US20080132153A1 - Cmp conditioner - Google Patents

Cmp conditioner Download PDF

Info

Publication number
US20080132153A1
US20080132153A1 US11/946,135 US94613507A US2008132153A1 US 20080132153 A1 US20080132153 A1 US 20080132153A1 US 94613507 A US94613507 A US 94613507A US 2008132153 A1 US2008132153 A1 US 2008132153A1
Authority
US
United States
Prior art keywords
conditioner
abrasive grains
cmp
ceramics
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/946,135
Inventor
Naoki Rikita
Kasumi Chida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Assigned to MITSUBISHI MATERIALS CORPORATION reassignment MITSUBISHI MATERIALS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIDA, KASUMI, RIKITA, NAOKI
Publication of US20080132153A1 publication Critical patent/US20080132153A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor

Definitions

  • the present invention relates to a CMP conditioner for conditioning the polishing pad of a CMP (Chemical Mechanical Polishing) apparatus that polishes semiconductor wafers and the like.
  • CMP Chemical Mechanical Polishing
  • the ceramics binding phase is sintered for adhesion of abrasive grains at the high temperature of 1200° C.
  • the abrasive grains are diamond super-abrasive grains
  • surfaces of the super-abrasive grains became carbonized and blackened by the heat and chipping tends to occur.
  • the surfaces of the diamond super-abrasive grains are coated as disclosed in Japanese Patent No. 527448 and Japanese Patent application Publication No. 2005-288685, the cutting performance of the polishing pad by such super-abrasive grains became poor, which results in decrease of the pad polishing rate.
  • this invention aims to provide a CMP conditioner which restricts metal dissolution in the slurry, without causing the chipping of the abrasive grains and/or decreasing the cutting performance.
  • this invention features a CMP conditioner having a conditioner body, facing and in contact with the polishing pad of the CMP apparatus; the CMP conditioner having an abrasive grain layer formed on the conditioning surface of the conditioning body; the abrasive grains distributed and fixed on the abrasive grain layer.
  • the above mentioned conditioner body is made of ceramics, and the binding phase holding and fixing the abrasive grains in the abrasive grain layer is made of low temperature co-fired ceramics (LTCC).
  • the abrasive grains in the CMP conditioner are held in the binding phase, which is made of low temperature co-fired ceramics; these low temperature co-fired ceramics are known to compose semiconductor substrates that can be sintered at relatively low temperatures of 1000° C. or below. Therefore even the diamond super-abrasive grains need no surface coating, as the carbonization and/or chipping by the sintering is prevented.
  • the abrasive grain layer holding the abrasive grains is formed on the binding phase; this layer and the conditioning surface of the conditioner body are made of the same ceramics.
  • the CMP conditioner with the above structure can highly restrict metal dissolution in strong acid or strong alkaline slurry.
  • the conditioner body can be sintered integrally with the binding phase.
  • An example of the low temperature co-fired ceramics that can be used to compose the binding phase and/or the conditioner body is MgO—SiO 2 ceramics.
  • spark plasma sintering (SPS) should be used for sintering. Since it is difficult to make holes for screws in the ceramics conditioner body to attach the CMP conditioner to the CMP apparatus, it is preferable that sections of the conditioner body are supported by a chassis made of resin, except for the conditioning surface.
  • the CMP conditioner of this invention can prevent metal dissolution in slurry without causing the chipping of the abrasive grains and/or decreasing the cutting performance.
  • it is possible to prevent, with reliability, semiconductor wafers from becoming contaminated by dissolved metals, and/or defects due to scratches, etc., from the abrasive grains in the CMP apparatus; thereby the polishing pad is in reliable condition, allowing efficient polishing of the semiconductor wafers.
  • FIG. 1 is a sectional view showing the CMP conditioner according to an embodiment of the invention.
  • FIG. 2 is a sectional view showing an example of conditioner material sintered at low temperature during the fabrication of the CMP conditioner shown in FIG. 1 .
  • FIG. 3 is a sectional view showing another example of conditioner material sintered at low temperature during the fabrication of the CMP conditioner shown in FIG. 1 .
  • FIG. 4 is a sectional view showing still another example of conditioner material sintered at low temperature during the fabrication of the CMP conditioner shown in FIG. 1 .
  • FIG. 5 is a sectional view showing yet another example of conditioner material sintered at low temperature during the fabrication of the CMP conditioner shown in FIG. 1 .
  • FIG. 1 is a sectional view showing the CMP conditioner according to an embodiment of the invention.
  • the CMP conditioner of this example has a disc shaped conditioner body 1 .
  • One of the surfaces is a conditioning surface 2 , that faces and contacts the CMP conditioner's polishing pad.
  • This conditioning surface 2 has abrasive grains 3 distributed, then fixed with binding phase 4 ; thus forming adhesive layer 5 .
  • the circumferential surface of conditioner body 1 , and the opposite side of the conditioning surface 2 are attached to resin chassis 6 ; the chassis 6 has a contour that fits the dimensions of the conditioner.
  • the abrasive grains 3 are diamond super-abrasive grains that have about the same average diameter, which are arranged approximately in a regular grid on the conditioning surface 2 .
  • the abrasive grains 3 protrude from the binding phase 4 surface by pressure adjustment during fabrication.
  • the binding phase 4 is made of low temperature co-fired ceramics; this embodiment uses MgO—SiO 2 ceramics and the conditioner body 1 is also made of MgO—SiO 2 or SiC ceramics.
  • this CMP conditioner On one circular side of a disc-shaped base of pre-sintered ceramics, the abrasive grains 3 are distributed and arranged, then they are sintered at temperatures lower than 1000° C.
  • this sintering is preformed using spark plasma sintering; in which a raw object is placed in a mold structured by carbon dies and punches; this is placed under pressure and sintered using spark plasma generated by applying direct pulse currents to that raw object.
  • FIG. 2 shows the abovementioned raw object as an example of conditioner material, during fabrication of the CMP conditioner in this embodiment.
  • a pre-sintered ceramic base 11 made of MgO—SiO 2 or SiC one surface of this will become the conditioning surface 2 ; on this surface, a layer of low temperature co-fired sheet ceramics material 12 made of abovementioned materials, in the form of a sheet or foil with the thickness of 1 mm or less is placed: On that, abrasive grains 3 such as diamond super-abrasive grains, etc., are adhered using paste 13 . On top of that alumina powder, SiC powder, or a sheet made of the granulation of these powders; these are placed as release agent 14 .
  • an abovementioned low temperature co-fired sheet ceramics material 12 is cut to fit the dimensions of the ceramics base 11 ; this sheet has abovementioned liquid paste 13 sprayed on it; on the sprayed surface, mesh having the grid size of the average grain size of abrasive grains 3 is placed; then the abrasive grains 3 are distributed on the mesh.
  • the abrasive grains 3 that pass though the mesh are adhered by paste 13 ; the surplus grains 3 are removed by wiping, then the mesh is removed.
  • the fixed abrasive grains 3 form a uniform grid pattern that matches the mesh.
  • the low temperature co-fired sheet ceramics material 12 with the abrasive grains 3 fixed on it, is placed on the surface of the ceramic base 11 ; a coat of the above-mentioned release agent 14 is placed on it, thus forming the conditioner material shown in FIG. 2 .
  • the obtained conditioner material is set in the abovementioned mold, then placed in the spark plasma sintering system that will perform the spark plasma sintering.
  • the abrasive grains 3 sink into the low temperature co-fired ceramics material 12 , then the low temperature co-fired ceramics material 12 with the abrasive grains 3 fixed, becomes integrated with ceramic base 11 ; thus the abovementioned CMP conditioner body 1 will have, on it's conditioning surface 2 ; a firmly fixed single layer of abrasive grains 3 , this becomes the abrasive grain layer 5 .
  • the fabrication of the CMP conditioner of the embodiment is completed when the chassis 6 , is attached to the CMP conditioner body 1 .
  • the abrasive grain layer 5 has abrasive grains 3 fixed with binding phase 4 ; this binding phase 4 is formed when the low temperature co-fired ceramics material 12 is sintered, at the sintering temperature of 1000° C. or lower.
  • the diameter of the conditioning surface 2 is 30 mm
  • the abrasive grains 3 are diamond super-abrasive grains with the average grain size of 280 Mm
  • the above-mentioned low temperature co-fired sheet ceramics material 12 is made of MgO—SiO 2 ceramics, at the thickness is about 0.4 mm.
  • the above-mentioned material is pressured at 20 KN for 1 minute at room temperature, then the temperature is increased to 650° C. in 5 minutes, next, the temperature is increased to 750° C. in 1 minute, the temperature is further increased to 800° C. for 1 minute, maintained at 800° C. for 1 minute, decreased to 300° C. in 10 minutes, then removed from the mold and cooled at room temperature, thus obtaining the above-mentioned conditioner body 1 .
  • the conditioner surface 2 diameter is 98 mm sintering by spark plasma sintering can be used.
  • spark plasma sintering the material is pressured at 20 KN for 1 minute at room temperature, then the temperature is increased 150° C. in 4 minutes, next, the temperature is increased to 700° C. in 5 minutes, temperature increased to 800° C. in 2 minutes, temperature increased to 850° C. in 2 minutes, the temperature is maintained at 850° C. for 1 minute, then the temperature is decreased to 300° C. in 100 minutes, then removed from the mold and cooled at room temperature.
  • CMP conditioners in this embodiment, fabricated and structured as previously mentioned, the conditioner body 1 is made of ceramics including the abrasive grain layer 5 and the binding phase 4 . Thus, there is very little such dissolution, 1 ppm or less, or no dissolution at all. If strong alkaline or strong acid slurry is used in the CMP conditioner, the conditioner body 1 will not corrode or the abrasive grains 3 is not dissociated.
  • the conditioner body 1 made of ceramics, is mounted onto chassis 6 , made of resin, attachments to join it to the CMP apparatus, such as screw holes can be made on chassis 6 ; there is no need to machine the conditioner body 1 .
  • the abovementioned binding phase 4 is made of low temperature co-fired ceramics material 12 such as MgO—SiO 2 ceramics; the sintering temperature is 1000° C. or lower.
  • the abrasive grains 3 are diamond super-abrasive grains, they do not become blackened or carbonized and there is no need to coat the surface of the abrasive grains 3 .
  • the above-mentioned fabrication method uses, as conditioner material 12 , low temperature co-fired ceramics material mentioned in the embodiment; this is sintered by spark plasma sintering.
  • This spark plasma sintering makes it possible to increase the temperature of the raw object in a relatively short period of time; it is also possible to sinter at lower temperatures, thus reliably preventing damage to abrasive grains 3 .
  • the binding phase 4 sintered by spark plasma sintering has lesser pores and a denser structure; the Al 2 O 3 particles as a filler have sufficiently melted, hence almost none of Al 2 O 3 remains as spherical shape, thus making it possible to reliability retain abrasive grains 3 .
  • a low temperature co-fired sheet ceramics material 12 is placed on the surface of the above-mentioned pre-sintered ceramic base 11 , on that, abrasive grains 3 , such as diamond super-abrasive grains are arrayed regularly by a mesh, and adhered by paste 13 .
  • abrasive grains 3 such as diamond super-abrasive grains are arrayed regularly by a mesh, and adhered by paste 13 .
  • FIG. 3 Another example of preferable structure is shown in FIG. 3 .
  • a pre-sintered ceramic base 11 has a low temperature co-fired sheet ceramics material 12 cut to fit the dimensions of the surface of the ceramic base 11 ; numerous holes 12 a in a grid pattern are opened in the sheet, the hole size being approximately the same or somewhat smaller than the average diameter of the abrasive grains 3 .
  • Abrasive grains 3 in this case diamond super-abrasive grains are distributed on the holes 12 a , the surplus abrasive grains 3 that did not fit in the holes 12 a are removed; then low temperature co-fired ceramics material 12 with the abrasive grains 3 are placed on the surface of base 11 , on that, an alumina sheet is placed as released agent 14 .
  • the abovementioned materials are sintered, preferably by spark plasma sintering, to construct a CMP conditioner. Since the structure of this CMP conditioner is the same as the conditioner of the embodiment, the efficiency is the same. Furthermore, the same sintering conditions are applied to the embodiment and the abovementioned materials.
  • conditioner body 1 with an integrated abrasive grain layer 5 is formed by a pre-sintered ceramic base 11 has low temperature co-fired ceramics material 12 placed on it, then it is sintered at low temperatures.
  • FIG. 4 shows other examples of conditioner material.
  • a mold preferably from a spark plasma sintering system, has, as release agent, ceramics coat agent placed in it, then the ceramic material 15 in powder form is spread on the release agent 16 .
  • Placed on top of the ceramic material 15 is, in one abovementioned example, a low temperature co-fired sheet ceramics material 12 with the abrasive grains 3 ; these are the same material as placed on the surface of ceramic base 11 .
  • the same low temperature co-fired sheet ceramics material 12 has holes 12 a opened in it to attach the abrasive grains 3 , then, an alumina sheet is placed on top as release agent 14 . Then low temperature sintering is performed on both cases.
  • both ceramic material 15 and low temperature co-fired ceramics material 12 used here are the same materials.
  • the whole conditioner body 1 including the binding phase 4 and abrasive grain layer 5 , can be efficiently sintered together at low temperature. If low temperature co-fired ceramics material 12 and material 15 with the binding phase 4 are sintered together, the CMP conditioner has an abrasive grain layer 5 with a higher ability to retain the abrasive grains 3 . This advantage is especially evident when both low temperature co-fired ceramics material 12 and material 15 are the same low temperature co-fired ceramics material, such as MgO—SiO 2 ceramics.
  • the conditioner body 1 is integrally molded by low temperature co-fired ceramics materials 15 placed in a mold, then sintered.
  • the mold has release agent 16 put in; on that, material 15 is spread, then the diamond super-abrasive grains 3 are directly arrayed regularly; on that an alumina sheet is placed as release agent 14 , and then, sintered at low temperatures.
  • abrasive grains 3 are fixed in binding phase 4 ; forming abrasive layer 5 , thus the whole of conditioner body 1 is formed by the integrated sintering of low temperature co-fired ceramics.
  • the ability to retain the abrasive grains 3 increases.
  • the powder form material 15 is spread in a mold, then sintered together at low temperatures with binding phase 4 .
  • the abrasive grains 3 and low temperature co-fired ceramics material 12 are the same as the above-mentioned example; and if the material 15 in powder form and the low temperature co-fired ceramics material 12 are of the same composition sintering by spark plasma sintering can be used.
  • spark plasma sintering To sinter a conditioner body 1 having a conditioning surface 2 with a diameter of 30 mm by using the spark sintering plasma, the material is pressured to 20 KN at room temperature for 1 minute, then the temperature is increased to 650° C. in 5 minutes, the temperature is increased to 750° C.
  • the temperature is increased to 800° C. in 1 minute.
  • the next step differs from the abovementioned case in that the whole conditioner body 1 including material 15 is sintered; thus it is maintained at 800° C. for 5 minutes.
  • the temperature is decreased to 300° C. in 10 minutes, taken out of the mold and cooled at room temperature.

Abstract

To provide a CMP conditioner that prevents dissolution of metals in slurry, without the chipping of the abrasive grains and/or decreasing the cutting performance. The CMP apparatus has a polishing pad that faces and contacts conditioning surface of the conditioner body. On this conditioning surface, abrasive grains are distributed and fixed to form abrasive grain layer, thus forming the CMP conditioner. The conditioner body is made of ceramics, the abrasive grains in the abrasive grain layer are held by binding phase made of low temperature co-fired ceramics.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2006-321542, filed Nov. 29, 2006. The contents of which are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a CMP conditioner for conditioning the polishing pad of a CMP (Chemical Mechanical Polishing) apparatus that polishes semiconductor wafers and the like.
  • DESCRIPTION OF RELATED ART
  • Various kinds of CMP conditioners in which abrasive grains are fixed by metal plating binding phase of Ni and the like, on a base metal plate, such as stainless steel have been reported. When highly corrosive strong acid or strong alkaline slurry is used in a CMP apparatus, the binding phase metal is dissolved, it become undesirable to polish semiconductor wafers in such slurry with dissolved metals. To avoid this problem, for example, Japanese Patent No. 3527448 and Japanese Patent application Publication No. 2005-288685 disclose a CMP conditioner in which ceramics is employed as the binding phase. which ceramics is employed as the binding phase.
  • In the CMP conditioner disclosed in Japanese Patent No. 527448 and Japanese Patent application Publication No. 2005-288685 the ceramics binding phase is sintered for adhesion of abrasive grains at the high temperature of 1200° C. At such a high temperature, for example, if the abrasive grains are diamond super-abrasive grains, surfaces of the super-abrasive grains became carbonized and blackened by the heat and chipping tends to occur. On the other hand, to prevent the surfaces from such carbonation by the heat, if the surfaces of the diamond super-abrasive grains are coated as disclosed in Japanese Patent No. 527448 and Japanese Patent application Publication No. 2005-288685, the cutting performance of the polishing pad by such super-abrasive grains became poor, which results in decrease of the pad polishing rate.
  • SUMMARY OF THE INVENTION
  • With such background, this invention aims to provide a CMP conditioner which restricts metal dissolution in the slurry, without causing the chipping of the abrasive grains and/or decreasing the cutting performance.
  • To overcome the above problems and accomplish the above objective, this invention features a CMP conditioner having a conditioner body, facing and in contact with the polishing pad of the CMP apparatus; the CMP conditioner having an abrasive grain layer formed on the conditioning surface of the conditioning body; the abrasive grains distributed and fixed on the abrasive grain layer. The above mentioned conditioner body is made of ceramics, and the binding phase holding and fixing the abrasive grains in the abrasive grain layer is made of low temperature co-fired ceramics (LTCC).
  • The abrasive grains in the CMP conditioner are held in the binding phase, which is made of low temperature co-fired ceramics; these low temperature co-fired ceramics are known to compose semiconductor substrates that can be sintered at relatively low temperatures of 1000° C. or below. Therefore even the diamond super-abrasive grains need no surface coating, as the carbonization and/or chipping by the sintering is prevented. In addition, the abrasive grain layer holding the abrasive grains is formed on the binding phase; this layer and the conditioning surface of the conditioner body are made of the same ceramics. Thus the CMP conditioner with the above structure can highly restrict metal dissolution in strong acid or strong alkaline slurry.
  • Although it is possible to use pre-sintered ceramics for the ceramics composing the conditioner body, if the body is made of the low temperature co-fired ceramics, and the binding phase uses the same low temperature co-fired ceramics, the conditioner body can be sintered integrally with the binding phase. An example of the low temperature co-fired ceramics that can be used to compose the binding phase and/or the conditioner body is MgO—SiO2 ceramics. Preferably, spark plasma sintering (SPS) should be used for sintering. Since it is difficult to make holes for screws in the ceramics conditioner body to attach the CMP conditioner to the CMP apparatus, it is preferable that sections of the conditioner body are supported by a chassis made of resin, except for the conditioning surface.
  • The CMP conditioner of this invention can prevent metal dissolution in slurry without causing the chipping of the abrasive grains and/or decreasing the cutting performance. Thus, it is possible to prevent, with reliability, semiconductor wafers from becoming contaminated by dissolved metals, and/or defects due to scratches, etc., from the abrasive grains in the CMP apparatus; thereby the polishing pad is in reliable condition, allowing efficient polishing of the semiconductor wafers.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional view showing the CMP conditioner according to an embodiment of the invention.
  • FIG. 2 is a sectional view showing an example of conditioner material sintered at low temperature during the fabrication of the CMP conditioner shown in FIG. 1.
  • FIG. 3 is a sectional view showing another example of conditioner material sintered at low temperature during the fabrication of the CMP conditioner shown in FIG. 1.
  • FIG. 4 is a sectional view showing still another example of conditioner material sintered at low temperature during the fabrication of the CMP conditioner shown in FIG. 1.
  • FIG. 5 is a sectional view showing yet another example of conditioner material sintered at low temperature during the fabrication of the CMP conditioner shown in FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a sectional view showing the CMP conditioner according to an embodiment of the invention. The CMP conditioner of this example has a disc shaped conditioner body 1. One of the surfaces is a conditioning surface 2, that faces and contacts the CMP conditioner's polishing pad. This conditioning surface 2, has abrasive grains 3 distributed, then fixed with binding phase 4; thus forming adhesive layer 5. The circumferential surface of conditioner body 1, and the opposite side of the conditioning surface 2, are attached to resin chassis 6; the chassis 6 has a contour that fits the dimensions of the conditioner.
  • In this embodiment, the abrasive grains 3 are diamond super-abrasive grains that have about the same average diameter, which are arranged approximately in a regular grid on the conditioning surface 2. The abrasive grains 3 protrude from the binding phase 4 surface by pressure adjustment during fabrication.
  • The binding phase 4 is made of low temperature co-fired ceramics; this embodiment uses MgO—SiO2 ceramics and the conditioner body 1 is also made of MgO—SiO2 or SiC ceramics.
  • To fabricate this CMP conditioner: On one circular side of a disc-shaped base of pre-sintered ceramics, the abrasive grains 3 are distributed and arranged, then they are sintered at temperatures lower than 1000° C. Preferably, this sintering is preformed using spark plasma sintering; in which a raw object is placed in a mold structured by carbon dies and punches; this is placed under pressure and sintered using spark plasma generated by applying direct pulse currents to that raw object.
  • FIG. 2 shows the abovementioned raw object as an example of conditioner material, during fabrication of the CMP conditioner in this embodiment. In this example, a pre-sintered ceramic base 11 made of MgO—SiO2 or SiC, one surface of this will become the conditioning surface 2; on this surface, a layer of low temperature co-fired sheet ceramics material 12 made of abovementioned materials, in the form of a sheet or foil with the thickness of 1 mm or less is placed: On that, abrasive grains 3 such as diamond super-abrasive grains, etc., are adhered using paste 13. On top of that alumina powder, SiC powder, or a sheet made of the granulation of these powders; these are placed as release agent 14.
  • To prepare such conditioner material, for example, an abovementioned low temperature co-fired sheet ceramics material 12 is cut to fit the dimensions of the ceramics base 11; this sheet has abovementioned liquid paste 13 sprayed on it; on the sprayed surface, mesh having the grid size of the average grain size of abrasive grains 3 is placed; then the abrasive grains 3 are distributed on the mesh. The abrasive grains 3 that pass though the mesh are adhered by paste 13; the surplus grains 3 are removed by wiping, then the mesh is removed. Thus the fixed abrasive grains 3 form a uniform grid pattern that matches the mesh. Then the low temperature co-fired sheet ceramics material 12 with the abrasive grains 3 fixed on it, is placed on the surface of the ceramic base 11; a coat of the above-mentioned release agent 14 is placed on it, thus forming the conditioner material shown in FIG. 2.
  • The obtained conditioner material is set in the abovementioned mold, then placed in the spark plasma sintering system that will perform the spark plasma sintering. As the spark plasma sintering is performed under pressure, the abrasive grains 3 sink into the low temperature co-fired ceramics material 12, then the low temperature co-fired ceramics material 12 with the abrasive grains 3 fixed, becomes integrated with ceramic base 11; thus the abovementioned CMP conditioner body 1 will have, on it's conditioning surface 2; a firmly fixed single layer of abrasive grains 3, this becomes the abrasive grain layer 5. The fabrication of the CMP conditioner of the embodiment is completed when the chassis 6, is attached to the CMP conditioner body 1.
  • In CMP conditioners with such structure, the abrasive grain layer 5 has abrasive grains 3 fixed with binding phase 4; this binding phase 4 is formed when the low temperature co-fired ceramics material 12 is sintered, at the sintering temperature of 1000° C. or lower. For example, in this embodiment, the diameter of the conditioning surface 2 is 30 mm, the abrasive grains 3 are diamond super-abrasive grains with the average grain size of 280 Mm, the above-mentioned low temperature co-fired sheet ceramics material 12 is made of MgO—SiO2 ceramics, at the thickness is about 0.4 mm. To sinter this by spark plasma sintering, the above-mentioned material is pressured at 20 KN for 1 minute at room temperature, then the temperature is increased to 650° C. in 5 minutes, next, the temperature is increased to 750° C. in 1 minute, the temperature is further increased to 800° C. for 1 minute, maintained at 800° C. for 1 minute, decreased to 300° C. in 10 minutes, then removed from the mold and cooled at room temperature, thus obtaining the above-mentioned conditioner body 1.
  • If the abrasive grains 3 and low temperature co-fired ceramics material 12 is the same as above and the conditioner surface 2 diameter is 98 mm sintering by spark plasma sintering can be used. To sinter this by spark plasma sintering, the material is pressured at 20 KN for 1 minute at room temperature, then the temperature is increased 150° C. in 4 minutes, next, the temperature is increased to 700° C. in 5 minutes, temperature increased to 800° C. in 2 minutes, temperature increased to 850° C. in 2 minutes, the temperature is maintained at 850° C. for 1 minute, then the temperature is decreased to 300° C. in 100 minutes, then removed from the mold and cooled at room temperature.
  • Dissolution of one or several metals such as Fe, Co, Ni, Cu, and Zn occurs in CMP conditioners using metal plating phase as the binding phase. In CMP conditioners in this embodiment, fabricated and structured as previously mentioned, the conditioner body 1 is made of ceramics including the abrasive grain layer 5 and the binding phase 4. Thus, there is very little such dissolution, 1 ppm or less, or no dissolution at all. If strong alkaline or strong acid slurry is used in the CMP conditioner, the conditioner body 1 will not corrode or the abrasive grains 3 is not dissociated. The conditioner body 1, made of ceramics, is mounted onto chassis 6, made of resin, attachments to join it to the CMP apparatus, such as screw holes can be made on chassis 6; there is no need to machine the conditioner body 1.
  • In our abovementioned CMP conditioner, the abovementioned binding phase 4 is made of low temperature co-fired ceramics material 12 such as MgO—SiO2 ceramics; the sintering temperature is 1000° C. or lower. Thus, if the abrasive grains 3 are diamond super-abrasive grains, they do not become blackened or carbonized and there is no need to coat the surface of the abrasive grains 3. The chipping that occurs in the abrasive grains 3 and the poor cutting performance by coating, leading to decrease the polishing rate of pad, are prevented. In our CMP conditioner with the abovementioned structure, the wafer contamination due to dissolved metals or the scratches on the wafers from the chipping of abrasive grains can be prevented, while the polishing pad is in reliable condition, thus making possible efficient polishing of semiconductor wafers.
  • To fabricate such CMP conditioners, the above-mentioned fabrication method uses, as conditioner material 12, low temperature co-fired ceramics material mentioned in the embodiment; this is sintered by spark plasma sintering. This spark plasma sintering makes it possible to increase the temperature of the raw object in a relatively short period of time; it is also possible to sinter at lower temperatures, thus reliably preventing damage to abrasive grains 3. Compared to sintering performed in a conventional electric oven, the binding phase 4 sintered by spark plasma sintering has lesser pores and a denser structure; the Al2O3 particles as a filler have sufficiently melted, hence almost none of Al2O3 remains as spherical shape, thus making it possible to reliability retain abrasive grains 3.
  • An example of the above mentioned conditioner materials used to fabricate the conditioning body 1 of such CMP conditioners. A low temperature co-fired sheet ceramics material 12 is placed on the surface of the above-mentioned pre-sintered ceramic base 11, on that, abrasive grains 3, such as diamond super-abrasive grains are arrayed regularly by a mesh, and adhered by paste 13. Another example of preferable structure is shown in FIG. 3. A pre-sintered ceramic base 11 has a low temperature co-fired sheet ceramics material 12 cut to fit the dimensions of the surface of the ceramic base 11; numerous holes 12 a in a grid pattern are opened in the sheet, the hole size being approximately the same or somewhat smaller than the average diameter of the abrasive grains 3. Abrasive grains 3, in this case diamond super-abrasive grains are distributed on the holes 12 a, the surplus abrasive grains 3 that did not fit in the holes 12 a are removed; then low temperature co-fired ceramics material 12 with the abrasive grains 3 are placed on the surface of base 11, on that, an alumina sheet is placed as released agent 14.
  • The abovementioned materials are sintered, preferably by spark plasma sintering, to construct a CMP conditioner. Since the structure of this CMP conditioner is the same as the conditioner of the embodiment, the efficiency is the same. Furthermore, the same sintering conditions are applied to the embodiment and the abovementioned materials.
  • As shown in these examples, conditioner body 1 with an integrated abrasive grain layer 5 is formed by a pre-sintered ceramic base 11 has low temperature co-fired ceramics material 12 placed on it, then it is sintered at low temperatures. FIG. 4 shows other examples of conditioner material. A mold, preferably from a spark plasma sintering system, has, as release agent, ceramics coat agent placed in it, then the ceramic material 15 in powder form is spread on the release agent 16. Placed on top of the ceramic material 15 is, in one abovementioned example, a low temperature co-fired sheet ceramics material 12 with the abrasive grains 3; these are the same material as placed on the surface of ceramic base 11. In another abovementioned example, the same low temperature co-fired sheet ceramics material 12, has holes 12 a opened in it to attach the abrasive grains 3, then, an alumina sheet is placed on top as release agent 14. Then low temperature sintering is performed on both cases.
  • When low temperature co-fired ceramics material 12 is placed on ceramic material 15 and sintered at low temperatures, it is preferable that both ceramic material 15 and low temperature co-fired ceramics material 12 used here are the same materials. Thus the whole conditioner body 1, including the binding phase 4 and abrasive grain layer 5, can be efficiently sintered together at low temperature. If low temperature co-fired ceramics material 12 and material 15 with the binding phase 4 are sintered together, the CMP conditioner has an abrasive grain layer 5 with a higher ability to retain the abrasive grains 3. This advantage is especially evident when both low temperature co-fired ceramics material 12 and material 15 are the same low temperature co-fired ceramics material, such as MgO—SiO2 ceramics.
  • In these before-mentioned other examples, the conditioner body 1 is integrally molded by low temperature co-fired ceramics materials 15 placed in a mold, then sintered. In yet another example, shown in FIG. 5, as the material of the raw object, the mold has release agent 16 put in; on that, material 15 is spread, then the diamond super-abrasive grains 3 are directly arrayed regularly; on that an alumina sheet is placed as release agent 14, and then, sintered at low temperatures. In this case, abrasive grains 3 are fixed in binding phase 4; forming abrasive layer 5, thus the whole of conditioner body 1 is formed by the integrated sintering of low temperature co-fired ceramics. Thus the ability to retain the abrasive grains 3 increases.
  • In conditioner material(s) shown in FIG. 4 and FIG. 5, the powder form material 15 is spread in a mold, then sintered together at low temperatures with binding phase 4. If the abrasive grains 3 and low temperature co-fired ceramics material 12 are the same as the above-mentioned example; and if the material 15 in powder form and the low temperature co-fired ceramics material 12 are of the same composition sintering by spark plasma sintering can be used. To sinter a conditioner body 1 having a conditioning surface 2 with a diameter of 30 mm by using the spark sintering plasma, the material is pressured to 20 KN at room temperature for 1 minute, then the temperature is increased to 650° C. in 5 minutes, the temperature is increased to 750° C. in 1 minute, the temperature is increased to 800° C. in 1 minute. These steps are the same as the above-mentioned example. The next step differs from the abovementioned case in that the whole conditioner body 1 including material 15 is sintered; thus it is maintained at 800° C. for 5 minutes. Afterwards is the same as the abovementioned example, the temperature is decreased to 300° C. in 10 minutes, taken out of the mold and cooled at room temperature.

Claims (4)

1. A CMP conditioner comprising:
a conditioner body facing and contacting a polishing pad of a CMP apparatus, and
an abrasive grain layer formed on a conditioning surface of the conditioning body, wherein abrasive grains are distributed and adhered on the abrasive grain layer,
wherein the conditioner body is made of ceramics and
wherein a binding phase holding the abrasive grains in the abrasive grain layer is made of low temperature co-fired ceramics.
2. The CMP conditioner according to claim 1, wherein the conditioner body is made of low temperature co-fired ceramics.
3. The CMP conditioner according to claim 1, wherein the low temperature co-fired ceramics is MgO—SiO2 ceramics.
4. The CMP conditioner according to claim 1, further comprising a chassis made of resin supporting sections other than the conditioning surface of the conditioner body.
US11/946,135 2006-11-29 2007-11-28 Cmp conditioner Abandoned US20080132153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-321542 2006-11-29
JP2006321542A JP2008132573A (en) 2006-11-29 2006-11-29 Cmp conditioner

Publications (1)

Publication Number Publication Date
US20080132153A1 true US20080132153A1 (en) 2008-06-05

Family

ID=39046715

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/946,135 Abandoned US20080132153A1 (en) 2006-11-29 2007-11-28 Cmp conditioner

Country Status (5)

Country Link
US (1) US20080132153A1 (en)
EP (1) EP1927434A1 (en)
JP (1) JP2008132573A (en)
KR (1) KR20080048947A (en)
TW (1) TW200823011A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330886A1 (en) * 2009-06-02 2010-12-30 Saint-Gobain Abrasives, Inc. Corrosion-Resistant CMP Conditioning Tools and Methods for Making and Using Same
US20110097977A1 (en) * 2009-08-07 2011-04-28 Abrasive Technology, Inc. Multiple-sided cmp pad conditioning disk
US8342910B2 (en) 2009-03-24 2013-01-01 Saint-Gobain Abrasives, Inc. Abrasive tool for use as a chemical mechanical planarization pad conditioner
US20130033256A1 (en) * 2011-08-05 2013-02-07 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor and sensor element
US20140302756A1 (en) * 2013-04-08 2014-10-09 Chien-Min Sung Chemical mechanical polishing conditioner
US8951099B2 (en) 2009-09-01 2015-02-10 Saint-Gobain Abrasives, Inc. Chemical mechanical polishing conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706831B (en) * 2020-02-10 2020-10-11 富仕多科技有限公司 Base seat used in polishing pad conditioning apparatus
CN112959236A (en) * 2021-02-24 2021-06-15 合肥铨得合半导体有限责任公司 Ceramic powder of diamond disk and diamond anti-oxidation sintering method
TWI780883B (en) * 2021-08-31 2022-10-11 中國砂輪企業股份有限公司 Chemical mechanical polishing pad conditioner and manufacture method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380390A (en) * 1991-06-10 1995-01-10 Ultimate Abrasive Systems, Inc. Patterned abrasive material and method
US6123612A (en) * 1998-04-15 2000-09-26 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US6293854B1 (en) * 1999-12-20 2001-09-25 Read Co., Ltd. Dresser for polishing cloth and manufacturing method therefor
US6755720B1 (en) * 1999-07-15 2004-06-29 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US20050202762A1 (en) * 2004-03-10 2005-09-15 Read Co., Ltd. Dresser for polishing cloth and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254477A (en) * 1991-02-04 1992-09-09 Sumitomo Electric Ind Ltd Glass-aluminum nitride composite material
JP2000190200A (en) * 1998-12-25 2000-07-11 Mitsubishi Materials Silicon Corp Seasoning jig for polishing cloth

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380390A (en) * 1991-06-10 1995-01-10 Ultimate Abrasive Systems, Inc. Patterned abrasive material and method
US5380390B1 (en) * 1991-06-10 1996-10-01 Ultimate Abras Systems Inc Patterned abrasive material and method
US6123612A (en) * 1998-04-15 2000-09-26 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US6755720B1 (en) * 1999-07-15 2004-06-29 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US20040185763A1 (en) * 1999-07-15 2004-09-23 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US6293854B1 (en) * 1999-12-20 2001-09-25 Read Co., Ltd. Dresser for polishing cloth and manufacturing method therefor
US20050202762A1 (en) * 2004-03-10 2005-09-15 Read Co., Ltd. Dresser for polishing cloth and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8342910B2 (en) 2009-03-24 2013-01-01 Saint-Gobain Abrasives, Inc. Abrasive tool for use as a chemical mechanical planarization pad conditioner
US9022840B2 (en) 2009-03-24 2015-05-05 Saint-Gobain Abrasives, Inc. Abrasive tool for use as a chemical mechanical planarization pad conditioner
US20100330886A1 (en) * 2009-06-02 2010-12-30 Saint-Gobain Abrasives, Inc. Corrosion-Resistant CMP Conditioning Tools and Methods for Making and Using Same
US8905823B2 (en) 2009-06-02 2014-12-09 Saint-Gobain Abrasives, Inc. Corrosion-resistant CMP conditioning tools and methods for making and using same
US20110097977A1 (en) * 2009-08-07 2011-04-28 Abrasive Technology, Inc. Multiple-sided cmp pad conditioning disk
US8951099B2 (en) 2009-09-01 2015-02-10 Saint-Gobain Abrasives, Inc. Chemical mechanical polishing conditioner
US20130033256A1 (en) * 2011-08-05 2013-02-07 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor and sensor element
US9347800B2 (en) * 2011-08-05 2016-05-24 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor and sensor element
US20140302756A1 (en) * 2013-04-08 2014-10-09 Chien-Min Sung Chemical mechanical polishing conditioner

Also Published As

Publication number Publication date
JP2008132573A (en) 2008-06-12
TW200823011A (en) 2008-06-01
EP1927434A1 (en) 2008-06-04
KR20080048947A (en) 2008-06-03

Similar Documents

Publication Publication Date Title
US20080132153A1 (en) Cmp conditioner
US7467989B2 (en) Ceramic polishing pad dresser and method for fabricating the same
KR101483314B1 (en) Extended life abrasive article and method
KR100360669B1 (en) Abrasive dressing tool and manufac ture method of abrasive dressing tool
KR100686605B1 (en) Dresser for polishing cloth and method for manufacturing thereof
US7300338B2 (en) CMP diamond conditioning disk
US20050215073A1 (en) Wafer supporting member
TWI335854B (en)
KR20000049120A (en) Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser
KR20080077094A (en) Aluminum/silicon carbide composite and heat radiation part making use of the same
US20040240142A1 (en) Bonding member and electrostatic chuck
KR20090078647A (en) Conditioner for chemical mechanical planarization pad.
US20050260938A1 (en) Table of wafer polishing apparatus, method for polishing semiconductor wafer, and method for manufacturing semiconductor wafer
US6579332B1 (en) Metal-bonded grinding tool and manufacturing method therefor
EP1201367B1 (en) Dresser for polishing cloth and manufacturing method therefor
JP2012232388A (en) Dresser for abrasive cloth
KR20020046471A (en) Method for chemical mechanical polishing pad conditioner
JP2007260886A (en) Cmp conditioner and manufacturing method therefor
JP6263725B2 (en) Suction table
JP2007229865A (en) Dresser for polishing pad
JP2005288685A (en) Dresser for polishing cloth, and manufacturing method thereof
KR200201101Y1 (en) Abrasive dressing tool
JPH0716885B2 (en) Inner Circumferential Metal Bond Cutting Wheel Manufacturing Method
JP2001079753A (en) Jig for regeneration of polishing cloth surface

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI MATERIALS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RIKITA, NAOKI;CHIDA, KASUMI;REEL/FRAME:020169/0235

Effective date: 20071121

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION