structure, a circuit that detects the movement direction and the amount of movement of the main body 1 by illuminating the operating surface with light and then detecting the reflected light may be provided in place of the ball and the detection circuit. The movement direction and the amount of movement or the position coordinates of the input pointer 10 may also be detected by another method.
  • As described above, the input pointer 10 includes the top- surface switches 21 and 22 and rotary switch 23, in addition to the bottom- surface switches 31 and 32. The number of switches provided on the input pointer 10, however, can be changed.
  • In the embodiment shown in FIG. 1, the bottom- surface switches 31 and 32 are described to extend longitudinally along the imaginary center line 14. The present invention, however, is not limited to this structure. Instead, for example, a plurality of round switches may be used. Another embodiment where a plurality of round switches is used will now be described with reference to FIG. 6.
  • In the embodiment shown in FIG. 6, the input pointer 10 includes bottom-surface round switches 41, 42, and 43 and bottom-surface round switches 44, 45, and 46 in place of the bottom- surface switches 31 and 32.
  • The bottom-surface switches 41, 42, and 43 are arranged in line on an imaginary line 15 parallel to the imaginary center line 14. The bottom-surface switches 41, 42, and 43 are actuated or turned ON when they are pressed. Similarly, the bottom-surface switches 44, 45, and 46 are arranged in line on an imaginary line 16 parallel to the imaginary center line 14, and are actuated or turned ON when they are pressed.
  • The heights of the bottom-surface switches 41, 42, and 43 are the same as that of the bottom-surface switch 31. In other words, an imaginary plane passing through the surface of the protrusion 13 and the surfaces of the bottom-surface switches 41, 42, and 43 has an angle of 2° relative to the bottom surface 12. The same condition applies to the bottom-surface switches 44, 45, and 46. That is, an imaginary plane passing through the surface of the protrusion 13 and the surfaces of the bottom-surface switches 44, 45, and 46 has an angle of 2° relative to the bottom surface 12.
  • As described above, the input pointer 10 provided with the bottom-surface switches 41, 42, and 43 in place of the bottom-surface switch 31 can offer the same advantages as in the embodiment shown in FIG. 1 by outputting, when at least one of the bottom-surface switches 41, 42, and 43 is turned ON, the same signal as that output when the bottom-surface switch 31 is turned ON.
  • The main body 11 of the input pointer 10 is not necessarily tilted right about the imaginary center line 14. For example, it may be tilted in a diagonal direction to the imaginary center line 14. For this reason, in the embodiment shown in FIG. 1, the bottom- surface switches 31 and 32 are formed to extend longitudinally so as to be responsive even when the main body 11 is tilted in a diagonal direction.
  • In the embodiment shown in FIG. 6, however, not all the bottom-surface switches 41, 42, and 43 may be depressed when the main body 11 is tilted in a diagonal direction. To overcome this problem, a structure such that a response is made when any of the bottom-surface switches 41, 42, and 43 is pressed is employed to ensure that any one or two of the three switches being turned ON brings about the same effect as when all three switches are turned ON. Thus, even when the bottom-surface round switches 41, 42, and 43 are used, the same advantages as when the longitudinally elongated bottom-surface switch 31 is used can be offered by employing the above-described structure that ensures a predetermined response is made when at least one of the three switches is pressed.
  • Similarly, the same advantages as when the bottom-surface switch 32 is used can be offered by employing a structure where the same response is made when at least one of the bottom-surface switches 44, 45, and 46 is pressed.
  • In the embodiment shown in FIG. 6, a total of six switches including the bottom-surface switches 41, 42, and 43 and the bottom-surface switches 44, 45, and 46 are used. However, the number of bottom-surface switches that can be used is not restricted.
  • According to the present invention, detailed structures of the input device 1, including the points described above, are not limited to those described in the embodiments, but various modifications are conceivable within the scope of the present invention.

Claims (23)

1-21. (canceled)
22. An input pointer for inputting a position to a position detector, the pointer comprising:
a main body having a top outer surface, a bottom outer surface opposite said top outer surface, and an edge portion where said top outer surface meets said bottom outer surface;
at least one top-surface switch arranged on said top outer surface of said main body;
at least one protrusion extending outwardly from a central portion of said bottom outer surface of said main body; and
at least one bottom-surface switch arranged on said bottom outer surface of said main body at said at least one protrusion.
23. The input pointer of claim 22, further comprising:
a tuning circuit; and
an electric wave generating circuit for providing an electric wave to said tuning circuit, said tuning circuit resonating with the electric wave to generate another electric wave to be sent to the position detector such that coordinate values corresponding to a position designated with said input pointer are detected via the position detector.
24. The input pointer of claim 22, wherein said at least one protrusion comprises an outward surface that extends furthest from said bottom outer surface, said outward surface comprising an elongated rectangular shape extending along a predetermined direction.
25. The input pointer of claim 24, wherein said outward surface of said at least one protrusion is substantially parallel to said bottom outer surface.
26. The input pointer of claim 24, wherein said at least one bottom-surface switch comprise a first bottom switch positioned at a first elongated side of said at least one protrusion and a second bottom switch positioned at a second elongated side of said at least one protrusion, opposite to said first bottom switch.
27. The input pointer of claim 22, wherein said at least one protrusion extends from said bottom outer surface by a first distance and said at least one bottom-surface switch extends from said bottom outer surface by a second distance, which is less than said first distance.
28. The input pointer of claim 22, wherein said bottom outer surface is substantially oval-shaped and has a central axis extending along a lengthwise direction thereof, and said at least one protrusion extends at least partially along the central axis.
29. The input pointer of claim 22, wherein a portion of said at least one protrusion that is furthest from said bottom outer surface is substantially flat, and lateral portions of said at least one protrusion are curved surfaces.
30. The input pointer of claim 22, wherein said at least one bottom-surface switch comprises a plurality of bottom-surface switches extending in line adjacent to said at least one protrusion.
31. The input pointer of claim 22, wherein said bottom outer surface of said main body has an angle of 2° or more relative to a first imaginary plane passing through said at least one protrusion and a tip of said at least one bottom-surface switch and has an angle of 5° or less relative to a second imaginary plane passing through said at least one protrusion and a lateral edge on said bottom outer surface of said main body, when said at least one bottom-surface switch is not pressed.
32. The input pointer of claim 22, wherein said at least one protrusion stably supports said main body on an operating surface without said at least one bottom-surface switch contacting said operating surface.
33. The input pointer of claim 32, wherein said at least one bottom-surface switch is activated by tilting said main body on the operating surface along said protrusion.
34. The input pointer of claim 33, wherein:
when said main body is tilted on the operating surface about said at least one protrusion by an angle of between about 0° and about 2°, said at least one bottom-surface switch is not activated; and
when said main body is tilted on the operating surface about said at least one protrusion by an angle greater than 2′, said at least one bottom-surface switch is activated.
35. The input pointer of claim 22, further comprising:
a resonant circuit for interacting with the position detector via electromagnetic waves, wherein characteristics of said resonant circuit are modified based on operation of said at least one top-surface switch and said at least one bottom-surface switch.
36. The input pointer of claim 22, further comprising:
a rotary switch positioned on said top outer surface of said main body adjacent to said at least one top-surface switch.
37. The input pointer of claim 36, wherein:
said at least one top-surface switch comprises a first top-surface switch positioned on a first side of said rotary switch and a second top-surface switch positioned on a second side of said rotary switch opposite said first top-surface switch; and
said at least one bottom-surface switch comprises a first bottom-surface switch positioned on a first side of said at least one protrusion opposite said first top-surface switch and a second bottom-surface switch positioned on a second side of said at least one protrusion opposite said second top surface switch, said top and bottom surface switches being depression type switches.
38. The input pointer of claim 22, wherein said at least one protrusion has a distal flat surface, said distal flat surface being substantially parallel to said bottom outer surface and for supporting said main body on an operating surface such that there is a space between said bottom outer surface and the operating surface.
39. The input pointer of claim 22, further comprising:
a position indicating mechanism for interacting with an operating surface to inform the position detector of a current position of the position indicator.
40. The input pointer of claim 39, wherein said position indicating mechanism comprises one of an illumination unit for illuminating the operating surface and detecting a reflection thereof to determine a movement direction of the input pointer, and a rotating track ball for mechanically indicating movement of the input pointer.
41. An input pointer for pointing to a position, said input pointer comprising:
a main body having a first surface and a second surface opposite to said first surface, said first and second surfaces meeting at a side portion of said main body, a central axis extending through a central portion of said main body in a lengthwise direction thereof;
a first depressible switch arranged at said first surface;
a second depressible switch arranged at said second surface; and
at least one protrusion extending from said second surface for supporting said main body on an operating surface such that said second depressible switch does not contact the operating surface,
wherein said second depressible switch is activated by tilting said main body about said at least one protrusion.
42. A method for operating an input pointer having a main body with a top surface, a bottom surface opposite the top surface, and an edge portion where the top surface meets the bottom surface, at least one top-surface switch arranged on the top surface of the main body, at least one protrusion extending outwardly from a central portion of the bottom surface of the main body, and at least one bottom-surface switch arranged on the bottom surface of the main body at a side of the at least one protrusion, the method comprising:
providing the input pointer to be supported on a working surface by the at least one protrusion such that there is a gap between the bottom surface of the main body and the working surface;
grasping the main body proximate the top surface;
tilting the main body about the protrusion to bring the bottom surface switch into contact with a work surface; and
actuating the bottom surface switch against the work surface.
43. The method for operating an input pointer of claim 39, further comprising:
sliding the protrusion across the work surface to a selected position; and
actuating the bottom surface switch against the work surface at the selected position.
US12/104,673 2003-06-25 2008-04-17 Input pointer and input device Abandoned US20080198132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/104,673 US20080198132A1 (en) 2003-06-25 2008-04-17 Input pointer and input device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-180581 2003-06-25
JP2003180581A JP2005018313A (en) 2003-06-25 2003-06-25 Input pointing unit and input device
US10/874,689 US7369120B2 (en) 2003-06-25 2004-06-24 Input pointer and input device
US12/104,673 US20080198132A1 (en) 2003-06-25 2008-04-17 Input pointer and input device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/874,689 Continuation US7369120B2 (en) 2003-06-25 2004-06-24 Input pointer and input device

Publications (1)

Publication Number Publication Date
US20080198132A1 true US20080198132A1 (en) 2008-08-21

Family

ID=34074284

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/874,689 Expired - Fee Related US7369120B2 (en) 2003-06-25 2004-06-24 Input pointer and input device
US12/104,673 Abandoned US20080198132A1 (en) 2003-06-25 2008-04-17 Input pointer and input device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/874,689 Expired - Fee Related US7369120B2 (en) 2003-06-25 2004-06-24 Input pointer and input device

Country Status (2)

Country Link
US (2) US7369120B2 (en)
JP (1) JP2005018313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164868A1 (en) * 2008-12-31 2010-07-01 Cheng-Cheng Wu Mouse with adjustable button activating pressure

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885111B1 (en) 2007-05-08 2009-02-20 유병한 Mouse for computer
KR20090030697A (en) * 2007-09-20 2009-03-25 오의진 Multi-functional mouse
KR20100012134A (en) * 2008-07-28 2010-02-08 신호열 A mouse for notebook-pc
KR200447968Y1 (en) 2008-10-21 2010-03-05 김철호 Computer mouse
KR200447487Y1 (en) * 2008-10-09 2010-01-26 김철호 Computer mouse
WO2010013988A2 (en) * 2008-08-01 2010-02-04 Kim Cheol Ho Computer mouse
US20110095992A1 (en) * 2009-10-26 2011-04-28 Aten International Co., Ltd. Tools with multiple contact points for use on touch panel
JP2011197644A (en) * 2010-01-29 2011-10-06 Sanyo Electric Co Ltd Projection image display device
US20140085205A1 (en) * 2011-04-21 2014-03-27 Cheolwoo Kim Universal motion controller in which a 3d movement and a rotational input are possible
CN102841691A (en) * 2011-06-24 2012-12-26 致伸科技股份有限公司 Induction type mouse

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948926A (en) * 1988-01-29 1990-08-14 Kabushiki Kaisha Wakom Position detecting apparatus
US5260696A (en) * 1991-02-19 1993-11-09 Maynard Jr Stuart T Multiple signaling mouse with faceted surfaces
US5776585A (en) * 1995-09-26 1998-07-07 Narumi China Corporation Mouse pad
US6064371A (en) * 1998-02-06 2000-05-16 International Business Machines Corporation PC mouse incorporating adjustability
US20010011998A1 (en) * 1997-04-09 2001-08-09 Hiroaki Agata Embedded keyboard pointing device with keyboard unit and information processing apparatus
US6567079B1 (en) * 1995-03-06 2003-05-20 Carnegie Mellon University Portable computer system with ergonomic input device
US20040004601A1 (en) * 2002-07-02 2004-01-08 Luke Wu Virtual position movement capturing apparatus
US20040039545A1 (en) * 2001-08-24 2004-02-26 Yuji Katsurahira Position detector
US6798399B2 (en) * 2001-09-04 2004-09-28 S Twenty One International, Inc. Elevated input device
US6844871B1 (en) * 1999-11-05 2005-01-18 Microsoft Corporation Method and apparatus for computer input using six degrees of freedom
US20080275309A1 (en) * 2000-06-16 2008-11-06 John Stivoric Input output device for use with body monitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064384A (en) * 1996-08-26 2000-05-16 E-Brook Systems Pte Ltd Computer user interface system and method having book image features
US6842169B2 (en) * 2001-10-19 2005-01-11 Research In Motion Limited Hand-held electronic device with multiple input mode thumbwheel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948926A (en) * 1988-01-29 1990-08-14 Kabushiki Kaisha Wakom Position detecting apparatus
US5260696A (en) * 1991-02-19 1993-11-09 Maynard Jr Stuart T Multiple signaling mouse with faceted surfaces
US6567079B1 (en) * 1995-03-06 2003-05-20 Carnegie Mellon University Portable computer system with ergonomic input device
US5776585A (en) * 1995-09-26 1998-07-07 Narumi China Corporation Mouse pad
US20010011998A1 (en) * 1997-04-09 2001-08-09 Hiroaki Agata Embedded keyboard pointing device with keyboard unit and information processing apparatus
US6064371A (en) * 1998-02-06 2000-05-16 International Business Machines Corporation PC mouse incorporating adjustability
US6844871B1 (en) * 1999-11-05 2005-01-18 Microsoft Corporation Method and apparatus for computer input using six degrees of freedom
US20080275309A1 (en) * 2000-06-16 2008-11-06 John Stivoric Input output device for use with body monitor
US20040039545A1 (en) * 2001-08-24 2004-02-26 Yuji Katsurahira Position detector
US6798399B2 (en) * 2001-09-04 2004-09-28 S Twenty One International, Inc. Elevated input device
US20040004601A1 (en) * 2002-07-02 2004-01-08 Luke Wu Virtual position movement capturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164868A1 (en) * 2008-12-31 2010-07-01 Cheng-Cheng Wu Mouse with adjustable button activating pressure
US7995035B2 (en) * 2008-12-31 2011-08-09 Dexin Corporation Mouse with adjustable button activating pressure

Also Published As

Publication number Publication date
US7369120B2 (en) 2008-05-06
JP2005018313A (en) 2005-01-20
US20050017950A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US20080198132A1 (en) Input pointer and input device
US8536472B2 (en) Rotary switch mechanism
US7233318B1 (en) Multi-button mouse
US10156914B2 (en) Ambidextrous mouse
KR100569804B1 (en) Coordinate input device convertible between right-handed and left-handed modes
US9128539B2 (en) Ergonomic mouse device with multi-programmable buttons
CA2364357C (en) Hand-held electronic device with multiple input mode thumbwheel
US6075518A (en) Rotational X-axis pointing device
US20090033632A1 (en) Integrated touch pad and pen-based tablet input system
US6348912B1 (en) Family mouse
US6762751B2 (en) Optical pointing device
US20080007532A1 (en) Touch-sensitive pad capable of detecting depressing pressure
JPH08335132A (en) Position instruction unit and stylus pen
WO2010123651A2 (en) Touch-screen and method for an electronic device
JP2007512627A (en) Small pointing device
EP0749137A2 (en) Side switch mechanism, and stylus pen using same
JP2008513906A (en) Keypad ergonomics
US8310448B2 (en) Wheel mouse
US7876306B2 (en) Mouse with tilt wheel encoding mechanism
JPH08292830A (en) Position indicator
JP2008140211A (en) Control method for input part and input device using the same and electronic equipment
US7502012B2 (en) Input device and personal computer
US20120044145A1 (en) Scroll mouse with a screen scroll function
US6613996B2 (en) Low-noise key switch and keyboard thereof
US6778166B2 (en) Keyless pointer input device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION