US20080152512A1 - Infiltration pump having insulated rollers and programmable foot pedal - Google Patents

Infiltration pump having insulated rollers and programmable foot pedal Download PDF

Info

Publication number
US20080152512A1
US20080152512A1 US12/045,391 US4539108A US2008152512A1 US 20080152512 A1 US20080152512 A1 US 20080152512A1 US 4539108 A US4539108 A US 4539108A US 2008152512 A1 US2008152512 A1 US 2008152512A1
Authority
US
United States
Prior art keywords
foot pedal
peristaltic pump
flexible tubing
infiltration
rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/045,391
Inventor
Jeffrey A. Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/422,299 external-priority patent/US20040213685A1/en
Application filed by Individual filed Critical Individual
Priority to US12/045,391 priority Critical patent/US20080152512A1/en
Publication of US20080152512A1 publication Critical patent/US20080152512A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/1253Machines, pumps, or pumping installations having flexible working members having peristaltic action by using two or more rollers as squeezing elements, the rollers moving on an arc of a circle during squeezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure

Definitions

  • the present invention relates in general to an improved tumescent anesthesia apparatus and, more particularly, to a tumescent anesthesia infiltration pump including insulated rollers and a foot pedal with a programmable response.
  • Liposuction is an invasive surgical procedure for removing subcutaneous fat cells by inserting one end of a liposuction cannula into an area of interest of a patient, and attaching the other end of the cannula to a suction device.
  • Dr. Jeffrey Klein first introduced the use of the tumescent technique for local anesthesia (Klein, J A, The tumescent technique for liposuction surgery, J Am Acad Comestic Surg 4:263-267, 1987).
  • the tumescent technique involves the infiltration of a solution of extremely dilute lidocaine, epinephrine, and sodium bicarbonate into the subcutaneous fat. Infusion is made through the use of a peristaltic infiltration pump, and the tumescent solution reduces bleeding and also eliminates the need for general anesthetics.
  • the peristaltic pump used in the tumescent anesthesia apparatus includes an electric motor and a headstock driven by the electric motor.
  • the headstock allows the tube connecting the cannula extending there through and controls the flow direction of the fluid in the tube.
  • the headstock is made of metal material, such that it is electrically conducted to the live circuitry of the electric motor. Therefore, during the liposuction operation, if the tube extending through the headstock has a breech, or when a leakage occurs to the live circuitry of the electric motor, electric current may be delivered to the patient under operation; and thus causes great danger of the patient.
  • the present invention provides an improved liposuction apparatus, comprising a cannula, a peristaltic pump, a container containing a dilute solution of local anesthetic, a flexible sterile tube connecting the cannula to the container, and a footpad on-off switch.
  • One end of the cannula is in fluid communication with the peristaltic pump via the flexible tube.
  • the peristaltic pump includes a pathway allowing the flexible tubing to extend through and a plurality of non-conductive rollers installed along the pathway to exert force on the flexible tubing.
  • the container is in fluid communication with the cannula via the flexible tubing extending through the peristaltic pump.
  • a flexible non-sterile tube is further included to connect the foot pedal that contains an air bellow therein to the peristaltic pump to control operation by means of a pulse of air pressure.
  • the infiltration apparatus further comprises a sensor in mechanical communication with the peristaltic pump, and a sound generating device in electrical communication with the sensor.
  • the sensor is operative to detect either a liquid discharging rate from the pathway, or the rotation speed of the non-conductive rollers. Upon detection of the flow rate or the rotation speed, the sensor generates and outputs an electrical signal to the sound generating device.
  • the sound generating device then generates a sound with a frequency in response to the flow rate or the rotation speed.
  • the sound generated by the sound generating device includes a sequence of beeping sounds.
  • the foot pedal is operative to switch on the peristaltic pump while being depressed and switch off the peristaltic pump while being released. Therefore, the operator/surgeon can actuate the infiltration of local anesthesia simply by continuously depressing the foot pedal. By simply releasing the foot pedal, the infiltration is stopped.
  • This mode of controlling the infiltration pump is referred to as “momentary” mode.
  • the response of the foot pedal can be programmed into another mode referred as the continuous or toggle mode. Under this alternate (continuous) mode, the peristaltic pump is switched on and off in a toggle fashion by alternate depression performed on the foot pedal.
  • the peristaltic pump in response to each depression performed on the foot pedal, regardless the time the depression lasts, the peristaltic pump is either switched from on to off, or from off to on and remains the off/on status before a next depression event is performed thereon. Once the foot pedal is depressed again, the peristaltic pump is switched to the opposite status and remains on/off before another depression event is performed. Additionally, the foot pedal may be operated under a rate control mode in which the flow rate of the fluid or the rotation speed of the pump is proportional to the duration of depression applied to the foot pedal.
  • the peristaltic pump further comprises a rotation mechanism driving the non-conductive rollers to rotate clockwise or counterclockwise.
  • the rollers is made of an electrically non-conductive material, when there is inadvertent fluid leakage from the live circuitry of the peristaltic pump such as when there is breech on the wall of the flexible tubing, electric current is prevented from being delivered to the patient. Therefore, safer pump operation is provided.
  • the infiltration apparatus comprises a cannula, a flexible tubing connected to the cannula, an infiltration pump comprising a pathway for the flexible tubing to extend through and a plurality of rollers installed along the pathway to exert force on the flexible tubing, a container connected to the flexible tubing extending through the peristaltic pump, and a foot pedal operative to control the on/off status of the infiltration pump in response to depression performed thereon in a plurality of modes.
  • the infiltration pump is switched on when the foot pedal is depressed, and switched off when the foot pedal is released under one of the modes (the momentary mode).
  • the infiltration pump is switched and remains on continuously and off continuously by alternate depression performed thereon.
  • a rate control mode can also be selected to adjust the flow rate of the fluid flowing through the pump or the rotation speed of the pump by controlling the duration that the foot pedal is depressed.
  • the infiltration apparatus further comprises a sensor in mechanical communication with the infiltration pump and a sound generating device in electrical communication with the sensor. The sensor is operative to detect the force exerted by the rollers and to generate an electric signal in response to the force. Upon reception of the electric signal, the sound generating device is then operative to generate a sound with a frequency determined by the force.
  • the present invention further provides an infiltration pump comprising a headstock, which comprises a pathway and a plurality of electrically insulated rollers installed along the pathway.
  • the headstock further comprises a rotation mechanism operative to drive the insulated rollers rotating clockwise or counterclockwise, and the infiltration pump further comprises an electric motor operative to drive the rotation mechanism to rotate.
  • the infiltration pump further comprises a sensor in mechanical communication with the pathway or the rollers, and a sound generating device in mechanical or electric communication with the sensor. When the sensor is in communication with the rollers, the sensor is operative to detect a rotation speed of the rollers, so as to generate and output an electrical signal to the sound generating device.
  • the sensor When the sensor is in communication with the pathway, the sensor includes a flow sensor operative to detect a flow rate of a fluid flowing through the pathway. Upon reception of the electric signal, the sound generating device generates a sound with a frequency in response to the rotation speed or the flow rate.
  • an infiltration pump for fluid infiltration comprises a head stock and a rotation mechanism.
  • the headstock includes a pathway and a plurality of rollers installed along the pathway.
  • the rollers are fabricated from electrically non-conductive materials.
  • the rotation mechanism is operative to actuate rotation of the rollers along a predetermined direction.
  • a flexible tubing is applied to extend through the pathway and in contact with the rollers.
  • a switch or a foot pedal may be used to control rotation of the rollers, and a sensor can be used to detect the rotation speed of the roller.
  • a sound generating device is communication with the sensor to generate a sound with a frequency in response to the rotation speed of the rollers.
  • FIG. 1 shows an infiltration apparatus in use in an operating room
  • FIG. 2 shows a cross-sectional view of a headstock of the peristaltic pump of the infiltration apparatus
  • FIG. 3 shows a perspective view of the partially open peristaltic pump
  • FIG. 4 shows the infiltration pump insulated rollers of the peristaltic pump
  • FIG. 5 shows the structure of the foot pedal
  • FIG. 6 shows the sensor and the sound generating device of the infiltration pump in one embodiment of the present invention.
  • FIG. 7 shows another block diagram of the sensor and the sound generating device of the infiltration pump in another embodiment of the present invention.
  • the present invention provides an improved tumescent infiltration apparatus.
  • the infiltration apparatus comprises a peristaltic pump 11 , a container 12 , a flexible tubing 13 , a cannula 14 and a foot pedal 16 .
  • the cannula 14 is attached to the peristaltic pump 11 via the flexible tubing 13 .
  • the flexible tubing 13 further extends through the peristaltic pump 11 and is connected to the container 12 , such that fluid communication between the patient 15 and the container 12 is established.
  • the tumescent infiltration apparatus further comprises a foot pedal 16 electromagnetically or pneumatically connected to the peristaltic pump 11 .
  • the apparatus may comprise other control mechanism for allowing the user or the surgeon 10 to control and adjust the operation of the peristaltic pump 11 .
  • the peristaltic pump 11 has a headstock 17 controlling the flow direction and speed of the fluid inside the flexible tubing 13 .
  • the peristaltic pump 11 may further comprise a switching device accessible to the operator/surgeon to select the required flow direction and speed of the fluid in the flexible tubing 13 .
  • the headstock 17 includes a pathway 19 through which the flexible tubing 13 extends, a plurality of rollers 25 installed along the pathway 19 to exert a force or pressure upon the flexible tubing 13 , a rotation mechanism 20 driven by a motor (not shown) of the peristaltic pump 11 to rotate.
  • the rotation mechanism 20 rotates counterclockwise as shown in FIG. 2
  • the rollers 25 are driven thereby to rotate counterclockwise.
  • the rotation mechanism 20 rotates clockwise
  • the rollers 25 are driven to rotate clockwise, such that the flow direction of the fluid in the flexible tubing 13 is reversed. Therefore, by controlling the rotation of the rollers 25 , the operator or the surgeon can draw the tumescent solution in the container 12 to the patient, and aspirate the tissues/cells from the patient 15 to achieve cosmetic or even medical effect with greatly reduced risk since the tumescent solution and the removed tissue/cell have never been exposed in the atmosphere to cause contamination thereof.
  • the flow rate of the fluid is also controlled by the rotation speed of the rollers 25 .
  • the flexible tubing 13 is made of flexible material such as polyvinyl chloride (PVC).
  • PVC polyvinyl chloride
  • the exposed part of the flexible tubing 13 is preferably transparent, such that the surgeon can monitor the flow of tumescent solution infiltrated into the patient 15 .
  • the part of the flexible tubing 13 extending through the peristaltic pump 11 is preferably made of material which can withstand the force exerted by the rollers 25 .
  • the material includes Norprene, silicone, Tygon, Pharmed, or C-Flex, for example.
  • the tumescent liposuction operation To perform the tumescent liposuction operation, infiltration of local anesthesia agent is required prior to aspirate fat and tissue from the patient.
  • the tumescent solution is contained in the container 12 , and the cannula 14 is inserted into an area of interest of the patient 15 through a small incision.
  • the cannula 14 draws the tumescent solution from the container 12 via the peristaltic pump 11 , and the infiltrated amount of the tumescent solution can be controlled through adjustment of the headstock, including the rotation direction and speed.
  • FIG. 3 shows the partial interior structure of the headstock 17 of the peristaltic pump 11
  • FIG. 4 shows a perspective view of the rotation mechanism 20 and the rollers 25 .
  • both ends the rollers 25 are interlocked with the rotation mechanism 20 by the plates 21 .
  • the material of the rotation mechanism 20 and the plates 21 are made of metal, such that the rollers 25 are conductively linked to live circuitry of the peristaltic pump 11 through the rotation mechanism 20 and the interlocking means.
  • the rollers 25 are made of an electrically non-conducting material, so that even if there is a leakage current generated and flowing from the live circuitry of the peristaltic pump 11 to the rollers 25 , electric current is prevented from being delivered to the patient 15 .
  • FIG. 5 shows the structure of the foot pedal 16 comprising a bellow that generates a pulse of air pressure while being depressed.
  • the foot pedal 16 is connected to the peristaltic pump 11 via a hollow flexible tube 50 . Therefore, when the foot pedal 16 is depressed or released, a response signal consisting of a pulse of air pressure is delivered to the peristaltic pump 11 via the hollow flexible tube attached to the foot pedal 50 .
  • the response signal of the foot pedal 16 can be programmed and selected according to specific need; and according to the response signal, the peristaltic pump 11 operates under different mode.
  • a mode selector can be used to connect to the foot pedal 16 and select the pre-programmed response thereof.
  • the foot pedal 16 is programmed with three exemplary modes, including a continuous or toggle mode, an alternate momentary mode, and a rate control mode.
  • a response signal is output to continuously activate the peristaltic pump 11 . That is, the infiltration procedure is continuously performed after the foot pedal 16 is depressed once and released afterwards. The infiltration procedure will not be terminated unless an inactivation signal is input to the peristaltic pump 11 . More specifically, when the foot pedal 16 is depressed once, the infiltration procedure is initiated and continuously performed even the foot pedal 16 is released afterwards. When the foot pedal 16 is depressed again after being released, the infiltration procedure is interrupted or terminated. That is, regardless the duration of the depression upon the foot pedal 16 , a response signal is generated to reverse the current operation status of the peristaltic pump 11 .
  • the response signal switches off the peristaltic pump 11 .
  • the response signal activates the peristaltic pump 11 .
  • the reversed operation status is remained even when the foot pedal 16 is released. Before the foot pedal 16 is depressed again, the peristaltic pump 11 remains on or off as it was. Therefore, in the continuous mode the peristaltic pump 11 operates continuously until it is switched on/off by alternate depression performed on the foot pedal.
  • the response signal for activating the peristaltic pump 11 is no longer available.
  • the response signal for inactivating the peristaltic pump 11 is output from the foot pedal 16 whenever the foot pedal pressure is released. Therefore, as long as the foot pedal 16 is depressed, the fluid is drawn from the container 12 to the patient, and the infiltration procedure is performed. On the contrary, whenever the foot pedal 16 is released, the peristaltic pump 11 stops operating, no fluid will be drawn from the container 12 ; and the infiltration procedure is interrupted or terminated.
  • the rate control mode can be combined to either the continuous mode or the momentary mode.
  • the flow rate of the fluid drawn from the container 12 or the rotation speed of the peristaltic pump 11 is proportional to the duration that foot pedal 16 is depressed. That is, the longer the foot pedal 16 is depressed, the higher the flow rate of the fluid can reach.
  • the foot pedal 16 is depressed for a period of time until the fluid attains a preferred flow rate, once the foot pedal 16 is released, the fluid is infiltrated constantly at the preferred flow rate. The infiltration of the fluid will not be interrupted or terminated until further depression is applied to the foot pedal 16 .
  • the rate control mode can also be used in combination with the momentary mode.
  • the peristaltic pump 11 stops rotating, or infiltration of the fluid stops. The infiltration of fluid or rotation of the peristaltic pump 11 will not resume until a further depression applied to the foot pedal 16 .
  • the programmable response of the foot pedal 16 allows the operator/surgeon to select the suitable mode and flow rate of the fluid for operation. For example, when it is required to frequently switch on/off the peristaltic pump 11 , the foot pedal 16 is programmed under the momentary mode that whenever the foot pedal 16 is depressed, the peristaltic pump 11 is switched on and actuated. To keep the peristaltic pump 11 in the on status, the foot pedal 16 must remain depressed. Once the foot pedal 16 is released, the peristaltic pump 11 is switched off, and the infiltration operation is stopped.
  • the foot pedal 16 can be programmed into the continuous mode under which the peristaltic pump 11 is switched on and off for alternate depression by the operator/surgeon. That is, when the current status of the peristaltic pump 11 is off, by depressing the foot pedal 16 , the peristaltic pump 11 is actuated and remains on even when the foot pedal 16 is released. By releasing and depressing the foot pedal 16 again, the peristaltic pump 11 is switched off.
  • the rate control mode can also be selected to control the flow rate of the tumescent solution according to the physical condition of individual patient; and thereby provides a safer and more efficient infiltration procedure.
  • the present invention further provides a sensor automatically detecting the infiltration speed, and a sound generating device generating a sound indicating the filtration speed.
  • the sensor 60 is in mechanical communication with the peristaltic pump 17 .
  • the sensor 60 may be attached to the shaft of the rotation mechanism 20 or the axis of any of the rollers 25 as shown in FIG. 2 to detect the rotation speed of the rollers 25 .
  • the sensor 60 includes a flow sensor located in the flexible tubing 24 to detect the flow rate of the fluid flowing through the flexible tubing 24 .
  • a sound is generated by the sound generating device 62 .
  • the frequency of the sound generated by the sound generating device 62 depends on the rotation speed of the rollers 25 or the flow rate of the fluid, which is determined by the rotation speed of the rollers 25 .
  • the sound includes a sequence of beeps, for example. Preferably, when the rotation speed or the flow rate increases, the frequency of the beeps increases. In contrast, when the rotation speed or the flow rate decreases, the frequency of the beeps decreases.
  • This disclosure provides exemplary embodiments of a child safety blind.
  • the scope of this disclosure is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in shape, structure, dimension, type of material or manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Abstract

An infiltration apparatus, having a cannula, a flexible tubing connecting to one end of the cannula, a peristaltic pump comprising a pathway for the flexible tubing to extend through and a plurality of non-conductive rollers installed along the pathway to exerting force on the flexible tubing, a container in fluid communication with the cannula via the flexible tubing extending through the peristaltic pump, a foot pedal pneumatically connected to the peristaltic pump to control operation thereof. The response of the foot pedal can be programmed into various modes. Under one of the modes, when the foot pedal is depressed, the peristaltic pump is switched on and remains as long as the foot pedal is depressed. Once the foot pedal is released, the peristaltic pump is switched off. Under another mode, one depression event, regardless how long the depression event lasts, the peristaltic pump is switched from on to off, or from off to on, and remains off/on before a next depression event occurs. The flow rate of the fluid can also be adjusted by controlling duration for depressing the foot pedal.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The Present application is a continuation-in-part application of pending U.S. application Ser. No. 10/422,299 filed Apr. 24, 2003 entitled INFILTRATION PUMP HAVING INSULATED ROLLERS AND PROGRAMMABLE FOOT PEDAL, the disclosure of which is expressly incorporated herein by reference.
  • STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • The present invention relates in general to an improved tumescent anesthesia apparatus and, more particularly, to a tumescent anesthesia infiltration pump including insulated rollers and a foot pedal with a programmable response.
  • Liposuction is an invasive surgical procedure for removing subcutaneous fat cells by inserting one end of a liposuction cannula into an area of interest of a patient, and attaching the other end of the cannula to a suction device.
  • It is common that when the fat cells are removed from the patient, blood is inevitably withdrawn. When the amount of the removed fat cells is low, withdrawal of blood is not critical. However, if the removal of a large volume of fat cells is required, complications result and recuperation time is extended and in almost all situations, supplemental blood is added to the patient, thus posing other danger.
  • To increase safety of the procedure, the Applicant of the present invention, Dr. Jeffrey Klein first introduced the use of the tumescent technique for local anesthesia (Klein, J A, The tumescent technique for liposuction surgery, J Am Acad Comestic Surg 4:263-267, 1987). The tumescent technique involves the infiltration of a solution of extremely dilute lidocaine, epinephrine, and sodium bicarbonate into the subcutaneous fat. Infusion is made through the use of a peristaltic infiltration pump, and the tumescent solution reduces bleeding and also eliminates the need for general anesthetics.
  • Currently, the peristaltic pump used in the tumescent anesthesia apparatus includes an electric motor and a headstock driven by the electric motor. The headstock allows the tube connecting the cannula extending there through and controls the flow direction of the fluid in the tube. The headstock is made of metal material, such that it is electrically conducted to the live circuitry of the electric motor. Therefore, during the liposuction operation, if the tube extending through the headstock has a breech, or when a leakage occurs to the live circuitry of the electric motor, electric current may be delivered to the patient under operation; and thus causes great danger of the patient.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides an improved liposuction apparatus, comprising a cannula, a peristaltic pump, a container containing a dilute solution of local anesthetic, a flexible sterile tube connecting the cannula to the container, and a footpad on-off switch. One end of the cannula is in fluid communication with the peristaltic pump via the flexible tube. The peristaltic pump includes a pathway allowing the flexible tubing to extend through and a plurality of non-conductive rollers installed along the pathway to exert force on the flexible tubing. The container is in fluid communication with the cannula via the flexible tubing extending through the peristaltic pump. A flexible non-sterile tube is further included to connect the foot pedal that contains an air bellow therein to the peristaltic pump to control operation by means of a pulse of air pressure. The infiltration apparatus further comprises a sensor in mechanical communication with the peristaltic pump, and a sound generating device in electrical communication with the sensor. The sensor is operative to detect either a liquid discharging rate from the pathway, or the rotation speed of the non-conductive rollers. Upon detection of the flow rate or the rotation speed, the sensor generates and outputs an electrical signal to the sound generating device. The sound generating device then generates a sound with a frequency in response to the flow rate or the rotation speed. In one embodiment, the sound generated by the sound generating device includes a sequence of beeping sounds.
  • In the above infiltration apparatus, the foot pedal is operative to switch on the peristaltic pump while being depressed and switch off the peristaltic pump while being released. Therefore, the operator/surgeon can actuate the infiltration of local anesthesia simply by continuously depressing the foot pedal. By simply releasing the foot pedal, the infiltration is stopped. This mode of controlling the infiltration pump is referred to as “momentary” mode. Alternatively, when the infiltration is continued for a longer period of time, the response of the foot pedal can be programmed into another mode referred as the continuous or toggle mode. Under this alternate (continuous) mode, the peristaltic pump is switched on and off in a toggle fashion by alternate depression performed on the foot pedal. That is, in response to each depression performed on the foot pedal, regardless the time the depression lasts, the peristaltic pump is either switched from on to off, or from off to on and remains the off/on status before a next depression event is performed thereon. Once the foot pedal is depressed again, the peristaltic pump is switched to the opposite status and remains on/off before another depression event is performed. Additionally, the foot pedal may be operated under a rate control mode in which the flow rate of the fluid or the rotation speed of the pump is proportional to the duration of depression applied to the foot pedal.
  • The peristaltic pump further comprises a rotation mechanism driving the non-conductive rollers to rotate clockwise or counterclockwise. As the rollers is made of an electrically non-conductive material, when there is inadvertent fluid leakage from the live circuitry of the peristaltic pump such as when there is breech on the wall of the flexible tubing, electric current is prevented from being delivered to the patient. Therefore, safer pump operation is provided.
  • In one embodiment of the present invention, the infiltration apparatus comprises a cannula, a flexible tubing connected to the cannula, an infiltration pump comprising a pathway for the flexible tubing to extend through and a plurality of rollers installed along the pathway to exert force on the flexible tubing, a container connected to the flexible tubing extending through the peristaltic pump, and a foot pedal operative to control the on/off status of the infiltration pump in response to depression performed thereon in a plurality of modes. For example, the infiltration pump is switched on when the foot pedal is depressed, and switched off when the foot pedal is released under one of the modes (the momentary mode). In another operational mode (the continuous mode), the infiltration pump is switched and remains on continuously and off continuously by alternate depression performed thereon. Additionally, a rate control mode can also be selected to adjust the flow rate of the fluid flowing through the pump or the rotation speed of the pump by controlling the duration that the foot pedal is depressed. The infiltration apparatus further comprises a sensor in mechanical communication with the infiltration pump and a sound generating device in electrical communication with the sensor. The sensor is operative to detect the force exerted by the rollers and to generate an electric signal in response to the force. Upon reception of the electric signal, the sound generating device is then operative to generate a sound with a frequency determined by the force.
  • The present invention further provides an infiltration pump comprising a headstock, which comprises a pathway and a plurality of electrically insulated rollers installed along the pathway. The headstock further comprises a rotation mechanism operative to drive the insulated rollers rotating clockwise or counterclockwise, and the infiltration pump further comprises an electric motor operative to drive the rotation mechanism to rotate. The infiltration pump further comprises a sensor in mechanical communication with the pathway or the rollers, and a sound generating device in mechanical or electric communication with the sensor. When the sensor is in communication with the rollers, the sensor is operative to detect a rotation speed of the rollers, so as to generate and output an electrical signal to the sound generating device. When the sensor is in communication with the pathway, the sensor includes a flow sensor operative to detect a flow rate of a fluid flowing through the pathway. Upon reception of the electric signal, the sound generating device generates a sound with a frequency in response to the rotation speed or the flow rate.
  • In one exemplary embodiment, an infiltration pump for fluid infiltration is provided. The infiltration pump comprises a head stock and a rotation mechanism. The headstock includes a pathway and a plurality of rollers installed along the pathway. The rollers are fabricated from electrically non-conductive materials. The rotation mechanism is operative to actuate rotation of the rollers along a predetermined direction. To facilitate infiltration of a fluid, a flexible tubing is applied to extend through the pathway and in contact with the rollers. A switch or a foot pedal may be used to control rotation of the rollers, and a sensor can be used to detect the rotation speed of the roller. Preferably, a sound generating device is communication with the sensor to generate a sound with a frequency in response to the rotation speed of the rollers.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These, as well as other features of the present invention, will become apparent upon reference to the drawings wherein:
  • FIG. 1 shows an infiltration apparatus in use in an operating room;
  • FIG. 2 shows a cross-sectional view of a headstock of the peristaltic pump of the infiltration apparatus;
  • FIG. 3 shows a perspective view of the partially open peristaltic pump;
  • FIG. 4 shows the infiltration pump insulated rollers of the peristaltic pump;
  • FIG. 5 shows the structure of the foot pedal; and
  • FIG. 6 shows the sensor and the sound generating device of the infiltration pump in one embodiment of the present invention; and
  • FIG. 7 shows another block diagram of the sensor and the sound generating device of the infiltration pump in another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides an improved tumescent infiltration apparatus. As shown in FIG. 1, the infiltration apparatus comprises a peristaltic pump 11, a container 12, a flexible tubing 13, a cannula 14 and a foot pedal 16. The cannula 14 is attached to the peristaltic pump 11 via the flexible tubing 13. The flexible tubing 13 further extends through the peristaltic pump 11 and is connected to the container 12, such that fluid communication between the patient 15 and the container 12 is established. For the convenience of controlling the operation of the peristaltic pump 11, the tumescent infiltration apparatus further comprises a foot pedal 16 electromagnetically or pneumatically connected to the peristaltic pump 11. The function and operation of the foot pedal 16 will be further described in details later in this specification. It will be appreciated that, in addition to the foot pedal 16, the apparatus may comprise other control mechanism for allowing the user or the surgeon 10 to control and adjust the operation of the peristaltic pump 11.
  • As shown in FIG. 1 and FIG. 2, the peristaltic pump 11 has a headstock 17 controlling the flow direction and speed of the fluid inside the flexible tubing 13. The peristaltic pump 11 may further comprise a switching device accessible to the operator/surgeon to select the required flow direction and speed of the fluid in the flexible tubing 13. The headstock 17 includes a pathway 19 through which the flexible tubing 13 extends, a plurality of rollers 25 installed along the pathway 19 to exert a force or pressure upon the flexible tubing 13, a rotation mechanism 20 driven by a motor (not shown) of the peristaltic pump 11 to rotate. In this embodiment, when the rotation mechanism 20 rotates counterclockwise as shown in FIG. 2, the rollers 25 are driven thereby to rotate counterclockwise. Thereby, a pumping force is exerted upon the flexible tubing 13 and the fluid therein flows through the flexible tubing 13 along the direction indicated by the arrows 24. Similarly, when the rotation mechanism 20 rotates clockwise, the rollers 25 are driven to rotate clockwise, such that the flow direction of the fluid in the flexible tubing 13 is reversed. Therefore, by controlling the rotation of the rollers 25, the operator or the surgeon can draw the tumescent solution in the container 12 to the patient, and aspirate the tissues/cells from the patient 15 to achieve cosmetic or even medical effect with greatly reduced risk since the tumescent solution and the removed tissue/cell have never been exposed in the atmosphere to cause contamination thereof. In addition to the flow direction, the flow rate of the fluid is also controlled by the rotation speed of the rollers 25.
  • Preferably, the flexible tubing 13 is made of flexible material such as polyvinyl chloride (PVC). The exposed part of the flexible tubing 13 is preferably transparent, such that the surgeon can monitor the flow of tumescent solution infiltrated into the patient 15. The part of the flexible tubing 13 extending through the peristaltic pump 11 is preferably made of material which can withstand the force exerted by the rollers 25. The material includes Norprene, silicone, Tygon, Pharmed, or C-Flex, for example.
  • To perform the tumescent liposuction operation, infiltration of local anesthesia agent is required prior to aspirate fat and tissue from the patient. The tumescent solution is contained in the container 12, and the cannula 14 is inserted into an area of interest of the patient 15 through a small incision. In response to the foot pedal 16, the cannula 14 draws the tumescent solution from the container 12 via the peristaltic pump 11, and the infiltrated amount of the tumescent solution can be controlled through adjustment of the headstock, including the rotation direction and speed.
  • FIG. 3 shows the partial interior structure of the headstock 17 of the peristaltic pump 11, and FIG. 4 shows a perspective view of the rotation mechanism 20 and the rollers 25. In this embodiment, both ends the rollers 25 are interlocked with the rotation mechanism 20 by the plates 21. It will be appreciated that in addition to the specific arrangement as shown in FIG. 3, other structure and connection between the rotation mechanism 20 and the rollers 25 can also be applied without exceeding the spirit and coverage of the present invention. Typically, the material of the rotation mechanism 20 and the plates 21 are made of metal, such that the rollers 25 are conductively linked to live circuitry of the peristaltic pump 11 through the rotation mechanism 20 and the interlocking means. When the flexible tubing 13 has a breech which has not been noticed by the user or the surgeon, the electric current can thus be inadvertently delivered to the patient 15. Therefore, in the present invention, the rollers 25 are made of an electrically non-conducting material, so that even if there is a leakage current generated and flowing from the live circuitry of the peristaltic pump 11 to the rollers 25, electric current is prevented from being delivered to the patient 15.
  • FIG. 5 shows the structure of the foot pedal 16 comprising a bellow that generates a pulse of air pressure while being depressed. As shown in FIGS. 1 and 5, the foot pedal 16 is connected to the peristaltic pump 11 via a hollow flexible tube 50. Therefore, when the foot pedal 16 is depressed or released, a response signal consisting of a pulse of air pressure is delivered to the peristaltic pump 11 via the hollow flexible tube attached to the foot pedal 50. The response signal of the foot pedal 16 can be programmed and selected according to specific need; and according to the response signal, the peristaltic pump 11 operates under different mode. A mode selector can be used to connect to the foot pedal 16 and select the pre-programmed response thereof. In this embodiment, the foot pedal 16 is programmed with three exemplary modes, including a continuous or toggle mode, an alternate momentary mode, and a rate control mode.
  • In the continuous or toggle mode, whenever the foot pedal 16 is depressed once and released, a response signal is output to continuously activate the peristaltic pump 11. That is, the infiltration procedure is continuously performed after the foot pedal 16 is depressed once and released afterwards. The infiltration procedure will not be terminated unless an inactivation signal is input to the peristaltic pump 11. More specifically, when the foot pedal 16 is depressed once, the infiltration procedure is initiated and continuously performed even the foot pedal 16 is released afterwards. When the foot pedal 16 is depressed again after being released, the infiltration procedure is interrupted or terminated. That is, regardless the duration of the depression upon the foot pedal 16, a response signal is generated to reverse the current operation status of the peristaltic pump 11. When the peristaltic pump 11 is currently on, the response signal switches off the peristaltic pump 11. In contrast, if the peristaltic pump 11 is currently inactive, the response signal activates the peristaltic pump 11. The reversed operation status is remained even when the foot pedal 16 is released. Before the foot pedal 16 is depressed again, the peristaltic pump 11 remains on or off as it was. Therefore, in the continuous mode the peristaltic pump 11 operates continuously until it is switched on/off by alternate depression performed on the foot pedal.
  • In contrast, under the momentary mode, whenever the foot pedal 16 is released, the response signal for activating the peristaltic pump 11 is no longer available. Or the response signal for inactivating the peristaltic pump 11 is output from the foot pedal 16 whenever the foot pedal pressure is released. Therefore, as long as the foot pedal 16 is depressed, the fluid is drawn from the container 12 to the patient, and the infiltration procedure is performed. On the contrary, whenever the foot pedal 16 is released, the peristaltic pump 11 stops operating, no fluid will be drawn from the container 12; and the infiltration procedure is interrupted or terminated.
  • The rate control mode can be combined to either the continuous mode or the momentary mode. In the rate control mode, the flow rate of the fluid drawn from the container 12 or the rotation speed of the peristaltic pump 11 is proportional to the duration that foot pedal 16 is depressed. That is, the longer the foot pedal 16 is depressed, the higher the flow rate of the fluid can reach. When the foot pedal 16 is depressed for a period of time until the fluid attains a preferred flow rate, once the foot pedal 16 is released, the fluid is infiltrated constantly at the preferred flow rate. The infiltration of the fluid will not be interrupted or terminated until further depression is applied to the foot pedal 16. Alternatively, the rate control mode can also be used in combination with the momentary mode. That is, when the foot pedal 16 is depressed for a period of time until the fluid attains the preferred flow rate, once the foot pedal 16 is released, the peristaltic pump 11 stops rotating, or infiltration of the fluid stops. The infiltration of fluid or rotation of the peristaltic pump 11 will not resume until a further depression applied to the foot pedal 16.
  • The programmable response of the foot pedal 16 allows the operator/surgeon to select the suitable mode and flow rate of the fluid for operation. For example, when it is required to frequently switch on/off the peristaltic pump 11, the foot pedal 16 is programmed under the momentary mode that whenever the foot pedal 16 is depressed, the peristaltic pump 11 is switched on and actuated. To keep the peristaltic pump 11 in the on status, the foot pedal 16 must remain depressed. Once the foot pedal 16 is released, the peristaltic pump 11 is switched off, and the infiltration operation is stopped. When it is required to keep the peristaltic pump 11 activated for a longer period of time, the foot pedal 16 can be programmed into the continuous mode under which the peristaltic pump 11 is switched on and off for alternate depression by the operator/surgeon. That is, when the current status of the peristaltic pump 11 is off, by depressing the foot pedal 16, the peristaltic pump 11 is actuated and remains on even when the foot pedal 16 is released. By releasing and depressing the foot pedal 16 again, the peristaltic pump 11 is switched off. In addition to the continuous on/off mode and the momentary on/off mode, the rate control mode can also be selected to control the flow rate of the tumescent solution according to the physical condition of individual patient; and thereby provides a safer and more efficient infiltration procedure.
  • During the operation, it is important to monitor the infiltration speed of the fluid. To prevent the operator surgeon from being distracted for reading the infiltration speed from a meter or instrument during the operation, the present invention further provides a sensor automatically detecting the infiltration speed, and a sound generating device generating a sound indicating the filtration speed. As shown in FIG. 6, the sensor 60 is in mechanical communication with the peristaltic pump 17. The sensor 60 may be attached to the shaft of the rotation mechanism 20 or the axis of any of the rollers 25 as shown in FIG. 2 to detect the rotation speed of the rollers 25. Alternatively, as shown in FIG. 7, the sensor 60 includes a flow sensor located in the flexible tubing 24 to detect the flow rate of the fluid flowing through the flexible tubing 24. When the sensor 60 detects the rotation of the rollers 25 or the flow of the fluid, a sound is generated by the sound generating device 62. The frequency of the sound generated by the sound generating device 62 depends on the rotation speed of the rollers 25 or the flow rate of the fluid, which is determined by the rotation speed of the rollers 25. The sound includes a sequence of beeps, for example. Preferably, when the rotation speed or the flow rate increases, the frequency of the beeps increases. In contrast, when the rotation speed or the flow rate decreases, the frequency of the beeps decreases.
  • This disclosure provides exemplary embodiments of a child safety blind. The scope of this disclosure is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in shape, structure, dimension, type of material or manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Claims (2)

1. An infiltration apparatus, comprising:
a cannula;
a flexible tubing, connecting to one end of the cannula;
a peristaltic pump comprising a pathway for the flexible tubing to extend through and a plurality of non-conductive rollers installed along the pathway to direct flow direction of fluid flowing through the flexible tubing;
a sensor in mechanical communication with the flexible tubing or the peristaltic pump;
a sound generating device in electrical communication with the sensor;
a container, in fluid communication with the cannula via the flexible tubing extending through the peristaltic pump; and
a foot pedal, connected to the peristaltic pump via a flexible tube, the foot pedal being operative to control operation of the peristaltic pump by generating and delivering at least one pulse of air thereto.
2-28. (canceled)
US12/045,391 2003-04-24 2008-03-10 Infiltration pump having insulated rollers and programmable foot pedal Abandoned US20080152512A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/045,391 US20080152512A1 (en) 2003-04-24 2008-03-10 Infiltration pump having insulated rollers and programmable foot pedal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/422,299 US20040213685A1 (en) 2003-04-24 2003-04-24 Infiltration pump having insulated rollers and programmable foot pedal
US10/811,733 US20040213684A1 (en) 2003-04-24 2004-03-29 Infiltration pump having insulated rollers and programmable foot pedal
US12/045,391 US20080152512A1 (en) 2003-04-24 2008-03-10 Infiltration pump having insulated rollers and programmable foot pedal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/811,733 Continuation US20040213684A1 (en) 2003-04-24 2004-03-29 Infiltration pump having insulated rollers and programmable foot pedal

Publications (1)

Publication Number Publication Date
US20080152512A1 true US20080152512A1 (en) 2008-06-26

Family

ID=39543060

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/811,733 Abandoned US20040213684A1 (en) 2003-04-24 2004-03-29 Infiltration pump having insulated rollers and programmable foot pedal
US12/045,391 Abandoned US20080152512A1 (en) 2003-04-24 2008-03-10 Infiltration pump having insulated rollers and programmable foot pedal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/811,733 Abandoned US20040213684A1 (en) 2003-04-24 2004-03-29 Infiltration pump having insulated rollers and programmable foot pedal

Country Status (1)

Country Link
US (2) US20040213684A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078836A1 (en) * 2002-02-25 2003-09-25 Jiri Vanek Peristaltic rotation pump with exact, especially mechanically linear dosage
US20040213684A1 (en) * 2003-04-24 2004-10-28 Klein Jeffrey A. Infiltration pump having insulated rollers and programmable foot pedal
US20040213685A1 (en) * 2003-04-24 2004-10-28 Klein Jeffrey A. Infiltration pump having insulated rollers and programmable foot pedal
US8052403B1 (en) * 2007-08-09 2011-11-08 Becher James J Peristaltic pump
GB2494623B (en) 2011-09-02 2013-09-25 Tristel Plc Pump apparatus
USD751706S1 (en) * 2014-10-16 2016-03-15 Michael Chen Tattoo machine foot switch
CN207454227U (en) * 2017-10-31 2018-06-05 四川南格尔生物科技有限公司 A kind of high precision peristaltic pump flow velocity control system
CN110792582B (en) * 2019-11-06 2022-03-18 刘国裕 Peristaltic pump for low-pulse scene

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544336A (en) * 1981-04-08 1985-10-01 Fresenius Ag Medical peristaltic pump
US4674962A (en) * 1985-10-17 1987-06-23 Cobe Laboratories, Inc. Peristaltic pump
US4971531A (en) * 1988-10-28 1990-11-20 Ab Nike Pump arrangement driven by compressed-air
US5180925A (en) * 1991-02-22 1993-01-19 Outboard Marine Corporation Remote switching system for an electric trolling motor
US5254085A (en) * 1991-09-19 1993-10-19 Xomed-Treace Inc. Aspiration system with positive pressure
US5322070A (en) * 1992-08-21 1994-06-21 E-Z-Em, Inc. Barium enema insufflation system
US5447493A (en) * 1994-01-10 1995-09-05 Very Inventive Physicians, Inc. Tumescent lipoplastic apparatus
US5472416A (en) * 1994-01-10 1995-12-05 Very Inventive Physicians, Inc. Tumescent lipoplastic method and apparatus
US5580347A (en) * 1991-07-31 1996-12-03 Mentor Ophthalmics, Inc. Controlling operation of handpieces during ophthalmic surgery
US5810765A (en) * 1994-06-30 1998-09-22 Nidek Company, Ltd. Irrigation/aspiration apparatus
US6126592A (en) * 1998-09-12 2000-10-03 Smith & Nephew, Inc. Endoscope cleaning and irrigation sheath
US6260434B1 (en) * 1997-09-12 2001-07-17 Allergan Sales, Inc. Dual position foot pedal for ophthalmic surgery apparatus
US20040213684A1 (en) * 2003-04-24 2004-10-28 Klein Jeffrey A. Infiltration pump having insulated rollers and programmable foot pedal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8312069D0 (en) * 1983-05-03 1983-06-08 Peritronic Medical Ind Plc Peristaltic pumps
US20010016699A1 (en) * 1997-02-14 2001-08-23 Jeffrey H. Burbank Hemofiltration system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544336A (en) * 1981-04-08 1985-10-01 Fresenius Ag Medical peristaltic pump
US4674962A (en) * 1985-10-17 1987-06-23 Cobe Laboratories, Inc. Peristaltic pump
US4971531A (en) * 1988-10-28 1990-11-20 Ab Nike Pump arrangement driven by compressed-air
US5180925A (en) * 1991-02-22 1993-01-19 Outboard Marine Corporation Remote switching system for an electric trolling motor
US5580347A (en) * 1991-07-31 1996-12-03 Mentor Ophthalmics, Inc. Controlling operation of handpieces during ophthalmic surgery
US5254085A (en) * 1991-09-19 1993-10-19 Xomed-Treace Inc. Aspiration system with positive pressure
US5322070A (en) * 1992-08-21 1994-06-21 E-Z-Em, Inc. Barium enema insufflation system
US5447493A (en) * 1994-01-10 1995-09-05 Very Inventive Physicians, Inc. Tumescent lipoplastic apparatus
US5472416A (en) * 1994-01-10 1995-12-05 Very Inventive Physicians, Inc. Tumescent lipoplastic method and apparatus
US5810765A (en) * 1994-06-30 1998-09-22 Nidek Company, Ltd. Irrigation/aspiration apparatus
US6260434B1 (en) * 1997-09-12 2001-07-17 Allergan Sales, Inc. Dual position foot pedal for ophthalmic surgery apparatus
US6126592A (en) * 1998-09-12 2000-10-03 Smith & Nephew, Inc. Endoscope cleaning and irrigation sheath
US20040213684A1 (en) * 2003-04-24 2004-10-28 Klein Jeffrey A. Infiltration pump having insulated rollers and programmable foot pedal

Also Published As

Publication number Publication date
US20040213684A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US20080152512A1 (en) Infiltration pump having insulated rollers and programmable foot pedal
JP4033495B2 (en) Medical irrigation pump and system
JP2804371B2 (en) Surgical instruments
EP1836951B1 (en) Water feeding device for an endoscope
US9775964B2 (en) Interventional catheter assemblies, control consoles and adaptive tubing cassettes
JP4606096B2 (en) Handgun grip electrosurgical pencil with manual aspirator / irrigator and method of use thereof
US20030212363A1 (en) Surgical irrigation apparatus and methods for use
JP2990525B2 (en) Equipment for removing body obstruction
EP2109473B2 (en) Apparatus for administering reduced pressure treatment to a tissue site
WO1993017729A1 (en) System and apparatus for controlling fluid flow from a surgical handpiece
JP2004049704A (en) Medical aspirator
EP0251512A1 (en) Apparatus for removing gallstones
US20070110588A1 (en) Infiltration pump having insulated rollers and programmable foot pedal
US10195316B2 (en) System and method for providing pressurized infusion and increasing operating room efficiency
US9662162B2 (en) Leakage protection system, pressure balancing system, and precipitator with valve function for ablation applications
EP0578376A1 (en) Ultrasonic surgical aspirator
KR20210081125A (en) Sinus Treatment System for Preventing Blockage
KR101940792B1 (en) Control method of multi-vacuum operation body fluid pump
US11571233B2 (en) Tissue removal handpiece with integrated suction
EP0516726A1 (en) Apparatus, catheter and method for chemical contact dissolution of gallstones
US20240009371A1 (en) Pumping cassette for tissue treatment devices
US20220072214A1 (en) Medical Instrument for Minimally Invasive Therapy, Comprising at Least Two Separate Suction Lines
US20230372599A1 (en) Systems and methods for sensorless blockage detection in a surgical fluid management system
JP2023527167A (en) Mobile Negative Pressure Wound Therapy Device
CN115813510A (en) Surgical system with expansion cavity, planing and suction functions and control method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION