US20080128890A1 - Chip package and fabricating process thereof - Google Patents

Chip package and fabricating process thereof Download PDF

Info

Publication number
US20080128890A1
US20080128890A1 US11/565,299 US56529906A US2008128890A1 US 20080128890 A1 US20080128890 A1 US 20080128890A1 US 56529906 A US56529906 A US 56529906A US 2008128890 A1 US2008128890 A1 US 2008128890A1
Authority
US
United States
Prior art keywords
chip
carrier
conductive elements
conductive
encapsulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/565,299
Inventor
Soo-Min Choi
Hyeong-No Kim
Jae-Sun An
Young-Gue Lee
Sang-Jin Cha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Semiconductor Engineering Inc
Original Assignee
Advanced Semiconductor Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Semiconductor Engineering Inc filed Critical Advanced Semiconductor Engineering Inc
Priority to US11/565,299 priority Critical patent/US20080128890A1/en
Assigned to ADVANCED SEMICONDUCTOR ENGINEERING, INC. reassignment ADVANCED SEMICONDUCTOR ENGINEERING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AN, JAE-SUN, CHA, SANG-JIN, CHOI, SOO-MIN, KIM, HYEONG-NO, LEE, YOUNG-GUE
Priority to TW096109465A priority patent/TWI373121B/en
Priority to CN2007101653310A priority patent/CN101188226B/en
Publication of US20080128890A1 publication Critical patent/US20080128890A1/en
Priority to US12/491,742 priority patent/US8866280B2/en
Priority to US14/293,782 priority patent/US20140346654A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/045Carbides composed of metals from groups of the periodic table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention generally relates to a chip package. More particularly, the present invention relates to a chip package having electromagnetic interference (EMI) shielding function.
  • EMI electromagnetic interference
  • a typical high-density area array package is the ball grid array (BGA) type package. Nonetheless, the thermal dissipation and the EMI problems of the BGA type package or even other types of chip package are still unresolved, and need to be carefully considered in the design of a high-density area array package.
  • BGA ball grid array
  • the present invention is directed to a chip package which is capable of eliminating the EMI problem and provides superior electrical performance.
  • the present invention is also directed to a fabricating process of the chip package having EMI shielding ability.
  • the present invention provides a chip package comprising a carrier, a chip, a plurality of first conductive elements, an encapsulation, and a conductive film.
  • the carrier has a carrying surface and a back surface opposite to the carrying surface. Furthermore, the carrier has a plurality of common contacts in the periphery of the carrying surface.
  • the chip is disposed on the carrying surface and electrically connected to the carrier.
  • the first conductive elements are disposed on the common contacts respectively.
  • the encapsulation is disposed on the carrying surface and encapsulating the chip.
  • the conductive film is disposed over the encapsulation and the first conductive elements, so as to electrically connect with the common contacts via the first conductive elements.
  • the present invention also provides a chip packaging process, comprising: providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface; disposing a chip on the carrying surface and electrically connecting the chip to the carrier; forming an encapsulation on the carrying surface, wherein the encapsulation encapsulates the chip; forming a plurality of first conductive elements on the corresponding common contacts; and providing a conductive film on the encapsulation and electrically connecting the conductive film to the common contacts via the first conductive elements.
  • the present invention further provides a chip packaging process, comprising: providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface; disposing a chip on the carrying surface and electrically connecting the chip to the carrier; forming a plurality of first conductive elements on the corresponding common contacts; forming an encapsulation for covering the carrying surface and encapsulating the chip and the first conductive elements, wherein the encapsulation exposes a top portion of each first conductive element; providing a conductive film and forming a plurality of second conductive elements on a surface of the conductive film; and disposing the conductive film over the encapsulation and connecting the second conductive elements to the corresponding first conductive elements, wherein the conductive film is electrically connected to the common contacts via the first conductive elements and the second conductive elements.
  • the present invention provides a chip packaging process, comprising: providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface; disposing a chip on the carrying surface and electrically connecting the chip to the carrier; forming a plurality of first conductive elements on the corresponding common contacts; forming an encapsulation for covering the carrying surface and encapsulating the chip and the first conductive elements, the encapsulation exposing a top portion of each first conductive element; and forming a conductive film on a top surface of the encapsulation so as to electrically connect the conductive film to the common contacts via the first conductive elements.
  • the present invention disposes the conductive film over the encapsulation to form a common plane in the chip package, so as to solve the problem of EMI for the chip package. Therefore, products utilizing the chip package and the chip packaging process can achieve superior electrical performance and higher reliability.
  • FIG. 1A illustrates a chip package according to an embodiment of the present invention.
  • FIG. 1B and FIG. 1C show other chip packages utilizing different types of circuit substrate as carriers in comparison with that in FIG. 1A .
  • FIGS. 2A ⁇ 2E show a chip package process of the chip packages in FIGS. 1A ⁇ 1C according to an embodiment of the present.
  • FIG. 3A illustrates a chip package according to another embodiment of the present invention.
  • FIG. 3B and FIG. 3C respectively show other chip packages utilizing different types of circuit substrate as carriers in comparison with that in FIG. 3A .
  • FIGS. 4A ⁇ 4F show a chip package process of the chip packages in FIGS. 3A ⁇ 3C according to an embodiment of the present.
  • FIG. 5A illustrates a chip package according to further another embodiment of the present invention.
  • FIG. 5B and FIG. 5C respectively show other chip packages utilizing different types of circuit substrate as carriers in comparison with that in FIG. 5A .
  • FIGS. 6A ⁇ 6E show a chip package process of the chip packages in FIGS. 5 A ⁇ 5 C according to an embodiment of the present.
  • the present invention proposes a chip package with EMI shielding to improve the electrical performance and the reliability thereof.
  • Embodiments are now given in the following to illustrate various arrangements of the chip package of the present invention. Furthermore, the accompanying fabricating processes of the chip package are also illustrated in the corresponding embodiments.
  • FIG. 1A illustrates a chip package according to an embodiment of the present invention.
  • the chip package 100 includes a carrier 110 , a chip 120 , first conductive elements 132 , an encapsulation 140 , and a conductive film 150 .
  • the carrier 110 has a carrying surface 110 a and a back surface 110 b opposite to the carrying surface 110 a , wherein a plurality of common contacts 112 and bonding pads 114 is disposed in the periphery of the carrying surface 110 a .
  • the embodiment shows a BGA type chip package 100 which utilize a circuit substrate as the carrier 110 , however, there is no set limit on the type of carrier, while other known appropriate chip package type, such as Pin Grid Array (PGA) type, Quad Flat Package (QFP) type and so on, can also be carried out in the present invention.
  • PGA Pin Grid Array
  • QFP Quad Flat Package
  • the chip 120 is disposed on the carrying surface 110 a of the carrier 110 and is electrically connected with the carrier 110 by performing, for example, a wire bonding process, wherein the chip 120 is connected to the bonding pads 114 of the carrier 110 via plural wires 160 . It is noted that there is no limit on the manners for bonding the chip 120 and the carrier 110 in the present invention. For example, a flip chip bonding process may be carried out in another embodiment of the present invention to connect the chip 120 : with the carrier 110 via a plurality of conductive bumps (not shown).
  • the first conductive elements 132 are disposed on the common contacts 112 respectively.
  • the first conductive elements 132 can be solder balls or other appropriate conductive objects, such as solder bumps.
  • the encapsulation 140 is disposed on the carrying surface 110 a of the carrier 110 to encapsulate the chip 120 , the bonding pads 114 , the wires 160 and the peripheral devices 102 . Besides, the encapsulation 140 exposes the common contacts 112 and the first conductive elements 132 thereon. In other words, the first conductive elements 132 are arranged around the encapsulation 140 . Moreover, the conductive film 150 is disposed over the encapsulation 140 and the first conductive elements 132 , so as to be electrically connected with the common contacts 112 via the first conductive elements 132 .
  • the conductive film 150 can serve as a common plane in the chip package 100 to provide an EMI shielding effect.
  • the conductive film 150 of the embodiment can be manufactured by providing a metal sheet.
  • the periphery surface of the conductive film 150 is coated with a conductive bonding layer 152 , such as a solder layer.
  • the conductive film 150 is connected with the first conductive elements 132 via the conductive bonding layer 152 .
  • the chip package 100 further comprise a plurality of solder balls 172 and 174 arranged in array on the back surface 110 b of the carrier 110 .
  • the solder balls 172 are distributed in the periphery of the back surface 110 b and connected with the common contacts 112 .
  • the conductive film 150 can be electrically connected with an external circuitry for the common voltage via the solder balls 172 .
  • the solder balls 174 are distributed in the center region of the back surface 110 b and electrically connected with the bonding pads 114 via the carrier 110 .
  • the chip 120 and the peripheral devices 102 can be connected with another external circuitry for driving signals via the solder balls 174 .
  • the chip and the peripheral devices may further be electrically connected with the common contacts to share the common voltage with the conductive film by rearranging the wires and the interconnections of the carrier.
  • FIG. 1B and FIG. 1C show other chip packages utilizing different types of circuit substrate as carriers respectively according to other embodiments of the present invention. Since most of the elements in the chip packages of FIG. 1B and FIG. 1C have been described in the aforementioned embodiment, details are not repeated herein.
  • the carrier 100 further has at least one extending contact 116 on the carrying surface 110 a , wherein the extending contact is electrically connected with the common contacts 112 via the interconnections 190 in the carrier 110 .
  • the chip 120 and the bonding pads 114 may be electrically connected with the extending contact 116 via a part of the wires 160 .
  • the chip 120 and the peripheral devices 102 can take the common voltage from the common contacts 112 as, for example, a ground voltage.
  • FIG. 1C shows another chip package 100 with different arrangement of solder balls, wherein the solder balls 172 for providing the common voltage is disposed in the center region of the back surface 110 b and electrically connected with the common contacts 112 via the interconnections 190 in the carrier 110 .
  • the solder balls 174 for providing the driving signals are distributed in the periphery of the back surface 110 b and electrically connected with the bonding pads 114 via the carrier 110 .
  • chip package process for fabricating the aforementioned chip packages 100 is illustrated in the following. Since most of the elements of the chip packages 100 have been mentioned in the aforementioned embodiments, detailed descriptions are not repeated in the following.
  • FIGS. 2A ⁇ 2E show the chip package process according to an embodiment of the present.
  • the carrier 110 having the carrying surface 110 a and the back surface 110 b is provided.
  • the chip 120 and the peripheral devices 102 are disposed on the carrying surface 110 a of the carrier 110 .
  • the chip is bonded to the carrier 110 by wire bonding, flip chip bonding or other appropriate bonding manners.
  • the peripheral devices 102 may be mounted on the carrier 110 by surface mount technology (SMT).
  • SMT surface mount technology
  • the encapsulation 140 is formed on the carrying surface 110 a of the carrier to encapsulate the chip 120 , the bonding pads 114 , the wires 160 and the peripheral devices 102 .
  • the first conductive elements 132 are formed on the corresponding common contacts 112 , wherein the first conductive elements 132 surround the encapsulation 140 .
  • the first conductive elements 132 are fabricated by forming a solder ball on each common contact 112 respectively.
  • the conductive film 150 is provided on the encapsulation 140 and electrically connected with the common contacts 112 via the first conductive elements 132 .
  • the conductive bonding layer 152 is formed between the conductive film 150 and the first conductive elements 132 before providing the conductive film 150 on the encapsulation 140 , so as to connect the conductive film 150 to the first conductive elements 132 via the conductive bonding layer 152 .
  • the solder balls 172 and 174 can be selectively formed on the back surface 110 b of the carrier 110 , wherein the solder balls 172 and 174 are electrically connected with the chip 120 , the peripheral devices 102 and/or the first conductive elements 132 via the carrier 110 respectively.
  • FIGS. 2A ⁇ 2E focuses on a single chip package. Practically, the above fabricating process is applied on an array type carrier and then forms a plurality of chip packages at the same time. Thus, a singulation process may further be carried out after the steps mentioned above to achieve a single chip package.
  • FIG. 3A illustrates a chip package according to another embodiment of the present invention.
  • the chip package 300 includes a carrier 310 , a chip 320 , first conductive elements 332 , second conductive elements 334 , an encapsulation 340 , and a conductive film 350 .
  • the carrier 310 has a carrying surface 310 a and a back surface 310 b opposite to the carrying surface 310 a .
  • a plurality of common contacts 312 and bonding pads 314 is disposed in the periphery of the carrying surface 310 a .
  • the embodiment shows a BGA type chip package 300 which utilize a circuit substrate as the carrier 310 , however, there is no set limit on the type of carrier, while other known appropriate chip package type, such as PGA type, QFP type and so on, can also be carried out in the present invention.
  • the chip 320 is disposed on the carrying surface 310 a of the carrier 310 and is electrically connected with the carrier 310 by performing, for example, a wire bonding process, wherein the chip 320 is connected to the bonding pads 314 of the carrier 310 via plural wires 360 . It is noted that there is no limit on the manners for bonding the chip 320 and the carrier 310 in the present invention. For example, a flip chip bonding process may be carried out in another embodiment of the present invention to connect the chip 320 with the carrier 310 via a plurality of conductive bumps (not shown).
  • the first conductive elements 332 are disposed on the common contacts 312 respectively.
  • the first conductive elements 332 can be solder balls or other appropriate conductive objects, such as solder bumps.
  • the encapsulation 340 is disposed on the whole carrying surface 310 a of the carrier 310 to encapsulate the chip 320 , the first conductive elements 332 , the common contacts 312 , the bonding pads 314 , the wires 360 and the peripheral devices 302 . Particularly, the encapsulation 340 exposes a top portion of each first conductive element 332 .
  • the conductive film 350 is disposed over the encapsulation 340 and the first conductive elements 332 .
  • the second conductive elements 334 are disposed between the conductive film 350 and the corresponding first conductive elements 332 respectively, so as to electrically connect the conductive film 350 with the common contacts 312 .
  • the second conductive elements 334 may be solder balls or other appropriate conductive elements such as solder bumps, or silver paste.
  • the conductive film 350 can serve as a common plane in the chip package 300 to provide an EMI shielding effect.
  • the conductive film 350 of the embodiment can be manufactured by providing a metal sheet. Then, the second conductive elements 334 are disposed in the periphery surface of the conductive film 350 . Therefore, the conductive film 350 can be electrically connected with the first conductive elements 332 via the second conductive elements 334 .
  • the chip package 300 further comprise a plurality of solder balls 372 and 374 arranged in array on the back surface 310 b of the carrier 310 .
  • the solder balls 372 are distributed in the periphery of the back surface 310 b and connected with the common contacts 312 .
  • the conductive film 350 can be electrically connected with an external circuitry for the common voltage via the solder balls 372 .
  • the solder balls 374 are distributed in the center region of the back surface 310 b and electrically connected with the bonding pads 314 via the carrier 310 .
  • the chip 320 and the peripheral devices 302 can be connected with another external circuitry for driving signals via the solder balls 374 .
  • the chip 320 and the peripheral devices 302 of the aforementioned embodiment may further be electrically connected with the common contacts 312 to share the common voltage with the conductive film 350 by rearranging the wires 360 and the interconnections of the carrier 310 .
  • FIG. 3B and FIG. 3C which respectively show other chip packages utilizing different types of circuit substrate as carriers according to other embodiments of the present invention. Since most of the elements in the chip packages of FIG. 3B and FIG. 3C have been described in the aforementioned embodiment, details are not repeated herein.
  • the carrier 300 further has at least one extending contact 316 on the carrying surface 310 a , wherein the extending contact is electrically connected with the common contacts 312 via the interconnections 390 in the carrier 310 .
  • the chip 320 and the bonding pads 314 may be electrically connected with the extending contact 316 via a part of the wires 360 .
  • the chip 320 and the peripheral devices 302 can take the common voltage from the common contacts 312 as, for example, a ground voltage.
  • FIG. 3C shows another chip package 300 with different arrangement of solder balls, wherein the solder balls 372 for providing the common voltage is disposed in the center region of the back surface 310 b and electrically connected with the common contacts 312 via the interconnections 390 in the carrier 310 .
  • the solder balls 374 for providing the driving signals are distributed in the periphery of the back surface 310 b and electrically connected with the bonding pads 314 via the carrier 310 .
  • chip package process for fabricating the aforementioned chip packages 300 is illustrated in the following. Since most of the elements of the chip packages 300 have been mentioned in the aforementioned embodiments, detailed descriptions are not repeated in the following.
  • FIGS. 4A ⁇ 4F show the chip package process according to an embodiment of the present.
  • the carrier 310 having the carrying surface 310 a and the back surface 310 b is provided.
  • the chip 320 and the peripheral devices 302 are disposed on the carrying surface 310 a of the carrier 310 .
  • the chip is bonded to the carrier 310 by wire bonding, flip chip bonding or other appropriate bonding manners.
  • the peripheral devices 302 may be mounted on the carrier 310 by SMT.
  • the first conductive elements 332 are formed on the corresponding common contacts 312 .
  • the first conductive elements 332 are fabricated by forming a solder ball on each common contact 312 respectively.
  • the encapsulation 340 is formed on the whole carrying surface 310 a of the carrier to encapsulate the chip 320 , the peripheral devices 302 , the common contacts 312 , the bonding pads 314 , the wires 360 and the first conductive elements 332 . It is noted that the encapsulation 340 shall expose a top portion of each first conductive element 332 .
  • the conductive film 350 is provided and the second conductive elements 334 are formed on a surface of the conductive film 350 .
  • the second conductive elements 334 are fabricated by forming a plurality of solder balls on the conductive film 350 .
  • the conductive film 350 is disposed on the encapsulation 340 and the second conductive elements 334 on the conductive film 350 are connected to the corresponding first conductive elements 332 , wherein the conductive film 350 is electrically connected to the common contacts 312 via the first conductive elements 332 and the second conductive elements 334 .
  • the solder balls 372 and 374 can be selectively formed on the back surface 310 b of the carrier 310 , wherein the solder balls 372 and 374 are electrically connected with the chip 320 , the peripheral devices 302 , and/or the first conductive elements 332 via the carrier 310 respectively.
  • FIGS. 4A ⁇ 4F focuses on a single chip package. Practically, the above fabricating process is applied on an array type carrier and then forms a plurality of chip packages at the same time. Thus, a singulation process may further be carried out after the steps mentioned above to achieve a single chip package.
  • FIG. 5A illustrates a chip package according to further another embodiment of the present invention.
  • the chip package 500 includes a carrier 510 , a chip 520 , first conductive elements 532 , an encapsulation 540 , and a conductive film 550 .
  • the carrier 510 has a carrying surface 510 a and a back surface 510 b opposite to the carrying surface 510 a .
  • a plurality of common contacts 512 and bonding pads 514 is disposed in the periphery of the carrying surface 510 a .
  • the embodiment shows a BGA type chip package 500 which utilize a circuit substrate as the carrier 510 , however, there is no set limit on the type of carrier, while other known appropriate chip package type, such as PGA type, QFP type and so on, can also be carried out in the present invention.
  • the chip 520 is disposed on the carrying surface 510 a of the carrier 510 and is electrically connected with the carrier 510 by performing, for example, a wire bonding process, wherein the chip 520 is connected to the bonding pads 514 of the carrier 510 ; via plural wires 560 . It is noted that there is no limit on the manners for bonding the chip 520 and the carrier 510 in the present invention. For example, a flip chip bonding process may be carried out in another embodiment of the present invention to connect the chip 520 with the carrier 510 via a plurality of conductive bumps (not shown).
  • the first conductive elements 532 are disposed on the common contacts 512 , respectively.
  • the first conductive elements 532 can be solder balls or other appropriate conductive objects, such as solder bumps.
  • the encapsulation 540 is disposed on the whole carrying surface 510 a of the carrier 510 to encapsulate the chip 520 , the first conductive elements 532 , the common contacts 512 , the bonding pads 514 , the wires 560 and the peripheral devices 502 . Particularly, the encapsulation 540 exposes a top portion of each first conductive element 532 . In addition, the conductive film 550 is directly attached on a top surface of the encapsulation 540 so as to connect with the first conductive elements 532 .
  • the conductive film 550 can serve as a common plane in the chip package 500 to provide an EMI shielding effect.
  • the conductive film 550 of the embodiment can be manufactured by spraying a conductive material on the top surface of the encapsulation 540 . Therefore, the conductive film 550 can be electrically connected with the common contacts 512 via the first conductive elements 532 .
  • the chip package 500 further comprise a plurality of solder balls 572 and 574 arranged in array on the back surface 510 b of the carrier 510 .
  • the solder balls 572 are distributed in the periphery of the back surface 510 b and connected with the common contacts 512 .
  • the conductive film 550 can be electrically connected with an external circuitry for the common voltage via the solder balls 572 .
  • the solder balls 574 are distributed in the center region of the back surface 510 b and electrically connected with the bonding pads 514 via the carrier 510 .
  • the chip 520 and the peripheral devices 502 can be connected with another external circuitry for driving signals via the solder balls 574 .
  • the chip 520 and the peripheral devices 502 of the aforementioned embodiment may further be electrically connected with the common contacts 512 to share the common voltage with the conductive film 550 by rearranging the wires 560 and the interconnections of the carrier 510 .
  • FIG. 5B and FIG. 5C which respectively show other chip packages utilizing different types of circuit substrate as carriers in comparison with that in FIG. 5A . Since most of the elements in the chip packages of FIG. 5B and FIG. 5C have been described in the aforementioned embodiment, details are not repeated herein.
  • the carrier 500 further has at least one extending contact 516 on the carrying surface 510 a , wherein the extending contact is electrically connected with the common contacts 512 via the interconnections 590 in the carrier 510 .
  • the chip 520 and the bonding pads 514 may be electrically connected with the extending contact 516 via a part of the wires 560 .
  • the chip 520 and the peripheral devices 502 can take the common voltage from the common contacts 512 as, for example, a ground voltage.
  • FIG. 5C shows another chip package 500 with different arrangement of solder balls, wherein the solder balls 572 for providing the common voltage is disposed in the center region of the back surface 510 b and electrically connected with the common contacts 512 via the interconnections 590 in the carrier 510 .
  • the solder balls 574 for providing the driving signals are distributed in the periphery of the back surface 510 b and electrically connected with the bonding pads 514 via the carrier 510 .
  • chip package process for fabricating the aforementioned chip packages 500 is illustrated in the following. Since most of the elements of the chip packages 500 have been mentioned in the aforementioned embodiments, detailed descriptions are not repeated in the following.
  • FIGS. 6A ⁇ 6E show the chip package process according to an embodiment of the present.
  • the carrier 510 having the carrying surface 510 a and the back surface 510 b is provided.
  • the chip 520 and the peripheral devices 502 are disposed on the carrying surface 510 a of the carrier 510 .
  • the chip is bonded to the carrier 510 by wire bonding, flip chip bonding or other appropriate bonding manners.
  • the peripheral devices 502 may be mounted on the carrier 510 by SMT.
  • the first conductive elements 532 are formed on the corresponding common contacts 512 .
  • the first conductive elements 532 are fabricated by forming a solder ball on each common contact 512 respectively.
  • the encapsulation 540 is formed on the whole carrying surface 510 a of the carrier to encapsulate the chip 520 , the peripheral devices 502 , the common contacts 512 , the bonding pads 514 , the wires 560 and the first conductive elements 532 . It is noted that the encapsulation 540 shall expose a top portion of each first conductive element 532 .
  • the conductive film 550 is formed by spraying a conductive material on the top surface of the encapsulation 540 . Therefore, the conductive film 550 can be electrically connected to the common contacts 512 via the first conductive elements 532 .
  • the solder balls 572 and 574 can be selectively formed on the back surface 510 b of the carrier 510 , wherein the solder balls 572 and 574 are electrically connected with the chip 520 , the peripheral devices 502 and/or the first conductive elements 532 via the carrier 510 respectively.
  • FIGS. 6A ⁇ 6E focuses on a single chip package. Practically, the above fabricating process is applied on an array type carrier and then forms a plurality of chip packages at the same time. Thus, a singulation process may further be carried out after the steps mentioned above to achieve a single chip package.
  • the present invention provides structures and the fabricating method thereof to integrate a conductive film into a chip package, wherein the conductive film can be taken as a common plane, so as to solve the problem of EMI for the chip package. Therefore, products utilizing the chip package and the chip packaging process can achieve superior electrical performance and higher reliability.

Abstract

A chip package comprising a carrier, a chip, a plurality of first conductive elements, an encapsulation, and a conductive film is provided. The carrier has a carrying surface and a back surface opposite to the carrying surface. Furthermore, the carrier has a plurality of common contacts in the periphery of the carrying surface. The chip is disposed on the carrying surface and electrically connected to the carrier. In addition, the first conductive elements are disposed on the common contacts respectively. The encapsulation is disposed on the carrying surface and encapsulating the chip. Moreover, the conductive film is disposed over the encapsulation and the first conductive elements, so as to electrically connect with the common contacts via the first conductive elements. A process for fabricating the chip package is further provided. The chip package is capable of preventing the EMI problem and thus provides superior electrical performance.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to a chip package. More particularly, the present invention relates to a chip package having electromagnetic interference (EMI) shielding function.
  • 2. Description of Related Art
  • In the manufacturing of integrated circuits, ultimate size of the package is an important issue. As the level of integration and functions of integrated circuits increase, the number of conductive leads required for connections with external circuitry is also increased. Furthermore, as the operating speed of chip goes higher, the amount of heat generated by the chip and electrical interference caused by external electromagnetic fields during operation can no longer be ignored. A typical high-density area array package is the ball grid array (BGA) type package. Nonetheless, the thermal dissipation and the EMI problems of the BGA type package or even other types of chip package are still unresolved, and need to be carefully considered in the design of a high-density area array package.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a chip package which is capable of eliminating the EMI problem and provides superior electrical performance.
  • The present invention is also directed to a fabricating process of the chip package having EMI shielding ability.
  • As embodied and broadly described herein, the present invention provides a chip package comprising a carrier, a chip, a plurality of first conductive elements, an encapsulation, and a conductive film. The carrier has a carrying surface and a back surface opposite to the carrying surface. Furthermore, the carrier has a plurality of common contacts in the periphery of the carrying surface. The chip is disposed on the carrying surface and electrically connected to the carrier. In addition, the first conductive elements are disposed on the common contacts respectively. The encapsulation is disposed on the carrying surface and encapsulating the chip. Moreover, the conductive film is disposed over the encapsulation and the first conductive elements, so as to electrically connect with the common contacts via the first conductive elements.
  • The present invention also provides a chip packaging process, comprising: providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface; disposing a chip on the carrying surface and electrically connecting the chip to the carrier; forming an encapsulation on the carrying surface, wherein the encapsulation encapsulates the chip; forming a plurality of first conductive elements on the corresponding common contacts; and providing a conductive film on the encapsulation and electrically connecting the conductive film to the common contacts via the first conductive elements.
  • The present invention further provides a chip packaging process, comprising: providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface; disposing a chip on the carrying surface and electrically connecting the chip to the carrier; forming a plurality of first conductive elements on the corresponding common contacts; forming an encapsulation for covering the carrying surface and encapsulating the chip and the first conductive elements, wherein the encapsulation exposes a top portion of each first conductive element; providing a conductive film and forming a plurality of second conductive elements on a surface of the conductive film; and disposing the conductive film over the encapsulation and connecting the second conductive elements to the corresponding first conductive elements, wherein the conductive film is electrically connected to the common contacts via the first conductive elements and the second conductive elements.
  • Moreover, the present invention provides a chip packaging process, comprising: providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface; disposing a chip on the carrying surface and electrically connecting the chip to the carrier; forming a plurality of first conductive elements on the corresponding common contacts; forming an encapsulation for covering the carrying surface and encapsulating the chip and the first conductive elements, the encapsulation exposing a top portion of each first conductive element; and forming a conductive film on a top surface of the encapsulation so as to electrically connect the conductive film to the common contacts via the first conductive elements.
  • To sum up, the present invention disposes the conductive film over the encapsulation to form a common plane in the chip package, so as to solve the problem of EMI for the chip package. Therefore, products utilizing the chip package and the chip packaging process can achieve superior electrical performance and higher reliability.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIG. 1A illustrates a chip package according to an embodiment of the present invention.
  • FIG. 1B and FIG. 1C show other chip packages utilizing different types of circuit substrate as carriers in comparison with that in FIG. 1A.
  • FIGS. 2A˜2E show a chip package process of the chip packages in FIGS. 1A˜1C according to an embodiment of the present.
  • FIG. 3A illustrates a chip package according to another embodiment of the present invention.
  • FIG. 3B and FIG. 3C respectively show other chip packages utilizing different types of circuit substrate as carriers in comparison with that in FIG. 3A.
  • FIGS. 4A˜4F show a chip package process of the chip packages in FIGS. 3A˜3C according to an embodiment of the present.
  • FIG. 5A illustrates a chip package according to further another embodiment of the present invention.
  • FIG. 5B and FIG. 5C respectively show other chip packages utilizing different types of circuit substrate as carriers in comparison with that in FIG. 5A.
  • FIGS. 6A˜6E show a chip package process of the chip packages in FIGS. 55C according to an embodiment of the present.
  • DESCRIPTION OF THE EMBODIMENTS
  • The present invention proposes a chip package with EMI shielding to improve the electrical performance and the reliability thereof. Embodiments are now given in the following to illustrate various arrangements of the chip package of the present invention. Furthermore, the accompanying fabricating processes of the chip package are also illustrated in the corresponding embodiments.
  • Reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
  • FIG. 1A illustrates a chip package according to an embodiment of the present invention. Referring to FIG. 1A, the chip package 100 includes a carrier 110, a chip 120, first conductive elements 132, an encapsulation 140, and a conductive film 150. The carrier 110 has a carrying surface 110 a and a back surface 110 b opposite to the carrying surface 110 a, wherein a plurality of common contacts 112 and bonding pads 114 is disposed in the periphery of the carrying surface 110 a. It is noted that the embodiment shows a BGA type chip package 100 which utilize a circuit substrate as the carrier 110, however, there is no set limit on the type of carrier, while other known appropriate chip package type, such as Pin Grid Array (PGA) type, Quad Flat Package (QFP) type and so on, can also be carried out in the present invention.
  • In addition, the chip 120 is disposed on the carrying surface 110 a of the carrier 110 and is electrically connected with the carrier 110 by performing, for example, a wire bonding process, wherein the chip 120 is connected to the bonding pads 114 of the carrier 110 via plural wires 160. It is noted that there is no limit on the manners for bonding the chip 120 and the carrier 110 in the present invention. For example, a flip chip bonding process may be carried out in another embodiment of the present invention to connect the chip 120: with the carrier 110 via a plurality of conductive bumps (not shown).
  • The first conductive elements 132 are disposed on the common contacts 112 respectively. For example, the first conductive elements 132 can be solder balls or other appropriate conductive objects, such as solder bumps. In the embodiment, there may also be some peripheral devices 102 disposed on the carrying surface 110 a of the carrier 110, wherein the peripheral devices 102 may be passive devices, such as capacitors, resistors, or inductors, which are electrically connected with the chip 120 via the carrier 110.
  • The encapsulation 140 is disposed on the carrying surface 110 a of the carrier 110 to encapsulate the chip 120, the bonding pads 114, the wires 160 and the peripheral devices 102. Besides, the encapsulation 140 exposes the common contacts 112 and the first conductive elements 132 thereon. In other words, the first conductive elements 132 are arranged around the encapsulation 140. Moreover, the conductive film 150 is disposed over the encapsulation 140 and the first conductive elements 132, so as to be electrically connected with the common contacts 112 via the first conductive elements 132. By applying a common voltage on the conductive film 150 through the common contacts 112, the conductive film 150 can serve as a common plane in the chip package 100 to provide an EMI shielding effect. Specifically, the conductive film 150 of the embodiment can be manufactured by providing a metal sheet. Furthermore, the periphery surface of the conductive film 150 is coated with a conductive bonding layer 152, such as a solder layer. The conductive film 150 is connected with the first conductive elements 132 via the conductive bonding layer 152.
  • The chip package 100 further comprise a plurality of solder balls 172 and 174 arranged in array on the back surface 110 b of the carrier 110. The solder balls 172 are distributed in the periphery of the back surface 110 b and connected with the common contacts 112. Thus, the conductive film 150 can be electrically connected with an external circuitry for the common voltage via the solder balls 172. Besides, the solder balls 174 are distributed in the center region of the back surface 110 b and electrically connected with the bonding pads 114 via the carrier 110. The chip 120 and the peripheral devices 102 can be connected with another external circuitry for driving signals via the solder balls 174.
  • It should be noted that, in the present invention, the chip and the peripheral devices may further be electrically connected with the common contacts to share the common voltage with the conductive film by rearranging the wires and the interconnections of the carrier.
  • Accordingly, FIG. 1B and FIG. 1C show other chip packages utilizing different types of circuit substrate as carriers respectively according to other embodiments of the present invention. Since most of the elements in the chip packages of FIG. 1B and FIG. 1C have been described in the aforementioned embodiment, details are not repeated herein.
  • Referring to FIG. 1B, expect the common contacts 112, the carrier 100 further has at least one extending contact 116 on the carrying surface 110 a, wherein the extending contact is electrically connected with the common contacts 112 via the interconnections 190 in the carrier 110. In addition, the chip 120 and the bonding pads 114 may be electrically connected with the extending contact 116 via a part of the wires 160. Thus, the chip 120 and the peripheral devices 102 can take the common voltage from the common contacts 112 as, for example, a ground voltage.
  • FIG. 1C shows another chip package 100 with different arrangement of solder balls, wherein the solder balls 172 for providing the common voltage is disposed in the center region of the back surface 110 b and electrically connected with the common contacts 112 via the interconnections 190 in the carrier 110. In addition, the solder balls 174 for providing the driving signals are distributed in the periphery of the back surface 110 b and electrically connected with the bonding pads 114 via the carrier 110.
  • For providing a more detailed and clear disclosure of the present invention, a chip package process for fabricating the aforementioned chip packages 100 is illustrated in the following. Since most of the elements of the chip packages 100 have been mentioned in the aforementioned embodiments, detailed descriptions are not repeated in the following.
  • FIGS. 2A˜2E show the chip package process according to an embodiment of the present. First, as shown in FIG. 2A, the carrier 110 having the carrying surface 110 a and the back surface 110 b is provided. Then, as shown in FIG. 2B, the chip 120 and the peripheral devices 102 are disposed on the carrying surface 110 a of the carrier 110. The chip is bonded to the carrier 110 by wire bonding, flip chip bonding or other appropriate bonding manners. In addition, the peripheral devices 102 may be mounted on the carrier 110 by surface mount technology (SMT).
  • Next, as shown in FIG. 2C, the encapsulation 140 is formed on the carrying surface 110 a of the carrier to encapsulate the chip 120, the bonding pads 114, the wires 160 and the peripheral devices 102. Thereafter, as shown in FIG. 2D, the first conductive elements 132 are formed on the corresponding common contacts 112, wherein the first conductive elements 132 surround the encapsulation 140. In the embodiment, the first conductive elements 132 are fabricated by forming a solder ball on each common contact 112 respectively.
  • Then, as shown in FIG. 2E, the conductive film 150 is provided on the encapsulation 140 and electrically connected with the common contacts 112 via the first conductive elements 132. Herein, the conductive bonding layer 152 is formed between the conductive film 150 and the first conductive elements 132 before providing the conductive film 150 on the encapsulation 140, so as to connect the conductive film 150 to the first conductive elements 132 via the conductive bonding layer 152. After that, the solder balls 172 and 174 can be selectively formed on the back surface 110 b of the carrier 110, wherein the solder balls 172 and 174 are electrically connected with the chip 120, the peripheral devices 102 and/or the first conductive elements 132 via the carrier 110 respectively.
  • It is noted that the above fabricating process as shown in FIGS. 2A˜2E focuses on a single chip package. Practically, the above fabricating process is applied on an array type carrier and then forms a plurality of chip packages at the same time. Thus, a singulation process may further be carried out after the steps mentioned above to achieve a single chip package.
  • In addition to the above embodiments, other types of chip packages and the corresponding fabricating processes thereof are illustrated in the following.
  • FIG. 3A illustrates a chip package according to another embodiment of the present invention. Referring to FIG. 3A, the chip package 300 includes a carrier 310, a chip 320, first conductive elements 332, second conductive elements 334, an encapsulation 340, and a conductive film 350. The carrier 310 has a carrying surface 310 a and a back surface 310 b opposite to the carrying surface 310 a. A plurality of common contacts 312 and bonding pads 314 is disposed in the periphery of the carrying surface 310 a. It is noted that the embodiment shows a BGA type chip package 300 which utilize a circuit substrate as the carrier 310, however, there is no set limit on the type of carrier, while other known appropriate chip package type, such as PGA type, QFP type and so on, can also be carried out in the present invention.
  • The chip 320 is disposed on the carrying surface 310 a of the carrier 310 and is electrically connected with the carrier 310 by performing, for example, a wire bonding process, wherein the chip 320 is connected to the bonding pads 314 of the carrier 310 via plural wires 360. It is noted that there is no limit on the manners for bonding the chip 320 and the carrier 310 in the present invention. For example, a flip chip bonding process may be carried out in another embodiment of the present invention to connect the chip 320 with the carrier 310 via a plurality of conductive bumps (not shown).
  • The first conductive elements 332 are disposed on the common contacts 312 respectively. For example, the first conductive elements 332 can be solder balls or other appropriate conductive objects, such as solder bumps. In the embodiment, there may also be some peripheral devices 302 disposed on the carrying surface 310 a of the carrier 310, wherein the peripheral devices 302 may be passive devices, such as capacitors, resistors, or inductors, which are electrically connected with the chip 320 via the carrier 310.
  • The encapsulation 340 is disposed on the whole carrying surface 310 a of the carrier 310 to encapsulate the chip 320, the first conductive elements 332, the common contacts 312, the bonding pads 314, the wires 360 and the peripheral devices 302. Particularly, the encapsulation 340 exposes a top portion of each first conductive element 332. In addition, the conductive film 350 is disposed over the encapsulation 340 and the first conductive elements 332. The second conductive elements 334 are disposed between the conductive film 350 and the corresponding first conductive elements 332 respectively, so as to electrically connect the conductive film 350 with the common contacts 312. In the embodiment, the second conductive elements 334 may be solder balls or other appropriate conductive elements such as solder bumps, or silver paste.
  • By applying a common voltage on the conductive film 350 through the common contacts 312, the conductive film 350 can serve as a common plane in the chip package 300 to provide an EMI shielding effect. Specifically, the conductive film 350 of the embodiment can be manufactured by providing a metal sheet. Then, the second conductive elements 334 are disposed in the periphery surface of the conductive film 350. Therefore, the conductive film 350 can be electrically connected with the first conductive elements 332 via the second conductive elements 334.
  • The chip package 300 further comprise a plurality of solder balls 372 and 374 arranged in array on the back surface 310 b of the carrier 310. The solder balls 372 are distributed in the periphery of the back surface 310 b and connected with the common contacts 312. Thus, the conductive film 350 can be electrically connected with an external circuitry for the common voltage via the solder balls 372. Besides, the solder balls 374 are distributed in the center region of the back surface 310 b and electrically connected with the bonding pads 314 via the carrier 310. The chip 320 and the peripheral devices 302 can be connected with another external circuitry for driving signals via the solder balls 374.
  • Similar to the above illustrations of FIG. 1B and FIG. 1C, the chip 320 and the peripheral devices 302 of the aforementioned embodiment may further be electrically connected with the common contacts 312 to share the common voltage with the conductive film 350 by rearranging the wires 360 and the interconnections of the carrier 310. Referring to FIG. 3B and FIG. 3C, which respectively show other chip packages utilizing different types of circuit substrate as carriers according to other embodiments of the present invention. Since most of the elements in the chip packages of FIG. 3B and FIG. 3C have been described in the aforementioned embodiment, details are not repeated herein.
  • As shown in FIG. 3B, expect the common contacts 312, the carrier 300 further has at least one extending contact 316 on the carrying surface 310 a, wherein the extending contact is electrically connected with the common contacts 312 via the interconnections 390 in the carrier 310. In addition, the chip 320 and the bonding pads 314 may be electrically connected with the extending contact 316 via a part of the wires 360. Thus, the chip 320 and the peripheral devices 302 can take the common voltage from the common contacts 312 as, for example, a ground voltage.
  • FIG. 3C shows another chip package 300 with different arrangement of solder balls, wherein the solder balls 372 for providing the common voltage is disposed in the center region of the back surface 310 b and electrically connected with the common contacts 312 via the interconnections 390 in the carrier 310. In addition, the solder balls 374 for providing the driving signals are distributed in the periphery of the back surface 310 b and electrically connected with the bonding pads 314 via the carrier 310.
  • In order to provide a more detailed and clear disclosure of the present invention, a chip package process for fabricating the aforementioned chip packages 300 is illustrated in the following. Since most of the elements of the chip packages 300 have been mentioned in the aforementioned embodiments, detailed descriptions are not repeated in the following.
  • FIGS. 4A˜4F show the chip package process according to an embodiment of the present. First, as shown in FIG. 4A, the carrier 310 having the carrying surface 310 a and the back surface 310 b is provided. Then, as shown in FIG. 4B, the chip 320 and the peripheral devices 302 are disposed on the carrying surface 310 a of the carrier 310. The chip is bonded to the carrier 310 by wire bonding, flip chip bonding or other appropriate bonding manners. In addition, the peripheral devices 302 may be mounted on the carrier 310 by SMT.
  • Next, as shown in FIG. 4C, the first conductive elements 332 are formed on the corresponding common contacts 312. In the embodiment, the first conductive elements 332 are fabricated by forming a solder ball on each common contact 312 respectively. Then, as shown in FIG. 4D, the encapsulation 340 is formed on the whole carrying surface 310 a of the carrier to encapsulate the chip 320, the peripheral devices 302, the common contacts 312, the bonding pads 314, the wires 360 and the first conductive elements 332. It is noted that the encapsulation 340 shall expose a top portion of each first conductive element 332.
  • Thereafter, as shown in FIG. 4E, the conductive film 350 is provided and the second conductive elements 334 are formed on a surface of the conductive film 350. In the embodiment, the second conductive elements 334 are fabricated by forming a plurality of solder balls on the conductive film 350.
  • Then, as shown in FIG. 4F, the conductive film 350 is disposed on the encapsulation 340 and the second conductive elements 334 on the conductive film 350 are connected to the corresponding first conductive elements 332, wherein the conductive film 350 is electrically connected to the common contacts 312 via the first conductive elements 332 and the second conductive elements 334. After that, the solder balls 372 and 374 can be selectively formed on the back surface 310 b of the carrier 310, wherein the solder balls 372 and 374 are electrically connected with the chip 320, the peripheral devices 302, and/or the first conductive elements 332 via the carrier 310 respectively.
  • It is noted that the above fabricating process as shown in FIGS. 4A˜4F focuses on a single chip package. Practically, the above fabricating process is applied on an array type carrier and then forms a plurality of chip packages at the same time. Thus, a singulation process may further be carried out after the steps mentioned above to achieve a single chip package.
  • FIG. 5A illustrates a chip package according to further another embodiment of the present invention. Referring to FIG. 5A, the chip package 500 includes a carrier 510, a chip 520, first conductive elements 532, an encapsulation 540, and a conductive film 550. The carrier 510 has a carrying surface 510 a and a back surface 510 b opposite to the carrying surface 510 a. A plurality of common contacts 512 and bonding pads 514 is disposed in the periphery of the carrying surface 510 a. It is noted that the embodiment shows a BGA type chip package 500 which utilize a circuit substrate as the carrier 510, however, there is no set limit on the type of carrier, while other known appropriate chip package type, such as PGA type, QFP type and so on, can also be carried out in the present invention.
  • The chip 520 is disposed on the carrying surface 510 a of the carrier 510 and is electrically connected with the carrier 510 by performing, for example, a wire bonding process, wherein the chip 520 is connected to the bonding pads 514 of the carrier 510; via plural wires 560. It is noted that there is no limit on the manners for bonding the chip 520 and the carrier 510 in the present invention. For example, a flip chip bonding process may be carried out in another embodiment of the present invention to connect the chip 520 with the carrier 510 via a plurality of conductive bumps (not shown).
  • The first conductive elements 532 are disposed on the common contacts 512, respectively. For example, the first conductive elements 532 can be solder balls or other appropriate conductive objects, such as solder bumps. In the embodiment, there may also be some peripheral devices 502 disposed on the carrying surface 510 a of the carrier 510, wherein the peripheral devices 502 may be passive devices, such as capacitors, resistors, or inductors, which are electrically connected with the chip 520 via the carrier 510.
  • The encapsulation 540 is disposed on the whole carrying surface 510 a of the carrier 510 to encapsulate the chip 520, the first conductive elements 532, the common contacts 512, the bonding pads 514, the wires 560 and the peripheral devices 502. Particularly, the encapsulation 540 exposes a top portion of each first conductive element 532. In addition, the conductive film 550 is directly attached on a top surface of the encapsulation 540 so as to connect with the first conductive elements 532.
  • By applying a common voltage on the conductive film 550 through the common contacts 512, the conductive film 550 can serve as a common plane in the chip package 500 to provide an EMI shielding effect. Specifically, the conductive film 550 of the embodiment can be manufactured by spraying a conductive material on the top surface of the encapsulation 540. Therefore, the conductive film 550 can be electrically connected with the common contacts 512 via the first conductive elements 532.
  • The chip package 500 further comprise a plurality of solder balls 572 and 574 arranged in array on the back surface 510 b of the carrier 510. The solder balls 572 are distributed in the periphery of the back surface 510 b and connected with the common contacts 512. Thus, the conductive film 550 can be electrically connected with an external circuitry for the common voltage via the solder balls 572. Besides, the solder balls 574 are distributed in the center region of the back surface 510 b and electrically connected with the bonding pads 514 via the carrier 510. The chip 520 and the peripheral devices 502 can be connected with another external circuitry for driving signals via the solder balls 574.
  • Similar to the above illustrations of FIGS. 1B, 1C and FIGS. 3B, 3C, the chip 520 and the peripheral devices 502 of the aforementioned embodiment may further be electrically connected with the common contacts 512 to share the common voltage with the conductive film 550 by rearranging the wires 560 and the interconnections of the carrier 510. Referring to FIG. 5B and FIG. 5C, which respectively show other chip packages utilizing different types of circuit substrate as carriers in comparison with that in FIG. 5A. Since most of the elements in the chip packages of FIG. 5B and FIG. 5C have been described in the aforementioned embodiment, details are not repeated herein.
  • As shown in FIG. 5B, expect the common contacts 512, the carrier 500 further has at least one extending contact 516 on the carrying surface 510 a, wherein the extending contact is electrically connected with the common contacts 512 via the interconnections 590 in the carrier 510. In addition, the chip 520 and the bonding pads 514 may be electrically connected with the extending contact 516 via a part of the wires 560. Thus, the chip 520 and the peripheral devices 502 can take the common voltage from the common contacts 512 as, for example, a ground voltage.
  • FIG. 5C shows another chip package 500 with different arrangement of solder balls, wherein the solder balls 572 for providing the common voltage is disposed in the center region of the back surface 510 b and electrically connected with the common contacts 512 via the interconnections 590 in the carrier 510. In addition, the solder balls 574 for providing the driving signals are distributed in the periphery of the back surface 510 b and electrically connected with the bonding pads 514 via the carrier 510.
  • In order to provide a more detailed and clear disclosure of the present invention, a chip package process for fabricating the aforementioned chip packages 500 is illustrated in the following. Since most of the elements of the chip packages 500 have been mentioned in the aforementioned embodiments, detailed descriptions are not repeated in the following.
  • FIGS. 6A˜6E show the chip package process according to an embodiment of the present. First, as shown in FIG. 6A, the carrier 510 having the carrying surface 510 a and the back surface 510 b is provided. Then, as shown in FIG. 6B, the chip 520 and the peripheral devices 502 are disposed on the carrying surface 510 a of the carrier 510. The chip is bonded to the carrier 510 by wire bonding, flip chip bonding or other appropriate bonding manners. In addition, the peripheral devices 502 may be mounted on the carrier 510 by SMT.
  • Next, as shown in FIG. 6C, the first conductive elements 532 are formed on the corresponding common contacts 512. In the embodiment, the first conductive elements 532 are fabricated by forming a solder ball on each common contact 512 respectively. Then, as shown in FIG. 6D, the encapsulation 540 is formed on the whole carrying surface 510 a of the carrier to encapsulate the chip 520, the peripheral devices 502, the common contacts 512, the bonding pads 514, the wires 560 and the first conductive elements 532. It is noted that the encapsulation 540 shall expose a top portion of each first conductive element 532.
  • Thereafter, as shown in FIG. 6E, the conductive film 550 is formed by spraying a conductive material on the top surface of the encapsulation 540. Therefore, the conductive film 550 can be electrically connected to the common contacts 512 via the first conductive elements 532. After that, the solder balls 572 and 574 can be selectively formed on the back surface 510 b of the carrier 510, wherein the solder balls 572 and 574 are electrically connected with the chip 520, the peripheral devices 502 and/or the first conductive elements 532 via the carrier 510 respectively.
  • It is noted that the above fabricating process as shown in FIGS. 6A˜6E focuses on a single chip package. Practically, the above fabricating process is applied on an array type carrier and then forms a plurality of chip packages at the same time. Thus, a singulation process may further be carried out after the steps mentioned above to achieve a single chip package.
  • In summary, the present invention provides structures and the fabricating method thereof to integrate a conductive film into a chip package, wherein the conductive film can be taken as a common plane, so as to solve the problem of EMI for the chip package. Therefore, products utilizing the chip package and the chip packaging process can achieve superior electrical performance and higher reliability.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims (33)

1. A chip package, comprising:
a carrier, having a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface;
a chip, disposed on the carrying surface and electrically connected to the carrier;
a plurality of first conductive elements, disposed on the common contacts respectively;
an encapsulation, disposed on the carrying surface and encapsulating the chip; and
a conductive film, disposed over the encapsulation and the first conductive elements, so as to connected to the common contacts via the first conductive elements.
2. The chip package according to claim 1, wherein the first conductive elements comprise a plurality of first solder balls.
3. The chip package according to claim 1, wherein the first conductive elements surround the encapsulation.
4. The chip package according to claim 3, further comprising a conductive bonding layer disposed between the conductive film and the first conductive elements.
5. The chip package according to claim 4, wherein the conductive bonding layer is a solder layer.
6. The chip package according to claim 1, wherein the encapsulation covers the carrying surface and encapsulates the chip and the first conductive elements, and the encapsulation exposes a top portion of each first conductive element.
7. The chip package according to claim 6, wherein the conductive film is directly attached on a top surface of the encapsulation so as to connect with the first conductive elements.
8. The chip package according to claim 6, further comprising a plurality of second conductive elements disposed between the conductive film and the corresponding first conductive elements respectively.
9. The chip package according to claim 8, wherein the second conductive elements comprise a plurality of second solder balls.
10. The chip package according to claim 1, wherein the conductive film is a metal film.
11. The chip package according to claim 1, wherein the carrier is a circuit substrate.
12. The chip package according to claim 1, further comprising a plurality of conductive bumps, the chip being electrically connected with the carrier by a flip chip manner.
13. The chip package according to claim 1, further comprising a plurality of wires connected between the chip and the carrier and encapsulated by the encapsulation.
14. The chip package according to claim 1, further comprising a plurality of third solder balls disposed on the back surface of the carrier, the third solder balls being electrically connected with the chip and/or the first conductive elements via the carrier respectively.
15. A chip packaging process, comprising:
providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface;
disposing a chip on the carrying surface and electrically connecting the chip to the carrier;
forming an encapsulation on the carrying surface, wherein the encapsulation encapsulates the chip;
forming a plurality of first conductive elements on the corresponding common contacts; and
providing a conductive film on the encapsulation and electrically connecting the conductive film to the common contacts via the first conductive elements.
16. The chip packaging process according to claim 15, wherein the first conductive elements are fabricated by forming a first solder ball on each common contact respectively.
17. The chip packaging process according to claim 15, further comprising forming a conductive bonding layer between the conductive film and the first conductive elements so as to connect the conductive film to the first conductive elements via the conductive bonding layer.
18. The chip packaging process according to claim 17, wherein the conductive bonding layer is fabricated by coating a solder layer on the conductive film.
19. The chip packaging process according to claim 15, wherein the chip is bonded to the carrier by flip chip bonding technology.
20. The chip packaging process according to claim 15, wherein the chip is bonded to the carrier by wire bonding technology.
21. The chip packaging process according to claim 15, further comprising forming a plurality of second solder balls on the back surface of the carrier, the second solder balls being electrically connected with the chip and/or the first conductive elements via the carrier respectively.
22. A chip packaging process, comprising:
providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface;
disposing a chip on the carrying surface and electrically connecting the chip to the carrier;
forming a plurality of first conductive elements on the corresponding common contacts;
forming an encapsulation for covering the carrying surface and encapsulating the chip and the first conductive elements, the encapsulation exposing a top portion of each first conductive element;
providing a conductive film and forming a plurality of second conductive elements on a surface of the conductive film; and
disposing the conductive film over the encapsulation and connecting the second conductive elements to the corresponding first conductive elements, wherein the conductive film is electrically connected to the common contacts via the first conductive elements and the second conductive elements.
23. The chip packaging process according to claim 22, wherein the first conductive elements are fabricated by forming a first solder ball on each common contact respectively.
24. The chip packaging process according to claim 22, wherein the second conductive elements are fabricated by forming a plurality of second solder balls on the conductive film.
25. The chip packaging process according to claim 22, wherein the chip is bonded to the carrier by flip chip bonding technology.
26. The chip packaging process according to claim 22, wherein the chip is bonded to the carrier by wire bonding technology.
27. The chip packaging process according to claim 22, further comprising forming a plurality of third solder balls on the back surface of the carrier, the third solder balls being electrically connected with the chip and/or the first conductive elements via the carrier respectively.
28. A chip packaging process, comprising:
providing a carrier which has a carrying surface and a back surface opposite to the carrying surface, the carrier further having a plurality of common contacts in the periphery of the carrying surface;
disposing a chip on the carrying surface and electrically connecting the chip to the carrier;
forming a plurality of first conductive elements on the corresponding common contacts;
forming an encapsulation for covering the carrying surface and encapsulating the chip and the first conductive elements, the encapsulation exposing a top portion of each first conductive element; and
forming a conductive film on a top surface of the encapsulation so as to electrically connect the conductive film to the common contacts via the first conductive elements.
29. The chip packaging process according to claim 28, wherein the first conductive elements are fabricated by forming a first solder ball on each common contact respectively.
30. The chip packaging process according to claim 28, wherein the conductive film is fabricated by spraying a conductive material on the top surface of the encapsulation.
31. The chip packaging process according to claim 28, wherein the chip is bonded to the carrier by flip chip bonding technology.
32. The chip packaging process according to claim 28, wherein the chip is bonded to the carrier by wire bonding technology.
33. The chip packaging process according to claim 28, further comprising forming a plurality of second solder balls on the back surface of the carrier, the second solder balls being electrically connected with the chip and/or the first conductive elements via the carrier respectively.
US11/565,299 2006-11-30 2006-11-30 Chip package and fabricating process thereof Abandoned US20080128890A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/565,299 US20080128890A1 (en) 2006-11-30 2006-11-30 Chip package and fabricating process thereof
TW096109465A TWI373121B (en) 2006-11-30 2007-03-20 Chip package and fabricating process thereof
CN2007101653310A CN101188226B (en) 2006-11-30 2007-10-26 Chip package structure and fabricating process thereof
US12/491,742 US8866280B2 (en) 2006-11-30 2009-06-25 Chip package
US14/293,782 US20140346654A1 (en) 2006-11-30 2014-06-02 Chip package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/565,299 US20080128890A1 (en) 2006-11-30 2006-11-30 Chip package and fabricating process thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/491,742 Division US8866280B2 (en) 2006-11-30 2009-06-25 Chip package

Publications (1)

Publication Number Publication Date
US20080128890A1 true US20080128890A1 (en) 2008-06-05

Family

ID=39474765

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/565,299 Abandoned US20080128890A1 (en) 2006-11-30 2006-11-30 Chip package and fabricating process thereof
US12/491,742 Active US8866280B2 (en) 2006-11-30 2009-06-25 Chip package
US14/293,782 Abandoned US20140346654A1 (en) 2006-11-30 2014-06-02 Chip package

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/491,742 Active US8866280B2 (en) 2006-11-30 2009-06-25 Chip package
US14/293,782 Abandoned US20140346654A1 (en) 2006-11-30 2014-06-02 Chip package

Country Status (3)

Country Link
US (3) US20080128890A1 (en)
CN (1) CN101188226B (en)
TW (1) TWI373121B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090194851A1 (en) * 2008-02-05 2009-08-06 Chi-Tsung Chiu Semiconductor device packages with electromagnetic interference shielding
WO2010002969A2 (en) 2008-07-02 2010-01-07 Altera Corporation Flip chip overmold package
US20100032815A1 (en) * 2008-08-08 2010-02-11 An Jaeseon Semiconductor device packages with electromagnetic interference shielding
US20100109145A1 (en) * 2007-02-08 2010-05-06 Nederlandse Organisatie voor toegepastnatuurweten schappelijk Onderzoek TNO Sealed ball grid array package
US20100207259A1 (en) * 2008-02-05 2010-08-19 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20100207258A1 (en) * 2009-02-19 2010-08-19 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US20110115066A1 (en) * 2009-11-19 2011-05-19 Seokbong Kim Semiconductor device packages with electromagnetic interference shielding
US20110115059A1 (en) * 2009-11-19 2011-05-19 Yuyong Lee Semiconductor Device Packages with Electromagnetic Interference Shielding
US7989928B2 (en) 2008-02-05 2011-08-02 Advanced Semiconductor Engineering Inc. Semiconductor device packages with electromagnetic interference shielding
US8022511B2 (en) 2008-02-05 2011-09-20 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20120081869A1 (en) * 2010-10-04 2012-04-05 Samsung Electro-Mechanics Co., Ltd. Printed circuit board for reducing crosstalk
US8212340B2 (en) 2009-07-13 2012-07-03 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8378466B2 (en) 2009-11-19 2013-02-19 Advanced Semiconductor Engineering, Inc. Wafer-level semiconductor device packages with electromagnetic interference shielding
US8592958B2 (en) 2008-10-31 2013-11-26 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8653634B2 (en) 2012-06-11 2014-02-18 Advanced Semiconductor Engineering, Inc. EMI-shielded semiconductor devices and methods of making
US8704341B2 (en) 2012-05-15 2014-04-22 Advanced Semiconductor Engineering, Inc. Semiconductor packages with thermal dissipation structures and EMI shielding
US8884424B2 (en) 2010-01-13 2014-11-11 Advanced Semiconductor Engineering, Inc. Semiconductor package with single sided substrate design and manufacturing methods thereof
US9070793B2 (en) 2010-08-02 2015-06-30 Advanced Semiconductor Engineering, Inc. Semiconductor device packages having electromagnetic interference shielding and related methods
US9349611B2 (en) 2010-03-22 2016-05-24 Advanced Semiconductor Engineering, Inc. Stackable semiconductor package and manufacturing method thereof
US9406658B2 (en) 2010-12-17 2016-08-02 Advanced Semiconductor Engineering, Inc. Embedded component device and manufacturing methods thereof
US9929131B2 (en) 2015-12-18 2018-03-27 Samsung Electronics Co., Ltd. Method of fabricating a semiconductor package having mold layer with curved corner
US11158554B2 (en) 2017-07-28 2021-10-26 Micron Technology, Inc. Shielded fan-out packaged semiconductor device and method of manufacturing
CN113745145A (en) * 2020-05-29 2021-12-03 台湾爱司帝科技股份有限公司 Chip transfer system and chip transfer method
US11272618B2 (en) 2016-04-26 2022-03-08 Analog Devices International Unlimited Company Mechanically-compliant and electrically and thermally conductive leadframes for component-on-package circuits
US20220130741A1 (en) * 2020-10-27 2022-04-28 Qualcomm Incorporated Package structure for passive component to die critical distance reduction
US11410977B2 (en) 2018-11-13 2022-08-09 Analog Devices International Unlimited Company Electronic module for high power applications
US11749576B2 (en) 2018-03-27 2023-09-05 Analog Devices International Unlimited Company Stacked circuit package with molded base having laser drilled openings for upper package
US11844178B2 (en) 2020-06-02 2023-12-12 Analog Devices International Unlimited Company Electronic component

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866913B (en) * 2009-04-15 2012-05-02 日月光半导体制造股份有限公司 Chip encapsulation structure with shielding cover body
CN101958261B (en) * 2009-08-25 2012-09-05 日月光半导体制造股份有限公司 Semiconductor process and stackable semiconductor device packages
KR20130089473A (en) * 2012-02-02 2013-08-12 삼성전자주식회사 Semiconductor package
CN104168722B (en) * 2013-05-20 2017-06-06 日月光半导体制造股份有限公司 The manufacture method of electronic module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255143B1 (en) * 1999-08-04 2001-07-03 St. Assembly Test Services Pte Ltd. Flip chip thermally enhanced ball grid array
US20020093108A1 (en) * 2001-01-15 2002-07-18 Grigorov Ilya L. Flip chip packaged semiconductor device having double stud bumps and method of forming same
US6472743B2 (en) * 2001-02-22 2002-10-29 Siliconware Precision Industries, Co., Ltd. Semiconductor package with heat dissipating structure
US6967403B2 (en) * 2003-06-18 2005-11-22 Advanced Semiconductor Engineering, Inc. Package structure with a heat spreader and manufacturing method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3834426B2 (en) * 1997-09-02 2006-10-18 沖電気工業株式会社 Semiconductor device
US6092281A (en) * 1998-08-28 2000-07-25 Amkor Technology, Inc. Electromagnetic interference shield driver and method
US6194250B1 (en) * 1998-09-14 2001-02-27 Motorola, Inc. Low-profile microelectronic package
US6326235B1 (en) * 2000-05-05 2001-12-04 Amkor Technology, Inc. Long wire IC package fabrication method
JP2002158312A (en) * 2000-11-17 2002-05-31 Oki Electric Ind Co Ltd Semiconductor package for three-dimensional mounting, its manufacturing method and semiconductor device
JP3798620B2 (en) * 2000-12-04 2006-07-19 富士通株式会社 Manufacturing method of semiconductor device
TW495943B (en) * 2001-04-18 2002-07-21 Siliconware Precision Industries Co Ltd Semiconductor package article with heat sink structure and its manufacture method
US6987032B1 (en) * 2002-07-19 2006-01-17 Asat Ltd. Ball grid array package and process for manufacturing same
US7157790B2 (en) * 2002-07-31 2007-01-02 Microchip Technology Inc. Single die stitch bonding
US7064426B2 (en) * 2002-09-17 2006-06-20 Chippac, Inc. Semiconductor multi-package module having wire bond interconnect between stacked packages
US7205647B2 (en) * 2002-09-17 2007-04-17 Chippac, Inc. Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnect between stacked packages
JP3858854B2 (en) * 2003-06-24 2006-12-20 富士通株式会社 Multilayer semiconductor device
US7372151B1 (en) * 2003-09-12 2008-05-13 Asat Ltd. Ball grid array package and process for manufacturing same
US7517729B2 (en) * 2004-11-13 2009-04-14 Stats Chippac Ltd. Integrated circuit package system with heat slug
US7629674B1 (en) * 2004-11-17 2009-12-08 Amkor Technology, Inc. Shielded package having shield fence
JP2006190767A (en) * 2005-01-05 2006-07-20 Shinko Electric Ind Co Ltd Semiconductor device
EP1715520B1 (en) * 2005-04-21 2010-03-03 St Microelectronics S.A. Device for protecting an electronic circuit
US8704349B2 (en) * 2006-02-14 2014-04-22 Stats Chippac Ltd. Integrated circuit package system with exposed interconnects
US7714453B2 (en) * 2006-05-12 2010-05-11 Broadcom Corporation Interconnect structure and formation for package stacking of molded plastic area array package
US8581381B2 (en) * 2006-06-20 2013-11-12 Broadcom Corporation Integrated circuit (IC) package stacking and IC packages formed by same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255143B1 (en) * 1999-08-04 2001-07-03 St. Assembly Test Services Pte Ltd. Flip chip thermally enhanced ball grid array
US20020093108A1 (en) * 2001-01-15 2002-07-18 Grigorov Ilya L. Flip chip packaged semiconductor device having double stud bumps and method of forming same
US6472743B2 (en) * 2001-02-22 2002-10-29 Siliconware Precision Industries, Co., Ltd. Semiconductor package with heat dissipating structure
US6967403B2 (en) * 2003-06-18 2005-11-22 Advanced Semiconductor Engineering, Inc. Package structure with a heat spreader and manufacturing method thereof

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100109145A1 (en) * 2007-02-08 2010-05-06 Nederlandse Organisatie voor toegepastnatuurweten schappelijk Onderzoek TNO Sealed ball grid array package
US8212339B2 (en) 2008-02-05 2012-07-03 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20100207259A1 (en) * 2008-02-05 2010-08-19 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US8653633B2 (en) 2008-02-05 2014-02-18 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20090194851A1 (en) * 2008-02-05 2009-08-06 Chi-Tsung Chiu Semiconductor device packages with electromagnetic interference shielding
US8350367B2 (en) 2008-02-05 2013-01-08 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US7989928B2 (en) 2008-02-05 2011-08-02 Advanced Semiconductor Engineering Inc. Semiconductor device packages with electromagnetic interference shielding
US8022511B2 (en) 2008-02-05 2011-09-20 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
WO2010002969A2 (en) 2008-07-02 2010-01-07 Altera Corporation Flip chip overmold package
US9054023B1 (en) 2008-07-02 2015-06-09 Altera Corporation Flip chip overmold package
EP2311084A2 (en) * 2008-07-02 2011-04-20 Altera Corporation Flip chip overmold package
EP2311084A4 (en) * 2008-07-02 2012-09-19 Altera Corp Flip chip overmold package
US8410584B2 (en) 2008-08-08 2013-04-02 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20100032815A1 (en) * 2008-08-08 2010-02-11 An Jaeseon Semiconductor device packages with electromagnetic interference shielding
US8592958B2 (en) 2008-10-31 2013-11-26 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8110902B2 (en) 2009-02-19 2012-02-07 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US20100207258A1 (en) * 2009-02-19 2010-08-19 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8212340B2 (en) 2009-07-13 2012-07-03 Advanced Semiconductor Engineering, Inc. Chip package and manufacturing method thereof
US8378466B2 (en) 2009-11-19 2013-02-19 Advanced Semiconductor Engineering, Inc. Wafer-level semiconductor device packages with electromagnetic interference shielding
US8368185B2 (en) 2009-11-19 2013-02-05 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US20110115066A1 (en) * 2009-11-19 2011-05-19 Seokbong Kim Semiconductor device packages with electromagnetic interference shielding
US20110115059A1 (en) * 2009-11-19 2011-05-19 Yuyong Lee Semiconductor Device Packages with Electromagnetic Interference Shielding
US8030750B2 (en) 2009-11-19 2011-10-04 Advanced Semiconductor Engineering, Inc. Semiconductor device packages with electromagnetic interference shielding
US9196597B2 (en) 2010-01-13 2015-11-24 Advanced Semiconductor Engineering, Inc. Semiconductor package with single sided substrate design and manufacturing methods thereof
US8884424B2 (en) 2010-01-13 2014-11-11 Advanced Semiconductor Engineering, Inc. Semiconductor package with single sided substrate design and manufacturing methods thereof
US9349611B2 (en) 2010-03-22 2016-05-24 Advanced Semiconductor Engineering, Inc. Stackable semiconductor package and manufacturing method thereof
US9070793B2 (en) 2010-08-02 2015-06-30 Advanced Semiconductor Engineering, Inc. Semiconductor device packages having electromagnetic interference shielding and related methods
US20120081869A1 (en) * 2010-10-04 2012-04-05 Samsung Electro-Mechanics Co., Ltd. Printed circuit board for reducing crosstalk
US9406658B2 (en) 2010-12-17 2016-08-02 Advanced Semiconductor Engineering, Inc. Embedded component device and manufacturing methods thereof
US8704341B2 (en) 2012-05-15 2014-04-22 Advanced Semiconductor Engineering, Inc. Semiconductor packages with thermal dissipation structures and EMI shielding
US8653634B2 (en) 2012-06-11 2014-02-18 Advanced Semiconductor Engineering, Inc. EMI-shielded semiconductor devices and methods of making
US9929131B2 (en) 2015-12-18 2018-03-27 Samsung Electronics Co., Ltd. Method of fabricating a semiconductor package having mold layer with curved corner
US10147713B2 (en) 2015-12-18 2018-12-04 Samsung Electronics Co., Ltd. Semiconductor package having mold layer with curved corner and method of fabricating same
US11272618B2 (en) 2016-04-26 2022-03-08 Analog Devices International Unlimited Company Mechanically-compliant and electrically and thermally conductive leadframes for component-on-package circuits
US11158554B2 (en) 2017-07-28 2021-10-26 Micron Technology, Inc. Shielded fan-out packaged semiconductor device and method of manufacturing
US11742252B2 (en) 2017-07-28 2023-08-29 Micron Technology, Inc. Shielded fan-out packaged semiconductor device and method of manufacturing
US11749576B2 (en) 2018-03-27 2023-09-05 Analog Devices International Unlimited Company Stacked circuit package with molded base having laser drilled openings for upper package
US11410977B2 (en) 2018-11-13 2022-08-09 Analog Devices International Unlimited Company Electronic module for high power applications
CN113745145A (en) * 2020-05-29 2021-12-03 台湾爱司帝科技股份有限公司 Chip transfer system and chip transfer method
US11844178B2 (en) 2020-06-02 2023-12-12 Analog Devices International Unlimited Company Electronic component
US20220130741A1 (en) * 2020-10-27 2022-04-28 Qualcomm Incorporated Package structure for passive component to die critical distance reduction

Also Published As

Publication number Publication date
US20090261470A1 (en) 2009-10-22
TW200824088A (en) 2008-06-01
TWI373121B (en) 2012-09-21
US8866280B2 (en) 2014-10-21
CN101188226A (en) 2008-05-28
US20140346654A1 (en) 2014-11-27
CN101188226B (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US8866280B2 (en) Chip package
US6667546B2 (en) Ball grid array semiconductor package and substrate without power ring or ground ring
EP1374305B1 (en) Enhanced die-down ball grid array and method for making the same
US6642610B2 (en) Wire bonding method and semiconductor package manufactured using the same
US6876553B2 (en) Enhanced die-up ball grid array package with two substrates
US6818978B1 (en) Ball grid array package with shielding
KR100393102B1 (en) Stacked semiconductor package
JP2828053B2 (en) Semiconductor device
US8420437B1 (en) Method for forming an EMI shielding layer on all surfaces of a semiconductor package
US8129824B1 (en) Shielding for a semiconductor package
US20080182398A1 (en) Varied Solder Mask Opening Diameters Within a Ball Grid Array Substrate
TWI409924B (en) Semiconductor package and manufacturing method thereof
US20060091517A1 (en) Stacked semiconductor multi-chip package
US6876087B2 (en) Chip scale package with heat dissipating part
US6242283B1 (en) Wafer level packaging process of semiconductor
US20140103505A1 (en) Die down integrated circuit package with integrated heat spreader and leads
US11923319B2 (en) Semiconductor package including sheilding cover that covers molded body
US20070052082A1 (en) Multi-chip package structure
US20080237821A1 (en) Package structure and manufacturing method thereof
US7307352B2 (en) Semiconductor package having changed substrate design using special wire bonding
US6828687B2 (en) Cavity down ball grid array package structure and carrier thereof
US20020195721A1 (en) Cavity down ball grid array packaging structure
KR100533761B1 (en) semi-conduSSor package
KR0173930B1 (en) Ball grid array for lead frame
KR100705248B1 (en) Semiconductor package and method for manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED SEMICONDUCTOR ENGINEERING, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOI, SOO-MIN;KIM, HYEONG-NO;AN, JAE-SUN;AND OTHERS;REEL/FRAME:018583/0556

Effective date: 20061127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION