US20080146825A1 - Direct epoxidation catalyst - Google Patents

Direct epoxidation catalyst Download PDF

Info

Publication number
US20080146825A1
US20080146825A1 US11/641,271 US64127106A US2008146825A1 US 20080146825 A1 US20080146825 A1 US 20080146825A1 US 64127106 A US64127106 A US 64127106A US 2008146825 A1 US2008146825 A1 US 2008146825A1
Authority
US
United States
Prior art keywords
catalyst
diatomaceous earth
palladium
zeolite
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/641,271
Other versions
US7381675B1 (en
Inventor
Jude T. Ruszkay
Roger A. Grey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lyondell Chemical Technology LP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREY, ROGER A., RUSZKAY, JUDE T.
Application filed by Individual filed Critical Individual
Priority to US11/641,271 priority Critical patent/US7381675B1/en
Priority to PCT/US2007/024267 priority patent/WO2008088454A1/en
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS Assignors: ARCO CHEMICAL TECHNOLOGY L.P., ARCO CHEMICAL TECHNOLOGY, INC., ATLANTIC RICHFIELD COMPANY, BASELL NORTH AMERICA, INC., BASELL POLYOLEFIN GMBH, BASELL POLYOLEFINE GMBH, EQUISTAR CHEMICALS. LP., LYONDELL CHEMICAL COMPANY, LYONDELL CHEMICAL TECHNOLOGY, L.P., LYONDELL PETROCHEMICAL COMPANY, NATIONAL DISTILLERS AND CHEMICAL CORPORATION, OCCIDENTAL CHEMICAL CORPORATION, OLIN CORPORATION, QUANTUM CHEMICAL CORPORATION
Publication of US7381675B1 publication Critical patent/US7381675B1/en
Application granted granted Critical
Publication of US20080146825A1 publication Critical patent/US20080146825A1/en
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: ARCO CHEMICAL TECHNOLOGY L.P., ARCO CHEMICAL TECHNOLOGY, INC., ATLANTIC RICHFIELD COMPANY, BASELL NORTH AMERICA, INC., BASELL POLYOLEFIN GMBH, BASELL POLYOLEFINE GMBH, EQUISTAR CHEMICALS, L.P., LYONDELL CHEMICAL COMPANY
Assigned to CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT reassignment CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT reassignment UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to EQUISTAR CHEMICALS, LP, LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment EQUISTAR CHEMICALS, LP RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P., EQUISTAR CHEMICALS, LP reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to LYONDELL CHEMICAL TECHNOLOGY, LP reassignment LYONDELL CHEMICAL TECHNOLOGY, LP RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to LYONDELL CHEMICAL TECHNOLOGY, LP reassignment LYONDELL CHEMICAL TECHNOLOGY, LP RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT
Assigned to DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENT reassignment DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT reassignment UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to CITIBANK, N.A., AS ADMINISTRATIVE AGENT reassignment CITIBANK, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: LYONDELL CHEMICAL TECHNOLOGY, L.P.
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A.
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. APPOINTMENT OF SUCCESSOR ADMINISTRATIVE AGENT Assignors: UBS AG, STAMFORD BRANCH
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Assigned to LYONDELL CHEMICAL TECHNOLOGY, L.P. reassignment LYONDELL CHEMICAL TECHNOLOGY, L.P. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK TRUST COMPANY AMERICAS
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J35/19
    • B01J35/40
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing

Definitions

  • the invention relates to a catalyst comprising a noble metal supported on a diatomaceous earth and a transition metal zeolite.
  • the catalyst is used to produce an epoxide by reacting an olefin, hydrogen, and oxygen.
  • the reaction may be performed in the presence of a catalyst comprising gold and a titanium-containing support (see, e.g., U.S. Pat. Nos. 5,623,090, 6,362,349, and 6,646,142), or a catalyst containing palladium and a titanium zeolite (see, e.g., JP 4-352771).
  • a catalyst comprising gold and a titanium-containing support
  • a catalyst containing palladium and a titanium zeolite see, e.g., JP 4-352771.
  • Example 13 of JP 4-352771 describes the use of a mixture of titanosilicate and Pd-on-carbon for propylene epoxidation.
  • U.S. Pat. No. 6,008,388 describes a catalyst comprising a noble metal and a titanium or vanadium zeolite, but additionally teaches that the Pd can be incorporated into a support before mixing with the zeolite.
  • the catalyst supports disclosed include silica, alumina, and activated carbon.
  • U.S. Pat. No. 6,498,259 discloses the epoxidation of an olefin with hydrogen and oxygen in a solvent containing a buffer in the presence of a catalyst mixture containing a titanium zeolite and a noble metal catalyst.
  • liquid and/or gas product streams need to be separated from the solid catalyst particles.
  • titanium zeolites and the supported noble metal catalyst into large enough particles (e.g., >1 ⁇ m) to make such separation (e.g., filtration) practically viable.
  • the invention is a catalyst comprising a noble metal supported on a diatomaceous earth and a transition metal zeolite.
  • the catalyst is used in an epoxidation process comprising reacting an olefin, hydrogen, and oxygen.
  • Diatomaceous earth is readily available and can be easily separated from a liquid and/or gas effluent.
  • the invention is a catalyst comprising a transition metal zeolite.
  • Zeolites are microporous crystalline solids with well-defined structures. Generally they contain one or more of Si, Ge, Al, B, P, or the like, in addition to oxygen. Many zeolites occur naturally as minerals and are extensively mined in many parts of the world. Others are synthetic and are made commercially for specific uses. Zeolites have the ability to act as catalysts for chemical reactions which take place mostly within the internal cavities of the zeolites.
  • Transition metal zeolites are zeolites comprising transition metals in framework. A transition metal is a Group 3-12 element. The first row of them are from Sc to Zn. Preferred transition metals are Ti, V, Mn, Fe, Co, Cr, Zr, Nb, Mo, and W. More preferred are Ti, V, Mo, and W. Most preferred is Ti.
  • Preferred titanium zeolites are titanium silicates (titanosilicates). Preferably, they contain no element other than titanium, silicon, and oxygen in the lattice framework (see R. Szostak, “Non-aluminosilicate Molecular Sieves,” in Molecular Sieves: Principles of Synthesis and Identification (1989), Van Nostrand Reinhold, pp. 205-82). Small amounts of impurities, e.g., boron, iron, aluminum, phosphorous, copper, and the like, and mixtures thereof, may be present in the lattice. The amount of impurities is preferably less than 0.5 wt. %, more preferably less than 0.1 wt. %.
  • Preferred titanium silicates will generally have a composition corresponding to the following empirical formula: xTiO 2 ⁇ (1—x)SiO 2 , where x is between 0.0001 and 0.5000. More preferably, the value of x is from 0.01 to 0.125.
  • the molar ratio of Si to Ti in the lattice framework of the zeolite is advantageously from 9.5:1 to 99:1, most preferably from 9.5:1 to 60:1.
  • Particularly preferred titanium zeolites are titanium silicalites (see Catal. Rev .- Sci. Eng., 39(3) (1997) 209).
  • TS-1 titanium silicalite-1, a titanium silicalite having an MFI topology analogous to that of the ZSM-5 aluminosilicate
  • TS-2 having an MEL topology analogous to that of the ZSM-11 aluminosilicate
  • TS-3 as described in Belgian Pat. No. 1,001,038.
  • Titanium zeolites having framework structures isomorphous to zeolite beta, mordenite, and ZSM-12 are also suitable for use. The most preferred is TS-1.
  • the catalyst comprises a noble metal.
  • Suitable noble metals include gold, silver, platinum, palladium, iridium, ruthenium, osmium, rhenium, rhodium, and mixtures thereof.
  • Preferred noble metals are Pd, Pt, Au, Re, Ag, and mixtures thereof. Palladium, gold, and their mixtures are particularly desirable.
  • the amount of noble metal present in the catalyst will be in the range of from 0.01 to 20 wt. %, preferably 0.1 to 5 wt. %.
  • the catalyst comprises a diatomaceous earth.
  • Diatomaceous earth also known as kieselguhr, or diatomite, is a naturally occurring, highly structured, fine hydrous silica powder made up of the remains of planktonic algae. Many different types of diatomaceous earth are available commercially. Diatomaceous earth is used in many applications as the uniquely porous nature of each particle gives diatomite high surface area, low bulk density, high permeability, high water absorption, and low abrasion. Diatomaceous earth filter aids are used to prevent blinding of filter elements and are used to clarify liquids in brewing, water treatment, wine making, sugar refining, fruit juice production, and in industrial chemicals processing.
  • Diatomaceous earth functional fillers are used in paints, rubber, plastics, pharmaceuticals, toothpastes, polishes, and chemicals where performance is improved by the unique properties of diatomaceous earth.
  • Diatomaceous earth can also be used as catalyst support. See Kenneth R. Engh, “Diatomite,” Kirk - Othmer Encyclopedia of Chemical Technology online edition, 2006. See also U.S. Pat. Nos. 4,297,241, 4,285,927, and 6,746,597
  • Diatomaceous earth gives many advantages as a catalyst or a catalyst support.
  • diatomaceous earth is easy to filter. When a solid catalyst is used in a slurry reaction, it is usually necessary to separate the catalyst from a liquid and/or gas reaction effluent. In a continuous slurry reaction, a liquid and/or gas effluent needs to be continuously withdrawn from the reactor. In either case, the ease of filtration improves the operation.
  • commercially available diatomaceous earth materials can be used in slurry reactions without the need of particle enlargement. For example, diatomaceous earth materials available from EaglePicher Filtration & Minerals, Inc.
  • the noble metal is supported on the diatomaceous earth.
  • the manner in which the noble metal is incorporated in a diatomaceous earth is not critical.
  • the noble metal may be supported on the diatomaceous earth by impregnation, ion-exchange, adsorption, precipitation, or the like.
  • Suitable compounds include nitrates, sulfates, halides (e.g., chlorides, bromides), carboxylates (e.g., acetate), and amine or phosphine complexes of noble metals (e.g., palladium(II) tetraammine bromide, tetrakis(triphenylphosphine) palladium(0)).
  • halides e.g., chlorides, bromides
  • carboxylates e.g., acetate
  • amine or phosphine complexes of noble metals e.g., palladium(II) tetraammine bromide, tetrakis(triphenylphosphine) palladium(0).
  • the oxidation state of the noble metal is not critical. Palladium, for instance, may be in an oxidation state anywhere from 0 to +4 or any combination of such oxidation states. To achieve the desired oxidation state or combination of oxidation states, the noble metal compound after being introduced on the diatomaceous earth may be fully or partially pre-reduced. Satisfactory catalytic performance can, however, be attained without any pre-reduction.
  • the weight ratio of the transition metal zeolite to noble metal is not particularly critical. However, a transition metal zeolite to noble metal weight ratio of from 10:1 to 5000:1 (grams of transition metal zeolite per gram of noble metal) is preferred.
  • the catalyst may comprise a promoter.
  • a promoter helps to improve the catalyst performance (e.g., activity, selectivity, life of the catalyst).
  • Preferred promoters include lead, zinc, alkaline earth metals, lanthanide metals, and the like. Lead is particularly preferred.
  • the promoter may be added on the transition metal zeolite and/or the diatomaceous earth. Preferably it is added to the diatomaceous earth. While the choice of compound used as the promoter source is not critical, suitable compounds include metal carboxylates. (e.g., acetate), halides (e.g., chlorides, bromides, iodides), nitrates, sulfate, and the like.
  • the typical amount of promoter metal present in the catalyst will be in the range of from about 0.001 to 5 weight percent, preferably 0.001 to 2 weight percent relative to the catalyst.
  • the diatomaceous earth has preferably a mass median particle size in the range of 1 to 200 ⁇ m, more preferably in the range of 10 to 100 ⁇ m.
  • the mass median particle diameter is the diameter that divides half of the mass (“Particle Size Measurement,” Kirk - Othmer Encyclopedia of Chemical Technology online edition, 2006).
  • the invention also includes an epoxidation process comprising reacting an olefin, hydrogen, and oxygen in the presence of the catalyst of the invention.
  • Suitable olefins include any olefin having at least one carbon-carbon double bond, and generally from 2 to 60 carbon atoms.
  • the olefin is an acyclic alkene of from 2 to 30 carbon atoms; the process is particularly suitable for epoxidizing C 2 -C 6 olefins. More than one double bond may be present in the olefin molecule, as in a diene or triene.
  • the olefin may be a hydrocarbon or may contain functional groups such as halogen, carboxyl, hydroxyl, ether, carbonyl, cyano, or nitro groups, or the like.
  • the olefin is propylene and the epoxide is propylene oxide.
  • Oxygen and hydrogen are required. Although any sources of oxygen and hydrogen are suitable, molecular oxygen and molecular hydrogen are preferred.
  • the molar ratio of oxygen to olefin is usually 1:1 to 1:20, and preferably 1:1.5 to 1:10. Relatively high oxygen to olefin molar ratios (e.g., 1:1 to 1:3) may be advantageous for certain olefins.
  • an inert gas is preferably used in the process. Any desired inert gas can be used. Suitable inert gases include nitrogen, helium, argon, and carbon dioxide. Saturated hydrocarbons with 1-8, especially 1-6, and preferably 1-4 carbon atoms, e.g., methane, ethane, propane, and n-butane, are also suitable. Nitrogen and saturated C 1 -C 4 hydrocarbons are preferred inert gases. Mixtures of inert gases can also be used. The molar ratio of olefin to gas is usually in the range of 100:1 to 1:10 and especially 20:1 to 1:10.
  • the process may be performed in a continuous flow, semi-batch, or batch mode.
  • a continuous flow process is preferred.
  • the catalyst is preferably in a slurry or a fixed bed.
  • the catalyst is preferably formed into extrudates, tablets, granules, and the like.
  • the process is carried out at a temperature effective to achieve the desired olefin epoxidation, preferably at temperatures in the range of 0-200° C., more preferably, 20-150° C.
  • a portion of the reaction mixture is a liquid under the reaction conditions.
  • a reaction solvent is preferably used in the process.
  • Suitable reaction solvents are liquid under the reaction conditions. They include, for example, oxygen-containing hydrocarbons such as alcohols, aromatic and aliphatic solvents such as toluene and hexane, nitriles such as acetonitrile, carbon dioxide, and water.
  • Suitable oxygenated solvents include alcohols, ethers, esters, ketones, carbon dioxide, water, and the like, and mixtures thereof.
  • Preferred oxygenated solvents include water and lower aliphatic C 1 -C 4 alcohols such as methanol, ethanol, isopropanol, tert-butanol, and mixtures thereof. Fluorinated alcohols can be used.
  • a buffer is employed in the reaction to inhibit the formation of glycols or glycol ethers during the epoxidation, and it can improve the reaction rate and selectivities.
  • the buffer is typically added to the solvent to form a buffer solution, or the solvent and the buffer are added separately.
  • Useful buffers include any suitable salts of oxyacids, the nature and proportions of which in the mixture are such that the pH of their solutions preferably ranges from 3 to 12, more preferably from 4 to 10, and most preferably from 5 to 9.
  • Suitable salts of oxyacids contain an anion and a cation.
  • the anion may include phosphate, carbonate, bicarbonate, sulfate, carboxylates (e.g., acetate), borate, hydroxide, silicate, aluminosilicate, or the like.
  • the cation may include ammonium, alkylammonium (e.g., tetraalkylammoniums, pyridiniums), alkylphosphonium, alkali metal, and alkaline earth metal ions, or the like. Examples include NH 4 , NBu 4 , NMe 4 , Li, Na, K, Cs, Mg, and Ca cations.
  • the preferred buffer comprises an anion selected from the group consisting of phosphate, carbonate, bicarbonate, sulfate, hydroxide, and acetate; and a cation selected from the group consisting of ammonium, alkylammonium, alkylphosphonium, alkali metal, and alkaline earth metal ions.
  • Buffers may preferably contain a combination of more than one suitable salt. Typically, the concentration of the buffer in the solvent is from 0.0001 M to 1 M, preferably from 0.0005 M to 0.3 M.
  • Diatomaceous earth FN-1 (EaglePicher Filtration and Minerals, Inc., 30 g) is added to a solution made from deionized water (120 g), aqueous sodium tetrachloroaurate solution (20.74 wt. % gold, 0.795 g), and disodium tetrachloropalladate (from Aldrich Chemical, 0.825 g).
  • Sodium bicarbonate powder is added to the slurry until the pH reaches 7.24. The slurry is allowed to react for 4 h at 50° C., then filtered. The solid is washed with deionized water (7 ⁇ 80 g). The solid is then calcined in air at 110° C.
  • the calcined solid is then transferred to a quartz tube and treated with a gas containing 4 vol. % hydrogen in nitrogen at 100° C. for 1 h (flow rate 100 mL/h) and then purged with nitrogen for 1 h.
  • the final solid (Catalyst A) contains 1.0 wt. % palladium and 0.44 wt. % gold.
  • Example 2 The procedure of Example 1 is repeated except that the solid is calcined at 550° C. before hydrogen reduction.
  • the solid obtained (Catalyst B) contains 1.0 wt. % palladium and 0.44 wt. % gold.
  • Example 1 The procedure of Example 1 is repeated except that the solid is calcined at 650° C. before hydrogen reduction.
  • the solid obtained (Catalyst C) contains 1.0 wt. % palladium and 0.44 wt. % gold.
  • Example 1 The procedure of Example 1 is repeated except that diatomaceous earth FP-3 (EaglePicher Filtration and Minerals, Inc., 30 g) is used instead of FN-1.
  • the solid obtained (Catalyst D) contains 0.75 wt. % palladium and 0.35 wt. % gold.
  • Example 4 The procedure of Example 4 is repeated except that the solid is calcined at 550° C. before hydrogen reduction.
  • the solid obtained (Catalyst E) contains 0.75 wt. % palladium and 0.35 wt. % gold.
  • Example 1 The procedure of Example 1 is repeated except that diatomaceous earth FW-14 (EaglePicher Filtration and Minerals, Inc., 30 g) is used instead of FN-1.
  • the solid obtained (Catalyst F) contains 0.81 wt. % palladium and 0.33 wt. % gold.
  • a spray-dried anatase (average diameter 35 ⁇ m, air calcined at 700° C. for 4 h, surface area 40 m 2 /g, 20 g) is added to a solution made from deionized water (80 g), an aqueous sodium tetrachloroaurate solution (20.74 wt. % gold, 0.53 g), and disodium tetrachloropalladate (19.75 wt. % Pd, 1.01 g).
  • Sodium bicarbonate powder is added to the slurry until the pH reaches 7.24. The slurry is allowed to react for 4 h at 50° C., then filtered. The solid is washed with deionized water (7 ⁇ 80 g).
  • the solid is then calcined in air at 110° C. for 4 h (at a rate of 10° C./min from room temperature to 110° C.) and at 550° C. for 4 h (at a rate of 2° C./min from 110° C. to 550° C.).
  • the calcined solid is transferred to a quartz tube and treated with a gas containing 4 vol. % hydrogen in nitrogen at 100° C. for 1 h (flow rate 100 mL/h) and then purged with nitrogen for 1 h.
  • the final solid (Catalyst G) contains 1.0 wt. % palladium and 0.42 wt. % gold.
  • Titanium silicalite-1 (TS-1) is prepared by following procedures disclosed in U.S. Pat. Nos. 4,410,501 and 4,833,260, and calcined in air at 550° C.
  • ammonium phosphate buffer solution (0.1 M, pH 6) is prepared as follows. Ammonium dihydrogen phosphate (11.5 g) is dissolved in deionized water (900 g). Aqueous ammonium hydroxide (30 wt. % NH 4 OH) is added to the solution until the pH reads 6 via a pH meter. The volume of the solution is then increased to exactly 1000 mL with additional deionized water.
  • a 300-mL stainless steel reactor is charged with Catalyst A (0.07 g), TS-1 powder (0.63 g), the buffer solution prepared above (13 g), and methanol (100 g).
  • the reactor is then charged to 300 psig with a feed gas consisting of 2 volume percent (vol. %) hydrogen, 4 vol. % oxygen, 5 vol. % propylene, 0.5 vol. % methane, and the balance nitrogen.
  • the pressure in the reactor is maintained at 300 psig via a back pressure regulator with the feed gases pass continuously through the reactor at 1600 mL/min (measured at 23° C. and 1 atmosphere pressure).
  • the oxygen, nitrogen and propylene feeds are passed through a 2-L stainless steel vessel (saturator) preceding the reactor containing 1.5 L of methanol.
  • the reaction mixture is heated to 60° C. while it is stirred at 1500 rpm.
  • the gaseous effluent is analyzed by an online gas chromatograph (GC) every hour.
  • the liquid is analyzed by offline GC at the end of the 18 h run.
  • the products formed include propylene oxide (PO), propane, and derivatives of propylene oxide such as propylene glycol, propylene glycol monomethyl ethers, dipropylene glycol, and dipropylene glycol methyl ethers.
  • the calculated results are shown in Table 1.
  • the catalyst productivity is defined as the grams of PO formed (including PO which is subsequently reacted to form PO derivatives) per gram of catalyst per hour.
  • POE (mole) moles of PO+moles of PO units in the PO derivatives.
  • PO/POE (moles of PO)/(moles of POE) ⁇ 100.
  • Propylene to POE selectivity (moles of POE)/(moles of propane formed+moles of POE) ⁇ 100.
  • Example 8 The procedure of Example 8 is repeated except that Catalysts B, C, D, E, F, G are used respectively instead of Catalyst A. Results are shown in Table 1.

Abstract

A catalyst comprising a noble metal supported on a diatomaceous earth and a transition metal zeolite is disclosed. The catalyst is used in an epoxidation process comprising reacting an olefin, hydrogen, and oxygen. The diatomaceous earth is readily available and may be used in a slurry process without further particle size enlargement.

Description

    FIELD OF THE INVENTION
  • The invention relates to a catalyst comprising a noble metal supported on a diatomaceous earth and a transition metal zeolite. The catalyst is used to produce an epoxide by reacting an olefin, hydrogen, and oxygen.
  • BACKGROUND OF THE INVENTION
  • Direct epoxidation of higher olefins (containing three or more carbons) such as propylene with oxygen and hydrogen has been the focus of recent efforts. For example, the reaction may be performed in the presence of a catalyst comprising gold and a titanium-containing support (see, e.g., U.S. Pat. Nos. 5,623,090, 6,362,349, and 6,646,142), or a catalyst containing palladium and a titanium zeolite (see, e.g., JP 4-352771).
  • Mixed catalyst systems for olefin epoxidation with hydrogen and oxygen have also been disclosed. For example, Example 13 of JP 4-352771 describes the use of a mixture of titanosilicate and Pd-on-carbon for propylene epoxidation. U.S. Pat. No. 6,008,388 describes a catalyst comprising a noble metal and a titanium or vanadium zeolite, but additionally teaches that the Pd can be incorporated into a support before mixing with the zeolite. The catalyst supports disclosed include silica, alumina, and activated carbon. U.S. Pat. No. 6,498,259 discloses the epoxidation of an olefin with hydrogen and oxygen in a solvent containing a buffer in the presence of a catalyst mixture containing a titanium zeolite and a noble metal catalyst.
  • In a slurry epoxidation process using the mixed catalyst systems, liquid and/or gas product streams need to be separated from the solid catalyst particles. Generally it is necessary to make titanium zeolites and the supported noble metal catalyst into large enough particles (e.g., >1 μm) to make such separation (e.g., filtration) practically viable.
  • SUMMARY OF THE INVENTION
  • The invention is a catalyst comprising a noble metal supported on a diatomaceous earth and a transition metal zeolite. The catalyst is used in an epoxidation process comprising reacting an olefin, hydrogen, and oxygen. Diatomaceous earth is readily available and can be easily separated from a liquid and/or gas effluent.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention is a catalyst comprising a transition metal zeolite. Zeolites are microporous crystalline solids with well-defined structures. Generally they contain one or more of Si, Ge, Al, B, P, or the like, in addition to oxygen. Many zeolites occur naturally as minerals and are extensively mined in many parts of the world. Others are synthetic and are made commercially for specific uses. Zeolites have the ability to act as catalysts for chemical reactions which take place mostly within the internal cavities of the zeolites. Transition metal zeolites are zeolites comprising transition metals in framework. A transition metal is a Group 3-12 element. The first row of them are from Sc to Zn. Preferred transition metals are Ti, V, Mn, Fe, Co, Cr, Zr, Nb, Mo, and W. More preferred are Ti, V, Mo, and W. Most preferred is Ti.
  • Preferred titanium zeolites are titanium silicates (titanosilicates). Preferably, they contain no element other than titanium, silicon, and oxygen in the lattice framework (see R. Szostak, “Non-aluminosilicate Molecular Sieves,” in Molecular Sieves: Principles of Synthesis and Identification (1989), Van Nostrand Reinhold, pp. 205-82). Small amounts of impurities, e.g., boron, iron, aluminum, phosphorous, copper, and the like, and mixtures thereof, may be present in the lattice. The amount of impurities is preferably less than 0.5 wt. %, more preferably less than 0.1 wt. %. Preferred titanium silicates will generally have a composition corresponding to the following empirical formula: xTiO2·(1—x)SiO2, where x is between 0.0001 and 0.5000. More preferably, the value of x is from 0.01 to 0.125. The molar ratio of Si to Ti in the lattice framework of the zeolite is advantageously from 9.5:1 to 99:1, most preferably from 9.5:1 to 60:1. Particularly preferred titanium zeolites are titanium silicalites (see Catal. Rev.-Sci. Eng., 39(3) (1997) 209). Examples of these include TS-1 (titanium silicalite-1, a titanium silicalite having an MFI topology analogous to that of the ZSM-5 aluminosilicate), TS-2 (having an MEL topology analogous to that of the ZSM-11 aluminosilicate), and TS-3 (as described in Belgian Pat. No. 1,001,038). Titanium zeolites having framework structures isomorphous to zeolite beta, mordenite, and ZSM-12 are also suitable for use. The most preferred is TS-1.
  • The catalyst comprises a noble metal. Suitable noble metals include gold, silver, platinum, palladium, iridium, ruthenium, osmium, rhenium, rhodium, and mixtures thereof. Preferred noble metals are Pd, Pt, Au, Re, Ag, and mixtures thereof. Palladium, gold, and their mixtures are particularly desirable. Typically, the amount of noble metal present in the catalyst will be in the range of from 0.01 to 20 wt. %, preferably 0.1 to 5 wt. %.
  • The catalyst comprises a diatomaceous earth. Diatomaceous earth, also known as kieselguhr, or diatomite, is a naturally occurring, highly structured, fine hydrous silica powder made up of the remains of planktonic algae. Many different types of diatomaceous earth are available commercially. Diatomaceous earth is used in many applications as the uniquely porous nature of each particle gives diatomite high surface area, low bulk density, high permeability, high water absorption, and low abrasion. Diatomaceous earth filter aids are used to prevent blinding of filter elements and are used to clarify liquids in brewing, water treatment, wine making, sugar refining, fruit juice production, and in industrial chemicals processing. Diatomaceous earth functional fillers are used in paints, rubber, plastics, pharmaceuticals, toothpastes, polishes, and chemicals where performance is improved by the unique properties of diatomaceous earth. Diatomaceous earth can also be used as catalyst support. See Kenneth R. Engh, “Diatomite,” Kirk-Othmer Encyclopedia of Chemical Technology online edition, 2006. See also U.S. Pat. Nos. 4,297,241, 4,285,927, and 6,746,597
  • Diatomaceous earth gives many advantages as a catalyst or a catalyst support. First, diatomaceous earth is easy to filter. When a solid catalyst is used in a slurry reaction, it is usually necessary to separate the catalyst from a liquid and/or gas reaction effluent. In a continuous slurry reaction, a liquid and/or gas effluent needs to be continuously withdrawn from the reactor. In either case, the ease of filtration improves the operation. Second, commercially available diatomaceous earth materials can be used in slurry reactions without the need of particle enlargement. For example, diatomaceous earth materials available from EaglePicher Filtration & Minerals, Inc. have median particle sizes of 10-80 μm (Technical Data Sheet, http://www.eaglepicher.com). In comparison, other catalyst supports (e.g., silica, alumina, and titania) would generally need to be processed (e.g., spray-dried) to obtain particles of such sizes.
  • The noble metal is supported on the diatomaceous earth. The manner in which the noble metal is incorporated in a diatomaceous earth is not critical. For example, the noble metal may be supported on the diatomaceous earth by impregnation, ion-exchange, adsorption, precipitation, or the like.
  • There are no particular restrictions regarding the choice of the noble metal compound or complex used as the source of the noble metal. Suitable compounds include nitrates, sulfates, halides (e.g., chlorides, bromides), carboxylates (e.g., acetate), and amine or phosphine complexes of noble metals (e.g., palladium(II) tetraammine bromide, tetrakis(triphenylphosphine) palladium(0)).
  • Similarly, the oxidation state of the noble metal is not critical. Palladium, for instance, may be in an oxidation state anywhere from 0 to +4 or any combination of such oxidation states. To achieve the desired oxidation state or combination of oxidation states, the noble metal compound after being introduced on the diatomaceous earth may be fully or partially pre-reduced. Satisfactory catalytic performance can, however, be attained without any pre-reduction.
  • The weight ratio of the transition metal zeolite to noble metal is not particularly critical. However, a transition metal zeolite to noble metal weight ratio of from 10:1 to 5000:1 (grams of transition metal zeolite per gram of noble metal) is preferred.
  • The catalyst may comprise a promoter. A promoter helps to improve the catalyst performance (e.g., activity, selectivity, life of the catalyst). Preferred promoters include lead, zinc, alkaline earth metals, lanthanide metals, and the like. Lead is particularly preferred. The promoter may be added on the transition metal zeolite and/or the diatomaceous earth. Preferably it is added to the diatomaceous earth. While the choice of compound used as the promoter source is not critical, suitable compounds include metal carboxylates. (e.g., acetate), halides (e.g., chlorides, bromides, iodides), nitrates, sulfate, and the like. The typical amount of promoter metal present in the catalyst will be in the range of from about 0.001 to 5 weight percent, preferably 0.001 to 2 weight percent relative to the catalyst.
  • When the catalyst is used in a slurry, the diatomaceous earth has preferably a mass median particle size in the range of 1 to 200 μm, more preferably in the range of 10 to 100 μm. The mass median particle diameter is the diameter that divides half of the mass (“Particle Size Measurement,” Kirk-Othmer Encyclopedia of Chemical Technology online edition, 2006).
  • The invention also includes an epoxidation process comprising reacting an olefin, hydrogen, and oxygen in the presence of the catalyst of the invention.
  • An olefin is used in the process. Suitable olefins include any olefin having at least one carbon-carbon double bond, and generally from 2 to 60 carbon atoms. Preferably the olefin is an acyclic alkene of from 2 to 30 carbon atoms; the process is particularly suitable for epoxidizing C2-C6 olefins. More than one double bond may be present in the olefin molecule, as in a diene or triene. The olefin may be a hydrocarbon or may contain functional groups such as halogen, carboxyl, hydroxyl, ether, carbonyl, cyano, or nitro groups, or the like. In a particularly preferred process, the olefin is propylene and the epoxide is propylene oxide.
  • Oxygen and hydrogen are required. Although any sources of oxygen and hydrogen are suitable, molecular oxygen and molecular hydrogen are preferred. The molar ratio of hydrogen to oxygen can usually be varied in the range of H2:O2=1:100 to 5:1 and is especially favorable at 1:5 to 2:1. The molar ratio of oxygen to olefin is usually 1:1 to 1:20, and preferably 1:1.5 to 1:10. Relatively high oxygen to olefin molar ratios (e.g., 1:1 to 1:3) may be advantageous for certain olefins.
  • In addition to the olefin, oxygen, and hydrogen, an inert gas is preferably used in the process. Any desired inert gas can be used. Suitable inert gases include nitrogen, helium, argon, and carbon dioxide. Saturated hydrocarbons with 1-8, especially 1-6, and preferably 1-4 carbon atoms, e.g., methane, ethane, propane, and n-butane, are also suitable. Nitrogen and saturated C1-C4 hydrocarbons are preferred inert gases. Mixtures of inert gases can also be used. The molar ratio of olefin to gas is usually in the range of 100:1 to 1:10 and especially 20:1 to 1:10.
  • The process may be performed in a continuous flow, semi-batch, or batch mode. A continuous flow process is preferred. The catalyst is preferably in a slurry or a fixed bed. For a fixed-bed process, the catalyst is preferably formed into extrudates, tablets, granules, and the like.
  • It is advantageous to work at a pressure of 1-200 bars. The process is carried out at a temperature effective to achieve the desired olefin epoxidation, preferably at temperatures in the range of 0-200° C., more preferably, 20-150° C. Preferably, at least a portion of the reaction mixture is a liquid under the reaction conditions.
  • A reaction solvent is preferably used in the process. Suitable reaction solvents are liquid under the reaction conditions. They include, for example, oxygen-containing hydrocarbons such as alcohols, aromatic and aliphatic solvents such as toluene and hexane, nitriles such as acetonitrile, carbon dioxide, and water. Suitable oxygenated solvents include alcohols, ethers, esters, ketones, carbon dioxide, water, and the like, and mixtures thereof. Preferred oxygenated solvents include water and lower aliphatic C1-C4 alcohols such as methanol, ethanol, isopropanol, tert-butanol, and mixtures thereof. Fluorinated alcohols can be used.
  • Where a reaction solvent is used, it may be advantageous to use a buffer. The buffer is employed in the reaction to inhibit the formation of glycols or glycol ethers during the epoxidation, and it can improve the reaction rate and selectivities. The buffer is typically added to the solvent to form a buffer solution, or the solvent and the buffer are added separately. Useful buffers include any suitable salts of oxyacids, the nature and proportions of which in the mixture are such that the pH of their solutions preferably ranges from 3 to 12, more preferably from 4 to 10, and most preferably from 5 to 9. Suitable salts of oxyacids contain an anion and a cation. The anion may include phosphate, carbonate, bicarbonate, sulfate, carboxylates (e.g., acetate), borate, hydroxide, silicate, aluminosilicate, or the like. The cation may include ammonium, alkylammonium (e.g., tetraalkylammoniums, pyridiniums), alkylphosphonium, alkali metal, and alkaline earth metal ions, or the like. Examples include NH4, NBu4, NMe4, Li, Na, K, Cs, Mg, and Ca cations. The preferred buffer comprises an anion selected from the group consisting of phosphate, carbonate, bicarbonate, sulfate, hydroxide, and acetate; and a cation selected from the group consisting of ammonium, alkylammonium, alkylphosphonium, alkali metal, and alkaline earth metal ions. Buffers may preferably contain a combination of more than one suitable salt. Typically, the concentration of the buffer in the solvent is from 0.0001 M to 1 M, preferably from 0.0005 M to 0.3 M. The buffer may include ammonium hydroxide which can be formed by adding ammonia gas to the reaction system. For instance, one may use a pH=12-14 solution of ammonium hydroxide to balance the pH of the reaction system. More preferred buffers include alkali metal phosphates, ammonium phosphate, and ammonium hydroxide. The ammonium phosphate buffer is particularly preferred.
  • Following examples merely illustrate the invention. Those skilled in the art will recognize many variations that are within the spirit of the invention and scope of the claims.
  • EXAMPLE 1 Pd—Au ON FN-1, Calcined 300° C. Catalyst A
  • Diatomaceous earth FN-1 (EaglePicher Filtration and Minerals, Inc., 30 g) is added to a solution made from deionized water (120 g), aqueous sodium tetrachloroaurate solution (20.74 wt. % gold, 0.795 g), and disodium tetrachloropalladate (from Aldrich Chemical, 0.825 g). Sodium bicarbonate powder is added to the slurry until the pH reaches 7.24. The slurry is allowed to react for 4 h at 50° C., then filtered. The solid is washed with deionized water (7×80 g). The solid is then calcined in air at 110° C. for 4 h (10° C./min from room temperature to 110° C.) and at 300° C. for 4 h (2° C./min from 110° C. to 300° C.). The calcined solid is then transferred to a quartz tube and treated with a gas containing 4 vol. % hydrogen in nitrogen at 100° C. for 1 h (flow rate 100 mL/h) and then purged with nitrogen for 1 h. The final solid (Catalyst A) contains 1.0 wt. % palladium and 0.44 wt. % gold.
  • EXAMPLE 2 Pd—Au ON FN-1, Calcined 550° C. Catalyst B
  • The procedure of Example 1 is repeated except that the solid is calcined at 550° C. before hydrogen reduction. The solid obtained (Catalyst B) contains 1.0 wt. % palladium and 0.44 wt. % gold.
  • EXAMPLE 3 Pd—Au on FN-1, Calcined 650° C. Catalyst C
  • The procedure of Example 1 is repeated except that the solid is calcined at 650° C. before hydrogen reduction. The solid obtained (Catalyst C) contains 1.0 wt. % palladium and 0.44 wt. % gold.
  • EXAMPLE 4 Pd—Au on FP-3, Calcined 300° C. Catalyst D
  • The procedure of Example 1 is repeated except that diatomaceous earth FP-3 (EaglePicher Filtration and Minerals, Inc., 30 g) is used instead of FN-1. The solid obtained (Catalyst D) contains 0.75 wt. % palladium and 0.35 wt. % gold.
  • EXAMPLE 5 Pd—Au on FP-3, Calcined 550° C. Catalyst E
  • The procedure of Example 4 is repeated except that the solid is calcined at 550° C. before hydrogen reduction. The solid obtained (Catalyst E) contains 0.75 wt. % palladium and 0.35 wt. % gold.
  • EXAMPLE 6 Pd—Au on FW-14, Calcined 300° C. Catalyst F
  • The procedure of Example 1 is repeated except that diatomaceous earth FW-14 (EaglePicher Filtration and Minerals, Inc., 30 g) is used instead of FN-1. The solid obtained (Catalyst F) contains 0.81 wt. % palladium and 0.33 wt. % gold.
  • Comparative example 7. Pd—Au on Titania Catalyst G
  • A spray-dried anatase (average diameter 35 μm, air calcined at 700° C. for 4 h, surface area 40 m2/g, 20 g) is added to a solution made from deionized water (80 g), an aqueous sodium tetrachloroaurate solution (20.74 wt. % gold, 0.53 g), and disodium tetrachloropalladate (19.75 wt. % Pd, 1.01 g). Sodium bicarbonate powder is added to the slurry until the pH reaches 7.24. The slurry is allowed to react for 4 h at 50° C., then filtered. The solid is washed with deionized water (7×80 g). The solid is then calcined in air at 110° C. for 4 h (at a rate of 10° C./min from room temperature to 110° C.) and at 550° C. for 4 h (at a rate of 2° C./min from 110° C. to 550° C.). The calcined solid is transferred to a quartz tube and treated with a gas containing 4 vol. % hydrogen in nitrogen at 100° C. for 1 h (flow rate 100 mL/h) and then purged with nitrogen for 1 h. The final solid (Catalyst G) contains 1.0 wt. % palladium and 0.42 wt. % gold.
  • EXAMPLE 8 Propylene Epoxidation with Catalyst a
  • Titanium silicalite-1 (TS-1) is prepared by following procedures disclosed in U.S. Pat. Nos. 4,410,501 and 4,833,260, and calcined in air at 550° C.
  • An ammonium phosphate buffer solution (0.1 M, pH 6) is prepared as follows. Ammonium dihydrogen phosphate (11.5 g) is dissolved in deionized water (900 g). Aqueous ammonium hydroxide (30 wt. % NH4OH) is added to the solution until the pH reads 6 via a pH meter. The volume of the solution is then increased to exactly 1000 mL with additional deionized water.
  • A 300-mL stainless steel reactor is charged with Catalyst A (0.07 g), TS-1 powder (0.63 g), the buffer solution prepared above (13 g), and methanol (100 g). The reactor is then charged to 300 psig with a feed gas consisting of 2 volume percent (vol. %) hydrogen, 4 vol. % oxygen, 5 vol. % propylene, 0.5 vol. % methane, and the balance nitrogen. The pressure in the reactor is maintained at 300 psig via a back pressure regulator with the feed gases pass continuously through the reactor at 1600 mL/min (measured at 23° C. and 1 atmosphere pressure). In order to maintain a constant solvent level in the reactor during the run, the oxygen, nitrogen and propylene feeds are passed through a 2-L stainless steel vessel (saturator) preceding the reactor containing 1.5 L of methanol. The reaction mixture is heated to 60° C. while it is stirred at 1500 rpm. The gaseous effluent is analyzed by an online gas chromatograph (GC) every hour. The liquid is analyzed by offline GC at the end of the 18 h run. The products formed include propylene oxide (PO), propane, and derivatives of propylene oxide such as propylene glycol, propylene glycol monomethyl ethers, dipropylene glycol, and dipropylene glycol methyl ethers. The calculated results are shown in Table 1. The catalyst productivity is defined as the grams of PO formed (including PO which is subsequently reacted to form PO derivatives) per gram of catalyst per hour. POE (mole)=moles of PO+moles of PO units in the PO derivatives. PO/POE=(moles of PO)/(moles of POE)×100. Propylene to POE selectivity=(moles of POE)/(moles of propane formed+moles of POE)×100.
  • EXAMPLES 9-14 Propylene Epoxidation with Catalysts B, C, D, E, F, G
  • The procedure of Example 8 is repeated except that Catalysts B, C, D, E, F, G are used respectively instead of Catalyst A. Results are shown in Table 1.
  • TABLE 1
    Epoxidation of Propylene
    Example
    8 9 10 11 12 13 14
    Pd—Au Catalyst A B C D E F G
    Support FN-1 FN-1 FN-1 FP-3 FP-3 FW-14 Anatase
    Support Surface Area (m2/g) 24 24 24 2 2 0.4 28
    Calcination Temperature (° C.) 300 550 650 300 550 300 550
    Catalyst Productivity, 0.57 0.49 0.46 0.46 0.43 0.43 0.47
    g POE/g cat/h
    PO/POE, 88 90 91 90 90 91 90
    % (mole/mole)
    Propylene to POE Selectivity, 56 77 84 63 75 65 80
    % (mole/mole)
    Hydrogen to POE Selectivity, 18 23 27 25 29 21 34
    % (mole/mole)
    Oxygen to POE Selectivity, 37 45 43 38 42 31 38
    % (mole/mole)

Claims (20)

1. A catalyst comprising a noble metal supported on a diatomaceous earth and a transition metal zeolite.
2. The catalyst of claim 1 wherein the transition metal zeolite is a titanium zeolite.
3. The catalyst of claim 1 wherein the transition metal zeolite is TS-1.
4. The catalyst of claim 1 wherein the noble metal is selected from the group consisting of gold, silver, platinum, palladium, iridium, ruthenium, osmium, and mixtures thereof.
5. The catalyst of claim 1 wherein the noble metal is palladium, gold, or a palladium-gold mixture.
6. The catalyst of claim 1 wherein the diatomaceous earth has a mass median diameter from 1 to 200 μm.
7. The catalyst of claim 1 wherein the diatomaceous earth has a mass median diameter from 10 to 100 μm.
8. An epoxidation process comprising reacting an olefin, hydrogen, and oxygen in the presence of the catalyst of claim 1.
9. The process of claim 8 wherein the transition metal zeolite is a titanium zeolite.
10. The process of claim 8 wherein the transition metal zeolite is TS-1.
11. The process of claim 8 wherein the noble metal is selected from the group consisting of gold, silver, platinum, palladium, iridium, ruthenium, osmium, and mixtures thereof.
12. The process of claim 8 wherein the noble metal is palladium, gold, or a palladium-gold mixture.
13. The process of claim 8 wherein the diatomaceous earth has a mass median diameter from 1 to 200 μm.
14. The process of claim 8 wherein the diatomaceous earth has a mass median diameter from 10 to 100 μm.
15. The process of claim 8 performed in a slurry.
16. The process of claim 8 performed in a fixed bed.
17. The process of claim 8 performed in a continuous mode.
18. The process of claim 8 performed in the presence of a solvent.
19. The process of claim 18 performed in the presence of a buffer.
20. The process of claim 8 wherein the olefin is propylene.
US11/641,271 2006-12-19 2006-12-19 Direct epoxidation catalyst Expired - Fee Related US7381675B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/641,271 US7381675B1 (en) 2006-12-19 2006-12-19 Direct epoxidation catalyst
PCT/US2007/024267 WO2008088454A1 (en) 2006-12-19 2007-11-20 Direct epoxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/641,271 US7381675B1 (en) 2006-12-19 2006-12-19 Direct epoxidation catalyst

Publications (2)

Publication Number Publication Date
US7381675B1 US7381675B1 (en) 2008-06-03
US20080146825A1 true US20080146825A1 (en) 2008-06-19

Family

ID=39313021

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/641,271 Expired - Fee Related US7381675B1 (en) 2006-12-19 2006-12-19 Direct epoxidation catalyst

Country Status (2)

Country Link
US (1) US7381675B1 (en)
WO (1) WO2008088454A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952525A (en) * 2007-10-30 2011-01-19 世界矿物公司 Modified mineral-based fillers
JP2013514430A (en) 2009-12-18 2013-04-25 エクソンモービル リサーチ アンド エンジニアリング カンパニー Polyalkylene epoxy polyamine additive for soil reduction in hydrocarbon refining process

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285927A (en) * 1975-05-29 1981-08-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Production of sulfuric acid using a K2 SO4, V2 O5, diatomaceous earth catalyst
US4297241A (en) * 1980-03-21 1981-10-27 Union Carbide Corporation Method of preparing an olefin hydration catalyst
US4410501A (en) * 1979-12-21 1983-10-18 Snamprogetti S.P.A. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides
US4833260A (en) * 1982-07-28 1989-05-23 Anic S.P.A. Process for the epoxidation of olefinic compounds
US5623090A (en) * 1994-10-28 1997-04-22 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method for production of alcohol, ketone, and epoxide by oxidation of hydrocarbon
US6008388A (en) * 1998-04-16 1999-12-28 Arco Chemical Technology, L.P. Epoxidation process
US6194591B1 (en) * 2000-04-27 2001-02-27 Arco Chemical Technology, L.P. Aqueous epoxidation process using modified titanium zeolite
US6310224B1 (en) * 2001-01-19 2001-10-30 Arco Chemical Technology, L.P. Epoxidation catalyst and process
US6362349B1 (en) * 1998-04-15 2002-03-26 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
US6403815B1 (en) * 2001-11-29 2002-06-11 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6441204B1 (en) * 2001-10-19 2002-08-27 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6498259B1 (en) * 2001-10-19 2002-12-24 Arco Chemical Technology L.P. Direct epoxidation process using a mixed catalyst system
US6555493B2 (en) * 2000-12-07 2003-04-29 Arco Chemical Technology, L.P. Solid epoxidation catalyst and preparation
US6646142B1 (en) * 1998-12-16 2003-11-11 Dow Global Technologies Inc. Process for the direct oxidation of olefins to olefin oxides
US6746597B2 (en) * 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
US6867312B1 (en) * 2004-03-17 2005-03-15 Arco Chemical Technology, L.P. Propylene oxide process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1216500B (en) 1988-03-23 1990-03-08 Eniricerche S P A Milano Enich Prepn. of synthetic crystalline porous zeolite materials
DE4127918A1 (en) * 1991-03-05 1992-09-10 Interox Int Sa METHOD FOR PRODUCING HYDROGEN PEROXIDE
JP3044836B2 (en) 1991-05-28 2000-05-22 東ソー株式会社 Propylene oxide production method
US6500969B1 (en) * 2000-12-08 2002-12-31 Hydrocarbon Technologies, Inc. Integrated hydrogen peroxide production and organic chemical oxidation

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285927A (en) * 1975-05-29 1981-08-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Production of sulfuric acid using a K2 SO4, V2 O5, diatomaceous earth catalyst
US4410501A (en) * 1979-12-21 1983-10-18 Snamprogetti S.P.A. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides
US4297241A (en) * 1980-03-21 1981-10-27 Union Carbide Corporation Method of preparing an olefin hydration catalyst
US4833260A (en) * 1982-07-28 1989-05-23 Anic S.P.A. Process for the epoxidation of olefinic compounds
US5623090A (en) * 1994-10-28 1997-04-22 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method for production of alcohol, ketone, and epoxide by oxidation of hydrocarbon
US6362349B1 (en) * 1998-04-15 2002-03-26 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
US6008388A (en) * 1998-04-16 1999-12-28 Arco Chemical Technology, L.P. Epoxidation process
US6646142B1 (en) * 1998-12-16 2003-11-11 Dow Global Technologies Inc. Process for the direct oxidation of olefins to olefin oxides
US6194591B1 (en) * 2000-04-27 2001-02-27 Arco Chemical Technology, L.P. Aqueous epoxidation process using modified titanium zeolite
US6555493B2 (en) * 2000-12-07 2003-04-29 Arco Chemical Technology, L.P. Solid epoxidation catalyst and preparation
US6310224B1 (en) * 2001-01-19 2001-10-30 Arco Chemical Technology, L.P. Epoxidation catalyst and process
US6441204B1 (en) * 2001-10-19 2002-08-27 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6498259B1 (en) * 2001-10-19 2002-12-24 Arco Chemical Technology L.P. Direct epoxidation process using a mixed catalyst system
US6403815B1 (en) * 2001-11-29 2002-06-11 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6746597B2 (en) * 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
US6867312B1 (en) * 2004-03-17 2005-03-15 Arco Chemical Technology, L.P. Propylene oxide process

Also Published As

Publication number Publication date
US7381675B1 (en) 2008-06-03
WO2008088454A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
US7365217B2 (en) Oxidation process
US7615654B2 (en) Direct epoxidation process
US7138535B1 (en) Direct epoxidation process
US7595410B2 (en) Direct epoxidation process using improved catalyst composition
EP2205578B1 (en) Direct epoxidation process using improved catalyst composition
US7026492B1 (en) Direct epoxidation process using modifiers
US7671222B2 (en) Direct epoxidation process using a mixed catalyst system
US7381675B1 (en) Direct epoxidation catalyst
US7696367B2 (en) Direct epoxidation process using a mixed catalyst system
EP2205577B1 (en) Direct epoxidation process using a mixed catalyst system
KR20070008580A (en) Epoxidation process using a mixed catalyst system

Legal Events

Date Code Title Description
AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUSZKAY, JUDE T.;GREY, ROGER A.;REEL/FRAME:018727/0209

Effective date: 20061219

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:020704/0562

Effective date: 20071220

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:020704/0562

Effective date: 20071220

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:021354/0708

Effective date: 20071220

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:021354/0708

Effective date: 20071220

AS Assignment

Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLAT

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:022708/0830

Effective date: 20090303

XAS Not any more in us assignment database

Free format text: SECURITY AGREEMENT;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT;REEL/FRAME:022520/0782

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONN

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:023449/0138

Effective date: 20090303

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT,CONNE

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:023449/0138

Effective date: 20090303

AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP,TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP,TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0020

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:024337/0285

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP, DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0020

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP, DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:024337/0285

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

AS Assignment

Owner name: DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERA

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024342/0421

Effective date: 20100430

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT,CONNE

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024342/0801

Effective date: 20100430

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONN

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024342/0801

Effective date: 20100430

AS Assignment

Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024397/0818

Effective date: 20100430

Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024397/0818

Effective date: 20100430

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATE

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024402/0681

Effective date: 20100430

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20120603

AS Assignment

Owner name: BANK OF AMERICA, N.A., TEXAS

Free format text: APPOINTMENT OF SUCCESSOR ADMINISTRATIVE AGENT;ASSIGNOR:UBS AG, STAMFORD BRANCH;REEL/FRAME:032137/0639

Effective date: 20110304

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION;REEL/FRAME:032137/0156

Effective date: 20131022

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK TRUST COMPANY AMERICAS;REEL/FRAME:032123/0799

Effective date: 20131017

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:032138/0134

Effective date: 20131016

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:032125/0296

Effective date: 20131018