US20080166458A1 - Adjustable aperture for plant tissue packaging - Google Patents

Adjustable aperture for plant tissue packaging Download PDF

Info

Publication number
US20080166458A1
US20080166458A1 US11/888,355 US88835507A US2008166458A1 US 20080166458 A1 US20080166458 A1 US 20080166458A1 US 88835507 A US88835507 A US 88835507A US 2008166458 A1 US2008166458 A1 US 2008166458A1
Authority
US
United States
Prior art keywords
package
patch
aperture
plant tissues
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/888,355
Inventor
Michael Weber
Ray Hoobler
Paul Dick
Randy McLaughlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purfresh Inc
Original Assignee
Purfresh Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purfresh Inc filed Critical Purfresh Inc
Priority to US11/888,355 priority Critical patent/US20080166458A1/en
Priority to PCT/US2007/024052 priority patent/WO2008085230A1/en
Assigned to NOVAZONE, INC. reassignment NOVAZONE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DICK, PAUL, MCLAUGHLIN, RANDY, HOOBLER, RAY, WEBER, MICHAEL
Assigned to PURFRESH, INC. reassignment PURFRESH, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NOVAZONE, INC.
Publication of US20080166458A1 publication Critical patent/US20080166458A1/en
Assigned to PURFRESH, INC. reassignment PURFRESH, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: PURFRESH, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • B65D81/2069Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas in a special atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2565/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D2565/38Packaging materials of special type or form
    • B65D2565/381Details of packaging materials of special type or form
    • B65D2565/388Materials used for their gas-permeability

Definitions

  • This invention relates to packaging for harvested plant tissues.
  • bananas harvested green and unripe continue to ripen during packaging, transportation and storage, consuming oxygen and releasing carbon dioxide in the process of respiration.
  • Bananas also produce ethylene (although not all fruits do), and exposure to ethylene promotes the ripening of harvested bananas and other climacteric (ethylene-sensitive) fruits.
  • Agricultural industries are vulnerable to economic losses from the excessive ripening of agricultural products before those products reach the consumer.
  • Many important agricultural products are harvested unripe or partially unripe to avoid damage, spoilage or decay en route to market.
  • the storage and transportation environments for these products must be optimized for the products' preservation.
  • ripening-mitigation technologies may afford fruit and vegetable growers greater access to consumers in lands to which their products must travel by sea. Ripening-mitigation technologies may also extend the green-life, shelf-life, and effectively the season of availability of notoriously perishable fruits.
  • Green life refers to the period of time after harvest during which the plant product stays in a condition suitable for transportation.
  • Shelf life refers to the period of time after the green life during which the product remains saleable. For example, upon arrival at an overseas shipping destination, green bananas are often processed in ripening rooms, in which ethylene is administered to achieve the plant products' uniform partial ripening before delivery to the retailer and consumer. For each type of plant product, there are conditions that typically induce ripening. For example, green bananas ripen while exposed to ethylene at a concentration of 100-150 parts per billion in a room held at 20 degrees Celsius and 90-95 percent relative humidity.
  • Modified atmosphere packaging is a commonly used technique for preserving agricultural products, in which the oxygen content of the atmosphere inside a package is changed to retard respiration and other undesired processes.
  • hard, green (“preclimacteric”) bananas may be packaged in modified atmosphere packaging such as polyethylene bags that are 0.4 mm thick, in which the carbon dioxide content has been raised to five percent, and the oxygen content has been lowered to two percent.
  • Potassium permanganate may be enclosed in the packaging to absorb ethylene emitted by the bananas.
  • preclimacteric bananas shipped at a relative humidity of about 90 to 95 percent may enjoy a shelf life of about two to three weeks.
  • Modified atmosphere packaging also may be achieved by placing a gas-permeable patch in what is otherwise standard, gas-impermeable packaging.
  • a gas-permeable or gas-transfer patch may consist of an array of microscopic pores, or may comprise a gas-permeable polymer.
  • An example of a gas-permeable polymer is INTELIMER® by Landec Corporation, Menlo Park, Calif.
  • An example of a polymer patch currently in use is the BREATHEWAY® membrane by BreatheWay in Guadalupe, Calif., which is selectively 3.8 times more permeable to carbon dioxide than to molecular oxygen, and which reversibly becomes markedly more gas-permeable when the temperature rises above a known level.
  • Reduced-oxygen or controlled-atmosphere storage enhances the benefits of refrigeration.
  • Controlled-atmosphere storage is a commonly used technique in which the oxygen content of the atmosphere inside a storage area is changed to promote the preservation of harvested agricultural products; the concentrations of other gases, temperature and humidity of the storage area are routinely controlled as well.
  • Controlled-atmosphere storage requires specially equipped storage rooms that are costly to construct and operate, and maintaining a controlled atmosphere in a shipping container is very difficult and expensive.
  • controlled-atmosphere environments may not support human life, they may only be entered by personnel with special equipment.
  • ethylene-sensitive products such as kiwi fruit
  • ethylene-producing products such as Oriental Pears
  • an entire batch of ethylene-sensitive fruit e.g., all the fruit in a storage room or shipping container
  • Modified atmosphere packaging provides a low-oxygen environment to its contents, allowing them to be stored or transported in a regular-atmosphere environment. It would be desirable to use modified atmosphere packaging for ethylene-sensitive products, so that these products could be stored and shipped in proximity to ethylene-producing products, minimizing concerns of cross-ripening (and cross-contamination of other kinds) between separately packaged products. However, undesired ripening and microbial contamination within each package remains problematic. The packaging traps ethylene, which thus accumulates within the package. The rate of ripening of ethylene-sensitive plant products in packaging that traps ethylene is faster than that which occurs in storage conditions that allow ethylene to escape.
  • the present invention provides an improved technology to mitigate the excessive ripening and spoilage of plant tissues.
  • the present invention provides improved packaging for harvested plant tissues, such as agricultural products.
  • harvested plant tissues are placed in a package that contains either at least one hole, or a gas-permeable patch.
  • the hole or patch is in turn covered by an adjustable aperture.
  • the present invention improves currently available packaging methods by providing an additional level of control over the gas composition inside the package over the entire course of transportation and storage of the packaged plant tissues.
  • Some embodiments of the present invention also mitigate damage to harvested plant tissues due to excessive ripening and spoilage, by contacting the plant tissues with ozone during transportation and storage.
  • harvested plant tissues are treated with ozone before packaging.
  • the present invention also reduces costs by enabling the same package or kind of package to be used for different contents that have different atmospheric requirements for optimal protection from excessive ripening and spoilage.
  • FIG. 1 is a diagram of plant tissue packaging according to the prior art.
  • FIG. 2 is a diagram of one embodiment of an adjustable aperture for use on plant tissue packaging according to the present invention.
  • FIG. 3 is a diagram of an exemplary dialable aperture according to one embodiment of the present invention.
  • FIG. 4 is a diagram of a dialable aperture covering a gas-permeable patch in plant tissue packaging according to another embodiment of the invention.
  • FIG. 5 is a diagram of a slidable aperture according to another embodiment of the present invention.
  • the present invention provides improved packaging for harvested plant tissues, such as agricultural products.
  • harvested plant tissues are placed in a package that is made of standard, gas-impermeable packaging material except for either one or more holes, or a gas-permeable patch.
  • the hole or patch is in turn covered by an aperture that is adjustable from a fully closed to fully open position, so that the gas-permeability of the packaging may be altered by closing or opening the aperture by a desired amount.
  • the one or more holes may be a macroscopic hole (visible to the naked eye), or microscopic or invisible pores that allow gases to flow across the packaging with relatively little selectivity.
  • the gas-permeable patch may be made of an array of micropores, or may be made of a gas-permeable polymer with or without selectivity.
  • the polymer may but need not be temperature sensitive, that is, the permeability of the polymer patch may but need not change substantially as a function of temperature.
  • An aperture may be made of any material (such as plastic or metal) and adjustable in any way (such as dialing or sliding).
  • the aperture may be affixed to the package by any means that does not alter the permeability of the package (such as gluing to the package with an adhesive that does not dissolve the packaging material).
  • an adjustable aperture improves currently available packaging methods by providing an additional level of control over the gas composition inside the package over the entire course of transportation and storage of the packaged plant tissues.
  • By closing the aperture one effectively converts modified atmosphere packaging into standard, gas-impermeable packaging.
  • By opening the aperture one effectively converts standard, gas-impermeable packaging (when the aperture is closed) into modified atmosphere packaging.
  • modulating the degree to which the aperture is open one increases (by opening further) or decreases (by closing further) the gas permeability of the entire package.
  • FIG. 1 is a diagram of plant tissue packaging according to the prior art.
  • FIG. 1 depicts two rectangular containers 100 and 102 in the prior art, container 100 having a micropore patch 104 , and container 102 having a gas-permeable polymer patch 106 .
  • FIG. 2 is a diagram of one embodiment of an adjustable aperture for use on plant tissue packaging according to the present invention.
  • a box 200 has an opening with a patch 202 comprising a gas-permeable polymer.
  • the patch is covered by a shutter 204 that can be moved to adjust the size of the opening in the aperture 206 over the patch 202 .
  • the exemplary dialable aperture 206 comprises two round pieces with semicircular cutouts. In this instance, the cutouts are partially overlapping to expose a quarter-circular portion of the gas-permeable patch 202 .
  • FIG. 3 is a diagram of an exemplary dialable aperture 206 according to one embodiment of the present invention.
  • FIG. 3A shows an exploded view of two round pieces of the exemplary dialable aperture 206 , each with a semicircular hole or cutout 300 .
  • FIG. 3B shows a top view of aperture 206 in the fully open position, so that both cutouts 300 are aligned.
  • FIG. 3B shows a top view of aperture 206 in the fully closed position, in which the cutouts 300 are opposite each other.
  • This kind of dialable aperture is like those commonly found on spice jars, for example.
  • FIG. 4 is a diagram of a dialable aperture covering a gas-permeable patch in plant tissue packaging according to another embodiment of the invention.
  • the dialable aperture 400 comprises a disk 402 made of a gas-impermeable material having a circular hole or cutout 404 .
  • the disk 402 is attached to the package surface 406 by a fastener 408 , which also serves as an axis of rotation for the disk 402 .
  • the solid part of the disk 402 can fully cover a gas-permeable patch 410 located in the body of the package, expose the entire patch 410 , or expose part of the patch 410 , depending upon the position to which the disk 402 is rotated.
  • the disk may comprise an indicator 412 that can be dialed to predetermined settings, marked on an optional outer ring 414 of the aperture 400 (or alternatively, for example, on the package surface 406 ) with markings 416 .
  • the patch may be built in or attached to the aperture, and the aperture with the patch installed into a hole in the package, filling the hole. Any package with a given gas permeability (preferably minimal), an area or patch having a different gas permeability (preferably greater), and an adjustable aperture covering the area or patch is intended to fall within the scope of the present invention.
  • FIG. 5 is a diagram of a slidable aperture according to another embodiment of the present invention.
  • the aperture 500 covers a gas-permeable patch 502 .
  • the moving part 504 of the aperture 500 is slidably connected to the base part 506 of the aperture 500 , so that the moving part 504 may be moved along the base part 506 of the aperture 500 to expose various amounts of the patch 502 .
  • any other type of shutter, covering mechanism, or means for adjusting the amount of gas-permeable patch or one or more holes that is exposed to the atmosphere may be used, and may be of any suitable shape.
  • Any kind of package of any shape may be used with the aperture, such as a disposable or a reusable bag or box, a box or container with an open side that is sealed with foil, or a container that has a lid.
  • the present invention may also be used with plastic food containers sold under the brand name TUPPERWARE® (Tupperware U.S., Inc., Orlando, Fla.), with the gas-permeable patch and the aperture integrated into the lid.
  • food storage bags such as those sold under the brand name Ziploc® (SC Johnson, Inc., Racine, Wis.), may have a patch and aperture integrated on the side of the bag.
  • the package is a sliding drawer mounted inside a refrigerator.
  • the adjustable aperture may comprise one or more markings at predetermined positions, and the aperture may be adjusted according to the markings.
  • a box for storing fruit under low-oxygen conditions to slow down ripening may have markings corresponding to the optimal gas transfer for a certain amount of fruit, such as a marking to use if the box contains one peach, another marking if the box contains two peaches, and so on.
  • an adjustable aperture for use on a reusable box designed to contain different kinds of fruit may have markings indicating one scale reflecting optimal gas-transfer areas for pears, and another for bananas.
  • some embodiments of the present invention allow a box with a patch of arbitrary size to be used for a variety of agricultural products with differing respiration properties.
  • the same box or type of box may be loaded with bananas in one instance, and kiwi fruit in another, and the atmosphere modification propertied of the box tailored to each commodity by adjusting the aperture.
  • the present invention can reduce packaging costs by enabling the same package or kind of package to be used for different contents that have different atmospheric requirements for optimal protection from excessive ripening and spoilage.
  • the adjustable aperture confers additional ability to tailor the atmosphere inside the package to the needs of the contents. For example, while a temperature-sensitive polymer patch allows greater gas permeability once a single temperature threshold has been reached, without an aperture, no additional control over the gas-permeability of the package is provided. By setting the aperture to more open positions as temperature increases, and to more closed positions as temperature drops, the gas-permeability of the package may be adjusted in increments as finely as may be desired. This ability to tailor and fine-tune the atmosphere inside the package provides greater protection to the packaged plant tissues.
  • bananas are stored in a plastic box, which includes a gas-permeable polymer patch covered with an adjustable aperture.
  • a given temperature say, 35° C.
  • the polymer comprising the patch switches from a crystalline to an amorphous state, so that the gas-permeability of the patch increases significantly.
  • the ambient temperature my rise above or fall below the given temperature repeatedly.
  • adjusting the size of the aperture provides greater and less gas flow in a way that is much more responsive to changes in ambient temperature that do not involve the given temperature.
  • the aperture covers a gas-permeable patch of microscopic pores, rather than a temperature-sensitive polymer patch.
  • the aperture modulates the flow of gases through the patch by adjusting the area of patch that is available for gas transfer, tailoring the modified atmosphere packaging to the needs of its specific contents.
  • Some embodiments combine the use of an aperture and a macroscopic hole, so that, for example, when the aperture is open, the aperture exposes a hole on an otherwise substantially closed package.
  • the package may be a bag, box, or other container of any material or size.
  • Some embodiments of the present invention also mitigate damage to harvested plant tissues due to excessive ripening and spoilage by contacting the plant tissues with ozone during transportation and storage, as described in Provisional Patent Application Ser. No. 60/879,716 filed on Jan. 9, 2007 (cited above).
  • the ozone is added to the atmosphere surrounding the package.
  • the ozone enters the package through the aperture.
  • the ozone may permeate the packaging material independently of the aperture, which may cover a hole, set of holes, or patch having gas permeability characteristics that differ from those of the packaging material.
  • harvested plant tissues are treated with ozone before packaging further to promote their freshness (also as described in the cited application).
  • plant tissues also are treated with ozone before the products are packaged, for example, by exposure of the plant tissues to ozone gas or to ozonated water, for instance, in a hydro-cooler.
  • ozone pre-treatment affords additional benefits, such as destroying or retarding the growth of microorganisms on or around the plant products even before ozone is introduced to the atmosphere in which the packaged plant tissues will be loaded.
  • embodiments of the present invention are applicable to any form of packaging that can include a patch or hole that can be covered with an aperture, and that virtually any kind of plant tissues may be so packaged. While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments.

Abstract

The present invention provides improved packaging for harvested plant tissues, such as agricultural products. In some embodiments harvested plant tissues are placed in a package that contains either at least one hole, or a gas-permeable patch. The hole or patch is in turn covered by an adjustable aperture. The present invention improves available packaging methods by providing an additional level of control over the gas composition inside the package. Some embodiments of the present invention also mitigate damage to harvested plant tissues by contacting the plant tissues with ozone during transportation and storage. In some embodiments, harvested plant tissues are treated with ozone before packaging. The present invention also reduces costs by enabling the same package or kind of package to be used for different contents that have different atmospheric requirements for optimal protection from excessive ripening and spoilage.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims benefit and priority from U.S. Provisional Patent Application Ser. No. 60/879,716 filed on Jan. 9, 2007, Attorney Docket # PA4101PRV entitled, “Improved Modified Atmosphere Packaging Process,” which is herein incorporated by reference, and from pending U.S. patent application Ser. No. ______ [not yet assigned] filed on Jul. 26, 2007, Attorney Docket # PA4175US entitled, “Improved Plant Tissue Packaging Process,” which is herein incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to packaging for harvested plant tissues.
  • 2. Description of Related Art
  • Many plant tissues, including important agricultural products, ripen after harvest. For example, bananas harvested green and unripe continue to ripen during packaging, transportation and storage, consuming oxygen and releasing carbon dioxide in the process of respiration. Bananas also produce ethylene (although not all fruits do), and exposure to ethylene promotes the ripening of harvested bananas and other climacteric (ethylene-sensitive) fruits.
  • Agricultural industries are vulnerable to economic losses from the excessive ripening of agricultural products before those products reach the consumer. Many important agricultural products are harvested unripe or partially unripe to avoid damage, spoilage or decay en route to market. The storage and transportation environments for these products must be optimized for the products' preservation.
  • Technology that slows or effectively suspends ripening during the transportation and storage of plant products can reduce or prevent losses of the products due to overripening and spoilage. Further, technology that mitigates ripening can broaden the market horizons for agricultural and horticultural products, by allowing them to reach more distant consumers due to their improved longevity during transportation, or by allowing them to remain in storage longer before becoming unpresentable to consumers. For example, ripening-mitigation technologies may afford fruit and vegetable growers greater access to consumers in lands to which their products must travel by sea. Ripening-mitigation technologies may also extend the green-life, shelf-life, and effectively the season of availability of notoriously perishable fruits.
  • “Green life” refers to the period of time after harvest during which the plant product stays in a condition suitable for transportation. “Shelf life” refers to the period of time after the green life during which the product remains saleable. For example, upon arrival at an overseas shipping destination, green bananas are often processed in ripening rooms, in which ethylene is administered to achieve the plant products' uniform partial ripening before delivery to the retailer and consumer. For each type of plant product, there are conditions that typically induce ripening. For example, green bananas ripen while exposed to ethylene at a concentration of 100-150 parts per billion in a room held at 20 degrees Celsius and 90-95 percent relative humidity.
  • Currently available technologies for postponing or slowing ripening to lengthen the time available from the harvesting of plant products to their presentation to consumers include: harvesting fruit well before it is ripe, refrigeration, packaging fruit in “modified atmosphere” containers to retard respiration, and adding a powder that absorbs ethylene. Modified atmosphere packaging is a commonly used technique for preserving agricultural products, in which the oxygen content of the atmosphere inside a package is changed to retard respiration and other undesired processes. For example, hard, green (“preclimacteric”) bananas may be packaged in modified atmosphere packaging such as polyethylene bags that are 0.4 mm thick, in which the carbon dioxide content has been raised to five percent, and the oxygen content has been lowered to two percent. Potassium permanganate may be enclosed in the packaging to absorb ethylene emitted by the bananas. When stored in this manner and refrigerated at approximately 12 to 14 degrees C., preclimacteric bananas shipped at a relative humidity of about 90 to 95 percent may enjoy a shelf life of about two to three weeks.
  • Modified atmosphere packaging also may be achieved by placing a gas-permeable patch in what is otherwise standard, gas-impermeable packaging. For example, a gas-permeable or gas-transfer patch may consist of an array of microscopic pores, or may comprise a gas-permeable polymer. An example of a gas-permeable polymer is INTELIMER® by Landec Corporation, Menlo Park, Calif. An example of a polymer patch currently in use is the BREATHEWAY® membrane by BreatheWay in Guadalupe, Calif., which is selectively 3.8 times more permeable to carbon dioxide than to molecular oxygen, and which reversibly becomes markedly more gas-permeable when the temperature rises above a known level.
  • Refrigeration alone preserves plant products by slowing ripening and the growth of decay-causing microbes. Reduced-oxygen or controlled-atmosphere storage enhances the benefits of refrigeration. Controlled-atmosphere storage is a commonly used technique in which the oxygen content of the atmosphere inside a storage area is changed to promote the preservation of harvested agricultural products; the concentrations of other gases, temperature and humidity of the storage area are routinely controlled as well. Controlled-atmosphere storage requires specially equipped storage rooms that are costly to construct and operate, and maintaining a controlled atmosphere in a shipping container is very difficult and expensive. Moreover, because controlled-atmosphere environments may not support human life, they may only be entered by personnel with special equipment. In addition, ethylene-sensitive products (such as kiwi fruit) and ethylene-producing products (such as Oriental Pears) must be stored in separate rooms to prevent cross-ripening. Furthermore, even when a batch of ethylene-sensitive fruit is stored separately from other fruits, an entire batch of ethylene-sensitive fruit (e.g., all the fruit in a storage room or shipping container) can ripen prematurely if only a small amount of the fruit within it begins to ripen.
  • Modified atmosphere packaging provides a low-oxygen environment to its contents, allowing them to be stored or transported in a regular-atmosphere environment. It would be desirable to use modified atmosphere packaging for ethylene-sensitive products, so that these products could be stored and shipped in proximity to ethylene-producing products, minimizing concerns of cross-ripening (and cross-contamination of other kinds) between separately packaged products. However, undesired ripening and microbial contamination within each package remains problematic. The packaging traps ethylene, which thus accumulates within the package. The rate of ripening of ethylene-sensitive plant products in packaging that traps ethylene is faster than that which occurs in storage conditions that allow ethylene to escape.
  • What is desired is packaging for plant tissues that can more effectively retard or arrest ripening and spoilage during transportation and storage. The present invention provides an improved technology to mitigate the excessive ripening and spoilage of plant tissues.
  • SUMMARY OF THE INVENTION
  • The present invention provides improved packaging for harvested plant tissues, such as agricultural products. In some embodiments harvested plant tissues are placed in a package that contains either at least one hole, or a gas-permeable patch. The hole or patch is in turn covered by an adjustable aperture. The present invention improves currently available packaging methods by providing an additional level of control over the gas composition inside the package over the entire course of transportation and storage of the packaged plant tissues. Some embodiments of the present invention also mitigate damage to harvested plant tissues due to excessive ripening and spoilage, by contacting the plant tissues with ozone during transportation and storage. In some embodiments, harvested plant tissues are treated with ozone before packaging. The present invention also reduces costs by enabling the same package or kind of package to be used for different contents that have different atmospheric requirements for optimal protection from excessive ripening and spoilage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of plant tissue packaging according to the prior art.
  • FIG. 2 is a diagram of one embodiment of an adjustable aperture for use on plant tissue packaging according to the present invention.
  • FIG. 3 is a diagram of an exemplary dialable aperture according to one embodiment of the present invention.
  • FIG. 4 is a diagram of a dialable aperture covering a gas-permeable patch in plant tissue packaging according to another embodiment of the invention.
  • FIG. 5 is a diagram of a slidable aperture according to another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides improved packaging for harvested plant tissues, such as agricultural products. In some embodiments harvested plant tissues are placed in a package that is made of standard, gas-impermeable packaging material except for either one or more holes, or a gas-permeable patch. The hole or patch is in turn covered by an aperture that is adjustable from a fully closed to fully open position, so that the gas-permeability of the packaging may be altered by closing or opening the aperture by a desired amount. The one or more holes may be a macroscopic hole (visible to the naked eye), or microscopic or invisible pores that allow gases to flow across the packaging with relatively little selectivity. The gas-permeable patch may be made of an array of micropores, or may be made of a gas-permeable polymer with or without selectivity. The polymer may but need not be temperature sensitive, that is, the permeability of the polymer patch may but need not change substantially as a function of temperature.
  • An aperture may be made of any material (such as plastic or metal) and adjustable in any way (such as dialing or sliding). The aperture may be affixed to the package by any means that does not alter the permeability of the package (such as gluing to the package with an adhesive that does not dissolve the packaging material).
  • The use of an adjustable aperture improves currently available packaging methods by providing an additional level of control over the gas composition inside the package over the entire course of transportation and storage of the packaged plant tissues. By closing the aperture, one effectively converts modified atmosphere packaging into standard, gas-impermeable packaging. By opening the aperture, one effectively converts standard, gas-impermeable packaging (when the aperture is closed) into modified atmosphere packaging. By modulating the degree to which the aperture is open, one increases (by opening further) or decreases (by closing further) the gas permeability of the entire package.
  • FIG. 1 is a diagram of plant tissue packaging according to the prior art. FIG. 1 depicts two rectangular containers 100 and 102 in the prior art, container 100 having a micropore patch 104, and container 102 having a gas-permeable polymer patch 106.
  • FIG. 2 is a diagram of one embodiment of an adjustable aperture for use on plant tissue packaging according to the present invention. Here, a box 200 has an opening with a patch 202 comprising a gas-permeable polymer. The patch is covered by a shutter 204 that can be moved to adjust the size of the opening in the aperture 206 over the patch 202. The exemplary dialable aperture 206 comprises two round pieces with semicircular cutouts. In this instance, the cutouts are partially overlapping to expose a quarter-circular portion of the gas-permeable patch 202.
  • FIG. 3 is a diagram of an exemplary dialable aperture 206 according to one embodiment of the present invention. FIG. 3A shows an exploded view of two round pieces of the exemplary dialable aperture 206, each with a semicircular hole or cutout 300. FIG. 3B shows a top view of aperture 206 in the fully open position, so that both cutouts 300 are aligned. FIG. 3B shows a top view of aperture 206 in the fully closed position, in which the cutouts 300 are opposite each other. This kind of dialable aperture is like those commonly found on spice jars, for example.
  • FIG. 4 is a diagram of a dialable aperture covering a gas-permeable patch in plant tissue packaging according to another embodiment of the invention. The dialable aperture 400 comprises a disk 402 made of a gas-impermeable material having a circular hole or cutout 404. The disk 402 is attached to the package surface 406 by a fastener 408, which also serves as an axis of rotation for the disk 402. The solid part of the disk 402 can fully cover a gas-permeable patch 410 located in the body of the package, expose the entire patch 410, or expose part of the patch 410, depending upon the position to which the disk 402 is rotated. If desired, the disk may comprise an indicator 412 that can be dialed to predetermined settings, marked on an optional outer ring 414 of the aperture 400 (or alternatively, for example, on the package surface 406) with markings 416. In some embodiments, the patch may be built in or attached to the aperture, and the aperture with the patch installed into a hole in the package, filling the hole. Any package with a given gas permeability (preferably minimal), an area or patch having a different gas permeability (preferably greater), and an adjustable aperture covering the area or patch is intended to fall within the scope of the present invention.
  • FIG. 5 is a diagram of a slidable aperture according to another embodiment of the present invention. Here, the aperture 500 covers a gas-permeable patch 502. The moving part 504 of the aperture 500 is slidably connected to the base part 506 of the aperture 500, so that the moving part 504 may be moved along the base part 506 of the aperture 500 to expose various amounts of the patch 502.
  • In addition to those illustrated in FIGS. 2-5, any other type of shutter, covering mechanism, or means for adjusting the amount of gas-permeable patch or one or more holes that is exposed to the atmosphere may be used, and may be of any suitable shape. Any kind of package of any shape may be used with the aperture, such as a disposable or a reusable bag or box, a box or container with an open side that is sealed with foil, or a container that has a lid. For example, the present invention may also be used with plastic food containers sold under the brand name TUPPERWARE® (Tupperware U.S., Inc., Orlando, Fla.), with the gas-permeable patch and the aperture integrated into the lid. Similarly, food storage bags such as those sold under the brand name Ziploc® (SC Johnson, Inc., Racine, Wis.), may have a patch and aperture integrated on the side of the bag. In another embodiment, the package is a sliding drawer mounted inside a refrigerator.
  • To provide a convenient guideline for adjustment of gas transfer, the adjustable aperture may comprise one or more markings at predetermined positions, and the aperture may be adjusted according to the markings. For example, a box for storing fruit under low-oxygen conditions to slow down ripening may have markings corresponding to the optimal gas transfer for a certain amount of fruit, such as a marking to use if the box contains one peach, another marking if the box contains two peaches, and so on. Alternatively, an adjustable aperture for use on a reusable box designed to contain different kinds of fruit may have markings indicating one scale reflecting optimal gas-transfer areas for pears, and another for bananas.
  • Currently, it must be determined in advance how much and what type of plant tissue is to be placed in, for example, a plastic box with a polymer patch, so that the size of the patch may be optimized to mitigate excessive ripening of the contents. See, e.g., http://www.breatheway.com/overview/difference.aspx. By covering the patch with an adjustable aperture, some embodiments of the present invention allow a box with a patch of arbitrary size to be used for a variety of agricultural products with differing respiration properties. For example, the same box or type of box may be loaded with bananas in one instance, and kiwi fruit in another, and the atmosphere modification propertied of the box tailored to each commodity by adjusting the aperture. Thus, the present invention can reduce packaging costs by enabling the same package or kind of package to be used for different contents that have different atmospheric requirements for optimal protection from excessive ripening and spoilage.
  • Even when a prefabricated box is to be used for only one variety of agricultural product, the adjustable aperture confers additional ability to tailor the atmosphere inside the package to the needs of the contents. For example, while a temperature-sensitive polymer patch allows greater gas permeability once a single temperature threshold has been reached, without an aperture, no additional control over the gas-permeability of the package is provided. By setting the aperture to more open positions as temperature increases, and to more closed positions as temperature drops, the gas-permeability of the package may be adjusted in increments as finely as may be desired. This ability to tailor and fine-tune the atmosphere inside the package provides greater protection to the packaged plant tissues.
  • In an exemplary embodiment, bananas are stored in a plastic box, which includes a gas-permeable polymer patch covered with an adjustable aperture. As the ambient temperature rises through a given temperature (say, 35° C.), the polymer comprising the patch switches from a crystalline to an amorphous state, so that the gas-permeability of the patch increases significantly. As the box proceeds through various stages of transportation and storage, the ambient temperature my rise above or fall below the given temperature repeatedly. In addition to the one-step switching of the polymer between two permeability states (much less and much more), adjusting the size of the aperture provides greater and less gas flow in a way that is much more responsive to changes in ambient temperature that do not involve the given temperature.
  • In some embodiments, the aperture covers a gas-permeable patch of microscopic pores, rather than a temperature-sensitive polymer patch. Again, the aperture modulates the flow of gases through the patch by adjusting the area of patch that is available for gas transfer, tailoring the modified atmosphere packaging to the needs of its specific contents. Some embodiments combine the use of an aperture and a macroscopic hole, so that, for example, when the aperture is open, the aperture exposes a hole on an otherwise substantially closed package. The package may be a bag, box, or other container of any material or size.
  • Some embodiments of the present invention also mitigate damage to harvested plant tissues due to excessive ripening and spoilage by contacting the plant tissues with ozone during transportation and storage, as described in Provisional Patent Application Ser. No. 60/879,716 filed on Jan. 9, 2007 (cited above). The ozone is added to the atmosphere surrounding the package. In some embodiments, the ozone enters the package through the aperture. In some embodiments, the ozone may permeate the packaging material independently of the aperture, which may cover a hole, set of holes, or patch having gas permeability characteristics that differ from those of the packaging material. In some embodiments; harvested plant tissues are treated with ozone before packaging further to promote their freshness (also as described in the cited application).
  • In some embodiments, plant tissues also are treated with ozone before the products are packaged, for example, by exposure of the plant tissues to ozone gas or to ozonated water, for instance, in a hydro-cooler. Such ozone pre-treatment affords additional benefits, such as destroying or retarding the growth of microorganisms on or around the plant products even before ozone is introduced to the atmosphere in which the packaged plant tissues will be loaded.
  • It will be understood by one skilled in the art that embodiments of the present invention are applicable to any form of packaging that can include a patch or hole that can be covered with an aperture, and that virtually any kind of plant tissues may be so packaged. While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments.

Claims (19)

1. A package for harvested plant tissues, comprising:
a sealable container for holding the plant tissues having a gas-permeable patch located in a surface of the container; and
an adjustable aperture over the patch.
2. The package of claim 1, wherein the gas permeability of the surface of the container is different from the gas permeability of the patch.
3. The package of claim 2, wherein the aperture further comprises one or more elements having a gas permeability lower than that of the patch and capable of covering a portion of the patch.
4. The package of claim 3, wherein the portion of the patch that is covered by the aperture is adjustable by sliding the one or more elements over the patch.
5. The package of claim 3, wherein the portion of the patch that is covered by the aperture is adjustable by rotating the one or more elements over the patch.
6. The package of claim 5, wherein the aperture is comprised of a plastic material.
7. The package of claim 3, wherein the patch comprises one or more microscopic holes.
8. The package of claim 3, wherein the patch comprises a gas-permeable polymer.
9. The package of claim 8, wherein the gas-permeability of the polymer is temperature-dependent.
10. A package for harvested fruits or vegetables, comprising:
a sealable container for holding the plant tissues having a hole located in a surface of the container; and
an adjustable aperture over the hole.
11. The package of claim 10, wherein the aperture further comprises one or more gas impermeable elements capable of covering a portion of the hole.
12. The package of claim 11, wherein the portion of the hole that is covered by the aperture is adjustable by sliding the one or more elements over the patch.
13. The package of claim 11, wherein the portion of the hole that is covered by the aperture is adjustable by rotating the one or more elements over the patch.
14. The package of claim 11, wherein the aperture is comprised of a plastic material.
15. A method for preserving harvested plant tissues, the method comprising:
placing the plant tissues in a package comprising a sealable container for holding the plant tissues having a gas-permeable patch and an adjustable aperture over the patch; and
surrounding the package with an atmosphere containing ozone.
16. The method of claim 13, further comprising refrigerating the packaged plant tissues.
17. The method of claim 13, wherein the concentration of ozone is in the range of approximately ten parts per billion volumes to approximately ten parts per million volumes.
18. The method of claim 13, further comprising exposing the plant tissues to ozone before placing the plant tissues in a package.
19. The method of claim 13, wherein the plant tissues are fruits or vegetables.
US11/888,355 2007-01-09 2007-07-31 Adjustable aperture for plant tissue packaging Abandoned US20080166458A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/888,355 US20080166458A1 (en) 2007-01-09 2007-07-31 Adjustable aperture for plant tissue packaging
PCT/US2007/024052 WO2008085230A1 (en) 2007-01-09 2007-11-16 Adjustable aperture for plant tissue packaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87971607P 2007-01-09 2007-01-09
US11/888,355 US20080166458A1 (en) 2007-01-09 2007-07-31 Adjustable aperture for plant tissue packaging

Publications (1)

Publication Number Publication Date
US20080166458A1 true US20080166458A1 (en) 2008-07-10

Family

ID=39594512

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/881,522 Abandoned US20080166694A1 (en) 2007-01-09 2007-07-26 Plant tissue packaging process
US11/888,355 Abandoned US20080166458A1 (en) 2007-01-09 2007-07-31 Adjustable aperture for plant tissue packaging

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/881,522 Abandoned US20080166694A1 (en) 2007-01-09 2007-07-26 Plant tissue packaging process

Country Status (2)

Country Link
US (2) US20080166694A1 (en)
WO (2) WO2008085230A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867187B2 (en) 2011-06-01 2014-10-21 Pfi Acquisition, Inc. Apparatus for powering an accessory device in a refrigerated container
JP2019006425A (en) * 2017-06-21 2019-01-17 旭化成株式会社 Package of garden stuff, storage device and method
CN113137805A (en) * 2021-04-28 2021-07-20 珠海格力电器股份有限公司 Gas concentration regulation and control method for refrigerator and refrigerator
US11117727B2 (en) * 2019-05-29 2021-09-14 Mission Produce, Inc. System and method of storing produce

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089456A1 (en) * 2012-12-07 2014-06-12 Cougar Packaging Concepts Food packaging method and apparatus
CN104824130B (en) * 2015-04-13 2018-05-15 顾称心 A kind of fruit and vegetable does not depart from the additive-free preservation method of cultivation matrix
GB2563576B (en) * 2017-06-12 2020-01-15 Westfalia Fruit International Ltd Method
US11559069B2 (en) 2018-04-13 2023-01-24 Incuvator Fund I, Llc Sanitizing package-ready pre-quantified units of food
EP3937633A1 (en) * 2019-03-11 2022-01-19 National Institute of Plant Genome Research Method for extending shelf-life of agricultural produce

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2050771A (en) * 1933-04-18 1936-08-11 Justin F Wait Process and apparatus for ozonation
US4049552A (en) * 1974-09-23 1977-09-20 Oregon Patent Development Company Ozone generating system
US4886372A (en) * 1987-02-19 1989-12-12 Michael Greengrass Controlled ripening of produce and fruits
US4890637A (en) * 1988-12-12 1990-01-02 Flavorcoffee Co. Inc. One way valve
US5173257A (en) * 1991-04-03 1992-12-22 Pearson Erich H Continuous process and apparatus for the separation of recyclable material from and the disinfection of infectious medical waste
US5458899A (en) * 1990-09-05 1995-10-17 Weyerhaeuser Company Method of packaging perishable food or horticultural products
US5523057A (en) * 1995-02-06 1996-06-04 Mazzilli; Matt Air sterilization and filteration apparatus
US5564225A (en) * 1995-04-12 1996-10-15 Beauty Fill Development, Ltd. Method and apparatus for packaging and preservation of flowers and other botanicals
US5672406A (en) * 1991-03-25 1997-09-30 British Technology Group Limited Material having a thermally expandable passage
US5741416A (en) * 1996-10-15 1998-04-21 Tempest Environmental Systems, Inc. Water purification system having plural pairs of filters and an ozone contact chamber
US6013293A (en) * 1997-09-10 2000-01-11 Landec Corporation Packing respiring biological materials with atmosphere control member
US20020027109A1 (en) * 1999-02-01 2002-03-07 Conrad Wayne Ernest Pressure swing contactor for the treatment of a liquid with a gas
US6367651B2 (en) * 1998-12-30 2002-04-09 Dart Industries Inc. Vented container for produce
US20020117458A1 (en) * 2001-02-26 2002-08-29 Hydroxyl Systems Inc. Wastewater treatment system
US20030024863A1 (en) * 2001-03-29 2003-02-06 Gannon Guy Timothy Urban runoff water treatment methods and systems
US20030146394A1 (en) * 2000-07-14 2003-08-07 Robert Prange Method and apparatus for monitoring a condition in chlorophyll containing matter
US20030185948A1 (en) * 1997-03-13 2003-10-02 Garwood Anthony J.M. Packages and methods for processing food products
US20030198716A1 (en) * 2002-03-07 2003-10-23 Produce Safety Solutions, Inc. System for maintaining fresh quality and safe food attributes of minimally processed produce
US20040066758A1 (en) * 2002-10-03 2004-04-08 Van Doren Stephen R. Channel-based late race resolution mechanism for a computer system
US6817541B2 (en) * 2000-09-01 2004-11-16 Del Industries, Inc. Ozone systems and methods for agricultural applications
US20050284745A1 (en) * 2004-02-11 2005-12-29 Smith Rod A Automated portable and submersible ozone generator
US20060130498A1 (en) * 2004-12-20 2006-06-22 General Electric Company System and method for preserving food
US20060251551A1 (en) * 2005-05-09 2006-11-09 Brian Johnson Apparatus and method for ozone gas distribution

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3239753C1 (en) * 1982-10-27 1984-03-29 Dornier System Gmbh, 7990 Friedrichshafen Color-neutral, solar-selective heat reflection layer for glass panes and process for the production of the layers
US4615034A (en) * 1984-03-30 1986-09-30 Spectra-Physics, Inc. Ultra-narrow bandwidth optical thin film interference coatings for single wavelength lasers
JP4722296B2 (en) * 1999-06-01 2011-07-13 ジョージ ガットマン Ozone encapsulated structure for use in cleaning
US6942834B2 (en) * 1999-06-01 2005-09-13 Jose Gutman System and method for ozone containing packaging for sanitizing application
US6761968B2 (en) * 2000-12-01 2004-07-13 Teijin Limited Biaxially oriented polyester film
US20030203980A1 (en) * 2002-04-30 2003-10-30 Valdes Reynaldo A. Sol-gel composition, methods for manufacturing sol-gels, and applications for sol-gels
US20040151812A1 (en) * 2003-01-28 2004-08-05 Chiquita Brands, Inc. Method of preserving fresh perishables
GB0316970D0 (en) * 2003-07-19 2003-08-27 Biofresh Ltd An apparatus for the ozone protection of crops
US7115837B2 (en) * 2003-07-28 2006-10-03 Mattson Technology, Inc. Selective reflectivity process chamber with customized wavelength response and method

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2050771A (en) * 1933-04-18 1936-08-11 Justin F Wait Process and apparatus for ozonation
US4049552A (en) * 1974-09-23 1977-09-20 Oregon Patent Development Company Ozone generating system
US4886372A (en) * 1987-02-19 1989-12-12 Michael Greengrass Controlled ripening of produce and fruits
US4890637A (en) * 1988-12-12 1990-01-02 Flavorcoffee Co. Inc. One way valve
US5458899A (en) * 1990-09-05 1995-10-17 Weyerhaeuser Company Method of packaging perishable food or horticultural products
US5672406A (en) * 1991-03-25 1997-09-30 British Technology Group Limited Material having a thermally expandable passage
US5173257A (en) * 1991-04-03 1992-12-22 Pearson Erich H Continuous process and apparatus for the separation of recyclable material from and the disinfection of infectious medical waste
US5523057A (en) * 1995-02-06 1996-06-04 Mazzilli; Matt Air sterilization and filteration apparatus
US5564225A (en) * 1995-04-12 1996-10-15 Beauty Fill Development, Ltd. Method and apparatus for packaging and preservation of flowers and other botanicals
US5741416A (en) * 1996-10-15 1998-04-21 Tempest Environmental Systems, Inc. Water purification system having plural pairs of filters and an ozone contact chamber
US20030185948A1 (en) * 1997-03-13 2003-10-02 Garwood Anthony J.M. Packages and methods for processing food products
US6013293A (en) * 1997-09-10 2000-01-11 Landec Corporation Packing respiring biological materials with atmosphere control member
US6367651B2 (en) * 1998-12-30 2002-04-09 Dart Industries Inc. Vented container for produce
US20020027109A1 (en) * 1999-02-01 2002-03-07 Conrad Wayne Ernest Pressure swing contactor for the treatment of a liquid with a gas
US20030146394A1 (en) * 2000-07-14 2003-08-07 Robert Prange Method and apparatus for monitoring a condition in chlorophyll containing matter
US6817541B2 (en) * 2000-09-01 2004-11-16 Del Industries, Inc. Ozone systems and methods for agricultural applications
US20020117458A1 (en) * 2001-02-26 2002-08-29 Hydroxyl Systems Inc. Wastewater treatment system
US20030024863A1 (en) * 2001-03-29 2003-02-06 Gannon Guy Timothy Urban runoff water treatment methods and systems
US20030198716A1 (en) * 2002-03-07 2003-10-23 Produce Safety Solutions, Inc. System for maintaining fresh quality and safe food attributes of minimally processed produce
US20040066758A1 (en) * 2002-10-03 2004-04-08 Van Doren Stephen R. Channel-based late race resolution mechanism for a computer system
US20050284745A1 (en) * 2004-02-11 2005-12-29 Smith Rod A Automated portable and submersible ozone generator
US20060130498A1 (en) * 2004-12-20 2006-06-22 General Electric Company System and method for preserving food
US20060251551A1 (en) * 2005-05-09 2006-11-09 Brian Johnson Apparatus and method for ozone gas distribution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867187B2 (en) 2011-06-01 2014-10-21 Pfi Acquisition, Inc. Apparatus for powering an accessory device in a refrigerated container
JP2019006425A (en) * 2017-06-21 2019-01-17 旭化成株式会社 Package of garden stuff, storage device and method
US11117727B2 (en) * 2019-05-29 2021-09-14 Mission Produce, Inc. System and method of storing produce
US11745929B2 (en) 2019-05-29 2023-09-05 Mission Produce, Inc. System and method of storing produce
CN113137805A (en) * 2021-04-28 2021-07-20 珠海格力电器股份有限公司 Gas concentration regulation and control method for refrigerator and refrigerator

Also Published As

Publication number Publication date
US20080166694A1 (en) 2008-07-10
WO2008085231A1 (en) 2008-07-17
WO2008085230A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
US20080166458A1 (en) Adjustable aperture for plant tissue packaging
US10035639B2 (en) Treatment of modified atmosphere packaging
CA2072967C (en) Method of packaging perishable food or horticultural products
US5908649A (en) Package for perishable food and horticultural products
US5747082A (en) Package for perishable food and horticultural products
Mehyar et al. Active packaging for fresh‐cut fruits and vegetables
CA3139472C (en) Package for preserving respiring produce and method
Mane A review on active packaging: an innovation in food packaging
JP3024326B2 (en) Packaging bag for keeping fresh fruits and vegetables
JP3346002B2 (en) How to keep fruits and vegetables fresh
Ayhan Effect of packaging on the quality and shelf-life of minimally processed/ready to eat foods
Forney New innovations in the packaging of fresh-cut produce
US20180339834A1 (en) Treatment of modified atmosphere packaging
WO1992004256A2 (en) A package for perishable food and horticultural products
Chonhenchob et al. Packaging technologies for pineapple and pineapple products
JP3216401U (en) Vegetable packaging
Rooney History of active packaging
Kundana et al. Postharvest life of fruits as influenced by modified atmosphere packaging (MAP): A mini review
KR101889393B1 (en) Ma packing system
Tripathi et al. Recent Trends in Films and Gases for Modified Atmosphere Packaging of Fresh Produce
CA3232896A1 (en) Package for preserving respiring produce and method
Day Modified atmosphere packaging (MAP) and the safety and quality of fresh fruit and vegetables
Paine et al. Fresh fruits and vegetables (including herbs, spices and nuts)
JP2019006425A (en) Package of garden stuff, storage device and method
Illeperuma et al. Prolonged storage of oyster mushroom by modified atmosphere packaging and low temperature storage

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVAZONE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEBER, MICHAEL;HOOBLER, RAY;DICK, PAUL;AND OTHERS;REEL/FRAME:020241/0862;SIGNING DATES FROM 20071017 TO 20071112

AS Assignment

Owner name: PURFRESH, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:NOVAZONE, INC.;REEL/FRAME:020383/0726

Effective date: 20071120

AS Assignment

Owner name: PURFRESH, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:PURFRESH, INC.;REEL/FRAME:021719/0475

Effective date: 20080911

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION