US20080138296A1 - Foam prepared from nanoemulsions and uses - Google Patents

Foam prepared from nanoemulsions and uses Download PDF

Info

Publication number
US20080138296A1
US20080138296A1 US11/975,621 US97562107A US2008138296A1 US 20080138296 A1 US20080138296 A1 US 20080138296A1 US 97562107 A US97562107 A US 97562107A US 2008138296 A1 US2008138296 A1 US 2008138296A1
Authority
US
United States
Prior art keywords
agent
composition
vitamin
foam
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/975,621
Inventor
Dov Tamarkin
Alex Besonov
Meir Eini
Jorge Danziger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vyne Pharmaceuticals Ltd
Original Assignee
Foamix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IL15248602A external-priority patent/IL152486A0/en
Priority claimed from PCT/IB2003/005527 external-priority patent/WO2004037225A2/en
Priority claimed from US10/911,367 external-priority patent/US20050069566A1/en
Priority claimed from US11/389,742 external-priority patent/US20060233721A1/en
Application filed by Foamix Ltd filed Critical Foamix Ltd
Priority to US11/975,621 priority Critical patent/US20080138296A1/en
Assigned to FOAMIX LTD. reassignment FOAMIX LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BESONOV, ALEX, DANZIGER, JORGE, EINI, MEIR, TAMARKIN, DOV
Publication of US20080138296A1 publication Critical patent/US20080138296A1/en
Priority to US14/172,466 priority patent/US9539208B2/en
Assigned to FOAMIX PHARMACEUTICALS LTD. reassignment FOAMIX PHARMACEUTICALS LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FOAMIX LTD.
Priority to US15/368,236 priority patent/US20170231909A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • A61K9/122Foams; Dry foams
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/16Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/046Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/068Microemulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4993Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/602Glycosides, e.g. rutin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/737Galactomannans, e.g. guar; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/21Emulsions characterized by droplet sizes below 1 micron

Definitions

  • Foams and, in particular, foam emulsions are complex dispersion systems which do not form under all circumstances. Slight shifts in foam emulsion composition, such as by the addition of active ingredients, may destabilize the foam.
  • Micro emulsions and nano emulsion can be monophasic, transparent (or slightly translucent) dispersions of oil and water. Unlike conventional emulsions, micro emulsions and nano emulsion can be thermodynamically stable, making them a favorable vehicle for pharmaceutical compositions, which have to maintain stability for long periods of time. Micro emulsions are sometimes said to be misleadingly called micro emulsions since they can form clear solutions devoid of the opaque color of regular emulsions. Micro emulsions can be oil external, water external and middle phase. Nano emulsions in contrast can be very fine oil in water dispersions. Droplet diameters can be as low as smaller than 100 nm.
  • Foams are very complex and sensitive systems and are not formed at will. Mere addition of basic ingredients like oil, water, surfactant and propellant is far from sufficient to produce foams of quality that are homogenous, stable, breakable upon mechanical force and can be used to provide a shelf stable pharmaceutical or cosmetic composition. Small deviations may lead to foam collapse. Much consideration needs to be given to facilitate the introduction of an active agent, such as examining compatibility and non reactivity with the various excipients and container and determining shelf life chemical stability.
  • nano droplets can be sterilized by filtration.
  • TAG Storage triacylglycerols
  • PL phospholipids
  • oleosins alkaline proteins
  • Oleosins are highly lipophilic proteins, are expressed at high levels in many seeds and are specifically targeted to oil-bodies.
  • Oil-bodies are abundant in plant seeds and are among the simplest organelles present in eukaryotes. They are remarkably stable both inside the cells and in isolated preparations.
  • Oil bodies are also termed in the literature as “oleosomes”, “lipid bodies” and “spherosomes”.
  • the present invention relates to foamable compositions comprising oil in water nano emulsions which produce foam having an improved bubble size compared to the foam produced form a regular oil in water emulsion; to methods of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface using the foamable compositions; and to methods of producing a foam having an improved bubble size.
  • the present invention provides a foamable oil in water nano emulsion composition
  • a foamable oil in water nano emulsion composition comprising: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging; wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant
  • the present invention provides a foamable oil in water nano emulsion composition
  • a foamable oil in water nano emulsion composition comprising: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging and wherein the viscosity of the nano emulsion is substantially reduced than the viscosity of the a macro emulsion having substantially the same composition; wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable
  • the present invention provides a foamable oil in water nano emulsion composition
  • a foamable oil in water nano emulsion composition comprising: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging; wherein the composition prior to addition of propellant is translucent with a blue tint; wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 35% by weight
  • a foamable oil in water nano emulsion, composition containing small oil globules including an oil globule system, selected from the group consisting of oil bodies and sub-micron oil globules, about 0.1% to about 5% by weight of at least one stabilizing agent selected from the group consisting of a non-ionic surfactant having an HLB value between 9 and 16, an ionic surfactant, and a polymeric agent water, as well as a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • an oil globule system selected from the group consisting of oil bodies and sub-micron oil globules
  • at least one stabilizing agent selected from the group consisting of a non-ionic surfactant having an HLB value between 9 and 16, an ionic surfactant, and a polymeric agent water, as well as a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • the oil globule system consists of oil bodies and the stabilizing agent consists of a polymeric agent.
  • the oil globule system consists of oil bodies and the stabilizing agent consists of an ionic surfactant.
  • the surface-active agent is a phospholipid.
  • the oil bodies are discrete oleaginous particles ranging from about 1 to about 3 ⁇ m in dimension.
  • Oil bodies contain triacylclycerols (TAG), surrounded by phospholipids (PL) and oleosins.
  • TAG triacylclycerols
  • PL phospholipids
  • the phospholipids are selected from the group consisting of phosphatidylethanolamine, phosphatidylcholine, lecithin, phosphatidylserine, phosphatidylglycerol and phosphatidylinositol.
  • the oleosins are highly lipophilic small proteins of about 25 to 26 kD.
  • the oil bodies are derived from the seeds of a plant, selected from the group consisting of almond ( Prunus dulcis ), anise ( Pimpinella anisum ), avocado ( Persea spp.), beach nut ( Fagus sylvatica ), borage (also known as evening primrose) (Boragio officinalis), Brazil nut ( Bertholetia excelsa ), candle nut (Aleuritis tiglium), carapa (Carapa guineensis), cashew nut (Ancardium occidentale), castor ( Ricinus communis ), coconut (Cocus nucifera), coriander ( Coriandrum sativum ), cottonseed ( Gossypium spp.), crambe ( Crambe abyssinica ), Crepis alpina, croton ( Croton tiglium ), Cuphea spp., dill ( Anethum gravealis
  • the foamable composition further includes about 0.1% to about 5% by weight of a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain, a fatty acid having 16 or more carbons in their carbon chain, fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, a fatty alcohol having at least one double bond, a fatty acid having at least one double bond, a branched fatty alcohol, a branched fatty acid, and a fatty acid substituted with a hydroxyl group and mixtures thereof.
  • a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain, a fatty acid having 16 or more carbons in their carbon chain, fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, a fatty
  • the foamable composition is substantially alcohol-free.
  • the concentration range of oil globules is selected from the group of (i) about 0.05% and about 2% and about 5%, (ii) about 2% (iii) about 5% and about 12%, and (iv) about 12% and about 24%.
  • the polymeric agent is selected from the group consisting of a water-soluble cellulose ether and naturally-occurring polymeric material.
  • the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose, carboxymethylhydroxyethylcellulose, xanthan gum, guar gum, carrageenin gum, locust bean gum and tragacanth gum.
  • the foamable composition further includes at least one therapeutic agent.
  • the therapeutic agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agen, an antioxidant, a dicarboxylic acid, azelaic acid
  • the therapeutic agent is selected from the components of the oil bodies or sub-micron oil globules.
  • the therapeutic agent is suitable to treat a disorder selected from the group consisting of dermatological disorder, a cosmetic disorder, a gynecological disorder, a disorder of a body cavity, wound and burn.
  • the present invention provides methods of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface using the foamable compositions described herein.
  • the present invention provides a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors, comprising: administering topically to a subject having said disorder, a foamed composition comprising: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging and wherein the viscosity
  • the method includes administering topically to a subject having the disorder, a foamed composition containing (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • a foamed composition containing (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent
  • the composition further includes an active agent effective to treat a disorder, and wherein the disorder is selected from the group consisting of a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis
  • the disorder is selected from the group
  • a method to promote the penetration of an active agent into the surface layers of the skin and mucosal membranes includes applying a foamable composition to the surface layers of a skin or mucosal membrane the foamable composition, comprising (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • a foamable composition comprising (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-
  • a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors.
  • the method includes applying a foamable composition to the surface layers of a skin, body cavity or mucosal membrane the foamable composition, comprising (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • the composition prior to addition of propellant is translucent with a blue tint.
  • the present invention provides a method of producing a foam having improved foam bubble size comprising: (i) preparing a pre foam oil in water emulsion formulation, wherein the pre foam oil comprises (a) oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent selected from the group consisting of a non-ionic surfactant, an ionic surfactant, and a polymeric agent; and (c) water; (ii) subjecting the pre foam formulation to high pressure mechanical stress to produce a nano emulsion; (iii) storing the nano emulsion in a sealed pressurized container that further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition and having an outlet capable of releasing the pressurized product as a foam; and (iv) releasing the foam, wherein the bubble size of the resultant foam is significantly greater than the bubble size of a resultant foam from the pre foam oil in water emulsion
  • FIG. 1A shows pictures of a sample section of the foam produced from composition 13 of Example 9 before nano processing.
  • FIG. 1B shows pictures of a sample section of the foam produced from composition 13 of Example 9 after 6 cycles of nano processing.
  • FIG. 2A shows pictures of a sample section of the foam produced from composition 11 of Example 8 before nano processing.
  • FIG. 2B shows pictures of a sample section of the foam produced from composition 11 of Example 8 after 6 cycles of nano processing.
  • FIG. 3A shows pictures of a sample section of the foam produced from composition 7 of Example 7 before nano processing.
  • FIG. 3B shows pictures of a sample section of the foam produced from composition 10 of Example 7 after 6 cycles of nano processing.
  • FIG. 4A shows pictures of a sample section of the foam produced from composition 14 of Example 9 before nano processing.
  • FIG. 4B shows pictures of a sample section of the foam produced from composition 14 of Example 9 after 6 cycles of nano processing.
  • FIG. 5A shows pictures of a sample section of the foam produced from composition 15 of Example 9 before nano processing, which foam comprises propellant having 50% more pressure than that of the foam as shown in FIG. 5B .
  • FIG. 5B shows pictures of a sample section of the foam produced from composition 15 of Example 9 before nano processing.
  • FIG. 5C shows pictures of a sample section of the foam produced from composition 15 of Example 9 after 6 cycles of nano processing.
  • the present invention provides a foamable oil in water nano emulsion, composition including small oil globules.
  • the terms droplets, globules and particles, when referencing an emulsion, are used interchangeably. All % values are provided on a weight (w/w) basis.
  • the foamable oil in water nano emulsion composition is intended for administration to the skin, a body surface, a body cavity or mucosal surface, e.g., the mucosa of the nose, mouth, eye, ear, respiratory system, vagina or rectum (severally and interchangeably termed herein “target site”).
  • the oil globule system consists of oil globules with an average diameter size in the range of about 1000 nanometers to about 10 nanometers; and the stabilizing agent consists of a polymeric agent.
  • a foamable oil in water nano emulsion composition comprising a non-ionic surfactant having an HLB value between 9 and 16; and/or an ionic surfactant.
  • oil globules are discrete particles with the majority having a size ranging from about 300 to about 20 nanometers in at least one dimension.
  • oil globule system consists of sub-micron oil globules; and the stabilizing agent consists of a surfactant, having an HLB value or a mean HLB value between 9 and 16.
  • the ratio of surfactant to oil is high being in the range of the order of about 1:1 to about 1:10
  • the sub-micron oil globules contain at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof.
  • said submicron oil globules are about 50% to about 100% of the composition.
  • the sub-micron oil globules have a number-average size range, selected from (i) 40 nm to 1,000 nm. (ii) 40 nm to 500 nm; (iii) 40 nm to 200 nm; (iv) 40 nm to 100 nm (v) less than 500 nm; (vi) less than 200 nm; and (vii) less than 100 nm.
  • sub-micron oil globules are produced by high sheer homogenization.
  • a foamable oil in water nano emulsion composition further comprising about 0.1% to about 5% by weight of a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having at least one double bond; a fatty acid having at least one double bond; a branched fatty alcohol; a branched fatty acid; and a fatty acid substituted with a hydroxyl group and mixtures thereof.
  • a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atom
  • said foamable composition is substantially alcohol-free.
  • a foamable oil in water nano emulsion composition further containing at least one therapeutic agent.
  • the therapeutic agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic
  • the therapeutic agent is suitable to treat a disorder, selected from a dermatological disorder, a cosmetic disorder, a gynecological disorder, a disorder of a body cavity, wound and burn.
  • a foamable oil in water nano emulsion composition wherein the HLB or mean HLB value of said non-ionic surfactant is between about 2 and about 9.
  • the stabilizing agent is a polymeric agent selected from the group consisting of a water-soluble cellulose ether naturally-occurring polymeric material, microcrystalline cellulose, hydrophobically-modified ethoxylated urethane, and a carbomer.
  • the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose, carboxymethylhydroxyethylcellulose, xanthan gum, guar gum, carrageenin gum, locust bean gum and tragacanth gum.
  • the surfactant is selected from the group consisting of steareth 2, steareth 21, ceteth-20, span 80, behenyl alcohol, glyceryl monostearate, PEG 40 stearate, polyoxyl 100 monostearate, methyl glucose seasquit stearate and polysorbate 80.
  • a foamable oil in water nano emulsion composition wherein the density of the foam is selected from the group consisting of (1) less than 0.12 g/mL; (2) the range between 0.02 and 0.12; (3) the range between 0.04 and 0.10; (4) the range between 0.06 and 0.10.
  • a foamable oil in water nano emulsion composition wherein the viscosity is selected from the group consisting of (1) between about 6000cP and about 400cP (2) between about 400cP and about 200cP (3) between about 200cP and about 500cP (4) between about 500cP and about 1 cP.
  • the viscosity is preferably between about 500cP and about 1 cP and the foam is of good or excellent quality.
  • the viscosity is above 20,000 cP.
  • polymeric agent is a carbomer.
  • carbomer is the sole polymeric agent.
  • a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors comprising:
  • composition further comprises an active agent effective to treat a disorder and wherein the disorder is selected from the group consisting of a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis,
  • a method of promoting the penetration of an active agent into the surface layers of the skin and mucosal membranes comprising: apply a foamable composition to the surface layers of a stem or mucosal membrane, the foamable composition comprising:
  • the active agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid,
  • a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors comprising:
  • composition further comprises an active agent effective to treat a disorder and wherein the disorder is selected from the group described above.
  • a method of promoting the penetration of an active agent into the surface layers of the skin and mucosal membranes comprising: apply a foamable composition to the surface layers of a stem or mucosal membrane, the foamable composition comprising:
  • the active agent is selected from the group listed above.
  • a foamable oil in water nano emulsion composition for use as a medicament or in the manufacture of a medicament.
  • the foamable oil in water nano emulsion composition includes:
  • the foamable composition forms an expanded foam suitable for topical administration.
  • oil globules are oil bodies.
  • Oil bodies also termed “oleosomes”, “lipid bodies” and “spherosomes”, are small discrete oleaginous particles, ranging in size from about 1 to about 3 ⁇ m along one dimension.
  • Oil bodies consist of triacylglycerols (TAG) surrounded by phospholipids (PL) and alkaline proteins, termed oleosins.
  • TAG triacylglycerols
  • PL phospholipids
  • alkaline proteins termed oleosins.
  • Triacylglycerides are chemically defined as glycerol esters of fatty acids.
  • the seed oil present in the oil body fraction of plant species is a mixture of various triacylglycerides, of which the exact composition depends on the plant species from which the oil is derived.
  • Phospolipids possess a structure that is very similar to that of the triacylglycerides except that a terminal carbon of the glycerol backbone is esterified to phosphoric acid. Substitution of the hydrogen atom of phosphatidic acid results in additional phospholipids classes, including but not limited to the following:
  • Oleosins are highly lipophilic small proteins of about 15 to 26 kD. They are expressed at high levels in many seeds and are specifically targeted to oil-bodies. Oleosins completely cover the surface of the subcellular oil bodies.
  • Oil-bodies are abundant in plant seeds and are among the simplest organelles present in eukaryotes. They are remarkably stable both inside the cells and in isolated preparations.
  • Oil bodies are prepared from plant seeds.
  • Exemplary plant seeds include (alphabetically) almond ( Prunus dulcis ); anise ( Pimpinella anisum ); avocado (Persea spp.); beach nut ( Fagus sylvatica ); borage (also known as evening primrose) (Boragio officinalis); Brazil nut ( Bertholletia excelsa ); candle nut (Aleuritis tiglium); carapa (Carapa guineensis); cashew nut (Ancardium occidentale); castor ( Ricinus communis ); coconut (Cocus nucifera); coriander ( Coriandrum sativum ); cottonseed ( Gossypium spp.); crambe ( Crambe abyssinica ); Crepis alpina; croton ( Croton tiglium ); Cuphea spp.; dill (Anethum gravealis); Euphorbia lag
  • Stable artificial oil bodies can be reconstituted with triacylglycerol, phospholipid, and oleosin via sonication, as described, for example in J. T. C. Tzen, Y. Z. Cao, P. Laurent, C. Ratnayake, and A. H. C. Huang. 1993. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol. 101:267-276.
  • the skin-beneficial effects of oil bodies include, but are not limited to (1) antioxidant effects (resulting from the presence of tocopherol and other antioxidants naturally present in the oil bodies); (2) occlusivity, as determined by improved skin barrier function and reduced trans-epidermal water loss; and (3) emolliency.
  • the oil bodies building blocks the triacylglycerides and the phospholipids—contain unsaturated or polyunsaturated fatty acids.
  • unsaturated fatty acids are omega-3 and omega-6 fatty acids.
  • Other examples of such polyunsaturated fatty acids are linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
  • GLA gamma-linoleic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Such unsaturated fatty acids are known for their skin-conditioning and anti-inflammatory effects, which contribute to the therapeutic benefit of the present foamable composition.
  • oil bodies contain phospholipids and oleosins, which concurrently carry hydrophobic and hydrophilic moieties, they act as emulsifiers and, as a result, upon dilution with water with mild mixing, they spontaneously form an emulsion.
  • the oil globules are sub-micron oil globules, i.e., oil globules, which have a number-average size of less than 1,000 nm.
  • An emulsion, comprising sub-micron globules or nano-size globules is called sub-micron emulsion (“SME”) or microemulsion or nanoemulsion, respectively.
  • the oil globules have a number-average size of less than 500 nm; or less than 200 nm; or less than 100 nm. In certain embodiments, the oil globules have number-average size in the following ranges: (i) 40 nm to 1,000 nm. (ii) 40 nm to 500 nm; (iii) 40 nm to 200 nm; or (iv) 40 nm to 100 nm.
  • SMEs are dispersions of oil and water. With reference to conventional emulsions, SMEs are more stable, making them a favorable vehicle for pharmaceutical compositions, which have to maintain stability for long periods of time. SMEs may be used in vehicles for transporting nutraceuticals, medicaments, peptides or proteins. The decrease in size of the globules makes it possible to promote the penetration of the active agents into the surface layers of the skin and mucosal membranes.
  • the active compounds can be solubilized.
  • the general concept of solubilization of active components and its utilization may be found in the following review articles: 1. Solans, C., Pons, R., Kunieda, H “Overview of basic aspects of microemulsions” Industrial Applications of Microemulsions, Solans, C., Kunieda, H., Eds.: Dekker, New York (1997); 66: 1-17, 2. Dungan, S. R., “Microemulsions in foods: properties and application” ibid 148-170; 3. Holmberg, K. “Quarter century progress and new horizons in microemulsions” in Micelles, Microemulsions and Monolayers, Shah, O.
  • the production of SMEs and nanoemulsion involves very-high sheer homogenizers.
  • An exemplary homogenizer, suitable for producing nano-emulsions is the commercially-available “Microfluidizer®”.
  • Microfluidizer® fluid processors are built for deagglomeration and dispersion of uniform submicron particles and creation of stable emulsions and dispersions.
  • Microfluidizer processors overcome limitations of conventional processing technologies by utilizing high-pressure streams that collide at ultra-high velocities in precisely defined microchannels. Combined forces of shear and impact act upon products to attain uniform particle and droplet size reduction (often submicron), deagglomeration and high yield cell disruption.
  • any other very-high sheer homogenizer capable of producing submicron particles is suitable for use in the production of a microemulsions or a nanoemulsion according to the present invention.
  • the SMEs form spontaneously with gentle mixing such as hand shaking.
  • the sub-micron particles contain at least one organic carrier, preferably a hydrophobic organic carrier.
  • the composition may contain one or more of a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 5%, or about 5% to about 10%, or about 10% to about 20%, or about 20% to about 50% by weight.
  • hydrophobic organic carrier refers to a material having solubility in distilled water at ambient temperature of less than about 1 gm per 100 mL, more preferable less than about 0.5 gm per 100 mL, and most preferably less than about 0.1 gm per 100 mL. It is liquid at ambient temperature.
  • the identification of a hydrophobic organic carrier or “hydrophobic solvent”, as used herein, is not intended to characterize the solubilization capabilities of the solvent for any specific active agent or any other component of the foamable composition. Rather, such information is provided to aid in the identification of materials suitable for use as a hydrophobic carrier in the foamable compositions described herein.
  • the hydrophobic organic carrier is an oil, such as mineral oil.
  • Mineral oil (Chemical Abstracts Service Registry number 8012-95-1) is a mixture of aliphatic, naphthalenic, and aromatic liquid hydrocarbons that derive from petroleum. It is typically liquid; its viscosity is in the range of between about 35 CST and about 100 CST (at 40° C.), and its pour point (the lowest temperature at which an oil can be handled without excessive amounts of wax crystals forming so preventing flow) is below 0° C.
  • the term hydrophobic organic carrier does not include thick or semi-solid materials, such as white petrolatum, also termed “Vaseline”, which, in certain compositions is disadvantageous due to its waxy nature and semi-solid texture.
  • hydrophobic solvents are liquid oils originating from vegetable, marine or animal sources.
  • Suitable liquid oil includes saturated, unsaturated or polyunsaturated oils.
  • the unsaturated oil may be olive oil, corn oil, soybean oil, canola oil, cottonseed oil, coconut oil, sesame oil, sunflower oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, flaxseed oil, wheat germ oil, evening primrose oils or mixtures thereof, in any proportion.
  • Suitable hydrophobic solvents also include polyunsaturated oils containing poly-unsaturated fatty acids.
  • said unsaturated fatty acids are selected from the group of omega-3 and omega-6 fatty acids.
  • examples of such polyunsaturated fatty acids are linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
  • GLA gamma-linoleic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • the hydrophobic solvent can include at least 6% of an oil selected from omega-3 oil, omega-6 oil, and mixtures thereof.
  • oils that possess therapeutically beneficial properties are termed “therapeutically active oil.”
  • hydrophobic solvents Another class of hydrophobic solvents is the essential oils, which are also considered therapeutically active oil, which contain active biologically occurring molecules and, upon topical application, exert a therapeutic effect, which is conceivably synergistic to the beneficial effect of the NSAID in the composition.
  • Another class of therapeutically active oils includes liquid hydrophobic plant-derived oils, which are known to possess therapeutic benefits when applied topically.
  • Silicone oils also may be used and are desirable due to their known skin protective and occlusive properties.
  • Suitable silicone oils include non-volatile silicones, such as polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers, polydimethylsiloxanes (dimethicones) and poly(dimethylsiloxane)-(diphenyl-siloxane) copolymers. These are chosen from cyclic or linear polydimethylsiloxanes containing from about 3 to about 9, preferably from about 4 to about 5, silicon atoms. Volatile silicones such as cyclomethicones can also be used. Silicone oils are also considered therapeutically active oil, due to their barrier retaining and protective properties.
  • the organic carrier may be a mixture of two or more of the above hydrophobic solvents in any proportion.
  • a further class of organic carriers includes “emollients” that have a softening or soothing effect, especially when applied to body areas, such as the skin and mucosal surfaces.
  • Emollients are not necessarily hydrophobic.
  • suitable emollients include hexyleneglycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated oil bodies alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol
  • the organic carrier includes a mixture of a hydrophobic solvent and an emollient.
  • the foamable composition is a mixture of mineral oil and an emollient in a ratio between 2:8 and 8:2 on a weight basis.
  • a “polar solvent” is an organic solvent, typically soluble in both water and oil.
  • polar solvents include polyols, such as glycerol (glycerin), propylene glycol, hexylene glycol, diethylene glycol, propylene glycol n-alkanols, terpenes, di-terpenes, tri-terpenes, terpen-ols, limonene, terpene-ol, 1-menthol, dioxolane, ethylene glycol, other glycols, sulfoxides, such as dimethylsulfoxide (DMSO), dimethylformanide, methyl dodecyl sulfoxide, dimethylacetamide, monooleate of ethoxylated glycerides (with 8 to 10 ethylene oxide units), azone (1-dodecylazacycloheptan-2-one), 2-(n-nonyl)-1,3-dioxolane, esters, such as
  • the polar solvent is a polyethylene glycol (PEG) or PEG derivative that is liquid at ambient temperature, including PEG200 (MW (molecular weight) about 190-210 kD), PEG300 (MW about 285-315 kD), PEG400 (MW about 380-420 kD), PEG600 (MW about 570-630 kD) and higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.
  • PEG200 MW (molecular weight) about 190-210 kD
  • PEG300 MW about 285-315 kD
  • PEG400 MW about 380-420 kD
  • PEG600 MW about 570-630 kD
  • higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.
  • the foamable composition is substantially alcohol-free, i.e., free of short chain alcohols.
  • Short chain alcohols having up to 5 carbon atoms in their carbon chain skeleton and one hydroxyl group, such as ethanol, propanol, isopropanol, butanol, iso-butanol, t-butanol and pentanol, are considered less desirable solvents or polar solvents due to their skin-irritating effect.
  • the composition is substantially alcohol-free and includes less than about 5% final concentration of lower alcohols, preferably less than about 2%, more preferably less than about 1%.
  • the composition includes a stabilizing agent, which may be a polymeric agent.
  • the polymeric agent serves to stabilize the foam composition and to control drug residence in the target organ.
  • Exemplary polymeric agents are classified below in a non-limiting manner. In certain cases, a given polymer can belong to more than one of the classes provided below.
  • the polymeric agent may be a gelling agent.
  • a gelling agent controls the residence of a therapeutic composition in the target site of treatment by increasing the viscosity of the composition, thereby limiting the rate of its clearance from the site.
  • Many gelling agents are known in the art to possess mucoadhesive properties.
  • the gelling agent can be a natural gelling agent, a synthetic gelling agent and an inorganic gelling agent.
  • Exemplary gelling agents that can be used in accordance with one or more embodiments of the present invention include, for example, microcrystalline cellulose, Aculyn a Hydrophobically-modified Ethoxylated Urethane, naturally-occurring polymeric materials, such as locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum, sodium alginate, xanthan gum, quince seed extract, tragacanth gum, guar gum, starch, chemically modified starches and the like, semi-synthetic polymeric materials such as cellulose ethers (e.g.
  • hydroxyethyl cellulose methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose
  • guar gum hydroxypropyl guar gum
  • soluble starch cationic celluloses, cationic guars, and the like
  • synthetic polymeric materials such as carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and the like. Mixtures of the above compounds are contemplated.
  • Further exemplary gelling agents include the acrylic acid/ethyl acrylate copolymers and the carboxyvinyl polymers sold, for example, by the B.F. Goodrich Company under the trademark of Carbopol® resins. These resins consist essentially of a colloidal water-soluble polyalkenyl polyether crosslinked polymer of acrylic acid crosslinked with from 0.75% to 2% of a crosslinking agent such as polyallyl sucrose or polyallyl pentaerythritol. Examples include Carbopol® 934, Carbopol® 940, Carbopol® 950, Carbopol® 980, Carbopol® 951 and Carbopol® 981. Carbopol® 934 is a water-soluble polymer of acrylic acid crosslinked with about 1% of a polyallyl ether of sucrose having an average of about 5.8 allyl groups for each sucrose molecule.
  • the gelling agent may be a water-soluble cellulose ether.
  • the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose and carboxymethylhydroxyethylcellulose. More preferably, the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose (Methocel).
  • the composition includes a combination of a water-soluble cellulose ether; and a naturally-occurring polymeric materials, selected from the group including xanthan gum, guar gum, carrageenan gum, locust bean gum and tragacanth gum.
  • the gelling agent includes inorganic gelling agents, such as silicone dioxide (fumed silica).
  • the polymeric agent may be a mucoadhesive agent.
  • Mucoadhesion/bioadhesion is defined as the attachment of synthetic or biological macromolecules to a biological tissue.
  • Mucoadhesive agents are a class of polymeric biomaterials that exhibit the basic characteristic of a hydrogel, i.e. swell by absorbing water and interacting by means of adhesion with the mucous that covers epithelia.
  • Compositions of the present invention may contain a mucoadhesive macromolecule or polymer in an amount sufficient to confer bioadhesive properties.
  • the bioadhesive macromolecule enhances the delivery of biologically active agents on or through the target surface.
  • the mucoadhesive macromolecule may be selected from acidic synthetic polymers, preferably having at least one acidic group per four repeating or monomeric subunit moieties, such as poly(acrylic)- and/or poly(methacrylic) acid (e.g., Carbopol®, Carbomer®, poly(methylvinyl ether/maleic anhydride) copolymer, and their mixtures and copolymers; acidic synthetically modified natural polymers, such as carboxymethylcellulose (CMC); neutral synthetically modified natural polymers, such as (hydroxypropyl)methylcellulose; basic amine-bearing polymers such as chitosan; acidic polymers obtainable from natural sources, such as alginic acid, hyaluronic acid, pectin, gum tragacanth, and karaya gum; and neutral synthetic polymers, such as polyvinyl alcohol or their mixtures.
  • acidic synthetic polymers preferably having at least one acidic group per four repeating or monomeric subunit moie
  • An additional group of mucoadhesive polymers includes natural and chemically modified cyclodextrin, especially hydroxypropyl- ⁇ -cyclodextrin.
  • Such polymers may be present as free acids, bases, or salts, usually in a final concentration of about 0.01% to about 0.5% by weight.
  • a suitable bioadhesive macromolecule is the family of acrylic acid polymers and copolymers, (e.g., Carbopol®). These polymers contain the general structure —[CH 2 —CH(COOH)-] n . Hyaluronic acid and other biologically-derived polymers may be used.
  • Exemplary bioadhesive or mucoadhesive macromolecules have a molecular weight of at least 50 kDa, or at least 300 kDa, or at least 1,000 kDa.
  • Favored polymeric ionizable macromolecules have not less than 2 mole percent acidic groups (e.g., COOH, SO3H) or basic groups (NH2, NRH, NR2), relative to the number of monomeric units.
  • the acidic or basic groups can constitute at least 5 mole percent, or at least 10 mole percent, or at least 25, at least 50 mole percent, or even up to 100 mole percent relative to the number of monomeric units of the macromolecule.
  • mucoadhesive agent includes inorganic gelling agents such as silicon dioxide (fumed silica), including but not limited to, AEROSIL 200 (DEGUSSA).
  • inorganic gelling agents such as silicon dioxide (fumed silica), including but not limited to, AEROSIL 200 (DEGUSSA).
  • the polymeric agent may be a film forming component.
  • the film forming component may include at least one water-insoluble alkyl cellulose or hydroxyalkyl cellulose.
  • Exemplary alkyl cellulose or hydroxyalkyl cellulose polymers include ethyl cellulose, propyl cellulose, butyl cellulose, cellulose acetate, hydroxypropyl cellulose, hydroxybutyl cellulose, and ethylhydroxyethyl cellulose, alone or in combination.
  • a plasticizer or a cross linking agent may be used to modify the polymer's characteristics.
  • esters such as dibutyl or diethyl phthalate, amides such as diethyldiphenyl urea, vegetable oils, fatty acids and alcohols such as oleic and myristyl acid may be used in combination with the cellulose derivative.
  • the polymeric agent may be a phase change polymer, which alters the composition behavior from fluid-like prior to administration to solid-like upon contact with the target mucosal surface. Such phase change results from external stimuli, such as changes in temperature or pH and exposure to specific ions (e.g., Ca 2+ ).
  • phase change polymers include poly(N-isopropylamide), Poloxamer 407® and Smart-Gel® (Poloxamer+PAA).
  • the polymeric agent is present in an amount in the range of about 0.01% to about 5.0% by weight of the foam composition. In one or more embodiments, it is typically less than about 1 wt % of the foamable composition.
  • the stabilizing agent may also be a surface-active agent.
  • Surface-active agents include any agent linking oil and water in the composition, in the form of emulsion.
  • a surfactant's hydrophilic/lipophilic balance (HLB) describes the emulsifier's affinity toward water or oil.
  • HLB hydrophilic/lipophilic balance
  • the HLB scale ranges from 1 (totally lipophilic) to 20 (totally hydrophilic), with 10 representing an equal balance of both characteristics.
  • Lipophilic emulsifiers form water-in-oil (w/o) emulsions; hydrophilic surfactants form oil-in-water (o/w) emulsions.
  • the HLB of a blend of two emulsifiers equals the weight fraction of emulsifier A times its HLB value plus the weight fraction of emulsifier B times its HLB value (weighted average).
  • a single surfactant may suffice.
  • a combination of two or more surfactants is desired.
  • Reference to a surfactant in the specification can also apply to a combination of surfactants or a surfactant system. As will be appreciated by a person skilled in the art which surfactant or surfactant system is more appropriate is related to the vehicle and intended purpose. In general terms a combination of surfactants is usually preferable where the vehicle is an emulsion.
  • a combination of surfactants can be significant in producing breakable forms of good quality. It has been further discovered that the generally thought considerations for HLB values for selecting a surfactant or surfactant combination are not always binding for emulsions and that good quality foams can be produced with a surfactant or surfactant combination both where the HLB values are in or towards the lipophilic side of the scale and where the HLB values are in or towards the hydrophilic side of the scale. Surfactants also play a role in foam formation where the foamable formulation is a single phase composition.
  • the composition contains a single surfactant having an HLB value between about 2 and 9, or more than one surfactant and the weighted average of their HLB values is between about 2 and about 9.
  • Lower HLB values may in certain embodiments be more applicable to water in oil emulsions.
  • the composition contains a single surfactant having an HLB value between about 7 and 14, or more than one surfactant and the weighted average of their HLB values is between about 7 and about 14.
  • Mid range HLB values may in certain embodiments be more suitable for oil in water nano emulsions.
  • the composition contains a single surfactant having an HLB value between about 9 and about 19, or more than one surfactant and the weighted average of their HLB values is between about 9 and about 19.
  • HLB values In a waterless or substantially waterless environment a wide range of HLB values may be suitable.
  • the composition of the present invention contains a non-ionic surfactant.
  • non-ionic surfactants include a polysorbate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan monooleate, a polyoxyethylene fatty acid ester, Myrj 45, Myrj49, Myrj 52 and Myrj 59; a polyoxyethylene alkyl ether, polyoxyethylene cetyl ether, polyoxyethylene palmityl ether, polyethylene oxide hexadecyl ether, polyethylene glycol cetyl ether, steareths such as steareth 2, brij 21, brij 721, brij 38, brij 52, brij 56 and brij W1, a sucrose ester, a partial ester of sorbitol and its anhydrides, sorbitan monolaurate, sorbitan monolaurate, a monoglyceride, a diglyceride, isocete
  • surfactants are selected which can provide a close packed surfactant layer separating the oil and water phases.
  • combinations of at least two surfactants are selected.
  • they should be complex emulgators and more preferably they should both be of a similar molecular type.
  • POE esters cannot be used and a combination of sorbitan laurate and sorbitan stearate or a combination of sucrose stearic acid ester mixtures and sodium laurate may be used. All these combinations due to their versatility and strength may also be used satisfactorily and effectively with wax formulations, although the amounts and proportion may be varied according to the formulation and its objectives as will be appreciated by a man of the art.
  • dextrin derivative surfactants prepared by the reaction of the propylene glycol polyglucosides with a hydrophobic oxirane-containing material of the glycidyl ether are highly biodegradable. [Hong-Rong Wang and Keng-Ming Chen, Colloids and Surfaces A: Physicochemical and Engineering Aspects Volume 281, Issues 1-3, 15 Jun. 2006, Pages 190-193].
  • Non-limiting examples of non-ionic surfactants that have HLB of about 7 to about 12 include steareth 2 (HLB ⁇ 4.9); glyceryl monostearate/PEG 100 stearate (Av HLB ⁇ 11.2); stearate Laureth 4 (HLB ⁇ 9.7) and cetomacrogol ether (e.g., polyethylene glycol 1000 monocetyl ether).
  • Non-limiting examples of preferred surfactants which have a HLB of 4-19 are set out in the Table below:
  • HLB steareth 2 ⁇ 4.9 glyceryl monostearate/PEG 100 stearate Av ⁇ 11.2 Glyceryl Stearate ⁇ 4 Steareth-21 ⁇ 15.5 peg 40 stearate ⁇ 16.9 polysorbate 80 ⁇ 15 sorbitan stearate ⁇ 4.7 laureth 4 ⁇ 9.7 Sorbitan monooleate (span 80) ⁇ 4.3 ceteareth 20 ⁇ 15.7 steareth 20 ⁇ 15.3 ceteth 20 ⁇ 15.7 Macrogol Cetostearyl Ether ⁇ 15.7 ceteth 2 (Lipocol C-2) ⁇ 5.3 PEG-30 Dipolyhydroxystearate ⁇ 5.5 sucrose distearate (Sisterna SP30) ⁇ 6 polyoxyethylene (100) stearate ⁇ 18.8
  • the surfactant is a complex emulgator in which the combination of two or more surfactants can be more effective than a single surfactant and provides a more stable emulsion or improved foam quality than a single surfactant.
  • the complex emulgator comprises a combination of surfactants wherein there is a difference of about 4 or more units between the HLB values of the two surfactants or there is a significant difference in the chemical nature or structure of the two or more surfactants.
  • surfactant systems are, combinations of polyoxyethylene alkyl ethers, such as Brij 59/Brij10; Brij 52/Brij 10; Steareth 2/Steareth 20; Steareth 2/Steareth 21 (Brij 72/Brij 721); combinations of polyoxyethylene stearates such as Myrj 52/Myrj 59; combinations of sucrose esters, such as Surphope 1816/Surphope 1807; combinations of sorbitan esters, such as Span 20/Span 80; Span 20/Span 60; combinations of sucrose esters and sorbitan esters, such as Surphope 1811 and Span 60; combinations of liquid polysorbate detergents and PEG compounds, such as Tween 80/PEG-40 stearate; methyl glucaso sequistearate; polymeric emulsifiers, such as Permulen (TRI or TR2); liquid crystal systems, such as Arlatone (2121), Stepan (Mild RM1), Nikomules
  • the surfactant is preferably one or more of the following: a combination of steareth-2 and steareth-21 on their own or in combination with glyceryl monostearate (GMS); in certain other embodiments the surfactant is a combination of polysorbate 80 and PEG-40 stearate. In certain other embodiments the surfactant is a combination of glyceryl monostearate/PEG 100 stearate. In certain other embodiments the surfactant is a combination of two or more of stearate 21, PEG 40 stearate, and polysorbate 80. In certain order embodiments the surfactant is a combination of two or more of laureth 4, span80, and polysorbate 80.
  • the surfactant is a combination of two or more of GMS and ceteareth. In certain other embodiments the surfactant is a combination of two or more of steareth 21, ceteareth 20, ceteth 2 and laureth 4 In certain other embodiments the surfactant is a combination of ceteareth 20 and polysorbate 40 stearate. In certain other embodiments the surfactant is a combination of span 60 and GMS. In certain other embodiments the surfactant is a combination of two or all of PEG 40 stearate, sorbitan stearate and polysorbate 60
  • the surfactant is one or more of sucrose stearic acid esters, sorbitan laureth, and sorbitan stearate.
  • non-ionic surfactants with significant hydrophobic and hydrophilic components, increase the emulsifier or foam stabilization characteristics of the composition.
  • using combinations of surfactants with high and low HLB's to provide a relatively close packed surfactant layer may strengthen the emulsion.
  • the stability of the composition can be improved when a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed.
  • the ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1:8 and 8:1, or at a ratio of 4:1 to 1:4.
  • the resultant HLB of such a blend of at least two emulsifiers is preferably between about 9 and about 14.
  • a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed, at a ratio of between 1:8 and 8:1, or at a ratio of 4:1 to 1:4, wherein the HLB of the combination of emulsifiers is preferably between about 5 and about 18.
  • the surfactant is selected from the group of cationic, zwitterionic, amphoteric and ampholytic surfactants, such as sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate and betaines.
  • amphiphilic molecules can show lyotropic liquid-crystalline phase sequences depending on the volume balances between the hydrophilic part and hydrophobic part. These structures are formed through the micro-phase segregation of the two parts. Many amphiphilic molecules can show lyotropic liquid-crystalline phase sequences depending on the volume balances between the hydrophilic part and hydrophobic part. These structures are formed through the micro-phase segregation of two incompatible components on a nanometer scale. Soap is an everyday example of a lyotropic liquid crystal. Certain types of surfactants tend to form lyotropic liquid crystals in emulsions interface (oil-in-water) and exert a stabilizing effect
  • the surfactant is a surfactant or surfactant combination is capable of or which tends to form liquid crystals.
  • Surfactants which tend to form liquid crystals may improve the quality of foams.
  • Non limiting examples of surfactants with postulated tendency to form interfacial liquid crystals are: phospholipids, alkyl glucosides, sucrose esters, sorbitan esters.
  • the at least one surfactant is liquid.
  • the liquid surfactant is a polysorbate, preferably polysorbate 80 or 60.
  • the at least one surfactant is solid, semi solid or waxy.
  • HLB values may not be so applicable to non ionic surfactants, for example, with liquid crystals or with silicones. Also HLB values may be of lesser significance in a waterless or substantially non-aqueous environment.
  • the surfactant can be, a surfactant system comprising of a surfactant and a co surfactant, a waxy emulsifier, a liquid crystal emulsifier, an emulsifier which is solid or semi solid at room temperature and pressure, or combinations of two or more agents in an appropriate proportion as will be appreciated a person skilled in the art.
  • a solid or semi solid emulsifier combination it can also comprise a solid or semi solid emulsifier and a liquid emulsifier.
  • the surface-active agent includes at least one non-ionic surfactant.
  • Ionic surfactants are known to be irritants. Therefore, non-ionic surfactants are preferred in applications including sensitive tissue such as found in most mucosal tissues, especially when they are infected or inflamed. Non-ionic surfactants alone can provide formulations and foams of good or excellent quality in the carriers and compositions of the present invention.
  • the surfactant contains a non-ionic surfactant.
  • the composition includes a mixture of non-ionic surfactants as the sole surfactant.
  • the foamable composition includes a mixture of at least one non-ionic surfactant and at least one ionic surfactant in a ratio in the range of about 100:1 to 6:1.
  • the non-ionic to ionic surfactant ratio is greater than about 6:1, or greater than about 8:1; or greater than about 14:1, or greater than about 16:1, or greater than about 20:1.
  • surfactant comprises a combination of a non-ionic surfactant and an ionic surfactant, at a ratio of between 1:1 and 20:1
  • a combination of a non-ionic surfactant and an ionic surfactant is employed, at a ratio of between 1:1 and 20:1, or at a ratio of 4:1 to 10:1; for example, about 1:1, about 4:1, about 8:1, about 12:1, about 16:1 and about 20:1 or at a ratio of 4:1 to 10:1, for example, about 4:1, about 6:1, about 8:1 and about 10:1.
  • the upper amount of surfactant that may be used may be limited by the shakability of the composition. If the surfactant is non liquid, it can make the formulation to viscous or solid. This can be particularly significant if the formulation has high molecular weight, e.g., a high molecular weight PEG or polymeric agents or petroleum or if the surfactants are large. Solvents and polymeric agents which have high molecular weight and are very viscous or solid or waxy (e.g., Peg 1500, 2000, etc.
  • the shakability of the formulation reduces until a limitation point is reached where the formulation becomes non shakable and unsuitable.
  • an effective amount of surfactant may be used provided the formulation remains shakable.
  • the upper limit may be determined by flowability such as in circumstances where the composition is marginally or apparently non-shakable.
  • the formulation is sufficiently flowable to be able to flow through an actuator valve and be released and still expand to form a good quality foam.
  • the amount of surfactant or combination of surfactants is between about 0.05% to about 20%; between about 0.05% to about 15%. or between about 0.05% to about 10%.
  • the concentration of surfactant is between about 0.2% and about 8%.
  • the concentration of surfactant is between about 1% and about 6%.
  • the surfactant oil ratio is relatively high ranging from about of the order of 1:1 to about 1:10. Nevertheless lower levels are possible.
  • the surfactant does not contain a polyoxyethylene (POE) moiety, such as polysorbate surfactants, POE fatty acid esters, and POE alkyl ethers, because the active agent is incompatible with such surfactants.
  • POE polyoxyethylene
  • the active agent pimecrolimus is not stable the presence of POE moieties, yet benefits greatly from the use of dicarboxylic esters as penetration enhancers. In such cases, alternative surfactants are employed.
  • POE—free surfactants include non-ethoxylated sorbitan esters, such as sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan monolaurate and sorbitan sesquioleate; glycerol fatty acid esters, such as glycerol monostearate and glycerol monooleate; mono-, di- and tri-esters of sucrose with fatty acids (sucrose esters), sucrose stearate, sucrose distearate sucrose palmitate and sucrose laurate; and alkyl polyglycosides, such as lauryl diglucoside.
  • non-ethoxylated sorbitan esters such as sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan mono
  • composition as formulated is a substantially non shakable composition it is nevertheless possible as an exception in the scope of the present invention for the formulation to be flowable to a sufficient degree to be able to flow through an actuator valve and be released and still expand to form a good quality foam.
  • This surprising and unusual exception may be due one or more of a number of factors such as the high viscosity, the softness, the lack of crystals, the pseudoplastic or semi pseudo plastic nature of the composition and the dissolution of the propellant into the composition.
  • the propellant can change a merely flowable composition into a shakable one.
  • the surface-active agent includes mono-, di- and tri-esters of sucrose with fatty acids (sucrose esters), prepared from sucrose and esters of fatty acids or by extraction from sucro-glycerides.
  • sucrose esters include those having high monoester content, which have higher HLB values.
  • the surface-active agent is selected from anionic, cationic, nonionic, zwitterionic, amphoteric and ampholytic surfactants, as well as mixtures of these surfactants.
  • the surfactant can be the phospholipids or the oil bodies.
  • the total surfactant is usually in the range of about 0.1 to about 5% of the foamable composition, and is typically less than about 2% or less than about 1%.
  • the total surfactant may be in the range of about 5% to about 25% and may preferably be in the range of about 6% to about 12%. In another preferred embodiment the total is about 8%.
  • the surfactant plays a role in the determination of the viscosity of the formulation.
  • the surfactants may have an inherent role in the surprising loss or reduction of viscosity to less than 500cP even though the viscosity of the formulation can be much higher prior to nano processing with say up to six cycles with a high pressure homogenizer.
  • the foamable composition is substantially alcohol-free, i.e., free of short chain alcohols.
  • Short chain alcohols having up to 5 carbon atoms in their carbon chain skeleton and one hydroxyl group, such as ethanol, propanol, isopropanol, butaneol, iso-butaneol, t-butaneol and pentanol, are considered less desirable solvents or polar solvents due to their skin-irritating effect.
  • the composition is substantially alcohol-free and includes less than about 5% final concentration of lower alcohols, preferably less than about 2%, more preferably less than about 1%.
  • ‘Shakability’ means that the composition contains some or sufficient flow to allow the composition to be mixed or remixed on shaking. That is, it has fluid or semi fluid properties. In some very limited cases possibly aided by the presence of silicone it may exceptionally be possible to have a foamable composition which is flowable but not apparently shakable.
  • a breakable foam is one that is thermally stable, yet breaks under sheer force.
  • the breakable foam of the present invention is not “quick breaking”, i.e., it does not readily collapse upon exposure to body temperature environment. Sheer-force breakability of the foam is clearly advantageous over thermally induced breakability, since it allows comfortable application and well directed administration to the target area.
  • foam adjuvant is included in the foamable compositions of the present invention to increase the foaming capacity of surfactants and/or to stabilize the foam.
  • the foam adjuvant agent includes fatty alcohols having 15 or more carbons in their carbon chain, such as cetyl alcohol and stearyl alcohol (or mixtures thereof).
  • fatty alcohols are arachidyl alcohol (C20), behenyl alcohol (C22), 1-triacontanol (C30), as well as alcohols with longer carbon chains (up to C50).
  • Fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, are especially well suited as foam adjuvant agents.
  • the amount of the fatty alcohol required to support the foam system is inversely related to the length of its carbon chains.
  • Foam adjuvants, as defined herein are also useful in facilitating improved spreadability and absorption of the composition.
  • the foam adjuvant agent includes fatty acids having 16 or more carbons in their carbon chain, such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (up to C50), or mixtures thereof.
  • fatty acids having 16 or more carbons in their carbon chain, such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (up to C50), or mixtures thereof.
  • fatty acids having 16 or more carbons in their carbon chain such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic
  • the carbon atom chain of the fatty alcohol or the fatty acid may have at least one double bond.
  • a further class of foam adjuvant agent includes a branched fatty alcohol or fatty acid.
  • the carbon chain of the fatty acid or fatty alcohol also can be substituted with a hydroxyl group, such as 12-hydroxy stearic acid.
  • fatty alcohols and fatty acids used in context of the composition of the present invention is related to their therapeutic properties per se.
  • Long chain saturated and mono unsaturated fatty alcohols e.g., stearyl alcohol, erucyl alcohol, arachidyl alcohol and behenyl alcohol (docosanol) have been reported to possess antiviral, antiinfective, antiproliferative and antiinflammatory properties (see, for example, U.S. Pat. No. 4,874,794).
  • Longer chain fatty alcohols e.g., tetracosanol, hexacosanol, heptacosanol, octacosanol, triacontanol, etc.
  • tetracosanol hexacosanol
  • heptacosanol heptacosanol
  • octacosanol triacontanol, etc.
  • Long chain fatty acids have also been reported to possess anti-infective characteristics.
  • a combined and enhanced therapeutic effect is attained by including both a nonsteroidal immunomodulating agent and a therapeutically effective foam adjuvant in the same composition, thus providing a simultaneous anti-inflammatory and antiinfective effect from both components.
  • the composition concurrently comprises a nonsteroidal immunomodulating agent, a therapeutically effective foam adjuvant and a therapeutically active oil, as detailed above.
  • the foamable carrier, containing the foam adjuvant provides an extra therapeutic benefit in comparison with currently used vehicles, which are inert and non-active.
  • the foam adjuvant according to preferred embodiments of the present invention includes a mixture of fatty alcohols, fatty acids and hydroxy fatty acids and derivatives thereof in any proportion, providing that the total amount is 0.1% to 5% (w/w) of the carrier mass. More preferably, the total amount is 0.4%-2.5% (w/w) of the carrier mass.
  • the foam of the present invention may further optionally include a variety of formulation excipients, which are added in order to fine-tune the consistency of the formulation, protect the formulation components from degradation and oxidation and modify their consistency.
  • formulation excipients may be selected, for example, from stabilizing agents, antioxidants, humectants, preservatives, colorant and odorant agents and other formulation components, used in the art of formulation.
  • Aerosol propellants are used to generate and administer the foamable composition as a foam.
  • Suitable propellants include volatile hydrocarbons such as butane, propane, isobutane and fluorocarbon gases, or mixtures thereof.
  • the propellant is AP 70 which is a mixture of propane, isobutene and butane.
  • the propellant is AP 46 which is a similar mixture of propane, isobutene and butane but having a lower pressure.
  • AP 70 offers about 50% higher pressure than AP 46.
  • the propellant makes up about 3-25 wt % of the foamable composition. In some circumstances the propellant may be up to 35%.
  • the propellants are used to generate and administer the foamable composition as a foam.
  • the total composition including propellant, foamable compositions and optional ingredients can be referred to as the foamable composition.
  • Such propellants include, but are not limited to, hydrofluorocarbon (HFC) propellants, which contain no chlorine atoms, and as such, fall completely outside concerns about stratospheric ozone destruction by chlorofluorocarbons or other chlorinated hydrocarbons.
  • HFC hydrofluorocarbon
  • Exemplary non-flammable propellants according to this aspect include propellants made by DuPont under the registered trademark Dymel, such as 1,1,1,2 tetrafluorethane (Dymel 134), and 1,1,1,2,3,3,3 heptafluoropropane (Dymel 227).
  • HFCs possess Ozone Depletion Potential of 0.00 and thus, they are allowed for use as propellant in aerosol products.
  • foamable emulsions including HFC as the propellant can be improved in comparison with the same composition made with a hydrocarbon propellant.
  • foamable compositions comprise a combination of a HFC and a hydrocarbon propellant such as n-butane or mixtures of hydrocarbon propellants such as propane, isobutane and butane.
  • a hydrocarbon propellant such as n-butane or mixtures of hydrocarbon propellants such as propane, isobutane and butane.
  • compositions can subjected to a number of tests, including centrifugation to look for resistance to creaming, phase separation; one or more freeze thaw cycles, standing at room and higher temperatures as an indicator of resistance to aging.
  • the foamable composition of the present invention is a carrier of a cosmetically or pharmaceutically active agent(s).
  • the agents may be introduced into an aqueous phase (i.e., water), or a hydrophobic phase (e.g., hydrophobic solvent or oil globules).
  • non binding and cosmetically or pharmaceutically active agents include, but are not limited to an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic
  • one or more components of the oil bodies or sub-micron globules act possess a therapeutic property, such as detailed hereinabove, and thus, in such embodiments, the oil bodies or sub-micron globules can be considered herein as active agents.
  • a pharmaceutical or cosmetic composition manufactured using the foam carrier according to one or more embodiments of the present invention is very easy to use. When applied onto the afflicted body surface of mammals, i.e., humans or animals, it is in a foam state, allowing free application without spillage. Upon further application of a mechanical force, e.g., by rubbing the composition onto the body surface, it freely spreads on the surface and is rapidly absorbed.
  • the foam composition of the present invention creates a stable formulation having an acceptable shelf-life of at least one year, or at least two years at ambient temperature.
  • a feature of a product for cosmetic or medical use is long term stability.
  • Propellants which are a mixture of low molecular weight hydrocarbons, tend to impair the stability of emulsions. It has been observed, however, that foam compositions according to the present invention are surprisingly stable. Following accelerated stability studies, they demonstrate desirable texture; they form fine bubble structures that do not break immediately upon contact with a surface, spread easily on the treated area and absorb quickly.
  • composition should also be free flowing, to allow it to flow through the aperture of the container, e.g., and aerosol container, and create an acceptable foam.
  • Foam quality can be graded as follows:
  • Grade E excellent: very rich and creamy in appearance, does not show any bubble structure or shows a very fine (small) bubble structure; does not rapidly become dull; upon spreading on the skin, the foam retains the creaminess property and does not appear watery;
  • Grade G (good): rich and creamy in appearance, very small bubble size, “dulls” more rapidly than an excellent foam, retains creaminess upon spreading on the skin, and does not become watery;
  • Grade FG (fairly good): a moderate amount of creaminess noticeable, bubble structure is noticeable; upon spreading on the skin the product dulls rapidly and becomes somewhat lower in apparent viscosity;
  • Grade F very little creaminess noticeable, larger bubble structure than a “fairly good” foam, upon spreading on the skin it becomes thin in appearance and watery;
  • Grade P no creaminess noticeable, large bubble structure, and when spread on the skin it becomes very thin and watery in appearance
  • Grade VP dry foam, large very dull bubbles, difficult to spread on the skin.
  • Topically administratable foams are typically of quality grade E or G, when released from the aerosol container. Smaller bubbles are indicative of more stable foam, which does not collapse spontaneously immediately upon discharge from the container. The finer foam structure looks and feels smoother, thus increasing its usability and appeal.
  • a further aspect of the foam is breakability.
  • the foam of the present invention is thermally stable, yet breaks under sheer force. Sheer-force breakability of the foam is clearly advantageous over thermally-induced breakability. Thermally sensitive foams immediately collapse upon exposure to skin temperature and, therefore, cannot be applied on the hand and afterwards delivered to the afflicted area.
  • foams have specific gravity of (1) less than 0.12 g/mL; or (2) the range between 0.02 and 0.12; or (3) the range between 0.04 and 0.10; or (4) the range between 0.06 and 0.10.
  • compositions of the present invention are useful in treating an animal or a human patient having any one of a variety of dermatological disorders that include dry and/or scaly skin as one or their etiological factors (also termed “dermatoses”), such as classified in a non-limiting exemplary manner according to the following groups:
  • Dermatitis including contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, chronic dermatitis of the hands and feet, generalized exfoliative dermatitis, stasis dermatitis; lichen simplex chronicus; diaper rash;
  • Bacterial infections including cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, staphylococcal scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, erythrasma;
  • Fungal Infections including dermatophyte infections, yeast Infections; parasitic Infections including scabies, pediculosis, creeping eruption;
  • hair follicles and sebaceous glands including acne, rosacea, perioral dermatitis, hypertrichosis (hirsutism), alopecia, including male pattern baldness, alopecia greata, alopecia universalis and alopecia totalis; pseudofolliculitis barbae, keratinous cyst;
  • Scaling papular diseases including psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris;
  • Benign tumors including moles, dysplastic nevi, skin tags, lipomas, angiomas, pyogenic granuloma, seborrheic keratoses, dermatofibroma, keratoacanthoma, keloid;
  • Malignant tumors including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, paget's disease of the nipples, kaposi's sarcoma;
  • Bullous diseases including pemphigus, bullous pemphigoid, dermatitis herpetiformis, linear immunoglobulin A disease;
  • Pigmentation disorders including hypopigmentation such as vitiligo, albinism and postinflammatory hypopigmentation and hyperpigmentation such as melasma (chloasma), drug-induced hyperpigmentation, postinflammatory hyperpigmentation;
  • Inflammatory reactions including drug eruptions, toxic epidermal necrolysis; erythema multiforme, erythema nodosum, granuloma annulare.
  • compositions are also useful in the therapy of non-dermatological disorders by providing transdermal delivery of an active nonsteroidal immunomodulating agent that is effective against non-dermatological disorders.
  • composition is topically applied to a body cavity or mucosal surface (e.g., the mucosa of the nose, mouth, eye, ear, vagina or rectum) to treat conditions such as chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, pelvic inflammation, endometritis,
  • foamable compositions are described in: U.S. Publication No. 05-0232869, published on Oct. 20, 2005, entitled NONSTEROIDAL IMMUNOMODULATING KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 05-0205086, published on Sep. 22, 2005, entitled RETINOID IMMUNOMODULATING KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 06-0018937, published on Jan. 26, 2006, entitled STEROID KIT AND FOAMABLE COMPOSITION AND USES THEREOF; U.S. Publication No. 05-0271596, published on Dec.
  • Each aerosol canister is filled with PFF and crimped with valve using vacuum crimping machine.
  • Pressurizing is carried out using a hydrocarbon gas or gas mixture Canisters are filled and then warmed for 30 sec in a warm bath at 50° C. and well shaken immediately thereafter.
  • Oil Phase (A) The ingredients of the Oil Phase were preheated to the same temperature, e.g., 40-75° C., and then were combined with mixing. Oil soluble cosmetic or pharmaceutical active ingredients and optional oil soluble formulation ingredients are added with agitation to the Oil Phase mixture.
  • Aqueous Phase (B) Water gelling agent and surfactant were dissolved in water, with agitation. The solution was warmed to 50-70° C. Water soluble cosmetic or pharmaceutical active ingredients and optional water soluble ingredients were added with agitation to the Aqueous Phase mixture.
  • the warm Oil Phase was gradually poured into the warm Aqueous Phase, with agitation, followed by Ultraturax homogenization.
  • the mixture was allowed to cool down to ambient temperature.
  • the active ingredient can be added with agitation to the mixture after cooling to ambient temperature.
  • the mixture at ambient temperature, was added to an aerosol container, the container was sealed and appropriate amount of propellant (5-25 w % of the composition mass) was added under pressure into the container.
  • micearoscopic observation of the resulting emulsion revealed mean particle size of 2 to 4 microns.
  • the emulsion was passed through a microfluidizer, Microfluidics M-110Y Microfluidizer® M-110Y about 10 cycles, using ice to avoid heating the formula.
  • a nanoemulsion composition (46 gram) was introduced into a 60 ml monoblock aluminum can.
  • the can was sealed with an aerosol valve and 4 gram of liquefied propellant (propane butane isobutene mixture) was added through the valve.
  • Particle size distribution was determined using a Malvern NanosizerTM instrument.
  • the pre-foam composition showed two peaks of 188 and 59 nanometers.
  • foam was released from the aerosol can and light microscope observation revealed small population of ⁇ 1 micron globules and substantial Brownian movement indicating that majority of oil droplets are of sub-micron or nano-scale.
  • An emulsion (46 gram) was added into a 60 ml monoblock aluminum can.
  • the can was closed with an aerosol valve and 4 gram of liquefied propellant (propane/butane mix) was added through the valve.
  • the propellant can be any compressed and liquefied gas, currently used as aerosol propellant.
  • the final concentration of propellant can vary from 3% to 25%.
  • compositions NAT01 included the following steps:
  • compositions NAT02 included the following steps:
  • compositions of NAT03 included the following steps:
  • compositions of NAT04 included the following steps:
  • MCT oil % w/w % w/w Caprylic/capric triglyceride (MCT oil) 5.00 — Stearyl alcohol 0.90 — Natrulon OSF* 10.00 10.00 Methylcellulose 0.25 0.25 Xanthan gum 0.25 0.25 PEG-40 stearate 2.50 2.50 Polysorbate 80 0.90 0.90 Preservative 0.50 0.50 Purified water to 100% to 100% Propellant 8.00 Formation properties
  • Emulsion visual test Uniform Uniform Viscosity (Spindle SC4-31)(cP) 1,428 868.5 Centrifugation (prior to propellant addition) Stable Stable (10 min/3,000 rpm) PH (direct, prior to propellant addition) 6.04 6.72 Foam Quality G E Density 0.0337 0.0339
  • NEP002 NEP006 Isopropyl myristate 6.00 6.00 light Mineral oil 6.00 6.00 Glyceryl 0.50 1.00 monostearate PEG-40 stearate 3.00 6.00 Stearyl alcohol 1.00 1.00 Xanthan gum 0.30 0.30 Methocel K100M 0.30 0.30 Polysorbate 80 1.00 2.00 Water, purified 81.30 76.80 Sharomix 824 0.60 0.60 Total 100.00 100.00 Propellant 8.00 8.00 Cycles 4 3 Pressure (Bar) 1000-1500 Comments inter alia Emulsion broke after Emulsion still as to non suitability first cycle broke after first for nano emulsion cycle with double preparation surfactant that of 002.
  • a formulation containing a powder suspension was also found to be unsuitable due to sedimentation. Accordingly, to the extent a formulation is to comprise a suspension that element may be introduced after a stable nano emulsion carrier is produced rather than during the process. For satisfactory processing the emulsion should have sufficient stability to withstand gentle heating.
  • DISPA Diisopropyl adipate
  • PPG Stearyl ether
  • Steareth-2 3.67 4.00 Steareth 21 2.33 1.00 Carboxy methyl cellulose 0.50 0.50 Water, purified 72.90 73.90 Sharomix 824 0.60 0.60 Total 100.00 100.00 Propellant 8.00 8.00 Cycles 5 6 Pressure (Bar) 1000-1500 1000-1500 Visual Inspection Homogeneous Homogeneous Shakability Yes Yes F.Q.
  • NEP011-4C NEP011-6C Isopropyl myristate 5.00 5.00 Octyl dodecanol 5.00 5.00 Cetearyl alcohol 3.00 3.00 Polyoxyl 100 monostearate 2.50 2.50 Methocel K100 LV 0.20 0.20 Carbomer 934P 0.40 0.40 Polysorbate 80 0.50 0.50 Propylene glycol 3.34 3.34 Water, purified 79.81 79.81 TEA, q.s.
  • the formula was pH adjusted with triethanolamine (TEA).
  • TAA triethanolamine
  • the oil droplet size for the pre-foam formulation was of the order of 800 nanometers and that of the foam was of the order of 700 nanometers indicating that isopropyl myristate is not dissimilar from DISPA in relation to the size of resultant nano particles. Moreover, after a month at 40 C most of the globules were of the order 830 nanometers. Of the three formulations isopropyl myristate, made the best quality foam, which likewise may more suit nano emulsion preparation albeit at the higher end of the scale.
  • the viscosity of the pre foam formulation is high primarily due to the level of carbomer and the pH. At this viscosity the composition is flowable but not really shakable. However, upon addition of propellant the formulation is shakable.
  • NEP013 NEP015 NEP014 Isopropyl myristate 10.00 10.00 10.00 light Mineral oil 10.00 10.00 10.00 Glyceryl monostearate 0.50 0.50 0.50 PEG-40 stearate 3.20 2.40 1.60 Stearyl alcohol 1.50 1.50 1.50 Carbomer 934P 0.40 0.40 0.40 Polysorbate 80 4.80 3.60 2.4 Propylene glycol 3.00 3.00 3.00 Water, purified 66.00 68.00 70.10 TEA, q.s.
  • FIGS. 1A through 5C Notes to FIGS. 1A through 5C :
  • nano emulsions surprisingly produced foam with a substantially larger foam bubble size ranging from an increase of about a third to an increase of almost four fold in magnitude, when the identical same formulation was subject to nano processing.
  • foam of quality with a larger bubble size, which may intern positively influence the cosmetic elegance of the foam in that the formulation may have a more foam like feel with less of the sensation and greasy feeling that might be experienced with a cream or mousse
  • the increased bubble size may contribute to ease of spreadability.

Abstract

The present invention provides a foamable composition for administration to the skin, body surface, body cavity or mucosal surface, e.g., the mucosa of the nose, mouth, eye, ear, respiratory system, vagina or rectum. The foamable oil in water nano emulsion composition includes: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; and (c) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, water and optional ingredients are added to complete the total mass to 100%. Upon release from an aerosol container, the foamable composition forms and expanded foam suitable for topical administration. The present invention further provides methods of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface using such foamable compositions; and to methods of producing such foams having an improved bubble size.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part application of co-pending U.S. patent application Ser. No. 11/389,742, filed on Mar. 27, 2006, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/717,058, filed Sep. 14, 2005, both entitled “Foam Containing Unique Oil Globules,” all of which are incorporated in their entirety by reference.
  • BACKGROUND
  • Foams and, in particular, foam emulsions are complex dispersion systems which do not form under all circumstances. Slight shifts in foam emulsion composition, such as by the addition of active ingredients, may destabilize the foam.
  • Micro emulsions and nano emulsion can be monophasic, transparent (or slightly translucent) dispersions of oil and water. Unlike conventional emulsions, micro emulsions and nano emulsion can be thermodynamically stable, making them a favorable vehicle for pharmaceutical compositions, which have to maintain stability for long periods of time. Micro emulsions are sometimes said to be misleadingly called micro emulsions since they can form clear solutions devoid of the opaque color of regular emulsions. Micro emulsions can be oil external, water external and middle phase. Nano emulsions in contrast can be very fine oil in water dispersions. Droplet diameters can be as low as smaller than 100 nm. They can be in a metastable state and their structure can depend on the system history. They can be very fragile systems and can therefore be problematic in trying to formulate pharmaceutical and cosmetic compositions. If destabilized they can become opaque or exhibit creaming. On the other hand they can provide useful applications in skin care in that they may exhibit good textural and sensural properties due to the very fine droplet or globule size. Likewise for similar reasons they may provide more rapid penetration than conventional emulsions and can offer hydrating capabilities.
  • Foams are very complex and sensitive systems and are not formed at will. Mere addition of basic ingredients like oil, water, surfactant and propellant is far from sufficient to produce foams of quality that are homogenous, stable, breakable upon mechanical force and can be used to provide a shelf stable pharmaceutical or cosmetic composition. Small deviations may lead to foam collapse. Much consideration needs to be given to facilitate the introduction of an active agent, such as examining compatibility and non reactivity with the various excipients and container and determining shelf life chemical stability. All these considerations become a greater and more non obvious challenge when trying to formulate a foamable nano-emulsion composition, which demands the symbiosis and compatibility of a complex, sensitive system with a fragile and metastable system to produce a homogenous, stable, breakable shelf stable nano foam. Moreover, nano droplets can be sterilized by filtration.
  • Storage triacylglycerols (TAG) in plant seeds are present in small discrete intracellular organelles ranging from 1 to 2 μm, which are called oil-bodies. An oil body has a matrix of TAG, which is surrounded by phospholipids (PL) and alkaline proteins, termed oleosins. Oleosins are highly lipophilic proteins, are expressed at high levels in many seeds and are specifically targeted to oil-bodies. Oil-bodies are abundant in plant seeds and are among the simplest organelles present in eukaryotes. They are remarkably stable both inside the cells and in isolated preparations.
  • Oil bodies are also termed in the literature as “oleosomes”, “lipid bodies” and “spherosomes”.
  • SUMMARY
  • The present invention relates to foamable compositions comprising oil in water nano emulsions which produce foam having an improved bubble size compared to the foam produced form a regular oil in water emulsion; to methods of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface using the foamable compositions; and to methods of producing a foam having an improved bubble size.
  • In one aspect, the present invention provides a foamable oil in water nano emulsion composition comprising: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging; wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In another aspect, the present invention provides a foamable oil in water nano emulsion composition comprising: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging and wherein the viscosity of the nano emulsion is substantially reduced than the viscosity of the a macro emulsion having substantially the same composition; wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer forcea; and wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In yet another aspect, the present invention provides a foamable oil in water nano emulsion composition comprising: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging; wherein the composition prior to addition of propellant is translucent with a blue tint; wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 35% by weight of the total composition it is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In one aspect there is provided a foamable oil in water nano emulsion, composition containing small oil globules including an oil globule system, selected from the group consisting of oil bodies and sub-micron oil globules, about 0.1% to about 5% by weight of at least one stabilizing agent selected from the group consisting of a non-ionic surfactant having an HLB value between 9 and 16, an ionic surfactant, and a polymeric agent water, as well as a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • According to further embodiments of the foamable composition of present invention, the oil globule system consists of oil bodies and the stabilizing agent consists of a polymeric agent.
  • According to still further embodiments of the foamable composition of present invention, the oil globule system consists of oil bodies and the stabilizing agent consists of an ionic surfactant.
  • According to yet further embodiments of the present invention the surface-active agent is a phospholipid.
  • According to still further embodiments of the present invention, the oil bodies are discrete oleaginous particles ranging from about 1 to about 3 μm in dimension. Oil bodies contain triacylclycerols (TAG), surrounded by phospholipids (PL) and oleosins.
  • According to further embodiments of the present invention, the phospholipids are selected from the group consisting of phosphatidylethanolamine, phosphatidylcholine, lecithin, phosphatidylserine, phosphatidylglycerol and phosphatidylinositol.
  • According to still further embodiments of the present invention, the oleosins are highly lipophilic small proteins of about 25 to 26 kD.
  • In one or more embodiments, the oil bodies are derived from the seeds of a plant, selected from the group consisting of almond (Prunus dulcis), anise (Pimpinella anisum), avocado (Persea spp.), beach nut (Fagus sylvatica), borage (also known as evening primrose) (Boragio officinalis), Brazil nut (Bertholetia excelsa), candle nut (Aleuritis tiglium), carapa (Carapa guineensis), cashew nut (Ancardium occidentale), castor (Ricinus communis), coconut (Cocus nucifera), coriander (Coriandrum sativum), cottonseed (Gossypium spp.), crambe (Crambe abyssinica), Crepis alpina, croton (Croton tiglium), Cuphea spp., dill (Anethum gravealis), Euphorbia lagascae, Dimorphoteca pluvialis, false flax (Camolina sativa), fennel (Foeniculum vulgaris), groundnut (Arachis hypogaea), hazelnut (coryllus avellana), hemp (Cannabis sativa), honesty plant (lunnaria annua), jojoba (Simmiondsia chinensis), kapok fruit (Ceiba pentandra), kukui nut (Aleuritis moluccana), Lesquerella spp., linseed/flax (Linum usitatissimum), macademia nut (Macademia spp.), maize (Zea mays), meadow foam (Limnanthes alba), mustard (Brassica spp. and Sinapis alba), oil palm (Elaeis guineeis), oiticia (Licania rigida), paw paw (Assimina triloba), pecan (Juglandaceae ssp.), perilla (Perilla futescens), physic nut (Gairopha curcas), pilinut (Canariuim ovatum), pine nut (pine spp.), pistachio (Pistachia vera), pongam (Bongamin glabra), poppy seed (Papaver soniferum), rapeseed (Brassica spp.), safflower (Carthamus tinctorius), sesame seed (Sesamum indicum), soybean (Glycine max), squash (Cucurbita maxima), sal tree (Shorea rubusha), Stokes aster (Stokesia laevis), sunflower (Helianthus annuus), tukuma (Astocarya spp.), tung nut (Aleuritis cordata), and vernolnia (Verzonia galamensis).
  • According to a further embodiment of the foamable composition, the foamable composition further includes about 0.1% to about 5% by weight of a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain, a fatty acid having 16 or more carbons in their carbon chain, fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, a fatty alcohol having at least one double bond, a fatty acid having at least one double bond, a branched fatty alcohol, a branched fatty acid, and a fatty acid substituted with a hydroxyl group and mixtures thereof.
  • According to further embodiments of the present invention, the foamable composition is substantially alcohol-free.
  • According to still further embodiments of the present invention, the concentration range of oil globules is selected from the group of (i) about 0.05% and about 2% and about 5%, (ii) about 2% (iii) about 5% and about 12%, and (iv) about 12% and about 24%.
  • According to further embodiments of the present invention, the polymeric agent is selected from the group consisting of a water-soluble cellulose ether and naturally-occurring polymeric material.
  • According to still further embodiments of the present invention, the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose, carboxymethylhydroxyethylcellulose, xanthan gum, guar gum, carrageenin gum, locust bean gum and tragacanth gum.
  • According to yet further embodiments of the present invention, the foamable composition further includes at least one therapeutic agent.
  • According to further embodiments of the present invention, the therapeutic agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal anti-inflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agen, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide, silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof).
  • According to still further embodiments of the present invention, the therapeutic agent is selected from the components of the oil bodies or sub-micron oil globules.
  • According to further embodiments of the present invention, the therapeutic agent is suitable to treat a disorder selected from the group consisting of dermatological disorder, a cosmetic disorder, a gynecological disorder, a disorder of a body cavity, wound and burn.
  • In a further aspect, the present invention provides methods of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface using the foamable compositions described herein.
  • In one aspect, the present invention provides a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors, comprising: administering topically to a subject having said disorder, a foamed composition comprising: (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging and wherein the viscosity of the pre foam formulation remains substantially high after it has been subject to nano processing; wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • According to a further embodiment of the present invention, there is provided a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein the disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors. The method includes administering topically to a subject having the disorder, a foamed composition containing (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • According to a further embodiment of the method, the composition further includes an active agent effective to treat a disorder, and wherein the disorder is selected from the group consisting of a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, osteoarthritis, joint pain, hormonal disorder, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum.
  • According to a further embodiment of the present invention, there is provided a method to promote the penetration of an active agent into the surface layers of the skin and mucosal membranes. The method includes applying a foamable composition to the surface layers of a skin or mucosal membrane the foamable composition, comprising (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • According to a further embodiment of the present invention, there is provided a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors. The method includes applying a foamable composition to the surface layers of a skin, body cavity or mucosal membrane the foamable composition, comprising (a) a nano oil globule system, comprising substantially of sub-micron oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of (i) a non-ionic surfactant, (ii) an ionic surfactant, and (iii) a polymeric agent; (c) water; and (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition. In certain embodiments, the composition prior to addition of propellant is translucent with a blue tint.
  • In one aspect, the present invention provides a method of producing a foam having improved foam bubble size comprising: (i) preparing a pre foam oil in water emulsion formulation, wherein the pre foam oil comprises (a) oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent selected from the group consisting of a non-ionic surfactant, an ionic surfactant, and a polymeric agent; and (c) water; (ii) subjecting the pre foam formulation to high pressure mechanical stress to produce a nano emulsion; (iii) storing the nano emulsion in a sealed pressurized container that further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition and having an outlet capable of releasing the pressurized product as a foam; and (iv) releasing the foam, wherein the bubble size of the resultant foam is significantly greater than the bubble size of a resultant foam from the pre foam oil in water emulsion formulation stored in a sealed pressurized container that further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition and having an outlet capable of releasing the pressurized product as a foam.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A shows pictures of a sample section of the foam produced from composition 13 of Example 9 before nano processing.
  • FIG. 1B shows pictures of a sample section of the foam produced from composition 13 of Example 9 after 6 cycles of nano processing.
  • FIG. 2A shows pictures of a sample section of the foam produced from composition 11 of Example 8 before nano processing.
  • FIG. 2B shows pictures of a sample section of the foam produced from composition 11 of Example 8 after 6 cycles of nano processing.
  • FIG. 3A shows pictures of a sample section of the foam produced from composition 7 of Example 7 before nano processing.
  • FIG. 3B shows pictures of a sample section of the foam produced from composition 10 of Example 7 after 6 cycles of nano processing.
  • FIG. 4A shows pictures of a sample section of the foam produced from composition 14 of Example 9 before nano processing.
  • FIG. 4B shows pictures of a sample section of the foam produced from composition 14 of Example 9 after 6 cycles of nano processing.
  • FIG. 5A shows pictures of a sample section of the foam produced from composition 15 of Example 9 before nano processing, which foam comprises propellant having 50% more pressure than that of the foam as shown in FIG. 5B.
  • FIG. 5B shows pictures of a sample section of the foam produced from composition 15 of Example 9 before nano processing.
  • FIG. 5C shows pictures of a sample section of the foam produced from composition 15 of Example 9 after 6 cycles of nano processing.
  • DETAILED DESCRIPTION
  • The present invention provides a foamable oil in water nano emulsion, composition including small oil globules. As used herein, the terms droplets, globules and particles, when referencing an emulsion, are used interchangeably. All % values are provided on a weight (w/w) basis.
  • According to one or more embodiments of the present invention, the foamable oil in water nano emulsion composition is intended for administration to the skin, a body surface, a body cavity or mucosal surface, e.g., the mucosa of the nose, mouth, eye, ear, respiratory system, vagina or rectum (severally and interchangeably termed herein “target site”).
  • In an embodiment there is provided a foamable oil in water nano emulsion composition comprising:
      • (a) A nano oil globule system, comprising substantially of sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
        • i. a non-ionic surfactant,
        • ii. an ionic surfactant, and
        • iii. a polymeric agent;
      • (c) water; and
      • (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total compositions
        wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
        wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
        wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In another embodiment the oil globule system consists of oil globules with an average diameter size in the range of about 1000 nanometers to about 10 nanometers; and the stabilizing agent consists of a polymeric agent.
  • In an embodiment there is provided a foamable oil in water nano emulsion composition comprising a non-ionic surfactant having an HLB value between 9 and 16; and/or an ionic surfactant.
  • In another embodiment the oil globules are discrete particles with the majority having a size ranging from about 300 to about 20 nanometers in at least one dimension.
  • In another embodiment the oil globule system consists of sub-micron oil globules; and the stabilizing agent consists of a surfactant, having an HLB value or a mean HLB value between 9 and 16.
  • In a further embodiment the ratio of surfactant to oil is high being in the range of the order of about 1:1 to about 1:10
  • In another embodiment the sub-micron oil globules contain at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof.
  • In a further embodiment said submicron oil globules are about 50% to about 100% of the composition.
  • In another embodiment the sub-micron oil globules have a number-average size range, selected from (i) 40 nm to 1,000 nm. (ii) 40 nm to 500 nm; (iii) 40 nm to 200 nm; (iv) 40 nm to 100 nm (v) less than 500 nm; (vi) less than 200 nm; and (vii) less than 100 nm.
  • In an embodiment the sub-micron oil globules are produced by high sheer homogenization.
  • In an embodiment there is provided a foamable oil in water nano emulsion composition further comprising about 0.1% to about 5% by weight of a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having at least one double bond; a fatty acid having at least one double bond; a branched fatty alcohol; a branched fatty acid; and a fatty acid substituted with a hydroxyl group and mixtures thereof.
  • In an embodiment said foamable composition is substantially alcohol-free.
  • In an embodiment there is provided a foamable oil in water nano emulsion composition further containing at least one therapeutic agent.
  • In an embodiment the therapeutic agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof.
  • In an embodiment the therapeutic agent is suitable to treat a disorder, selected from a dermatological disorder, a cosmetic disorder, a gynecological disorder, a disorder of a body cavity, wound and burn.
  • In an embodiment there is provided a foamable oil in water nano emulsion composition wherein the HLB or mean HLB value of said non-ionic surfactant is between about 2 and about 9.
  • In an embodiment the stabilizing agent is a polymeric agent selected from the group consisting of a water-soluble cellulose ether naturally-occurring polymeric material, microcrystalline cellulose, hydrophobically-modified ethoxylated urethane, and a carbomer.
  • In an embodiment the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose, carboxymethylhydroxyethylcellulose, xanthan gum, guar gum, carrageenin gum, locust bean gum and tragacanth gum.
  • In an embodiment the surfactant is selected from the group consisting of steareth 2, steareth 21, ceteth-20, span 80, behenyl alcohol, glyceryl monostearate, PEG 40 stearate, polyoxyl 100 monostearate, methyl glucose seasquit stearate and polysorbate 80.
  • In an embodiment there is provided a foamable oil in water nano emulsion composition wherein the density of the foam is selected from the group consisting of (1) less than 0.12 g/mL; (2) the range between 0.02 and 0.12; (3) the range between 0.04 and 0.10; (4) the range between 0.06 and 0.10.
  • In an embodiment there is provided a foamable oil in water nano emulsion composition comprising:
      • (a) A nano oil globule system, comprising substantially of sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
        • i. a non-ionic surfactant,
        • ii. an ionic surfactant, and
        • iii. a polymeric agent;
      • (c) water; and
      • (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
        wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging and wherein the viscosity of the pre foam formulation is substantially reduced after it has been subject to nano processing;
        wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
        wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In an embodiment there is provided a foamable oil in water nano emulsion composition wherein the viscosity is selected from the group consisting of (1) between about 6000cP and about 400cP (2) between about 400cP and about 200cP (3) between about 200cP and about 500cP (4) between about 500cP and about 1 cP.
  • In an embodiment the viscosity is preferably between about 500cP and about 1 cP and the foam is of good or excellent quality.
  • In another embodiment the viscosity is above 20,000 cP.
  • In another embodiment the polymeric agent is a carbomer. In another embodiment the carbomer is the sole polymeric agent.
  • In a further embodiment the carbomer substantially contributes to the viscosity and exhibits resistant to viscosity reduction on nano processing
  • In a further embodiment there is provided a foamable oil in water nano emulsion composition comprising:
      • (a) A nano oil globule system, comprising substantially of sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent comprising a carbomer polymeric agent, and a second stabilizing agent selected from the group consisting of
        • i. a non-ionic surfactant,
        • ii. an ionic surfactant, and
        • iii. a polymeric agent;
      • (c) water; and
      • (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
        wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging and wherein the viscosity of the pre foam formulation remains substantially high after it has been subject to nano processing;
        wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
        wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In a still further embodiment there is provided a foamable oil in water nano emulsion composition comprising:
      • (a) a nano oil globule system, comprising substantially of sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
        • i. a non-ionic surfactant,
        • ii. an ionic surfactant, and
        • iii. a polymeric agent; and
      • (c) water;
        wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
        wherein the composition prior to addition of propellant is translucent with a blue tint;
        wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 35% by weight of the total composition it is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
        wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In another embodiment there is provided a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors, comprising:
      • administering topically to a subject having said disorder, a foamed composition comprising:
      • (a) a nano oil globule system, comprising substantially of sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
        • i. a non-ionic surfactant,
        • ii. an ionic surfactant, and
        • iii. a polymeric agent;
      • (c) water; and
      • (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
        wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
        wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
        wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In an additional embodiment the composition further comprises an active agent effective to treat a disorder and wherein the disorder is selected from the group consisting of a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VI N), contact dermatitis, osteoarthritis, joint pain, hormonal disorder, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum.
  • In one or more embodiments there is provided a method of promoting the penetration of an active agent into the surface layers of the skin and mucosal membranes, comprising: apply a foamable composition to the surface layers of a stem or mucosal membrane, the foamable composition comprising:
      • (a) a nano oil globule system, comprising substantially of sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
        • i. a non-ionic surfactant,
        • ii. an ionic surfactant, and
        • iii. a polymeric agent;
      • (c) water; and
      • (d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
        wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
        wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
        wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In a further embodiment of the method of promoting penetration the active agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent and a refatting agent.
  • In a further embodiment there is provided a method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors, comprising:
      • administering topically to a subject having said disorder, a foamed composition comprising:
      • (a) a nano oil globule system, comprising substantially of sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
        • i. a non-ionic surfactant,
        • ii. an ionic surfactant, and
        • iii. a polymeric agent;
        • and
      • (c) water;
        wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
        wherein the composition prior to addition of propellant is translucent with a blue tint;
        wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 35% by weight of the total composition it is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
        wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In a further embodiment of the method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface the composition further comprises an active agent effective to treat a disorder and wherein the disorder is selected from the group described above.
  • In a further embodiment there is provided a method of promoting the penetration of an active agent into the surface layers of the skin and mucosal membranes, comprising: apply a foamable composition to the surface layers of a stem or mucosal membrane, the foamable composition comprising:
      • (a) a nano oil globule system, comprising substantially of sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
        • i. a non-ionic surfactant,
        • ii. an ionic surfactant, and
        • iii. a polymeric agent;
        • and
      • (c) water;
        wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
        wherein the composition prior to addition of propellant is translucent with a blue tint;
        wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 35% by weight of the total composition it is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
        wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
  • In a further embodiment of the method of promoting the penetration of an active agent the active agent is selected from the group listed above.
  • In one or more other embodiments there is provided a foamable oil in water nano emulsion composition for use as a medicament or in the manufacture of a medicament.
  • In one or more embodiments there is also provided a method of producing a foam having improved foam bubble size comprising
      • i. preparing a pre foam oil in water emulsion formulation;
      • ii. subjecting the pre foam formulation to high pressure mechanical stress to produce a nano emulsion;
      • iii. storing the nano emulsion in a sealed pressurized container that further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition and having an outlet capable of releasing the pressurized product as a foam; and
      • iv. releasing the foam;
        • wherein the bubble size of the resultant foam is significantly greater than the bubble size of a resultant foam from the pre foam oil in water emulsion formulation stored in a sealed pressurized container that further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition and having an outlet capable of releasing the pressurized product as a foam.
  • The foamable oil in water nano emulsion composition includes:
      • (a) an oil globule system selected from the group consisting of oil bodies and sub-micron oil globules;
      • (b) about 0.1% to about 5% by weight of at least one stabilizing agent selected from the group consisting of a non-ionic surfactant selected from the group consisting of a non-ionic surfactant, having an HLB value between 9 and 16, an ionic surfactant; and a polymeric agent; and
      • (c) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.
  • Water and optional ingredients are added to complete the total mass to 100%. Upon release from an aerosol container, the foamable composition forms an expanded foam suitable for topical administration.
  • In one or more embodiments, the oil globules are oil bodies. Oil bodies, also termed “oleosomes”, “lipid bodies” and “spherosomes”, are small discrete oleaginous particles, ranging in size from about 1 to about 3 μm along one dimension. Oil bodies consist of triacylglycerols (TAG) surrounded by phospholipids (PL) and alkaline proteins, termed oleosins.
  • Triacylglycerides (also termed triglycerides) are chemically defined as glycerol esters of fatty acids. The seed oil present in the oil body fraction of plant species is a mixture of various triacylglycerides, of which the exact composition depends on the plant species from which the oil is derived.
  • Phospolipids possess a structure that is very similar to that of the triacylglycerides except that a terminal carbon of the glycerol backbone is esterified to phosphoric acid. Substitution of the hydrogen atom of phosphatidic acid results in additional phospholipids classes, including but not limited to the following:
  • Substitution Phospholipid
    Ethanolamine Phosphatidylethanolamine
    Choline Phosphatidylcholine, also called lecithins
    Serine Phosphatidylserine
    Glycerol Phosphatidylglycerol
    Myo-inositol Phosphatidylinositol
  • Oleosins are highly lipophilic small proteins of about 15 to 26 kD. They are expressed at high levels in many seeds and are specifically targeted to oil-bodies. Oleosins completely cover the surface of the subcellular oil bodies.
  • Oil-bodies are abundant in plant seeds and are among the simplest organelles present in eukaryotes. They are remarkably stable both inside the cells and in isolated preparations.
  • Oil bodies are prepared from plant seeds. Exemplary plant seeds include (alphabetically) almond (Prunus dulcis); anise (Pimpinella anisum); avocado (Persea spp.); beach nut (Fagus sylvatica); borage (also known as evening primrose) (Boragio officinalis); Brazil nut (Bertholletia excelsa); candle nut (Aleuritis tiglium); carapa (Carapa guineensis); cashew nut (Ancardium occidentale); castor (Ricinus communis); coconut (Cocus nucifera); coriander (Coriandrum sativum); cottonseed (Gossypium spp.); crambe (Crambe abyssinica); Crepis alpina; croton (Croton tiglium); Cuphea spp.; dill (Anethum gravealis); Euphorbia lagascae; Dimorphoteca pluvialis; false flax (Camolina sativa); fennel (Foeniculum vulgaris); groundnut (Arachis hypogaea); hazelnut (coryllus avellana); hemp (Cannabis sativa); honesty plant (Lunnaria annua); jojoba (Simmiondsia chinensis); kapok fruit (Ceiba pentandra); kukui nut (Aleuritis moluccana); Lesquerella spp., linseed/flax (Linum usitatissimum); macademia nut (Macademia spp.); maize (Zea mays); meadow foam (Limnanthes alba); mustard (Brassica spp. and Sinapis alba); oil palm (Elaeis guineeis); oiticia (Licania rigida); paw paw (Assimina triloba); pecan (Juglandaceae spp.); perilla (Perilla frutescens); physic nut (Gairopha curcas); pilinut (Canariuim ovatum); pine nut (pine spp.); pistachio (Pistachia vera); pongam (Bongamin glabra); poppy seed (Papaver soniferum); rapeseed (Brassica spp.); safflower (Carthamus tinctorius); sesame seed (Sesamum indicum); soybean (Glycine max); squash (Cucurbita maxima); sal tree (Shorea rubusha); Stokes aster (Stokesia laevis); sunflower (Helianthus annuus); tukuma (Astocarya spp.); tung nut (Aleuritis cordata); and vernolnia (Verzonia galamensis). Isolation of oil bodies from plant sources is well known. See, for example, U.S. Pat. No. 5,650,554.
  • Stable artificial oil bodies can be reconstituted with triacylglycerol, phospholipid, and oleosin via sonication, as described, for example in J. T. C. Tzen, Y. Z. Cao, P. Laurent, C. Ratnayake, and A. H. C. Huang. 1993. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol. 101:267-276.
  • The skin-beneficial effects of oil bodies include, but are not limited to (1) antioxidant effects (resulting from the presence of tocopherol and other antioxidants naturally present in the oil bodies); (2) occlusivity, as determined by improved skin barrier function and reduced trans-epidermal water loss; and (3) emolliency.
  • Furthermore, the oil bodies building blocks—the triacylglycerides and the phospholipids—contain unsaturated or polyunsaturated fatty acids. Exemplary unsaturated fatty acids are omega-3 and omega-6 fatty acids. Other examples of such polyunsaturated fatty acids are linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Such unsaturated fatty acids are known for their skin-conditioning and anti-inflammatory effects, which contribute to the therapeutic benefit of the present foamable composition.
  • Because oil bodies contain phospholipids and oleosins, which concurrently carry hydrophobic and hydrophilic moieties, they act as emulsifiers and, as a result, upon dilution with water with mild mixing, they spontaneously form an emulsion.
  • In one or more embodiments, the oil globules are sub-micron oil globules, i.e., oil globules, which have a number-average size of less than 1,000 nm. An emulsion, comprising sub-micron globules or nano-size globules is called sub-micron emulsion (“SME”) or microemulsion or nanoemulsion, respectively. In one or more embodiments, the oil globules have a number-average size of less than 500 nm; or less than 200 nm; or less than 100 nm. In certain embodiments, the oil globules have number-average size in the following ranges: (i) 40 nm to 1,000 nm. (ii) 40 nm to 500 nm; (iii) 40 nm to 200 nm; or (iv) 40 nm to 100 nm.
  • SMEs are dispersions of oil and water. With reference to conventional emulsions, SMEs are more stable, making them a favorable vehicle for pharmaceutical compositions, which have to maintain stability for long periods of time. SMEs may be used in vehicles for transporting nutraceuticals, medicaments, peptides or proteins. The decrease in size of the globules makes it possible to promote the penetration of the active agents into the surface layers of the skin and mucosal membranes.
  • In SMEs, the active compounds can be solubilized. The general concept of solubilization of active components and its utilization may be found in the following review articles: 1. Solans, C., Pons, R., Kunieda, H “Overview of basic aspects of microemulsions” Industrial Applications of Microemulsions, Solans, C., Kunieda, H., Eds.: Dekker, New York (1997); 66: 1-17, 2. Dungan, S. R., “Microemulsions in foods: properties and application” ibid 148-170; 3. Holmberg, K. “Quarter century progress and new horizons in microemulsions” in Micelles, Microemulsions and Monolayers, Shah, O. Ed.; Dekker: New York (1998) 161-192; 4. Garti, N. “Microemulsions, emulsions, double emulsions and emulsions in food” in Formulation Science (proceeding from formulation forum '97 association of formulation chemists) (1998) 1, 147-219; 5. Ezrahi, S., Aserin, A. Garti, N. in Micoremulsions-fundamental wad applied aspects Kumar, P. and Mittal, K. L. Eds. Marcel Dekker, Inc. New York (1999) “Aggregation behavior in one-phase (Winsor IV) systems” 185-246; 6. Garti, N. Clement, V., Leser, M., Aserin, A. Fanun, M. “Sucrose esters microemulsions J. Molec. Liquids (1999) 80, 253-296.
  • In certain embodiments, the production of SMEs and nanoemulsion involves very-high sheer homogenizers. An exemplary homogenizer, suitable for producing nano-emulsions is the commercially-available “Microfluidizer®”. Microfluidizer® fluid processors are built for deagglomeration and dispersion of uniform submicron particles and creation of stable emulsions and dispersions. Microfluidizer processors overcome limitations of conventional processing technologies by utilizing high-pressure streams that collide at ultra-high velocities in precisely defined microchannels. Combined forces of shear and impact act upon products to attain uniform particle and droplet size reduction (often submicron), deagglomeration and high yield cell disruption.
  • Notwithstanding the above, any other very-high sheer homogenizer, capable of producing submicron particles is suitable for use in the production of a microemulsions or a nanoemulsion according to the present invention.
  • In additional embodiments, the SMEs form spontaneously with gentle mixing such as hand shaking.
  • The sub-micron particles contain at least one organic carrier, preferably a hydrophobic organic carrier. In addition, the composition may contain one or more of a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof, at a concentration of about 2% to about 5%, or about 5% to about 10%, or about 10% to about 20%, or about 20% to about 50% by weight.
  • A “hydrophobic organic carrier” as used herein refers to a material having solubility in distilled water at ambient temperature of less than about 1 gm per 100 mL, more preferable less than about 0.5 gm per 100 mL, and most preferably less than about 0.1 gm per 100 mL. It is liquid at ambient temperature. The identification of a hydrophobic organic carrier or “hydrophobic solvent”, as used herein, is not intended to characterize the solubilization capabilities of the solvent for any specific active agent or any other component of the foamable composition. Rather, such information is provided to aid in the identification of materials suitable for use as a hydrophobic carrier in the foamable compositions described herein.
  • In one or more embodiments, the hydrophobic organic carrier is an oil, such as mineral oil. Mineral oil (Chemical Abstracts Service Registry number 8012-95-1) is a mixture of aliphatic, naphthalenic, and aromatic liquid hydrocarbons that derive from petroleum. It is typically liquid; its viscosity is in the range of between about 35 CST and about 100 CST (at 40° C.), and its pour point (the lowest temperature at which an oil can be handled without excessive amounts of wax crystals forming so preventing flow) is below 0° C. In one or more embodiments, the term hydrophobic organic carrier does not include thick or semi-solid materials, such as white petrolatum, also termed “Vaseline”, which, in certain compositions is disadvantageous due to its waxy nature and semi-solid texture.
  • According to one or more embodiments, hydrophobic solvents are liquid oils originating from vegetable, marine or animal sources. Suitable liquid oil includes saturated, unsaturated or polyunsaturated oils. By way of example, the unsaturated oil may be olive oil, corn oil, soybean oil, canola oil, cottonseed oil, coconut oil, sesame oil, sunflower oil, borage seed oil, syzigium aromaticum oil, hempseed oil, herring oil, cod-liver oil, salmon oil, flaxseed oil, wheat germ oil, evening primrose oils or mixtures thereof, in any proportion.
  • Suitable hydrophobic solvents also include polyunsaturated oils containing poly-unsaturated fatty acids. In one or more embodiments, said unsaturated fatty acids are selected from the group of omega-3 and omega-6 fatty acids. Examples of such polyunsaturated fatty acids are linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Such unsaturated fatty acids are known for their skin-conditioning effect, which contribute to the therapeutic benefit of the present foamable composition. Thus, the hydrophobic solvent can include at least 6% of an oil selected from omega-3 oil, omega-6 oil, and mixtures thereof. In the context of the present invention, oils that possess therapeutically beneficial properties are termed “therapeutically active oil.”
  • Another class of hydrophobic solvents is the essential oils, which are also considered therapeutically active oil, which contain active biologically occurring molecules and, upon topical application, exert a therapeutic effect, which is conceivably synergistic to the beneficial effect of the NSAID in the composition.
  • Another class of therapeutically active oils includes liquid hydrophobic plant-derived oils, which are known to possess therapeutic benefits when applied topically.
  • Silicone oils also may be used and are desirable due to their known skin protective and occlusive properties. Suitable silicone oils include non-volatile silicones, such as polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers, polydimethylsiloxanes (dimethicones) and poly(dimethylsiloxane)-(diphenyl-siloxane) copolymers. These are chosen from cyclic or linear polydimethylsiloxanes containing from about 3 to about 9, preferably from about 4 to about 5, silicon atoms. Volatile silicones such as cyclomethicones can also be used. Silicone oils are also considered therapeutically active oil, due to their barrier retaining and protective properties.
  • The organic carrier may be a mixture of two or more of the above hydrophobic solvents in any proportion.
  • A further class of organic carriers includes “emollients” that have a softening or soothing effect, especially when applied to body areas, such as the skin and mucosal surfaces. Emollients are not necessarily hydrophobic. Examples of suitable emollients include hexyleneglycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated oil bodies alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, sucrose esters of fatty acids, octyl hydroxystearate and mixtures thereof.
  • According to one or more embodiments of the present invention, the organic carrier includes a mixture of a hydrophobic solvent and an emollient. According to one or more embodiments, the foamable composition is a mixture of mineral oil and an emollient in a ratio between 2:8 and 8:2 on a weight basis.
  • A “polar solvent” is an organic solvent, typically soluble in both water and oil. Examples of polar solvents include polyols, such as glycerol (glycerin), propylene glycol, hexylene glycol, diethylene glycol, propylene glycol n-alkanols, terpenes, di-terpenes, tri-terpenes, terpen-ols, limonene, terpene-ol, 1-menthol, dioxolane, ethylene glycol, other glycols, sulfoxides, such as dimethylsulfoxide (DMSO), dimethylformanide, methyl dodecyl sulfoxide, dimethylacetamide, monooleate of ethoxylated glycerides (with 8 to 10 ethylene oxide units), azone (1-dodecylazacycloheptan-2-one), 2-(n-nonyl)-1,3-dioxolane, esters, such as isopropyl myristate/palmitate, ethyl acetate, butyl acetate, methyl proprionate, capric/caprylic triglycerides, octylmyristate, dodecyl-myristate; myristyl alcohol, lauryl alcohol, lauric acid, lauryl lactate ketones; amides, such as acetamide oleates such as triolein; various alkanoic acids such as caprylic acid; lactam compounds, such as azone; alkanols, such as dialkylamino acetates, and admixtures thereof.
  • According to one or more embodiments, the polar solvent is a polyethylene glycol (PEG) or PEG derivative that is liquid at ambient temperature, including PEG200 (MW (molecular weight) about 190-210 kD), PEG300 (MW about 285-315 kD), PEG400 (MW about 380-420 kD), PEG600 (MW about 570-630 kD) and higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.
  • According to one or more embodiments, the foamable composition is substantially alcohol-free, i.e., free of short chain alcohols. Short chain alcohols, having up to 5 carbon atoms in their carbon chain skeleton and one hydroxyl group, such as ethanol, propanol, isopropanol, butanol, iso-butanol, t-butanol and pentanol, are considered less desirable solvents or polar solvents due to their skin-irritating effect. Thus, the composition is substantially alcohol-free and includes less than about 5% final concentration of lower alcohols, preferably less than about 2%, more preferably less than about 1%.
  • The composition includes a stabilizing agent, which may be a polymeric agent. The polymeric agent serves to stabilize the foam composition and to control drug residence in the target organ. Exemplary polymeric agents are classified below in a non-limiting manner. In certain cases, a given polymer can belong to more than one of the classes provided below.
  • The polymeric agent may be a gelling agent. A gelling agent controls the residence of a therapeutic composition in the target site of treatment by increasing the viscosity of the composition, thereby limiting the rate of its clearance from the site. Many gelling agents are known in the art to possess mucoadhesive properties.
  • The gelling agent can be a natural gelling agent, a synthetic gelling agent and an inorganic gelling agent. Exemplary gelling agents that can be used in accordance with one or more embodiments of the present invention include, for example, microcrystalline cellulose, Aculyn a Hydrophobically-modified Ethoxylated Urethane, naturally-occurring polymeric materials, such as locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum, sodium alginate, xanthan gum, quince seed extract, tragacanth gum, guar gum, starch, chemically modified starches and the like, semi-synthetic polymeric materials such as cellulose ethers (e.g. hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose), guar gum, hydroxypropyl guar gum, soluble starch, cationic celluloses, cationic guars, and the like, and synthetic polymeric materials, such as carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and the like. Mixtures of the above compounds are contemplated.
  • Further exemplary gelling agents include the acrylic acid/ethyl acrylate copolymers and the carboxyvinyl polymers sold, for example, by the B.F. Goodrich Company under the trademark of Carbopol® resins. These resins consist essentially of a colloidal water-soluble polyalkenyl polyether crosslinked polymer of acrylic acid crosslinked with from 0.75% to 2% of a crosslinking agent such as polyallyl sucrose or polyallyl pentaerythritol. Examples include Carbopol® 934, Carbopol® 940, Carbopol® 950, Carbopol® 980, Carbopol® 951 and Carbopol® 981. Carbopol® 934 is a water-soluble polymer of acrylic acid crosslinked with about 1% of a polyallyl ether of sucrose having an average of about 5.8 allyl groups for each sucrose molecule.
  • The gelling agent may be a water-soluble cellulose ether. Preferably, the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose and carboxymethylhydroxyethylcellulose. More preferably, the water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose (Methocel). In one or more embodiments, the composition includes a combination of a water-soluble cellulose ether; and a naturally-occurring polymeric materials, selected from the group including xanthan gum, guar gum, carrageenan gum, locust bean gum and tragacanth gum.
  • Yet, in other embodiments, the gelling agent includes inorganic gelling agents, such as silicone dioxide (fumed silica).
  • The polymeric agent may be a mucoadhesive agent. Mucoadhesion/bioadhesion is defined as the attachment of synthetic or biological macromolecules to a biological tissue. Mucoadhesive agents are a class of polymeric biomaterials that exhibit the basic characteristic of a hydrogel, i.e. swell by absorbing water and interacting by means of adhesion with the mucous that covers epithelia. Compositions of the present invention may contain a mucoadhesive macromolecule or polymer in an amount sufficient to confer bioadhesive properties. The bioadhesive macromolecule enhances the delivery of biologically active agents on or through the target surface. The mucoadhesive macromolecule may be selected from acidic synthetic polymers, preferably having at least one acidic group per four repeating or monomeric subunit moieties, such as poly(acrylic)- and/or poly(methacrylic) acid (e.g., Carbopol®, Carbomer®, poly(methylvinyl ether/maleic anhydride) copolymer, and their mixtures and copolymers; acidic synthetically modified natural polymers, such as carboxymethylcellulose (CMC); neutral synthetically modified natural polymers, such as (hydroxypropyl)methylcellulose; basic amine-bearing polymers such as chitosan; acidic polymers obtainable from natural sources, such as alginic acid, hyaluronic acid, pectin, gum tragacanth, and karaya gum; and neutral synthetic polymers, such as polyvinyl alcohol or their mixtures. An additional group of mucoadhesive polymers includes natural and chemically modified cyclodextrin, especially hydroxypropyl-β-cyclodextrin. Such polymers may be present as free acids, bases, or salts, usually in a final concentration of about 0.01% to about 0.5% by weight.
  • A suitable bioadhesive macromolecule is the family of acrylic acid polymers and copolymers, (e.g., Carbopol®). These polymers contain the general structure —[CH2—CH(COOH)-]n. Hyaluronic acid and other biologically-derived polymers may be used.
  • Exemplary bioadhesive or mucoadhesive macromolecules have a molecular weight of at least 50 kDa, or at least 300 kDa, or at least 1,000 kDa. Favored polymeric ionizable macromolecules have not less than 2 mole percent acidic groups (e.g., COOH, SO3H) or basic groups (NH2, NRH, NR2), relative to the number of monomeric units. The acidic or basic groups can constitute at least 5 mole percent, or at least 10 mole percent, or at least 25, at least 50 mole percent, or even up to 100 mole percent relative to the number of monomeric units of the macromolecule.
  • Yet, another group of mucoadhesive agent includes inorganic gelling agents such as silicon dioxide (fumed silica), including but not limited to, AEROSIL 200 (DEGUSSA).
  • Many mucoadhesive agents are known in the art to also possess gelling properties.
  • The polymeric agent may be a film forming component. The film forming component may include at least one water-insoluble alkyl cellulose or hydroxyalkyl cellulose. Exemplary alkyl cellulose or hydroxyalkyl cellulose polymers include ethyl cellulose, propyl cellulose, butyl cellulose, cellulose acetate, hydroxypropyl cellulose, hydroxybutyl cellulose, and ethylhydroxyethyl cellulose, alone or in combination. In addition, a plasticizer or a cross linking agent may be used to modify the polymer's characteristics. For example, esters such as dibutyl or diethyl phthalate, amides such as diethyldiphenyl urea, vegetable oils, fatty acids and alcohols such as oleic and myristyl acid may be used in combination with the cellulose derivative.
  • The polymeric agent may be a phase change polymer, which alters the composition behavior from fluid-like prior to administration to solid-like upon contact with the target mucosal surface. Such phase change results from external stimuli, such as changes in temperature or pH and exposure to specific ions (e.g., Ca2+). Non-limiting examples of phase change polymers include poly(N-isopropylamide), Poloxamer 407® and Smart-Gel® (Poloxamer+PAA). The polymeric agent is present in an amount in the range of about 0.01% to about 5.0% by weight of the foam composition. In one or more embodiments, it is typically less than about 1 wt % of the foamable composition.
  • Surface-Active Agent
  • The stabilizing agent may also be a surface-active agent. Surface-active agents (also termed “surfactants”) include any agent linking oil and water in the composition, in the form of emulsion. A surfactant's hydrophilic/lipophilic balance (HLB) describes the emulsifier's affinity toward water or oil. HLB is defined for non-ionic surfactants. The HLB scale ranges from 1 (totally lipophilic) to 20 (totally hydrophilic), with 10 representing an equal balance of both characteristics. Lipophilic emulsifiers form water-in-oil (w/o) emulsions; hydrophilic surfactants form oil-in-water (o/w) emulsions. The HLB of a blend of two emulsifiers equals the weight fraction of emulsifier A times its HLB value plus the weight fraction of emulsifier B times its HLB value (weighted average). In many cases a single surfactant may suffice. In other cases a combination of two or more surfactants is desired. Reference to a surfactant in the specification can also apply to a combination of surfactants or a surfactant system. As will be appreciated by a person skilled in the art which surfactant or surfactant system is more appropriate is related to the vehicle and intended purpose. In general terms a combination of surfactants is usually preferable where the vehicle is an emulsion. In an emulsion environment a combination of surfactants can be significant in producing breakable forms of good quality. It has been further discovered that the generally thought considerations for HLB values for selecting a surfactant or surfactant combination are not always binding for emulsions and that good quality foams can be produced with a surfactant or surfactant combination both where the HLB values are in or towards the lipophilic side of the scale and where the HLB values are in or towards the hydrophilic side of the scale. Surfactants also play a role in foam formation where the foamable formulation is a single phase composition.
  • The relationship between oil and surfactant is indicated by the required predicted HLB for the oil and the parallel theoretical HLB of the surfactant as shown in the non limiting examples below.
  • HLB RHLB
    White Petrolatum (sofmetic) 7.0
    Isopropyl myristate 11.5
    Octyl dodecanol
    light Mineral oil 10.5
    Diisopropyl adipate 9.0
    PPG 15 Stearyl ether 7.0
    Cetearyl alcohol 15.5
    Steareth-2 4.9
    Steareth 21 15.5
    Glyceryl monostearate 3.8
    PEG-40 stearate 16.9
    Polyoxyl 100 monostearate 18.8
    Stearyl alcohol 15.5
    Polysorbate 80 15.0
  • According to one or more embodiments the composition contains a single surfactant having an HLB value between about 2 and 9, or more than one surfactant and the weighted average of their HLB values is between about 2 and about 9. Lower HLB values may in certain embodiments be more applicable to water in oil emulsions.
  • According to one or more embodiments the composition contains a single surfactant having an HLB value between about 7 and 14, or more than one surfactant and the weighted average of their HLB values is between about 7 and about 14. Mid range HLB values may in certain embodiments be more suitable for oil in water nano emulsions.
  • According to one or more other embodiments the composition contains a single surfactant having an HLB value between about 9 and about 19, or more than one surfactant and the weighted average of their HLB values is between about 9 and about 19. In a waterless or substantially waterless environment a wide range of HLB values may be suitable.
  • Preferably, the composition of the present invention contains a non-ionic surfactant. Nonlimiting examples of possible non-ionic surfactants include a polysorbate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan monooleate, a polyoxyethylene fatty acid ester, Myrj 45, Myrj49, Myrj 52 and Myrj 59; a polyoxyethylene alkyl ether, polyoxyethylene cetyl ether, polyoxyethylene palmityl ether, polyethylene oxide hexadecyl ether, polyethylene glycol cetyl ether, steareths such as steareth 2, brij 21, brij 721, brij 38, brij 52, brij 56 and brij W1, a sucrose ester, a partial ester of sorbitol and its anhydrides, sorbitan monolaurate, sorbitan monolaurate, a monoglyceride, a diglyceride, isoceteth-20 and mono-, di- and tri-esters of sucrose with fatty acids. In certain embodiments, suitable sucrose esters include those having high monoester content, which have higher HLB values.
  • In certain embodiments with wax as emollient, surfactants are selected which can provide a close packed surfactant layer separating the oil and water phases. To achieve such objectives combinations of at least two surfactants are selected. Preferably, they should be complex emulgators and more preferably they should both be of a similar molecular type. For example, a pair of ethers like steareth 2 and steareth 21, or a pair of esters for example, PEG-40 stearate and polysorbate 80. In certain circumstances POE esters cannot be used and a combination of sorbitan laurate and sorbitan stearate or a combination of sucrose stearic acid ester mixtures and sodium laurate may be used. All these combinations due to their versatility and strength may also be used satisfactorily and effectively with wax formulations, although the amounts and proportion may be varied according to the formulation and its objectives as will be appreciated by a man of the art.
  • It has been discovered also that by using a derivatized hydrophilic polymer with hydrophobic alkyl moieties as a polymeric emulsifier such as pemulen it is possible to stabilize the emulsion better about or at the region of phase reversal tension. Other types of derivatized polymers like silicone copolymers, derivatized starch [Aluminum Starch Octenylsuccinate (ASOS)]/[DRY-FLO AF Starch], and derivatized dexrin may also a similar stabilizing effect.
  • A series of dextrin derivative surfactants prepared by the reaction of the propylene glycol polyglucosides with a hydrophobic oxirane-containing material of the glycidyl ether are highly biodegradable. [Hong-Rong Wang and Keng-Ming Chen, Colloids and Surfaces A: Physicochemical and Engineering Aspects Volume 281, Issues 1-3, 15 Jun. 2006, Pages 190-193].
  • Non-limiting examples of non-ionic surfactants that have HLB of about 7 to about 12 include steareth 2 (HLB˜4.9); glyceryl monostearate/PEG 100 stearate (Av HLB˜11.2); stearate Laureth 4 (HLB˜9.7) and cetomacrogol ether (e.g., polyethylene glycol 1000 monocetyl ether).
  • Non-limiting examples of preferred surfactants, which have a HLB of 4-19 are set out in the Table below:
  • Surfactant HLB
    steareth 2 ~4.9
    glyceryl monostearate/PEG 100 stearate Av ~11.2
    Glyceryl Stearate ~4
    Steareth-21 ~15.5
    peg 40 stearate ~16.9
    polysorbate 80 ~15
    sorbitan stearate ~4.7
    laureth 4 ~9.7
    Sorbitan monooleate (span 80) ~4.3
    ceteareth 20 ~15.7
    steareth 20 ~15.3
    ceteth 20 ~15.7
    Macrogol Cetostearyl Ether ~15.7
    ceteth 2 (Lipocol C-2) ~5.3
    PEG-30 Dipolyhydroxystearate ~5.5
    sucrose distearate (Sisterna SP30) ~6
    polyoxyethylene (100) stearate ~18.8
  • In one or more embodiments the surfactant is a complex emulgator in which the combination of two or more surfactants can be more effective than a single surfactant and provides a more stable emulsion or improved foam quality than a single surfactant. For example and by way of non-limiting explanation it has been found that by choosing say two surfactants, one hydrophobic and the other hydrophilic the combination can produce a more stable emulsion than a single surfactant. Preferably, the complex emulgator comprises a combination of surfactants wherein there is a difference of about 4 or more units between the HLB values of the two surfactants or there is a significant difference in the chemical nature or structure of the two or more surfactants.
  • Specific non limiting examples of surfactant systems are, combinations of polyoxyethylene alkyl ethers, such as Brij 59/Brij10; Brij 52/Brij 10; Steareth 2/Steareth 20; Steareth 2/Steareth 21 (Brij 72/Brij 721); combinations of polyoxyethylene stearates such as Myrj 52/Myrj 59; combinations of sucrose esters, such as Surphope 1816/Surphope 1807; combinations of sorbitan esters, such as Span 20/Span 80; Span 20/Span 60; combinations of sucrose esters and sorbitan esters, such as Surphope 1811 and Span 60; combinations of liquid polysorbate detergents and PEG compounds, such as Tween 80/PEG-40 stearate; methyl glucaso sequistearate; polymeric emulsifiers, such as Permulen (TRI or TR2); liquid crystal systems, such as Arlatone (2121), Stepan (Mild RM1), Nikomulese (41) and Montanov (68) and the like.
  • In certain embodiments the surfactant is preferably one or more of the following: a combination of steareth-2 and steareth-21 on their own or in combination with glyceryl monostearate (GMS); in certain other embodiments the surfactant is a combination of polysorbate 80 and PEG-40 stearate. In certain other embodiments the surfactant is a combination of glyceryl monostearate/PEG 100 stearate. In certain other embodiments the surfactant is a combination of two or more of stearate 21, PEG 40 stearate, and polysorbate 80. In certain order embodiments the surfactant is a combination of two or more of laureth 4, span80, and polysorbate 80. In certain other embodiments the surfactant is a combination of two or more of GMS and ceteareth. In certain other embodiments the surfactant is a combination of two or more of steareth 21, ceteareth 20, ceteth 2 and laureth 4 In certain other embodiments the surfactant is a combination of ceteareth 20 and polysorbate 40 stearate. In certain other embodiments the surfactant is a combination of span 60 and GMS. In certain other embodiments the surfactant is a combination of two or all of PEG 40 stearate, sorbitan stearate and polysorbate 60
  • In certain other embodiments the surfactant is one or more of sucrose stearic acid esters, sorbitan laureth, and sorbitan stearate.
  • Without being bound by any particular theory or mode of operation, it is believed that the use of non-ionic surfactants with significant hydrophobic and hydrophilic components, increase the emulsifier or foam stabilization characteristics of the composition. Similarly, without being bound by any particular theory or mode of operation, using combinations of surfactants with high and low HLB's to provide a relatively close packed surfactant layer may strengthen the emulsion.
  • In one or more embodiments the stability of the composition can be improved when a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed. The ratio between the at least one non-ionic surfactant having HLB of less than 9 and the at least one non-ionic surfactant having HLB of equal or more than 9, is between 1:8 and 8:1, or at a ratio of 4:1 to 1:4. The resultant HLB of such a blend of at least two emulsifiers is preferably between about 9 and about 14.
  • Thus, in an exemplary embodiment, a combination of at least one non-ionic surfactant having HLB of less than 9 and at least one non-ionic surfactant having HLB of equal or more than 9 is employed, at a ratio of between 1:8 and 8:1, or at a ratio of 4:1 to 1:4, wherein the HLB of the combination of emulsifiers is preferably between about 5 and about 18.
  • In certain cases, the surfactant is selected from the group of cationic, zwitterionic, amphoteric and ampholytic surfactants, such as sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate and betaines.
  • Many amphiphilic molecules can show lyotropic liquid-crystalline phase sequences depending on the volume balances between the hydrophilic part and hydrophobic part. These structures are formed through the micro-phase segregation of the two parts. Many amphiphilic molecules can show lyotropic liquid-crystalline phase sequences depending on the volume balances between the hydrophilic part and hydrophobic part. These structures are formed through the micro-phase segregation of two incompatible components on a nanometer scale. Soap is an everyday example of a lyotropic liquid crystal. Certain types of surfactants tend to form lyotropic liquid crystals in emulsions interface (oil-in-water) and exert a stabilizing effect
  • In one or more embodiments the surfactant is a surfactant or surfactant combination is capable of or which tends to form liquid crystals. Surfactants which tend to form liquid crystals may improve the quality of foams. Non limiting examples of surfactants with postulated tendency to form interfacial liquid crystals are: phospholipids, alkyl glucosides, sucrose esters, sorbitan esters.
  • In one or more embodiments the at least one surfactant is liquid.
  • In one or more embodiments the liquid surfactant is a polysorbate, preferably polysorbate 80 or 60.
  • In one or more embodiments the at least one surfactant is solid, semi solid or waxy.
  • It should be noted that HLB values may not be so applicable to non ionic surfactants, for example, with liquid crystals or with silicones. Also HLB values may be of lesser significance in a waterless or substantially non-aqueous environment.
  • In one or more embodiments the surfactant can be, a surfactant system comprising of a surfactant and a co surfactant, a waxy emulsifier, a liquid crystal emulsifier, an emulsifier which is solid or semi solid at room temperature and pressure, or combinations of two or more agents in an appropriate proportion as will be appreciated a person skilled in the art. Where a solid or semi solid emulsifier combination is used it can also comprise a solid or semi solid emulsifier and a liquid emulsifier.
  • In one or more embodiments of the present invention, the surface-active agent includes at least one non-ionic surfactant. Ionic surfactants are known to be irritants. Therefore, non-ionic surfactants are preferred in applications including sensitive tissue such as found in most mucosal tissues, especially when they are infected or inflamed. Non-ionic surfactants alone can provide formulations and foams of good or excellent quality in the carriers and compositions of the present invention.
  • Thus, in a preferred embodiment, the surfactant, the composition contains a non-ionic surfactant. In another preferred embodiment the composition includes a mixture of non-ionic surfactants as the sole surfactant. Yet, in additional embodiments, the foamable composition includes a mixture of at least one non-ionic surfactant and at least one ionic surfactant in a ratio in the range of about 100:1 to 6:1. In one or more embodiments, the non-ionic to ionic surfactant ratio is greater than about 6:1, or greater than about 8:1; or greater than about 14:1, or greater than about 16:1, or greater than about 20:1. In further embodiments, surfactant comprises a combination of a non-ionic surfactant and an ionic surfactant, at a ratio of between 1:1 and 20:1
  • In one or more embodiments of the present invention, a combination of a non-ionic surfactant and an ionic surfactant (such as sodium lauryl sulphate and cocamidopropylbetaine) is employed, at a ratio of between 1:1 and 20:1, or at a ratio of 4:1 to 10:1; for example, about 1:1, about 4:1, about 8:1, about 12:1, about 16:1 and about 20:1 or at a ratio of 4:1 to 10:1, for example, about 4:1, about 6:1, about 8:1 and about 10:1.
  • In selecting a suitable surfactant or combination thereof it should be borne in mind that the upper amount of surfactant that may be used may be limited by the shakability of the composition. If the surfactant is non liquid, it can make the formulation to viscous or solid. This can be particularly significant if the formulation has high molecular weight, e.g., a high molecular weight PEG or polymeric agents or petroleum or if the surfactants are large. Solvents and polymeric agents which have high molecular weight and are very viscous or solid or waxy (e.g., Peg 1500, 2000, etc. or petrolatum) can exacerbate the effect of a waxy or solid surfactant on shakability or flowability In general terms, as the amount of non-liquid surfactant is increased the shakability of the formulation reduces until a limitation point is reached where the formulation becomes non shakable and unsuitable. Thus in one embodiment, an effective amount of surfactant may be used provided the formulation remains shakable. In other certain exceptional embodiments the upper limit may be determined by flowability such as in circumstances where the composition is marginally or apparently non-shakable. The formulation is sufficiently flowable to be able to flow through an actuator valve and be released and still expand to form a good quality foam.
  • In certain embodiments of the present invention the amount of surfactant or combination of surfactants is between about 0.05% to about 20%; between about 0.05% to about 15%. or between about 0.05% to about 10%. In a preferred embodiment the concentration of surfactant is between about 0.2% and about 8%. In a more preferred embodiment the concentration of surfactant is between about 1% and about 6%. In one or more preferred embodiments the surfactant oil ratio is relatively high ranging from about of the order of 1:1 to about 1:10. Nevertheless lower levels are possible.
  • In some embodiments, it is desirable that the surfactant does not contain a polyoxyethylene (POE) moiety, such as polysorbate surfactants, POE fatty acid esters, and POE alkyl ethers, because the active agent is incompatible with such surfactants. For example, the active agent pimecrolimus is not stable the presence of POE moieties, yet benefits greatly from the use of dicarboxylic esters as penetration enhancers. In such cases, alternative surfactants are employed. In an exemplary manner, POE—free surfactants include non-ethoxylated sorbitan esters, such as sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, sorbitan monolaurate and sorbitan sesquioleate; glycerol fatty acid esters, such as glycerol monostearate and glycerol monooleate; mono-, di- and tri-esters of sucrose with fatty acids (sucrose esters), sucrose stearate, sucrose distearate sucrose palmitate and sucrose laurate; and alkyl polyglycosides, such as lauryl diglucoside.
  • If the composition as formulated is a substantially non shakable composition it is nevertheless possible as an exception in the scope of the present invention for the formulation to be flowable to a sufficient degree to be able to flow through an actuator valve and be released and still expand to form a good quality foam. This surprising and unusual exception may be due one or more of a number of factors such as the high viscosity, the softness, the lack of crystals, the pseudoplastic or semi pseudo plastic nature of the composition and the dissolution of the propellant into the composition. The propellant can change a merely flowable composition into a shakable one.
  • In one or more embodiments of the present invention, the surface-active agent includes mono-, di- and tri-esters of sucrose with fatty acids (sucrose esters), prepared from sucrose and esters of fatty acids or by extraction from sucro-glycerides. Suitable sucrose esters include those having high monoester content, which have higher HLB values.
  • The surface-active agent is selected from anionic, cationic, nonionic, zwitterionic, amphoteric and ampholytic surfactants, as well as mixtures of these surfactants.
  • In the case wherein the oil globules are oil bodies, the surfactant can be the phospholipids or the oil bodies.
  • Combination of surfactants are contemplated. In regular emulsion compositions the total surfactant is usually in the range of about 0.1 to about 5% of the foamable composition, and is typically less than about 2% or less than about 1%. However in order to form nano emulsions it may be appropriate to use higher levels of surfactant, particularly if nanoemulsions are desired with a diameter size in the range of about less than 500 nanometers. Thus, the total surfactant may be in the range of about 5% to about 25% and may preferably be in the range of about 6% to about 12%. In another preferred embodiment the total is about 8%.
  • In one or more embodiments the surfactant plays a role in the determination of the viscosity of the formulation. In particular without being bound by any theory the surfactants may have an inherent role in the surprising loss or reduction of viscosity to less than 500cP even though the viscosity of the formulation can be much higher prior to nano processing with say up to six cycles with a high pressure homogenizer.
  • Substantially Alcohol-Free
  • According to one or more embodiments, the foamable composition is substantially alcohol-free, i.e., free of short chain alcohols. Short chain alcohols, having up to 5 carbon atoms in their carbon chain skeleton and one hydroxyl group, such as ethanol, propanol, isopropanol, butaneol, iso-butaneol, t-butaneol and pentanol, are considered less desirable solvents or polar solvents due to their skin-irritating effect. Thus, the composition is substantially alcohol-free and includes less than about 5% final concentration of lower alcohols, preferably less than about 2%, more preferably less than about 1%.
  • Shakability
  • ‘Shakability’ means that the composition contains some or sufficient flow to allow the composition to be mixed or remixed on shaking. That is, it has fluid or semi fluid properties. In some very limited cases possibly aided by the presence of silicone it may exceptionally be possible to have a foamable composition which is flowable but not apparently shakable.
  • Breakability
  • A breakable foam is one that is thermally stable, yet breaks under sheer force.
  • The breakable foam of the present invention is not “quick breaking”, i.e., it does not readily collapse upon exposure to body temperature environment. Sheer-force breakability of the foam is clearly advantageous over thermally induced breakability, since it allows comfortable application and well directed administration to the target area.
  • Preferably, foam adjuvant is included in the foamable compositions of the present invention to increase the foaming capacity of surfactants and/or to stabilize the foam. In one or more embodiments of the present invention, the foam adjuvant agent includes fatty alcohols having 15 or more carbons in their carbon chain, such as cetyl alcohol and stearyl alcohol (or mixtures thereof). Other examples of fatty alcohols are arachidyl alcohol (C20), behenyl alcohol (C22), 1-triacontanol (C30), as well as alcohols with longer carbon chains (up to C50). Fatty alcohols, derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, are especially well suited as foam adjuvant agents. The amount of the fatty alcohol required to support the foam system is inversely related to the length of its carbon chains. Foam adjuvants, as defined herein are also useful in facilitating improved spreadability and absorption of the composition.
  • In one or more embodiments of the present invention, the foam adjuvant agent includes fatty acids having 16 or more carbons in their carbon chain, such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (up to C50), or mixtures thereof. As for fatty alcohols, the amount of fatty acids required to support the foam system is inversely related to the length of its carbon chain.
  • Optionally, the carbon atom chain of the fatty alcohol or the fatty acid may have at least one double bond. A further class of foam adjuvant agent includes a branched fatty alcohol or fatty acid. The carbon chain of the fatty acid or fatty alcohol also can be substituted with a hydroxyl group, such as 12-hydroxy stearic acid.
  • An important property of the fatty alcohols and fatty acids used in context of the composition of the present invention is related to their therapeutic properties per se. Long chain saturated and mono unsaturated fatty alcohols, e.g., stearyl alcohol, erucyl alcohol, arachidyl alcohol and behenyl alcohol (docosanol) have been reported to possess antiviral, antiinfective, antiproliferative and antiinflammatory properties (see, for example, U.S. Pat. No. 4,874,794). Longer chain fatty alcohols, e.g., tetracosanol, hexacosanol, heptacosanol, octacosanol, triacontanol, etc., are also known for their metabolism modifying properties and tissue energizing properties. Long chain fatty acids have also been reported to possess anti-infective characteristics.
  • Thus, in preferred embodiments of the present invention, a combined and enhanced therapeutic effect is attained by including both a nonsteroidal immunomodulating agent and a therapeutically effective foam adjuvant in the same composition, thus providing a simultaneous anti-inflammatory and antiinfective effect from both components. Furthermore, in a further preferred embodiment, the composition concurrently comprises a nonsteroidal immunomodulating agent, a therapeutically effective foam adjuvant and a therapeutically active oil, as detailed above. Such combination provides an even more enhanced therapeutic benefit. Thus, the foamable carrier, containing the foam adjuvant provides an extra therapeutic benefit in comparison with currently used vehicles, which are inert and non-active.
  • The foam adjuvant according to preferred embodiments of the present invention includes a mixture of fatty alcohols, fatty acids and hydroxy fatty acids and derivatives thereof in any proportion, providing that the total amount is 0.1% to 5% (w/w) of the carrier mass. More preferably, the total amount is 0.4%-2.5% (w/w) of the carrier mass.
  • The foam of the present invention may further optionally include a variety of formulation excipients, which are added in order to fine-tune the consistency of the formulation, protect the formulation components from degradation and oxidation and modify their consistency. Such excipients may be selected, for example, from stabilizing agents, antioxidants, humectants, preservatives, colorant and odorant agents and other formulation components, used in the art of formulation.
  • Propellants
  • Aerosol propellants are used to generate and administer the foamable composition as a foam. Suitable propellants include volatile hydrocarbons such as butane, propane, isobutane and fluorocarbon gases, or mixtures thereof.
  • In an embodiment of the present invention the propellant is AP 70 which is a mixture of propane, isobutene and butane. In another embodiment the propellant is AP 46 which is a similar mixture of propane, isobutene and butane but having a lower pressure. AP 70 offers about 50% higher pressure than AP 46.
  • The propellant makes up about 3-25 wt % of the foamable composition. In some circumstances the propellant may be up to 35%. The propellants are used to generate and administer the foamable composition as a foam. The total composition including propellant, foamable compositions and optional ingredients can be referred to as the foamable composition.
  • Alcohol and organic solvents render foams inflammable. It has been surprisingly discovered that fluorohydrocarbon propellants, other than chloro-fluoro carbons (CMCs), which are non-ozone-depleting propellants, are particularly useful in the production of a non-flammable foamable composition. A test according to European Standard prEN 14851, titled “Aerosol containers—Aerosol foam flammability test” revealed that compositions containing an organic carrier that contains a hydrophobic organic carrier and/or a polar solvent, which are detected as inflammable when a hydrocarbon propellant is used, become non-flammable, while the propellant is an HFC propellant.
  • Such propellants include, but are not limited to, hydrofluorocarbon (HFC) propellants, which contain no chlorine atoms, and as such, fall completely outside concerns about stratospheric ozone destruction by chlorofluorocarbons or other chlorinated hydrocarbons. Exemplary non-flammable propellants according to this aspect include propellants made by DuPont under the registered trademark Dymel, such as 1,1,1,2 tetrafluorethane (Dymel 134), and 1,1,1,2,3,3,3 heptafluoropropane (Dymel 227). HFCs possess Ozone Depletion Potential of 0.00 and thus, they are allowed for use as propellant in aerosol products.
  • Notably, the stability of foamable emulsions including HFC as the propellant can be improved in comparison with the same composition made with a hydrocarbon propellant.
  • In one or more embodiments foamable compositions comprise a combination of a HFC and a hydrocarbon propellant such as n-butane or mixtures of hydrocarbon propellants such as propane, isobutane and butane.
  • Aging
  • In order to project the potential shelf life and stability of the compositions and their ingredients particularly active or benefit agents the compositions can subjected to a number of tests, including centrifugation to look for resistance to creaming, phase separation; one or more freeze thaw cycles, standing at room and higher temperatures as an indicator of resistance to aging.
  • Cosmetically or Pharmaceutically Active Agents
  • In one or more embodiments, the foamable composition of the present invention is a carrier of a cosmetically or pharmaceutically active agent(s). The agents may be introduced into an aqueous phase (i.e., water), or a hydrophobic phase (e.g., hydrophobic solvent or oil globules). Exemplary, non binding and cosmetically or pharmaceutically active agents include, but are not limited to an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof. Yet, in certain embodiments, one or more components of the oil bodies or sub-micron globules act possess a therapeutic property, such as detailed hereinabove, and thus, in such embodiments, the oil bodies or sub-micron globules can be considered herein as active agents.
  • Composition and Foam Physical Characteristics
  • A pharmaceutical or cosmetic composition manufactured using the foam carrier according to one or more embodiments of the present invention is very easy to use. When applied onto the afflicted body surface of mammals, i.e., humans or animals, it is in a foam state, allowing free application without spillage. Upon further application of a mechanical force, e.g., by rubbing the composition onto the body surface, it freely spreads on the surface and is rapidly absorbed.
  • The foam composition of the present invention creates a stable formulation having an acceptable shelf-life of at least one year, or at least two years at ambient temperature. A feature of a product for cosmetic or medical use is long term stability. Propellants, which are a mixture of low molecular weight hydrocarbons, tend to impair the stability of emulsions. It has been observed, however, that foam compositions according to the present invention are surprisingly stable. Following accelerated stability studies, they demonstrate desirable texture; they form fine bubble structures that do not break immediately upon contact with a surface, spread easily on the treated area and absorb quickly.
  • The composition should also be free flowing, to allow it to flow through the aperture of the container, e.g., and aerosol container, and create an acceptable foam.
  • Foam quality can be graded as follows:
  • Grade E (excellent): very rich and creamy in appearance, does not show any bubble structure or shows a very fine (small) bubble structure; does not rapidly become dull; upon spreading on the skin, the foam retains the creaminess property and does not appear watery;
  • Grade G (good): rich and creamy in appearance, very small bubble size, “dulls” more rapidly than an excellent foam, retains creaminess upon spreading on the skin, and does not become watery;
  • Grade FG (fairly good): a moderate amount of creaminess noticeable, bubble structure is noticeable; upon spreading on the skin the product dulls rapidly and becomes somewhat lower in apparent viscosity;
  • Grade F (fair): very little creaminess noticeable, larger bubble structure than a “fairly good” foam, upon spreading on the skin it becomes thin in appearance and watery;
  • Grade P (poor): no creaminess noticeable, large bubble structure, and when spread on the skin it becomes very thin and watery in appearance; and
  • Grade VP (very poor): dry foam, large very dull bubbles, difficult to spread on the skin.
  • Topically administratable foams are typically of quality grade E or G, when released from the aerosol container. Smaller bubbles are indicative of more stable foam, which does not collapse spontaneously immediately upon discharge from the container. The finer foam structure looks and feels smoother, thus increasing its usability and appeal.
  • A further aspect of the foam is breakability. The foam of the present invention is thermally stable, yet breaks under sheer force. Sheer-force breakability of the foam is clearly advantageous over thermally-induced breakability. Thermally sensitive foams immediately collapse upon exposure to skin temperature and, therefore, cannot be applied on the hand and afterwards delivered to the afflicted area.
  • Another property of the foam is density (specific gravity), as measured upon release from the aerosol can. Typically, foams have specific gravity of (1) less than 0.12 g/mL; or (2) the range between 0.02 and 0.12; or (3) the range between 0.04 and 0.10; or (4) the range between 0.06 and 0.10.
  • Fields of Pharmaceutical Applications
  • By including oil bodies or sub-micron globules and optionally, additional active agents in the compositions of the present invention, the composition are useful in treating an animal or a human patient having any one of a variety of dermatological disorders that include dry and/or scaly skin as one or their etiological factors (also termed “dermatoses”), such as classified in a non-limiting exemplary manner according to the following groups:
  • Dermatitis including contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, chronic dermatitis of the hands and feet, generalized exfoliative dermatitis, stasis dermatitis; lichen simplex chronicus; diaper rash;
  • Bacterial infections including cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, staphylococcal scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, erythrasma;
  • Fungal Infections including dermatophyte infections, yeast Infections; parasitic Infections including scabies, pediculosis, creeping eruption;
  • Viral Infections;
  • Disorders of hair follicles and sebaceous glands including acne, rosacea, perioral dermatitis, hypertrichosis (hirsutism), alopecia, including male pattern baldness, alopecia greata, alopecia universalis and alopecia totalis; pseudofolliculitis barbae, keratinous cyst;
  • Scaling papular diseases including psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris;
  • Benign tumors including moles, dysplastic nevi, skin tags, lipomas, angiomas, pyogenic granuloma, seborrheic keratoses, dermatofibroma, keratoacanthoma, keloid;
  • Malignant tumors including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, paget's disease of the nipples, kaposi's sarcoma;
  • Reactions to sunlight including sunburn, chronic effects of sunlight, photosensitivity;
  • Bullous diseases including pemphigus, bullous pemphigoid, dermatitis herpetiformis, linear immunoglobulin A disease;
  • Pigmentation disorders including hypopigmentation such as vitiligo, albinism and postinflammatory hypopigmentation and hyperpigmentation such as melasma (chloasma), drug-induced hyperpigmentation, postinflammatory hyperpigmentation;
  • Disorders of comification including ichthyosis, keratosis pilaris, calluses and corns, actinic keratosis;
  • Pressure sores;
  • Disorders of sweating; and
  • Inflammatory reactions including drug eruptions, toxic epidermal necrolysis; erythema multiforme, erythema nodosum, granuloma annulare.
  • According to one or more embodiments of the present invention, the compositions are also useful in the therapy of non-dermatological disorders by providing transdermal delivery of an active nonsteroidal immunomodulating agent that is effective against non-dermatological disorders.
  • The same advantage is expected when the composition is topically applied to a body cavity or mucosal surface (e.g., the mucosa of the nose, mouth, eye, ear, vagina or rectum) to treat conditions such as chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum.
  • Other foamable compositions are described in: U.S. Publication No. 05-0232869, published on Oct. 20, 2005, entitled NONSTEROIDAL IMMUNOMODULATING KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 05-0205086, published on Sep. 22, 2005, entitled RETINOID IMMUNOMODULATING KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 06-0018937, published on Jan. 26, 2006, entitled STEROID KIT AND FOAMABLE COMPOSITION AND USES THEREOF; U.S. Publication No. 05-0271596, published on Dec. 8, 2005, entitled VASOACTIVE KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 06-0269485, published on Nov. 30, 2006, entitled ANTIBIOTIC KIT AND COMPOSITION AND USES THEREOF; U.S. Publication No. 07-0020304, published on Jan. 25, 2007, entitled NON-FLAMMABLE INSECTICIDE COMPOSITION AND USES THEREOF; U.S. Publication No. 06-0193789, published on Aug. 31, 2006, entitled FILM FORMING FOAMABLE COMPOSITION; U.S. patent application Ser. No. 11/732,547, filed on Apr. 4, 2007, entitled ANTI-INFECTION AUGMENTATION OF FOAMABLE COMPOSITIONS AND KIT AND USES THEREOF; U.S. Provisional Patent Application No. 60/789,186, filed on Apr. 4, 2006, KERATOLYTIC ANTIFUNGAL FOAM; U.S. Provisional Patent Application No. 0/815948, filed on Jun. 23, 2006, entitled FOAMABLE COMPOSITIONS COMPRISING A CALCIUM CHANNEL BLOCKER, A CHOLINERGIC AGENT AND A NITRIC OXIDE DONOR; U.S. Provisional Patent Application No. 60/818,634, filed on Jul. 5, 2006, entitled DICARBOXYLIC ACID FOAMABLE VEHICLE AND PHARMACEUTICAL COMPOSITIONS THEREOF; U.S. Provisional Patent Application No. 60/843,140, filed on Sep. 8, 2006, entitled FOAMABLE VEHICLE AND VITAMIN PHARMACEUTICAL COMPOSITIONS THEREOF, all of which are incorporated herein by reference in their entirety with reference to any of the active ingredients; penetration enhancers; humectants; moisturizers; listed therein can be applied herein and are incorporated by reference.
  • The following examples further exemplify the benefit agent foamable pharmaceutical carriers, pharmaceutical compositions thereof, methods for preparing the same, and therapeutic uses of the compositions. The examples are for the purposes of illustration only and are not intended to be limiting. Many variations may be carried out by one of ordinary skill in the art and are contemplated within the full scope of the present invention.
  • Methodology
  • A general procedure for preparing foamable compositions is set out in WO 2004/037225, which is incorporated herein by reference.
  • General PFF preparation Nano Foams
  • Nano Emulsion Foam Stabilized with Hydrocolloids polymers
      • 1. Mix oily phase ingredients and heat to 75° C. to melt all ingredients and obtain homogeneous mixture.
      • 2. Mix polymers in water with heating or cooling as appropriate for specific polymer.
      • 3. Add all other water soluble ingredients to water-polymer solution and heat to 75° C.
      • 4. Add slowly external phase to internal phase at 75° C. under vigorous mixing and homogenize to obtain fine emulsion.
      • 5. Cool to below 40° C. and add sensitive ingredients with mild mixing.
      • 6. The fine emulsion oily droplets are further finely dispersed using high pressure homogenizer (Model M-110 Y Microfluidezer® processor, Microfluidics Corp, USA) at 1000-1500 bars pressure, 4 to 8 cycles. The temperature is kept above 40° C. during homogenization process until viscosity drops.
        Nano Emulsion Foam Stabilized with Acrylates Polymers
      • 1. Mix oily phase ingredients and heat to 60° C. to melt all ingredients and obtain homogeneous mixture.
      • 2. Disperse the Acrylate polymer in the oily phase.
      • 3. Mix all water soluble ingredients to water solution and heat to 60° C.
      • 4. Add slowly external phase to internal phase at 60° C. under vigorous mixing and homogenize to obtain fine emulsion.
      • 5. Cool to below 40° C. and add sensitive ingredients with mild mixing.
      • 6. The fine emulsion oily droplets are further finely dispersed using high pressure homogenizer (Model M-110Y Microfluidezer® processor, Microfluidics Corp, USA) at 1000-1500 bars pressure, 4 to 8 cycles. The temperature is kept above 40° C. during homogenization process until viscosity drops.
    Emulsion Foam
      • 1. Mix oily phase ingredients and heat to 75° C. to melt all ingredients and obtain homogeneous mixture.
      • 2. Mix polymers in water with heating or cooling as appropriate for specific polymer. Whilst the polymers may be added instead into the oily phase it was found to be advantageous to prepare them in the water phase.
      • 3. Add all other water soluble ingredients to water-polymer solution and heat to 75° C.
      • 4. Add slowly internal phase to external phase at 75° C. under vigorous mixing and homogenize to obtain fine emulsion. Alternatively the external phase is added slowly to the internal phase.
      • 5. Cool to below 40° C. and add sensitive ingredients with mild mixing.
      • 6. Cool to room temperature.
    Waterless Foam
      • 1. Dissolve the polymers in the main solvent with heating or cooling as appropriate for specific polymer. Add the all other ingredients and heat to 75° C. to melt and dissolve the various ingredients.
      • 2. Cool to below 40° C. and add sensitive ingredients with mild mixing.
      • 3. Cool to room temperature.
    Oily Waterless Foam
      • 1. Mix all ingredients excluding polymers and heat to 75° C. to melt and dissolve and obtain homogeneous mixture.
      • 2. Mix well and cool to below 40° C. and add the polymers and sensitive ingredients with moderate mixing.
      • 3. Cool to room temperature.
        Oily Foam with Phospholipids and/or Water
      • 1. Swell the phospholipids in the main oily solvent under mixing for at least 20 minutes until uniform suspension is obtained.
      • 2. Add all other ingredients excluding polymers and heat to 75° C. to melt and dissolve and obtain homogeneous mixture.
      • 3. Mix well and cool to below 40° C. and add the polymers and sensitive ingredients with moderate mixing.
      • 4. Cool to room temperature.
      • 5. In case of polymers dissolved in water or organic solvent, dissolve the polymers in the solvent with heating or cooling as appropriate for specific polymer and add to the oily mixture under vigorous mixing at ˜40° C.
    Canisters Filling and Crimping
  • Each aerosol canister is filled with PFF and crimped with valve using vacuum crimping machine.
  • Pressurizing
  • Propellant Filling
  • Pressurizing is carried out using a hydrocarbon gas or gas mixture Canisters are filled and then warmed for 30 sec in a warm bath at 50° C. and well shaken immediately thereafter.
  • Closure Integrity Test.
      • Each pressurized canister is subjected to bubble and crimping integrity testing by immersing the canister in a 60° C. water bath for 2 minutes. Canisters are observed for leakage as determined by the generation of bubbles. Canisters releasing bubbles are rejected.
    Tests
  • By way of non limiting example the objectives of hardness, collapse time, viscosity, bubble size, nano size and FTC stability tests are briefly set out below as would be appreciated by a person of the art.
  • Hardness
      • LFRA100 instrument is used to characterize hardness. A probe is inserted into the test material. The resistance of the material to compression is measured by a calibrated load cell and reported in units of grams on the texture analyzer instrument display. Preferably at least three repeat tests are made. The textural characteristics of a dispensed foam can effect the degree of dermal penetration, efficacy, spreadability and acceptability to the user. The results can also be looked at as an indicator of softness. Note: the foam sample is dispensed into an aluminum sample holder and filled to the top of the holder.
  • Collapse Time
      • Collapse time (CT) is examined by dispensing a given quantity of foam and photographing sequentially its appearance with time during incubation at 36° C. It is useful for evaluating foam products, which maintain structural stability at skin temperature for at least 1 min.
  • Viscosity
      • Viscosity is measured with Brookfield LVDV-II+PRO with spindle SC4-25 at ambient temperature and 10, 5 and 1 RPM. Viscosity is usually measured at 10 RPM. However, at about the apparent upper limit for the spindle of ˜>50,000CP, the viscosity at 1 RPM may be measured, although the figures are of a higher magnitude. Unless otherwise stated viscosity of the pre foam formulation is provided.
  • FTC (Freeze Thaw Cycles)
      • To check the foam appearance under extreme conditions of repeated cycles of cooling, heating, (first cycle) cooling, heating (second cycle) etc., commencing with −10° C. (24 hours) followed by +40° C. (24 hours) measuring the appearance and again repeating the cycle for up to four times.
  • Creaming by Centrifugation:
  • 1. Principle of Test
      • The centrifugation used in this procedure serves as a stress condition simulating the aging of the liquid dispersion under investigation. Under these conditions, the centrifugal force applied facilitates the coalescence of dispersed globules or sedimentation of dispersed solids, resulting in loss of the desired properties of the formulated dispersion.
  • 2. Procedure
      • 2.1. Following preparation of the experimental formulation/s, allow to stand at room temperature for ≧24 h.
      • 2.2. Handle pentane in the chemical hood. Add to each experimental formulation in a 20-mL glass vial a quantity of pentane equivalent to the specified quantity of propellant for that formulation, mix and allow formulation to stand for at least 1 h and not more than 24 h.
      • 2.3. Transfer each mixture to 1.5 mL microtubes. Tap each microtube on the table surface to remove entrapped air bubbles.
      • 2.4. Place visually balanced microtubes in the centrifuge rotor and operate the centrifuge at one or more of 10,000 rpm for 10 min, 3,000 rpm for 10 min or at 1,000 rpm for 10 min.
  • Bubble size:
      • Foams are made of gas bubbles entrapped in liquid. The bubble size and distribution reflects in the visual texture and smoothness of the foam. Foam bubbles size is determined by dispensing a foam sample on a glass slide, taking a picture of the foam surface with a digital camera equipped with a macro lens. The diameter of about 30 bubbles is measured manually relatively to calibration standard template. Statistical parameters such as mean bubble diameter, standard deviation and quartiles are then determined. Measuring diameter may also be undertaken with image analysis software. The camera used was a Nikon D40X Camera (resolution 10 MP) equipped with Sigma Macro Lens (ref: APO MACRO 150 mm F2.8 EX DG HSM). Pictures obtained are cropped to keep a squared region of 400 pixels×400 pixels.
  • Nano size:
      • The light microscope enables observing and measuring particles from few millimeters down to one micron. Light microscope is limited by the visible light wavelength and therefore is useful to measuring size of particles above 800 nanometers and practically from 1 micron (1,000 nanometers) Measuring smaller particle, nano size range, is performed by a Dynamic light scattering (DLS), sometimes referred to as Photon Correlation Spectroscopy (PCS) or Quasi-Elastic Light Scattering (QELS). The method is a non-invasive, well-established technique for measuring the size of molecules and particles typically in the sub micron region, and with the latest technology lower than 1 nanometer. Measurements are usually made without a vacuum, but wherever appropriate a vacuum can be applied. A Malvern nano sizeris SB-A-018 nano zs Serial num: MAL 50041 for example may be used.
    EXAMPLES
  • The following examples exemplify the compositions and methods described herein. The examples are for the purposes of illustration only and are not intended to be limiting. Many variations will suggest themselves and are within the full intended scope of the appended claims.
  • Example 1 SME-based Foamable Composition 1. Emulsion Formula
  • % w/w
    A Mineral oil (oil) 5.60
    Isopropyl myristate (emollient) 5.60
    Glyceryl monostearate (emollient) 0.45
    PEG-40 Stearate (surfactant) 2.60
    Stearyl alcohol (foam adjuvant) 0.85
    B Xanthan gum (gelling agent) 0.26
    Methocel K100M (gelling agent) 0.26
    Polysorbate 80 (surfactant) 0.90
    Water 74.88
    C Preservative 0.60
    D Propellant 8.00
    100.00
  • 2. Emulsion Preparation
  • Oil Phase (A): The ingredients of the Oil Phase were preheated to the same temperature, e.g., 40-75° C., and then were combined with mixing. Oil soluble cosmetic or pharmaceutical active ingredients and optional oil soluble formulation ingredients are added with agitation to the Oil Phase mixture.
  • Aqueous Phase (B): Water gelling agent and surfactant were dissolved in water, with agitation. The solution was warmed to 50-70° C. Water soluble cosmetic or pharmaceutical active ingredients and optional water soluble ingredients were added with agitation to the Aqueous Phase mixture.
  • The warm Oil Phase was gradually poured into the warm Aqueous Phase, with agitation, followed by Ultraturax homogenization. The mixture was allowed to cool down to ambient temperature. In case of heat sensitive active ingredients, the active ingredient can be added with agitation to the mixture after cooling to ambient temperature. The mixture, at ambient temperature, was added to an aerosol container, the container was sealed and appropriate amount of propellant (5-25 w % of the composition mass) was added under pressure into the container.
  • Microscopic observation of the resulting emulsion revealed mean particle size of 2 to 4 microns.
  • 3. Conversion of the Emulsion to Nanoemulsion (Pre-Foam Composition)
  • The emulsion was passed through a microfluidizer, Microfluidics M-110Y Microfluidizer® M-110Y about 10 cycles, using ice to avoid heating the formula.
  • 4. Packaging and Pressurizing of the Nanoemulsion Composition
  • A nanoemulsion composition (46 gram) was introduced into a 60 ml monoblock aluminum can. The can was sealed with an aerosol valve and 4 gram of liquefied propellant (propane butane isobutene mixture) was added through the valve.
  • 5. Characterization of the Nano Emulsion
  • Particle size distribution was determined using a Malvern Nanosizer™ instrument. The pre-foam composition showed two peaks of 188 and 59 nanometers. Four days after packaging and pressurizing of the composition, foam was released from the aerosol can and light microscope observation revealed small population of −1 micron globules and substantial Brownian movement indicating that majority of oil droplets are of sub-micron or nano-scale.
  • 6. Packaging and Pressurizing of the Nano Emulsion Composition
  • An emulsion (46 gram) was added into a 60 ml monoblock aluminum can. The can was closed with an aerosol valve and 4 gram of liquefied propellant (propane/butane mix) was added through the valve. The propellant can be any compressed and liquefied gas, currently used as aerosol propellant. The final concentration of propellant can vary from 3% to 25%.
  • Example 2 Oil Bodies Based Foamable Compositions
  • NAT01 NAT02 NAT03 NAT04
    % w/w % w/w % w/w % w/w
    Natural Oleosomes 30.00 30.00 30.00 30.00
    (Natrulon OSF)*
    Hydroxypropylmethycellulose 0.25 0.25
    (gelling agent)
    Xanthan Gum (gelling agent) 0.25 0.25
    Cocamide DEA (surfactant) 1.00 1.00
    Polsorbate 20 (surfactant) 1.00
    Water pure 68.50 69.50 69.00 69.00
    100.00 100.00 100.00 100.00
    Foam Properties
    Foam Quality E E E G
    Stability RT Stable Stable Creaming Creaming
    After After
    72 Hr. 72 Hr.
    *Natrulon OSF is the trade name of Lonza Inc.
  • The production of the compositions NAT01 included the following steps:
      • 1. Add the polymeric agents (Hydroxypropylmethycellulose and Xanthan Gum) to the Natrulon OSF at 50° C. and mix during 10 minutes while the preparation cools down to Room Temperature.
      • 2. Add the Cocamide DEA with mixing.
      • 3. Fill the composition aerosol canisters and add 8% of propellant.
  • The production of the compositions NAT02 included the following steps:
      • 1. Add the polymeric agents (Hydroxypropylmethycellulose and Xanthan Gum) to the Natrulon OSF at 50° C. and mix during 10 minutes while the preparation cools down to Room Temperature.
      • 2. Fill the composition aerosol canisters and add 8% of propellant.
  • The production of the compositions of NAT03 included the following steps:
      • 1. Add the cool water to the Natrulon OSF and mix during 10 minutes.
      • 2. Add the Cocamide DEA with mixing.
      • 3. Fill the composition aerosol canisters and add 8% of propellant.
  • The production of the compositions of NAT04 included the following steps:
      • 1. Add the cool water to the Natrulon OSF and mix during 10 minutes.
      • 2. Add Polysorbate 20 with mixing.
      • 3. Fill the composition aerosol canisters and add 8% of propellant.
    Example 3 Further Foamable Compositions Containing Oil Bodies
  • % w/w % w/w
    Caprylic/capric triglyceride (MCT oil) 5.00
    Stearyl alcohol 0.90
    Natrulon OSF* 10.00 10.00
    Methylcellulose 0.25 0.25
    Xanthan gum 0.25 0.25
    PEG-40 stearate 2.50 2.50
    Polysorbate 80 0.90 0.90
    Preservative 0.50 0.50
    Purified water to 100% to 100%
    Propellant 8.00

    Formation properties
  • Emulsion visual test Uniform Uniform
    Viscosity (Spindle SC4-31)(cP) 1,428 868.5
    Centrifugation (prior to propellant addition) Stable Stable
    (10 min/3,000 rpm)
    PH (direct, prior to propellant addition) 6.04 6.72
    Foam Quality G E
    Density 0.0337 0.0339
  • Example 4 Exploring Some Limitations on Making Nano-Emulsions
  • Ingredients NEP002 NEP006
    Isopropyl myristate 6.00 6.00
    light Mineral oil 6.00 6.00
    Glyceryl 0.50 1.00
    monostearate
    PEG-40 stearate 3.00 6.00
    Stearyl alcohol 1.00 1.00
    Xanthan gum 0.30 0.30
    Methocel K100M 0.30 0.30
    Polysorbate 80 1.00 2.00
    Water, purified 81.30 76.80
    Sharomix 824 0.60 0.60
    Total 100.00 100.00
    Propellant 8.00 8.00
    Cycles 4 3
    Pressure (Bar) 1000-1500
    Comments inter alia Emulsion broke after Emulsion still
    as to non suitability first cycle broke after first
    for nano emulsion cycle with double
    preparation surfactant that of
    002.

    Comment: None of the above two formulations were found suitable for preparation of a nano emulsion using a high pressure homogenizer. This indicates that the selection of surfactants that can hold the emulsion together whilst being subject to the effects of being processed in a high speed homogenizer is of importance in the preparation of nano emulsions. Formulations were also prepared with a combination of high and medium levels of petrolatum and mineral oil (42% and 18% respectively) and with medium levels of petrolatum (25%). In both cases the formulation was found to be too viscous to be used with the nano emulsion. None of the above formulations were found suitable for preparation of a nano emulsion using a high pressure homogenizer primarily because of their high viscosity. Nevertheless, it is believed that the issue of viscosity may be overcome-able by warming the formulation and or reducing the levels of petrolatum. A formulation containing a powder suspension was also found to be unsuitable due to sedimentation. Accordingly, to the extent a formulation is to comprise a suspension that element may be introduced after a stable nano emulsion carrier is produced rather than during the process. For satisfactory processing the emulsion should have sufficient stability to withstand gentle heating.
  • Example 5 Behavior of Stable Homogeneous Emulsions With Two Different Oils
  • Ingredients NEP007 NEP008
    Diisopropyl adipate (DISPA) 20.00
    PPG 15 Stearyl ether (PPG) 20.00
    Steareth-2 3.67 4.00
    Steareth 21 2.33 1.00
    Carboxy methyl cellulose 0.50 0.50
    Water, purified 72.90 73.90
    Sharomix 824 0.60 0.60
    Total 100.00 100.00
    Propellant 8.00 8.00
    Cycles 5 6
    Pressure (Bar) 1000-1500 1000-1500
    Visual Inspection Homogeneous Homogeneous
    Shakability Yes Yes
    F.Q. Good Fairly Good
    Cetrif: 3000 RPM Stable Stable
    Cetrif: 10000 RPM 30% 90%
    Creaming Creaming
    Density 0.057 N/R
    Viscosity(cP) 10 RPM 4734.99 3775.19
    Collapse Time (sec.) >300 >300
    PFF Size Study:
    Diameter (nm)/% volume-25 C. 718/92.4% 2590/86.8%
    147/7.6%* 243/13.2*
    dilution 1:80 w/w with 1:80 w/w with
    vacuum vacuum
    FOAM Size Study:
    Diameter (nm)/% volume-25 C. 2790/82.4%
    328/17.6%
    dilution 1:80 w/w with 1:80 w/w with
    vacuum* vacuum*
    *-example of *-example of
    results results
    achieved achieved
    FTC (4 cycles)
    Quality Good
    Density 0.046
    Collapse time (sec.) >300 >300
    1 Month 40C
    Quality Excellent Fairly Good
    Density 0.045
    Collapse time (sec.) >300
    Diameter (nm)/% volume-25 C. 3410/100%
    Dilution 1:80 w/w with
    vacuum*

    Comment: After 5 or 6 cycles of high pressure homogenization the emulsion appears to behave differently depending on which oil is used. In the presence of 20% DISPA a good quality foam is produced containing large nano particles primarily in the region of 700 nanometers and which can withstand four freeze thaw cycles (FTC) but which reverts to form globules of over 3 microns after a month. In contrast in the presence of 20% PPG foam quality is fairly good and the oil droplets have a diameter primarily in the region of 2600 nanometers or 2.6 microns.
  • Example 6 Production of Stable Homogeneous Emulsions With Petrolatum
  • Ingredients NEP010
    White Petrolatum (sofmetic) 7.14
    Steareth-2 1.43
    Steareth 21 4.29
    Carboxy methyl cellulose 0.36
    Water, purified 86.18
    TEA, q.s. to pH: to pH 4.77
    Sharomix 824 0.60
    Total 100.00
    Propellant 8.00
    Cycles 6
    Pressure (Bar) 1000-1500
    Visual Inspection Homogeneous
    Shakability Yes
    F.Q. Excellent*
    Cetrif: 3000 RPM Stable
    Cetrif: 10000 RPM 98% translucent
    Viscosity(cP) 10 RPM 7.00
    Collapse Time (sec.) >300
    PFF Size Study:
    Diameter (nm)/% volume-25 C. 125/100%
    dilution 1:10 v/v
    FOAM Size Study:
    Diameter (nm)/% volume-25 C. 275/22.1%
    96.8/16.1%
    26.2/55.4%
    dilution 1:10 w/w
    * After 2 weeks
    FG
    FTC (4 cycles)
    Quality Good
    Density 0.036
    Collapse Time (sec.) >300

    Comment: Petrolatum produces formulations with higher viscosity as it is a viscous material. Nevertheless, by reducing the content of petrolatum and by gentle warming it is possible to make nano emulsions with petrolatum. Not only was the above formula homogenous and stable to centrifugation but it produced foam of excellent quality having pre foam nano particles size primarily in the region of 125 nanometers and the majority of the foam nano particles being in the region of 26 nanometers. Remarkably, the formulation viscosity showed a dramatic reduction. Without being bound by any theory this may be connected to the high pressure mechanical manipulation of petrolatum and possible breakdown of polymer and further it seems that there can be a close connection between reduction of viscosity and successful smaller nano emulsion formulations. On the other hand by using a different polymer carbomer an acrylic polymer it was possible to achieve a successful larger nano emulsion with high viscosity that remained stable for a month at 40 C; stable to centrifugation and stable to FTC as can be seen in Formula 12 Example 8
  • Example 7 Examination of Number of Cycles
  • NEP011-4C NEP011-6C
    Isopropyl myristate 5.00 5.00
    Octyl dodecanol 5.00 5.00
    Cetearyl alcohol 3.00 3.00
    Polyoxyl 100 monostearate 2.50 2.50
    Methocel K100 LV 0.20 0.20
    Carbomer 934P 0.40 0.40
    Polysorbate 80 0.50 0.50
    Propylene glycol 3.34 3.34
    Water, purified 79.81 79.81
    TEA, q.s. to pH: to pH 4.60 to pH 4.70
    Propyl Paraben 0.10 0.10
    Methyl paraben 0.15 0.15
    Total 100.00 100.00
    Propellant 8.00 8.00
    Cycles 4 6
    Pressure (Bar) 1000-1500 1000-1500
    Visual Inspection Homogenous Homogenous
    Shakability Yes Yes
    F.Q. Excellent Excellent
    Cetrif: 3000 RPM Stable Stable
    Cetrif: 10000 RPM Stable Stable
    Density 0.041
    Viscosity(cP) 10 RPM 5198.89 52.99
    Collapse Time (sec.) >300
    PFF Size Study: *
    Diameter (nm)/% volume-25° C. 570/100% 251/100%
    dilution 1:80 w/w 1:80 w/w
    FOAM Size Study:
    Diameter (nm)/% volume-25 C. 667/85.2% 297/100%
    99.1/4%
    5220/10.4%
    dilution 1:80 w/w 1:80 w/w
    FTC (4 cycles)
    Quality Excellent
    Density 0.038
    * Separation after 5 days, reversible

    Comment: The question of how many cycles are preferable was examined. Using too few cycles may not produce emulsions with oil droplets in the lower nanometer range. On the other hand there is some concern that using too many cycles may destroy the ability to make good quality stable homogenous nano foam. Nano emulsions are fragile and metastable. Much energy work is required to reduce oil droplets size. The energy is invested in creating large interfacial area between the two immiscible phases. At first the energy input contributes to creation of the interfacial area and particle size reduction. At some point, an extra energy does not contribute any more to size reduction and instead causes particle collapse, increases in particle size and reduction in interfacial area. Every process of emulsification and energy input has an optimum which will be related for example to formulation, mean of energy input, homogenization and other criteria. It was noted that in general three cycles was insufficient and that signs of nano emulsion qualities of translucent foam with a blue tint became more recognizable from four cycles. Thus a study was made to compare four with six cycles. It can be seen that after four cycles the pre foam formulation had a nano size primarily in the region of 570 nanometers and a reasonable viscosity in the range of 5000 Cp. However, when the processing was extended to six cycles there was a remarkable reduction in viscosity of about a hundred fold to the range of 50cP and that the nano size of the pre foam formulation was halved. Interestingly, when foam was produced the nano size was substantially the same, suggesting that conversion to foam does not disturb the nano particle size to any significant extent. On the other hand as can be seen below there a dramatic effect on bubble size is observed between a pre and post nano processed formulation. Also of note is the observation that dramatic reduction in viscosity is seen with the polymeric combination of methocel and carbomer. However, as seen in Example 8 below, when the polymeric agent is only pH adjusted carbomer the formulation remains with high viscosity after 6 cycles
  • Example 8 Behavior of Stable Homogeneous Emulsions With a Third Different Oil
  • Ingredients NEP012
    Isopropyl myristate 20.00
    Steareth-2 4.34
    Steareth 21 2.66
    Carbomer 934P 0.50
    Propylene glycol 3.00
    Water, purified 69.00
    TEA, q.s. to pH: to pH 4.66
    Sharomix 824 0.50
    Total 100.00
    Propellant 8.00
    Cycles 6
    Pressure (Bar) 1000-1500
    Visual Inspection Homogenous
    Shakability Yes
    F.Q. Excellent
    Centrifugation: 3000 RPM Stable
    Centrifugation: 10000 RPM Stable
    Density 0.065
    Viscosity(cP) 10 RPM 21595.39
    Collapse Time (sec.) >300
    PFF Size Study:
    Diameter (nm)/% volume-25° C. 802/100%
    dilution 1:80 w/w
    FOAM Size Study:
    Diameter nm/% volume-25° C. 688/90.8%
    5240/7.3%
    110/1.8%
    dilution 1:80 w/w
    FTC
    Quality Excellent
    Density 0.073
    Collapse Time (sec.) >300
    1 month 40C
    Quality Excellent
    Density 0.048
    Collapse Time (sec.) >300
    Diameter (nm)/% volume-25 C. 831//71.4%
    154/3.3%
    5040/25.3%
    dilution 1:80 w/w

    Comment: Like the formulations discussed in Example 5, this example is based on 20% oil. The oil is isopropyl myristate, which is a third type of oil. Here the formula was pH adjusted with triethanolamine (TEA). The oil droplet size for the pre-foam formulation was of the order of 800 nanometers and that of the foam was of the order of 700 nanometers indicating that isopropyl myristate is not dissimilar from DISPA in relation to the size of resultant nano particles. Moreover, after a month at 40 C most of the globules were of the order 830 nanometers. Of the three formulations isopropyl myristate, made the best quality foam, which likewise may more suit nano emulsion preparation albeit at the higher end of the scale. The viscosity of the pre foam formulation is high primarily due to the level of carbomer and the pH. At this viscosity the composition is flowable but not really shakable. However, upon addition of propellant the formulation is shakable.
  • Example 9 Examination of Effects of Reducing/Increasing Surfactant Levels
  • NEP013 NEP015 NEP014
    Isopropyl myristate 10.00 10.00 10.00
    light Mineral oil 10.00 10.00 10.00
    Glyceryl monostearate 0.50 0.50 0.50
    PEG-40 stearate 3.20 2.40 1.60
    Stearyl alcohol 1.50 1.50 1.50
    Carbomer 934P 0.40 0.40 0.40
    Polysorbate 80 4.80 3.60 2.4
    Propylene glycol 3.00 3.00 3.00
    Water, purified 66.00 68.00 70.10
    TEA, q.s. to pH: to pH 4.66 to pH 4.71 to pH 4.60
    Sharomix 824 0.60 0.60 0.50
    Total 100.00 100.00 100.00
    Propellant 8.00 8.00 8.00
    Cycles 6 6 6
    Presion (Bar) 1000-1500 1000-1500 1000-1500
    Visual Inspection Homogenous Homogenous Homogenous
    (highly
    translucent)
    Shakability Yes Yes Yes
    F.Q. Excellent Excellent Excellent
    Centrifugation: Stable Stable Stable
    3000 RPM
    Centrifugation: Stable Stable Stable
    10000 RPM
    Density 0.052 0.045 0.042
    Viscosity(cP) 10 RPM 241.95 207.96 107.96
    Collapse Time (sec.) >300 >300 >300
    PFF Size Study:
    Diameter (nm)/ 80.2/100% 105/100% 149/100%
    % volume-25 C.
    dilution 1:15 v/v 1:20 v/v 1:20 v/v
    FOAM Size Study:
    Diameter (nm)/ 104 nm/88.7%, 120/88.2% 179/84.8
    % volume-25 C. 4660 nm/11.3% 4740/11.8% 5280/15.2%
    dilution 1:15 w/w 1:20 w/w 1:20 w/w
    with vacuum
    FTC
    Quality Good
    Density 0.050
    Collapse Time (sec.) >300
    Diameter (nm)/ 117/62.1%
    % volume-25 C. 822/8%
    3400/29.9%
    1-Month 40C
    Quality Good
    Density 0.045
    Collapse Time (sec.) >300
    Diameter (nm)/ 72.8/76.3%
    % volume-25 C. 3290/23.7%
    dilution 1:15 w/w

    Comment: The surfactant concentrations of PEG-40 stearate and Polysorbate 80 were decreased from 8% to 6% to 4% to examine the effect of surfactant levels on nano sizing of the formulations and foam. Whilst all the formulations produced foam of excellent quality there was a clear and consistant effect on oil droplet size. As the level of surfactant was reduced there was a corresponding increase in nano size. Thus higher levels of surfactant support a lower nano size. Approximately parallel reductions were also observed in viscosity and in density as the surfactant levels were reduced. It is also noteworthy that after a month at 40 C the globules size remained substantially the same
  • Example 10 A Comparison of Bubble Size of Resultant Foam Before and After Processing the Formulation to Produce a Nano Composition
  • Notes to FIGS. 1A through 5C:
      • C0 means the formulation was not subject to nano processing.
      • C6 means the formulation was subject to 6 cycles of nano processing.
      • AP 70 and AP 46 are propellants comprising similar mixtures of propane, butane and isobutane but the former offers about 50% more pressure.
  • In all cases observed as shown in FIGS. 1A through 5C, nano emulsions surprisingly produced foam with a substantially larger foam bubble size ranging from an increase of about a third to an increase of almost four fold in magnitude, when the identical same formulation was subject to nano processing. Thus, by creating a nano emulsion it is possible to generate foam of quality with a larger bubble size, which may intern positively influence the cosmetic elegance of the foam in that the formulation may have a more foam like feel with less of the sensation and greasy feeling that might be experienced with a cream or mousse Also, the increased bubble size may contribute to ease of spreadability. It was also discovered that it is possible to manipulate bubble size by propellant selection. So for example, bubble size was seen to increase by about a third when a higher pressure hydrocarbon propellant was substituted in the same formulation
  • Example 11 A Comparison of Physical Properties of Resultant Foam Before and After Processing (six cycles) the Formulation to Produce a Nano Composition Part A
  • NEP010
    Regular, C-0 Nano, C-6
    PFF
    Centrifugation: 3000 RPM Stable Stable
    Centrifugation: 60% Creaming 98% translucent
    10000 RPM
    Visual Inspection Homogenous, Homogenous,
    opaque-liquid Translucent
    Viscosity (cP) 10 RPM 686.85 7.00
    Oil droplets size <4 micrometer 125 Nanometers/100%
    Foam
    Quality FG after 24 Hrs Excellent (FG after 2
    Weeks)
    Shakability Yes Yes
    Collapse time (sec.) >300
    Oil droplets size <4 micrometer 275/22.1%; 96.8/16.1%
    26.2/55.4%
  • Part B
  • NEP011
    Regular, C-0 Nano, C-6
    PFF
    Centrifugation: Stable Stable
    3000 RPM
    Centrifugation: 95% Creaming Stable
    10000 RPM
    Visual Inspection Homogenous, Homogenous,
    viscose Translucent
    Viscosity(cP) 10 RPM 36872.13 52.99
    Oily droplets size Diameter 4-14 251 Nanometers/
    micrometers 100%
    Foam
    Quality Excellent Excellent
    Density 0.045 0.041
    Shakability No Yes
    Collapse time (sec.) >300 >300
    Oil droplets size >4 micrometers 297Nanometers/
    100%
  • Part C
  • NEP013
    Regular C-0 Nano C-6
    PFF
    Centrifugation: Stable stable
    3000 RPM
    Centrifugation: 30% Creaming stable
    10000 RPM
    Appearance Homogenous, Homogenous highly
    highly viscose translucent
    Viscosity (cP) 10 RPM 27178.2 241.95
    Oil droplets size Diameter 4-17 80.2 Nanometers/100%
    micrometers
    Foam
    Quality Excellent Excellent
    Density 0.062 0.052
    Shakability No Yes
    Collapse time (sec.) >300 >300
    Oil droplets size Diameter 4-17 104 nm/88.7%,
    micrometers 4660 nm/11.3%

    Comment: In the above three cases formation of nano emulsions having nano size particles resulted in a substantial reduction in the formulation viscosity even though chemically the formulation constituents were unchanged. No significant change of collapse time was observed. Formulations which were non shakable prior to processing were became shakable following processing. Also remarkably formulations that produced only fairly good foam prior to processing were improved such that, for example, excellent foam may be formed. True nano emulsions appeared translucent with a blue hint whereas prior to processing the emulsions were generally opaque.

Claims (50)

1. A foamable oil in water nano emulsion composition comprising:
(a) A nano oil globule system, comprising substantially of sub-micron oil globules;
(b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
i. a non-ionic surfactant,
ii. an ionic surfactant, and
iii. a polymeric agent;
(c) water; and
(d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
2. The foamable composition of claim 1, wherein the oil globule system consists of oil globules with an average diameter size in the range of about 1000 nanometers to about 10 nanometers; and the stabilizing agent consists of a polymeric agent.
3. The foamable composition of claim 2, further comprising a non-ionic surfactant having an HLB value between 9 and 16; and/or an ionic surfactant.
4. The foamable composition of claim 2, wherein the oil globules are discrete particles with the majority having a size ranging from about 300 to about 20 nanometers in at least one dimension.
5. The foamable composition of claim 1, wherein:
i. The oil globule system consists of sub-micron oil globules; and
ii. The stabilizing agent consists of a surfactant, having an HLB value or a mean HLB value between 9 and 16.
6. The foamable composition of claim 1 wherein the ratio of the surfactant to oil is high being in the range of the order of about 1:1 to about 1:10
7. The foamable composition of claim 1, wherein the sub-micron oil globules contain at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof.
8. The foamable composition of claim 1, wherein said submicron oil globules are about 50% to about 100% of the composition.
9. The foamable composition of claim 1, wherein the sub-micron oil globules have a number-average size range, selected from (i) 40 nm to 1,000 nm. (ii) 40 nm to 500 nm; (iii) 40 nm to 200 nm; (iv) 40 nm to 100 nm (v) less than 500 nm; (vi) less than 200 nm; and (vii) less than 100 nm.
10. The foamable composition of claim 1, wherein the sub-micron oil globules are produced by high sheer homogenization.
11. The foamable composition of claim 1, further comprising about 0.1% to about 5% by weight of a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having at least one double bond; a fatty acid having at least one double bond; a branched fatty alcohol; a branched fatty acid; and a fatty acid substituted with a hydroxyl group and mixtures thereof.
12. The foamable composition of claim 1, wherein said foamable composition is substantially alcohol-free.
13. The foamable composition of claim 1, further containing at least one therapeutic agent.
14. The foamable composition of claim 13, wherein the therapeutic agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof.
15. The foamable composition of claim 14, wherein the therapeutic agent is suitable to treat a disorder, selected from a dermatological disorder, a cosmetic disorder, a gynecological disorder, a disorder of a body cavity, wound and burn.
16. The foamable composition of claim 1, wherein the HLB or mean HLB value of said non-ionic surfactant is between about 2 and about 9.
17. The foamable composition of claim 1, wherein the stabilizing agent is a polymeric agent selected from the group consisting of a water-soluble cellulose ether naturally-occurring polymeric material, microcrystalline cellulose, hydrophobically-modified ethoxylated urethane, and a carbomer and wherein said water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose, carboxymethylhydroxyethylcellulose, xanthan gum, guar gum, carrageenin gum, locust bean gum and tragacanth gum.
18. The foamable composition of claim 1, wherein surfactant is selected from the group consisting of steareth 2, steareth 21, ceteth-20, span 80, behenyl alcohol, glyceryl monostearate, PEG 40 stearate, polyoxyl 100 monostearate, methyl glucose seasquit stearate and polysorbate 80.
19. The foamable composition of claim 1, wherein the density of the foam is selected from the group consisting of (1) less than 0.12 g/mL; (2) the range between 0.02 and 0.12; (3) the range between 0.04 and 0.10; (4) the range between 0.06 and 0.10.
20. A foamable oil in water nano emulsion composition comprising:
(a) A nano oil globule system, comprising substantially of sub-micron oil globules;
(b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
i. a non-ionic surfactant,
ii. an ionic surfactant, and
iii. a polymeric agent;
(c) water; and
(d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging and wherein the viscosity of the nano emulsion is substantially reduced than the viscosity of the a macro emulsion having substaintially the same composition;
wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer forcea; and
wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
21. The foamable composition of claim 20, wherein the viscosity of the nano emulstion is selected from the group consisting of (1) between about 600cP and about 4000cP (2) between about 4000cP and about 200cP (3) between about 200cP and about 500cP (4) between about 500cP and about 1 cP.
22. The foamable composition of claim 20, wherein the viscosity of the nano emulstion is between about 500cP and about 1 cP and the foam is of good or excellent quality.
23. A foamable oil in water nano emulsion composition comprising:
(a) A nano oil globule system, comprising substantially of sub-micron oil globules;
(b) about 0.1% to about 5% by weight of at least one stabilizing agent comprising a carbomer polymeric agent, and a second stabilizing agent selected from the group consisting of
i. a non-ionic surfactant,
ii. an ionic surfactant, and
iii. a polymeric agent;
(c) water; and
(d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging and wherein the viscosity of the pre foam formulation remains substantially high after it has been subject to nano processing;
wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
24. A foamable oil in water nano emulsion composition comprising:
(a) a nano oil globule system, comprising substantially of sub-micron oil globules;
(b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
i. a non-ionic surfactant,
ii. an ionic surfactant, and
iii. a polymeric agent; and
(c) water;
wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
wherein the composition prior to addition of propellant is translucent with a blue tint;
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 35% by weight of the total composition it is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
25. A method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors, comprising:
administering topically to a subject having said disorder, a foamed composition comprising:
(a) a nano oil globule system, comprising substantially of sub-micron oil globules;
(b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
i. a non-ionic surfactant,
ii. an ionic surfactant, and
iii. a polymeric agent;
(c) water; and
(d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
26. The method of claim 25, wherein the composition further comprises an active agent effective to treat a disorder and wherein the disorder is selected from the group consisting of a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, osteoarthritis, joint pain, hormonal disorder, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum.
27. A method of promoting the penetration of an active agent into the surface layers of the skin and mucosal membranes, comprising: apply a foamable composition to the surface layers of a stem or mucosal membrane, the foamable composition comprising:
(a) a nano oil globule system, comprising substantially of sub-micron oil globules;
(b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
i. a non-ionic surfactant,
ii. an ionic surfactant, and
iii. a polymeric agent;
(c) water; and
(d) a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition
wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
wherein the composition is contained in a pressurized container is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
28. The method of claim 27, wherein the active agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent and a refatting agent.
29. A method of treating, alleviating or preventing a disorder of the skin, body cavity or mucosal surface, wherein said disorder involves insufficient hydration of skin or a mucosal surface as one of its etiological factors, comprising:
administering topically to a subject having said disorder, a foamed composition comprising:
(a) a nano oil globule system, comprising substantially of sub-micron oil globules;
(b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
i. a non-ionic surfactant,
ii. an ionic surfactant, and
iii. a polymeric agent; and
(c) water;
wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
wherein the composition prior to addition of propellant is translucent with a blue tint;
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 35% by weight of the total composition it is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
30. The method of claim 29, wherein the composition further comprises an active agent effective to treat a disorder and wherein the disorder is selected from the group consisting of a vaginal disorder, a vulvar disorder, an anal disorder, a disorder of a body cavity, an ear disorder, a disorder of the nose, a disorder of the respiratory system, a bacterial infection, fungal infection, viral infection, dermatosis, dermatitis, parasitic infections, disorders of hair follicles and sebaceous glands, scaling papular diseases, benign tumors, malignant tumors, reactions to sunlight, bullous diseases, pigmentation disorders, disorders of cornification, pressure sores, disorders of sweating, inflammatory reactions, xerosis, ichthyosis, allergy, burn, wound, cut, chlamydia infection, gonorrhea infection, hepatitis B, herpes, HIV/AIDS, human papillomavirus (HPV), genital warts, bacterial vaginosis, candidiasis, chancroid, granuloma Inguinale, lymphogranloma venereum, mucopurulent cervicitis (MPC), molluscum contagiosum, nongonococcal urethritis (NGU), trichomoniasis, vulvar disorders, vulvodynia, vulvar pain, yeast infection, vulvar dystrophy, vulvar intraepithelial neoplasia (VIN), contact dermatitis, osteoarthritis, joint pain, hormonal disorder, pelvic inflammation, endometritis, salpingitis, oophoritis, genital cancer, cancer of the cervix, cancer of the vulva, cancer of the vagina, vaginal dryness, dyspareunia, anal and rectal disease, anal abscess/fistula, anal cancer, anal fissure, anal warts, Crohn's disease, hemorrhoids, anal itch, pruritus ani, fecal incontinence, constipation, polyps of the colon and rectum.
31. A method of promoting the penetration of an active agent into the surface layers of the skin and mucosal membranes, comprising: apply a foamable composition to the surface layers of a stem or mucosal membrane, the foamable composition comprising:
(a) a nano oil globule system, comprising substantially of sub-micron oil globules;
(b) about 0.1% to about 5% by weight of at least one stabilizing agent, selected from the group consisting of
i. a non-ionic surfactant,
ii. an ionic surfactant, and
iii. a polymeric agent; and
(c) water;
wherein the oil, stabilizer and water are selected to provide a composition that is substantially homogenous and resistant to aging;
wherein the composition prior to addition of propellant is translucent with a blue tint;
wherein if the composition is contained in a pressurized container and further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 35% by weight of the total composition it is substantially flowable and provides a breakable foam upon release, which is thermally stable, yet breaks under sheer force; and
wherein the bubble size of the resultant foam is significantly greater than the bubble size of the resultant foam from a composition with the same ingredients which has not been subject to nano processing.
32. The method of claim 31, wherein the active agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent and a refatting agent.
33. The foamable oil in water nano emulsion composition of claim 1 for use as a medicament or in the manufacture of a medicament.
34. A method of producing a foam having improved foam bubble size comprising:
i. preparing a pre foam oil in water emulsion formulation, wherein the pre foam oil comprises (a) oil globules; (b) about 0.1% to about 5% by weight of at least one stabilizing agent selected from the group consisting of a non-ionic surfactant, an ionic surfactant, and a polymeric agent; and (c) water;
ii. subjecting the pre foam formulation to high pressure mechanical stress to produce a nano emulsion;
iii. storing the nano emulsion in a sealed pressurized container that further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition and having an outlet capable of releasing the pressurized product as a foam; and
iv. releasing the foam;
wherein the bubble size of the resultant foam is significantly greater than the bubble size of a resultant foam from the pre foam oil in water emulsion formulation stored in a sealed pressurized container that further comprises a liquefied hydrocarbon gas propellant at a concentration of about 3% to about 25% by weight of the total composition and having an outlet capable of releasing the pressurized product as a foam.
35. The method of claim 34, wherein the nano emulsion comprises oil globules having an average diameter size in the range of about 1000 nanometers to about 10 nanometers; and wherein the stabilizing agent consists of a polymeric agent.
36. The method of claim 34, wherein the resulting foam consists of sub-micron oil globules; and wherein the stabilizing agent consists of a surfactant having an HLB value or a mean HLB value between 9 and 16.
37. The method of claim 34, wherein the ratio of the surfactant to oil is high being in the range of the order of about 1:1 to about 1:10.
38. The method of claim 36, wherein the sub-micron oil globules contain at least one organic carrier selected from the group consisting of a hydrophobic organic carrier, a polar solvent, an emollient and mixtures thereof.
39. The method of claim 34, wherein the resulting foam consists of submicron oil globules which are about 50% to about 100% of the foam composition.
40. The method of claim 34, wherein the resulting foam consists of sub-micron oil globules have a number-average size range, selected from (i) 40 nm to 1,000 nm. (ii) 40 nm to 500 nm; (iii) 40 nm to 200 nm; (iv) 40 nm to 100 nm (v) less than 500 nm; (vi) less than 200 nm; and (vii) less than 100 nm.
41. The method of claim 34, wherein the pre foam further comprises about 0.1% to about 5% by weight of a foam adjuvant selected from the group consisting of a fatty alcohol having 15 or more carbons in their carbon chain; a fatty acid having 16 or more carbons in their carbon chain; fatty alcohols derived from beeswax and including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain; a fatty alcohol having at least one double bond; a fatty acid having at least one double bond; a branched fatty alcohol; a branched fatty acid; and a fatty acid substituted with a hydroxyl group and mixtures thereof.
42. The method of claim 34, wherein the pre foam is substantially alcohol-free.
43. The method of claim 34, wherein the pre foam further comprises at least one therapeutic agent.
44. The method of claim 43, wherein the therapeutic agent is selected from the group consisting of an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an steroidal antiinflammatory agent, an immunosuppressive agent, an immunomodulator, an immunoregulating agent, a hormonal agent, vitamin A, a vitamin A derivative, vitamin B, a vitamin B derivative, vitamin C, a vitamin C derivative, vitamin D, a vitamin D derivative, vitamin E, a vitamin E derivative, vitamin F, a vitamin F derivative, vitamin K, a vitamin K derivative, a wound healing agent, a disinfectant, an anesthetic, an antiallergic agent, an alpha hydroxyl acid, lactic acid, glycolic acid, a beta-hydroxy acid, a protein, a peptide, a neuropeptide, a allergen, an immunogenic substance, a haptene, an oxidizing agent, an antioxidant, a dicarboxylic acid, azelaic acid, sebacic acid, adipic acid, fumaric acid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, an anti-wrinkle agent, a radical scavenger, a metal oxide (e.g., titanium dioxide, zinc oxide, zirconium oxide, iron oxide), silicone oxide, an anti wrinkle agent, a skin whitening agent, a skin protective agent, a masking agent, an anti-wart agent, a refatting agent, a lubricating agent and mixtures thereof.
45. The method of claim 44, wherein the therapeutic agent is suitable to treat a disorder, selected from a dermatological disorder, a cosmetic disorder, a gynecological disorder, a disorder of a body cavity, wound and burn.
46. The method of claim 34, wherein the stabilizing agent is a polymeric agent selected from the group consisting of a water-soluble cellulose ether naturally-occurring polymeric material, microcrystalline cellulose, hydrophobically-modified ethoxylated urethane, and a carbomer; and wherein said water-soluble cellulose ether is selected from the group consisting of methylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (Methocel), hydroxyethyl cellulose, methylhydroxyethylcellulose, methylhydroxypropylcellulose, hydroxyethylcarboxymethylcellulose, carboxymethylcellulose, carboxymethylhydroxyethylcellulose, xanthan gum, guar gum, carrageenin gum, locust bean gum and tragacanth gum.
47. The method of claim 34, wherein the non-ionic surfactant is selected from the group consisting of steareth 2, steareth 21, ceteth-20, span 80, behenyl alcohol, glyceryl monostearate, PEG 40 stearate, polyoxyl 100 monostearate, methyl glucose seasquit stearate and polysorbate 80.
48. The method of claim 34, wherein the density of the nano emulsion is selected from the group consisting of (1) less than 0.12 g/mL; (2) the range between 0.02 and 0.12; (3) the range between 0.04 and 0.10; (4) the range between 0.06 and 0.10.
49. The method of claim 34, wherein the viscosity of the nano emulsion is selected from the group consisting of (1) between about 6000cP and about 400cP (2) between about 4000cP and about 2000cP (3) between about 200cP and about 500cP (4) between about 500cP and about 1cP.
50. The method of claim 34, wherein the viscosity of the nano emulsion is between about 500cP and about 1 cP and the foam is of good or excellent quality.
US11/975,621 2002-10-25 2007-10-19 Foam prepared from nanoemulsions and uses Abandoned US20080138296A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/975,621 US20080138296A1 (en) 2002-10-25 2007-10-19 Foam prepared from nanoemulsions and uses
US14/172,466 US9539208B2 (en) 2002-10-25 2014-02-04 Foam prepared from nanoemulsions and uses
US15/368,236 US20170231909A1 (en) 2002-10-25 2016-12-02 Foam prepared from nanoemulsions and uses

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
IL152486 2002-10-25
IL15248602A IL152486A0 (en) 2002-10-25 2002-10-25 Alcohol-free cosmetic and pharmaceutical foam carrier
US42954602P 2002-11-29 2002-11-29
US49238503P 2003-08-04 2003-08-04
PCT/IB2003/005527 WO2004037225A2 (en) 2002-10-25 2003-10-24 Cosmetic and pharmaceutical foam
US10/532,618 US20060140984A1 (en) 2002-10-25 2003-10-24 Cosmetic and pharmaceutical foam
US10/911,367 US20050069566A1 (en) 2003-08-04 2004-08-04 Foam carrier containing amphiphilic copolymeric gelling agent
US71705805P 2005-09-14 2005-09-14
US11/389,742 US20060233721A1 (en) 2002-10-25 2006-03-27 Foam containing unique oil globules
US11/975,621 US20080138296A1 (en) 2002-10-25 2007-10-19 Foam prepared from nanoemulsions and uses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/389,742 Continuation-In-Part US20060233721A1 (en) 2002-10-25 2006-03-27 Foam containing unique oil globules

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/172,466 Continuation US9539208B2 (en) 2002-10-25 2014-02-04 Foam prepared from nanoemulsions and uses

Publications (1)

Publication Number Publication Date
US20080138296A1 true US20080138296A1 (en) 2008-06-12

Family

ID=39498294

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/975,621 Abandoned US20080138296A1 (en) 2002-10-25 2007-10-19 Foam prepared from nanoemulsions and uses
US14/172,466 Expired - Lifetime US9539208B2 (en) 2002-10-25 2014-02-04 Foam prepared from nanoemulsions and uses
US15/368,236 Abandoned US20170231909A1 (en) 2002-10-25 2016-12-02 Foam prepared from nanoemulsions and uses

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/172,466 Expired - Lifetime US9539208B2 (en) 2002-10-25 2014-02-04 Foam prepared from nanoemulsions and uses
US15/368,236 Abandoned US20170231909A1 (en) 2002-10-25 2016-12-02 Foam prepared from nanoemulsions and uses

Country Status (1)

Country Link
US (3) US20080138296A1 (en)

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100048740A1 (en) * 2007-04-13 2010-02-25 Michel Mercier Naturally Derived Emulsifier System
US7700076B2 (en) 2002-10-25 2010-04-20 Foamix, Ltd. Penetrating pharmaceutical foam
US7704518B2 (en) 2003-08-04 2010-04-27 Foamix, Ltd. Foamable vehicle and pharmaceutical compositions thereof
US20100203139A1 (en) * 2008-09-26 2010-08-12 The Regents Of The University Of Michigan Nanoemulsion therapeutic compositions and methods of using the same
US7820145B2 (en) 2003-08-04 2010-10-26 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
WO2011095970A1 (en) * 2010-02-07 2011-08-11 J.P.M.E.D. Ltd. Hair follicle targeting compositions
US20110212035A1 (en) * 2010-02-26 2011-09-01 Collegium Pharmaceutical, Inc. Emollient foams for treatment of dermatoses
WO2011134722A1 (en) * 2010-04-27 2011-11-03 David Chamberlain Methods and compositions for reversibly reducing the aural sensitivity of humans and animals
US8119106B2 (en) 2003-04-28 2012-02-21 Foamix Ltd Foamable iodine compositions
US8119109B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Foamable compositions, kits and methods for hyperhidrosis
US8119150B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Non-flammable insecticide composition and uses thereof
WO2011012395A3 (en) * 2009-07-31 2012-05-24 Evonik Stockhausen Gmbh Foamable oil-water emulsion
US8263580B2 (en) 1998-09-11 2012-09-11 Stiefel Research Australia Pty Ltd Vitamin formulation
US8298515B2 (en) 2005-06-01 2012-10-30 Stiefel Research Australia Pty Ltd. Vitamin formulation
US8343945B2 (en) 2007-12-07 2013-01-01 Foamix Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US20130156823A1 (en) * 2011-12-20 2013-06-20 MAP Pharmacauticals, Inc. Excipient-free Aerosol Formulation
US8486374B2 (en) 2003-08-04 2013-07-16 Foamix Ltd. Hydrophilic, non-aqueous pharmaceutical carriers and compositions and uses
US8486376B2 (en) 2002-10-25 2013-07-16 Foamix Ltd. Moisturizing foam containing lanolin
US8512718B2 (en) 2000-07-03 2013-08-20 Foamix Ltd. Pharmaceutical composition for topical application
US8518376B2 (en) 2007-12-07 2013-08-27 Foamix Ltd. Oil-based foamable carriers and formulations
US8618081B2 (en) 2009-10-02 2013-12-31 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US8636982B2 (en) 2007-08-07 2014-01-28 Foamix Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US8709385B2 (en) 2008-01-14 2014-04-29 Foamix Ltd. Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
US8722021B2 (en) 2002-10-25 2014-05-13 Foamix Ltd. Foamable carriers
US8795693B2 (en) 2003-08-04 2014-08-05 Foamix Ltd. Compositions with modulating agents
US8795635B2 (en) 2006-11-14 2014-08-05 Foamix Ltd. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US8900554B2 (en) 2002-10-25 2014-12-02 Foamix Pharmaceuticals Ltd. Foamable composition and uses thereof
WO2014204008A1 (en) * 2013-06-18 2014-12-24 L'oreal Foam aerosol cosmetic composition
WO2015066777A1 (en) * 2013-11-08 2015-05-14 L'oreal Cosmetic compositions in the form of oil-in-water nanoemulsions, comprising solid fatty alcohol(s), liquid fatty ester(s), other oil(s) and non-ionic surfactant(s)
US9072667B2 (en) 2009-07-29 2015-07-07 Foamix Pharmaceuticals Ltd. Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses
WO2015123631A1 (en) * 2014-02-14 2015-08-20 Jingjun Huang Compositions of nanoemulsion delivery systems
US9161531B2 (en) * 2011-02-23 2015-10-20 Donald R. Korb High alcohol content sanitizer
US9167813B2 (en) 2009-07-29 2015-10-27 Foamix Pharmaceuticals Ltd. Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses
US9211259B2 (en) 2002-11-29 2015-12-15 Foamix Pharmaceuticals Ltd. Antibiotic kit and composition and uses thereof
US9265725B2 (en) 2002-10-25 2016-02-23 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US9320705B2 (en) 2002-10-25 2016-04-26 Foamix Pharmaceuticals Ltd. Sensation modifying topical composition foam
US9427605B2 (en) 2005-03-24 2016-08-30 Novan, Inc. Cosmetic treatment with nitric oxide, device for performing said treatment and manufacturing method therefor
US9439857B2 (en) 2007-11-30 2016-09-13 Foamix Pharmaceuticals Ltd. Foam containing benzoyl peroxide
US9526738B2 (en) 2009-08-21 2016-12-27 Novan, Inc. Topical gels and methods of using the same
US9539208B2 (en) 2002-10-25 2017-01-10 Foamix Pharmaceuticals Ltd. Foam prepared from nanoemulsions and uses
US9622947B2 (en) 2002-10-25 2017-04-18 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
US9668972B2 (en) 2002-10-25 2017-06-06 Foamix Pharmaceuticals Ltd. Nonsteroidal immunomodulating kit and composition and uses thereof
WO2017106399A1 (en) * 2015-12-15 2017-06-22 The Procter & Gamble Company Method of treating hair
US9757397B2 (en) 2011-07-05 2017-09-12 Novan, Inc. Methods of manufacturing topical compositions and apparatus for the same
US20170349799A1 (en) * 2014-11-07 2017-12-07 Hyundai Motor Company Phase-change material suspension fluid composition including fumed silica particles and method for preparing the same
US9849142B2 (en) 2009-10-02 2017-12-26 Foamix Pharmaceuticals Ltd. Methods for accelerated return of skin integrity and for the treatment of impetigo
US9855211B2 (en) 2013-02-28 2018-01-02 Novan, Inc. Topical compositions and methods of using the same
US9872832B2 (en) * 2015-10-23 2018-01-23 LG Bionano, LLC Nanoemulsions having reversible continuous and dispersed phases
US9884017B2 (en) 2009-04-28 2018-02-06 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US9919072B2 (en) 2009-08-21 2018-03-20 Novan, Inc. Wound dressings, methods of using the same and methods of forming the same
WO2018086790A1 (en) * 2016-11-11 2018-05-17 Beiersdorf Ag Cleaning foam containing hydroxypropyl methylcellulose and xanthan gum
US9993420B2 (en) 2014-06-16 2018-06-12 The Procter & Gamble Company Method of treating hair with a concentrated conditioner
US9993419B2 (en) 2014-06-16 2018-06-12 The Procter & Gamble Company Method of treating hair with a concentrated conditioner
US10123963B2 (en) 2014-06-16 2018-11-13 The Procter And Gamble Company Method of treating hair with a concentrated conditioner
US10124951B2 (en) 2015-12-15 2018-11-13 The Procter And Gamble Company Method of treating hair
US10137149B2 (en) 2009-12-09 2018-11-27 Oxford University Innovation Limited Particles for the treatment of cancer in combination with radiotherapy
US10206947B2 (en) 2013-08-08 2019-02-19 Novan, Inc. Topical compositions and methods of using the same
US10226483B2 (en) 2013-08-08 2019-03-12 Novan, Inc. Topical compositions and methods of using the same
US10258548B2 (en) 2015-04-23 2019-04-16 The Procter And Gamble Company Hair care conditioning composition
US10265256B2 (en) 2015-12-15 2019-04-23 The Procter And Gamble Company Method of treating hair
US10265334B2 (en) 2011-07-05 2019-04-23 Novan, Inc. Anhydrous compositions
US10265251B2 (en) 2015-12-15 2019-04-23 The Procter And Gamble Company Method of treating hair
US10285925B2 (en) 2015-12-15 2019-05-14 The Procter & Gamble Company Method of treating hair
US10294013B2 (en) 2015-12-21 2019-05-21 The Procter And Gamble Plaza Package to dispense a foaming composition
US10322081B2 (en) 2014-07-11 2019-06-18 Novan, Inc. Topical antiviral compositions and methods of using the same
US10322082B2 (en) 2014-07-11 2019-06-18 Novan, Inc. Topical antiviral compositions and methods of using the same
US10322072B2 (en) 2015-12-15 2019-06-18 The Procter And Gamble Company Method of treating hair
CN110035663A (en) * 2016-05-11 2019-07-19 拜耳医药保健有限责任公司 The heat-staple preparation for breaking into foam
US10398641B2 (en) 2016-09-08 2019-09-03 Foamix Pharmaceuticals Ltd. Compositions and methods for treating rosacea and acne
WO2019213707A1 (en) * 2018-05-11 2019-11-14 Formulytica Pty Ltd Sub-micron emulsions
AU2016226280B2 (en) * 2015-03-02 2020-06-04 Medlab Clinical U.S., Inc. Transmucosal and transdermal delivery systems
US10716740B2 (en) 2015-03-24 2020-07-21 The Procter & Gamble Company Foam compositions, aerosol products, and methods of using the same to improve sensory benefits to the skin
CN111741742A (en) * 2018-03-01 2020-10-02 莱雅公司 Sprayable compositions
US10828248B2 (en) 2016-04-22 2020-11-10 The Procter And Gamble Company Method of forming a silicone layer
US10835480B2 (en) 2016-04-22 2020-11-17 The Procter And Gamble Company Method of forming a silicone layer
US10849864B2 (en) 2015-07-28 2020-12-01 Novan, Inc. Combinations and methods for the treatment and/or prevention of fungal infections
US10912743B2 (en) 2016-03-02 2021-02-09 Novan, Inc. Compositions for treating inflammation and methods of treating the same
US10925689B2 (en) 2014-07-14 2021-02-23 Novan, Inc. Nitric oxide releasing nail coating compositions, nitric oxide releasing nail coatings, and methods of using the same
US11077194B2 (en) 2012-03-14 2021-08-03 Novan, Inc. Nitric oxide releasing pharmaceutical compositions
US11166980B2 (en) 2016-04-13 2021-11-09 Novan, Inc. Compositions, systems, kits, and methods for treating an infection
US11285171B2 (en) 2018-03-01 2022-03-29 Novan, Inc. Nitric oxide releasing suppositories and methods of use thereof
US11298517B2 (en) * 2009-11-13 2022-04-12 University Of Maryland, College Park Advanced functional biocompatible foam used as a hemostatic agent for non-compressible acute wounds
US11464724B2 (en) 2018-11-08 2022-10-11 The Procter & Gamble Company Low shear stress conditioner composition with spherical gel network vesicles
US11602493B2 (en) 2017-05-11 2023-03-14 Beiersdorf Ag Gel formulations
US11612551B2 (en) 2016-05-11 2023-03-28 Formulated Solutions, Llc Whipped formulations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233721A1 (en) * 2002-10-25 2006-10-19 Foamix Ltd. Foam containing unique oil globules
WO2015042679A1 (en) * 2013-09-26 2015-04-02 Ultrapan Ind. E Com. Ltda Nanosalt, cryogenic grinding process, aerosol and use of said aerosol
JP2022541874A (en) 2019-06-11 2022-09-28 サイファイ エス.ピー.エー. Microemulsion composition

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772427A (en) * 1952-01-18 1956-12-04 Brock & Rankin Inc Book backbone structure with concealed rivet means and method of making same
US3334147A (en) * 1962-02-28 1967-08-01 Economics Lab Defoaming and surface active compositions
US4052513A (en) * 1974-12-13 1977-10-04 Plough, Inc. Stable topical anesthetic compositions
US4178373A (en) * 1978-08-21 1979-12-11 William H. Rorer, Inc. Coal tar gel composition
US4278206A (en) * 1979-04-13 1981-07-14 Ae Development Corporation Non-pressurized dispensing system
US4933330A (en) * 1987-04-01 1990-06-12 Dak-Laboratoriet Benzoic acid derivatives and use thereof
US4965063A (en) * 1985-05-24 1990-10-23 Irene Casey Cleaner and disinfectant with dye
US5439670A (en) * 1989-11-28 1995-08-08 Riker Laboratories, Inc. Medicinal aerosol formulations
US5547989A (en) * 1994-08-19 1996-08-20 Schering-Plough Healthcare Products, Inc. Compositions for treating corns and calluses
US5560859A (en) * 1989-07-26 1996-10-01 Pfizer Inc. Post foaming gel shaving composition
US5618516A (en) * 1991-03-06 1997-04-08 Domp e Farmaceutici SpA Method of reducing subcutaneous inflammation by the topical application of a hydrophilic pharmaceutical composition containing ketoprofen lysine salt
US5648380A (en) * 1991-03-01 1997-07-15 Warner-Lambert Company Anti-inflammatory wound healing compositions and methods for preparing and using same
US5658575A (en) * 1993-09-07 1997-08-19 L'oreal Cosmetic or dermatological composition comprising an oil-in-water emulsion based on oily globules provided with a lamellar liquid crystal coating
US5693258A (en) * 1993-03-30 1997-12-02 Kao Corporation Method for improving foaming properties and foaming composition
US5719122A (en) * 1992-10-20 1998-02-17 Smithkline Beecham Farmaceutici S.P.A. Pharmaceutical compositions containing a calcitonin
US5807571A (en) * 1993-05-06 1998-09-15 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic systems for administering indole serotonin agonists
US5919830A (en) * 1998-04-30 1999-07-06 Gopalkrishnan; Sridhar Stable non-aqueous blends for personal care compositions
US6039936A (en) * 1996-11-15 2000-03-21 L'oreal Nanoemulsion based on non-ionic and cationic amphiphilic lipids and uses thereof
US6071541A (en) * 1998-07-31 2000-06-06 Murad; Howard Pharmaceutical compositions and methods for managing skin conditions
US6217887B1 (en) * 1997-06-04 2001-04-17 The Procter & Gamble Company Leave-on antimicrobial compositions which provide improved immediate germ reduction
US6261544B1 (en) * 1995-03-09 2001-07-17 Focal, Inc. Poly(hydroxy acid)/polymer conjugates for skin applications
US6270781B1 (en) * 1999-01-08 2001-08-07 Maxim Pharmaceuticals, Inc. Method and compositions for topical treatment of damaged tissue using reactive oxygen metabolite production or release inhibitors
US6355230B2 (en) * 2000-02-25 2002-03-12 Beiersdorf Ag Cosmetic and dermatological light protection formulations with a content of benzotriazole derivatives and alkyl naphthalates
US6358924B1 (en) * 1997-12-05 2002-03-19 Eli Lilly And Company GLP-1 formulations
US6395258B1 (en) * 1999-04-27 2002-05-28 Unilever Home & Personal Care Usa A Division Of Conopco, Inc. Mousse forming hair treatment composition containing n-methyl alkyl glucamide surfactant
US6451777B1 (en) * 1998-07-17 2002-09-17 The University Of Texas Southwestern Medical Center Method for regulating hair growth
US6479532B1 (en) * 1999-04-16 2002-11-12 Fujisawa Pharmaceutical Co., Ltd. Antifungal compositions
US6511655B1 (en) * 1999-08-16 2003-01-28 Beiersdorf Ag Cosmetic or dermatological preparations of the oil-in-water type
US20030108502A1 (en) * 2001-10-30 2003-06-12 The Procter & Gamble Company Anhydrous cosmetic compositions containing polyols
US6682750B2 (en) * 2001-03-03 2004-01-27 Clariant Gmbh Surfactant-free cosmetic, dermatological and pharmaceutical compositions
US6753013B1 (en) * 1999-04-23 2004-06-22 Leo Pharmaceutical Products, Ltd. A/S Pharmaceutical composition
US20040258628A1 (en) * 2001-11-14 2004-12-23 Beiersdorf Ag Self-foaming, foam-type, post-foaming or foamable cosmetic or dermatological preparations containing siloxane elastomers
US20050100517A1 (en) * 2003-11-06 2005-05-12 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Cosmetic composition
US6897195B2 (en) * 2002-07-24 2005-05-24 Nanjing Zhongshi Chemical Co. Composition of menthol and menthyl lactate, its preparation method and its applications as a cooling agent
US20050281749A1 (en) * 2004-06-17 2005-12-22 Galderma S.A. Sprayable compositions comprising a combination of pharmaceutical actives and an oily phase
US20070010580A1 (en) * 2003-05-30 2007-01-11 Gianfranco De Paoli Ambrosi Formulation for chemical peeling
US7252816B1 (en) * 2006-03-29 2007-08-07 Dow Pharmaceutical Sciences Topical acne vulgairs medication with a sunscreen
US20090053290A1 (en) * 2006-03-08 2009-02-26 Sand Bruce J Transdermal drug delivery compositions and topical compositions for application on the skin
US20100137198A1 (en) * 2000-07-03 2010-06-03 Foamix Ltd. Pharmaceutical composition for topical application
US7758888B2 (en) * 2000-04-21 2010-07-20 Sol-Gel Technologies Ltd. Composition exhibiting enhanced formulation stability and delivery of topical active ingredients
US20100221195A1 (en) * 2006-11-14 2010-09-02 Foamix Ltd. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US20110008266A1 (en) * 2008-01-14 2011-01-13 Foamix Ltd. Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
US20110045037A1 (en) * 2007-11-30 2011-02-24 Foamix Ltd. Foam containing benzoyl peroxide
US20110097279A1 (en) * 2006-11-14 2011-04-28 Foamix Ltd. Stable non-alcoholic foamable pharmaceutical emulsion compositions with an unctuous emollient and their uses
US7960416B2 (en) * 2001-08-03 2011-06-14 Takeda Pharmaceutical Company Limited Stable emulsion composition
US20110281827A1 (en) * 2009-10-02 2011-11-17 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US8114385B2 (en) * 2003-08-04 2012-02-14 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US20120064136A1 (en) * 2010-09-10 2012-03-15 Nanobio Corporation Anti-aging and wrinkle treatment methods using nanoemulsion compositions
US20120087872A1 (en) * 2009-04-28 2012-04-12 Foamix Ltd. Foamable Vehicles and Pharmaceutical Compositions Comprising Aprotic Polar Solvents and Uses Thereof
US8158109B2 (en) * 2006-03-31 2012-04-17 Stiefel Research Australia Pty Ltd Foamable suspension gel
US20120128598A1 (en) * 2005-10-24 2012-05-24 Precision Dermatology, Inc. Topical Pharmaceutical Foam Composition
US20120148503A1 (en) * 2002-10-25 2012-06-14 Dov Tamarkin Non-flammable insecticide composition and uses thereof
US20120156144A1 (en) * 2002-10-25 2012-06-21 Foamix Foamable Compositions, Kits and Methods for Hyperhidrosis
US20120181201A1 (en) * 2009-06-26 2012-07-19 Hovione Inter Limited Topical Formulation Containing a Tetracycline and a Method of Treating Skin Infections Using the Same
US20120195836A1 (en) * 2003-04-28 2012-08-02 Foamix Foamable Iodine Compositions
US20120213709A1 (en) * 2009-07-29 2012-08-23 Foamix Ltd. Non Surfactant Hydro-Alcoholic Foamable Compositions, Breakable Foams and Their Uses
US20120213710A1 (en) * 2009-07-29 2012-08-23 Foamix Ltd. Non Surface Active Agent Non Polymeric Agent Hydro-Alcoholic Foamable Compositions, Breakable Foams and Their Uses
US20120237453A1 (en) * 2002-10-25 2012-09-20 Foamix Ltd. Sensation modifying topical composition foam
US8343945B2 (en) * 2007-12-07 2013-01-01 Foamix Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US8362091B2 (en) * 2003-08-04 2013-01-29 Foamix Ltd. Foamable vehicle and pharmaceutical compositions thereof
US20130053353A1 (en) * 2010-05-04 2013-02-28 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses
US8435498B2 (en) * 2002-10-25 2013-05-07 Foamix Ltd. Penetrating pharmaceutical foam
US20130161351A1 (en) * 2010-07-12 2013-06-27 Foamix Ltd. Apparatus and method for releasing a unit dose of content from a container
US20130183250A1 (en) * 2002-10-25 2013-07-18 Foamix Ltd. Body cavity foams
US20130189195A1 (en) * 2002-10-25 2013-07-25 Foamix Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US8518376B2 (en) * 2007-12-07 2013-08-27 Foamix Ltd. Oil-based foamable carriers and formulations
US20130225536A1 (en) * 2009-10-02 2013-08-29 Foamix Ltd. Methods for Accelerated Return of Skin Integrity and for the Treatment of Impetigo
US20130295022A1 (en) * 2002-10-25 2013-11-07 Foamix Ltd. Moisturizing Foam Containing Lanolin

Family Cites Families (1060)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1159250A (en) 1914-05-01 1915-11-02 Frank Moulton Vaginal irrigator.
US1666684A (en) 1926-01-15 1928-04-17 Carstens Mfg Co H Vaginal douche
US1924972A (en) 1929-04-15 1933-08-29 Carl J Beckert Stabilized egg product
US2085733A (en) 1935-07-15 1937-07-06 John C Bird Shaving cream
US2390921A (en) 1943-03-23 1945-12-11 Ethel Hudson Clark Applicator for facial creams
US2524590A (en) 1946-04-22 1950-10-03 Carsten F Boe Emulsion containing a liquefied propellant gas under pressure and method of spraying same
US2586287A (en) 1948-12-11 1952-02-19 Colagte Palmolive Peet Company Aluminum sulfamate antiperspirant preparation
US2617754A (en) 1949-08-29 1952-11-11 Procter & Gamble Cosmetic cream
US3062715A (en) 1953-11-18 1962-11-06 George S Pfaus Vaginal tablet
US2767712A (en) 1954-03-01 1956-10-23 Neil S Waterman Medicinal applicator
GB808104A (en) 1955-01-04 1959-01-28 Udylite Res Corp Electrodeposition of copper from aqueous alkaline cyanide solutions
GB808105A (en) 1956-06-15 1959-01-28 Ici Ltd New pharmaceutical compositions
US3092555A (en) 1958-04-21 1963-06-04 Roy H Horn Relatively collapsible aerosol foam compositions
US3144386A (en) 1958-05-09 1964-08-11 Merck & Co Inc Mastitis aerosol foam
US2968628A (en) 1958-10-17 1961-01-17 Shulton Inc Propellant composition
US3178352A (en) 1959-02-27 1965-04-13 Erickson Roy Shaving method and composition therefor
US3141821A (en) 1959-03-17 1964-07-21 Lehn & Fink Products Corp Synergistic combination of alkyl sulfonates, alkylaryl sulfonates and topical antibacterial agents for local antisepsis
US3004894A (en) 1959-04-07 1961-10-17 Upjohn Co Therapeutic composition comprising tetracycline and a dioxolane
GB922930A (en) 1959-09-21 1963-04-03 Sunnen Joseph Spermicidal composition and method of making same
US3142420A (en) 1959-11-09 1964-07-28 Neotechnic Eng Ltd Metering dispenser for aerosol with fluid pressure operated piston
US3092255A (en) 1960-02-05 1963-06-04 Robert F Hohman Sorting apparatus
US3067784A (en) 1960-04-14 1962-12-11 Esta Medical Lab Inc Adapter connecting aerosol container valve stem to dispenser for filling said dispenser
NL270627A (en) 1960-10-26
US3154075A (en) 1960-11-02 1964-10-27 Norwich Pharma Co Vaginal applicator
GB998490A (en) 1961-06-03 1965-07-14 Albert Fritz Albach A foam projector
DE1926796U (en) 1961-10-12 1965-11-11 Heidolph Elektro K G FAN.
US3261695A (en) 1962-12-24 1966-07-19 Gen Foods Corp Process for preparing dehydrated foods
US3330730A (en) 1962-08-03 1967-07-11 Colgate Palmolive Co Pressurized emulsion quick breaking foam compositions
US3252859A (en) 1962-10-24 1966-05-24 Masti Kure Company Inc Colloidal silica-oil composition and method of using same
US3244589A (en) 1962-10-26 1966-04-05 Sunnen Alkyl phenoxy polyethoxy ether spermicidal aerosol
US3298919A (en) 1962-12-26 1967-01-17 Dow Corning Shaving cream containing polysiloxanes
US3383280A (en) 1963-01-09 1968-05-14 Miles Lab Dermatological abradant stick-type applicator
FR1355607A (en) 1963-01-22 1964-03-20 Improvements to cannula probes and their applications
US3149543A (en) 1963-03-04 1964-09-22 Ingersoll Rand Co Non-lubricated piston
GB1026831A (en) 1963-05-31 1966-04-20 Mediline Ag Preparations for use in feminine hygiene
US3824303A (en) 1963-07-24 1974-07-16 Yardley Of London Inc Collapsible foam pre-electric shave lotion containing diester lubricants
GB1081949A (en) 1963-08-12 1967-09-06 Avon Prod Inc Improvements in cosmetic mask
US3333333A (en) 1963-08-14 1967-08-01 Rca Corp Method of making magnetic material with pattern of embedded non-magnetic material
US3236457A (en) 1963-08-21 1966-02-22 John R Kennedy Composite spray container assembly
US3263867A (en) 1963-12-26 1966-08-02 Valve Corp Of America Metering button-type aerosol actuator
US3395214A (en) 1964-01-09 1968-07-30 Scholl Mfg Co Inc Antiperspirant composition providing a readily collapsible sprayable foam
US3278093A (en) 1964-01-13 1966-10-11 Valve Corp Of America Metering and non-metering aerosol actuator button
GB1052724A (en) 1964-04-27
US3303970A (en) 1964-07-14 1967-02-14 Jerome Marrow Device for simultaneously dispensing from plural sources
US3395215A (en) 1964-10-15 1968-07-30 Colgate Palmolive Co Pressurized lotion composition
US3384541A (en) 1964-10-28 1968-05-21 William G. Clark Spermicidal vaginal pharmaceutical concentrate for producing nonaqueous foam with aerosol propellants
US3263869A (en) 1964-11-03 1966-08-02 Calmar Inc Liquid dispenser with overcap
US3342845A (en) 1964-11-05 1967-09-19 Upjohn Co Terphenyl triisocyanates
US3419658A (en) 1965-01-25 1968-12-31 Du Pont Nonaqueous aerosol foams containing mineral oil
US3346451A (en) 1965-01-27 1967-10-10 S E Massengill Company Concentrated liquid lactic acid douche preparation containing aromatics
US3301444A (en) 1965-08-12 1967-01-31 Oel Inc Aerosol metering valve
US3456052A (en) 1965-09-28 1969-07-15 Garrett Lab Inc Aerosol composition containing butoxymonoether of a polyoxyalkylene glycol
GB1121358A (en) 1965-10-21 1968-07-24 Bristol Myers Co Aerosol manufacture
US3849569A (en) 1965-12-02 1974-11-19 Glaxo Lab Ltd Composition containing procaine penicillin
BE692228A (en) 1966-01-10 1967-07-05
US3401849A (en) 1966-05-24 1968-09-17 Robert L. Weber Low force metering valve
US3886084A (en) 1966-09-29 1975-05-27 Champion Int Corp Microencapsulation system
US3377004A (en) 1966-10-03 1968-04-09 Gen Mills Inc Metered dispensing container
GB1201918A (en) 1966-12-21 1970-08-12 Bespak Industries Ltd Improvements in or relating to valves for pressurised dispensers
US3527559A (en) 1967-01-05 1970-09-08 Standard Pharmacal Corp Dense aqueous aerosol foam depilatory compositions containing a mixture of alkaline metal and alkali metal thioglycolates and a fatty alcohol-alkylene oxide wax emulsifying agent
US3366494A (en) 1967-02-15 1968-01-30 Du Pont Pressurized aerosol food emulsions
US3561262A (en) 1967-10-26 1971-02-09 Magnaflux Corp Water soluble developer
US3540448A (en) 1968-01-17 1970-11-17 Joseph Sunnen Rechargeable applicator for dispensing substances in a foam condition
US3563098A (en) 1968-06-28 1971-02-16 Rex Chainbelt Inc Automatic quick release mechanism
US3559890A (en) 1968-09-03 1971-02-02 William R Brooks Foam dispenser
US3878118A (en) 1968-09-06 1975-04-15 Wilkinson Sword Ltd Self-heating chemical compositions
US3667461A (en) 1968-11-05 1972-06-06 Paul A Zamarra Disposable syringe
CA975500A (en) 1969-02-06 1975-09-30 Joseph G. Spitzer Structures such as applicator pads for cleaning and other purposes, propellant compositions for forming the same, and process
US3866800A (en) 1969-02-12 1975-02-18 Alberto Culver Co Non-pressurized package containing self-heating products
US3966090A (en) 1969-02-17 1976-06-29 Dart Industries Inc. Package for dispensing an antiseptic composition
US4001391A (en) 1969-04-18 1977-01-04 Plough, Inc. Means for depositing aerosol sprays in buttery form
US3819524A (en) 1969-06-17 1974-06-25 Colgate Palmolive Co Cosmetic composition for thermal dispensing
US3577518A (en) 1969-07-18 1971-05-04 Nat Patent Dev Corp Hydrophilic hairspray and hair setting preparations
US3787566A (en) 1969-07-29 1974-01-22 Holliston Labor Inc Disinfecting aerosol compositions
BE759520A (en) 1969-11-28 1971-04-30 Aspro Nicholas Ltd ASPIRIN COMPOSITIONS
GB1351761A (en) 1971-02-04 1974-05-01 Wilkinson Sword Ltd Substituted p-menthane carboxamides and compositions containing them
GB1353381A (en) 1971-02-04 1974-05-15 Wilkinson Sword Ltd Substituted p-menthanes and compositions containing them
GB1351762A (en) 1971-02-14 1974-05-01 Wilkinson Sword Ltd Tobacco and tobacco-containing manufactures
CA958338A (en) 1971-03-08 1974-11-26 Chung T. Shin Antiperspirant powder aerosol compositions containing aluminum chloride and water soluble aluminum compounds and methods of preparation
US3770648A (en) 1971-07-12 1973-11-06 Bristol Myers Co Anhydrous aerosol foam
US3912667A (en) 1971-09-13 1975-10-14 Spitzer Joseph G Structures such as applicator pads for cleaning and other purposes, propellant compositions for forming the same and process
BE788788A (en) 1971-09-13 1973-03-13 Treuhandvereinigung Ag PRODUCT FOR PRESERVING, PROMOTING AND RESTORING HAIR AND METHOD OF MANUFACTURING THIS PRODUCT
US3997467A (en) 1971-11-26 1976-12-14 Pharmacia Aktiebolag Foam forming composition
SE358308B (en) 1971-11-26 1973-07-30 Pharmacia Ab
CH569128B5 (en) 1971-12-30 1975-11-14 Ciba Geigy Ag
US3963833A (en) 1972-06-02 1976-06-15 Colgate-Palmolive Company Antiperspirant composition and method containing a dihydro-benzofuran and an astringent metal salt
US3841525A (en) 1972-06-14 1974-10-15 N Siegel Aerosol spray device with cam activator
US3849580A (en) 1972-09-05 1974-11-19 American Home Prod Aerosol dispensing system for anhydrous edible fat compositions
US3751562A (en) 1972-09-22 1973-08-07 Princeton Biomedix Medicated gelled oils
US3970584A (en) 1973-02-14 1976-07-20 S. C. Johnson & Son, Inc. Aerosol package containing a foam-forming emulsion and propellent system
US4439416A (en) 1973-03-23 1984-03-27 Colgate-Palmolive Company Self-heating shaving composition
GB1423179A (en) 1973-05-16 1976-01-28 Wilkinson Sword Ltd Pressurised shaving foam dispensers
YU36328B (en) 1973-07-18 1983-06-30 Elastin Werk Ag Method of manufacturing red foils for packing sausages
US4110426A (en) 1973-07-24 1978-08-29 Colgate-Palmolive Company Method of treating skin and hair with a self-heated cosmetic
US3865275A (en) 1973-07-30 1975-02-11 Raymond Lee Organization Inc Apparatus for operating an aerosol can
US3929985A (en) 1974-01-18 1975-12-30 Richardson Merrell Inc Anhydrous candicidin foam compositions
DE2501548A1 (en) 1974-01-25 1975-07-31 Procter & Gamble ORAL TREATMENT PRODUCTS
GB1457671A (en) 1974-01-31 1976-12-08 Wilkinson Sword Ltd Flavour
US3923970A (en) 1974-03-29 1975-12-02 Carter Wallace Stable aerosol shaving foams containing mineral oil
US3962150A (en) 1974-04-10 1976-06-08 Richardson-Merrell Inc. Foam producing cleansing compositions
US3953591A (en) 1974-04-29 1976-04-27 The Procter & Gamble Company Fatty acid, polysiloxane and water-soluble polymer containing skin conditioning emulsion
US3966632A (en) 1974-06-06 1976-06-29 G. D. Searle & Co. Vegetable oil emulsion
US4145411A (en) 1974-09-05 1979-03-20 Colgate-Palmolive Company Pressurized foaming shaving composition
JPS5729213B2 (en) 1974-11-12 1982-06-21
US3952916A (en) 1975-01-06 1976-04-27 Warner-Lambert Company Automatic dispenser for periodically actuating an aerosol container
US3970219A (en) 1975-03-03 1976-07-20 Spitzer Joseph G Aerosol containers for foaming and delivering aerosols and process
US4019657A (en) 1975-03-03 1977-04-26 Spitzer Joseph G Aerosol containers for foaming and delivering aerosols
US4018396A (en) 1975-05-05 1977-04-19 Bechtel International Corporation Embedded housing for ore crusher
US3993224A (en) 1975-09-08 1976-11-23 Aerosol Investments, Ltd. Spout for two-component resin dispenser
DE2608226A1 (en) 1976-02-28 1977-09-08 Haarmann & Reimer Gmbh AGENTS WITH PHYSIOLOGICAL COOLING EFFECT
US4102995A (en) 1976-05-13 1978-07-25 Westwood Pharmaceuticals Inc. Tar gel formulation
US4124149A (en) 1976-07-19 1978-11-07 Spitzer Joseph G Aerosol container with position-sensitive shut-off valve
CA1089368A (en) 1976-08-02 1980-11-11 Daniel C. Geary Polyethoxylated fatty alcohol in antiperspirant sticks
IL52045A (en) 1976-08-25 1979-12-30 Mundipharma Ag Sprayable germicidal foam compositions
US4310510A (en) 1976-12-27 1982-01-12 Sherman Kenneth N Self administrable anti-fertility composition
US4252787A (en) 1976-12-27 1981-02-24 Cambridge Research And Development Group Anti-fertility composition and method
US4083974A (en) 1977-03-07 1978-04-11 The Upjohn Company Topical steroidal anti-inflammatory preparations containing polyoxypropylene 15 stearyl ether
JPS5744429Y2 (en) 1977-04-14 1982-10-01
IT1114950B (en) 1977-12-30 1986-02-03 Porro Marcella COMPOSITIONS FOR ACNE TREATMENT AND THERAPY
US4386104A (en) 1977-04-19 1983-05-31 Nazzaro Porro Marcella Process for the treatment of acne
GB2004746B (en) 1977-10-03 1982-03-10 Scherico Ltd Stable hopical anaesthetic compositions
JPS5639815Y2 (en) 1977-11-25 1981-09-17
SE7713618L (en) 1977-12-01 1979-06-02 Astra Laekemedel Ab LOCAL ANESTHETIC MIXTURE
US4160827A (en) 1978-02-06 1979-07-10 The Upjohn Company Metronidazole phosphate and salts
US4229432A (en) 1978-04-19 1980-10-21 Bristol-Myers Company Antiperspirant stick composition
US4603812A (en) 1978-06-27 1986-08-05 The Dow Chemical Company Foam-generating pump sprayer
US4214000A (en) 1978-10-30 1980-07-22 Johnson & Johnson Zinc salt of all-trans-retinoic acid for the treatment of acne
JPS5569682U (en) 1978-11-08 1980-05-13
US4213979A (en) 1978-12-18 1980-07-22 Plough, Inc. Stable sprayable hydrocortisone product
US4954487A (en) 1979-01-08 1990-09-04 The Procter & Gamble Company Penetrating topical pharmaceutical compositions
US4439441A (en) 1979-01-11 1984-03-27 Syntex (U.S.A.) Inc. Contraceptive compositions and methods employing 1-substituted imidazole derivatives
US4226344A (en) 1979-02-06 1980-10-07 Booth, Inc. Constant flow valve actuator
CH639913A5 (en) 1979-03-16 1983-12-15 Aerosol Service Ag Container for receiving and delivering a liquid substance
US4335120A (en) 1979-03-21 1982-06-15 Hoffmann-La Roche Inc. Administration of biologically active vitamin D3 and vitamin D2 materials
US4230701A (en) 1979-03-21 1980-10-28 Hoffmann-La Roche Inc. Administration of biologically active vitamin D3 and vitamin D2 materials
US4241048A (en) 1979-05-01 1980-12-23 Bristol-Myers Company Suspension composition of benzocaine
JPS55153712A (en) 1979-05-18 1980-11-29 Kao Corp Insulin pharmaceutical preparation and its production
US4268499A (en) 1979-06-07 1981-05-19 Dow Corning Corporation Antiperspirant emulsion compositions
US4241149A (en) 1979-07-20 1980-12-23 Temple University Canal clathrate complex solid electrolyte cell
DE2931469A1 (en) 1979-08-02 1981-02-26 Bayer Ag SURFACE SEALED MOLDED BODIES MADE OF CELLED POLYURETHANE ELASTOMERS AND METHOD FOR THE PRODUCTION THEREOF
US4271149A (en) 1979-09-21 1981-06-02 West Agro-Chemical, Inc. Germicidal iodine compositions with enhanced iodine stability
US4299826A (en) 1979-10-12 1981-11-10 The Procter & Gamble Company Anti-acne composition
EP0032309A3 (en) 1980-01-10 1981-08-05 Imperial Chemical Industries Plc Production of catalyst component, catalyst and use thereof
US4309995A (en) 1980-01-28 1982-01-12 Sacco Susan M Vaginal irrigation apparatus
JPS56135416A (en) 1980-03-27 1981-10-22 Mitsubishi Chem Ind Ltd Pharmaceutical preparation for skin
SE8004580L (en) 1980-06-19 1981-12-20 Draco Ab PHARMACEUTICAL PREPARATION
US4338211A (en) 1980-06-30 1982-07-06 The Procter & Gamble Company Liquid surfactant skin cleanser with lather boosters
US4508705A (en) 1980-07-02 1985-04-02 Lever Brothers Company Skin treatment composition
US4323582A (en) 1980-07-21 1982-04-06 Siegel Norman H Method of treating animals and humans for internal and external parasites
JPS601113Y2 (en) 1980-07-22 1985-01-12 三菱電機株式会社 Round lighting equipment packaging
US4329990A (en) 1980-08-07 1982-05-18 Sneider Vincent R Expanding swab applicator
US4325939A (en) 1980-09-22 1982-04-20 Richardson-Vicks Inc. Zinc derivatives and their use in dental compositions
US4305936A (en) 1980-10-09 1981-12-15 Dermik Laboratories Topical corticosteroid formulations
US4292250A (en) 1980-11-17 1981-09-29 Wisconsin Alumni Research Foundation Vitamin D derivatives
DE3176215D1 (en) 1980-11-19 1987-07-02 Procter & Gamble Non-yellowing topical pharmaceutical composition
JPS57501845A (en) 1980-11-27 1982-10-14
DE3147726A1 (en) 1980-12-03 1982-06-24 Leo Pharmaceutical Products Ltd. A/S (Loevens kemiske Fabrik Produktionsaktieselskab), 2750 Ballerup ANTIBIOTIC COMPLEXES, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENTS THAT CONTAIN THESE COMPOUNDS
US4352808A (en) 1980-12-12 1982-10-05 Schering Corporation 3-Aralkyloxy-2,3-dihydro-2-(imidazolylmethyl)benzo(b)thiophenes and related derivatives, their use as antimicrobials and pharmaceutical formulations useful therefore
US4323694A (en) 1981-04-13 1982-04-06 Finetex, Inc. Benzoic acid esters
US4522948A (en) 1981-04-24 1985-06-11 Syntex (U.S.A.) Inc. Spermicidal substituted 1-(cycloalkyl)alkylimidazoles
US4393066A (en) 1981-06-05 1983-07-12 Garrett David M Method for treatment of herpetic lesions
US4607101A (en) 1981-08-27 1986-08-19 Jaye-Boern Laboratories, Inc. Method of treating acne vulgaris with a composition containing carbamide peroxide
US4877805A (en) 1985-07-26 1989-10-31 Kligman Albert M Methods for treatment of sundamaged human skin with retinoids
US4469674A (en) 1981-09-03 1984-09-04 Richardson-Vicks Inc. Stable oral compositions containing zinc and fluoride compounds
US4440320A (en) 1981-11-30 1984-04-03 Wernicke Steven A Foam dispensing apparatus
LU83876A1 (en) 1982-01-15 1983-09-02 Oreal COSMETIC COMPOSITION FOR TREATMENT OF KERATINIC FIBERS AND METHOD FOR TREATING THE SAME
LU83949A1 (en) 1982-02-16 1983-09-02 Oreal COMPOSITION FOR THE TREATMENT OF KERATINIC MATERIALS CONTAINING AT LEAST ONE CATIONIC POLYMER AND AT LEAST ONE ANIONIC LATEX
US5087618A (en) 1982-05-18 1992-02-11 University Of Florida Redox carriers for brain-specific drug delivery
US4529605A (en) 1983-01-12 1985-07-16 Una E. Lynch Bathing oil composition
US4661340A (en) 1983-06-06 1987-04-28 Interkemia Vegyipari Gazdasagi Tarsasag Quail egg based stabilized foam compositions for cosmetic purposes
GB8315787D0 (en) 1983-06-08 1983-07-13 Briggs J H Coolant spray
US4552872A (en) 1983-06-21 1985-11-12 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing corticosteroids
GB8330969D0 (en) 1983-11-21 1983-12-29 Wellcome Found Promoting healing
GB8402748D0 (en) 1984-02-02 1984-03-07 Dunlop Ltd Intravaginal device
US4985459A (en) 1984-02-08 1991-01-15 Richardson-Vicks, Inc. Analgesic and anti-inflammatory compositions comprising diphenhydramine and methods of using same
US4912124A (en) 1984-02-23 1990-03-27 Ortho Pharmaceutical Corporation Antifungal dermatological solution
NZ207341A (en) 1984-03-01 1988-02-29 Harvey Alex Ind Ltd Device containing chemical impregnants for insertion into a body cavity of an animal
US4628063A (en) 1984-03-08 1986-12-09 Dana P. Brigham Antiviral pharmaceutical preparations and methods for their use
US4574052A (en) 1984-05-31 1986-03-04 Richardson-Vicks Inc. Crackling aerosol foam
GB8416638D0 (en) 1984-06-29 1984-08-01 Beecham Group Plc Topical treatment and composition
EP0172139B1 (en) 1984-08-06 1988-09-14 Ciba-Geigy Ag Process for paper sizing with anionic hydrophobic sizing agents and cationic retention agents
US4595526A (en) 1984-09-28 1986-06-17 Colgate-Palmolive Company High foaming nonionic surfacant based liquid detergent
SE8404895L (en) 1984-10-01 1986-03-17 Torkel Ingemar Fischer MEANS OF A SENSITIVITY TEST
IE58110B1 (en) 1984-10-30 1993-07-14 Elan Corp Plc Controlled release powder and process for its preparation
CA1261276A (en) 1984-11-09 1989-09-26 Mark B. Grote Shampoo compositions
US4701320A (en) 1984-11-29 1987-10-20 Lederle (Japan), Ltd. Composition stably containing minocycline for treating periodontal diseases
US4627973A (en) 1984-12-14 1986-12-09 Charles Of The Ritz Group Ltd. Skin mousse
AU5078885A (en) 1984-12-20 1986-06-26 Warner-Lambert Company Non-irritant detergent
US4673569A (en) 1985-02-12 1987-06-16 Faberge Incorporated Mousse hair composition
DE3670569D1 (en) 1985-03-01 1990-05-31 Procter & Gamble Mild cleaning foam.
US5002680A (en) 1985-03-01 1991-03-26 The Procter & Gamble Company Mild skin cleansing aerosol mousse with skin feel and moisturization benefits
US4752465A (en) 1985-09-20 1988-06-21 Product Resources International, Inc. Aerosol foam
WO1986005389A1 (en) 1985-03-18 1986-09-25 Product Resources International, Inc. Exothermic stable foam compositions
US4639367A (en) 1985-03-18 1987-01-27 Product Resources International, Inc. Aerosol foam
US5094853A (en) 1985-04-26 1992-03-10 S. C. Johnson & Son, Inc. Method of preparing a water-soluble stable arthropodicidally-active foam matrix
DE3521713A1 (en) 1985-06-18 1986-12-18 Henkel KGaA, 4000 Düsseldorf OIL-IN-WATER EMULSIONS WITH IMPROVED VISCOSITY BEHAVIOR
US4672078A (en) 1985-07-03 1987-06-09 Schering-Plough Corporation Urea stabilized with a lactone in various pharmaceutical and cosmetic preparations
GB8519426D0 (en) 1985-08-01 1985-09-04 Ici Plc Composition for personal care products
US4806262A (en) 1985-08-14 1989-02-21 The Procter & Gamble Company Nonlathering cleansing mousse with skin conditioning benefits
EP0213827A3 (en) 1985-08-14 1988-04-06 The Procter & Gamble Company Nonfoaming cleansing mousse with skin conditioning benefits
AU6175586A (en) 1985-09-11 1987-03-12 Chesebrough-Pond's Inc. Petroleum jelly, mild detergent anhydrous base compositions
FR2591331A1 (en) 1985-12-10 1987-06-12 Drevet Jean Baptiste Device for dispensing metered portions of a product contained in a pressurised receptacle
US4837378A (en) 1986-01-15 1989-06-06 Curatek Pharmaceuticals, Inc. Topical metronidazole formulations and therapeutic uses thereof
GB8607570D0 (en) 1986-03-26 1986-04-30 Euro Celtique Sa Vaginal pharmaceutical preparation
JPS62241701A (en) 1986-04-11 1987-10-22 Maeda Kogyo Kk Quick releasing device for hub for bicycle
CA1291036C (en) 1986-04-23 1991-10-22 Edwin I. Stoltz Nasal administration of drugs
DE3614515A1 (en) 1986-04-29 1987-11-05 Pfeiffer Erich Gmbh & Co Kg DISCHARGE DEVICE FOR MEDIA
FR2598392B1 (en) 1986-05-09 1988-08-26 Oreal PACKAGING FOR TWO PRESSURIZED CONTAINERS
PH25150A (en) 1986-06-05 1991-03-13 Ciba Geigy Ag Novel pharmaceutical preparation for topical application
US4770634A (en) 1986-06-11 1988-09-13 Pellico Michael A Method for treating teeth with foamable fluoride compositions
JPS62299423A (en) 1986-06-18 1987-12-26 Mazda Motor Corp Air-conditioner for vehicle
US4837019A (en) 1986-08-11 1989-06-06 Charles Of The Ritz Group Ltd. Skin treatment composition and method for treating burned skin
US4906453A (en) 1986-08-12 1990-03-06 Jumpeer Nails, Inc. Mousse product
DE3628531A1 (en) 1986-08-22 1988-02-25 Merz & Co Gmbh & Co FOAMABLE CREAMS
WO1988001502A1 (en) 1986-09-05 1988-03-10 The Upjohn Company Sebum-dissolving nonaqueous minoxidil formulation
AU8025787A (en) 1986-09-12 1988-04-07 Upjohn Company, The Foams for delivery of minoxidil
EP0270316A3 (en) 1986-12-04 1989-12-06 Pfizer Inc. Topical compositions comprising 1-substituted imidazoles and nsaids for treatment of acne
US4822613A (en) 1986-12-15 1989-04-18 S. C. Johnson & Son, Inc. Water-soluble foamable insecticidally-active compositions
US4822614A (en) 1986-12-19 1989-04-18 S. C. Johnson & Son, Inc. Bioactive film-forming composition for control of crawling insects and the like
US5389677B1 (en) 1986-12-23 1997-07-15 Tristrata Inc Method of treating wrinkles using glycalic acid
US4863900A (en) 1987-01-15 1989-09-05 The Research Foundation Of State University Of New York Method for reducing viral transmission with poly-L-histidine
JPS63119420U (en) 1987-01-30 1988-08-02
DE3704907A1 (en) 1987-02-17 1988-08-25 Bayer Ag TOPICALLY APPLICABLE PREPARATIONS OF GYRASE INHIBITORS IN COMBINATION WITH CORTICOSTEROIDS
US4828837A (en) 1987-03-30 1989-05-09 Liposome Technology, Inc. Non-crystalline minoxidil composition, its production and application
LU86839A1 (en) * 1987-04-10 1988-12-13 Oreal DETERGENT AND FOAMING COSMETIC COMPOSITION, DELAYING RE-LUBRICATION OF HAIR
WO1988008316A1 (en) 1987-04-21 1988-11-03 Chattan Nominees Pty. Ltd. Vaginal douche
FR2615173B1 (en) 1987-05-13 1989-08-18 Valois DOSING VALVE FOR LIQUID LOADED WITH A LIQUID OR LIQUEFIED GAS PROPELLER, FOR USE IN THE REVERSE POSITION
US4867967A (en) 1987-06-04 1989-09-19 Crutcher Wilbert L Method for the treatment of pseudofolliculitis barbae
US4780309A (en) 1987-06-16 1988-10-25 Warner-Lambert Company Edible aerosol foam compositions and method of preparing same
US4849117A (en) 1987-06-17 1989-07-18 Sanitek Products, Inc. Concentrated composition for forming an aqueous foam
US4885282A (en) 1987-07-02 1989-12-05 Thornfeldt Carl R Treatment of hyperhidrosis, ichthyosis and wrinkling
US4898246A (en) 1987-07-06 1990-02-06 Total Walther Feuerschutz Gmbh Quick release valve for sprinkler head
US5196405A (en) 1987-07-08 1993-03-23 Norman H. Oskman Compositions and methods of treating hemorrhoids and wounds
US4847068A (en) 1987-08-06 1989-07-11 Johnson & Johnson Consumer Products, Inc. Skin care compositions
US4913893A (en) 1987-08-28 1990-04-03 Clairol Incorporated Aerosol hair setting composition containing an alginate
CA1273576A (en) 1987-09-16 1990-09-04 Patrick A. Beauchamp Topical treatment for diseased skin disorders
JPH0451958Y2 (en) 1987-09-22 1992-12-07
US4981677A (en) 1987-09-23 1991-01-01 L'oreal Petrolatum-containing aerosol foam concentrate
US4784842A (en) 1987-09-25 1988-11-15 Jean London Therapeutic composition for treatment of cuts, burns and abrasions
US4772427A (en) 1987-12-01 1988-09-20 Colgate-Palmolive Co. Post-foaming gel shower product
US5143717A (en) 1987-12-30 1992-09-01 Code Blue Medical Corporation Burn foam and delivery system
ES2037385T3 (en) 1988-01-14 1993-06-16 Akzo N.V. A MANUFACTURING PROCEDURE OF A PHARMACEUTICAL PREPARATION FOR LOCAL ADMINISTRATION.
US5536743A (en) 1988-01-15 1996-07-16 Curatek Pharmaceuticals Limited Partnership Intravaginal treatment of vaginal infections with buffered metronidazole compositions
JP2643217B2 (en) 1988-01-22 1997-08-20 エーザイ株式会社 Aqueous liquid of fat-soluble substance
US5719197A (en) 1988-03-04 1998-02-17 Noven Pharmaceuticals, Inc. Compositions and methods for topical administration of pharmaceutically active agents
US4897262A (en) 1988-03-22 1990-01-30 Playtex Jhirmack, Inc. Non-aerosol hair spray composition
DE3811081A1 (en) 1988-03-30 1989-10-12 Schering Ag USE OF TOPIC APPLICABLE PREPARATIONS FOR THE TREATMENT OF AGING SKIN
LU87187A1 (en) 1988-03-31 1989-10-26 Oreal COMBINATION OF PYRIMIDINE DERIVATIVES AND SALICYLIC ACID DERIVATIVES FOR INDUCING AND STIMULATING HAIR GROWTH AND REDUCING HAIR LOSS
US4992478A (en) 1988-04-04 1991-02-12 Warner-Lambert Company Antiinflammatory skin moisturizing composition and method of preparing same
US4873078A (en) 1988-04-22 1989-10-10 Plough, Inc. High-gloss, high-shine lipstick
GB8811409D0 (en) 1988-05-13 1988-06-15 Unilever Plc Cosmetic composition
US5378730A (en) 1988-06-09 1995-01-03 Alza Corporation Permeation enhancer comprising ethanol and monoglycerides
US4827378A (en) 1988-06-15 1989-05-02 Rockwell International Corporation Jack coaxial connector EMI shielding apparatus
US5217707A (en) 1988-06-16 1993-06-08 Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara Rt. Pharmaceutical composition and process for the preparation thereof
US4879083A (en) 1988-06-17 1989-11-07 Macmillan Bloedel Limited Chemically treated wood particle board
US4902281A (en) 1988-08-16 1990-02-20 Corus Medical Corporation Fibrinogen dispensing kit
US4950420A (en) 1988-08-31 1990-08-21 Nalco Chemical Company Antifoam/defoamer composition
US4855294A (en) 1988-09-06 1989-08-08 Theratech, Inc. Method for reducing skin irritation associated with drug/penetration enhancer compositions
GB8821129D0 (en) 1988-09-09 1988-10-12 Unilever Plc Cosmetic composition
US5135915A (en) 1988-10-14 1992-08-04 Genentech, Inc. Method for the treatment of grafts prior to transplantation using TGF-.beta.
US5186857A (en) 1988-11-14 1993-02-16 Imaginative Research Associates, Inc. Self-foaming oil compositions and process for making and using same
GB8828013D0 (en) 1988-12-01 1989-01-05 Unilever Plc Topical composition
US4970067A (en) 1988-12-12 1990-11-13 Helene Curtis, Inc. Method and composition to condition hair and impart semi-permanent hair set retention properties
US5262407A (en) 1988-12-16 1993-11-16 L'oreal Use of salicylic derivatives for the treatment of skin aging
FR2640942A1 (en) 1988-12-23 1990-06-29 Suchard Sa Jacobs Container of the aerosol type for delivering, in the form of a foam, metered quantities of product, particularly of food product
ES2052879T3 (en) 1988-12-27 1994-07-16 Osaka Shipbuilding AEROSOL COMPOSITION.
FR2641185B1 (en) 1988-12-29 1991-04-05 Oreal SHAVING COMPOSITION FOR THE SKIN BASED ON ACYLOXYALKYL FUNCTIONAL POLYORGANOSILOXANES AND METHOD FOR IMPLEMENTING SAME
LU87449A1 (en) 1989-02-09 1990-09-19 Oreal PROCESS FOR THE MANUFACTURE OF FOAMS FOR USE IN THE COSMETIC AND PHARMACEUTICAL AREAS AND FOAMS OBTAINED BY THIS PROCESS
US4919934A (en) 1989-03-02 1990-04-24 Richardson-Vicks Inc. Cosmetic sticks
US4996193A (en) 1989-03-03 1991-02-26 The Regents Of The University Of California Combined topical and systemic method of administration of cyclosporine
US5019375A (en) 1989-03-14 1991-05-28 The Procter & Gamble Company Low residue antiperspirant creams
CA2028811C (en) 1989-03-17 1998-12-29 Toshimitsu Seki Aerosol preparation for external use
US5221696A (en) 1989-03-29 1993-06-22 Alcon Laboratories, Inc. Use of monoacyl phosphoglycerides to enhance the corneal penetration of ophthalmic drugs
DE69020211T2 (en) 1989-04-05 1995-11-02 Kao Corp Cosmetic double emulsion composition.
US5071648A (en) 1989-04-06 1991-12-10 Merocel Corporation Polymeric broad-spectrum antimicrobial materials
US5204093A (en) 1989-04-06 1993-04-20 Victor Steven A Shaving cream composition for the treatment of acne vulgaris and pseudofolliculitis barbae and method of producing and using same
US5618798A (en) 1989-04-20 1997-04-08 Bar-Shalom; Daniel Use of sucralfate to treat baldness
GB8909559D0 (en) 1989-04-26 1989-06-14 Smith Kline French Lab Pharmaceutical compositions
US4874794A (en) 1989-04-28 1989-10-17 Lidak Biopharmaceuticals Inflammatory disease treatment
US5322683A (en) 1989-05-01 1994-06-21 Leonard Mackles Anhydrous aerosol foam
US5002540A (en) 1989-05-22 1991-03-26 Warren Kirschbaum Intravaginal device and method for delivering a medicament
GB8911853D0 (en) 1989-05-23 1989-07-12 Ici Plc Co2 blown integral skin foams
US5208031A (en) 1989-06-06 1993-05-04 Kelly Patrick D Sexual lubricants containing zinc as an anti-viral agent
CA1337279C (en) 1989-06-06 1995-10-10 Robert J. Borgman Intravaginal treatment of vaginal infections with buffered metronidazole compositions
US5122519A (en) 1989-06-27 1992-06-16 American Cyanamid Company Stable, cosmetically acceptable topical gel formulation and method of treatment for acne
MX21452A (en) 1989-07-07 1994-01-31 Ciba Geigy Ag PHARMACEUTICAL PREPARATIONS THAT ARE TOPICALLY ADMINISTERED.
US4981367A (en) 1989-07-28 1991-01-01 Stranco, Inc. Portable mixing apparatus
EP0484530B1 (en) 1989-07-28 1995-07-12 Hisamitsu Pharmaceutical Co., Inc. Foamed aerosol preparation
JPH0383914A (en) 1989-08-18 1991-04-09 W R Grace & Co Drug carrier
US5219877A (en) 1989-09-25 1993-06-15 Bristol-Myers Squibb Company Lauryl alcohol as skin penetration enhancer for topical imidazole agents
IL95952A0 (en) 1989-10-19 1991-07-18 Sterling Drug Inc Aerosol composition for topical medicament
US5508033A (en) 1989-12-06 1996-04-16 Societe D'engrais Composes Mineraux Et Amendments Utilization of algae extract for the preparation of pharmaceutical, cosmetic, food or agricultural compositions
DE69034134T2 (en) 1989-12-07 2004-09-09 Instead, Inc., Missoula METHOD FOR COLLECTING VAGINAL EMISSIONS
US5295984A (en) 1989-12-07 1994-03-22 Ultrafem, Inc. Vaginal discharge collection device and intravaginal drug delivery system
US5422361A (en) 1989-12-20 1995-06-06 Schering Corporation Stable cream and lotion bases for lipophilic drug compositions
US4966779A (en) 1989-12-21 1990-10-30 Basf Corporation Stable, water miscible emulsion comprising a fat-soluble vitamin
US5733572A (en) 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US4963351A (en) 1989-12-26 1990-10-16 Bhn Associates Shaving aid
US5100917A (en) 1989-12-29 1992-03-31 Merrell Dow Pharmaceuticals Inc. Novel a-nor-steroid-3-carboxylic acid derivatives
US5104645A (en) 1990-02-02 1992-04-14 The Proctor & Gamble Company Antidandruff shampoo compositions
SE9000485D0 (en) 1990-02-09 1990-02-09 Pharmacia Ab FOAMABLE COMPOSITION FOR PHARMACEUTICAL USE, USE THEREOF AND METHOD OF TREATMENT
US5164367A (en) 1990-03-26 1992-11-17 Procyte Corporation Method of using copper(ii) containing compounds to accelerate wound healing
US5130121A (en) 1990-04-17 1992-07-14 Isp Investments Inc. Skin care compositions containing discrete microdroplets of an oil in water stabilized by in situ polymerization of water-soluble vinyl monomer
US5007556A (en) 1990-04-18 1991-04-16 Block Drug Company, Inc. Metering dispenser
US5156765A (en) 1990-05-15 1992-10-20 Fox Valley Systems, Inc. Aerosol foam marking compositions
US5112359A (en) 1990-06-04 1992-05-12 Clairol, Inc. Hair colorants
JP3649341B2 (en) 1990-06-15 2005-05-18 株式会社資生堂 COMPOSITE AND COMPOSITE COMPOSITION, EMULSION COMPOSITION, AND EMULSION COMPOSITION
US5034220A (en) 1990-06-20 1991-07-23 Gaf Chemicals Corporation Non-aerosol shaving gel
US5336692A (en) 1990-06-28 1994-08-09 Medicis Pharmaceutical Corporation Ointment base and method of use
IT1243379B (en) 1990-07-27 1994-06-10 Giuliani Spa PHARMACEUTICAL COMPOSITION SUITABLE FOR RECTAL ADMINISTRATION OF ACTIVE PRINCIPLES WHICH EXPLICATE A MEDICATION ACTION AT THE LEVEL OF THE COLON, PREVALENTLY TOPICAL
US5108556A (en) 1990-09-14 1992-04-28 Minnesota Mining And Manufacturing Company Process for preparing tertiary perfluoroamines
US5091111A (en) 1990-09-19 1992-02-25 S. C. Johnson & Son, Inc. Aqueous emulsion and aersol delivery system using same
US5114718A (en) 1990-09-20 1992-05-19 The Procter & Gamble Company Sustained release compositions for treating periodontol disease
GB9021546D0 (en) 1990-10-04 1990-11-21 Beecham Group Plc Novel composition
FR2668927B1 (en) 1990-11-09 1993-01-08 Oreal COSMETIC ANHYDROUS COMPOSITION IN AEROSOL FORM FOR THE FORMATION OF A FOAM.
US5073371A (en) 1990-11-30 1991-12-17 Richardson-Vicks, Inc. Leave-on facial emulsion compositions
DE9016291U1 (en) 1990-11-30 1991-03-28 Kali-Chemie Pharma Gmbh, 3000 Hannover, De
WO1992011839A1 (en) 1991-01-08 1992-07-23 Leonard Mackles Anhydrous aerosol
WO1992012717A2 (en) 1991-01-15 1992-08-06 A composition containing a tetracycline and use for inhibiting angiogenesis
US5227163A (en) 1991-01-18 1993-07-13 Clilco, Ltd. Lice-repellant compositions
DE4102506C2 (en) 1991-01-29 1999-11-25 Pfeiffer Erich Gmbh & Co Kg Discharge device for media
ATE133573T1 (en) 1991-02-05 1996-02-15 Juergen Buil FIRE EXTINGUISHING AND FIRE PROTECTION PRODUCTS
US5948682A (en) 1991-02-22 1999-09-07 Sembiosys Genetics Inc. Preparation of heterologous proteins on oil bodies
US5650554A (en) 1991-02-22 1997-07-22 Sembiosys Genetics Inc. Oil-body proteins as carriers of high-value peptides in plants
US6753167B2 (en) 1991-02-22 2004-06-22 Sembiosys Genetics Inc. Preparation of heterologous proteins on oil bodies
US5658956A (en) 1991-03-01 1997-08-19 Warner-Lambert Company Bioadhesive-wound healing compositions and methods for preparing and using same
US5663208A (en) 1991-03-01 1997-09-02 Warner-Lambert Company Antifungal wound healing compositions and methods for preparing and using same
US5279819A (en) 1991-03-18 1994-01-18 The Gillette Company Shaving compositions
JPH06509559A (en) 1991-03-19 1994-10-27 セラピューティック パッチ リサーチ エヌ.ブイ. Amino alcohol derivative compositions and methods as membrane permeation enhancers
US5389676A (en) 1991-03-22 1995-02-14 E. B. Michaels Research Associates, Inc. Viscous surfactant emulsion compositions
AU658608B2 (en) 1991-03-25 1995-04-27 Astellas Pharma Europe B.V. Topical preparation containing a suspension of solid lipid particles
US5167950A (en) 1991-03-28 1992-12-01 S. C. Johnson & Son High alcohol content aerosol antimicrobial mousse
DE4110973A1 (en) 1991-04-05 1992-10-08 Haarmann & Reimer Gmbh MEDIUM WITH A PHYSIOLOGICAL COOLING EFFECT AND EFFECTIVE COMPOUNDS SUITABLE FOR THIS MEDIUM
HU209605B (en) 1991-04-15 1994-09-28 Chinoin Gyogyszer Es Vegyeszet Process for production of wather-free transdermal preparation
IT1247529B (en) 1991-04-24 1994-12-17 Poli Ind Chimica Spa PHARMACEUTICAL COMPOSITIONS IN FOAM FORM FOR INTRAVAGINAL, SKIN AND ORAL ADMINISTRATION
US5204090A (en) 1991-05-30 1993-04-20 Bristol Myers Squibb Waterproof high-SPF sunscreen compositions
US5164357A (en) 1991-06-05 1992-11-17 Appleton Papers Inc. Thermally-responsive record material
FR2677544B1 (en) 1991-06-14 1993-09-24 Oreal COSMETIC COMPOSITION CONTAINING A MIXTURE OF NANOPIGMENTS OF METAL OXIDES AND MELANIC PIGMENTS.
DE4210165A1 (en) 1991-07-30 1993-02-04 Schering Ag TRANSDERMAL THERAPEUTIC SYSTEMS
DE4127630A1 (en) 1991-08-21 1993-02-25 Bruno Jesswein TWO-COMPONENT PRESSURE CAN, IN PARTICULAR FOR 2K FOAM
GB9118028D0 (en) 1991-08-21 1991-10-09 Secr Defence Brit Improved transdrmal formulations
US5643600A (en) 1991-09-17 1997-07-01 Micro-Pak, Inc. Lipid vesicles containing avocado oil unsaponifiables
WO1993005755A1 (en) 1991-09-27 1993-04-01 Nof Corporation Cosmetic composition and emulsion composition
GB2260079B (en) 1991-10-01 1995-08-09 American Cyanamid Co Pharmaceutical composition containing felbinac
US5230897A (en) 1991-10-31 1993-07-27 G. D. Searle & Co. Transdermal pentamidine
US5236707A (en) 1991-11-08 1993-08-17 Dallas Biotherapeutics, Inc. Stabilization of human interferon
EP0613369A1 (en) 1991-11-22 1994-09-07 Richardson-Vicks, Inc. Combined personal cleansing and moisturizing compositions
DE4140474C2 (en) 1991-12-09 1995-07-13 Schuelke & Mayr Gmbh Skincare additive
US5294365A (en) 1991-12-12 1994-03-15 Basf Corporation Hydroxypolyethers as low-foam surfactants
IT1253711B (en) 1991-12-17 1995-08-23 Alfa Wassermann Spa VAGINAL PHARMACEUTICAL FORMULATIONS CONTAINING RIFAXIMIN AND THEIR USE IN THE TREATMENT OF VAGINAL INFECTIONS
US5252246A (en) 1992-01-10 1993-10-12 Allergan, Inc. Nonirritating nonionic surfactant compositions
EP0552612A3 (en) 1992-01-22 1993-10-20 Hoffmann La Roche Methods for determining and isolating compounds which bind directly to nucleosolic proteins
US5318774A (en) 1992-02-28 1994-06-07 Richardson-Vicks Inc. Composition and method for imparting an artificial tan to human skin
RU2148647C1 (en) 1992-04-02 2000-05-10 Сембайозис Дженетикс Инк. Method of expression of interesting dna sequence in seed cell, dna-structure, expression cassette, isolated regulatory site of transcription and method of alternation of specific metabolism in seeds
US5344051A (en) 1992-04-27 1994-09-06 Insta-Foam Products, Inc. Two-component foam dispensing apparatus
ZA932947B (en) 1992-04-28 1993-10-27 Schering Plough Healthcare Applicator for semisolid medications
US5254334A (en) 1992-05-04 1993-10-19 Imaginative Research Associates, Inc. Anhydrous foaming composition containing low concentrations of detergents and high levels of glycerin amd emollients such as oils and esters
US5409706A (en) 1992-05-04 1995-04-25 Imaginative Research Associates, Inc. Anhydrous foaming composition containing low concentrations of detergents and high levels of glycerin and emollients such as oils and esters
ZA933133B (en) 1992-05-15 1994-10-05 Akzo Nv Application for introducing a cream-type substance into a woman's vagina
JPH07506868A (en) 1992-05-18 1995-07-27 ザ、プロクター、エンド、ギャンブル、カンパニー coolant composition
US5389305A (en) 1992-06-03 1995-02-14 Colgate Palmolive Co. High foaming nonionic surfactant base liquid detergent
US5346135A (en) 1992-06-16 1994-09-13 Vincent Edward C Spraying apparatus for blending liquids in a gaseous spray system
US5300286A (en) 1992-07-14 1994-04-05 Dow Corning Corporation Silicone emulsion for personal care application
KR950702436A (en) 1992-07-28 1995-07-29 자코부스 코르넬리스 라세르 PHARMACEUTICAL COMPOSITION FOR TOPICAL USE CONTAINING A CROSSLINKED CATIONIC POLYMER AND AN ALKOXYLATED ETHER
CA2105887C (en) 1992-09-10 2004-03-16 Peter Britton Bioerodible device for administering active ingredients
EP0660720A4 (en) 1992-09-14 1996-12-27 Walter P Smith Skin-conditioning composition, its application and manufacture.
US6096756A (en) 1992-09-21 2000-08-01 Albert Einstein College Of Medicine Of Yeshiva University Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists
US5413775A (en) 1992-09-29 1995-05-09 Amerchol Corporation Hairsprays and acrylic polymer compositions for use therein
AU5541594A (en) 1992-10-21 1994-05-09 Gynetech Laboratories, Inc. Vaginal sponge delivery system
EP0596304B1 (en) 1992-10-31 1998-04-01 Th. Goldschmidt AG Cosmetic and pharmaceutical compositions
DE4238860A1 (en) 1992-11-19 1994-05-26 Medicon Gmbh Skin protection products for the protection of human skin
US5308643A (en) 1992-11-30 1994-05-03 Osipow Lloyd I Self-lather generating shaving compositions
JP3328344B2 (en) 1992-12-22 2002-09-24 タイホー工業株式会社 Method of controlling foaming state retention time of foaming type cleaning polishes
JPH06263630A (en) 1993-03-10 1994-09-20 Lion Corp Vitamin as-solubilizing eye drop
DE4309900C1 (en) 1993-03-26 1994-06-30 Goldschmidt Ag Th Process for the preparation of amphoteric surfactants
US5326557A (en) 1993-04-06 1994-07-05 Dow Corning Corporation Moisturizing compositions containing organosilicon compounds
US5576016A (en) 1993-05-18 1996-11-19 Pharmos Corporation Solid fat nanoemulsions as drug delivery vehicles
EP0698393B1 (en) 1993-05-19 2002-07-03 Hisamitsu Pharmaceutical Co., Inc. 3-l-MENTHOXY-PROPANE-1, 2-DIOL AS SOLUBILIZING AGENT AND EXTERNAL PREPARATION CONTAINING THE SAME
BR9406411A (en) 1993-05-21 1995-12-19 Henkel Corp Shampoo composition
US5635469A (en) 1993-06-10 1997-06-03 The Procter & Gamble Company Foaming cleansing products
US5447725A (en) 1993-06-11 1995-09-05 The Procter & Gamble Company Methods for aiding periodontal tissue regeneration
US5384308A (en) 1993-06-14 1995-01-24 Henkin; R. I. Composition and method for enhancing wound healing
US5744155A (en) 1993-08-13 1998-04-28 Friedman; Doron Bioadhesive emulsion preparations for enhanced drug delivery
US5398846A (en) 1993-08-20 1995-03-21 S. C. Johnson & Son, Inc. Assembly for simultaneous dispensing of multiple fluids
US6596260B1 (en) 1993-08-27 2003-07-22 Novartis Corporation Aerosol container and a method for storage and administration of a predetermined amount of a pharmaceutically active aerosol
JP2978043B2 (en) 1993-09-16 1999-11-15 高砂香料工業株式会社 (2S) -3-{(1R, 2S, 5R)-[5-methyl-2- (1-methylethyl) cyclohexyl] oxy} -1,2-propanediol, its production method and use
US5766632A (en) 1993-10-01 1998-06-16 Legere Pharmaceuticals, Ltd. Method of using lectins for contraception
FR2710854B1 (en) 1993-10-08 1995-12-01 Oreal Oil-in-water emulsion usable for obtaining a cream.
US5578315A (en) 1993-12-01 1996-11-26 Rutgers, The State University Of New Jersey Mucosal adhesive device for long-acting delivery of pharmaceutical combinations in oral cavity
FR2713486B1 (en) 1993-12-14 1996-02-09 Scophysa New compositions for foams, in particular rectal foams, and foams thus obtained.
ATE199215T1 (en) 1993-12-23 2001-03-15 Procter & Gamble ANTIMICROBIAL COMPOSITIONS FOR WIPES
US5527822A (en) 1993-12-29 1996-06-18 Forest Laboratories, Inc. Method of treatment of traumatic brain injury
DE9422052U1 (en) 1994-01-04 1997-10-30 Wuerth Adolf Gmbh & Co Kg Filling device for filling a refillable dispensing container and refillable dispensing container
DE4405127A1 (en) 1994-02-18 1995-08-31 Henkel Kgaa Hair treatment products
US5514367A (en) 1994-02-28 1996-05-07 Estee Lauder, Inc. Skin tanning compositions and methods for their preparation and use
US5925669A (en) 1994-03-22 1999-07-20 Molecular/Structural Bio Technologies, Inc. Carrier compositions for anti-neoplastic drugs
US5658749A (en) 1994-04-05 1997-08-19 Corning Clinical Laboratories, Inc. Method for processing mycobacteria
IL109230A (en) 1994-04-05 1998-08-16 Agis Ind 1983 Ltd Anti-fungal composition containing bifonazole and fluocinonide
US5429815A (en) 1994-04-11 1995-07-04 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Stable single-phase self-foaming cleanser
FR2719467B1 (en) 1994-05-05 1996-05-31 Oreal Use of flavonoids to preserve and / or strengthen the mechanical properties of the hair and method of protecting hair using these compounds.
ES2079320B1 (en) 1994-05-17 1996-10-16 Cusi Lab OPHTHALMIC DISSOLUTION BASED ON A DICLOFENACO AND TOBRAMYCIN AND ITS APPLICATIONS.
US5902574A (en) 1994-05-23 1999-05-11 The Gillette Company Shaving preparation for improved shaving comfort
US5545401A (en) 1994-06-02 1996-08-13 Shanbrom; Edward Antiviral, spermicidal vaginal gel and foam containing low molecular weight povidone-iodine
FR2720635B1 (en) 1994-06-03 1996-07-26 Oreal Sunscreen cosmetic compositions and uses.
US6221381B1 (en) 1994-06-28 2001-04-24 The University Of British Columbia Enhancing milk production by adding to feed a nonionic surfactant coated on a carrier
MA23592A1 (en) 1994-06-30 1995-12-31 Procter & Gamble COMPOSITIONS FOR BODY CARE CONTAINING THERMOPLASTIC ELASTOMERIC GRAFT COPOLYMERS
US5679324A (en) 1994-07-08 1997-10-21 The Procter & Gamble Co. Aerosol foamable fragrance composition
FR2722431B1 (en) 1994-07-12 1996-09-13 Lir France Sa DOUBLE DISPENSER FOR FLUID PRODUCTS
JP3173330B2 (en) 1994-07-20 2001-06-04 トヨタ自動車株式会社 Slip control device for vehicle lock-up clutch
US5869529A (en) 1994-07-20 1999-02-09 Agis Industries (1983) Ltd. Topical preparation for the prevention and treatment of lesions and sores associated with a herpes virus
US5444092A (en) 1994-07-20 1995-08-22 Collins; Jerry Method and composition for treating psoriasis
US5512555A (en) 1994-07-21 1996-04-30 Merck & Co., Inc. Method of treating sweat-related conditions using finasteride, epristeride and a cholestan-3-one
GB9414699D0 (en) 1994-07-21 1994-09-07 Slagel David Aqueous foamable composition
JP3241542B2 (en) 1994-07-29 2001-12-25 高砂香料工業株式会社 Method for purifying (-)-n-isopulegol and citrus-based fragrance composition containing (-)-n-isopulegol obtained by the method
DE4428096A1 (en) 1994-08-09 1996-02-15 Wella Ag Two-chamber container
US5656586A (en) 1994-08-19 1997-08-12 Rhone-Poulenc Inc. Amphoteric surfactants having multiple hydrophobic and hydrophilic groups
EP0777464A1 (en) 1994-08-26 1997-06-11 The Procter & Gamble Company Personal cleansing compositions
US5976555A (en) 1994-09-07 1999-11-02 Johnson & Johnson Consumer Products, Inc. Topical oil-in-water emulsions containing retinoids
JP3604177B2 (en) 1994-09-14 2004-12-22 日東電工株式会社 Transdermal formulation
US5500211A (en) 1994-09-22 1996-03-19 The Gillette Company Soap-free self-foaming shave gel composition
US5905092A (en) 1994-09-27 1999-05-18 Virotex Corporation Reel/Frame Topical antibiotic composition providing optimal moisture environment for rapid wound healing that reduces skin contraction
US5955414A (en) 1994-10-05 1999-09-21 S. C. Johnson & Son, Inc. Cleaning foam having fluorinated stain repellent and low flammability
US5540853A (en) 1994-10-20 1996-07-30 The Procter & Gamble Company Personal treatment compositions and/or cosmetic compositions containing enduring perfume
CA2180454A1 (en) 1994-11-08 1996-05-17 Toshihiko Terao External preparation for skin protection
US5567420A (en) 1994-11-16 1996-10-22 Mceleney; John Lotion which is temporarily colored upon application
US5788664A (en) 1994-11-30 1998-08-04 Scalise; Gaspare Suppository applicator
GB9424562D0 (en) 1994-12-06 1995-01-25 Giltech Ltd Product
US5641480A (en) 1994-12-08 1997-06-24 Lever Brothers Company, Division Of Conopco, Inc. Hair care compositions comprising heteroatom containing alkyl aldonamide compounds
US5529770A (en) 1994-12-09 1996-06-25 West Agro, Inc. Viscous liquid conditioning topical germicides
DE4444238A1 (en) 1994-12-13 1996-06-20 Beiersdorf Ag Cosmetic or dermatological drug combinations of cinnamic acid derivatives and flavone glycosides
FR2728166A1 (en) 1994-12-19 1996-06-21 Oreal TOPICAL COMPOSITION CONTAINING AN ANTAGONIST OF SUBSTANCE P
CA2208078C (en) 1994-12-21 2009-06-23 Cosmederm Technologies Formulations and methods for reducing skin irritation
WO1996019921A1 (en) 1994-12-23 1996-07-04 Commonwealth Scientific And Industrial Research Organisation Iodine biocidal material
DE4446891A1 (en) 1994-12-27 1996-07-04 Falk Pharma Gmbh Stable aqueous budesonide solution
US5616136A (en) 1995-01-09 1997-04-01 Med-Safe Systems, Inc. Quick release needle removal apparatus
US5534261A (en) 1995-01-17 1996-07-09 University Of Southern California Retinoid-based compositions and method for preventing adhesion formation using the same
FR2729855A1 (en) 1995-01-26 1996-08-02 Oreal USE OF A CGRP ANTAGONIST IN A COSMETIC, PHARMACEUTICAL OR DERMATOLOGICAL COMPOSITION AND COMPOSITION OBTAINED
US5523078A (en) 1995-02-03 1996-06-04 Michael E. Baylin Method of preparing and composition for treatment of hair and scalp
US5587149A (en) 1995-02-06 1996-12-24 R.P. Scherer Corporation Topical application emulsions
FR2730930B1 (en) 1995-02-27 1997-04-04 Oreal USE OF NO-SYNTHASE INHIBITORS TO REDUCE THE IRRITANT SKIN EFFECT OF PRODUCTS USED IN THE COSMETIC OR PHARMACEUTICAL FIELD
FR2730932B1 (en) 1995-02-27 1997-04-04 Oreal TRANSPARENT NANOEMULSION BASED ON FLUID NON-IONIC AMPHIPHILIC LIPIDS AND USE IN COSMETICS OR DERMOPHARMACY
GB9504265D0 (en) 1995-03-03 1995-04-19 Medeva Plc Corticosteroid-containing pharmaceutical composition
US5558872A (en) 1995-03-07 1996-09-24 Healthpoint Medical Limited Partnership Gelled mineral oil skin protectant
US5783202A (en) 1995-03-14 1998-07-21 Soltec Research Pty. Ltd. Pediculicidal mousse composition for killing head lice
US6071536A (en) 1995-03-29 2000-06-06 Shionogi & Co., Ltd. Gelatin capsule having adjusted water activity
US5585104A (en) 1995-04-12 1996-12-17 The Procter & Gamble Company Cleansing emulsions
EP0738510A3 (en) 1995-04-20 2005-12-21 L'oreal Use of a HMG-CoA reductase inhibitor as an anti-ageing agent and as an anti-acne agent. Composition comprising at least one HMG-CoA reductase inhibitor and at least one active substance with scaling properties.
FR2733417B1 (en) 1995-04-25 1997-06-06 Oreal FOAMING OIL-IN-WATER EMULSION BASED ON NON-IONIC SURFACTANTS, A FATTY PHASE AND A CATIONIC OR ANIONIC POLYMER CROSS-LINKED AND USE IN TOPICAL APPLICATION
GB9510856D0 (en) 1995-05-27 1995-07-19 Cussons Int Ltd Cleaning composition
UY24246A1 (en) 1995-06-06 1996-06-14 Neutrogena Corp TROPIC VEHICLES CONTAINING SOLUBILIZED AND STABILIZED AZELAIC ACID
EP2322137A1 (en) 1995-06-22 2011-05-18 Minnesota Mining And Manufacturing Company Stable hydroalcoholic compositions
JP3542665B2 (en) 1995-07-07 2004-07-14 株式会社資生堂 Anti-aging skin external preparation, collagen cross-linking inhibition skin external preparation and anti-ultraviolet skin external preparation
FR2736824B1 (en) 1995-07-18 1997-10-10 Fabre Pierre Dermo Cosmetique MINOXIDIL HAIR COMPOSITION WITH LOW FAT SOLVENT CONTENT
US5705472A (en) 1995-07-18 1998-01-06 Petroferm Inc. Neutral aqueous cleaning composition
DE29512760U1 (en) 1995-08-08 1995-11-16 Wella Ag Pressurized gas container for dispensing foam
TW504387B (en) 1995-09-06 2002-10-01 Kao Corp Emulsified, water-in-oil type composition and skin cosmetic preparation
US5881493A (en) 1995-09-14 1999-03-16 D. B. Smith & Co. Inc. Methods for applying foam
CN1062129C (en) 1995-09-14 2001-02-21 徐荣祥 Medicine matrix and its use
JPH0984855A (en) 1995-09-25 1997-03-31 Kyoto Yakuhin Kogyo Kk Aerosol preparation for administer medicine to rectum or vagina
US6221823B1 (en) 1995-10-25 2001-04-24 Reckitt Benckiser Inc. Germicidal, acidic hard surface cleaning compositions
AU705038B2 (en) 1995-12-14 1999-05-13 Taisho Pharmaceutical Co., Ltd. Aerosol preparation
FR2742986B1 (en) 1995-12-29 1998-01-30 Rhone Poulenc Chimie COSMETIC COMPOSITIONS FOR THE HAIR OR THE SKIN BASED ON SULPHONATED COPOLYESTERS WITH POLYORGANOSILOXANE MOTIFS
US5716611A (en) 1996-01-02 1998-02-10 Euro-Celtique, S.A. Emollient antimicrobial formulations containing povidone iodine
US5759524A (en) 1996-02-09 1998-06-02 The Procter & Gamble Company Photoprotective compositions
US5843411A (en) 1997-02-06 1998-12-01 Topix Pharmaceuticals Inc. Stabilization of ascorbic acid, ascorbic acid derivatives and/or extracts containing ascorbic acid for topical use
US5846983A (en) 1996-02-09 1998-12-08 Mayo Foundation For Medical Education And Research Colonic delivery of nicotine to treat inflammatory bowel disease
US5889028A (en) 1996-02-09 1999-03-30 Mayo Foundation For Medical Education And Research Colonic delivery of nicotine to treat inflammatory bowel disease
AUPN814496A0 (en) 1996-02-19 1996-03-14 Monash University Dermal penetration enhancer
US5912007A (en) 1996-02-29 1999-06-15 Warner-Lambert Company Delivery system for the localized administration of medicaments to the upper respiratory tract and methods for preparing and using same
US6251369B1 (en) 1996-03-05 2001-06-26 Sultan Dental Products Dental fluoride foam
FR2745716B1 (en) 1996-03-07 1998-04-17 Oreal ULTRAFINE PRESSURIZABLE FOAMING OIL-IN-WATER EMULSIONS
WO1997039745A1 (en) 1996-04-19 1997-10-30 Sloan-Kettering Institute For Cancer Research Use of inhaled retinoids in the prevention of cancer
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
IT1283042B1 (en) 1996-05-21 1998-04-07 Condea Augusta Spa COSMETIC COMPOUNDS DEODORANT AND / OR ANTI-BREATHING
US5797955A (en) 1996-06-11 1998-08-25 Walters; David J. Pressure application unit for positioning vertebra
US5833961A (en) 1996-06-25 1998-11-10 Inolex Investment Corporation Polyester-based suncreen formulations
EP0932401A1 (en) 1996-07-01 1999-08-04 Sepracor, Inc. Methods and compositions for treating urinary incontinence using enantiomerically enriched (r,r)-glycopyrrolate
US5716621A (en) 1996-07-03 1998-02-10 Pharmadyn, Inc. Nonocclusive drug delivery device and process for its manufacture
US5955408A (en) 1996-07-10 1999-09-21 Steris Inc. Triclosan skin wash with enhanced efficacy
DE19631221C2 (en) 1996-08-02 1999-07-01 Beiersdorf Ag Foam-form sunscreen preparations containing water-soluble sunscreen filter substances and surface-active substances
WO1998006419A1 (en) 1996-08-15 1998-02-19 Southern Illinois University Enhancement of antimicrobial peptide activity by metal ions
US5833963A (en) 1996-08-20 1998-11-10 Bristol-Myers Squibb Company Non-tacky and quick-drying aqueous-based antiperspirant compositions
US5837270A (en) 1996-08-26 1998-11-17 Burgess; Nelson Leon Topical anti-acne composition
EP0829259A1 (en) 1996-09-04 1998-03-18 Warner-Lambert Company Foam/gel with microbeads and/or fine particles
US6271295B1 (en) 1996-09-05 2001-08-07 General Electric Company Emulsions of silicones with non-aqueous hydroxylic solvents
US5952392A (en) 1996-09-17 1999-09-14 Avanir Pharmaceuticals Long-chain alcohols, alkanes, fatty acids and amides in the treatment of burns and viral inhibition
US7060253B1 (en) 1996-09-20 2006-06-13 Mundschenk David D Topical formulations and delivery systems
FR2754451B1 (en) 1996-10-14 1998-11-06 Oreal SELF-FOAMING CREAM
AU4995597A (en) 1996-10-23 1998-05-15 Vertex Pharmaceuticals Incorporated Methods of using sucrose octasulfate to treat or prevent enveloped virus infection
US6093408A (en) 1996-10-25 2000-07-25 The Procter & Gamble Company Skin care compositions
IT1287114B1 (en) 1996-10-31 1998-08-04 Recordati Chem Pharm ANTI-HERPETIC PHARMACEUTICAL COMPOSITIONS FOR TOPICAL APPLICATORS, CONTAINING ACICLOVIR
WO1998019654A1 (en) 1996-11-04 1998-05-14 The Procter & Gamble Company Hair mousse composition comprising silicone emulsion
CA2275867A1 (en) 1996-11-12 1998-05-22 Tamarkin Pharmaceutical Innovation Ltd. Method for treatment of dermatological disorders
EP0889719B1 (en) 1996-11-16 2003-04-02 Wella Aktiengesellschaft Agents for dying and decolorizing fibers
US5906992A (en) 1996-11-21 1999-05-25 Colgate Palmolive Company Foam cleaning compositions
AUPO379596A0 (en) 1996-11-22 1996-12-19 Soltec Research Pty Ltd Percutaneous delivery system
US5951544A (en) 1996-12-04 1999-09-14 Laser Industries Ltd. Handpiece assembly for laser apparatus
US5759579A (en) 1996-12-05 1998-06-02 American Home Products Corporation Pharmaceutical suspension systems
US5695551A (en) 1996-12-09 1997-12-09 Dow Corning Corporation Water repellent composition
US5856452A (en) 1996-12-16 1999-01-05 Sembiosys Genetics Inc. Oil bodies and associated proteins as affinity matrices
US5672634A (en) 1996-12-23 1997-09-30 Isp Investments Inc. Crosslinked PVP-I2 foam product
US5879469A (en) 1997-01-06 1999-03-09 Deeay Technologies Ltd. Dishwashing method and detergent composition therefor
US6582711B1 (en) 1997-01-09 2003-06-24 3M Innovative Properties Company Hydroalcoholic compositions thickened using polymers
SE520811C2 (en) 1997-01-17 2003-08-26 Ponsus Ab Skin protection preparations containing lipophilic and hydrophilic components, method of preparation and use thereof
IN186803B (en) 1997-02-05 2001-11-10 Panacea Biotec Ltd
ES2133090B1 (en) 1997-02-21 2000-04-01 Uriach & Cia Sa J NEW APPLICATOR FOR THE ADMINISTRATION OF SEMI-SOLID MEDICATIONS.
JP2002511058A (en) 1997-02-10 2002-04-09 バーナード・サラフスキ Antiparasitic action of N, N-diethyl-m-toluamide (DEET) and a formulation that maintains its activity on the skin
EP0969813B1 (en) 1997-02-24 2004-09-29 S.L.A. Pharma AG Topical pharmaceutical composition comprising a cholinergic agent or a calcium channel blocker
FR2760637B1 (en) 1997-03-11 1999-05-28 Fabre Pierre Dermo Cosmetique COAL TAR EXTRACT WITH REDUCED AROMATIC HYDROCARBON CONTENT, PROCESS FOR OBTAINING AND DERMO-COSMETIC PREPARATIONS
US5922331A (en) 1997-03-26 1999-07-13 Chanel, Inc. Skin cream composition
US5951989A (en) 1997-04-07 1999-09-14 Heymann; Warren R. Method for the treatment of dry skin
USH2043H1 (en) 1997-05-23 2002-08-06 The Procter & Gamble Company Skin care compositions
US6183762B1 (en) 1997-05-27 2001-02-06 Sembiosys Genetics Inc. Oil body based personal care products
IL132908A (en) 1997-05-27 2002-07-25 Sembiosys Genetics Inc Method of emulsification of oil bodies and uses of the emulsion
US6372234B1 (en) 1997-05-27 2002-04-16 Sembiosys Genetics Inc. Products for topical applications comprising oil bodies
US6599513B2 (en) 1997-05-27 2003-07-29 Sembiosys Genetics Inc. Products for topical applications comprising oil bodies
EP0884045A1 (en) 1997-06-06 1998-12-16 Pfizer Products Inc. Self-tanning dihydroxyacetone formulations having improved stability and providing enhanced delivery
US20050276836A1 (en) 1997-06-11 2005-12-15 Michelle Wilson Coated vaginal devices for vaginal delivery of therapeutically effective and/or health-promoting agents
EP0993827A4 (en) 1997-06-13 2006-07-05 Taisho Pharmaceutical Co Ltd Aerosols
FR2765799B1 (en) 1997-07-08 1999-08-27 Oreal GLOSSY COMPOSITION CONTAINING AROMATIC OILS THICKENED BY A POLYSACCHARIDE ALKYLETHER
CA2300054C (en) 1997-08-18 2003-09-30 Neubourg, Stephanie Foam skin cream, uses of the foam skin protection cream and a process for its preparation
SE9703226D0 (en) 1997-09-08 1997-09-08 Astra Ab New pharmaceutical composition
US5885581A (en) 1997-09-11 1999-03-23 Merz, Incorporated Composition and method for improvement of the appearance of scars
US6241971B1 (en) 1997-09-25 2001-06-05 The Procter & Gamble Company Hair styling compositions comprising mineral salt, lipophilic material, and low levels of surfactant
US5939376A (en) 1997-09-25 1999-08-17 Colgate Palmolive Company Liquid cleaning compositions containing an organic ester foam control agent
US6214318B1 (en) 1997-10-02 2001-04-10 Oms Holdings Llc Aerosol ointment compositions for topical use
US6075056A (en) 1997-10-03 2000-06-13 Penederm, Inc. Antifungal/steroid topical compositions
FR2769299B1 (en) 1997-10-03 1999-12-31 Oreal BI-PRODUCTS PACKAGING AND DISTRIBUTION SET
AUPO983897A0 (en) 1997-10-17 1997-11-06 Soltec Research Pty Ltd Topical antifungal composition
US5961957A (en) 1997-10-20 1999-10-05 Mcanalley; Bill H. Foam compositions
US5911981A (en) 1997-10-24 1999-06-15 R.I.T.A. Corporation Surfactant blends for generating a stable wet foam
US5865347A (en) 1997-10-27 1999-02-02 William T. Wilkinson Multi-chamber dispenser for flowable materials
JP3450680B2 (en) 1997-10-28 2003-09-29 高砂香料工業株式会社 Method for producing para-menthane-3,8-diol
EP1027057A4 (en) 1997-10-28 2003-01-02 Vivus Inc Treatment of female sexual dysfunction
US5877216A (en) 1997-10-28 1999-03-02 Vivus, Incorporated Treatment of female sexual dysfunction
ES2318233T3 (en) 1997-11-10 2009-05-01 Strakan International Limited IMPROVEMENT SYSTEMS OF PENETRATION AND IRRITATION REDUCERS THAT INCLUDE TESTOSTERONE.
DE29720316U1 (en) 1997-11-17 1998-01-29 Andris Raimund Gmbh & Co Kg Two-chamber dispenser
US5849042A (en) 1997-11-19 1998-12-15 Bristol-Myers Squibb Hair dye compositions containing 2,3 dialkyl-4-aminophenol and a 2-alkyl-1-naphthol
US5871720A (en) 1997-11-20 1999-02-16 Colgate-Palmolive Company Cosmetic compositions with DBS and functionalized silicones
TWI225793B (en) 1997-12-25 2005-01-01 Ajinomoto Kk Cosmetic composition
JP3050289U (en) 1997-12-29 1998-06-30 丸隆株式会社 Pet animal room excretion tools
DE19802206A1 (en) 1998-01-22 1999-07-29 Beiersdorf Ag Stable cosmetic or dermatological composition with low viscosity
FR2774595A1 (en) 1998-02-06 1999-08-13 Rech D Innovation Et De Dev Ce EMULSION FOR TRANSDERMAL STEROID ADMINISTRATION
DE19805918A1 (en) 1998-02-13 1999-08-19 Beiersdorf Ag Lipidreduced preparations
US6110966A (en) 1998-02-20 2000-08-29 Medi-Cell Laboratories, Inc. Triple action complex
DE19807774A1 (en) 1998-02-24 1999-08-26 Beiersdorf Ag Use of flavone, flavanone or flavonoid compound for protection of ascorbic acid or ascorbyl compound against oxidation, especially in cosmetic and dermatological preparations,
JP3514105B2 (en) 1998-02-27 2004-03-31 ティアック株式会社 Recording medium recording / reproducing device
HU226610B1 (en) 1998-03-04 2009-04-28 Teijin Ltd Activated vitamin d3 emulsion-type lotions
US6121210A (en) 1998-03-12 2000-09-19 Dap Products Inc. Foamable silicone oil compositions and methods of use thereof
US5990100A (en) 1998-03-24 1999-11-23 Panda Pharmaceuticals, L.L.C. Composition and method for treatment of psoriasis
AUPP310798A0 (en) 1998-04-22 1998-05-14 Soltec Research Pty Ltd Vehicle system for a composition comprising a piperidinopyrimidine derivative
US6649175B1 (en) 1998-05-04 2003-11-18 Schering-Plough Healthcare Products, Inc. Skin barrier composition
GB9810949D0 (en) 1998-05-22 1998-07-22 Hewlett Healthcare Limited Formulation
FR2779637B1 (en) 1998-06-15 2000-09-01 Oreal PHOTOPROTECTIVE COSMETIC COMPOSITIONS CONTAINING A METAL OXIDE NANOPIGMENT AND AN ACRYLIC TERPOLYMER AND USE OF SUCH COMPOSITIONS FOR PROTECTING KERATINIC MATERIALS FROM ULTRAVIOLET RADIATION
US6706290B1 (en) 1998-07-06 2004-03-16 Olvai E. Kajander Methods for eradication of nanobacteria
FR2780879B1 (en) 1998-07-09 2002-09-20 Oreal PHOTOPROTECTOR COSMETIC COMPOSITION CONTAINING AN ANIONIC SURFACTANT, COMPOUND FILTERING ULTRAVIOLET RADIATION AND CATIONIC OR ZPHITTERIONIC AMPHIPHILIC COMPOUND AND USE THEREOF
US6146664A (en) 1998-07-10 2000-11-14 Shaklee Corporation Stable topical ascorbic acid compositions
JP4017758B2 (en) 1998-08-04 2007-12-05 高砂香料工業株式会社 Cooling agent composition
DE19835239A1 (en) 1998-08-04 2000-02-24 Johnson & Johnson Gmbh Foaming oil preparation and its use
GB9817817D0 (en) 1998-08-14 1998-10-14 Unilever Plc Cosmetic composition
HUP0104168A3 (en) 1998-08-20 2003-04-28 3M Innovative Properties Co Spray on bandage and drug delivery system
JP3712868B2 (en) 1998-09-02 2005-11-02 株式会社カネボウ化粧品 Aerosol composition
US8263580B2 (en) 1998-09-11 2012-09-11 Stiefel Research Australia Pty Ltd Vitamin formulation
AUPP583198A0 (en) 1998-09-11 1998-10-01 Soltec Research Pty Ltd Mousse composition
US6087310A (en) * 1998-09-23 2000-07-11 Castrol Limited Skin cleaning compositions and uses comprising a polymer latex emulsion
AU760735B2 (en) 1998-09-28 2003-05-22 Merck & Co., Inc. A method for treating inflammatory diseases by administering a thrombin inhibitor
US6914057B1 (en) 1998-09-28 2005-07-05 The Research Foundation Of State University Of New York Inhibitor of cataract formation
RU2134052C1 (en) 1998-10-07 1999-08-10 Нерушай Сергей Алексеевич Method and apparatus for aerosol application of perfumery liquids
US6287546B1 (en) 1998-10-09 2001-09-11 Colgate-Palmolive Company Shampoos with stabilizers
JP3876081B2 (en) 1998-10-22 2007-01-31 東洋エアゾール工業株式会社 Aerosol composition for foam formation
US6110477A (en) 1998-10-30 2000-08-29 Topix Pharmaceuticals Inc. Stabilization of ascorbic acid, ascorbic acid derivatives and/or extracts containing ascorbic acid for topical use
US7521068B2 (en) 1998-11-12 2009-04-21 Elan Pharma International Ltd. Dry powder aerosols of nanoparticulate drugs
US5980904A (en) 1998-11-18 1999-11-09 Amway Corporation Skin whitening composition containing bearberry extract and a reducing agent
US6344218B1 (en) 1998-11-23 2002-02-05 The Procter & Gamble Company Skin deodorizing and santizing compositions
DE19855097A1 (en) 1998-11-28 2000-05-31 Wella Ag Pigment-containing, foamable gel
US20010006654A1 (en) 1998-12-09 2001-07-05 L'oreal Compositions and methods for treating hair and skin using aqueous delivery systems
US6087317A (en) 1998-12-10 2000-07-11 Dow Corning Corporation Particle size stable silicone emulsions
US6486207B2 (en) 1998-12-10 2002-11-26 Nexmed (Holdings), Inc. Compositions and methods for amelioration of human female sexual dysfunction
US6262128B1 (en) 1998-12-16 2001-07-17 3M Innovative Properties Company Aqueous foaming compositions, foam compositions, and preparation of foam compositions
FR2787325B1 (en) 1998-12-17 2001-01-26 Oreal NANOEMULSION BASED ON OXYETHYLENE OR NON-OXYETHYLENE SORBITAN FATTY ESTERS, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2787728B1 (en) 1998-12-23 2001-01-26 Oreal NANOEMULSION BASED ON FATTY ESTERS OF PHOSPHORIC ACID, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL, PHARMACEUTICAL AND / OR OPHTHALMOLOGICAL FIELDS
JP2000191429A (en) 1998-12-28 2000-07-11 Kao Corp Foamable cosmetic
CA2356310C (en) 1998-12-28 2007-11-06 Taisho Pharmaceutical Co., Ltd. External preparations containing a basic drug
FR2787703B1 (en) 1998-12-29 2001-01-26 Oreal NANOEMULSION BASED ON ETHOXYL FATHER ETHERS OR ETHOXYL FATTY ESTERS, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
FR2788007B1 (en) 1999-01-05 2001-02-09 Oreal NANOEMULSION BASED ON BLOCK COPOLYMERS OF ETHYLENE OXIDE AND PROPYLENE OXIDE, AND ITS USES IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
US6486168B1 (en) 1999-01-08 2002-11-26 3M Innovative Properties Company Formulations and methods for treatment of mucosal associated conditions with an immune response modifier
FR2789371B1 (en) 1999-02-05 2001-04-27 Sofab DISTRIBUTOR OF CHEMICALLY UNSTABLE PRODUCTS
EP1025836A1 (en) 1999-02-08 2000-08-09 F. Hoffmann-La Roche Ag Cosmetic light screening composition
TWI262930B (en) 1999-02-10 2006-10-01 Mitsui Chemicals Inc High-durability flexible polyurethane cold molded foam and process for producing the same
US6423329B1 (en) 1999-02-12 2002-07-23 The Procter & Gamble Company Skin sanitizing compositions
US6224888B1 (en) 1999-02-12 2001-05-01 The Procter & Gamble Company Cosmetic compositions
JP3641152B2 (en) 1999-02-17 2005-04-20 株式会社ヤクルト本社 Topical skin preparation
EP1075325B1 (en) 1999-02-26 2003-11-05 Wella Aktiengesellschaft Device for mixing, foaming and dispensing liquids from separate compressed-gas containers
US7374779B2 (en) 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US6761903B2 (en) 1999-06-30 2004-07-13 Lipocine, Inc. Clear oil-containing pharmaceutical compositions containing a therapeutic agent
IL129102A0 (en) 1999-03-22 2000-02-17 J P M E D Ltd An emulsion
EP1040765B1 (en) 1999-03-31 2006-10-04 Firmenich Sa Use of cubebol as a flavoring ingredient
US6383471B1 (en) 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
US6264964B1 (en) 1999-04-14 2001-07-24 Conopco, Inc. Foaming cosmetic products
US6284802B1 (en) 1999-04-19 2001-09-04 The Procter & Gamble Company Methods for regulating the condition of mammalian keratinous tissue
US6433003B1 (en) 1999-04-23 2002-08-13 Arthur M. Bobrove Method for treating hyperhidrosis in mammals
FR2793479B1 (en) 1999-05-10 2001-06-29 Lir France Sa DOUBLE DISPENSER FOR FLUID OR PASTY PRODUCTS
AU4841700A (en) 1999-05-12 2000-11-21 Nitromed, Inc. Nitrosated and nitrosylated potassium channel activators, compositions and methods of use
US6168576B1 (en) 1999-05-24 2001-01-02 Irene N. Reynolds Device for dispensing vaginal medication
US6518228B1 (en) 1999-05-27 2003-02-11 Clairol Incorporated Ultra-mild, clear, aqueous, foamable skin cleanser
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
AU5067000A (en) 1999-05-28 2000-12-18 Unilever Plc Foamable shower oil composition
JP2000351726A (en) 1999-06-08 2000-12-19 Lion Corp Aerosol preparation
JP2000354623A (en) 1999-06-14 2000-12-26 Shiigeru Kk Deodorant and deodorizing spray
GB9913951D0 (en) 1999-06-15 1999-08-18 Unilever Plc Mousse-forming shampoo compositions
US6113888A (en) 1999-06-15 2000-09-05 Neutrogena Corporation Self-tanning mousse
US6190365B1 (en) 1999-06-21 2001-02-20 Chun Lim Abbott Vaginal douche applicator and method of vaginal deodorization using the same
JP2001002526A (en) 1999-06-23 2001-01-09 Koike Kagaku Kk Foam aerosol composition
NL1012419C2 (en) 1999-06-23 2000-12-28 Airspray Nv Aerosol for dispensing a liquid.
US6524594B1 (en) 1999-06-23 2003-02-25 Johnson & Johnson Consumer Companies, Inc. Foaming oil gel compositions
US6551604B1 (en) 1999-06-28 2003-04-22 The Procter & Gamble Company Skin care compositions
US6762158B2 (en) 1999-07-01 2004-07-13 Johnson & Johnson Consumer Companies, Inc. Personal care compositions comprising liquid ester mixtures
AU5764800A (en) 1999-07-01 2001-01-22 Johnson & Johnson Consumer Companies, Inc. Cleansing compositions
FR2795643B1 (en) 1999-07-02 2004-06-11 Oreal FIRMING COSMETIC COMPOSITION INCLUDING AT LEAST ONE HYDROXYSTILBENE IN ASSOCIATION WITH ASCORBIC ACID
JP4058199B2 (en) 1999-07-06 2008-03-05 ポーラ化成工業株式会社 Warm feeling pack
AU6106500A (en) 1999-07-15 2001-02-05 Playtex Products, Inc. Sunscreen aerosol composition
US6548074B1 (en) 1999-07-22 2003-04-15 Elizabeth Arden Co., Division Of Conopco, Inc. Silicone elastomer emulsions stabilized with pentylene glycol
FR2796925B1 (en) 1999-07-29 2001-10-05 Valois Sa DISPENSER WITH ARTICULATED DISPENSING HEAD
AU7389300A (en) 1999-08-02 2001-02-19 First Horizon Pharmaceutical Corporation Methods of administration of glycopyrrolate compositions
US6303552B1 (en) 1999-08-04 2001-10-16 Napier International Technologies, Inc. Aerosol paint stripper compositions
ATE270558T1 (en) 1999-08-26 2004-07-15 Ganeden Biotech Inc USE OF EMU OIL AS A CARRIER FOR FUNGICIDES, ANTIBACTERIAL AND ANTIVIRAL MEDICATIONS
US6777591B1 (en) 1999-08-27 2004-08-17 Sembiosys Genetics Inc. Legume-like storage protein promoter isolated from flax and methods of expressing proteins in plant seeds using the promoter
US6479058B1 (en) 1999-09-02 2002-11-12 Mccadden Michael E. Composition for the topical treatment of poison ivy and other forms of contact dermatitis
US6308863B1 (en) 1999-09-02 2001-10-30 Owens-Brockway Plastic Products Inc. Dual chamber package for pressurized products
JP4394775B2 (en) 1999-09-03 2010-01-06 株式会社ダイゾー Water-in-oil foam aerosol composition and method for producing the same
JP4045475B2 (en) 1999-09-06 2008-02-13 東洋紡績株式会社 Nucleic acid / protein purification equipment
US6986883B2 (en) 1999-09-09 2006-01-17 Discus Dental, Inc. Increased peroxide content tooth bleaching gel
US6283336B1 (en) 1999-09-20 2001-09-04 The Procter & Gamble Company Article for the delivery of foam products
US6437006B1 (en) 1999-09-27 2002-08-20 American Cyanamid Company Pharmaceutical carrier formulation
US6528086B2 (en) 1999-09-28 2003-03-04 Zars, Inc. Methods and apparatus for drug delivery involving phase changing formulations
FR2798849B1 (en) 1999-09-29 2001-11-23 Oreal COMPOSITION FOR WASHING KERATIN MATERIALS, BASED ON A DETERGENT SURFACE-ACTIVE AGENT, A DIALKYL DIALLYL AMMONIUM HOMOPOLYMER AND AN ACRYLIC TERPOLYMER
US6667045B2 (en) 1999-10-01 2003-12-23 Joseph Scott Dahle Topical applications for skin treatment
US6790435B1 (en) 1999-10-01 2004-09-14 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Antiperspirant compositions comprising microemulsions
FR2799369B1 (en) 1999-10-08 2001-12-21 Oreal COMBINATION OF ESCINE AND DEXTRAN SULFATE AND THE USE THEREOF
US6186367B1 (en) 1999-10-19 2001-02-13 Valley Design Inc. Metered liquid squeeze dispenser
FR2799963B1 (en) 1999-10-22 2002-07-19 Oreal EMULSIONS CONTAINING AT LEAST ONE INSOLUBLE ORGANIC UV FILTER AND A NON-FILTERING ORGANOMODIFIED SILICONE
US6080394A (en) 1999-11-08 2000-06-27 Dow Corning Corporation Polar solvent-in-oil emulsions and multiple emulsions
US20030077301A1 (en) 1999-12-16 2003-04-24 Maibach Howard I. Topical pharmaceutical composition for the treatment of inflammatory dermatoses
UA66796C2 (en) 1999-12-27 2004-06-15 Univ Nat Pharmaceutical Composition "profesol foamy" for treating radiation lesions of skin
US6967023B1 (en) 2000-01-10 2005-11-22 Foamix, Ltd. Pharmaceutical and cosmetic carrier or composition for topical application
IL133969A0 (en) 2000-01-10 2001-04-30 Thixo Ltd Thixotropic compositions containing unsaturated oils and food products containing the same
US7001690B2 (en) 2000-01-18 2006-02-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
FR2804016B1 (en) 2000-01-21 2006-07-28 Oreal NANEMULSION CONTAINING AMPHIPHILIC LIPIDS AND PEG ESTER AND USES THEREOF
FR2804015B1 (en) 2000-01-21 2005-12-23 Oreal NANEMULSION CONTAINING AMPHIPHILIC LIPIDS AND NONIONIC POLYMER AND USES THEREOF
WO2001054679A2 (en) 2000-01-27 2001-08-02 Children's Hospital Research Foundation Transdermal composition containing an anesthetic and a vasodilator agent
FR2804666B1 (en) 2000-02-04 2002-06-14 Oreal DISPENSER FOR STORING AT LEAST TWO COMPONENTS AND SELECTIVE DISPENSING EITHER OF A SINGLE CONSTITUENT, EITHER OF THEIR MIXTURE, AND METHOD FOR THE IMPLEMENTATION THEREOF
US6780443B1 (en) 2000-02-04 2004-08-24 Takasago International Corporation Sensate composition imparting initial sensation upon contact
NL1014389C2 (en) 2000-02-15 2001-08-16 Dija Zeist Bv Tanning preparation for the skin.
US20040161447A1 (en) 2000-02-17 2004-08-19 Leonard Paul Liquid foam producing compositions and dispensing system therefor
JP4764588B2 (en) 2000-02-22 2011-09-07 カラー アクセス,インコーポレイティド Gelled aqueous cosmetic composition
EP1269357A4 (en) 2000-02-22 2005-10-12 Metacarta Inc Spatially coding and displaying information
DE10008837A1 (en) 2000-02-25 2001-08-30 Henkel Kgaa Dental cleaner containing propellant gas
US6664287B2 (en) 2000-03-15 2003-12-16 Bethesda Pharmaceuticals, Inc. Antioxidants
IL135222A (en) 2000-03-22 2005-06-19 Univ Ben Gurion Compositions containing molecular iodine
DE20006099U1 (en) 2000-04-01 2000-07-06 Megaplast Gmbh & Co Kg Dosing pump dispenser with at least two dosing pumps
US6649571B1 (en) 2000-04-04 2003-11-18 Masi Technologies, L.L.C. Method of generating gas bubbles in oleaginous liquids
FR2807322B1 (en) 2000-04-10 2004-02-20 Oreal COMPOSITION, ESPECIALLY COSMETIC, COMPRISING ASCORBIC ACID IN ASSOCIATION WITH AN ASCORBIC ACID DERIVATIVE
JP2002012513A (en) 2000-04-24 2002-01-15 Kanebo Ltd Urea-containing whipped cosmetic
US6358541B1 (en) 2000-05-03 2002-03-19 David S. Goodman Topical preparation for the treatment of hair loss
US6410036B1 (en) 2000-05-04 2002-06-25 E-L Management Corp. Eutectic mixtures in cosmetic compositions
AU2001257534A1 (en) 2000-05-05 2001-11-20 R.P. Scherer Technologies, Inc. Oil-in-water emulsion formulation containing hydroquinone and retinol
CA2408112A1 (en) 2000-05-08 2001-11-15 Pfizer Products Inc. Skin protectant spray compositions
US6433024B1 (en) 2000-05-08 2002-08-13 Karl F. Popp Topical anti-acne composition
FR2808685B1 (en) 2000-05-12 2004-10-08 Sanofi Synthelabo PHARMACEUTICAL COMPOSITIONS FOR TRANSDERMAL DELIVERY OF ANTI-INFLAMMATORY AGENTS
JP2001326952A (en) 2000-05-15 2001-11-22 Nec Corp Broadcast confirmation system, method and device for broadcast confirmation, and recording medium with broadcast confirmation program recorded thereon
FR2809010B1 (en) 2000-05-22 2002-07-12 Oreal NANOEMULSION BASED ON ANIONIC POLYMERS, AND ITS USES IN PARTICULAR IN THE COSMETIC, DERMATOLOGICAL, PHARMACEUTICAL AND / OR OPHTHALMOLOGICAL FIELDS
JP4653282B2 (en) 2000-05-23 2011-03-16 昭和薬品化工株式会社 Minocycline-containing composition
DE10028638A1 (en) 2000-06-09 2001-12-20 Schuelke & Mayr Gmbh Storage-stable composition useful in cosmetic and pharmaceutical compositions comprises combination of glycerol monoalkyl ether with antioxidant
US6649178B2 (en) 2000-06-13 2003-11-18 Fatemeh Mohammadi Cosmetic composition for stressed skin under extreme conditions
AU2001272015A1 (en) 2000-06-23 2002-01-08 Combe International Ltd. Stable foam for use in disposable wipe
US20020164381A1 (en) 2000-06-30 2002-11-07 Medicis Pharmaceutical Corporation Mitocidal compositions and methods
CA2313659A1 (en) 2000-07-06 2002-01-06 Barry J. Barclay B complex vitamin compositions that protect against cellular damage caused by ultraviolet light
DE10033414B4 (en) 2000-07-08 2004-02-19 Wella Aktiengesellschaft Clear, two-phase, foam-forming aerosol hair care product
FR2811564B1 (en) 2000-07-13 2002-12-27 Oreal NANOEMULSION CONTAINING NON-IONIC POLYMERS, AND ITS USES IN PARTICULAR IN THE COSMETIC, DERMATOLOGICAL, PHARMACEUTICAL AND / OR OPHTHALMOLOGICAL FIELDS
US6468989B1 (en) 2000-07-13 2002-10-22 Dow Pharmaceutical Sciences Gel compositions containing metronidazole
DE10035930A1 (en) 2000-07-21 2002-01-31 Clariant Gmbh fine emulsions
US20020035070A1 (en) 2000-07-26 2002-03-21 The Procter & Gamble Company Method of regulating hair growth using metal complexes of oxidized carbohydrates
FR2812191B1 (en) 2000-07-28 2003-10-17 Oreal USE OF PROSTAGLANDIN E2 RECEPTOR AGONISTS (EP-3) TO ATTENUATE, DECREASE OR STOP HAIR AND HAIR GROWTH IN COSMETIC PREPARATIONS
JP4166931B2 (en) 2000-08-02 2008-10-15 ポーラ化成工業株式会社 Fever foam cosmetic
US20040198706A1 (en) 2003-03-11 2004-10-07 Carrara Dario Norberto R. Methods and formulations for transdermal or transmucosal application of active agents
US6514487B1 (en) 2000-08-08 2003-02-04 Teresa Leigh Barr Foam and gel oat protein complex and method of use
AU2001285201A1 (en) 2000-08-22 2002-03-04 The Procter And Gamble Company Personal care compositions containing adhesive elastomeric polymer and inorganic colloid
AU2001286578A1 (en) 2000-08-24 2002-03-04 Tim Ioannides Topical antioxidant having vitamin c and method of combination with topical agent by user
US6299023B1 (en) 2000-08-24 2001-10-09 Miles Arnone Device for dispensing two substances in a user selectable ratio with replaceable cartridges
FR2813189B1 (en) 2000-08-31 2003-02-28 Oreal COSMETIC FOAMING CREAM FOR THE TREATMENT OF OILY SKIN
WO2002022086A2 (en) 2000-09-14 2002-03-21 Quantum Energy Technologies Application of water nanoclusters to skin
AU2001288039B2 (en) 2000-09-21 2005-09-15 Taisho Pharmaceutical Co., Ltd. Suppositories sustained in the lower rectum
AUPR048600A0 (en) 2000-10-02 2000-10-26 Soltec Research Pty Ltd Pharmaceutical vehicle
DE10049147A1 (en) 2000-10-04 2002-04-25 Wella Ag Hair wax product with waxes, non-volatile oils and volatile, hydrophobic substances
FR2814959A1 (en) 2000-10-09 2002-04-12 Menarini France Atomiser for pharmaceutical products based on antiinflammatory agents comprises pressurized container, dosing pouch and metering valve
US6547063B1 (en) 2000-10-10 2003-04-15 The Procter & Gamble Company Article for the delivery of foam products
GB2367809A (en) 2000-10-12 2002-04-17 Bespak Plc Metering valve with collapsible chamber
FR2815616B1 (en) 2000-10-20 2003-01-24 Oreal DISTRIBUTION ASSEMBLY FOR THE EXTEMPORARY DISTRIBUTION OF TWO PRODUCTS
US6403069B1 (en) 2000-10-20 2002-06-11 Colgate-Palmolive Company High oil clear emulsion with elastomer
US20040018228A1 (en) 2000-11-06 2004-01-29 Afmedica, Inc. Compositions and methods for reducing scar tissue formation
DE10058384B4 (en) 2000-11-24 2004-12-16 Wella Aktiengesellschaft Cosmetic or dermatological agent in the form of a creamy permanent foam or a stably foamed cream, its use and method for producing the agent
US6299032B1 (en) 2000-11-27 2001-10-09 George W. Hamilton Disposable actuator with cap opener for aerosol cans
AU2002217896A1 (en) 2000-11-28 2002-06-11 Avon Products Inc. Foaming insect repellent compositions
US6969521B1 (en) 2000-11-28 2005-11-29 Avon Products, Inc. Aerosol insect repellent composition having low VOC content and method of applying same to the skin
US20050013853A1 (en) 2000-11-29 2005-01-20 Irit Gil-Ad Anti-proliferative drugs
US6774100B2 (en) 2000-12-06 2004-08-10 Imaginative Research Associates, Inc. Anhydrous creams, lotions and gels
GB0030068D0 (en) 2000-12-11 2001-01-24 Lawrence Malcolm Highway vehicular traffic flow control
JP3497466B2 (en) 2000-12-12 2004-02-16 高砂香料工業株式会社 Warming composition
US20060254597A1 (en) 2000-12-14 2006-11-16 40J's Llc Method of treatment of atrophic vaginitis by topical clitoral menthol or a related cooling compound
DE10063342A1 (en) 2000-12-19 2002-06-20 Beiersdorf Ag Cosmetic or dermatological composition contains three-part emulsifier system and gas
US6749860B2 (en) 2000-12-22 2004-06-15 Kimberly-Clark Worldwide, Inc. Absorbent articles with non-aqueous compositions containing botanicals
US20040079361A1 (en) 2001-01-17 2004-04-29 Clayton Colin D. Medicinal aerosols
FR2819427B1 (en) 2001-01-18 2003-04-11 Oreal TRANSLUCENT NANOEMULSION, MANUFACTURING METHOD THEREOF AND USES THEREOF IN THE COSMETIC, DERMATOLOGICAL AND / OR OPHTHALMOLOGICAL FIELDS
US20030013692A1 (en) 2001-01-19 2003-01-16 Gullans Steven R. Methods of treating neurological disorders
EP1357905A2 (en) 2001-02-05 2003-11-05 Michael Albert Kamm A treatment of oesophageal motility disorders and gastro-oesophageal reflux disease
KR20100036390A (en) 2001-03-06 2010-04-07 셀러지 파마세우티칼스, 인크 Compounds and methods for the treatment of urogenital disorders
WO2002076414A2 (en) 2001-03-07 2002-10-03 The Procter & Gamble Company Cosmetic topical composition comprising a functional aromatic derivative bonding agent
AU2002254396A1 (en) 2001-03-26 2002-10-08 Dana-Farber Cancer Institute, Inc. Method of attenuating reactions to skin irritants
US6640805B2 (en) 2001-03-26 2003-11-04 3M Innovative Properties Company Metering valve for a metered dose inhaler having improved flow
NZ528377A (en) 2001-03-27 2005-05-27 Galen Chemicals Ltd Intravaginal drug delivery devices for the administration of an antimicrobial agent
US6977082B2 (en) 2001-03-29 2005-12-20 The Dial Corporation High efficacy antibacterial compositions having enhanced esthetic and skin care properties
JP2002302419A (en) 2001-03-30 2002-10-18 Aldeep Cosmetics Japan Inc Cosmetic composition
KR100982753B1 (en) 2001-04-05 2010-09-16 콜라제넥스 파마슈티칼스, 인크 Controlled delivery of tetracycline compounds and tetracycline derivatives
US6848597B2 (en) 2001-04-18 2005-02-01 James A. Vlodek Methods and apparatus for extruding foam through orifices
US20030053980A1 (en) 2001-04-30 2003-03-20 The Gillette Company Shaving compositions containing highly lubricious water soluble polymers
US6682726B2 (en) 2001-04-30 2004-01-27 The Gillette Company Self-foaming shaving lotion
US20020187181A1 (en) 2001-05-14 2002-12-12 3M Innovative Properties Company System for delivering cosmetics and pharmaceuticals
ITMI20011019A1 (en) 2001-05-17 2002-11-17 Carlo Ghisalberti FURILIC SUBSTANCES FOR TOPICAL USE
WO2002096374A2 (en) 2001-05-31 2002-12-05 Upsher-Smith Laboratories, Inc. Dermatological compositions and methods comprising alpha-hydroxy acids or derivatives
US7270828B2 (en) 2001-06-20 2007-09-18 The Procter & Gamble Company Personal care composition comprising hydrophobic gel
WO2003000223A1 (en) 2001-06-20 2003-01-03 The Procter & Gamble Company Personal care composition comprising polyol-in-silicone emulsion
FR2826292B1 (en) 2001-06-22 2004-01-23 Rhodia Chimie Sa OIL-IN-OIL EMULSIONS COMPRISING A SILICONE, DISPERSIONS OF SUCH EMULSIONS AND USE THEREOF
US6544562B2 (en) 2001-06-25 2003-04-08 Blistex Inc. Acne treatment including dual-package system
US6428772B1 (en) 2001-06-25 2002-08-06 Blistex Inc. Acne treatment composition with cooling effect
WO2003002082A1 (en) 2001-06-26 2003-01-09 The Procter & Gamble Company Pressurized anhydrous antiperspirant emulsions
JP2003012511A (en) 2001-06-27 2003-01-15 Rohto Pharmaceut Co Ltd Aerosol composition
WO2003002426A1 (en) 2001-06-27 2003-01-09 Kanebo,Limited Mixer/extractor
US20060194773A1 (en) 2001-07-13 2006-08-31 Paratek Pharmaceuticals, Inc. Tetracyline compounds having target therapeutic activities
WO2003005985A1 (en) 2001-07-13 2003-01-23 The Procter & Gamble Company Mousse forming compositions comprising quaternary ammonium agents
DE10134786A1 (en) 2001-07-17 2003-02-06 Beiersdorf Ag Foamable preparations
DE10138495B4 (en) 2001-08-04 2004-11-11 Beiersdorf Ag Foaming preparations and their use
WO2003013475A1 (en) 2001-08-08 2003-02-20 Garcia-Olmedo Dominguez Maria Injectable foam and novel pharmaceutical applications thereof
JP4707279B2 (en) 2001-08-09 2011-06-22 ポーラ化成工業株式会社 Cosmetics for massage with cool-down effect
US7091243B2 (en) 2001-08-09 2006-08-15 Croda, Inc. Anti-irritants
MXPA04001271A (en) 2001-08-11 2004-05-27 Aventis Pharma Ltd Pressurised aerosol dispenser.
US6638981B2 (en) 2001-08-17 2003-10-28 Epicept Corporation Topical compositions and methods for treating pain
US20030049218A1 (en) 2001-08-28 2003-03-13 Amit Patel Antiperspirant deodorant emulsion
EP1455888B1 (en) 2001-08-29 2009-04-29 PharmaKodex Limited Topical administration device
US6709663B2 (en) 2001-08-31 2004-03-23 Healthpoint, Ltd. Multivesicular emulsion drug delivery systems
US6479060B1 (en) 2001-09-04 2002-11-12 Healthpoint, Ltd. Elegant hydrogenated castor oil ointments
FR2829693B1 (en) 2001-09-20 2004-02-27 Oreal FOAMING COSMETIC CREAM
DE10147820A1 (en) 2001-09-27 2003-04-10 Beiersdorf Ag Self-foaming, foam-like, post-foaming or foamable cosmetic or dermatological preparations containing waxes or lipids which are solid and / or semi-solid at room temperature
US7931533B2 (en) 2001-09-28 2011-04-26 Igt Game development architecture that decouples the game logic from the graphics logics
US20030185839A1 (en) 2001-10-05 2003-10-02 Podolsky Daniel K. Methods and compositions for treating dermal lesions
EP1434836B1 (en) 2001-10-10 2013-01-16 ExxonMobil Research and Engineering Company Biodegradable non-toxic gear oil
US20030082120A1 (en) 2001-10-26 2003-05-01 Milstein Harold J. Method for reducing systemic effects of aging, effects of aging on the skin, and incidence of skin damage from sun exposure using antibiotics of the tetracycline family
EP1438946B1 (en) 2001-10-26 2009-01-14 Taiyo Kagaku Co., Ltd. Composition for oily foamable aerosol
DE10154324A1 (en) 2001-11-06 2003-08-07 Merz Pharma Gmbh & Co Kgaa Topically applicable compositions with external active substance depot formation, their production and their use
DE10155956A1 (en) 2001-11-09 2003-05-22 Beiersdorf Ag Self-foaming, foam-like, post-foaming or foamable cosmetic or dermatological preparations
MXPA04004478A (en) 2001-11-13 2004-08-11 Procter & Gamble Compositions containing enzymes stabilized with certain osmo-protectants and methods for using such compositions in personal care.
EP1565189A4 (en) 2001-11-16 2006-11-02 Beatrice M Klysz Anti-aging skin care composition and uses thereof
DE10159002A1 (en) 2001-11-30 2003-06-18 Clariant Gmbh Use of multi-phase foaming agents from foam dispensers
FR2833246B1 (en) 2001-12-06 2005-06-24 Beatrice France Touteau DEVICE FOR SIMULTANEOUSLY ACTING TWO AEROSOLS CONTAINING TWO PRODUCTS TO BE MIXED AT THE TIME OF USE
US6531118B1 (en) 2001-12-11 2003-03-11 Avon Products, Inc. Topical compositions with a reversible photochromic ingredient
MXPA04006017A (en) 2001-12-20 2005-06-08 Femmepharma Inc Vaginal delivery of drugs.
US6765001B2 (en) 2001-12-21 2004-07-20 Medicis Pharmaceutical Corporation Compositions and methods for enhancing corticosteroid delivery
US20030118515A1 (en) 2001-12-21 2003-06-26 Robert Jew Cosmetic composition containing carbon dioxide
SE0104421D0 (en) 2001-12-21 2001-12-21 Ponsus Pharma Ab New composition
US20030129259A1 (en) 2001-12-28 2003-07-10 Avon Products, Inc. Topical lightening compostitions and methods of use
JP4549625B2 (en) 2002-01-05 2010-09-22 株式會社アモーレパシフィック Finely emulsified particles containing ginseng saponin metabolites as active ingredients, a method for producing the same, and a cosmetic composition for preventing skin aging containing the same
US7192601B2 (en) 2002-01-18 2007-03-20 Walker Edward B Antimicrobial and sporicidal composition
US6992049B2 (en) 2002-01-31 2006-01-31 Exxonmobil Research And Engineering Company Lubricating oil compositions
NZ517094A (en) 2002-02-08 2005-03-24 Advanced Animal Technology Ltd Improvements in and relating to substance delivery device
CN100396684C (en) 2002-02-14 2008-06-25 基姆逊有限公司 Aluminium and hexa methylene tetramine composite and application thereof
US6589216B1 (en) 2002-02-20 2003-07-08 Abbott Research Group, Inc. Vaginal douches, vaginal douche applicators and methods of vaginal douching
US6682511B2 (en) 2002-02-21 2004-01-27 Robert Wallace Besoyan Brief protector
US6691898B2 (en) 2002-02-27 2004-02-17 Fomo Products, Inc. Push button foam dispensing device
US7635463B2 (en) 2002-02-27 2009-12-22 Pharmain Corporation Compositions for delivery of therapeutics and other materials
AU2003213787A1 (en) 2002-03-06 2003-09-22 Cellegy Pharmaceuticals, Inc. Compositions and methods for the treatment of anorectal disorders
US20050281766A1 (en) 2002-03-11 2005-12-22 Avon Products, Inc. Method of improving the aesthetic appearance of epithelia
US6736860B2 (en) * 2002-03-12 2004-05-18 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Gradual permanent coloring of hair using dye intermediates dissolved in alkaline water with fatty alcohol
US6848601B2 (en) 2002-03-14 2005-02-01 Homax Products, Inc. Aerosol systems and methods for mixing and dispensing two-part materials
BR0308530B1 (en) 2002-03-19 2014-02-18 COMBINATION OF A FIRST CONTAINER AND A SECOND CONTAINER TO FORM A MINISTRY UNIT, MINISTRY UNIT, AND A CONTAINER FOR A NET SUBSTANCE
US20030180347A1 (en) 2002-03-19 2003-09-25 W.F. Young, Incorporated Patch for the delivery of topical agents
JP4322124B2 (en) 2002-03-28 2009-08-26 伯東株式会社 Method for stabilizing bubbles in foam-containing cosmetics
EP1496773B1 (en) 2002-04-12 2006-08-30 Dreamwell, Ltd. Cassette bedding system
US8192749B2 (en) 2003-04-16 2012-06-05 Galderma Laboratories Inc. Methods of simultaneously treating ocular rosacea and acne rosacea
US8846039B2 (en) 2002-04-26 2014-09-30 Asan Laboratories Company (Cayman), Limited Method for ameliorating pruritus
US6875438B2 (en) 2002-04-27 2005-04-05 Aventis Pharma Deutschland Gmbh Preparations for topical administration of substances having antiandrogenic activity
CA2384922C (en) 2002-05-03 2008-09-02 Purepharm Inc. Topical glycopyrrolate product for the reduction of sweating
JP2005526114A (en) 2002-05-06 2005-09-02 コッラジェネックス ファーマシューチカルス インコーポレイテッド Method for simultaneous treatment of mucositis and fungal infection
CN100531822C (en) * 2002-05-10 2009-08-26 荷兰联合利华有限公司 Hair conditioning compositions
US6783027B2 (en) 2002-05-15 2004-08-31 The Procter & Gamble Company Metered-dose underarm product and package
US20030215472A1 (en) 2002-05-16 2003-11-20 Bonda Craig A Methods and compositions employing a dialkyl amide
EP1505961A4 (en) 2002-05-20 2009-09-02 Collagenex Pharm Inc Methods of treating allergic reactions
JP4050094B2 (en) 2002-05-28 2008-02-20 株式会社三谷バルブ Metering valve mechanism and aerosol products
US6723309B1 (en) 2002-06-10 2004-04-20 Jeffrey Alan Deane Hair cleansing conditioner
US7763587B2 (en) 2002-06-13 2010-07-27 L'oreal S.A. Derivative of glucose and of vitamin F, compositions comprising it, uses and preparation process
FR2840903B1 (en) 2002-06-13 2005-01-28 Oreal GLUCOSE AND VITAMIN F DERIVATIVE, COMPOSITIONS COMPRISING THE SAME, AND USES FOR IMPROVING THE CONDITION OF HAIR AND HAIR
US7163669B2 (en) 2002-06-19 2007-01-16 J.M. Huber Corporation Cosmetic compositions comprising calcium silicates
AU2003244078B2 (en) 2002-06-26 2009-05-14 Daizo Co., Ltd. Packaging container for discharge of plurality of contents, packaging product including the packaging container and process for producing the packaging product
JP2004026605A (en) 2002-06-27 2004-01-29 Asahi Fiber Glass Co Ltd Greige goods for glass fiber yarn and glass fiber yarn made using this
US20040002550A1 (en) 2002-06-28 2004-01-01 Mercurio Anthony Fred Post foaming compositions
US6785629B2 (en) 2002-07-02 2004-08-31 Agilent Technologies, Inc. Accuracy determination in bit line voltage measurements
JP3833972B2 (en) 2002-07-08 2006-10-18 古河電気工業株式会社 Wire harness assembly system
DE10233330B4 (en) 2002-07-22 2007-04-26 Sasol Germany Gmbh Microemulsion containing UV photoprotective filter and / or anti-dandruff agent
US7137536B2 (en) 2002-07-22 2006-11-21 Seaquist Perfect Dispensing Foreign, Inc. Inverted aerosol dispenser
US20020182162A1 (en) 2002-08-07 2002-12-05 Mohsen Shahinpoor Nitric oxide (NO) donor+cGMP-PDE5 inhibitor as a topical drug for enhanced hair growth
FR2843373B1 (en) 2002-08-12 2005-03-04 Jean Augustin DEVICE FOR PACKAGING AND APPLYING A PRODUCT IN FLUID FORM
US7939170B2 (en) 2002-08-15 2011-05-10 The Rockefeller University Water soluble metal and semiconductor nanoparticle complexes
KR100991054B1 (en) 2002-08-26 2010-10-29 에스.엘.에이. 파르마 에이지 Topical formulation comprising at least 5% of metronidazole in white petrolatum and its use in the anal and rectal region
US6770607B2 (en) 2002-09-12 2004-08-03 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Viscoelastic cleansing gel with micellar surfactant solutions
US7906473B2 (en) 2002-09-13 2011-03-15 Bissell Homecare, Inc. Manual spray cleaner
US6968982B1 (en) 2002-09-18 2005-11-29 Burns Caleb E S Multiple-mist dispenser
GB0221697D0 (en) 2002-09-18 2002-10-30 Unilever Plc Novel compouds and their uses
US7179481B2 (en) 2002-09-19 2007-02-20 Kimberly-Clark Worldwide, Inc. Vaginal health products
US6949037B2 (en) 2002-09-27 2005-09-27 Richard A. Enos Quick-release fastener for releasably attaching lacrosse stick head to shaft
FR2845672B1 (en) 2002-10-09 2006-02-10 Airlessystems FLUID PRODUCT DISPENSER
US8232304B2 (en) 2002-10-24 2012-07-31 G & R Pharmaceuticals, Llc Antifungal formulations
US20050271596A1 (en) 2002-10-25 2005-12-08 Foamix Ltd. Vasoactive kit and composition and uses thereof
US20060018937A1 (en) 2002-10-25 2006-01-26 Foamix Ltd. Steroid kit and foamable composition and uses thereof
US8119109B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Foamable compositions, kits and methods for hyperhidrosis
US9668972B2 (en) 2002-10-25 2017-06-06 Foamix Pharmaceuticals Ltd. Nonsteroidal immunomodulating kit and composition and uses thereof
US9211259B2 (en) 2002-11-29 2015-12-15 Foamix Pharmaceuticals Ltd. Antibiotic kit and composition and uses thereof
US20080138296A1 (en) 2002-10-25 2008-06-12 Foamix Ltd. Foam prepared from nanoemulsions and uses
US20050186142A1 (en) 2002-10-25 2005-08-25 Foamix Ltd. Kit and composition of imidazole with enhanced bioavailability
US20080317679A1 (en) 2002-10-25 2008-12-25 Foamix Ltd. Foamable compositions and kits comprising one or more of a channel agent, a cholinergic agent, a nitric oxide donor, and related agents and their uses
US20060233721A1 (en) 2002-10-25 2006-10-19 Foamix Ltd. Foam containing unique oil globules
US20060193789A1 (en) 2002-10-25 2006-08-31 Foamix Ltd. Film forming foamable composition
US20070292461A1 (en) 2003-08-04 2007-12-20 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US20080206161A1 (en) 2002-10-25 2008-08-28 Dov Tamarkin Quiescent foamable compositions, steroids, kits and uses thereof
US20070292359A1 (en) 2002-10-25 2007-12-20 Foamix Ltd. Polypropylene glycol foamable vehicle and pharmaceutical compositions thereof
US8119150B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Non-flammable insecticide composition and uses thereof
US10117812B2 (en) 2002-10-25 2018-11-06 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
US20070292355A1 (en) 2002-10-25 2007-12-20 Foamix Ltd. Anti-infection augmentation foamable compositions and kit and uses thereof
US20050205086A1 (en) 2002-10-25 2005-09-22 Foamix Ltd. Retinoid immunomodulating kit and composition and uses thereof
US20160158261A1 (en) 2002-10-25 2016-06-09 Foamix Pharmaceuticals Ltd. Antibiotic Kit and Composition and Uses Thereof
US20080031907A1 (en) 2002-10-25 2008-02-07 Foamix Ltd. Cosmetic and pharmaceutical foam
CN1300095C (en) 2002-10-28 2007-02-14 吉万奥丹股份有限公司 Coolant solutions and compositions comprising the sameitle
JP2004250435A (en) 2002-11-21 2004-09-09 Dai Ichi Seiyaku Co Ltd Composition for hair growth
JP4282311B2 (en) 2002-11-26 2009-06-17 三洋電機株式会社 Ice making equipment
AU2003293865A1 (en) 2002-12-12 2004-06-30 Allpresan Gesellschaft Zum Vertrieb Von Gesundheitsprodukten Fur Allergiker Mbh Stable foam cream
GB0229071D0 (en) 2002-12-13 2003-01-15 Unilever Plc Cosmetic method and composition for enhancing attractiveness
US20040191196A1 (en) 2002-12-16 2004-09-30 Dov Tamarkin Novel conjugate compounds and dermatological compositions thereof
FR2848847B1 (en) 2002-12-18 2005-10-14 Coletica COSMETIC OR DERMOPHARMACEUTICAL COMPOSITION COMPRISING AN AQUEOUS INSOLUBLE ENZYME AND USES THEREOF
US7842791B2 (en) 2002-12-19 2010-11-30 Nancy Jean Britten Dispersible pharmaceutical compositions
FR2848998B1 (en) 2002-12-20 2006-04-07 Oreal DISPENSING DEVICE HAVING MEANS FOR DISTRIBUTING TWO PRODUCTS IN VARIABLE PROPORTIONS
CA2764405A1 (en) 2003-01-02 2004-07-22 Femmepharma Holding Company, Inc. Pharmaceutical preparations for treatments of diseases and disorders of the breast
WO2004064769A2 (en) 2003-01-21 2004-08-05 Hector Herrera Methods for making and using topical delivery agents
EA009031B1 (en) 2003-01-24 2007-10-26 Стифел Рисерч Оустрэйлиа Пти Лтд. Clindamycin phosphate based foam
US20040151756A1 (en) 2003-02-04 2004-08-05 Richards Anthony P. Edible low density high surface area drug vehicle, method of manufacturing low density high surface area drug vehicle
EP1603560A1 (en) 2003-02-06 2005-12-14 Cipla Ltd. Topical immunotherapy and compositions for use therein
MXPA05008479A (en) 2003-02-12 2006-03-10 Connetics Australia Pty Ltd Film foaming hydroalcoholic foam.
US6841547B2 (en) 2003-02-28 2005-01-11 Albert Einstein College Of Medicine Of Yeshevia University Method for decreasing low density lipoprotein
US20040175347A1 (en) 2003-03-04 2004-09-09 The Procter & Gamble Company Regulation of mammalian keratinous tissue using hexamidine compositions
GB0305010D0 (en) 2003-03-05 2003-04-09 Unilever Plc Changing colours
US6843390B1 (en) 2003-03-17 2005-01-18 Joe G. Bristor Multiple fluid closed system dispensing device
US7357950B2 (en) 2003-03-21 2008-04-15 Elizabeth Anne Mazzio Topical treatment for dyshidrosis (pompholyx) and dry skin disorders
WO2004084973A2 (en) 2003-03-24 2004-10-07 Becton, Dickinson And Company Invisible antimicrobial glove and hand antiseptic
WO2004084905A2 (en) 2003-03-24 2004-10-07 University Of Florida Use of 5-ht2c receptor activity affecting compounds for treating idiopathic hyperhidrosis and associated conditions
DE10315936A1 (en) 2003-04-03 2004-10-28 Ing. Erich Pfeiffer Gmbh Discharge device for at least one medium
GB0308585D0 (en) 2003-04-14 2003-05-21 Pz Cussons Int Ltd Cleaning composition
US20040229803A1 (en) 2003-04-22 2004-11-18 Pharmacia Corporation Compositions of a cyclooxygenase-2 selective inhibitor and a potassium ion channel modulator for the treatment of pain, inflammation or inflammation mediated disorders
US20040220187A1 (en) 2003-04-22 2004-11-04 Pharmacia Corporation Compositions of a cyclooxygenase-2 selective inhibitor and a sodium ion channel blocker for the treatment of pain, inflammation or inflammation mediated disorders
DE10319771B4 (en) 2003-05-02 2005-03-17 Koenig & Bauer Ag System for inspecting a printed image
JP2004353084A (en) 2003-05-08 2004-12-16 Sanyo Electric Co Ltd Evaporator fixation member
FR2854821B1 (en) 2003-05-16 2006-12-08 Oreal ASSEMBLY FOR PACKAGING AND DISPENSING A PRODUCT, IN PARTICULAR IN THE FORM OF A SAMPLE
JP4232535B2 (en) 2003-05-20 2009-03-04 セイコーエプソン株式会社 Printer maintenance system, print control server, client, method related thereto and program related thereto
US7222802B2 (en) 2003-05-23 2007-05-29 Meadwestvaco Corporation Dual sprayer with external mixing chamber
MXPA05012791A (en) 2003-05-25 2006-02-22 Wang Yuwan Dimeticone-containing sustained formulation.
US7186416B2 (en) 2003-05-28 2007-03-06 Stiefel Laboratories, Inc. Foamable pharmaceutical compositions and methods for treating a disorder
US20050208083A1 (en) 2003-06-04 2005-09-22 Nanobio Corporation Compositions for inactivating pathogenic microorganisms, methods of making the compositons, and methods of use thereof
JP4018032B2 (en) 2003-06-17 2007-12-05 高砂香料工業株式会社 Hair and body cleaning composition
CA2524739A1 (en) 2003-06-18 2004-12-29 Galderma S.A. Metronidazole-based green tinted topical pharmaceutical composition
KR100727327B1 (en) 2003-06-19 2007-06-12 더 프록터 앤드 갬블 캄파니 Polyol-in-silicone emulsions
US20050042182A1 (en) 2003-08-13 2005-02-24 Moshe Arkin Topical compositions of urea
US20070111956A1 (en) 2003-07-03 2007-05-17 Japan Science And Technology Agency Remedy for sarcoidosis and method of treating the same
US20070140999A1 (en) 2003-07-18 2007-06-21 Hill Dermaceuticals, Inc. Topical skin care composition containing refined peanut oil
EP1653932A1 (en) 2003-07-24 2006-05-10 Ranbaxy Laboratories Limited Modified release compositions for minocycline
US7226230B2 (en) 2003-07-28 2007-06-05 Raymond Liberatore Spreader
MXPA06001381A (en) 2003-08-04 2006-05-19 Foamix Ltd Foam carrier containing amphiphilic copolymeric gelling agent.
US8486374B2 (en) 2003-08-04 2013-07-16 Foamix Ltd. Hydrophilic, non-aqueous pharmaceutical carriers and compositions and uses
US8795693B2 (en) 2003-08-04 2014-08-05 Foamix Ltd. Compositions with modulating agents
US20080069779A1 (en) 2003-08-04 2008-03-20 Foamix Ltd. Foamable vehicle and vitamin and flavonoid pharmaceutical compositions thereof
MXPA06002163A (en) 2003-08-25 2006-05-22 Foamix Ltd Penetrating pharmaceutical foam.
US20060140990A1 (en) 2003-09-19 2006-06-29 Drugtech Corporation Composition for topical treatment of mixed vaginal infections
CN1886126A (en) 2003-09-25 2006-12-27 Dmi生物科学公司 Methods and products which utilize N-acyl-L-aspartic acid
FR2860143B1 (en) 2003-09-26 2008-06-27 Oreal COSMETIC COMPOSITION COMPRISING A SEQUENCE POLYMER AND A NON-VOLATILE SILICONE OIL
US20050084551A1 (en) 2003-09-26 2005-04-21 Jensen Claude J. Morinda citrifolia-based oral care compositions and methods
GB2406330B (en) 2003-09-29 2005-12-07 Bespak Plc A dispensing apparatus
EA200600666A1 (en) 2003-09-29 2006-10-27 Этена Хелткеа Инк. GEL AND WOODY COMPOSITIONS WITH HIGH ALCOHOL CONTENT
MXPA06003743A (en) 2003-10-03 2006-06-23 Collegium Pharmaceutical Inc Topical aerosol foams.
FR2860502B1 (en) 2003-10-07 2007-09-14 Valois Sas DOSING VALVE AND DEVICE FOR DISPENSING FLUID PRODUCT COMPRISING SUCH A VALVE
GB0323908D0 (en) 2003-10-11 2003-11-12 Nupharm Lab Ltd Pharmaceutical foam formulation
ATE416012T1 (en) 2003-10-14 2008-12-15 Showa Denko Kk AGENT FOR EXTERNAL USE ON THE SKIN COMPRISING A SALT OF AN ASCORBIC ACID DERIVATIVE, METHOD FOR STABILIZING THE AGENT FOR EXTERNAL USE ON THE SKIN
FR2860976B1 (en) 2003-10-20 2006-02-10 Ravi Shrivastava NOVEL SYNERGISTIC COMPOSITIONS FOR IMPROVING THE BIODAVAILABILITY AND EFFICIENCY OF POLYUNSATURATED FATTY ACIDS FOR THE TREATMENT OF BRAIN FUNCTIONING DISORDERS.
US7419498B2 (en) 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
CN100475184C (en) 2003-10-31 2009-04-08 宝洁公司 Skin care composition containing dehydroacetic acid and skin care actives
NZ547628A (en) 2003-11-06 2010-07-30 Univ New York State Res Found Methods of treating eczema
US8157788B2 (en) 2003-11-06 2012-04-17 Paolo L. Manfredi Multi-site drug delivery platform
US7905673B2 (en) 2003-11-17 2011-03-15 The Procter & Gamble Company Antiperspirant composition and applicator therefor
DE10354051A1 (en) 2003-11-17 2005-06-16 Beiersdorf Ag Dispensers containing cosmetic preparations containing aids for keeping the donor in motion
MXPA06005639A (en) 2003-11-21 2006-08-17 Pfizer Prod Inc The use of anti biotics as vaccine adjuvants.
US20050115988A1 (en) 2003-12-01 2005-06-02 Brian Law Multiple liquid foamer
US20050123496A1 (en) 2003-12-08 2005-06-09 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Self foaming non-aqueous personal wash cleansers with little or no surfactant
DE10361022A1 (en) 2003-12-23 2005-07-28 Merckle Gmbh Chem.-Pharm. Fabrik Topical preparations containing dimethyl sulfoxide and dexpanthenol
ATE478082T1 (en) 2003-12-30 2010-09-15 Gilead Sciences Inc PHOSPHONATES, MONOPHOSPHONAMIDATE, BISPHOSPHONAMIDATE FOR THE TREATMENT OF VIRAL DISEASES
IL159729A0 (en) 2004-01-06 2004-06-20 Doron I Friedman Non-aqueous composition for oral delivery of insoluble bioactive agents
US20050186147A1 (en) 2004-02-04 2005-08-25 Foamix Ltd. Cosmetic and pharmaceutical foam with solid matter
US7225518B2 (en) 2004-02-23 2007-06-05 Boston Scientific Scimed, Inc. Apparatus for crimping a stent assembly
JP4381169B2 (en) 2004-02-27 2009-12-09 花王株式会社 Hair cosmetics
PT2985039T (en) 2004-03-03 2018-11-09 Revance Therapeutics Inc Topical application and transdermal delivery of botulinum toxins
US7510345B2 (en) 2004-03-18 2009-03-31 Bodypoint Designs, Inc. Quick release assembly
DE102004016710B4 (en) 2004-04-05 2020-11-19 Greppmayr GmbH Foot care formulation
US9168224B2 (en) 2004-04-08 2015-10-27 Meda Pharma Sarl Pimecrolimus foam composition containing hexylene glycol, optionally oleyl alcohol, dimethylisosorbide and/or medium chain triglycerides
EP1737429B1 (en) 2004-04-19 2013-07-17 Strategic Science & Technologies, LLC Transdermal delivery of beneficial substances effected by a high ionic strength environment
NL1026031C2 (en) 2004-04-23 2005-10-25 Airspray Nv Delivery assembly.
CA2565754A1 (en) 2004-04-28 2005-10-28 Foamix Ltd. Body cavity foams
US20050244354A1 (en) 2004-04-30 2005-11-03 Sam Speron Oxygenated personal care products
JP2005314323A (en) 2004-04-30 2005-11-10 Sato Pharmaceutical Co Ltd Hair growth formulation
WO2005115336A2 (en) 2004-05-15 2005-12-08 Collegium Pharmaceutical, Inc. Sprayable formulations for the treatment of acute inflammatory skin conditions
US7083125B2 (en) 2004-05-17 2006-08-01 S.C. Johnson & Son, Inc. Detachable tube assembly
US7143909B2 (en) 2004-05-21 2006-12-05 Sonoco Development, Inc. Reconfigurable metered material dispenser
US8394394B2 (en) 2004-05-26 2013-03-12 L'oréal Mousse formulations
ITBO20040338A1 (en) 2004-05-28 2004-08-28 Progine Farmaceutici Srl VAGINAL NEBULIZATION DISPENSER
US20050268416A1 (en) 2004-06-03 2005-12-08 Sommers J E Foldable lotion applicator
JP4368250B2 (en) 2004-06-09 2009-11-18 ポーラ化成工業株式会社 Post-form dosage form of warm cosmetic
FR2871696B1 (en) 2004-06-17 2006-11-10 Galderma Sa TOPICAL COMPOSITION FOR THE TREATMENT OF PSORIASIS
US8211449B2 (en) 2004-06-24 2012-07-03 Dpt Laboratories, Ltd. Pharmaceutically elegant, topical anhydrous aerosol foam
JP4355264B2 (en) 2004-06-25 2009-10-28 ポーラ化成工業株式会社 Warm feeling non-water foam cosmetic
US7207655B2 (en) 2004-06-28 2007-04-24 Eastman Kodak Company Latency stirring in fluid ejection mechanisms
US6991789B2 (en) 2004-06-29 2006-01-31 Allergas, Inc. Methods of modulating intracellular degradation rates of toxins
US20060008432A1 (en) 2004-07-07 2006-01-12 Sebastiano Scarampi Gilsonite derived pharmaceutical delivery compositions and methods: nail applications
UA93354C2 (en) 2004-07-09 2011-02-10 Гилиад Сайенсиз, Инк. Topical antiviral formulations
US20060121073A1 (en) 2004-07-12 2006-06-08 Sandhya Goyal Topical gel formulation comprising insecticide and its preparation thereof
MXPA06014390A (en) 2004-07-19 2007-10-02 Warner Lambert Co Formulation for stimulating hair growth.
WO2006010589A2 (en) 2004-07-29 2006-02-02 Mipharm S.P.A. Post foaming gel mousse
JP4557624B2 (en) 2004-07-29 2010-10-06 株式会社吉野工業所 Quantitative dispenser
US20060029565A1 (en) 2004-08-09 2006-02-09 The Gillette Company Self-heating shave foam product
JP5087773B2 (en) 2004-08-12 2012-12-05 トリアクセス テクノロジーズ インコーポレイテッド Optical signal detection circuit and method
EP2438910A1 (en) 2004-08-31 2012-04-11 Stiefel Research Australia Pty Ltd Microemulsion & sub-micron emulsion process & compositions
KR100623013B1 (en) 2004-09-04 2006-09-19 김영대 Nano-emulsion, the use thereof, and preparing method thereof
TR201907874T4 (en) 2004-09-23 2019-06-21 Arc Medical Devices Inc Pharmaceutical compositions and methods for inhibiting fibrous adhesions or inflammatory diseases using low sulphate fucans.
LT1791791T (en) 2004-09-27 2019-09-10 Special Water Patents B.V. Methods and compositions for treatment of water
FR2875797B1 (en) 2004-09-30 2006-11-24 Oreal DISTRIBUTION ASSEMBLY FOR THE EXTENDED DISTRIBUTION OF TWO PRODUCTS
BRPI0404595A (en) 2004-10-26 2006-06-13 Natura Cosmeticos Sa oil-in-water nanoemulsion, cosmetic composition and cosmetic product comprising same, process for preparing said nanoemulsion
DE102004052986A1 (en) 2004-11-02 2006-05-04 Lindal Ventil Gmbh Device for mixing two different components
US7350673B2 (en) 2004-11-19 2008-04-01 Glynntech, Inc. Metered dose squeeze dispenser
US8080560B2 (en) 2004-12-17 2011-12-20 3M Innovative Properties Company Immune response modifier formulations containing oleic acid and methods
FR2880802B1 (en) 2005-01-14 2008-12-19 Sederma Soc Par Actions Simpli COSMETIC OR DERMOPHARMACEUTICAL COMPOSITION CONTAINING EUGLENE EXTRACT
US20060194769A1 (en) 2005-01-25 2006-08-31 University Of Vermont And State Agricultural College Small molecules that reduce fungal growth
BRPI0607038A2 (en) 2005-01-28 2009-12-01 Basf Ag use of polymers cosmetic compositions for hair and skin and dermatological composition
US20060177392A1 (en) 2005-02-10 2006-08-10 William Walden Oil-based composition for acne
US20060193813A1 (en) 2005-02-11 2006-08-31 L'oreal Nanoemulsion containing a hydroxylated urea compound
GB0506141D0 (en) 2005-03-24 2005-05-04 Transphase Ltd A topical compostion and its uses
US20090061001A1 (en) 2005-03-24 2009-03-05 Ensign Laboratories Pty Ltd Sunscreen aerosol spray
US20060222675A1 (en) 2005-03-29 2006-10-05 Sabnis Ram W Personal care compositions with color changing indicator
CA2610135A1 (en) 2005-04-19 2006-10-19 Foamix Ltd. Apparatus and method for releasing a measured amount of content from a container
JP5348749B2 (en) 2005-05-05 2013-11-20 ジェネンコー・インターナショナル・インク Personal care compositions and methods for their use
WO2007054818A2 (en) 2005-05-09 2007-05-18 Foamix Ltd. Foamable vehicle and pharmaceutical compositions thereof
CA2608023C (en) 2005-05-10 2015-08-18 Dermipsor Ltd. Compositions comprising calcipotriol and nicotinamide for treating hyperproliferative epidermal diseases
WO2006122158A2 (en) 2005-05-10 2006-11-16 Xanthone Plus International, Llc Skin care compositions containing xanthones
PL2526930T3 (en) 2005-06-01 2014-05-30 Glaxosmithkline Ip Dev Ltd Vitamin formulation
US20060272199A1 (en) 2005-06-02 2006-12-07 Bmc Manufacturing, Llc Aqueous gel candle for use with a warming device
US8211874B2 (en) 2005-06-03 2012-07-03 Galderma Laboratories Inc. Inhibition of thrombin generation
CA2611577A1 (en) 2005-06-07 2007-09-07 Foamix Ltd. Antibiotic kit and composition and uses thereof
WO2007085899A2 (en) 2005-07-06 2007-08-02 Foamix Ltd. Foamable arthropocidal composition for tropical application
US20070009607A1 (en) 2005-07-11 2007-01-11 George Jones Antibacterial/anti-infalmmatory composition and method
US20070015738A1 (en) 2005-07-15 2007-01-18 Walker Stephen G Use of non-antibacterial tetracycline formulations for inhibiting bacterial spores from becoming infectious vegetative cells
EP2862560B1 (en) 2005-07-18 2019-10-30 The Procter and Gamble Company Aerosol cream mousse, method of treating hair and use
US20080152596A1 (en) 2005-07-19 2008-06-26 Foamix Ltd. Polypropylene glycol foamable vehicle and pharmaceutical compositions thereof
WO2007085902A2 (en) 2005-07-19 2007-08-02 Foamix Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
CN100531515C (en) 2005-07-22 2009-08-19 鸿富锦精密工业(深圳)有限公司 Printing circuit board with modified power zone block
DE602005010417D1 (en) 2005-07-22 2008-11-27 Wella Ag Hair treatment method with a dry foam used as a mechanical vehicle
CA2618974C (en) 2005-08-09 2014-01-28 Nanobio Corporation Nanoemulsion compositions having anti-inflammatory activity
WO2007025244A2 (en) 2005-08-25 2007-03-01 Houle Philip R Treatment systems for delivery of sensitizer solutions
WO2007119099A2 (en) 2005-09-12 2007-10-25 Foamix Ltd. Apparatus and method for releasing a measure of content from a plurality of containers
FR2890559B1 (en) 2005-09-13 2011-06-24 Galderma Sa DERMATOLOGICAL FOAMS BASED ON METRONIDAZOLE AND EMULSIONS FOR PREPARATION
DE202006004676U1 (en) 2005-09-28 2007-02-08 Neubourg Skin Care Gmbh & Co. Kg Formulation, useful as foam skin cream and to treat e.g. dermatitis and psoriasis, comprises an aqueous emulsion, propellant gas, urea emulsion, hyaluronic acid, free fatty acid and at least two emulsions
US20070134174A1 (en) 2005-11-03 2007-06-14 Christopher Irwin Personal care composition
JP2007131539A (en) 2005-11-08 2007-05-31 Koike Kagaku Kk Chilling foam cosmetic
US20070148194A1 (en) 2005-11-29 2007-06-28 Amiji Mansoor M Novel nanoemulsion formulations
JP4885529B2 (en) 2005-12-08 2012-02-29 住友重機械工業株式会社 Radiation detection unit and radiation inspection apparatus
US20070160548A1 (en) 2005-12-13 2007-07-12 Playtex Products, Inc. Moisturizing sunless tanning composition
US20070142263A1 (en) 2005-12-15 2007-06-21 Stahl Katherine D Color changing cleansing composition
US20070148112A1 (en) 2005-12-28 2007-06-28 Avon Products, Inc. Foaming, color-changing topical composition and method of imparting a cosmetic effect
US20070166273A1 (en) 2006-01-19 2007-07-19 Krivulka Joseph J Skin treatment educational kit
JP5184373B2 (en) 2006-01-19 2013-04-17 ディスファー・インターナショナル・ベー・フェー Foam composition
US20070224143A1 (en) 2006-03-21 2007-09-27 Kamedis Ltd. Cosmetic and pharmaceutical foam carrier
JP2009536920A (en) 2006-03-22 2009-10-22 ザ プロクター アンド ギャンブル カンパニー Aerosol products comprising a foamable concentrate composition comprising particulate matter
WO2008075207A2 (en) 2006-04-04 2008-06-26 Foamix Ltd. Anti-infection augmentation foamable compositions and kit and uses thereof
US20070264317A1 (en) 2006-05-15 2007-11-15 Perrigo Israel Pharmaceuticals Ltd. Imiquimod cream formulation
WO2007142967A2 (en) 2006-05-31 2007-12-13 The Dial Corporation Alcohol-containing antimicrobial compositions having improved efficacy
JP4892282B2 (en) 2006-06-09 2012-03-07 アルプス電気株式会社 Lubricating composition for electrical contacts
WO2008110872A2 (en) 2006-06-23 2008-09-18 Foamix Ltd. Foamable compositions and kits comprising one or more of a channel agent, a cholinergic agent, a nitric oxide donor, and related agents and their uses
US7826675B2 (en) 2006-07-04 2010-11-02 Hewlett-Packard Development Company, L.P. Feature-aware image defect removal
PL2494959T3 (en) 2006-07-05 2015-06-30 Foamix Pharmaceuticals Ltd Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
MX2009000507A (en) 2006-07-14 2009-06-12 Stiefel Res Australia Pty Ltd Fatty acid pharmaceutical foam.
AU2007275815A1 (en) 2006-07-18 2008-01-24 Wirra Ip Pty. Ltd. Immune response modifier formulations
US20080031908A1 (en) 2006-07-25 2008-02-07 L'oreal Oily cosmetic composition in aerosol form
JP2008040899A (en) 2006-08-08 2008-02-21 Fuji Xerox Co Ltd Printing controller, program, and method
JP2010502690A (en) 2006-09-08 2010-01-28 フォーミックス エルティーディー. Colored or colorable foamable composition
ES2315123B1 (en) 2006-09-25 2009-12-30 Divasa-Farmavic, S.A. STABLE PHARMACEUTICAL COMPOSITIONS OF TETRACICLINES IN SOLUTION, PROCEDURE FOR OBTAINING AND USES.
HUP0600765A2 (en) 2006-10-06 2008-10-28 Istvan Piller Container for stable carbondioxide foam, process for producing stable carbondioxide foam and method for using of foam
AU2007355106A1 (en) 2006-11-29 2008-12-18 Foamix Ltd. Foamable waterless compositions with modulating agents
US9192558B2 (en) 2006-12-15 2015-11-24 The Procter & Gamble Company Skin care compositions
US20080153789A1 (en) 2006-12-26 2008-06-26 Femmepharma Holding Company, Inc. Topical administration of danazol
US20080292560A1 (en) 2007-01-12 2008-11-27 Dov Tamarkin Silicone in glycol pharmaceutical and cosmetic compositions with accommodating agent
AU2008206982A1 (en) 2007-01-16 2008-07-24 Oystershell N.V. Foamable composition for killing arthropods and uses thereof
US20080188445A1 (en) 2007-02-02 2008-08-07 Warner Chilcott Company Inc. Tetracycline compositions for topical administration
US20080188446A1 (en) 2007-02-02 2008-08-07 Warner Chilcott Company Inc. Tetracycline compositions for topical administration
PT103661B (en) 2007-02-23 2010-09-07 Hovione Farmaciencia S A MINOCYCINE PREPARATION PROCESS CRYSTALLINE
GB0703909D0 (en) 2007-02-28 2007-04-11 Neuropharm Ltd Treatment of anxiety disorders
FR2915891B1 (en) 2007-05-10 2012-05-11 Oreal FOAM COMPOSITION COMPRISING A SILICONE POLYMER
US9511016B2 (en) 2007-06-12 2016-12-06 Epicentrx, Inc. Topical composition for treating pain
US8636982B2 (en) 2007-08-07 2014-01-28 Foamix Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US8617100B2 (en) 2007-09-04 2013-12-31 Foamix Ltd. Device for delivery of a foamable composition
US20090130029A1 (en) 2007-11-21 2009-05-21 Foamix Ltd. Glycerol ethers vehicle and pharmaceutical compositions thereof
CA2711703A1 (en) 2008-01-08 2009-07-16 Foamix Ltd. Sensation modifying topical composition foam
US8652443B2 (en) 2008-02-14 2014-02-18 Precision Dermatology, Inc. Foamable microemulsion compositions for topical administration
ES2330291B1 (en) 2008-02-29 2010-10-18 Lipotec Sa USEFUL PEPTIDES IN THE TREATMENT OF SKIN, MUCOSAS AND / OR LEATHER HAIR AND ITS USE IN COSMETIC OR PHARMACEUTICAL COMPOSITIONS.
RU2547441C2 (en) 2008-03-06 2015-04-10 Анакор Фармасьютикалз, Инк. Boron-containing small molecules as anti-inflammatory agents
US20120141384A1 (en) 2008-05-06 2012-06-07 Dov Tamarkin Antibacterial conjugated boronic acids and pharmaceutical compositions thereof
US8253882B2 (en) 2008-08-07 2012-08-28 Sharp Kabushiki Kaisha Display device
ATE500817T1 (en) 2008-12-23 2011-03-15 Intendis Gmbh FOAMABLE COMPOSITION SUBSTANTIALLY FREE OF PHARMACEUTICALLY ACTIVE INGREDIENTS FOR THE TREATMENT OF HUMAN SKIN
JP5213734B2 (en) 2009-01-22 2013-06-19 サンウエーブ工業株式会社 Cabinet with flap door
CA2752070C (en) 2009-02-12 2017-11-28 Precision Dermatology, Inc. Foamable benzoyl peroxide compositions for topical administration
BRPI1008037B1 (en) 2009-02-25 2019-08-06 Stiefel Research Australia Pty Ltd. Oil-in-water emulsion aerosol foam composition, use of said composition for treating a skin condition, disorder or condition and process for preparing said composition
WO2010124280A2 (en) 2009-04-24 2010-10-28 New Century Pharmaceuticals, Inc. Human serum albumin-based topical ointment for treatment of acne, psoriasis, egfr-induced toxicity, premature skin aging and other skin conditions
US8255186B2 (en) 2009-07-09 2012-08-28 Air Liquide Large Industries U.S. Lp Presenting dynamic SCADA data
WO2011026094A2 (en) 2009-08-31 2011-03-03 Collegium Pharmaceutical, Inc. Stable aerosol topical foams comprising a hypochlorite salt
US20140121188A1 (en) 2009-10-02 2014-05-01 Foamix Ltd. Compositions for the improved treatment of acne and related disorders
GB2474930B (en) 2009-10-02 2012-07-04 Foamix Ltd Topical tetracycline compositions
US20140186269A1 (en) 2013-01-03 2014-07-03 Foamix Ltd. Vehicle compositions essentially free of pharmaceutically active agents for the improved treatment of acne and related disorders
US8735377B1 (en) 2010-02-04 2014-05-27 Susan Anna Sipos Methods of treating herpes zoster
US20110212035A1 (en) 2010-02-26 2011-09-01 Collegium Pharmaceutical, Inc. Emollient foams for treatment of dermatoses
US8623330B2 (en) 2010-03-18 2014-01-07 Precision Dermatology, Inc. Emollient foams for treatment of seborrheic dermatitis
US8592380B2 (en) 2010-03-26 2013-11-26 Precision Dermatology, Inc. Aerosol foams comprising clindamycin phosphate
WO2011133219A1 (en) 2010-04-21 2011-10-27 Pharmacline, Llc Topical drug delivery system with dual carriers
JP5865360B2 (en) 2010-06-11 2016-02-17 プレシジョン ダーマトロジー インコーポレイテッドPrecision Dermatology, Inc. Softening aerosol foam composition with high oil content
AU2011289407B2 (en) 2010-08-11 2015-06-18 Philadelphia Health & Education Corporation Novel D3 dopamine receptor agonists to treat dyskinesia in Parkinson's disease
US8895537B2 (en) 2010-10-29 2014-11-25 Infirst Healthcare Ltd. Compositions and methods for treating cardiovascular diseases
EA031630B1 (en) 2011-01-19 2019-01-31 Лэборатори Скин Кер, Инк. Topical minocycline compositions and methods of using the same
US20140221320A1 (en) 2011-07-08 2014-08-07 The Research Foundation For The State University Of New York Topical minocycline ointment for suppression of allergic skin responses
CA2854449A1 (en) 2011-11-03 2013-05-10 Precision Dermatology, Inc. Stable dermatological aerosol foams utilizing reactive propellants
US8801680B2 (en) 2012-03-14 2014-08-12 Becton, Dickinson And Company Angled retracting sheath for safety needle
IL225246A0 (en) 2012-03-15 2013-06-27 Meir Eini Methods for accelerated return of skin integrity and for the treatment of impetigo
KR20140134712A (en) 2012-03-22 2014-11-24 프리시전 더마톨로지, 인크. Cyclodextrin-based microemulsions, and dermatological uses thereof
CA2775393C (en) 2012-05-02 2014-04-29 Samy Saad Topical non-aqueous pharmaceutical formulations
US20150174144A1 (en) 2012-07-13 2015-06-25 Paratek Pharmaceuticals, Inc. Tetracycline compounds for treating neurodegenerative disorders
PT106679B (en) 2012-11-27 2015-03-25 Hovione Farmaciencia Sa TOPICAL FORMULATIONS OF TETRACYCLINES, THEIR PREPARATION AND USES
CN105050584A (en) 2013-02-28 2015-11-11 普雷西恩护肤公司 Topical formulations of corticosteroids with enhanced bioavailability
US20140243300A1 (en) 2013-02-28 2014-08-28 Precision Dermatology, Inc. Controlling the Bioavailability of Active Ingredients in Topical Formulations
WO2014151347A1 (en) 2013-03-15 2014-09-25 Revance Therapeutics, Inc. Minocycline derivatives
CA2915206A1 (en) 2013-06-17 2014-12-24 Contract Pharmaceuticals Limited Non-aerosol foams for topical administration
US9474720B2 (en) 2013-11-04 2016-10-25 BioPharmX, Inc. Dosage form comprising an active ingredient and a plurality of solid porous microcarriers
WO2015075640A1 (en) 2013-11-20 2015-05-28 Lupin Limited Stable pharmaceutical formulation(s) of tetracycline antibiotic
PT107433B (en) 2014-01-28 2018-12-04 Hovione Farm S A PARTICLE SIZE REDUCTION AND CONTROL PROCESS
WO2015153864A2 (en) 2014-04-02 2015-10-08 Hopkins Patricia T Methods for treating inflammatory conditions

Patent Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772427A (en) * 1952-01-18 1956-12-04 Brock & Rankin Inc Book backbone structure with concealed rivet means and method of making same
US3334147A (en) * 1962-02-28 1967-08-01 Economics Lab Defoaming and surface active compositions
US4052513A (en) * 1974-12-13 1977-10-04 Plough, Inc. Stable topical anesthetic compositions
US4178373A (en) * 1978-08-21 1979-12-11 William H. Rorer, Inc. Coal tar gel composition
US4278206A (en) * 1979-04-13 1981-07-14 Ae Development Corporation Non-pressurized dispensing system
US4965063A (en) * 1985-05-24 1990-10-23 Irene Casey Cleaner and disinfectant with dye
US4933330A (en) * 1987-04-01 1990-06-12 Dak-Laboratoriet Benzoic acid derivatives and use thereof
US5560859A (en) * 1989-07-26 1996-10-01 Pfizer Inc. Post foaming gel shaving composition
US5439670A (en) * 1989-11-28 1995-08-08 Riker Laboratories, Inc. Medicinal aerosol formulations
US5648380A (en) * 1991-03-01 1997-07-15 Warner-Lambert Company Anti-inflammatory wound healing compositions and methods for preparing and using same
US5618516A (en) * 1991-03-06 1997-04-08 Domp e Farmaceutici SpA Method of reducing subcutaneous inflammation by the topical application of a hydrophilic pharmaceutical composition containing ketoprofen lysine salt
US5719122A (en) * 1992-10-20 1998-02-17 Smithkline Beecham Farmaceutici S.P.A. Pharmaceutical compositions containing a calcitonin
US5693258A (en) * 1993-03-30 1997-12-02 Kao Corporation Method for improving foaming properties and foaming composition
US5807571A (en) * 1993-05-06 1998-09-15 Lts Lohmann Therapie-Systeme Gmbh Transdermal therapeutic systems for administering indole serotonin agonists
US5658575A (en) * 1993-09-07 1997-08-19 L'oreal Cosmetic or dermatological composition comprising an oil-in-water emulsion based on oily globules provided with a lamellar liquid crystal coating
US5547989A (en) * 1994-08-19 1996-08-20 Schering-Plough Healthcare Products, Inc. Compositions for treating corns and calluses
US6261544B1 (en) * 1995-03-09 2001-07-17 Focal, Inc. Poly(hydroxy acid)/polymer conjugates for skin applications
US6039936A (en) * 1996-11-15 2000-03-21 L'oreal Nanoemulsion based on non-ionic and cationic amphiphilic lipids and uses thereof
US6217887B1 (en) * 1997-06-04 2001-04-17 The Procter & Gamble Company Leave-on antimicrobial compositions which provide improved immediate germ reduction
US6358924B1 (en) * 1997-12-05 2002-03-19 Eli Lilly And Company GLP-1 formulations
US5919830A (en) * 1998-04-30 1999-07-06 Gopalkrishnan; Sridhar Stable non-aqueous blends for personal care compositions
US6451777B1 (en) * 1998-07-17 2002-09-17 The University Of Texas Southwestern Medical Center Method for regulating hair growth
US6071541A (en) * 1998-07-31 2000-06-06 Murad; Howard Pharmaceutical compositions and methods for managing skin conditions
US6270781B1 (en) * 1999-01-08 2001-08-07 Maxim Pharmaceuticals, Inc. Method and compositions for topical treatment of damaged tissue using reactive oxygen metabolite production or release inhibitors
US6479532B1 (en) * 1999-04-16 2002-11-12 Fujisawa Pharmaceutical Co., Ltd. Antifungal compositions
US6753013B1 (en) * 1999-04-23 2004-06-22 Leo Pharmaceutical Products, Ltd. A/S Pharmaceutical composition
US6395258B1 (en) * 1999-04-27 2002-05-28 Unilever Home & Personal Care Usa A Division Of Conopco, Inc. Mousse forming hair treatment composition containing n-methyl alkyl glucamide surfactant
US6511655B1 (en) * 1999-08-16 2003-01-28 Beiersdorf Ag Cosmetic or dermatological preparations of the oil-in-water type
US6355230B2 (en) * 2000-02-25 2002-03-12 Beiersdorf Ag Cosmetic and dermatological light protection formulations with a content of benzotriazole derivatives and alkyl naphthalates
US7758888B2 (en) * 2000-04-21 2010-07-20 Sol-Gel Technologies Ltd. Composition exhibiting enhanced formulation stability and delivery of topical active ingredients
US20100137198A1 (en) * 2000-07-03 2010-06-03 Foamix Ltd. Pharmaceutical composition for topical application
US6682750B2 (en) * 2001-03-03 2004-01-27 Clariant Gmbh Surfactant-free cosmetic, dermatological and pharmaceutical compositions
US7960416B2 (en) * 2001-08-03 2011-06-14 Takeda Pharmaceutical Company Limited Stable emulsion composition
US20030108502A1 (en) * 2001-10-30 2003-06-12 The Procter & Gamble Company Anhydrous cosmetic compositions containing polyols
US20040258628A1 (en) * 2001-11-14 2004-12-23 Beiersdorf Ag Self-foaming, foam-type, post-foaming or foamable cosmetic or dermatological preparations containing siloxane elastomers
US6897195B2 (en) * 2002-07-24 2005-05-24 Nanjing Zhongshi Chemical Co. Composition of menthol and menthyl lactate, its preparation method and its applications as a cooling agent
US20130183251A1 (en) * 2002-10-25 2013-07-18 Foamix Ltd. Penetrating pharmaceutical foam
US20120156144A1 (en) * 2002-10-25 2012-06-21 Foamix Foamable Compositions, Kits and Methods for Hyperhidrosis
US20120237453A1 (en) * 2002-10-25 2012-09-20 Foamix Ltd. Sensation modifying topical composition foam
US20120148503A1 (en) * 2002-10-25 2012-06-14 Dov Tamarkin Non-flammable insecticide composition and uses thereof
US8435498B2 (en) * 2002-10-25 2013-05-07 Foamix Ltd. Penetrating pharmaceutical foam
US20130183250A1 (en) * 2002-10-25 2013-07-18 Foamix Ltd. Body cavity foams
US20130189195A1 (en) * 2002-10-25 2013-07-25 Foamix Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US20130189196A1 (en) * 2002-10-25 2013-07-25 Foamix Ltd. Foamable Composition
US20130295022A1 (en) * 2002-10-25 2013-11-07 Foamix Ltd. Moisturizing Foam Containing Lanolin
US8486375B2 (en) * 2003-04-28 2013-07-16 Foamix Ltd. Foamable compositions
US20120195836A1 (en) * 2003-04-28 2012-08-02 Foamix Foamable Iodine Compositions
US20070010580A1 (en) * 2003-05-30 2007-01-11 Gianfranco De Paoli Ambrosi Formulation for chemical peeling
US20130189193A1 (en) * 2003-08-04 2013-07-25 Foamix Ltd. Foamable Vehicle and Pharmaceutical Compositions Thereof
US8114385B2 (en) * 2003-08-04 2012-02-14 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US8362091B2 (en) * 2003-08-04 2013-01-29 Foamix Ltd. Foamable vehicle and pharmaceutical compositions thereof
US20130195769A1 (en) * 2003-08-04 2013-08-01 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US20130164225A1 (en) * 2003-08-04 2013-06-27 Foamix Ltd. Foamable vehicle and pharmaceutical compositions thereof
US20050100517A1 (en) * 2003-11-06 2005-05-12 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Cosmetic composition
US20050281749A1 (en) * 2004-06-17 2005-12-22 Galderma S.A. Sprayable compositions comprising a combination of pharmaceutical actives and an oily phase
US20120128598A1 (en) * 2005-10-24 2012-05-24 Precision Dermatology, Inc. Topical Pharmaceutical Foam Composition
US20090053290A1 (en) * 2006-03-08 2009-02-26 Sand Bruce J Transdermal drug delivery compositions and topical compositions for application on the skin
US7252816B1 (en) * 2006-03-29 2007-08-07 Dow Pharmaceutical Sciences Topical acne vulgairs medication with a sunscreen
US8158109B2 (en) * 2006-03-31 2012-04-17 Stiefel Research Australia Pty Ltd Foamable suspension gel
US20100221195A1 (en) * 2006-11-14 2010-09-02 Foamix Ltd. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US20110097279A1 (en) * 2006-11-14 2011-04-28 Foamix Ltd. Stable non-alcoholic foamable pharmaceutical emulsion compositions with an unctuous emollient and their uses
US20110045037A1 (en) * 2007-11-30 2011-02-24 Foamix Ltd. Foam containing benzoyl peroxide
US20140050673A1 (en) * 2007-12-07 2014-02-20 Foamix Ltd. Oil-Based Foamable Carriers And Formulations
US8518376B2 (en) * 2007-12-07 2013-08-27 Foamix Ltd. Oil-based foamable carriers and formulations
US8343945B2 (en) * 2007-12-07 2013-01-01 Foamix Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US20130189191A1 (en) * 2007-12-07 2013-07-25 Foamix Ltd. Carriers, Formulations, Methods For Formulating Unstable Active Agents For External Application And Uses Thereof
US20110008266A1 (en) * 2008-01-14 2011-01-13 Foamix Ltd. Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
US20120087872A1 (en) * 2009-04-28 2012-04-12 Foamix Ltd. Foamable Vehicles and Pharmaceutical Compositions Comprising Aprotic Polar Solvents and Uses Thereof
US20120181201A1 (en) * 2009-06-26 2012-07-19 Hovione Inter Limited Topical Formulation Containing a Tetracycline and a Method of Treating Skin Infections Using the Same
US20120213710A1 (en) * 2009-07-29 2012-08-23 Foamix Ltd. Non Surface Active Agent Non Polymeric Agent Hydro-Alcoholic Foamable Compositions, Breakable Foams and Their Uses
US20120213709A1 (en) * 2009-07-29 2012-08-23 Foamix Ltd. Non Surfactant Hydro-Alcoholic Foamable Compositions, Breakable Foams and Their Uses
US20110281827A1 (en) * 2009-10-02 2011-11-17 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US20130011342A1 (en) * 2009-10-02 2013-01-10 Foamix Ltd. Surfactant-free, water-free formable composition and breakable foams and their uses
US20130064777A1 (en) * 2009-10-02 2013-03-14 Foamix Ltd. Surfactant-free water-free foamable compositions, breakable foams and gels their uses
US20130225536A1 (en) * 2009-10-02 2013-08-29 Foamix Ltd. Methods for Accelerated Return of Skin Integrity and for the Treatment of Impetigo
US8618081B2 (en) * 2009-10-02 2013-12-31 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US20130028850A1 (en) * 2009-10-02 2013-01-31 Foamix Ltd. Topical tetracycline compositions
US20130053353A1 (en) * 2010-05-04 2013-02-28 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses
US20130161351A1 (en) * 2010-07-12 2013-06-27 Foamix Ltd. Apparatus and method for releasing a unit dose of content from a container
US20120064136A1 (en) * 2010-09-10 2012-03-15 Nanobio Corporation Anti-aging and wrinkle treatment methods using nanoemulsion compositions

Cited By (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263580B2 (en) 1998-09-11 2012-09-11 Stiefel Research Australia Pty Ltd Vitamin formulation
US8512718B2 (en) 2000-07-03 2013-08-20 Foamix Ltd. Pharmaceutical composition for topical application
US8119150B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Non-flammable insecticide composition and uses thereof
US7700076B2 (en) 2002-10-25 2010-04-20 Foamix, Ltd. Penetrating pharmaceutical foam
US8486376B2 (en) 2002-10-25 2013-07-16 Foamix Ltd. Moisturizing foam containing lanolin
US9539208B2 (en) 2002-10-25 2017-01-10 Foamix Pharmaceuticals Ltd. Foam prepared from nanoemulsions and uses
US9492412B2 (en) 2002-10-25 2016-11-15 Foamix Pharmaceuticals Ltd. Penetrating pharmaceutical foam
US9320705B2 (en) 2002-10-25 2016-04-26 Foamix Pharmaceuticals Ltd. Sensation modifying topical composition foam
US9265725B2 (en) 2002-10-25 2016-02-23 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US10117812B2 (en) 2002-10-25 2018-11-06 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
US8722021B2 (en) 2002-10-25 2014-05-13 Foamix Ltd. Foamable carriers
US9713643B2 (en) 2002-10-25 2017-07-25 Foamix Pharmaceuticals Ltd. Foamable carriers
US9622947B2 (en) 2002-10-25 2017-04-18 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
US9668972B2 (en) 2002-10-25 2017-06-06 Foamix Pharmaceuticals Ltd. Nonsteroidal immunomodulating kit and composition and uses thereof
US8119109B2 (en) 2002-10-25 2012-02-21 Foamix Ltd. Foamable compositions, kits and methods for hyperhidrosis
US10322085B2 (en) 2002-10-25 2019-06-18 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US11033491B2 (en) 2002-10-25 2021-06-15 Vyne Therapeutics Inc. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US8900554B2 (en) 2002-10-25 2014-12-02 Foamix Pharmaceuticals Ltd. Foamable composition and uses thereof
US8840869B2 (en) 2002-10-25 2014-09-23 Foamix Ltd. Body cavity foams
US8741265B2 (en) 2002-10-25 2014-06-03 Foamix Ltd. Penetrating pharmaceutical foam
US8435498B2 (en) 2002-10-25 2013-05-07 Foamix Ltd. Penetrating pharmaceutical foam
US10821077B2 (en) 2002-10-25 2020-11-03 Foamix Pharmaceuticals Ltd. Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US9211259B2 (en) 2002-11-29 2015-12-15 Foamix Pharmaceuticals Ltd. Antibiotic kit and composition and uses thereof
US8119106B2 (en) 2003-04-28 2012-02-21 Foamix Ltd Foamable iodine compositions
US8486375B2 (en) 2003-04-28 2013-07-16 Foamix Ltd. Foamable compositions
US8795693B2 (en) 2003-08-04 2014-08-05 Foamix Ltd. Compositions with modulating agents
US7820145B2 (en) 2003-08-04 2010-10-26 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US7704518B2 (en) 2003-08-04 2010-04-27 Foamix, Ltd. Foamable vehicle and pharmaceutical compositions thereof
US8114385B2 (en) 2003-08-04 2012-02-14 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US8518378B2 (en) 2003-08-04 2013-08-27 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US8486374B2 (en) 2003-08-04 2013-07-16 Foamix Ltd. Hydrophilic, non-aqueous pharmaceutical carriers and compositions and uses
US9101662B2 (en) 2003-08-04 2015-08-11 Foamix Pharmaceuticals Ltd. Compositions with modulating agents
US9050253B2 (en) 2003-08-04 2015-06-09 Foamix Pharmaceuticals Ltd. Oleaginous pharmaceutical and cosmetic foam
US8703105B2 (en) 2003-08-04 2014-04-22 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
US9636405B2 (en) 2003-08-04 2017-05-02 Foamix Pharmaceuticals Ltd. Foamable vehicle and pharmaceutical compositions thereof
US8362091B2 (en) 2003-08-04 2013-01-29 Foamix Ltd. Foamable vehicle and pharmaceutical compositions thereof
US9427605B2 (en) 2005-03-24 2016-08-30 Novan, Inc. Cosmetic treatment with nitric oxide, device for performing said treatment and manufacturing method therefor
US8629128B2 (en) 2005-06-01 2014-01-14 Stiefel West Coast, Llc Vitamin formulation
US8298515B2 (en) 2005-06-01 2012-10-30 Stiefel Research Australia Pty Ltd. Vitamin formulation
US9682021B2 (en) 2006-11-14 2017-06-20 Foamix Pharmaceuticals Ltd. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US8795635B2 (en) 2006-11-14 2014-08-05 Foamix Ltd. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US20100048740A1 (en) * 2007-04-13 2010-02-25 Michel Mercier Naturally Derived Emulsifier System
US9662298B2 (en) 2007-08-07 2017-05-30 Foamix Pharmaceuticals Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US10369102B2 (en) 2007-08-07 2019-08-06 Foamix Pharmaceuticals Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US8636982B2 (en) 2007-08-07 2014-01-28 Foamix Ltd. Wax foamable vehicle and pharmaceutical compositions thereof
US11103454B2 (en) 2007-08-07 2021-08-31 Vyne Therapeutics Inc. Wax foamable vehicle and pharmaceutical compositions thereof
US9439857B2 (en) 2007-11-30 2016-09-13 Foamix Pharmaceuticals Ltd. Foam containing benzoyl peroxide
US8900553B2 (en) 2007-12-07 2014-12-02 Foamix Pharmaceuticals Ltd. Oil and liquid silicone foamable carriers and formulations
US11433025B2 (en) 2007-12-07 2022-09-06 Vyne Therapeutics Inc. Oil foamable carriers and formulations
US9549898B2 (en) 2007-12-07 2017-01-24 Foamix Pharmaceuticals Ltd. Oil and liquid silicone foamable carriers and formulations
US8343945B2 (en) 2007-12-07 2013-01-01 Foamix Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US9795564B2 (en) 2007-12-07 2017-10-24 Foamix Pharmaceuticals Ltd. Oil-based foamable carriers and formulations
US8518376B2 (en) 2007-12-07 2013-08-27 Foamix Ltd. Oil-based foamable carriers and formulations
US9161916B2 (en) 2007-12-07 2015-10-20 Foamix Pharmaceuticals Ltd. Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US8709385B2 (en) 2008-01-14 2014-04-29 Foamix Ltd. Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
US8962026B2 (en) * 2008-09-26 2015-02-24 The Regents Of The University Of Michigan Nanoemulsion therapeutic compositions and methods of using the same
US20100203139A1 (en) * 2008-09-26 2010-08-12 The Regents Of The University Of Michigan Nanoemulsion therapeutic compositions and methods of using the same
US9259407B2 (en) 2008-09-26 2016-02-16 The Regents Of The University Of Michigan Nanoemulsion therapeutic compositions and methods of using the same
US10213384B2 (en) 2009-04-28 2019-02-26 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US10363216B2 (en) 2009-04-28 2019-07-30 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US9884017B2 (en) 2009-04-28 2018-02-06 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US10588858B2 (en) 2009-04-28 2020-03-17 Foamix Pharmaceuticals Ltd. Foamable vehicles and pharmaceutical compositions comprising aprotic polar solvents and uses thereof
US9167813B2 (en) 2009-07-29 2015-10-27 Foamix Pharmaceuticals Ltd. Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses
US10092588B2 (en) 2009-07-29 2018-10-09 Foamix Pharmaceuticals Ltd. Foamable compositions, breakable foams and their uses
US9072667B2 (en) 2009-07-29 2015-07-07 Foamix Pharmaceuticals Ltd. Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses
US11219631B2 (en) 2009-07-29 2022-01-11 Vyne Pharmaceuticals Inc. Foamable compositions, breakable foams and their uses
US9572775B2 (en) 2009-07-29 2017-02-21 Foamix Pharmaceuticals Ltd. Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses
US10350166B2 (en) 2009-07-29 2019-07-16 Foamix Pharmaceuticals Ltd. Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses
WO2011012395A3 (en) * 2009-07-31 2012-05-24 Evonik Stockhausen Gmbh Foamable oil-water emulsion
US9956433B2 (en) 2009-07-31 2018-05-01 Deb Ip Limited Foamable oil-water emulsion
US9132292B2 (en) * 2009-07-31 2015-09-15 Deb Ip Limited Foamable oil-water emulsion
US20120308492A1 (en) * 2009-07-31 2012-12-06 Evonik Stockhausen Gmbh Foamable oil-water emulsion
AU2010278215B2 (en) * 2009-07-31 2013-08-22 Deb Ip Limited Foamable oil-water emulsion
US11583608B2 (en) 2009-08-21 2023-02-21 Novan, Inc. Wound dressings, methods of using the same and methods of forming the same
US9526738B2 (en) 2009-08-21 2016-12-27 Novan, Inc. Topical gels and methods of using the same
US9919072B2 (en) 2009-08-21 2018-03-20 Novan, Inc. Wound dressings, methods of using the same and methods of forming the same
US10376538B2 (en) 2009-08-21 2019-08-13 Novan, Inc. Topical gels and methods of using the same
US9737561B2 (en) 2009-08-21 2017-08-22 Novan, Inc. Topical gels and methods of using the same
US10463742B2 (en) 2009-10-02 2019-11-05 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US8992896B2 (en) 2009-10-02 2015-03-31 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US8618081B2 (en) 2009-10-02 2013-12-31 Foamix Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US10517882B2 (en) 2009-10-02 2019-12-31 Foamix Pharmaceuticals Ltd. Method for healing of an infected acne lesion without scarring
US9849142B2 (en) 2009-10-02 2017-12-26 Foamix Pharmaceuticals Ltd. Methods for accelerated return of skin integrity and for the treatment of impetigo
US8945516B2 (en) 2009-10-02 2015-02-03 Foamix Pharmaceuticals Ltd. Surfactant-free water-free foamable compositions, breakable foams and gels and their uses
US8865139B1 (en) 2009-10-02 2014-10-21 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10821187B2 (en) 2009-10-02 2020-11-03 Foamix Pharmaceuticals Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US9675700B2 (en) 2009-10-02 2017-06-13 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10265404B2 (en) 2009-10-02 2019-04-23 Foamix Pharmaceuticals Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US10322186B2 (en) 2009-10-02 2019-06-18 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10137200B2 (en) 2009-10-02 2018-11-27 Foamix Pharmaceuticals Ltd. Surfactant-free water-free foamable compositions, breakable foams and gels and their uses
US10238746B2 (en) 2009-10-02 2019-03-26 Foamix Pharmaceuticals Ltd Surfactant-free water-free foamable compositions, breakable foams and gels and their uses
US10029013B2 (en) 2009-10-02 2018-07-24 Foamix Pharmaceuticals Ltd. Surfactant-free, water-free formable composition and breakable foams and their uses
US8871184B2 (en) 2009-10-02 2014-10-28 Foamix Ltd. Topical tetracycline compositions
US10610599B2 (en) 2009-10-02 2020-04-07 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10086080B2 (en) 2009-10-02 2018-10-02 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10213512B2 (en) 2009-10-02 2019-02-26 Foamix Pharmaceuticals Ltd. Topical tetracycline compositions
US10967063B2 (en) 2009-10-02 2021-04-06 Vyne Therapeutics Inc. Surfactant-free, water-free formable composition and breakable foams and their uses
US10835613B2 (en) 2009-10-02 2020-11-17 Foamix Pharmaceuticals Ltd. Compositions, gels and foams with rheology modulators and uses thereof
US11298517B2 (en) * 2009-11-13 2022-04-12 University Of Maryland, College Park Advanced functional biocompatible foam used as a hemostatic agent for non-compressible acute wounds
US10137149B2 (en) 2009-12-09 2018-11-27 Oxford University Innovation Limited Particles for the treatment of cancer in combination with radiotherapy
US9186324B2 (en) * 2010-02-07 2015-11-17 J.P.M.E.D. Ltd. Hair follicle targeting compositions
US20120301527A1 (en) * 2010-02-07 2012-11-29 J.P.M.E.D. Ltd. Hair follicle targeting compositions
WO2011095970A1 (en) * 2010-02-07 2011-08-11 J.P.M.E.D. Ltd. Hair follicle targeting compositions
JP2013520496A (en) * 2010-02-26 2013-06-06 プレシジョン ダーマトロジー インコーポレイテッド Softening foam for the treatment of skin diseases
WO2011106026A1 (en) 2010-02-26 2011-09-01 Precision Dermatology, Inc. Emollient foams for treatment of dermatoses
US20110212035A1 (en) * 2010-02-26 2011-09-01 Collegium Pharmaceutical, Inc. Emollient foams for treatment of dermatoses
WO2011134722A1 (en) * 2010-04-27 2011-11-03 David Chamberlain Methods and compositions for reversibly reducing the aural sensitivity of humans and animals
US9775344B2 (en) 2011-02-23 2017-10-03 Donald R. Korb High alcohol content sanitizer
US9161531B2 (en) * 2011-02-23 2015-10-20 Donald R. Korb High alcohol content sanitizer
US10500220B2 (en) 2011-07-05 2019-12-10 Novan, Inc. Topical compositions
US10265334B2 (en) 2011-07-05 2019-04-23 Novan, Inc. Anhydrous compositions
US9757397B2 (en) 2011-07-05 2017-09-12 Novan, Inc. Methods of manufacturing topical compositions and apparatus for the same
US20130156823A1 (en) * 2011-12-20 2013-06-20 MAP Pharmacauticals, Inc. Excipient-free Aerosol Formulation
US11077194B2 (en) 2012-03-14 2021-08-03 Novan, Inc. Nitric oxide releasing pharmaceutical compositions
US10258564B2 (en) 2013-02-28 2019-04-16 Novan, Inc. Topical compositions and methods of using the same
US11285098B2 (en) 2013-02-28 2022-03-29 Novan, Inc. Topical compositions and methods of using the same
US9855211B2 (en) 2013-02-28 2018-01-02 Novan, Inc. Topical compositions and methods of using the same
WO2014204008A1 (en) * 2013-06-18 2014-12-24 L'oreal Foam aerosol cosmetic composition
US10206947B2 (en) 2013-08-08 2019-02-19 Novan, Inc. Topical compositions and methods of using the same
US11813284B2 (en) 2013-08-08 2023-11-14 Novan, Inc. Topical compositions and methods of using the same
US10828323B2 (en) 2013-08-08 2020-11-10 Novan, Inc. Topical compositions and methods of using the same
US10226483B2 (en) 2013-08-08 2019-03-12 Novan, Inc. Topical compositions and methods of using the same
WO2015066777A1 (en) * 2013-11-08 2015-05-14 L'oreal Cosmetic compositions in the form of oil-in-water nanoemulsions, comprising solid fatty alcohol(s), liquid fatty ester(s), other oil(s) and non-ionic surfactant(s)
US10251837B2 (en) 2014-02-14 2019-04-09 Jingjun Huang Compositions for nanoemulsion delivery systems
WO2015123631A1 (en) * 2014-02-14 2015-08-20 Jingjun Huang Compositions of nanoemulsion delivery systems
US9993419B2 (en) 2014-06-16 2018-06-12 The Procter & Gamble Company Method of treating hair with a concentrated conditioner
US10123963B2 (en) 2014-06-16 2018-11-13 The Procter And Gamble Company Method of treating hair with a concentrated conditioner
US9993420B2 (en) 2014-06-16 2018-06-12 The Procter & Gamble Company Method of treating hair with a concentrated conditioner
US10736839B2 (en) 2014-07-11 2020-08-11 Novan, Inc. Topical antiviral compositions, delivery systems, and methods of using the same
US11723858B2 (en) 2014-07-11 2023-08-15 Novan, Inc. Topical antiviral compositions, delivery systems, and methods of using the same
US10322082B2 (en) 2014-07-11 2019-06-18 Novan, Inc. Topical antiviral compositions and methods of using the same
US11040006B2 (en) 2014-07-11 2021-06-22 Novan, Inc. Topical antiviral compositions, delivery systems, and methods of using the same
US10322081B2 (en) 2014-07-11 2019-06-18 Novan, Inc. Topical antiviral compositions and methods of using the same
US10925689B2 (en) 2014-07-14 2021-02-23 Novan, Inc. Nitric oxide releasing nail coating compositions, nitric oxide releasing nail coatings, and methods of using the same
US20170349799A1 (en) * 2014-11-07 2017-12-07 Hyundai Motor Company Phase-change material suspension fluid composition including fumed silica particles and method for preparing the same
US10059864B2 (en) * 2014-11-07 2018-08-28 Hyundai Motor Company Phase-change material suspension fluid composition including fumed silica particles and method for preparing the same
US11160753B2 (en) 2015-03-02 2021-11-02 Medlab Clinical U.S., Inc. Transmucosal and transdermal delivery systems
AU2016226280C1 (en) * 2015-03-02 2020-09-24 Medlab Clinical U.S., Inc. Transmucosal and transdermal delivery systems
AU2016226280B2 (en) * 2015-03-02 2020-06-04 Medlab Clinical U.S., Inc. Transmucosal and transdermal delivery systems
US10716740B2 (en) 2015-03-24 2020-07-21 The Procter & Gamble Company Foam compositions, aerosol products, and methods of using the same to improve sensory benefits to the skin
US10258548B2 (en) 2015-04-23 2019-04-16 The Procter And Gamble Company Hair care conditioning composition
US10849864B2 (en) 2015-07-28 2020-12-01 Novan, Inc. Combinations and methods for the treatment and/or prevention of fungal infections
US9872832B2 (en) * 2015-10-23 2018-01-23 LG Bionano, LLC Nanoemulsions having reversible continuous and dispersed phases
US10285925B2 (en) 2015-12-15 2019-05-14 The Procter & Gamble Company Method of treating hair
US10322072B2 (en) 2015-12-15 2019-06-18 The Procter And Gamble Company Method of treating hair
US10265256B2 (en) 2015-12-15 2019-04-23 The Procter And Gamble Company Method of treating hair
WO2017106399A1 (en) * 2015-12-15 2017-06-22 The Procter & Gamble Company Method of treating hair
US10265255B2 (en) 2015-12-15 2019-04-23 The Procter And Gamble Company Method of treating hair
US10265251B2 (en) 2015-12-15 2019-04-23 The Procter And Gamble Company Method of treating hair
CN108367168A (en) * 2015-12-15 2018-08-03 宝洁公司 The method for handling hair
US10124951B2 (en) 2015-12-15 2018-11-13 The Procter And Gamble Company Method of treating hair
US10294013B2 (en) 2015-12-21 2019-05-21 The Procter And Gamble Plaza Package to dispense a foaming composition
US10912743B2 (en) 2016-03-02 2021-02-09 Novan, Inc. Compositions for treating inflammation and methods of treating the same
US11166980B2 (en) 2016-04-13 2021-11-09 Novan, Inc. Compositions, systems, kits, and methods for treating an infection
US10835480B2 (en) 2016-04-22 2020-11-17 The Procter And Gamble Company Method of forming a silicone layer
US10828248B2 (en) 2016-04-22 2020-11-10 The Procter And Gamble Company Method of forming a silicone layer
US11612551B2 (en) 2016-05-11 2023-03-28 Formulated Solutions, Llc Whipped formulations
US11826440B2 (en) 2016-05-11 2023-11-28 Formulated Solutions, Llc Thermal-stable whipped formulations
CN110035663A (en) * 2016-05-11 2019-07-19 拜耳医药保健有限责任公司 The heat-staple preparation for breaking into foam
US11622922B2 (en) 2016-05-11 2023-04-11 Formulated Solutions, Llc Whipped formulations
US11324691B2 (en) 2016-09-08 2022-05-10 Journey Medical Corporation Compositions and methods for treating rosacea and acne
US10398641B2 (en) 2016-09-08 2019-09-03 Foamix Pharmaceuticals Ltd. Compositions and methods for treating rosacea and acne
US10849847B2 (en) 2016-09-08 2020-12-01 Foamix Pharamaceuticals Ltd. Compositions and methods for treating rosacea and acne
WO2018086790A1 (en) * 2016-11-11 2018-05-17 Beiersdorf Ag Cleaning foam containing hydroxypropyl methylcellulose and xanthan gum
US11602493B2 (en) 2017-05-11 2023-03-14 Beiersdorf Ag Gel formulations
CN111741742A (en) * 2018-03-01 2020-10-02 莱雅公司 Sprayable compositions
US11285171B2 (en) 2018-03-01 2022-03-29 Novan, Inc. Nitric oxide releasing suppositories and methods of use thereof
WO2019213707A1 (en) * 2018-05-11 2019-11-14 Formulytica Pty Ltd Sub-micron emulsions
US11464724B2 (en) 2018-11-08 2022-10-11 The Procter & Gamble Company Low shear stress conditioner composition with spherical gel network vesicles

Also Published As

Publication number Publication date
US20140193502A1 (en) 2014-07-10
US20170231909A1 (en) 2017-08-17
US9539208B2 (en) 2017-01-10

Similar Documents

Publication Publication Date Title
US9539208B2 (en) Foam prepared from nanoemulsions and uses
US20190307656A1 (en) Foam containing unique oil globules
US11103454B2 (en) Wax foamable vehicle and pharmaceutical compositions thereof
US9439857B2 (en) Foam containing benzoyl peroxide
US8486376B2 (en) Moisturizing foam containing lanolin
US9682021B2 (en) Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
ES2635731T3 (en) Foam formulations containing at least one triterpenoid
US9795564B2 (en) Oil-based foamable carriers and formulations
US8119109B2 (en) Foamable compositions, kits and methods for hyperhidrosis
US20110097279A1 (en) Stable non-alcoholic foamable pharmaceutical emulsion compositions with an unctuous emollient and their uses
US20120156144A1 (en) Foamable Compositions, Kits and Methods for Hyperhidrosis
WO2010041141A2 (en) Oil-based foamable carriers and formulations
ZA200507018B (en) Oleaginous pharmaceutical and cosmetic foam

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOAMIX LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAMARKIN, DOV;BESONOV, ALEX;EINI, MEIR;AND OTHERS;REEL/FRAME:020528/0139;SIGNING DATES FROM 20080130 TO 20080131

AS Assignment

Owner name: FOAMIX PHARMACEUTICALS LTD., ISRAEL

Free format text: CHANGE OF NAME;ASSIGNOR:FOAMIX LTD.;REEL/FRAME:033445/0249

Effective date: 20140601

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION