US20080168795A1 - Storage Device - Google Patents

Storage Device Download PDF

Info

Publication number
US20080168795A1
US20080168795A1 US11/909,370 US90937006A US2008168795A1 US 20080168795 A1 US20080168795 A1 US 20080168795A1 US 90937006 A US90937006 A US 90937006A US 2008168795 A1 US2008168795 A1 US 2008168795A1
Authority
US
United States
Prior art keywords
storage device
container
portable storage
temperature
receptacle portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/909,370
Inventor
David Anthony Alfille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20080168795A1 publication Critical patent/US20080168795A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/26Butter or cheese dishes or covers, with or without cooling or heating devices; Protective covers for food containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/804Boxes

Definitions

  • This invention relates to a storage device in particular a storage device within which a predetermined temperature is maintained.
  • Certain solid food items which melt or soften at room temperature are traditionally kept in a storage area such as a refrigerator or an area of a building with a relatively low ambient temperature to maintain the food item in a substantially solid form and to prolong the storage life of the food item.
  • a storage area such as a refrigerator or an area of a building with a relatively low ambient temperature to maintain the food item in a substantially solid form and to prolong the storage life of the food item.
  • the butter may be removed from the storage area and transferred to an area with a relatively higher ambient temperature.
  • time must be allowed for the butter to warm up and reach a required serving temperature to facilitate the use of the butter, for example for spreading.
  • a problem with placing a portion of butter in a known container on, for example, a dining surface for use during a meal is that, the butter must be allowed to soften at room temperature, the time when the butter is at an ideal serving temperature may not coincide with when the butter is actually required during the meal. If the butter is provided at the ideal serving temperature, and if the ambient room temperature is too high, the butter may not be maintained at the ideal serving temperature and may continue to soften, especially if the butter is not used immediately. In extreme cases, the butter can become liquified and unsuitable for use.
  • a storage device adapted to contain a food item comprising: a closeable container; a means for maintaining a predetermined temperature within the container irrespective of ambient temperature; and an internal power source adapted to power the means for maintaining a predetermined temperature.
  • the internal power source may be a rechargeable battery.
  • the rechargeable battery may be recharged in the storage device, for example by means of a removable connection to a mains power supply.
  • the removable connection may be in the form of a recharging unit.
  • the battery may be replaceable.
  • the means for maintaining a predetermined temperature within the container may comprise a heat transfer member, for example of aluminium, preferably die-cast aluminium.
  • the means for maintaining a predetermined temperature within the container may comprise a thermoelectric device, for example a Peltier Effect device.
  • thermoelectric device may comprise a pair of opposed plates separated by a semi-conductor material.
  • the opposed plates may be ceramic plates.
  • a temperature-gradient may be produced between the opposed plates in the presence of a DC electric current.
  • the semi-conductor material may be bismuth telluride.
  • the means for maintaining a predetermined temperature effect may comprise a heat sink and/or a fan.
  • Electronic control means may be provided to regulate the means for maintaining a predetermined temperature.
  • the predetermined temperature may be in a range from substantially 10 degrees Celsius to substantially 20 degrees Celsius.
  • the container of the storage device may comprise an insulating layer.
  • the insulating lay may comprise a moulded thermally insulating plastics material.
  • the storage device may comprise an insert within the container adapted to receive the food item.
  • the insert may be removable from the container.
  • the closeable container may comprise a removable lid
  • FIG. 1 is a perspective view of an embodiment of a storage device in accordance with the present invention provided with a recharging unit;
  • FIG. 2 is a first cross-sectional view of the storage device in FIG. 1 ;
  • FIG. 3 is a second cross-sectional view of the storage device in FIG. 1 , taken along the line A-A in FIG. 2 ;
  • FIG. 4 is a cross-sectional view of an insert of the storage device in FIG. 1 ;
  • FIG. 5 is a side view of an arrangement of a heat transfer member and a heat sink of the storage device in FIG. 1 ;
  • FIG. 6 is an end view of the arrangements of FIG. 5 ;
  • FIG. 7 is a cross-sectional view of the recharging unit in FIG. 1 .
  • the storage device 1 comprises a first container provided by a substantially rectangular box-shaped body 3 having four substantially upright walls and an opening at an upper face 5 .
  • the body is provided with a spherical foot 7 at each of the four lower corners of the body, the feet 7 being adapted to support the device on a surface.
  • a lid 9 having a upper face and four downwardly extending walls is also provided. The lid 9 is arranged to fit over the open face 5 and externally over the four upright walls of the body to form a closeable container.
  • a handle 11 is provided on the lid 9 to enable the lid to be removed from the body.
  • the body 3 and lid 9 of the storage device are made from a resilient polycarbonate plastics material. However, it should be appreciated that other resilient materials could be used.
  • the feet 7 of the storage device are made of a rubber material, for example acrylonitrile-butadiene-styrene (BDS) rubber.
  • An internal upper region of the body 3 is formed with a cavity providing a first receptacle portion and having an internal bottom face and four side walls the side wall extending upwardly towards the open face of the body.
  • the four side walls of the cavity are in the form of a substantially inverted elongate “U” such that the side walls of the cavity extend upwards the open face of the body, curve away from each other and extend downward to form portions of outer wall of the body.
  • the shape of the side walls forms a hollow space between the outer walls of the body and the walls of the cavity.
  • a thermal insulating block 13 is provided in this hollow space. The thermal insulating block is shaped to surround the bottom and sides of the cavity.
  • the thermal insulating block comprises moulded expanded polystyrene but may be formed from any suitable thermal insulating material such as polyurethane foam material.
  • a thermal insulation material may be foamed, in situ, within the hollow space between the outer walls of the body and the walls of the cavity.
  • a majority of the side walls forming the hollow space is of resilient polycarbonate plastics materials.
  • the bottom face and lower portions of the walls of the cavity may be of aluminium, preferably die-cast aluminium, forming a dish-shaped heat transfer member 15 .
  • An insert 17 providing a second container of the device, into which a food item 19 , for example butter, can be placed is provided within the cavity of the upper region of the body.
  • the insert is dimensioned such that the outer surfaces of the insert are substantially in contact with upper regions of the side walls of the cavity with the heat transfer member 15 .
  • Upper portions 21 of the side walls 23 of the insert 17 are, as shown in FIG. 4 , shaped in the form of a substantially inverted “U” to correspond to the shape of the upper surfaces of the walls of the cavity such that the side walls 23 extend over the top, and partially down the outer surface, of the upper portion of the body (as shown in FIGS. 2 and 3 ).
  • the insert is manufactured from a high temperature resistant plastics material, for example a polycarbonate plastics material.
  • the insert is removable from the cavity in the upper region of the body in order that surfaces of the insert which in use come into contact with food items can be cleaned.
  • an internal power source 25 in the form of a rechargeable battery pack, a heat sink 27 as known to a person skilled in the art, a fan 29 and associated electronic circuitry provided on a printed circuit board 31 (see FIGS. 2 and 3 ).
  • FIGS. 5 and 6 The relative arrangement of the heat sink 27 , fan 29 , and dish-shaped heat transfer member 15 is shown in FIGS. 5 and 6 .
  • the fan 29 is positioned below the heat sink 27 , adjacent to the surface of the heat sink furthest from the dish-shaped heat transfer member.
  • the battery pack 25 and the heat sink 27 are arranged side-by-side beneath the bottom surface of the dish-shaped heat transfer member.
  • the heat sink 27 is provided with an undulating surface in order to increase the surface area of the heat sink from which heat can be dissipated.
  • a switch (not shown) is provided on the body of the storage device to enable the battery pack to be isolated from the electronic circuitry, for example when the storage device is not in use.
  • the heat sink 27 is separated from the bottom surface of the dish-shaped heat transfer member 15 lining the lower portion of the cavity by means of thermally and electrically insulating spacers 33 ( FIG. 6 ).
  • the insulating spacers pass through apertures in the lower portion of the thermal insulating block 13 positioned between the heat transfer member 15 and the heat sink 27 .
  • a Peltier Effect thermoelectric device 35 Positioned between the heat transfer member 15 and the heat sink 27 is a Peltier Effect thermoelectric device 35 , for example a Marlow MI 1013T device.
  • a thermistor 37 is located on the heat transfer member 15 and is the close thermal contact with the heat transfer member.
  • the thermistor 37 is in electrical communication with temperature controlling circuitry means provided on the printed circuit board 31 .
  • the body of the device in the region of the heat sink 27 is provided with a plurality of apertures 39 to enable heat to be dissipated, for example by conduction and convection, from the heat sink 27 to the outside of the device.
  • the fan 29 positioned adjacent and below the heat sink 27 , assists in the cooling of the heat sink.
  • Guard means 41 is provided to prevent the insertion of items, for example fingers, into gaps between the blades of the fan.
  • FIG. 1 shows the device positioned on a recharging unit 43 , the recharging unit being in the form of a base plate.
  • the recharging unit 43 is shown in detail in FIG. 7 .
  • An upper surface 45 of the recharging unit 43 is shaped and dimensioned to correspond to the lower surface of the storage device 1 in order that the storage device can be easily and securely positioned on the unit 43 .
  • Cup-shaped members 47 having respective part-spherical surfaces to receive the feet 7 of the storage device are provided on the recharging unit.
  • a male connector 49 extends upwardly from the upper surface 45 of the recharging unit and is inserted, in use, into a female connector (not shown) provided in the base of the storage device to enable an electrical connection to be made between the recharging unit and the storage device. Power supplied by a mains power supply (not shown) is used to recharge the battery pack in a manner known to a person skilled in the art.
  • the temperature within the cavity of the storage device is maintained at a predetermined value irrespective of the ambient temperature as described below.
  • a portion of butter 19 is placed in the insert 17 of the storage device and the lid 9 is placed on the body to close the device.
  • the temperature within the device detected by the thermistor 37 will initially be substantially equal to the ambient temperature.
  • the resistance of the thermistor 37 equating to a predetermined temperature can be varied by means of a control potentiometer (not shown).
  • the predetermined temperature can be adjusted within a temperature range, for example between substantially 10 to substantially 20 degrees Celsius.
  • the predetermined temperature can be selected, for example, to equate to the ideal spreading temperature of butter.
  • the maintenance of a constant predetermined temperature of the butter within the device can also aid in ensuring an acceptable storage life for the butter.
  • the thermoelectric device 35 is a solid-state component which acts as a heat pump.
  • the thermoelectric device is in the form of two opposed plates, for example ceramic plates, separated by a semi-conductor material, for example bismuth telluride. When a DC current is applied by the internal power supply to the thermoelectric device a temperature gradient is formed between the two plates.
  • the plate nearer the cavity is configured to be the “cold face” and the plate further from the cavity, that is nearer to the heat sink is configure to be the “hot face”.
  • heat As heat is dissipated from the “hot face” by means of the adjacent heat sink, heat must be moved from the “cold face” to the “hot face” to maintain the aforementioned temperature gradient. Consequently, the temperature within the cavity is reduced by the action of the thermoelectric device.
  • Heat from the heat sink 27 is dissipated to the surrounding environment of the storage device via the apertures 39 in the body of the device.
  • the loss of heat from the heat sink 27 is assisted by the fan 29 which is used to cool the heat sink.
  • Comparison means provided in the electronics determines whether the temperature detected by the thermistor 37 is above or below the predetermined temperature and controls the thermoelectric device 35 accordingly. By this means, the temperature within the storage device can be maintained at the predetermined temperature.
  • the thermistor 37 will detect an internal temperature lower than the predetermined value and the thermoelectric device will be used to increase the heat within the cavity.
  • the polarity of the DC current to the thermoelectric device 35 can be reversed, in a manner known to a person skilled in the art.
  • the plate nearer the cavity is configured to be the “hot face” and the plate further from the cavity, that is nearer to the heat sink is configured to be the “cold face”.
  • heat As heat is dissipated from the “hot face” to heat up the cavity of the storage device, heat must be moved from the “cold face” to the “hot face” to maintain the aforementioned temperature gradient. Consequently, the temperature with the cavity is increased by the action of the thermoelectric device.
  • the predetermined internal temperature will be maintained within the storage device.
  • the storage device can be removed from the recharging unit 43 and transported to a location where a food item contained therein is required and the food within the device will continue to be maintained at the predetermined temperature.
  • the device When the storage device is removed from the recharging unit 43 , the device is capable of maintaining the predetermined temperature, for example, for the duration of a meal, and preferably for up to 2 hours. However, batteries within the battery pack 25 will discharge during the time the storage unit is internally powered. If the storage device is not returned to the recharging unit, the batteries will continue to discharge and damage could be caused to the rechargeable batteries and/or the storage device. Consequently, a low voltage detection means (not shown) is provided which operates to prevent excessive discharge from the batteries. The low voltage detection means, as known to a person skilled in the art, will only allow the thermoelectric device 35 and fan 29 to work when the voltage provided by the batteries of the battery pack is above a predetermined value.
  • a storage device in accordance with the present invention could be provided with batteries which are recharged by direct connection of a removable connecting lead to a mains power supply.
  • the storage device could be powered by replaceable batteries.
  • the insert 17 for containing food items is described as being removable from the cavity in the insulating block 13 , it should be appreciated that the insert may be rigidly fixed with the device. Alternatively a storage device in accordance with the present invention may not incorporate an insert.
  • a bottom portion of the cavity in the internal region of the body has been described as being lined with a heat transfer member 15 , it should be appreciated that a skin may be provided over a surface of the heat transfer member within the cavity such that food items can be placed directly in the cavity without coming into direct contact with the heat transfer member.
  • the body of storage device in accordance with the present invention need not be restricted to a rectangular box-shaped configuration but instead could be designed to be any shape that is required, for example for decorative or aesthetic reasons.
  • the outer surface of the body and/or lid of the storage device could be decorated, for example with different single colours, with patterns or other surface decorations.

Abstract

A storage device (1) adapted to contain a food item such a butter comprises a closeable container (3), a means for maintaining a predetermined temperature with the container irrespective of ambient temperature and an internal power source adapted to power the means for maintaining a predetermined temperature. The closeable container (3) is located on a recharging unit (43) by way of spherical feet (7) which are received in part-spherical cups (47) on the recharging unit (43).

Description

  • This invention relates to a storage device in particular a storage device within which a predetermined temperature is maintained.
  • Certain solid food items which melt or soften at room temperature, for example butter, are traditionally kept in a storage area such as a refrigerator or an area of a building with a relatively low ambient temperature to maintain the food item in a substantially solid form and to prolong the storage life of the food item. When a person wished to use or serve butter, for example, the butter may be removed from the storage area and transferred to an area with a relatively higher ambient temperature. In general, time must be allowed for the butter to warm up and reach a required serving temperature to facilitate the use of the butter, for example for spreading.
  • A problem with placing a portion of butter in a known container on, for example, a dining surface for use during a meal is that, the butter must be allowed to soften at room temperature, the time when the butter is at an ideal serving temperature may not coincide with when the butter is actually required during the meal. If the butter is provided at the ideal serving temperature, and if the ambient room temperature is too high, the butter may not be maintained at the ideal serving temperature and may continue to soften, especially if the butter is not used immediately. In extreme cases, the butter can become liquified and unsuitable for use.
  • There is a need, therefore, for a storage device for food items, such as butter, which can easily and readily be transported to a location where the food item is required but which is able to maintain the food item at a predetermined temperature.
  • It is therefore an object of the present invention to provide a storage device which overcomes or minimises these problems.
  • According to the present invention there is provided a storage device adapted to contain a food item comprising: a closeable container; a means for maintaining a predetermined temperature within the container irrespective of ambient temperature; and an internal power source adapted to power the means for maintaining a predetermined temperature.
  • The internal power source may be a rechargeable battery. The rechargeable battery may be recharged in the storage device, for example by means of a removable connection to a mains power supply. The removable connection may be in the form of a recharging unit.
  • Alternatively, the battery may be replaceable.
  • The means for maintaining a predetermined temperature within the container may comprise a heat transfer member, for example of aluminium, preferably die-cast aluminium.
  • The means for maintaining a predetermined temperature within the container may comprise a thermoelectric device, for example a Peltier Effect device.
  • The thermoelectric device may comprise a pair of opposed plates separated by a semi-conductor material.
  • The opposed plates may be ceramic plates.
  • A temperature-gradient may be produced between the opposed plates in the presence of a DC electric current.
  • The semi-conductor material may be bismuth telluride.
  • The means for maintaining a predetermined temperature effect may comprise a heat sink and/or a fan.
  • Electronic control means may be provided to regulate the means for maintaining a predetermined temperature.
  • The predetermined temperature may be in a range from substantially 10 degrees Celsius to substantially 20 degrees Celsius.
  • The container of the storage device may comprise an insulating layer. The insulating lay may comprise a moulded thermally insulating plastics material.
  • The storage device may comprise an insert within the container adapted to receive the food item. The insert may be removable from the container.
  • The closeable container may comprise a removable lid
  • For a better understanding of the present invention and to show more clearly how it may be carried into effect reference will now be made, by way of example, to the accompanying drawings in which:
  • FIG. 1 is a perspective view of an embodiment of a storage device in accordance with the present invention provided with a recharging unit;
  • FIG. 2 is a first cross-sectional view of the storage device in FIG. 1;
  • FIG. 3 is a second cross-sectional view of the storage device in FIG. 1, taken along the line A-A in FIG. 2;
  • FIG. 4 is a cross-sectional view of an insert of the storage device in FIG. 1;
  • FIG. 5 is a side view of an arrangement of a heat transfer member and a heat sink of the storage device in FIG. 1;
  • FIG. 6 is an end view of the arrangements of FIG. 5; and
  • FIG. 7 is a cross-sectional view of the recharging unit in FIG. 1.
  • Referring to FIGS. 1 to 3, the storage device 1 comprises a first container provided by a substantially rectangular box-shaped body 3 having four substantially upright walls and an opening at an upper face 5. The body is provided with a spherical foot 7 at each of the four lower corners of the body, the feet 7 being adapted to support the device on a surface. A lid 9 having a upper face and four downwardly extending walls is also provided. The lid 9 is arranged to fit over the open face 5 and externally over the four upright walls of the body to form a closeable container. A handle 11 is provided on the lid 9 to enable the lid to be removed from the body.
  • The body 3 and lid 9 of the storage device are made from a resilient polycarbonate plastics material. However, it should be appreciated that other resilient materials could be used. The feet 7 of the storage device are made of a rubber material, for example acrylonitrile-butadiene-styrene (BDS) rubber.
  • An internal upper region of the body 3 is formed with a cavity providing a first receptacle portion and having an internal bottom face and four side walls the side wall extending upwardly towards the open face of the body. The four side walls of the cavity are in the form of a substantially inverted elongate “U” such that the side walls of the cavity extend upwards the open face of the body, curve away from each other and extend downward to form portions of outer wall of the body. The shape of the side walls forms a hollow space between the outer walls of the body and the walls of the cavity. A thermal insulating block 13 is provided in this hollow space. The thermal insulating block is shaped to surround the bottom and sides of the cavity. The thermal insulating block comprises moulded expanded polystyrene but may be formed from any suitable thermal insulating material such as polyurethane foam material. A thermal insulation material may be foamed, in situ, within the hollow space between the outer walls of the body and the walls of the cavity.
  • A majority of the side walls forming the hollow space is of resilient polycarbonate plastics materials. However, the bottom face and lower portions of the walls of the cavity may be of aluminium, preferably die-cast aluminium, forming a dish-shaped heat transfer member 15.
  • An insert 17 providing a second container of the device, into which a food item 19, for example butter, can be placed is provided within the cavity of the upper region of the body. The insert is dimensioned such that the outer surfaces of the insert are substantially in contact with upper regions of the side walls of the cavity with the heat transfer member 15. Upper portions 21 of the side walls 23 of the insert 17 are, as shown in FIG. 4, shaped in the form of a substantially inverted “U” to correspond to the shape of the upper surfaces of the walls of the cavity such that the side walls 23 extend over the top, and partially down the outer surface, of the upper portion of the body (as shown in FIGS. 2 and 3). The insert is manufactured from a high temperature resistant plastics material, for example a polycarbonate plastics material. The insert is removable from the cavity in the upper region of the body in order that surfaces of the insert which in use come into contact with food items can be cleaned.
  • Provided in a lower region of the body, beneath the insulating block 13, are an internal power source 25, in the form of a rechargeable battery pack, a heat sink 27 as known to a person skilled in the art, a fan 29 and associated electronic circuitry provided on a printed circuit board 31 (see FIGS. 2 and 3).
  • The relative arrangement of the heat sink 27, fan 29, and dish-shaped heat transfer member 15 is shown in FIGS. 5 and 6.
  • The fan 29 is positioned below the heat sink 27, adjacent to the surface of the heat sink furthest from the dish-shaped heat transfer member.
  • The battery pack 25 and the heat sink 27 are arranged side-by-side beneath the bottom surface of the dish-shaped heat transfer member.
  • As shown in FIG. 3, the heat sink 27 is provided with an undulating surface in order to increase the surface area of the heat sink from which heat can be dissipated.
  • A switch (not shown) is provided on the body of the storage device to enable the battery pack to be isolated from the electronic circuitry, for example when the storage device is not in use.
  • The heat sink 27 is separated from the bottom surface of the dish-shaped heat transfer member 15 lining the lower portion of the cavity by means of thermally and electrically insulating spacers 33 (FIG. 6). The insulating spacers pass through apertures in the lower portion of the thermal insulating block 13 positioned between the heat transfer member 15 and the heat sink 27. Positioned between the heat transfer member 15 and the heat sink 27 is a Peltier Effect thermoelectric device 35, for example a Marlow MI 1013T device.
  • As shown in FIG. 6, a thermistor 37 is located on the heat transfer member 15 and is the close thermal contact with the heat transfer member. The thermistor 37 is in electrical communication with temperature controlling circuitry means provided on the printed circuit board 31.
  • As shown in FIG. 1, the body of the device in the region of the heat sink 27 is provided with a plurality of apertures 39 to enable heat to be dissipated, for example by conduction and convection, from the heat sink 27 to the outside of the device.
  • The fan 29, positioned adjacent and below the heat sink 27, assists in the cooling of the heat sink. Guard means 41 is provided to prevent the insertion of items, for example fingers, into gaps between the blades of the fan.
  • FIG. 1 shows the device positioned on a recharging unit 43, the recharging unit being in the form of a base plate. The recharging unit 43 is shown in detail in FIG. 7.
  • An upper surface 45 of the recharging unit 43 is shaped and dimensioned to correspond to the lower surface of the storage device 1 in order that the storage device can be easily and securely positioned on the unit 43. Cup-shaped members 47 having respective part-spherical surfaces to receive the feet 7 of the storage device are provided on the recharging unit. A male connector 49 extends upwardly from the upper surface 45 of the recharging unit and is inserted, in use, into a female connector (not shown) provided in the base of the storage device to enable an electrical connection to be made between the recharging unit and the storage device. Power supplied by a mains power supply (not shown) is used to recharge the battery pack in a manner known to a person skilled in the art.
  • The temperature within the cavity of the storage device is maintained at a predetermined value irrespective of the ambient temperature as described below.
  • A portion of butter 19 is placed in the insert 17 of the storage device and the lid 9 is placed on the body to close the device. The temperature within the device detected by the thermistor 37 will initially be substantially equal to the ambient temperature.
  • The resistance of the thermistor 37 equating to a predetermined temperature can be varied by means of a control potentiometer (not shown). The predetermined temperature can be adjusted within a temperature range, for example between substantially 10 to substantially 20 degrees Celsius. The predetermined temperature can be selected, for example, to equate to the ideal spreading temperature of butter. The maintenance of a constant predetermined temperature of the butter within the device can also aid in ensuring an acceptable storage life for the butter.
  • Detection by the electronics within the storage device of a temperature of the heat transfer member 15 in excess of the predetermined temperature, for example in excess of the 19.5 degrees Celsius, results in heat from within the cavity and the insert 17 of the storage device being removed via the thermoelectric device 35.
  • The thermoelectric device 35 is a solid-state component which acts as a heat pump. The thermoelectric device is in the form of two opposed plates, for example ceramic plates, separated by a semi-conductor material, for example bismuth telluride. When a DC current is applied by the internal power supply to the thermoelectric device a temperature gradient is formed between the two plates.
  • In the situation where there is a requirement to reduce the temperature within the cavity of the storage device, the plate nearer the cavity is configured to be the “cold face” and the plate further from the cavity, that is nearer to the heat sink is configure to be the “hot face”. As heat is dissipated from the “hot face” by means of the adjacent heat sink, heat must be moved from the “cold face” to the “hot face” to maintain the aforementioned temperature gradient. Consequently, the temperature within the cavity is reduced by the action of the thermoelectric device.
  • Heat from the heat sink 27 is dissipated to the surrounding environment of the storage device via the apertures 39 in the body of the device.
  • The loss of heat from the heat sink 27 is assisted by the fan 29 which is used to cool the heat sink. Comparison means provided in the electronics determines whether the temperature detected by the thermistor 37 is above or below the predetermined temperature and controls the thermoelectric device 35 accordingly. By this means, the temperature within the storage device can be maintained at the predetermined temperature.
  • As it will be appreciated, if the ambient temperature is lower than the predetermined temperature, the thermistor 37 will detect an internal temperature lower than the predetermined value and the thermoelectric device will be used to increase the heat within the cavity. By mans of the electronic comparison and control means, the polarity of the DC current to the thermoelectric device 35 can be reversed, in a manner known to a person skilled in the art. As such the plate nearer the cavity is configured to be the “hot face” and the plate further from the cavity, that is nearer to the heat sink is configured to be the “cold face”. As heat is dissipated from the “hot face” to heat up the cavity of the storage device, heat must be moved from the “cold face” to the “hot face” to maintain the aforementioned temperature gradient. Consequently, the temperature with the cavity is increased by the action of the thermoelectric device.
  • While the storage device is connected to the recharging unit 43 the predetermined internal temperature will be maintained within the storage device. However, as the storage device has its own internal power source 25, the storage device can be removed from the recharging unit 43 and transported to a location where a food item contained therein is required and the food within the device will continue to be maintained at the predetermined temperature.
  • When the storage device is removed from the recharging unit 43, the device is capable of maintaining the predetermined temperature, for example, for the duration of a meal, and preferably for up to 2 hours. However, batteries within the battery pack 25 will discharge during the time the storage unit is internally powered. If the storage device is not returned to the recharging unit, the batteries will continue to discharge and damage could be caused to the rechargeable batteries and/or the storage device. Consequently, a low voltage detection means (not shown) is provided which operates to prevent excessive discharge from the batteries. The low voltage detection means, as known to a person skilled in the art, will only allow the thermoelectric device 35 and fan 29 to work when the voltage provided by the batteries of the battery pack is above a predetermined value.
  • Although the use of a recharging unit 43 onto which a storage device in accordance with the present invention can be placed has been described as a means for recharging the batteries of the battery pack 25 of the storage device, it should be appreciated that a storage device in accordance with the present invention could be provided with batteries which are recharged by direct connection of a removable connecting lead to a mains power supply. Alternatively the storage device could be powered by replaceable batteries.
  • Although the insert 17 for containing food items is described as being removable from the cavity in the insulating block 13, it should be appreciated that the insert may be rigidly fixed with the device. Alternatively a storage device in accordance with the present invention may not incorporate an insert.
  • Although a bottom portion of the cavity in the internal region of the body has been described as being lined with a heat transfer member 15, it should be appreciated that a skin may be provided over a surface of the heat transfer member within the cavity such that food items can be placed directly in the cavity without coming into direct contact with the heat transfer member.
  • The body of storage device in accordance with the present invention need not be restricted to a rectangular box-shaped configuration but instead could be designed to be any shape that is required, for example for decorative or aesthetic reasons.
  • The outer surface of the body and/or lid of the storage device could be decorated, for example with different single colours, with patterns or other surface decorations.

Claims (15)

1. A portable storage device for maintaining the temperature of at least one food item contained in the device, the storage device comprising:
a. a first container having a receptacle portion and associated temperature determination elements capable of determining the temperature within the receptacle portion, the temperature determination elements being coupled to a power source;
b. a charging device capable of being engaged to the container and disengaged from the container, the charging device having at least one surface shaped to correspond to a non-flat surface of the container, such that, when the charging device is engaged to the container, power is supplied to the power source, and, when the charging device is disengaged from the container, the power source is capable of supplying power to the temperature determination elements for some period of time without the charging device.
2. A portable storage device according to claim 1, including a further, second container having a receptacle portion capable of being placed within the receptacle portion of the first container, the second container being adapted to store the said at least one food item.
3. A portable storage device according to claim 2, wherein the second container comprises a plastic material.
4. A portable storage device according to claim 2 or 3, including a lid capable of providing an enclosure around the first and second containers when the lid is placed on the first container and the receptacle portion of the second container is placed within the receptacle portion of the first container.
5. (canceled)
6. A portable storage device according to claim 1, wherein the first container has feet that support the first container and the charging device has cup-shaped members for receiving the feet, the feet providing respective said non-flat surface of the container and the cup-shaped members the said corresponding surfaces of the charging device.
7. A portable storage device according to claim 6, wherein the non-flat surfaces of the feet and the cup-shaped members are part-spherical.
8. A portable storage device according to claim 7, wherein the feet are substantially spherical.
9. A portable storage device according to claim 1, wherein the power source comprises at least one rechargeable battery.
10. A portable storage device according to claim 1, wherein the temperature determination elements comprise a heat transfer element, a thermoelectric module and a temperature control mechanism.
11. A portable storage device according to claim 10, wherein the heat transfer element comprises aluminium material.
12. A portable storage device according to claim 10 or 11, wherein the thermoelectric module is a Peltier Effect module.
13. A portable storage device according to claims 10, 11, or 12, wherein the temperature control mechanism comprises a thermistor and a control potentiometer allowing a user of the storage device to select the temperature within the first receptacle portion of the first container.
14. A portable storage device according to claim 1, wherein the at least one food item is a portion of butter.
15. A portable storage device according to claim 6 or 7, wherein the lid further comprises a handle for removing the lid from the first container.
US11/909,370 2005-03-23 2006-03-22 Storage Device Abandoned US20080168795A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0506005A GB2424358B (en) 2005-03-23 2005-03-23 Temperature-controlled container for foodstuffs
GB0506005.8 2005-03-23
PCT/GB2006/001043 WO2006100476A1 (en) 2005-03-23 2006-03-22 Storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2006/001043 A-371-Of-International WO2006100476A1 (en) 2005-03-23 2006-03-22 Storage device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/668,805 Continuation US9267723B2 (en) 2005-03-23 2012-11-05 Storage device

Publications (1)

Publication Number Publication Date
US20080168795A1 true US20080168795A1 (en) 2008-07-17

Family

ID=34531768

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/909,370 Abandoned US20080168795A1 (en) 2005-03-23 2006-03-22 Storage Device
US13/668,805 Active 2027-09-21 US9267723B2 (en) 2005-03-23 2012-11-05 Storage device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/668,805 Active 2027-09-21 US9267723B2 (en) 2005-03-23 2012-11-05 Storage device

Country Status (4)

Country Link
US (2) US20080168795A1 (en)
EP (1) EP1861666A1 (en)
GB (1) GB2424358B (en)
WO (1) WO2006100476A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278278A1 (en) * 2010-05-17 2011-11-17 Emerich Paul M Open Warming Cabinet
US20130319013A1 (en) * 2012-06-05 2013-12-05 Applied Materials, Inc. Compact ampoule thermal management system
US8850829B2 (en) 2012-01-10 2014-10-07 Spring (U.S.A.) Corporation Heating and cooling unit with semiconductor device and heat pipe
US20160025388A1 (en) * 2014-07-23 2016-01-28 General Electric Company Refrigerator appliances with movable individually temperature control bins
USD811802S1 (en) 2016-07-15 2018-03-06 Spring (U.S.A.) Corporation Food server
US9909789B2 (en) 2012-01-10 2018-03-06 Spring (U.S.A.) Corporation Heating and cooling unit with canopy light

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8826690B2 (en) 2009-11-13 2014-09-09 Maher Pidarow Food tray
KR20180087618A (en) * 2017-01-25 2018-08-02 엘지전자 주식회사 Container and Refrigerator including the same
US10687663B2 (en) * 2017-08-14 2020-06-23 Angelica Dobbs Temperature controlled container
SE542645C2 (en) 2018-04-09 2020-06-23 Noginvest Ab Storage device
US20210278887A1 (en) 2020-03-05 2021-09-09 Samsung Electronics Co., Ltd. Thermal control for electronic devices
WO2022020590A1 (en) * 2020-07-23 2022-01-27 Botx Solutions, Inc. Systems and methods for monitoring food and/or controlling the quality of food during delivery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407133A (en) * 1981-08-10 1983-10-04 Edmonson Glenn V Self-contained portable temperature-controlled chamber for medications and the like
US4955480A (en) * 1989-07-21 1990-09-11 Sexton Wilson C Portable insulated carrier
US5611206A (en) * 1996-02-12 1997-03-18 Sargent; Charles L. Butter storing and conditioning device
US5941077A (en) * 1998-12-21 1999-08-24 Safyan; Bernard Chill-hot buffet serving tray
US6119461A (en) * 1998-01-05 2000-09-19 Stevick; Glen Thermal-electric container
US6295820B1 (en) * 2000-03-14 2001-10-02 Delta T, Llc Fruit chiller
US6674052B1 (en) * 2002-11-25 2004-01-06 Chin-Kuang Luo Thermal cup
US7174720B2 (en) * 2003-07-07 2007-02-13 Kennedy Brian C Cooker utilizing a peltier device
US7287386B2 (en) * 2001-10-23 2007-10-30 Snuddles, Llc Container cooler and warmer

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044081A (en) * 1934-11-12 1936-06-16 Clark Mfg Co J L Metallic jar
GB612131A (en) * 1946-05-07 1948-11-09 Wilfred Charles Bakewell Wiggi Improvements in mustard pots, preserve jars and butter dishes
US2941289A (en) * 1954-04-21 1960-06-21 Thomas B Chace Method of making clad metal cooking utensils
US3725645A (en) * 1968-12-04 1973-04-03 Shevlin T Casserole for storing and cooking foodstuffs
GB1281534A (en) * 1968-12-12 1972-07-12 Insulex Ltd Insulated vessels
US4089184A (en) * 1976-07-26 1978-05-16 Bipol Ltd. Hand case
US4823554A (en) * 1987-04-22 1989-04-25 Leonard Trachtenberg Vehicle thermoelectric cooling and heating food and drink appliance
JPH03242117A (en) * 1990-02-19 1991-10-29 Shinkichi Tashiro Butter container
DE19732193A1 (en) * 1997-07-26 1998-04-02 Joachim Rieder Cool case for butter
FR2779512B1 (en) * 1998-06-04 2003-03-07 Janick Simeray TEMPERATURE HOLDING SYSTEM FOR PREPARED MEALS SERVED ON A TRAY
IT1319079B1 (en) * 2000-11-02 2003-09-23 Inoxia S R L STAINLESS STEEL COOKING CONTAINER WITH CAPSULAR BOTTOM HEATED BY MAGNETIC INDUCTION
UA75241C2 (en) * 2001-11-09 2006-03-15 Berghoff Worldwide Cooking utensil
NL1020917C2 (en) * 2002-06-21 2003-12-23 Jong Participatie Bakkum B V D Butter dish.
US7168666B2 (en) * 2002-12-23 2007-01-30 Tucker Timothy R Portable support structure
DE20305416U1 (en) * 2003-04-03 2003-10-09 Valicek Karl Travel case for carrying temperature-sensitive medicaments, e.g. insulin, includes controlled Peltier effect coolers connected thermally and electrically in series
US20050205582A1 (en) * 2004-03-19 2005-09-22 Meyer Intellectual Properties Ltd. Titanium based composite cookware
US7431174B2 (en) * 2004-04-05 2008-10-07 Rafael K. Thissen Food and beverage storage and serving vessel comprising an integral phase change material
US20060277924A1 (en) * 2005-06-09 2006-12-14 Robert Platkin Cold hot server

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407133A (en) * 1981-08-10 1983-10-04 Edmonson Glenn V Self-contained portable temperature-controlled chamber for medications and the like
US4955480A (en) * 1989-07-21 1990-09-11 Sexton Wilson C Portable insulated carrier
US5611206A (en) * 1996-02-12 1997-03-18 Sargent; Charles L. Butter storing and conditioning device
US6119461A (en) * 1998-01-05 2000-09-19 Stevick; Glen Thermal-electric container
US5941077A (en) * 1998-12-21 1999-08-24 Safyan; Bernard Chill-hot buffet serving tray
US6295820B1 (en) * 2000-03-14 2001-10-02 Delta T, Llc Fruit chiller
US7287386B2 (en) * 2001-10-23 2007-10-30 Snuddles, Llc Container cooler and warmer
US6674052B1 (en) * 2002-11-25 2004-01-06 Chin-Kuang Luo Thermal cup
US7174720B2 (en) * 2003-07-07 2007-02-13 Kennedy Brian C Cooker utilizing a peltier device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278278A1 (en) * 2010-05-17 2011-11-17 Emerich Paul M Open Warming Cabinet
US8362404B2 (en) * 2010-05-17 2013-01-29 Carter Hoffmann, Inc. Open warming cabinet
US8850829B2 (en) 2012-01-10 2014-10-07 Spring (U.S.A.) Corporation Heating and cooling unit with semiconductor device and heat pipe
US9416995B2 (en) 2012-01-10 2016-08-16 Spring (U.S.A.) Corporation Heating and cooling unit with semiconductor device and heat pipe
US9909789B2 (en) 2012-01-10 2018-03-06 Spring (U.S.A.) Corporation Heating and cooling unit with canopy light
US20130319013A1 (en) * 2012-06-05 2013-12-05 Applied Materials, Inc. Compact ampoule thermal management system
US20130319015A1 (en) * 2012-06-05 2013-12-05 Applied Materials, Inc. Compact ampoule thermal management system
US9279604B2 (en) * 2012-06-05 2016-03-08 Applied Materials, Inc. Compact ampoule thermal management system
US9347696B2 (en) * 2012-06-05 2016-05-24 Applied Materials, Inc. Compact ampoule thermal management system
US20160025388A1 (en) * 2014-07-23 2016-01-28 General Electric Company Refrigerator appliances with movable individually temperature control bins
US9879889B2 (en) * 2014-07-23 2018-01-30 Haier Us Appliance Solutions, Inc. Refrigerator appliances with movable individually temperature control bins
USD811802S1 (en) 2016-07-15 2018-03-06 Spring (U.S.A.) Corporation Food server

Also Published As

Publication number Publication date
WO2006100476A1 (en) 2006-09-28
US20130061604A1 (en) 2013-03-14
GB2424358B (en) 2008-07-30
GB2424358A (en) 2006-09-27
US9267723B2 (en) 2016-02-23
EP1861666A1 (en) 2007-12-05
GB0506005D0 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US9267723B2 (en) Storage device
JP7187650B2 (en) Dishwasher-safe heated or cooled tableware and beverage ware
US6072161A (en) Beverage container
US8567347B2 (en) Pet cooling bed
US6523458B1 (en) Portable toast warmer
JP2007113805A (en) Hot/cold insulation device for drink in container
US9930993B2 (en) Food warming device
CN209820005U (en) Electrical appliance
KR101997151B1 (en) Assembly lunch box capable of temperature control
US20070034096A1 (en) Method and apparatus for maintaining an elevated food temperature
KR100630299B1 (en) keeping warm eating table
KR20110106578A (en) The table to possess the refrigerator and heating cabinet
US11913682B2 (en) Apparatus for selectively heating or cooling a food product and methods of assembling and using same
US20190008324A1 (en) Heated and heating serving plate
GB2481216A (en) Heated mat for supporting crockery, with internal power supply and base station charger
KR19990009237U (en) Bowl and bowl stand with heat retention function
EP1374746A1 (en) Butter-dish
JP4033003B2 (en) Cold storage room
KR200328660Y1 (en) heating apparatus to maintain a definite temperature
GB2233879A (en) Toast rack
KR20180072994A (en) An instrument for refrigeration keeping of cosmetic

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION