US20080119616A1 - Polyimide resin compositions - Google Patents

Polyimide resin compositions Download PDF

Info

Publication number
US20080119616A1
US20080119616A1 US11/562,634 US56263406A US2008119616A1 US 20080119616 A1 US20080119616 A1 US 20080119616A1 US 56263406 A US56263406 A US 56263406A US 2008119616 A1 US2008119616 A1 US 2008119616A1
Authority
US
United States
Prior art keywords
dianhydride
polyimide
thermoplastic composition
polymer blend
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/562,634
Inventor
Michael Donovan
Robert Russell Gallucci
Roy Odle
Kapil Chandrakant Sheth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/562,634 priority Critical patent/US20080119616A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ODLE, ROY, DONOVAN, MICHAEL, GALLUCCI, ROBERT RUSSELL, SHETH, KAPIL CHANDRAKANT
Priority to JP2009538433A priority patent/JP5628521B2/en
Priority to PCT/US2007/075993 priority patent/WO2008063720A1/en
Priority to CNA2007800433951A priority patent/CN101589110A/en
Priority to CN201310585160.2A priority patent/CN103613926A/en
Priority to EP07814115A priority patent/EP2092019A1/en
Priority to TW096132285A priority patent/TW200823263A/en
Assigned to SABIC INNOVATIVE PLASTICS IP B.V. reassignment SABIC INNOVATIVE PLASTICS IP B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC COMPANY
Publication of US20080119616A1 publication Critical patent/US20080119616A1/en
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Priority to IN3148DE2009 priority patent/IN2009DE03148A/en
Assigned to SABIC INNOVATIVE PLASTICS IP B.V. reassignment SABIC INNOVATIVE PLASTICS IP B.V. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Priority to JP2014093377A priority patent/JP2014159592A/en
Priority to US14/459,543 priority patent/US9181431B2/en
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CORRECTIVE ASSIGNMENT TO CORRECT REMOVE 10 APPL. NUMBERS PREVIOUSLY RECORDED AT REEL: 033591 FRAME: 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CORRECTIVE ASSIGNMENT TO CORRECT THE 12/116841, 12/123274, 12/345155, 13/177651, 13/234682, 13/259855, 13/355684, 13/904372, 13/956615, 14/146802, 62/011336 PREVIOUSLY RECORDED ON REEL 033591 FRAME 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • Polyimide compositions and in particular, polyimide compositions comprising two polymers are disclosed herein.
  • Polymer blends are widely employed in a range of applications. For example, substitution of metal parts with parts made from plastic materials (polymer compositions) results in parts having lighter weight and similar or improved performance properties. In many applications, such as parts used under an automobile hood, plastic materials with a high heat resistance are required. Frequently though, plastic materials having a high heat resistance are difficult to mold. Blending polymers is one approach to achieving a thermoplastic composition with a desired set of physical properties such as high heat resistance, melt viscosity, and processability. Polymer blends may comprise miscible polymers, immiscible polymers or a combination of miscible and immiscible polymers. Blends comprising immiscible polymers have two or more phases and such blends may be compatible or incompatible.
  • Incompatible blends of immiscible polymers can suffer from phase separation as demonstrated by delamination or the formation of skin-core layered structures during polymer processing operations, especially injection molding.
  • delamination describes visually observed separation of a surface layer giving a flaking or onion skin effect. Incompatibility may also result in poor mechanical properties and marginal surface appearance (streaking, pearlescence, etc.).
  • Compatible blends of immiscible polymers typically do not show any delamination and can result in acceptable end-use properties.
  • Miscible polymer blends may offer desirable end-use properties and the advantage of tailoring product properties intermediate of the individual components across the miscible composition range. Miscible blends do not suffer from delamination and generally have consistent physical properties.
  • Blends of two polymers of a same or similar class might be expected to have a better chance of miscibility.
  • polymers from the same class are frequently immiscible and form multiphasic compositions.
  • ACUDEL 2000 from Solvay is an immiscible blend of two polysulfones—PPSU and PSU.
  • many such examples of immiscible blends of polymers in the same class exist in the literature. Thus, polymer miscibility is difficult to predict, even within the same class of polymers.
  • non-delaminated polymer blends e.g., blends essentially free of delamination, which are either miscible blends or immiscible, but nonetheless compatible, blends. More particularly, there remains an unmet need to develop blends having high heat resistance, and methods of forming such polymer blends.
  • the invention includes non-delaminated thermoplastic compositions comprising a polymer blend wherein the polymer blend comprises a first polyimide and a second polyimide and any reaction products thereof.
  • the first polyimide comprises structural units derived from a first dianhydride and a first diamine.
  • the second polyimide comprises structural units derived from a second dianhydride and a second diamine.
  • the dianhydrides and diamines are chosen such that the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same.
  • the first polyimide is present in an amount of 50 to 99 weight percent, based on the total weight of the polymer blend, and the second polyimide is present in an amount of 1 to 50 weight percent, based on the total weight of the polymer blend.
  • the polymer blend has a single glass transition temperature.
  • the polymer blend comprises 50 to 95 weight percent of the first polyimide, 5 to 50 weight percent of the second polyimide, and 0 to 70 weight percent of a component selected from the group consisting of fillers, reinforcements, additives, and combinations thereof.
  • the first polyimide, the second polyimide, and the component are present at a total weight percent of 100.
  • the polymer blend has greater than one glass transition temperature.
  • the first polyimide comprises structural units derived from a oxy diphthalic anhydride and a diamino diaryl sulfone; and the second polyimide comprises structural units derived from a bis-phenol A dianhydride and a diamino diaryl sulfone.
  • compositions of matter comprising a non-delaminated article derived from the above described compositions.
  • FIG. 1 is a picture of an injection molded bar showing delamination.
  • FIG. 2 is a picture of an injection molded bar without delamination.
  • compositions that are derived from (a) a first polyimide comprising structural units derived from a dianhydride and a diamine (b) a second polyimide comprising structural derived from a dianhydride and a diamine wherein the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same.
  • the compositions (and articles derived from the compositions) can overcome the problem of delamination typically found in immiscible, incompatible blends.
  • first,” “second,” and the like, “primary,” “secondary,” and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another.
  • the terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
  • “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
  • the endpoints of all ranges directed to the same component or property are inclusive of the endpoint and independently combinable.
  • any position not substituted by any indicated group is understood to have its valency filled by a bond as indicated, or a hydrogen atom.
  • a dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —CHO is attached through carbon of the carbonyl group.
  • alkyl is intended to include both C 1-30 branched and straight-chain, unsaturated aliphatic hydrocarbon groups having the specified number of carbon atoms.
  • alkyl include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, s-pentyl, n- and s-hexyl, n- and s-heptyl, and, n- and s-octyl.
  • aryl is intended to mean an aromatic moiety containing the specified number of carbon atoms, such as, but not limited to phenyl, tropone, indanyl or naphthyl.
  • polymer blend as used herein means a macroscopically homogeneous mixture of two or more different polymers.
  • miscible blend describes a polymer blend having a single glass transition temperature (T g ) and a monophasic resin morphology as determined by transmission electron microscopy at a magnification of fifteen thousand (15,000).
  • Delamination describes the separation of a surface layer from the body of an article molded from a polymer composition. The presence or absence of delamination can be determined by visual inspection (20/20 vision) at a distance of one half (1 ⁇ 2) meter as described in greater detail below.
  • ком ⁇ онент refers to the capability of the individual polymers in an immiscible polymer blend to exhibit interfacial adhesion.
  • a “compatible polymer blend” is an immiscible polymer blend that exhibits macroscopically uniform physical properties throughout its whole volume, has more than one glass transition temperature (T g ), and shows multiphasic resin morphologies when viewed by electron microscopy as described above, but shows no delamination.
  • non-delaminated refers to the property of a composition or an article derived from the composition, in which the article or the composition does not exhibit visually observed separation of a surface layer showing a flaking or onion skin effect.
  • a non-delaminated article may also be referred to herein as “essentially free from delamination.”
  • “Essentially free from delamination” is defined as showing no delamination by visual inspection.
  • the specimen used for inspection is a molded bar.
  • a specimen showing delamination is shown in FIG. 1 .
  • a specimen essentially free from delamination is shown in FIG. 2 .
  • “Visual inspection” is determined by unaided vision (e.g., 20/20 vision in the absence of any magnifying device with the exception of corrective lenses necessary for normal eyesight) at a distance of one half (1 ⁇ 2) meter.
  • Miscibility can be composition dependent. Miscibility can also be dependent on the particular dianhydrides and/or diamines used to form the structural units of the first and second polyimides.
  • the first polyimide and the second polyimide form a miscible polymer blend.
  • the polymer blend has a single glass transition temperature and shows only one phase by transmission electron microscopy.
  • the first polyimide and the second polyimide form a compatible polymer blend.
  • the compatible polymer blend shows two phases by transmission electron microscopy, has greater than one glass transition temperature and articles formed by injection molding a thermoplastic composition comprising the compatible polymer blend show essentially no delamination after aging at 280° C. for 240 hours.
  • the first and second polyimides comprise structural units derived from a dianhydride and a diamine.
  • Exemplary dianhydrides have the formula (I)
  • V is a tetravalent linker selected from the group consisting of substituted or unsubstituted, saturated, unsaturated or aromatic monocyclic and polycyclic groups having 5 to 50 carbon atoms, substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms and combinations comprising at least one of the foregoing linkers.
  • Suitable substitutions and/or linkers include, but are not limited to, carbocyclic groups, aryl groups, ethers, sulfones, sulfides amides, esters, and combinations comprising at least one of the foregoing.
  • Exemplary linkers include, but are not limited to, tetravalent aromatic radicals of formula (II), such as:
  • W is a divalent moiety such as —O—, —S—, —C(O)—, —SO 2 —, —SO—, —C y H 2y — (y being an integer of 1 to 20), and halogenated derivatives thereof, including perfluoroalkylene groups, or a group of the formula —O-Z-O— wherein the divalent bonds of the —O— or the —O-Z-O— group are in the 3,3′, 3,4′, 4,3′, or the 4,4′ positions, and wherein Z includes, but is not limited to, divalent moieties of formula (III)
  • Q includes, but is not limited to, a divalent moiety comprising —O—, —S—, —C(O)—, —SO 2 —, —SO—, —C y H 2y — (y being an integer from 1 to 20), and halogenated derivatives thereof, including perfluoroalkylene groups.
  • the tetravalent linker V is free of halogens.
  • the dianhydride comprises an aromatic bis(ether anhydride).
  • aromatic bis(ether anhydride)s are disclosed, for example, in U.S. Pat. Nos. 3,972,902 and 4,455,410.
  • Illustrative examples of aromatic bis(ether anhydride)s include: 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (bisphenol-A dianhydride); 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl ether dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)benzophenone dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl sulfone dianhydride; 2,2-bis[4-(2,3-dicarboxyphenoxy)phenyl]propane dianhydride; 4,4′
  • the bis(ether anhydride)s can be prepared by the hydrolysis, followed by dehydration, of the reaction product of a nitro substituted phenyl dinitrile with a metal salt of dihydric phenol compound in the presence of a dipolar, aprotic solvent.
  • a chemical equivalent to a dianhydride may also be used.
  • dianhydride chemical equivalents include tetra-functional carboxylic acids capable of forming a dianhydride and ester or partial ester derivatives of the tetra functional carboxylic acids.
  • Mixed anhydride acids or anhydride esters may also be used as an equivalent to the dianhydride.
  • dianhydride will refer to dianhydrides and their chemical equivalents.
  • the dianhydride is selected from the groups consisting of bisphenol-A dianhydride, oxydiphthalic anhydride (ODPA) and combinations thereof.
  • Oxydiphthalic anhydride has the general formula (IV):
  • the oxydiphthalic anhydrides of formula (IV) include 4,4′-oxybisphthalic anhydride, 3,4′-oxybisphthalic anhydride, 3,3′-oxybisphthalic anhydride, and any mixtures thereof.
  • the oxydiphthalic anhydride of formula (IV) may be 4,4′-oxybisphthalic anhydride having the following formula (V):
  • oxydiphthalic anhydrides includes derivatives of oxydiphthalic anhydrides which may also be used to make the polyimide.
  • Examples of oxydiphthalic anhydride derivatives which can function as a chemical equivalent for the oxydiphthalic anhydride in polyimide forming reactions include oxydiphthalic anhydride derivatives of the formula (VI):
  • R 1 and R 2 of formula VIII can be, independently at each occurrence, any of the following: hydrogen; a C 1 -C 8 alkyl group; an aryl group.
  • R 1 and R 2 can be the same or different to produce an oxydiphthalic anhydride acid, an oxydiphthalic anhydride ester, and an oxydiphthalic anhydride acid ester.
  • oxydiphthalic anhydrides may also be of the following formula (IX):
  • R 1 , R 2 , R 3 , and R 4 of formula (VII) can be, independently at each occurrence, any of the following: hydrogen, a C 1 -C 8 alkyl group, an aryl group.
  • R 1 , R 2 , R 3 , and R 4 can be the same or different to produce an oxydiphthalic acid, an oxydiphthalic ester, and an oxydiphthalic acid ester.
  • Useful diamines have the formula:
  • R 10 is a substituted or unsubstituted divalent organic moiety such as: an aromatic hydrocarbon moiety having 6 to 20 carbons and halogenated derivatives thereof; a straight or branched chain alkylene moiety having 2 to 20 carbons; a cycloalkylene moiety having 3 to 20 carbon atoms; or a divalent moiety of the general formula (IX)
  • Examples of specific organic diamines are disclosed, for example, in U.S. Pat. Nos. 3,972,902 and 4,455,410.
  • Exemplary diamines include ethylenediamine, propylenediamine, trimethylenediamine, diethylenetriamine, triethylenetertramine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, 1,12-dodecanediamine, 1,18-octadecanediamine, 3-methylheptamethylenediamine, 4,4-dimethylheptamethylenediamine, 4-methylnonamethylenediamine, 5-methylnonamethylenediamine, 2,5-dimethylhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 2,2-dimethylpropylenediamine, N-methyl-bis(3-aminopropyl) amine, 3-methoxyhexamethylenediamine
  • the diamine is an aromatic diamine, or, more specifically, m-phenylenediamine, p-phenylenediamine, sulfonyl dianiline, and mixtures thereof.
  • the diamine is selected from the group consisting of m-phenylenediamine, p-phenylenediamine, diamino diaryl sulfones and combinations thereof.
  • Diamino diaryl sulfones have the general formula (X):
  • Ar 1 and Ar 2 independently are an aryl group containing a single or multiple rings. Several aryl rings may be linked together, for example through ether linkages, sulfone linkages or more than one sulfone linkages. The aryl rings may also be fused. In one embodiment Ar 1 and Ar 2 independently comprise 5 to 12 carbons. In one embodiment Ar 1 and Ar 2 are both phenyl groups.
  • the first and second polyimides have a weight average molecular weight (Mw) of 5,000 to 100,000 grams per mole (g/mole) as measured by gel permeation chromatography (GPC). In some embodiments the Mw can be 10,000 to 80,000.
  • the molecular weights as used here referin to the absolute weight averaged molecular weight (Mw).
  • the first and second polyimides may have an intrinsic viscosity greater than or equal to 0.2 deciliters per gram (dl/g) as measured in m-cresol at 25° C. Within this range the intrinsic viscosity may be 0.35 to 1.0 dl/g, as measured in m-cresol at 25° C.
  • the first polyimide has a glass transition temperature (T g ) of 200° C. to 500° C. as measured using differential scanning calorimetry (DSC) as per ASTM test D3418. In some embodiments the first polyimide has a glass transition temperature (T g ) of 240 to 350° C.
  • the second polyimide has a glass transition temperature (T g ) of 150° C. to 400° C. as measured using differential scanning calorimetry (DSC) as per ASTM test D3418. In some embodiments the second polyimide has a glass transition temperature (T g ) of 200 to 300° C.
  • the first polyimide comprises structural units derived from oxydiphthalic anhydride (ODPA) and diamino diaryl sulfone (DAS) and the second polyimide comprises structural units derived from bisphenol-A dianhydride (BPADA) and diamino diarylsulfone (DAS).
  • ODPA oxydiphthalic anhydride
  • DAS diamino diaryl sulfone
  • BPADA bisphenol-A dianhydride
  • DAS diamino diarylsulfone
  • the polyimide polymers described above may be made using any suitable method known in the art.
  • a method using a highly polar solvent that dissolves both the reactant monomers and the resultant polymers can be used.
  • Solvents such as dimethyl formamide (DMF), dimethyl acetamide (DMAC), N-methylpyrrolidinone (NMP), hexamethyl phosphoramide (HMPA) and dimethyl sulfoxide (DMSO) can be used in this method.
  • the resultant polymers are totally dissolved and can be isolated from solution by removal of solvent as part of a film casting or other evaporative process or by precipitation using an anti-solvent such as methanol.
  • a method as described in U.S. Pat. No. 4,835,249 can be used to make the above polyimides.
  • reactant monomers are dissolved in a solvent and then polymerized to an extent where the polymer precipitates from solution and can eventually be isolated by filtration or other related separation technique.
  • polyimides can be made using a process comprising stirring a diamine and a dianhydride in a solvent to form a slurry, heating the slurry to a temperature sufficient for the diamine and dianhydride to react wherein the temperature is below the melting point of the dianhydride, below the melting point of the diamine, or below the melting points of the dianhydride and diamine, and reacting the diamine and dianhydride to form a polyimide having sufficient molecular weight to precipitate from the solvent.
  • the reaction temperature is kept below the melting point of the minimally soluble monomers so that the polymers precipitate as fine powder from the slurry that is easily stirred.
  • the temperature of the slurry may be increased above the melting point temperature of the minimally soluble monomer to drive the imidization reaction to completion if so desired.
  • water or other volatile by-products can also be useful to remove water or other volatile by-products from the reaction mixture by distillation or other means.
  • azeotropic distillation of water is employed.
  • water can be removed by chemical absorption using, for example, molecular sieves.
  • water can be removed using a stream of a gas, for example nitrogen, passing over or through the reaction mixture.
  • a combination of two or more water removal methods may be employed.
  • the polymerization is conducted entirely below the melting point of the minimally soluble monomer(s). This may be useful when the boiling point temperature of the solvent and the melting point of the minimally soluble monomer(s) are greater than 100° C., to allow removal of water from the polymerization reaction at atmospheric pressure.
  • psi pounds per square inch
  • 1 psi 0.070 kgf/cm 2
  • 100 psi 7.0 kgf/cm 2
  • the precipitated polymer may be isolated when equal to or greater than 90 wt % of the initial charge of monomers are consumed. This can be done using a variety of methods, for example, filtration, centrifugation, flotation, spray drying, solvent evaporation, solvent distillation, freeze-drying, and combinations comprising one or more of the foregoing methods. In some embodiments filtration, spray drying, solvent evaporation, or distillation or a combination of two or more of the foregoing methods maybe employed.
  • an extrusion devolatilization process can be used to isolate the polyimide from the slurry.
  • the isolated precipitated polyimide is a free flowing powder with an average particle size of 10 to 5000 micrometers. Regardless of the isolation method low levels of solvent generally remain in the polyimide, typically on the order of parts per million or on the order of parts per million.
  • the solvent used to form the slurry is chosen such that one or more of the initial monomers is minimally soluble. “Minimally soluble” is defined as 1 to 50 wt % of the monomer is undissolved at the start of the reaction (at the initial reaction conditions).
  • the solvent should be chosen such that the resultant polymer is largely insoluble, that is to have a polymer solubility of less than or equal to 10 wt %, or, even more specifically, less than or equal to 5 wt %, or, even more specifically, less than or equal to 1 wt %.
  • the solvent comprises an aprotic polar solvent.
  • the solvent is insoluble in water, that is less than or equal to 5 wt %, or, more specifically, less than or equal to 1 wt %, based on the total amount of solvent, of the solvent dissolves in an equal amount of water at room temperature.
  • the solvent has a high auto ignition temperature, for example greater than or equal to 70° C., to reduce the potential fire hazard during the process and during any subsequent isolation.
  • a solvent free of nitrogen atoms, phosphorus atoms, sulfur atoms or a combination comprising two or more of the foregoing may be useful in some embodiments. Solvents without these more polar atoms may be easier to remove from the polymer and being less effective solvents are more likely to have monomers and polymers that are minimally soluble or insoluble.
  • solvents examples include halogenated aromatics, such as chlorobenzene, dichlorobenzene, trichlorobenzene and bromobenzene; aryl ethers such as phenetole, anisole and veratrole; alky ⁇ aromatics such as xylenes and toluene; nitro aromatics such as nitrobenzene; polyaryl species such as naphthylene and alkyl substituted fused aromatic systems; aryl sulfone; high molecular weight alkane compounds such as mineral oils; and combinations comprising one or more of the foregoing solvents.
  • the solvent or combination of solvents has an atmospheric boiling point of 150 to 250° C.
  • the reaction may be run at any level of reactants versus solvent.
  • the weight % solids can be 5 to 50% by weight of reactants to solvent at the start of the polymerization reaction. In other instances, concentrations of 15 to 40% may be useful. In still other instances higher concentrations of reactants to solvent may be used to gain reactor efficiency.
  • Polyimide may be made using the precipitative process by reaction of more or less equal molar amounts of dianhydride (or chemical equivalent of a dianhydride) with a diamine.
  • the amount of dianhydride and diamine differ by less than 5 mole %; this helps to give polymers of sufficient weight average molecular weight (Mw), for example greater than or equal to 5,000 g/mol, to precipitate from the reaction medium and have useful mechanical properties such as stiffness, impact strength and resistance to tearing or cracking.
  • a chain-terminating agent may be employed to control the molecular weight of the final polymer product.
  • the chain terminating agent may be partially or totally soluble in the starting reaction mixture.
  • Mono-amines, mono-anhydrides such as phthalic anhydride, or combinations of mono-amines and mono-anhydrides may be used.
  • the amount of mono-amine, mono-anhydride, or mixture thereof may be any amount that provides the desired molecular weight of the polyimide. In some embodiments the amount of mono-amine, mono-anhydride, or combination thereof may be 0.1 to 15.0 mole %, or, more specifically, 0.1 to 5.0 mole %, based on the total monomer content.
  • Mono-amines that can be used to end cap the polyimide may have from 3 to 24 carbon atoms, may be aliphatic or aromatic, and may include, but are not limited to, substituted or unsubstituted anilines, substituted or unsubstituted naphthyl amines and substituted or unsubstituted heteroaryl amines.
  • the mono-amines may have additional functionality, for instance, aryl groups, alkyl groups, aryl-alky groups, sulfone groups, ester groups, amide groups, halogens, alkyl or aryl halogen groups, alkyl ether groups, aryl ether groups, or aryl keto groups.
  • Some particular substituents on mono-amines include, but are not limited to, halo and perfluoroalkyl.
  • the attached functionality should not impede the function of the mono-amine in controlling polyimide molecular weight.
  • Mono-anhydrides may also have 3 to 24 carbon atoms, may be aliphatic or aromatic, and include, but are not limited to, substituted or unsubstituted phthalic anhydrides for instance, phthalic anhydride, chloro phthalic anhydride, methoxy phtbalic anhydride, phenoxy phthalic anhydride, and naphthyl anhydrides.
  • End capping agents may also be chosen from the group consisting of 1,2-dicarboxylic acids, 1,2-dicarboxylic esters, 1,2-dicarboxylic ester acids and mixtures comprising one or more of the foregoing.
  • compositions described herein may further contain an additional component such as fillers, reinforcements, additives, and combinations thereof.
  • the additional component may be present in an amount of 0 to 70 wt %, based on the combined weight of the first polyimide, second polyimide and additional component.
  • Exemplary fillers and reinforcements include fiber glass, milled glass, glass beads, flake and the like. Minerals such as talc, wollastonite, mica, kaolin or montmorillonite clay, silica, quartz, barite, and combinations of two or more of the foregoing may be added.
  • the compositions can comprise inorganic fillers, such as, for example, carbon fibers and nanotubes, metal fibers, metal powders, conductive carbon, and other additives including nano-scale reinforcements as well as combinations of inorganic fillers.
  • additives include, UV absorbers; stabilizers such as light stabilizers and others; lubricants; plasticizers; pigments; dyes; colorants; anti-static agents; foaming agents; blowing agents; metal deactivators, and combinations comprising one or more of the foregoing additives.
  • Antioxidants can be compounds such as phosphites, phosphonites and hindered phenols or mixtures thereof. Phosphorus containing stabilizers including triaryl phosphite and aryl phosphonates are of note as useful additives. Difunctional phosphorus containing compounds can also be employed.
  • Stabilizers may have a molecular weight greater than or equal to 300.
  • phosphorus containing stabilizers with a molecular weight greater than or equal to 500 are useful. Phosphorus containing stabilizers are typically present in the composition at 0.05-0.5% by weight of the formulation. Flow aids and mold release compounds are also contemplated.
  • compositions may further include at least one polymer.
  • polymers include and are not limited to PPSU (polyphenylene sulfone), PEI (poly(ether imide)), PSU (polysulfone), PC (polycarbonate), PPO (polyphenylene ether), PMMA (poly methyl methacrylate), ABS, (acrylonitrile butadiene styrene), PS (polystyrene) and, PVC (polyvinylchloride), PFA (per fluoro aalkoxy alkane), MFA (co-polymer of TFE tetra fluoro ethylene and PFVE perfluorinated vinyl ether), FEP (Fluorinated ethylene propylene polymers), PPS (poly(phenylene sulfide), PEK (poly(ether ketone), PEEK (poly(ether-ether ketone), ECTFE (ethylene chloro trifluoro ethylene),
  • PPSU
  • a thermoplastic composition consists essentially of a first polyimide comprising structural units derived from oxydiphthalic anhydride and diamino diaryl sulfone; and a second polyimide comprising structural units derived from bisphenol-A dianhydride and diamino diaryl sulfone.
  • This composition is essentially free from delamination after aging at 280° C. for 240 hours.
  • Consisting essentially of allows for the inclusion of additives typically used in thermoplastic compositions but excludes the inclusion of resins and materials that would alter the miscibility and resin morphology.
  • compositions may be made by any suitable method.
  • compositions can be made by melt mixing (compounding) the first polyimide, the second polyimide, and optional additives at a temperature greater than the melt temperature of the first and second polyimides but less than their degradation temperatures.
  • the compositions may be made by any suitable device such as twin screw extruder at a suitable temperature, e.g., 250° C. to 450° C.
  • a single-screw extruder or a helicone-type mixer may be used.
  • the device may have a vacuum vent.
  • the first polyimide may be present in an amount of 1 weight percent (wt %) to 99 wt %, or, more specifically, 10 wt % to 90 wt %, based on the combined weight of the first polyimide and the second polyimide. Additionally, the first polyimide may be present in an amount of 50 wt % to 95 wt %, or, more specifically, 50 wt % to 90 wt %.
  • the second polyimide may be present in an amount of 1 wt % to 99 wt %, or, more specifically, 10 wt % to 90 wt %, based on the combined weight of the first polyimide and the second polyimide. Additionally, the second polyimide may be present in an amount of 5 to 50 wt %, or, more specifically, 10 to 50 weight percent.
  • compositions can be formed into articles by any number of methods.
  • Preferred methods include, for example, injection molding, blow molding, compression molding, profile extrusion, sheet or film extrusion, sintering, gas assist molding, structural foam molding and thermoforming.
  • articles include, but are not limited to, membranes, tubing, composites, semi-conductor process tools, wire coatings and jacketing, fluid handling components, cookware, food service items, medical devices, trays, plates, handles, helmets, animal cages, electrical connectors, enclosures for electrical equipment, engine parts, automotive engine parts, bearings, lighting sockets and reflectors, electric motor parts, power distribution equipment, communication equipment, computers and the like, including devices that have molded in snap fit connectors.
  • the blends can also be used as fibers.
  • the blends can be used as coatings, for example powder coatings.
  • compositions discussed herein may be converted to articles using common thermoplastic processes such as film and sheet extrusion.
  • Film and sheet extrusion processes may include and are not limited to melt casting, blown film extrusion and calendering. Films may have a thickness of 0.1 to 1000 micrometers in some instances.
  • Co-extrusion and lamination processes may be employed to form composite multi-layer films or sheets.
  • Single or multiple layers of coatings may further be applied to the single or multi-layer substrates to impart additional properties such as scratch resistance, ultra violet light resistance, aesthetic appeal, etc.
  • Coatings may be applied through standard application techniques such as rolling, spraying, dipping, brushing, or flow coating.
  • Film and sheet may alternatively be prepared by casting a solution or suspension of the composition in a suitable solvent onto a substrate, belt or roll followed by removal of the solvent. Films may also be metallized using standard processes such as sputtering, vacuum deposition and lamination with foil.
  • Oriented films may be prepared through blown film extrusion or by stretching cast or calendered films in the vicinity of the thermal deformation temperature using conventional stretching techniques.
  • a radial stretching pantograph may be employed for multi-axial simultaneous stretching; an x-y direction stretching pantograph can be used to simultaneously or sequentially stretch in the planar x-y directions.
  • Equipment with sequential uniaxial stretching sections can also be used to achieve uniaxial and biaxial stretching, such as a machine equipped with a section of differential speed rolls for stretching in the machine direction and a tenter frame section for stretching in the transverse direction
  • Compositions discussed herein may be converted to multiwall sheet comprising a first sheet having a first side and a second side, wherein the first sheet comprises a thermoplastic polymer, and wherein the first side of the first sheet is disposed upon a first side of a plurality of ribs; and a second sheet having a first side and a second side, wherein the second sheet comprises a thermoplastic polymer, wherein the first side of the second sheet is disposed upon a second side of the plurality of ribs, and wherein the first side of the plurality of ribs is opposed to the second side of the plurality of ribs.
  • the films and sheets described above may further be thermoplastically processed into shaped articles via forming and molding processes including but not limited to thermoforming, vacuum forming, pressure forming, injection molding and compression molding.
  • Multi-layered shaped articles may also be formed by injection molding a thermoplastic resin onto a single or multi-layer film or sheet substrate as described below:
  • thermoplastic substrate having optionally one or more colors on the surface, for instance, using screen printing of a transfer dye.
  • thermoplastic resin Injecting a thermoplastic resin into the mold cavity behind the substrate to (i) produce a one-piece permanently bonded three-dimensional product or (ii) transfer a pattern or aesthetic effect from a printed substrate to the injected resin and remove the printed substrate, thus imparting the aesthetic effect to the molded resin.
  • compositions according to the invention are useful and can vary.
  • the first polyimide and the second polyimide form a miscible polymer blend.
  • the polymer blend has a single glass transition temperature and shows only one phase by transmission electron microscopy.
  • the glass transition temperature can be greater than or equal to 150° C., or, more specifically, greater than or equal to 175° C., or, even more specifically, greater than or equal to 200° C.
  • the glass transition temperature can be less than or equal to 600° C.
  • the first polyimide and the second polyimide a compatible polymer blend.
  • the polymer blend has greater than one glass transition temperature and shows more thane one phase by transmission electron microscopy.
  • the lowest glass transition temperature is greater than or equal to 150° C., or, more specifically, greater than or equal to 175° C., or, even more specifically, greater than or equal to 200° C.
  • the lowest glass transition temperature can be less than or equal to 600° C.
  • the polymer blend has a melt viscosity of 50 to 20,000 Pascal-seconds at 380° C. as measured by ASTM method D3835 using a capillary rheometer with a shear rate of 100 to 10,000 1/sec.
  • the melt viscosity can be greater than or equal to 100, or, more specifically, greater than or equal to 200. Also within this range the melt viscosity can be less than or equal to 15,000, or, more specifically, less than or equal to 10,000 Pascal-seconds.
  • the composition can have heat deflection temperature (HDT) of greater than or equal to 120° C., according to ASTM D648.
  • HDT heat deflection temperature
  • compositions can have an HDT of 150° C. to 400° C., according to ASTM D648.
  • the composition can have a tensile strength greater than or equal to 70 megaPascals (MPa) according to ASTM D638.
  • the compositions and articles can have a tensile strength of 70 MPa to 500 MPa.
  • the coefficient of thermal expansion of the compositions can vary. In one embodiment, the coefficient of thermal expansion is less than or equal to 100 ppm/° C. from 30° C. to 200° C.
  • the coefficient of thermal expansion can be 5 to 100 ppm/° C. from 30° C.-200° C. as measured by thermal mechanical analysis with a thermal ramp rate of 5° C./minute.
  • compositions and articles derived from the compositions can also exhibit advantageous heat aging performance properties.
  • a composition (and articles derived from the composition) can have a continuous use temperature of greater than or equal to 150° C.
  • the composition can have a continuous use temperature of 150° C. to 400° C.
  • the invention now provides previously unavailable compositions and articles.
  • the compositions can overcome the problem of delamination in an immiscible, incompatible blends and exhibit immiscible, but compatible blend features having highly useful applications.
  • the invention can also provide a range of miscible blend compositions.
  • PEI 1 (ODPA/DDS) A polymer comprising structural units derived from oxydiphthalic anhydride and diamino diphenyl sulfone and having a weight average molecular weight of 30,000 g/mol.
  • PEI 2 (BPADA/DDS) A polymer comprising structural units derived from bisphenol-A dianhydride and diamino diphenyl sulfone and having a weight average molecular weight of 38,000 g/mol. This polymer is commercially available from GE Plastics under the tradename ULTEM XH6050.
  • PEI 3 (BPADA/MPD) A polymer comprising structural units derived from bisphenol-A dianhydride and meta-phenylene diamine and having a weight average molecular weight of 38,000 g/mol. This polymer is commercially available from GE Plastics under the tradename ULTEM 1000.
  • PEI 4 (BPADA/PPD) A polymer comprising structural units derived from bisphenol-A dianhydride and para-phenylene diamine and having a weight average molecular weight of 37,000 g/mol. This polymer is commercially available from GE Plastics under the tradename ULTEM CRS5001.
  • non-delaminated compositions can be derived from (a) a first polyimide comprising structural derived from a dianhydride and a diamine (b) a second polyimide comprising structural derived from a dianhydride and a diamine wherein the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same.
  • compositions shown in Table 2 were prepared by melt mixing the components in a twin screw extruder at temperatures of 300° C. to 430° C. with vacuum venting.
  • the screw speed typically varied from 100 to 350 RPM.
  • compositions were tested for glass transition temperature using differential scanning calorimetry (DSC). Morphology was determined transmission electron microscopy at a magnification of 15,000. Delaimination was determined by visual inspection using injection molded ASTM tensile bars. “Visual inspection” was determined by normal vision (e.g., 20/20 vision in the absence of any magnifying device with the exception of corrective lenses necessary for normal eyesight) at a distance of one half (1 ⁇ 2) meter. The compositions were injected molded to form ASTM tensile bars. The samples were visually inspected for appearance. The tensile bars were aged at 280° C. for 240 hours and checked for delamination by visual inspection. Results are shown in Tables 2 and 3.
  • Example 11 PEI 2 (BPADA/DDS) 75 50 75 50 PEI 3 (BPADA/MPD) 25 50 — — 75 50 PEI 4 (BPADA/PPD) 25 50 25 50 Tg's 1 1 1 1 1 1 1 Morphology One-Phase One-Phase One-Phase One-Phase One-Phase One-Phase Appearance Transparent Transparent Transparent Transparent Transparent Delamination on Heat No No No No No No Aging
  • Blends of PEI 1 and PEI 3 (Examples 4 and 5), which are made using different dianhydrides and different diamines, show two phase morphology and delamination even at low levels of PEI 3.
  • blends of PEI 1 and PEI 2 (Examples 1, 2 and 3), which are both made using the same diamine, show varying behavior depending upon the relative amounts of the two polymers.
  • the amount of PEI 2 is low (5% PEI 2) then the composition is a miscible polymer blend but as the amount of PEI 2 increases the composition becomes a compatible polymer blend.
  • blends of PEI 1 and PEI 2 are essentially free from delamination after heat aging at 280° C. for 240 hours, even at high PEI 2 content
  • blending polyimides with a common diamine in this case, DDS
  • DDS diamine
  • Examples 6 through 11 are blends of polyimides with a common dianhydride (in this case, BPADA) and different diamines. All of these blends show one-phase morphology and a single glass transition temperature. All of these blends are essentially free from delamination after heat aging at 280° C. for 240 hours. Thus, blending of polyimides with a common dianhydride can also result in non-delaminated compositions of practical importance.
  • BPADA common dianhydride

Abstract

A thermoplastic composition comprises a polymer blend. The polymer blend comprises a first polyimide and a second polyimide. The first polyimide has repeating units derived from a first dianhydride and a first diamine. The second polyimide has repeating units derived from a second dianhydride and a second diamine. Either the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same.

Description

    BACKGROUND OF THE INVENTION
  • Polyimide compositions, and in particular, polyimide compositions comprising two polymers are disclosed herein.
  • Polymer blends are widely employed in a range of applications. For example, substitution of metal parts with parts made from plastic materials (polymer compositions) results in parts having lighter weight and similar or improved performance properties. In many applications, such as parts used under an automobile hood, plastic materials with a high heat resistance are required. Frequently though, plastic materials having a high heat resistance are difficult to mold. Blending polymers is one approach to achieving a thermoplastic composition with a desired set of physical properties such as high heat resistance, melt viscosity, and processability. Polymer blends may comprise miscible polymers, immiscible polymers or a combination of miscible and immiscible polymers. Blends comprising immiscible polymers have two or more phases and such blends may be compatible or incompatible. Incompatible blends of immiscible polymers can suffer from phase separation as demonstrated by delamination or the formation of skin-core layered structures during polymer processing operations, especially injection molding. The term, “delamination,” as used when referring to such materials, describes visually observed separation of a surface layer giving a flaking or onion skin effect. Incompatibility may also result in poor mechanical properties and marginal surface appearance (streaking, pearlescence, etc.). Compatible blends of immiscible polymers typically do not show any delamination and can result in acceptable end-use properties.
  • Miscible polymer blends, on the other hand, may offer desirable end-use properties and the advantage of tailoring product properties intermediate of the individual components across the miscible composition range. Miscible blends do not suffer from delamination and generally have consistent physical properties.
  • So while a miscible blend of two polymers is generally desirable it can be difficult to achieve. Blends of two polymers of a same or similar class might be expected to have a better chance of miscibility. However, polymers from the same class are frequently immiscible and form multiphasic compositions. For example, ACUDEL 2000 from Solvay is an immiscible blend of two polysulfones—PPSU and PSU. In addition, many such examples of immiscible blends of polymers in the same class exist in the literature. Thus, polymer miscibility is difficult to predict, even within the same class of polymers.
  • For the foregoing reasons there remains an unmet need for non-delaminated polymer blends, e.g., blends essentially free of delamination, which are either miscible blends or immiscible, but nonetheless compatible, blends. More particularly, there remains an unmet need to develop blends having high heat resistance, and methods of forming such polymer blends.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The invention includes non-delaminated thermoplastic compositions comprising a polymer blend wherein the polymer blend comprises a first polyimide and a second polyimide and any reaction products thereof. The first polyimide comprises structural units derived from a first dianhydride and a first diamine. The second polyimide comprises structural units derived from a second dianhydride and a second diamine. The dianhydrides and diamines are chosen such that the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same.
  • In some embodiments the first polyimide is present in an amount of 50 to 99 weight percent, based on the total weight of the polymer blend, and the second polyimide is present in an amount of 1 to 50 weight percent, based on the total weight of the polymer blend. The polymer blend has a single glass transition temperature.
  • In some embodiments the polymer blend comprises 50 to 95 weight percent of the first polyimide, 5 to 50 weight percent of the second polyimide, and 0 to 70 weight percent of a component selected from the group consisting of fillers, reinforcements, additives, and combinations thereof. The first polyimide, the second polyimide, and the component are present at a total weight percent of 100. The polymer blend has greater than one glass transition temperature.
  • In some embodiments the first polyimide comprises structural units derived from a oxy diphthalic anhydride and a diamino diaryl sulfone; and the second polyimide comprises structural units derived from a bis-phenol A dianhydride and a diamino diaryl sulfone.
  • Also disclosed herein are compositions of matter comprising a non-delaminated article derived from the above described compositions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a picture of an injection molded bar showing delamination.
  • FIG. 2 is a picture of an injection molded bar without delamination.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention is based on the unexpected discovery that it is now possible to form non-delaminated compositions that are derived from (a) a first polyimide comprising structural units derived from a dianhydride and a diamine (b) a second polyimide comprising structural derived from a dianhydride and a diamine wherein the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same. Surprisingly, the compositions (and articles derived from the compositions) can overcome the problem of delamination typically found in immiscible, incompatible blends.
  • Other than in the operating examples or where otherwise indicated, all numbers or expressions referring to quantities of ingredients, reaction conditions, and the like, used in the specification and claims are to be understood as modified in all instances by the term “about.” Various numerical ranges are disclosed in this patent application. Because these ranges are continuous, they include every value between the minimum and maximum values. Unless expressly indicated otherwise, the various numerical ranges specified in this application are approximations.
  • The terms “first,” “second,” and the like, “primary,” “secondary,” and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not. The endpoints of all ranges directed to the same component or property are inclusive of the endpoint and independently combinable. Reference throughout the specification to “one embodiment,” “another embodiment,” “an embodiment,” “some embodiments,” and so forth, means that a particular element (e.g., feature, structure, property, and/or characteristic) described in connection with the embodiment is included in at least one embodiment described herein, and may or may not be present in other embodiments. In addition, it is to be understood that the described element(s) may be combined in any suitable manner in the various embodiments.
  • Compounds are described using standard nomenclature. For example, any position not substituted by any indicated group is understood to have its valency filled by a bond as indicated, or a hydrogen atom. A dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —CHO is attached through carbon of the carbonyl group.
  • The term “alkyl” is intended to include both C1-30 branched and straight-chain, unsaturated aliphatic hydrocarbon groups having the specified number of carbon atoms. Examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, s-pentyl, n- and s-hexyl, n- and s-heptyl, and, n- and s-octyl. The term “aryl” is intended to mean an aromatic moiety containing the specified number of carbon atoms, such as, but not limited to phenyl, tropone, indanyl or naphthyl.
  • All ASTM tests are based on the 2003 edition of the Annual Book of ASTM Standards unless otherwise indicated.
  • The term “polymer blend” as used herein means a macroscopically homogeneous mixture of two or more different polymers. The term “miscible blend” describes a polymer blend having a single glass transition temperature (Tg) and a monophasic resin morphology as determined by transmission electron microscopy at a magnification of fifteen thousand (15,000). “Delamination” describes the separation of a surface layer from the body of an article molded from a polymer composition. The presence or absence of delamination can be determined by visual inspection (20/20 vision) at a distance of one half (½) meter as described in greater detail below.
  • The term “compatibility” refers to the capability of the individual polymers in an immiscible polymer blend to exhibit interfacial adhesion. A “compatible polymer blend” is an immiscible polymer blend that exhibits macroscopically uniform physical properties throughout its whole volume, has more than one glass transition temperature (Tg), and shows multiphasic resin morphologies when viewed by electron microscopy as described above, but shows no delamination.
  • The term “non-delaminated” refers to the property of a composition or an article derived from the composition, in which the article or the composition does not exhibit visually observed separation of a surface layer showing a flaking or onion skin effect. A non-delaminated article may also be referred to herein as “essentially free from delamination.”
  • “Essentially free from delamination” is defined as showing no delamination by visual inspection. In one embodiment, the specimen used for inspection is a molded bar. A specimen showing delamination is shown in FIG. 1. A specimen essentially free from delamination is shown in FIG. 2. “Visual inspection” is determined by unaided vision (e.g., 20/20 vision in the absence of any magnifying device with the exception of corrective lenses necessary for normal eyesight) at a distance of one half (½) meter.
  • Miscibility can be composition dependent. Miscibility can also be dependent on the particular dianhydrides and/or diamines used to form the structural units of the first and second polyimides. In one embodiment, the first polyimide and the second polyimide form a miscible polymer blend. The polymer blend has a single glass transition temperature and shows only one phase by transmission electron microscopy. In another embodiment, the first polyimide and the second polyimide form a compatible polymer blend. The compatible polymer blend shows two phases by transmission electron microscopy, has greater than one glass transition temperature and articles formed by injection molding a thermoplastic composition comprising the compatible polymer blend show essentially no delamination after aging at 280° C. for 240 hours.
  • The first and second polyimides comprise structural units derived from a dianhydride and a diamine. Exemplary dianhydrides have the formula (I)
  • Figure US20080119616A1-20080522-C00001
  • wherein V is a tetravalent linker selected from the group consisting of substituted or unsubstituted, saturated, unsaturated or aromatic monocyclic and polycyclic groups having 5 to 50 carbon atoms, substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms and combinations comprising at least one of the foregoing linkers. Suitable substitutions and/or linkers include, but are not limited to, carbocyclic groups, aryl groups, ethers, sulfones, sulfides amides, esters, and combinations comprising at least one of the foregoing. Exemplary linkers include, but are not limited to, tetravalent aromatic radicals of formula (II), such as:
  • Figure US20080119616A1-20080522-C00002
  • wherein W is a divalent moiety such as —O—, —S—, —C(O)—, —SO2—, —SO—, —CyH2y— (y being an integer of 1 to 20), and halogenated derivatives thereof, including perfluoroalkylene groups, or a group of the formula —O-Z-O— wherein the divalent bonds of the —O— or the —O-Z-O— group are in the 3,3′, 3,4′, 4,3′, or the 4,4′ positions, and wherein Z includes, but is not limited to, divalent moieties of formula (III)
  • Figure US20080119616A1-20080522-C00003
  • wherein Q includes, but is not limited to, a divalent moiety comprising —O—, —S—, —C(O)—, —SO2—, —SO—, —CyH2y— (y being an integer from 1 to 20), and halogenated derivatives thereof, including perfluoroalkylene groups. In some embodiments the tetravalent linker V is free of halogens.
  • In one embodiment, the dianhydride comprises an aromatic bis(ether anhydride). Examples of specific aromatic bis(ether anhydride)s are disclosed, for example, in U.S. Pat. Nos. 3,972,902 and 4,455,410. Illustrative examples of aromatic bis(ether anhydride)s include: 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (bisphenol-A dianhydride); 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl ether dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)benzophenone dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl sulfone dianhydride; 2,2-bis[4-(2,3-dicarboxyphenoxy)phenyl]propane dianhydride; 4,4′-bis(2,3-dicarboxyphenoxy)diphenyl ether dianhydride; 4,4′-bis(2,3-dicarboxyphenoxy)diphenyl sulfide dianhydride; 4,4′-bis(2,3-dicarboxyphenoxy)benzophenone dianhydride; 4,4′-bis(2,3-dicarboxyphenoxy)diphenyl sulfone dianhydride; 4-(2,3-dicarboxyphenoxy)-4′-(3,4-dicarboxyphenoxy)diphenyl-2,2-propane dianhydride; 4-(2,3-dicarboxyphenoxy)-4′-(3,4-dicarboxyphenoxy)diphenyl ether dianhydride; 4-(2,3-dicarboxyphenoxy)-4′-(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride; 4-(2,3-dicarboxyphenoxy)-4′-(3,4-dicarboxyphenoxy)benzophenone dianhydride and 4-(2,3-dicarboxyphenoxy)-4′-(3,4-dicarboxyphenoxy)diphenyl sulfone dianhydride, as well as mixtures comprising at least two of the foregoing.
  • The bis(ether anhydride)s can be prepared by the hydrolysis, followed by dehydration, of the reaction product of a nitro substituted phenyl dinitrile with a metal salt of dihydric phenol compound in the presence of a dipolar, aprotic solvent.
  • A chemical equivalent to a dianhydride may also be used. Examples of dianhydride chemical equivalents include tetra-functional carboxylic acids capable of forming a dianhydride and ester or partial ester derivatives of the tetra functional carboxylic acids. Mixed anhydride acids or anhydride esters may also be used as an equivalent to the dianhydride. As used throughout the specification and claims “dianhydride” will refer to dianhydrides and their chemical equivalents.
  • In some embodiments the dianhydride is selected from the groups consisting of bisphenol-A dianhydride, oxydiphthalic anhydride (ODPA) and combinations thereof. Oxydiphthalic anhydride has the general formula (IV):
  • Figure US20080119616A1-20080522-C00004
  • and derivatives thereof as further defined below.
  • The oxydiphthalic anhydrides of formula (IV) include 4,4′-oxybisphthalic anhydride, 3,4′-oxybisphthalic anhydride, 3,3′-oxybisphthalic anhydride, and any mixtures thereof. For example, the oxydiphthalic anhydride of formula (IV) may be 4,4′-oxybisphthalic anhydride having the following formula (V):
  • Figure US20080119616A1-20080522-C00005
  • The term oxydiphthalic anhydrides includes derivatives of oxydiphthalic anhydrides which may also be used to make the polyimide. Examples of oxydiphthalic anhydride derivatives which can function as a chemical equivalent for the oxydiphthalic anhydride in polyimide forming reactions include oxydiphthalic anhydride derivatives of the formula (VI):
  • Figure US20080119616A1-20080522-C00006
  • wherein R1 and R2 of formula VIII can be, independently at each occurrence, any of the following: hydrogen; a C1-C8 alkyl group; an aryl group. R1 and R2 can be the same or different to produce an oxydiphthalic anhydride acid, an oxydiphthalic anhydride ester, and an oxydiphthalic anhydride acid ester.
  • Derivatives of oxydiphthalic anhydrides may also be of the following formula (IX):
  • Figure US20080119616A1-20080522-C00007
  • wherein R1, R2, R3, and R4 of formula (VII) can be, independently at each occurrence, any of the following: hydrogen, a C1-C8 alkyl group, an aryl group. R1, R2, R3, and R4 can be the same or different to produce an oxydiphthalic acid, an oxydiphthalic ester, and an oxydiphthalic acid ester.
  • Useful diamines have the formula:

  • H2N—R10—NH2  (VIII)
  • wherein R10 is a substituted or unsubstituted divalent organic moiety such as: an aromatic hydrocarbon moiety having 6 to 20 carbons and halogenated derivatives thereof; a straight or branched chain alkylene moiety having 2 to 20 carbons; a cycloalkylene moiety having 3 to 20 carbon atoms; or a divalent moiety of the general formula (IX)
  • Figure US20080119616A1-20080522-C00008
  • wherein Q is defined as above. Examples of specific organic diamines are disclosed, for example, in U.S. Pat. Nos. 3,972,902 and 4,455,410. Exemplary diamines include ethylenediamine, propylenediamine, trimethylenediamine, diethylenetriamine, triethylenetertramine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, 1,12-dodecanediamine, 1,18-octadecanediamine, 3-methylheptamethylenediamine, 4,4-dimethylheptamethylenediamine, 4-methylnonamethylenediamine, 5-methylnonamethylenediamine, 2,5-dimethylhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 2,2-dimethylpropylenediamine, N-methyl-bis(3-aminopropyl) amine, 3-methoxyhexamethylenediamine, 1,2-bis(3-aminopropoxy) ethane, bis(3-aminopropyl) sulfide, 1,4-cyclohexanediamine, bis-(4-aminocyclohexyl) methane, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, m-xylylenediamine, p-xylylenediamine, 2-methyl-4,6-diethyl-1,3-phenylene-diamine, 5-methyl-4,6-diethyl-1,3-phenylene-diamine, benzidine, 3,3′-dimethylbenzidine, 3,3′-dimethoxybenzidine, 1,5-diaminonaphthalene, bis(4-aminophenyl)methane, bis(2-chloro-4-amino-3,5-diethylphenyl)methane, bis(4-aminophenyl)propane, 2,4-bis(p-amino-t-butyl)toluene, bis(p-amino-t-butylphenyl) ether, bis(p-methyl-o-aminophenyl) benzene, bis(p-methyl-o-aminopentyl) benzene, 1,3-diamino-4-isopropylbenzene, bis(4-aminophenyl)sulfide, bis(4-aminophenyl)sulfone, bis(4-aminophenyl)ether and 1,3-bis(3-aminopropyl)tetramethyldisiloxane. Mixtures of these compounds may also be used. In one embodiment the diamine is an aromatic diamine, or, more specifically, m-phenylenediamine, p-phenylenediamine, sulfonyl dianiline, and mixtures thereof.
  • In some embodiments the diamine is selected from the group consisting of m-phenylenediamine, p-phenylenediamine, diamino diaryl sulfones and combinations thereof. Diamino diaryl sulfones (DAS) have the general formula (X):

  • H2N—Ar1—SO2—Ar2—NH2  (X)
  • wherein Ar1 and Ar2 independently are an aryl group containing a single or multiple rings. Several aryl rings may be linked together, for example through ether linkages, sulfone linkages or more than one sulfone linkages. The aryl rings may also be fused. In one embodiment Ar1 and Ar2 independently comprise 5 to 12 carbons. In one embodiment Ar1 and Ar2 are both phenyl groups.
  • The first and second polyimides have a weight average molecular weight (Mw) of 5,000 to 100,000 grams per mole (g/mole) as measured by gel permeation chromatography (GPC). In some embodiments the Mw can be 10,000 to 80,000. The molecular weights as used here referin to the absolute weight averaged molecular weight (Mw). The first and second polyimides may have an intrinsic viscosity greater than or equal to 0.2 deciliters per gram (dl/g) as measured in m-cresol at 25° C. Within this range the intrinsic viscosity may be 0.35 to 1.0 dl/g, as measured in m-cresol at 25° C.
  • In some embodiments the first polyimide has a glass transition temperature (Tg) of 200° C. to 500° C. as measured using differential scanning calorimetry (DSC) as per ASTM test D3418. In some embodiments the first polyimide has a glass transition temperature (Tg) of 240 to 350° C.
  • In some embodiments the second polyimide has a glass transition temperature (Tg) of 150° C. to 400° C. as measured using differential scanning calorimetry (DSC) as per ASTM test D3418. In some embodiments the second polyimide has a glass transition temperature (Tg) of 200 to 300° C.
  • In some embodiments the first polyimide comprises structural units derived from oxydiphthalic anhydride (ODPA) and diamino diaryl sulfone (DAS) and the second polyimide comprises structural units derived from bisphenol-A dianhydride (BPADA) and diamino diarylsulfone (DAS).
  • The polyimide polymers described above may be made using any suitable method known in the art. In one embodiment, a method using a highly polar solvent that dissolves both the reactant monomers and the resultant polymers can be used. Solvents such as dimethyl formamide (DMF), dimethyl acetamide (DMAC), N-methylpyrrolidinone (NMP), hexamethyl phosphoramide (HMPA) and dimethyl sulfoxide (DMSO) can be used in this method. The resultant polymers are totally dissolved and can be isolated from solution by removal of solvent as part of a film casting or other evaporative process or by precipitation using an anti-solvent such as methanol.
  • In another embodiment, a method as described in U.S. Pat. No. 4,835,249 can be used to make the above polyimides. In this method, reactant monomers are dissolved in a solvent and then polymerized to an extent where the polymer precipitates from solution and can eventually be isolated by filtration or other related separation technique.
  • In yet another embodiment, polyimides can be made using a process comprising stirring a diamine and a dianhydride in a solvent to form a slurry, heating the slurry to a temperature sufficient for the diamine and dianhydride to react wherein the temperature is below the melting point of the dianhydride, below the melting point of the diamine, or below the melting points of the dianhydride and diamine, and reacting the diamine and dianhydride to form a polyimide having sufficient molecular weight to precipitate from the solvent.
  • In the above process, it is important that the reaction temperature is kept below the melting point of the minimally soluble monomers so that the polymers precipitate as fine powder from the slurry that is easily stirred. In some embodiments, when sufficient monomers have been consumed in the polymerization to prevent agglomeration of the polyimide, for instance equal to or greater than 50 weight % of the initial charge of the monomers, the temperature of the slurry may be increased above the melting point temperature of the minimally soluble monomer to drive the imidization reaction to completion if so desired. In some embodiments it may be desirable to have higher incorporation of the minimally soluble monomer into the polymer, such as equal to or greater than 75 weight %, or, more specifically, equal to or greater than 95 weight %, or, even more specifically, 100 weight % incorporation, before raising the temperature above the melting point of the minimally soluble monomer.
  • It can also be useful to remove water or other volatile by-products from the reaction mixture by distillation or other means. In one embodiment azeotropic distillation of water is employed. In some embodiments water can be removed by chemical absorption using, for example, molecular sieves. In other instances water can be removed using a stream of a gas, for example nitrogen, passing over or through the reaction mixture. In addition, a combination of two or more water removal methods may be employed.
  • In one embodiment, the polymerization is conducted entirely below the melting point of the minimally soluble monomer(s). This may be useful when the boiling point temperature of the solvent and the melting point of the minimally soluble monomer(s) are greater than 100° C., to allow removal of water from the polymerization reaction at atmospheric pressure.
  • It can be useful to conduct the polymerization under pressure, for example at 1 to 300 pounds per square inch (psi) (21.1 kilograms force per square centimeter (kgt/cm2)), or, more specifically, 1 psi (0.070 kgf/cm2) to 100 psi (7.0 kgf/cm2). This can be done for a variety of reasons, one being to raise reaction temperature and increase the rate of imidization. In order to prevent sticking or clumping of the precipitated polymer it is still important to maintain temperature below the melting point of the minimally soluble monomer(s) even when pressure is increased. In some embodiments, it may be useful to remove water from the reaction while pressure is maintained at atmospheric pressure. In some embodiments it can be useful to remove water in a multi step process employing pressures greater than or equal to atmospheric pressure.
  • After the consumption of equal to or greater than 50 weight percent (wt %) of the initial charge of the monomers it can be useful in some embodiments to isolate the precipitated polymer. In other embodiments the precipitated polymer may be isolated when equal to or greater than 90 wt % of the initial charge of monomers are consumed. This can be done using a variety of methods, for example, filtration, centrifugation, flotation, spray drying, solvent evaporation, solvent distillation, freeze-drying, and combinations comprising one or more of the foregoing methods. In some embodiments filtration, spray drying, solvent evaporation, or distillation or a combination of two or more of the foregoing methods maybe employed. In other embodiments an extrusion devolatilization process can be used to isolate the polyimide from the slurry. In some embodiments equal to or greater than 95 wt % of the isolated precipitated polyimide, based on the total weight of the isolated precipitated polyimide, passes through a 2 millimeter (mm) mesh screen. In some embodiments the isolated precipitated polyimide is a free flowing powder with an average particle size of 10 to 5000 micrometers. Regardless of the isolation method low levels of solvent generally remain in the polyimide, typically on the order of parts per million or on the order of parts per million.
  • The solvent used to form the slurry is chosen such that one or more of the initial monomers is minimally soluble. “Minimally soluble” is defined as 1 to 50 wt % of the monomer is undissolved at the start of the reaction (at the initial reaction conditions). In addition, the solvent should be chosen such that the resultant polymer is largely insoluble, that is to have a polymer solubility of less than or equal to 10 wt %, or, even more specifically, less than or equal to 5 wt %, or, even more specifically, less than or equal to 1 wt %. In some embodiments the solvent comprises an aprotic polar solvent. In some embodiments, the solvent is insoluble in water, that is less than or equal to 5 wt %, or, more specifically, less than or equal to 1 wt %, based on the total amount of solvent, of the solvent dissolves in an equal amount of water at room temperature. In some embodiments, the solvent has a high auto ignition temperature, for example greater than or equal to 70° C., to reduce the potential fire hazard during the process and during any subsequent isolation.
  • In addition, a solvent free of nitrogen atoms, phosphorus atoms, sulfur atoms or a combination comprising two or more of the foregoing may be useful in some embodiments. Solvents without these more polar atoms may be easier to remove from the polymer and being less effective solvents are more likely to have monomers and polymers that are minimally soluble or insoluble.
  • Examples of useful solvents include halogenated aromatics, such as chlorobenzene, dichlorobenzene, trichlorobenzene and bromobenzene; aryl ethers such as phenetole, anisole and veratrole; alky\aromatics such as xylenes and toluene; nitro aromatics such as nitrobenzene; polyaryl species such as naphthylene and alkyl substituted fused aromatic systems; aryl sulfone; high molecular weight alkane compounds such as mineral oils; and combinations comprising one or more of the foregoing solvents. In some embodiments the solvent or combination of solvents has an atmospheric boiling point of 150 to 250° C.
  • The reaction may be run at any level of reactants versus solvent. In some instances the weight % solids can be 5 to 50% by weight of reactants to solvent at the start of the polymerization reaction. In other instances, concentrations of 15 to 40% may be useful. In still other instances higher concentrations of reactants to solvent may be used to gain reactor efficiency.
  • Polyimide may be made using the precipitative process by reaction of more or less equal molar amounts of dianhydride (or chemical equivalent of a dianhydride) with a diamine. In some embodiments the amount of dianhydride and diamine differ by less than 5 mole %; this helps to give polymers of sufficient weight average molecular weight (Mw), for example greater than or equal to 5,000 g/mol, to precipitate from the reaction medium and have useful mechanical properties such as stiffness, impact strength and resistance to tearing or cracking.
  • A chain-terminating agent may be employed to control the molecular weight of the final polymer product. The chain terminating agent may be partially or totally soluble in the starting reaction mixture. Mono-amines, mono-anhydrides such as phthalic anhydride, or combinations of mono-amines and mono-anhydrides may be used. The amount of mono-amine, mono-anhydride, or mixture thereof, may be any amount that provides the desired molecular weight of the polyimide. In some embodiments the amount of mono-amine, mono-anhydride, or combination thereof may be 0.1 to 15.0 mole %, or, more specifically, 0.1 to 5.0 mole %, based on the total monomer content.
  • Mono-amines that can be used to end cap the polyimide may have from 3 to 24 carbon atoms, may be aliphatic or aromatic, and may include, but are not limited to, substituted or unsubstituted anilines, substituted or unsubstituted naphthyl amines and substituted or unsubstituted heteroaryl amines. The mono-amines may have additional functionality, for instance, aryl groups, alkyl groups, aryl-alky groups, sulfone groups, ester groups, amide groups, halogens, alkyl or aryl halogen groups, alkyl ether groups, aryl ether groups, or aryl keto groups. Some particular substituents on mono-amines include, but are not limited to, halo and perfluoroalkyl. The attached functionality should not impede the function of the mono-amine in controlling polyimide molecular weight.
  • Mono-anhydrides may also have 3 to 24 carbon atoms, may be aliphatic or aromatic, and include, but are not limited to, substituted or unsubstituted phthalic anhydrides for instance, phthalic anhydride, chloro phthalic anhydride, methoxy phtbalic anhydride, phenoxy phthalic anhydride, and naphthyl anhydrides. End capping agents may also be chosen from the group consisting of 1,2-dicarboxylic acids, 1,2-dicarboxylic esters, 1,2-dicarboxylic ester acids and mixtures comprising one or more of the foregoing.
  • The compositions described herein may further contain an additional component such as fillers, reinforcements, additives, and combinations thereof. The additional component may be present in an amount of 0 to 70 wt %, based on the combined weight of the first polyimide, second polyimide and additional component. Exemplary fillers and reinforcements include fiber glass, milled glass, glass beads, flake and the like. Minerals such as talc, wollastonite, mica, kaolin or montmorillonite clay, silica, quartz, barite, and combinations of two or more of the foregoing may be added. The compositions can comprise inorganic fillers, such as, for example, carbon fibers and nanotubes, metal fibers, metal powders, conductive carbon, and other additives including nano-scale reinforcements as well as combinations of inorganic fillers.
  • Other additives include, UV absorbers; stabilizers such as light stabilizers and others; lubricants; plasticizers; pigments; dyes; colorants; anti-static agents; foaming agents; blowing agents; metal deactivators, and combinations comprising one or more of the foregoing additives. Antioxidants can be compounds such as phosphites, phosphonites and hindered phenols or mixtures thereof. Phosphorus containing stabilizers including triaryl phosphite and aryl phosphonates are of note as useful additives. Difunctional phosphorus containing compounds can also be employed. Stabilizers may have a molecular weight greater than or equal to 300. In some embodiments, phosphorus containing stabilizers with a molecular weight greater than or equal to 500 are useful. Phosphorus containing stabilizers are typically present in the composition at 0.05-0.5% by weight of the formulation. Flow aids and mold release compounds are also contemplated.
  • In another embodiment, the compositions may further include at least one polymer. Examples of such polymers include and are not limited to PPSU (polyphenylene sulfone), PEI (poly(ether imide)), PSU (polysulfone), PC (polycarbonate), PPO (polyphenylene ether), PMMA (poly methyl methacrylate), ABS, (acrylonitrile butadiene styrene), PS (polystyrene) and, PVC (polyvinylchloride), PFA (per fluoro aalkoxy alkane), MFA (co-polymer of TFE tetra fluoro ethylene and PFVE perfluorinated vinyl ether), FEP (Fluorinated ethylene propylene polymers), PPS (poly(phenylene sulfide), PEK (poly(ether ketone), PEEK (poly(ether-ether ketone), ECTFE (ethylene chloro trifluoro ethylene), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), PET (polyethylene terephthalate), POM (polyacetal), PA (polyamide), UHMW-PE (ultra high molecular weight polyethylene), PP (polypropylene), PE (polyethylene), HDPE (high density polyethylene), LDPE (low density polyethylene), PBI (polybenzimidizole) and PAI (poly(amide-imide), poly(ether sulfone), poly(aryl sulfone), polyphenylenes, polybenzoxazoles, polybenzthiazoles, as well as blends and co-polymers thereof.
  • In one embodiment, a thermoplastic composition consists essentially of a first polyimide comprising structural units derived from oxydiphthalic anhydride and diamino diaryl sulfone; and a second polyimide comprising structural units derived from bisphenol-A dianhydride and diamino diaryl sulfone. This composition is essentially free from delamination after aging at 280° C. for 240 hours. As used herein “consisting essentially of” allows for the inclusion of additives typically used in thermoplastic compositions but excludes the inclusion of resins and materials that would alter the miscibility and resin morphology.
  • The compositions may be made by any suitable method. For instance, compositions can be made by melt mixing (compounding) the first polyimide, the second polyimide, and optional additives at a temperature greater than the melt temperature of the first and second polyimides but less than their degradation temperatures. The compositions may be made by any suitable device such as twin screw extruder at a suitable temperature, e.g., 250° C. to 450° C. Alternatively, a single-screw extruder or a helicone-type mixer may be used. Optionally, the device may have a vacuum vent.
  • The first polyimide may be present in an amount of 1 weight percent (wt %) to 99 wt %, or, more specifically, 10 wt % to 90 wt %, based on the combined weight of the first polyimide and the second polyimide. Additionally, the first polyimide may be present in an amount of 50 wt % to 95 wt %, or, more specifically, 50 wt % to 90 wt %. The second polyimide may be present in an amount of 1 wt % to 99 wt %, or, more specifically, 10 wt % to 90 wt %, based on the combined weight of the first polyimide and the second polyimide. Additionally, the second polyimide may be present in an amount of 5 to 50 wt %, or, more specifically, 10 to 50 weight percent.
  • The compositions can be formed into articles by any number of methods. Preferred methods include, for example, injection molding, blow molding, compression molding, profile extrusion, sheet or film extrusion, sintering, gas assist molding, structural foam molding and thermoforming. Examples of such articles include, but are not limited to, membranes, tubing, composites, semi-conductor process tools, wire coatings and jacketing, fluid handling components, cookware, food service items, medical devices, trays, plates, handles, helmets, animal cages, electrical connectors, enclosures for electrical equipment, engine parts, automotive engine parts, bearings, lighting sockets and reflectors, electric motor parts, power distribution equipment, communication equipment, computers and the like, including devices that have molded in snap fit connectors. The blends can also be used as fibers. In addition the blends can be used as coatings, for example powder coatings.
  • Compositions discussed herein may be converted to articles using common thermoplastic processes such as film and sheet extrusion. Film and sheet extrusion processes may include and are not limited to melt casting, blown film extrusion and calendering. Films may have a thickness of 0.1 to 1000 micrometers in some instances. Co-extrusion and lamination processes may be employed to form composite multi-layer films or sheets. Single or multiple layers of coatings may further be applied to the single or multi-layer substrates to impart additional properties such as scratch resistance, ultra violet light resistance, aesthetic appeal, etc. Coatings may be applied through standard application techniques such as rolling, spraying, dipping, brushing, or flow coating. Film and sheet may alternatively be prepared by casting a solution or suspension of the composition in a suitable solvent onto a substrate, belt or roll followed by removal of the solvent. Films may also be metallized using standard processes such as sputtering, vacuum deposition and lamination with foil.
  • Oriented films may be prepared through blown film extrusion or by stretching cast or calendered films in the vicinity of the thermal deformation temperature using conventional stretching techniques. For instance, a radial stretching pantograph may be employed for multi-axial simultaneous stretching; an x-y direction stretching pantograph can be used to simultaneously or sequentially stretch in the planar x-y directions. Equipment with sequential uniaxial stretching sections can also be used to achieve uniaxial and biaxial stretching, such as a machine equipped with a section of differential speed rolls for stretching in the machine direction and a tenter frame section for stretching in the transverse direction
  • Compositions discussed herein may be converted to multiwall sheet comprising a first sheet having a first side and a second side, wherein the first sheet comprises a thermoplastic polymer, and wherein the first side of the first sheet is disposed upon a first side of a plurality of ribs; and a second sheet having a first side and a second side, wherein the second sheet comprises a thermoplastic polymer, wherein the first side of the second sheet is disposed upon a second side of the plurality of ribs, and wherein the first side of the plurality of ribs is opposed to the second side of the plurality of ribs.
  • The films and sheets described above may further be thermoplastically processed into shaped articles via forming and molding processes including but not limited to thermoforming, vacuum forming, pressure forming, injection molding and compression molding. Multi-layered shaped articles may also be formed by injection molding a thermoplastic resin onto a single or multi-layer film or sheet substrate as described below:
  • 1) Providing a single or multi-layer thermoplastic substrate having optionally one or more colors on the surface, for instance, using screen printing of a transfer dye.
  • 2) Conforming the substrate to a mold configuration such as by forming and trimming a substrate into a three dimensional shape and fitting the substrate into a mold having a surface which matches the three dimensional shape of the substrate.
  • 3) Injecting a thermoplastic resin into the mold cavity behind the substrate to (i) produce a one-piece permanently bonded three-dimensional product or (ii) transfer a pattern or aesthetic effect from a printed substrate to the injected resin and remove the printed substrate, thus imparting the aesthetic effect to the molded resin.
  • Those skilled in the art will also appreciate that common curing and surface modification processes including and not limited to heat-setting, texturing, embossing, corona treatment, flame treatment, plasma treatment and vacuum deposition may further be applied to the above articles to alter surface appearances and impart additional functionalities to the articles. Accordingly, another embodiment of the invention relates to articles, sheets and films prepared from the compositions above.
  • The physical properties of compositions according to the invention, and articles derived from the compositions, are useful and can vary. For instance, in one embodiment the first polyimide and the second polyimide form a miscible polymer blend. The polymer blend has a single glass transition temperature and shows only one phase by transmission electron microscopy. When the polymer blend has a single glass transition temperature, the glass transition temperature can be greater than or equal to 150° C., or, more specifically, greater than or equal to 175° C., or, even more specifically, greater than or equal to 200° C. The glass transition temperature can be less than or equal to 600° C.
  • In another embodiment, the first polyimide and the second polyimide a compatible polymer blend. The polymer blend has greater than one glass transition temperature and shows more thane one phase by transmission electron microscopy. When the polymer blend has two glass transition temperatures, the lowest glass transition temperature is greater than or equal to 150° C., or, more specifically, greater than or equal to 175° C., or, even more specifically, greater than or equal to 200° C. The lowest glass transition temperature can be less than or equal to 600° C.
  • In some embodiments the polymer blend has a melt viscosity of 50 to 20,000 Pascal-seconds at 380° C. as measured by ASTM method D3835 using a capillary rheometer with a shear rate of 100 to 10,000 1/sec. Within this range the melt viscosity can be greater than or equal to 100, or, more specifically, greater than or equal to 200. Also within this range the melt viscosity can be less than or equal to 15,000, or, more specifically, less than or equal to 10,000 Pascal-seconds.
  • In another embodiment, the composition can have heat deflection temperature (HDT) of greater than or equal to 120° C., according to ASTM D648. In one embodiment, compositions can have an HDT of 150° C. to 400° C., according to ASTM D648. In another embodiment, the composition can have a tensile strength greater than or equal to 70 megaPascals (MPa) according to ASTM D638. In one embodiment, the compositions and articles can have a tensile strength of 70 MPa to 500 MPa. The coefficient of thermal expansion of the compositions can vary. In one embodiment, the coefficient of thermal expansion is less than or equal to 100 ppm/° C. from 30° C. to 200° C. as measured by thermal mechanical analysis with a thermal ramp rate of 5° C./minute. In another embodiment, the coefficient of thermal expansion can be 5 to 100 ppm/° C. from 30° C.-200° C. as measured by thermal mechanical analysis with a thermal ramp rate of 5° C./minute.
  • Compositions and articles derived from the compositions can also exhibit advantageous heat aging performance properties. For instance, in one embodiment, a composition (and articles derived from the composition) can have a continuous use temperature of greater than or equal to 150° C. In some embodiments the composition can have a continuous use temperature of 150° C. to 400° C.
  • Advantageously, the invention now provides previously unavailable compositions and articles. For instance, the compositions can overcome the problem of delamination in an immiscible, incompatible blends and exhibit immiscible, but compatible blend features having highly useful applications. The invention can also provide a range of miscible blend compositions.
  • The following examples are included to provide additional guidance to those skilled in the art. The examples provided are merely representative are not intended to limit the invention, as defined in the appended claims, in any manner.
  • EXAMPLES
  • Materials used in the Examples are listed Table 1. Amounts listed in the Examples are in weight percent based on the combined weight of the first and second polymers used.
  • TABLE 1
    PEI 1 (ODPA/DDS) A polymer comprising structural units
    derived from oxydiphthalic anhydride
    and diamino diphenyl sulfone and having
    a weight average molecular weight of
    30,000 g/mol.
    PEI 2 (BPADA/DDS) A polymer comprising structural units
    derived from bisphenol-A dianhydride
    and diamino diphenyl sulfone and having
    a weight average molecular weight of
    38,000 g/mol. This polymer is
    commercially available from GE Plastics
    under the tradename ULTEM XH6050.
    PEI 3 (BPADA/MPD) A polymer comprising structural units
    derived from bisphenol-A dianhydride
    and meta-phenylene diamine and having
    a weight average molecular weight of
    38,000 g/mol. This polymer is
    commercially available from GE Plastics
    under the tradename ULTEM 1000.
    PEI 4 (BPADA/PPD) A polymer comprising structural units
    derived from bisphenol-A dianhydride
    and para-phenylene diamine and having a
    weight average molecular weight of
    37,000 g/mol. This polymer is
    commercially available from GE Plastics
    under the tradename ULTEM CRS5001.
  • Examples 1-5
  • The purpose of these examples is to show that non-delaminated compositions can be derived from (a) a first polyimide comprising structural derived from a dianhydride and a diamine (b) a second polyimide comprising structural derived from a dianhydride and a diamine wherein the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same. These examples also show that the compositions can overcome the problem of delamination typically found in immiscible, incompatible blends.
  • Preparation Techniques
  • The compositions shown in Table 2 were prepared by melt mixing the components in a twin screw extruder at temperatures of 300° C. to 430° C. with vacuum venting. The screw speed typically varied from 100 to 350 RPM.
  • Testing Techniques
  • The compositions were tested for glass transition temperature using differential scanning calorimetry (DSC). Morphology was determined transmission electron microscopy at a magnification of 15,000. Delaimination was determined by visual inspection using injection molded ASTM tensile bars. “Visual inspection” was determined by normal vision (e.g., 20/20 vision in the absence of any magnifying device with the exception of corrective lenses necessary for normal eyesight) at a distance of one half (½) meter. The compositions were injected molded to form ASTM tensile bars. The samples were visually inspected for appearance. The tensile bars were aged at 280° C. for 240 hours and checked for delamination by visual inspection. Results are shown in Tables 2 and 3.
  • TABLE 2
    Example 1 Example 2 Example 3 Example 4* Example 5*
    PEI 1 (ODPA/DDS) 95  85 60 95  85
    PEI 3 (BPADA/MPD) 5 15
    PEI 2 (BPADA/DDS) 5 15 40
    Tg's 1  2  2 2  2
    Morphology One-Phase Two-Phase Two-Phase Two-Phase Two-Phase
    Appearance Transparent Translucent Translucent Opaque Opaque
    Delamination on Heat No No No Yes Yes
    Aging
    *Comparative example
  • TABLE 3
    Example 6 Example 7 Example 8 Example 9 Example 10 Example 11
    PEI 2 (BPADA/DDS) 75 50 75 50
    PEI 3 (BPADA/MPD) 25 50 75 50
    PEI 4 (BPADA/PPD) 25 50 25 50
    Tg's  1  1  1  1  1  1
    Morphology One-Phase One-Phase One-Phase One-Phase One-Phase One-Phase
    Appearance Transparent Transparent Transparent Transparent Transparent Transparent
    Delamination on Heat No No No No No No
    Aging
  • The foregoing examples illustrate the unexpected behavior of polyetherimide blends. Blends of PEI 1 and PEI 3 (Examples 4 and 5), which are made using different dianhydrides and different diamines, show two phase morphology and delamination even at low levels of PEI 3. In contrast, blends of PEI 1 and PEI 2 (Examples 1, 2 and 3), which are both made using the same diamine, show varying behavior depending upon the relative amounts of the two polymers. When the amount of PEI 2 is low (5% PEI 2) then the composition is a miscible polymer blend but as the amount of PEI 2 increases the composition becomes a compatible polymer blend. However, despite the multiphasic resin morphology, blends of PEI 1 and PEI 2 are essentially free from delamination after heat aging at 280° C. for 240 hours, even at high PEI 2 content Surprisingly, blending polyimides with a common diamine (in this case, DDS) overcame the problem of delamination in an immiscible, incompatible blend and resulted in compatible and/or miscible blends of practical importance.
  • Examples 6 through 11 are blends of polyimides with a common dianhydride (in this case, BPADA) and different diamines. All of these blends show one-phase morphology and a single glass transition temperature. All of these blends are essentially free from delamination after heat aging at 280° C. for 240 hours. Thus, blending of polyimides with a common dianhydride can also result in non-delaminated compositions of practical importance.
  • All patents identified by number herein are incorporated by reference in their entirety.
  • While the invention has been described with reference to a several embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (35)

1. A thermoplastic composition comprising a non-delaminated polymer blend wherein the polymer blend comprises:
a first polyimide comprising structural units derived from a first dianhydride and a first diamine; and
a second polyimide comprising structural units derived from a second dianhydride and a second diamine; and
wherein the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same.
2. The thermoplastic composition of claim 1, wherein the polymer blend is a miscible polymer blend.
3. The thermoplastic composition of claim 1, wherein the polymer blend is a compatible polymer blend.
4. The thermoplastic composition of claim 1, wherein the first dianhydride and the second dianhydride are bis(ether anhydrides) and the first and second diamines have the formula:

H2N—R10—NH2  (IV)
wherein R10 is a substituted or unsubstituted divalent organic moiety such as: an aromatic hydrocarbon moiety having 6 to 20 carbons and halogenated derivatives thereof; a straight or branched chain alkylene moiety having 2 to 20 carbons; a cycloalkylene moiety having 3 to 20 carbon atoms; or a divalent moiety of the general formula (V)
Figure US20080119616A1-20080522-C00009
wherein Q is defined as a divalent moiety selected from the group consisting of —O—, —S—, —C(O)—, —SO2—, —SO—, and —CyH2y— wherein y is an integer from 1 to 20.
5. The thermoplastic composition of claim 1, wherein the first dianhydride and the second dianhydride are selected from the group consisting of bisphenol A dianhydride, oxydiphthalic anhydride (ODPA) and combinations thereof.
6. The thermoplastic composition of claim 1, wherein the first diamine and the second diamine are selected from the group consisting of m-phenylenediamine, p-phenylenediamine, diamino diaryl sulfones and combinations thereof.
7. The thermoplastic composition of claim 1, wherein first polyimide comprises structural units derived from oxydiphthalic anhydride (ODPA) and diamino diaryl sulfone (DAS) and the second polyimide comprises structural units derived from bisphenol-A dianhydride (BPADA) and diamino diarylsulfone (DAS).
8. The thermoplastic composition of claim 1, wherein,
the first polyimide is present in an amount of 50 to 99 weight percent;
the second polyimide is present in an amount of 1 to 50 weight percent; and
the thermoplastic composition further comprises 0 to 70 weight percent of a component selected from the group consisting of fillers, reinforcements, additives, and combinations thereof;
wherein the first polyimide, the second polyimide, and the component are present at a total weight percent of 100.
9. The thermoplastic composition of claim 1, wherein the composition further comprises at least one polymer.
10. The thermoplastic composition of claim 9, wherein the at least one polymer is selected from the group consisting of polyphenylene sulfone, polyetherimide, polysulfone, polycarbonate, polyphenylene ether, poly methyl methacrylate, acrylonitrile butadiene styrene, polystyrene, polyvinylchloride, perfluoroalkoxyalkane polymer, co-polymer of tetra fluoro ethylene and perfluorinated vinyl ether, fluorinated ethylene propylene polymer, poly(phenylene sulfide, poly(ether ketone), poly(ether-ether ketone), ethylene chloro trifluoro ethylene polymer, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene terephthalate, polyacetal, polyamide, ultra high molecular weight polyethylene, polypropylene, polyethylene, high density polyethylene, low density polyethylene, polybenzimidizole, poly(amide-imide), poly(ether sulfone), poly(aryl sulfone), polyphenylenes, polybenzoxazoles, polybenzthiazoles and blends and co-polymers thereof.
11. The thermoplastic composition of claim 1, wherein the polymer blend has a heat deflection temperature of greater than or equal to 150° C. according to ASTM D648.
12. The thermoplastic composition of claim 1, wherein the polymer blend has a tensile strength greater than or equal to 70 MPa according to ASTM D638.
13. The thermoplastic composition of claim 1, wherein the polymer blend has a coefficient of thermal expansion of less than or equal to 100 ppm/° C. from 30° C. to 200° C. as measured by thermal mechanical analysis with a thermal ramp rate of 5° C./minute.
14. The thermoplastic composition of claim 1, wherein the polymer blend has a continuous use temperature greater than or equal to 150° C.
15. A thermoplastic composition comprising a non-delaminated polymer blend wherein the polymer blend comprises:
50 to 99 weight percent of a first polyimide comprising structural units derived from a first dianhydride and a first diamine; and
1 to 50 weight percent of a second polyimide comprising structural units derived from a second dianhydride and a second diamine;
wherein the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same,
wherein weight percent is based on the total weight of the polymer blend, and
wherein the polymer blend has a single glass transition temperature.
16. The thermoplastic composition of claim 15, wherein the first dianhydride and the second dianhydride are bis(ether anhydrides) and the first and second diamines have the formula:

H2N—R10—NH2
wherein R10 is a substituted or unsubstituted divalent organic moiety such as: an aromatic hydrocarbon moiety having 6 to 20 carbons and halogenated derivatives thereof; a straight or branched chain alkylene moiety having 2 to 20 carbons; a cycloalkylene moiety having 3 to 20 carbon atoms; or a divalent moiety of the general formula
Figure US20080119616A1-20080522-C00010
wherein Q is defined as a divalent moiety selected from the group consisting of —O—, —S—, —C(O)—, —SO2—, —SO—, and —CyH2y— wherein y is an integer from 1 to 20.
17. The thermoplastic composition of claim 15, wherein the first dianhydride and the second dianhydride are selected from the group consisting of bisphenol A dianhydride, oxydiphthalic anhydride (ODPA) and combinations thereof.
18. The thermoplastic composition of claim 15, wherein the first diamine and the second diamine are selected from the group consisting of m-phenylenediamine, p-phenylenediamine, diamino diaryl sulfones, and combinations thereof.
19. The thermoplastic composition of claim 15, wherein first polyimide comprises structural units derived from oxydiphthalic anhydride (ODPA) and diamino diaryl sulfone (DAS) and the second polyimide comprises structural units derived from bisphenol-A dianhydride (BPADA) and diamino diarylsulfone (DAS).
20. The thermoplastic composition of claim 15, wherein the thermoplastic composition further comprises 0 to 70 weight percent of a component selected from the group consisting of fillers, reinforcements, additives, and combinations thereof;
wherein the first polyimide, the second polyimide, and the component are present at a total weight percent of 100.
21. The thermoplastic composition of claim 15, wherein the composition further comprises at least one polymer.
22. The thermoplastic composition of claim 21, wherein the at least one polymer is selected from the group consisting of polyphenylene sulfone, polyetherimide, polysulfone, polycarbonate, polyphenylene ether, poly methyl methacrylate, acrylonitrile butadiene styrene, polystyrene, polyvinylchloride, perfluoroalkoxyalkane polymer, co-polymer of tetra fluoro ethylene and perfluorinated vinyl ether, fluorinated ethylene propylene polymer, poly(phenylene sulfide, poly(ether ketone), poly(ether-ether ketone), ethylene chloro trifluoro ethylene polymer, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene terephthalate, polyacetal, polyamide, ultra high molecular weight polyethylene, polypropylene, polyethylene, high density polyethylene, low density polyethylene, polybenzimidizole, poly(amide-imide), poly(ether sulfone), poly(aryl sulfone), polyphenylenes, polybenzoxazoles, polybenzthiazoles and blends and co-polymers thereof.
23. The thermoplastic composition of claim 15, wherein the polymer blend has a heat deflection temperature of greater than or equal to 150° C. according to ASTM D648.
24. The thermoplastic composition of claim 15, wherein the polymer blend has a tensile strength greater than or equal to 70 MPa according to ASTM D638.
25. The thermoplastic composition of claim 15, wherein the polymer blend has a coefficient of thermal expansion of less than or equal to 100 ppm/° C. from 30° C. to 200° C. as measured by thermal mechanical analysis with a thermal ramp rate of 5° C./minute.
26. The thermoplastic composition of claim 15, wherein the polymer blend has a continuous use temperature greater than or equal to 150° C.
27. A thermoplastic composition comprising a polymer blend wherein the polymer blend comprises:
50. to 95 weight percent of a first polyimide comprising structural units derived from a first dianhydride and a first diamine; and
to 50 weight percent of a second polyimide comprising structural units derived from a second dianhydride and a second diamine;
wherein the thermoplastic composition further comprises 0 to 70 weight percent of a component selected from the group consisting of fillers, reinforcements, additives, and combinations thereof,
wherein the first polyimide, the second polyimide, and the component are present at a total weight percent of 100;
wherein the first dianhydride and the second dianhydride are the same or the first diamine and the second diamine are the same,
wherein the polymer blend has greater than one glass transition temperature, and
wherein an article formed by injection molding the thermoplastic composition is essentially free from delamination after aging at 280° C. for 240 hours.
28. The thermoplastic composition of claim 27, wherein the first dianhydride and the second dianhydride are bis(ether anhydrides) and the first and second diamines have the formula:

H2N—R10—NH2
wherein R10 is a substituted or unsubstituted divalent organic moiety such as: an aromatic hydrocarbon moiety having 6 to 20 carbons and halogenated derivatives thereof; a straight or branched chain alkylene moiety having 2 to 20 carbons; a cycloalkylene moiety having 3 to 20 carbon atoms; or a divalent moiety of the general formula
Figure US20080119616A1-20080522-C00011
wherein Q is defined as a divalent moiety selected from the group consisting of —O—, —S—, —C(O)—, —SO2—, —SO—, and —CyH2y— wherein y is an integer from 1 to 20.
29. The thermoplastic composition of claim 27, wherein the first dianhydride and the second dianhydride are selected from the group consisting of bisphenol A dianhydride, oxydiphthalic anhydride (ODPA), and combinations thereof.
30. The thermoplastic composition of claim 27, wherein the first diamine and the second diamine are selected from the group consisting of m-phenylenediamine, p-phenylenediamine, diamino diaryl sulfones and combinations thereof.
31. The thermoplastic composition of claim 27, wherein first polyimide comprises structural units derived from oxydiphthalic anhydride (ODPA) and diamino diaryl sulfone (DAS) and the second polyimide comprises structural units derived from bisphenol-A dianhydride (BPADA) and diamino diarylsulfone (DAS).
32. A thermoplastic composition comprising a polymer blend wherein the polymer blend comprises:
a first polyimide comprising structural units derived from a oxy diphthalic anhydride and a diamino diaryl sulfone;
a second polyimide comprising structural units derived from a bis-phenol A dianhydride and a diamino diaryl sulfone.
33. The thermoplastic composition of claim 32, wherein the first polyimide is present in an amount of 10 to 90 weight percent, based on the total weight of the polymer blend and the second polyimide is present in an amount of 10 to 90 weight percent, based on the total weight of the polymer blend.
34. The thermoplastic composition of claim 32, wherein the first polyimide is present in an amount of 50 to 90 weight percent, based on the total weight of the polymer blend and the second polyimide is present in an amount of 10 to 50 weight percent, based on the total weight of the polymer blend.
35. A composition of matter comprising a non-delaminated article derived from the composition according to claim 1.
US11/562,634 2006-11-22 2006-11-22 Polyimide resin compositions Abandoned US20080119616A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US11/562,634 US20080119616A1 (en) 2006-11-22 2006-11-22 Polyimide resin compositions
EP07814115A EP2092019A1 (en) 2006-11-22 2007-08-15 Polyimide resin compositions
JP2009538433A JP5628521B2 (en) 2006-11-22 2007-08-15 Polyimide resin composition
PCT/US2007/075993 WO2008063720A1 (en) 2006-11-22 2007-08-15 Polyimide resin compositions
CNA2007800433951A CN101589110A (en) 2006-11-22 2007-08-15 Polyimide resin compositions
CN201310585160.2A CN103613926A (en) 2006-11-22 2007-08-15 Polyimide resin composition
TW096132285A TW200823263A (en) 2006-11-22 2007-08-30 Polyimide resin compositions
IN3148DE2009 IN2009DE03148A (en) 2006-11-22 2009-05-14
JP2014093377A JP2014159592A (en) 2006-11-22 2014-04-30 Polyimide resin composition
US14/459,543 US9181431B2 (en) 2006-11-22 2014-08-14 Polyimide resin compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/562,634 US20080119616A1 (en) 2006-11-22 2006-11-22 Polyimide resin compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/459,543 Continuation US9181431B2 (en) 2006-11-22 2014-08-14 Polyimide resin compositions

Publications (1)

Publication Number Publication Date
US20080119616A1 true US20080119616A1 (en) 2008-05-22

Family

ID=38621254

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/562,634 Abandoned US20080119616A1 (en) 2006-11-22 2006-11-22 Polyimide resin compositions
US14/459,543 Active US9181431B2 (en) 2006-11-22 2014-08-14 Polyimide resin compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/459,543 Active US9181431B2 (en) 2006-11-22 2014-08-14 Polyimide resin compositions

Country Status (7)

Country Link
US (2) US20080119616A1 (en)
EP (1) EP2092019A1 (en)
JP (2) JP5628521B2 (en)
CN (2) CN101589110A (en)
IN (1) IN2009DE03148A (en)
TW (1) TW200823263A (en)
WO (1) WO2008063720A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070149629A1 (en) * 2005-12-22 2007-06-28 Michael Stephen Donovan Expanded and expandable high glass transition temperature polymers
US20090258991A1 (en) * 2008-02-25 2009-10-15 Sabic Innovative Plastics Ip B.V. Polyetherimide and Polyetherimide Sulfone Blends Having Automotive Lighting Applications
WO2009105377A3 (en) * 2008-02-20 2009-10-22 Sabic Innovative Plastics Ip B.V. Polyetherimide and polyetherimide sulfone blends having automotive lighting applications
US20120201580A1 (en) * 2011-02-09 2012-08-09 Xerox Corporation Metallic nanoparticle reinforced polyimide for fuser belt with high thermal conductivity
US20120273731A1 (en) * 2009-10-27 2012-11-01 E.I. Du Pont De Nemours And Company Polyimide resins for high temperature wear applications
CN102910840A (en) * 2012-10-31 2013-02-06 东华大学 High-temperature resistant benzimidazole optical fiber coating and preparation method of coating
US20130164629A1 (en) * 2010-09-01 2013-06-27 Jiangxi Advance Nanofiber S&T Co., Ltd. Polymide blend nanofiber and its use in battery separator
US20160196912A1 (en) * 2013-05-10 2016-07-07 Sabic Global Technologies B.V. Dual layer wire coatings
US9492785B2 (en) 2013-12-16 2016-11-15 Sabic Global Technologies B.V. UV and thermally treated polymeric membranes
US9498905B2 (en) * 2012-05-11 2016-11-22 Ford Global Technologies, Llc Single-shot molded vehicle structural body component and method of making the same
US9522364B2 (en) 2013-12-16 2016-12-20 Sabic Global Technologies B.V. Treated mixed matrix polymeric membranes
CN112852154A (en) * 2021-01-22 2021-05-28 宁波惠璞新材料有限公司 High-temperature-resistant easy-to-process thermoplastic transparent polyimide resin material with low thermal expansion coefficient and preparation method thereof
WO2021138401A1 (en) * 2019-12-30 2021-07-08 Shpp Global Technologies B.V. Reinforced linear and branched polyimide composition
US11078378B2 (en) 2015-03-31 2021-08-03 Asahi Kasei Kabushiki Kaisha Polyimide film, polyimide varnish, and product and layered product using the polyimide film
US20210301426A1 (en) * 2020-03-31 2021-09-30 Taiwan Textile Research Institute Fiber masterbatch and melt spun fiber
CN114621435A (en) * 2021-08-26 2022-06-14 中瀚新材料科技有限公司 Chemical-resistant high-wear-resistance polyimide material and preparation method thereof
US20230127585A1 (en) * 2019-07-17 2023-04-27 Taiwan Textile Research Institute Thermoplastic composition and method of preparing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153086A1 (en) * 2012-12-01 2014-06-05 Sabic Innovative Plastics Ip B.V. Polyimide optical articles having selective transmittance properties
CN105017601B (en) * 2015-06-10 2017-03-22 苏州鸿博斯特超净科技有限公司 Polysilicon packaging film and preparation method for same
CN106256542B (en) * 2015-06-17 2019-03-26 长兴材料工业股份有限公司 Polyimide resin and metal-coated laminate comprising same
CN104910622A (en) * 2015-07-13 2015-09-16 石倩文 Acid and alkali resistant anti-static cable material
KR20180038464A (en) * 2015-08-07 2018-04-16 사빅 글로벌 테크놀러지스 비.브이. Polyether imide sulfone compositions, processes for their preparation and articles made therefrom
WO2017117343A1 (en) 2015-12-31 2017-07-06 Sabic Global Technologies B. V. Polyetherimide compositions, methods of manufacture, and articles prepared therefrom
WO2017200799A1 (en) * 2016-05-20 2017-11-23 Sabic Global Technologies B.V. High heat copolyimides, articles prepared therefrom, and methods of manufacturing copolyimide articles
CN106084590A (en) * 2016-06-24 2016-11-09 合肥得润电子器件有限公司 A kind of communication wire harness aging resistance of resistance to irradiation sheath material and preparation method thereof
CN108912681A (en) * 2018-07-17 2018-11-30 全椒祥瑞塑胶有限公司 A kind of automotive upholstery of stretch-proof engineering plastics preparation method
CN113072702B (en) * 2021-03-31 2023-03-10 上海大学(浙江·嘉兴)新兴产业研究院 Colorless transparent copolymerized polyimide film and preparation method thereof
JP2023151092A (en) * 2022-03-31 2023-10-16 三菱鉛筆株式会社 Resin composition for manufacturing carbon molding by three-dimensional printer molding and carbonization

Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991273A (en) * 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US2999835A (en) * 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US3028365A (en) * 1953-10-16 1962-04-03 Bayer Ag Thermoplastic aromatic polycarbonates and their manufacture
US3065205A (en) * 1959-10-27 1962-11-20 Du Pont Aromatic polyketones and preparation thereof
US3148172A (en) * 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US3153008A (en) * 1955-07-05 1964-10-13 Gen Electric Aromatic carbonate resins and preparation thereof
US3271368A (en) * 1963-05-02 1966-09-06 Borg Warner Sulfonate-thiocarbonate copolymers
US3271367A (en) * 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
US3383092A (en) * 1963-09-06 1968-05-14 Garrett Corp Gas turbine with pulsating gas flows
US3671487A (en) * 1971-05-05 1972-06-20 Gen Electric Glass reinforced polyester resins containing polytetrafluoroethylene and flame retardant additives
US3723373A (en) * 1971-10-04 1973-03-27 American Cyanamid Co 0.1% to about 2.0% by weight polytetrafluoroethylene emulsion modified polyethylene terephthalate with improved processing characteristics
US3787364A (en) * 1971-09-01 1974-01-22 Gen Electric Process for making polyetherimides
US3803085A (en) * 1972-12-29 1974-04-09 Gen Electric Method for making polyetherimides
US3814869A (en) * 1971-10-13 1974-06-04 Porta Systems Corp Outgoing trunk extender test and monitor apparatus for central telephone equipment
US3825629A (en) * 1970-10-22 1974-07-23 Sandoz Ltd Benzene phosphonates
US3847867A (en) * 1971-01-20 1974-11-12 Gen Electric Polyetherimides
US3847869A (en) * 1973-09-28 1974-11-12 Gen Electric Method for preparing polyetherimides
US3850885A (en) * 1973-11-23 1974-11-26 Gen Electric Method for making polyetherimides
US3852242A (en) * 1973-12-03 1974-12-03 Gen Electric Method for making polyetherimide
US3855178A (en) * 1973-12-03 1974-12-17 Gen Electric Method for making polyetherimides
US3905942A (en) * 1973-06-22 1975-09-16 Gen Electric Method for making polyetherimides and products produced thereby
US3917643A (en) * 1973-06-22 1975-11-04 Gen Electric Method for making polyetherimides and products produced thereby
US3962175A (en) * 1970-10-22 1976-06-08 Sandoz Ltd. Benzene phosphonous acid compounds, their production and use as stabilizers for organic materials
US3972902A (en) * 1971-01-20 1976-08-03 General Electric Company 4,4'-Isopropylidene-bis(3- and 4-phenyleneoxyphthalic anhydride)
US3983093A (en) * 1975-05-19 1976-09-28 General Electric Company Novel polyetherimides
US4075163A (en) * 1970-10-22 1978-02-21 Sandoz Ltd. Benzene phosphonous acid compounds, their production and use as stabilizers for organic materials
US4154775A (en) * 1977-09-06 1979-05-15 General Electric Company Flame retardant composition of polyphenylene ether, styrene resin and cyclic phosphate
US4175175A (en) * 1963-07-16 1979-11-20 Union Carbide Corporation Polyarylene polyethers
US4176222A (en) * 1977-02-01 1979-11-27 Imperial Chemical Industries Limited Production of aromatic polyethers
US4217438A (en) * 1978-12-15 1980-08-12 General Electric Company Polycarbonate transesterification process
US4396755A (en) * 1981-11-12 1983-08-02 Imperial Chemical Industries Plc Production of aromatic polyketones
US4398020A (en) * 1981-04-29 1983-08-09 Imperial Chemical Industries Plc Production of aromatic polyketones
US4443591A (en) * 1983-01-21 1984-04-17 General Electric Company Method for making polyetherimide
US4455410A (en) * 1982-03-18 1984-06-19 General Electric Company Polyetherimide-polysulfide blends
US4468506A (en) * 1982-04-02 1984-08-28 General Electric Company Polyetherimide blends
US4689391A (en) * 1984-12-21 1987-08-25 General Electric Company Process for making polyetherimides
US4835249A (en) * 1986-12-31 1989-05-30 General Electric Company Process for preparing polyimides
US4847311A (en) * 1986-04-09 1989-07-11 Mitsui Toatsu Chemicals, Inc. Polyimide resin composition
US4910288A (en) * 1989-02-07 1990-03-20 General Electric Company Process for the preparation of polyetherimides
US4965337A (en) * 1987-12-31 1990-10-23 General Electric Company Very high heat thermoplastic polyetherimides containing aromatic structure
US5079309A (en) * 1986-12-24 1992-01-07 Amoco Corporation Miscible blends of a poly(aryl ether ketone) and an imide containing polymer
US5091028A (en) * 1985-03-30 1992-02-25 Totoku Electric Co., Ltd. Method for manufacturing a heat resistant voice coil
US5171796A (en) * 1985-07-23 1992-12-15 Amoco Corporation Miscible blends of a poly(aryl ether ketone) and an imide containing polymer
US5229482A (en) * 1991-02-28 1993-07-20 General Electric Company Phase transfer catalyzed preparation of aromatic polyether polymers
US5260407A (en) * 1989-07-17 1993-11-09 Mitsui Toatsu Chemicals, Incorporated Polyimide film and preparation process of the film
US5298331A (en) * 1990-08-27 1994-03-29 E. I. Du Pont De Nemours And Company Flexible multi-layer polyimide film laminates and preparation thereof
US5324475A (en) * 1991-10-30 1994-06-28 E. I. Du Pont De Nemours And Company Process for preparing biaxially stretched isotropic polyimide film
US5331063A (en) * 1989-10-31 1994-07-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tough high performance composite matrix
US5534602A (en) * 1990-07-02 1996-07-09 General Electric Company High temperature polyether imide compositions and method for making
US5633319A (en) * 1996-01-16 1997-05-27 General Electric Company Compatibilized blends of polyetherimides and liquid crystalline polyesters
US5705574A (en) * 1983-09-27 1998-01-06 The Boeing Company Method for making a polyimide blend
US5830974A (en) * 1997-02-13 1998-11-03 General Electric Company Method for preparing aromatic polyether polymers
US6103806A (en) * 1998-12-21 2000-08-15 Mitsui Chemicals, Inc. Polyimide resin composition
US6187874B1 (en) * 1998-08-14 2001-02-13 Tomoegawa Paper Co., Ltd. Adhesive for electronic parts and adhesive tape for electronic parts
US6458912B1 (en) * 1998-05-13 2002-10-01 Mitsui Chemicals, Inc. Crystalline polyimide for melt molding with satisfactory thermal stability
US6476177B2 (en) * 2000-12-21 2002-11-05 E. I. Du Pont De Nemours And Company Melt-processible, thermoplastic random copolyimides having recoverable crystallinity and associated processes
US6548180B2 (en) * 2000-10-02 2003-04-15 Ube Industries, Ltd. Aromatic polyimide film and film laminate
US20040161711A1 (en) * 2002-12-12 2004-08-19 Arch Specialty Chemicals, Inc. Stable non-photosensitive polyimide precursor compositions for use in bilayer imaging systems
US20040249117A1 (en) * 2003-06-03 2004-12-09 General Electric Company Benzimidazole diamine-based polyetherimide compositions and methods for making them
US20040260055A1 (en) * 2003-06-20 2004-12-23 General Electric Company Polyimide resin with reduced mold deposit
US6849706B1 (en) * 2003-08-25 2005-02-01 General Electric Company Copolyetherimides
US20050070684A1 (en) * 2003-09-26 2005-03-31 General Electric Company Polyimide sulfones, method and articles made therefrom
US20050112362A1 (en) * 2003-06-20 2005-05-26 Hsu Yen-Huey Polyimide resin and cast-on-copper laminate
US20050149390A1 (en) * 2003-12-30 2005-07-07 Scholl Nathaniel B. Method and system for generating and placing keyword-targeted advertisements
US20070066740A1 (en) * 2005-09-16 2007-03-22 Odle Roy R Annular or tubular shaped articles of novel polymer blends

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500722A (en) * 1983-03-29 1984-04-26 ゼネラル エレクトリツク カンパニイ polyetherimide blend
US4681928A (en) 1984-06-01 1987-07-21 M&T Chemicals Inc. Poly(amide-amide acid), polyamide acid, poly(esteramide acid), poly(amide-imide), polyimide, poly(esterimide) from poly arylene diamine
US4820781A (en) * 1987-06-29 1989-04-11 General Electric Company Blends of silicone copolymer and polyetherimide
US5254361A (en) 1989-07-24 1993-10-19 Chisso Corporation Method for producing printed circuit boards
JP3714876B2 (en) * 2001-01-31 2005-11-09 三菱樹脂株式会社 Heat resistant film
US7022402B2 (en) 2003-07-14 2006-04-04 E. I. Du Pont De Nemours And Company Dielectric substrates comprising a polymide core layer and a high temperature fluoropolymer bonding layer, and methods relating thereto
US20060194070A1 (en) * 2005-02-25 2006-08-31 Joshua Croll Polyetherimide film and multilayer structure

Patent Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028365A (en) * 1953-10-16 1962-04-03 Bayer Ag Thermoplastic aromatic polycarbonates and their manufacture
US3271367A (en) * 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
US3153008A (en) * 1955-07-05 1964-10-13 Gen Electric Aromatic carbonate resins and preparation thereof
US2991273A (en) * 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) * 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999835A (en) * 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US3065205A (en) * 1959-10-27 1962-11-20 Du Pont Aromatic polyketones and preparation thereof
US3271368A (en) * 1963-05-02 1966-09-06 Borg Warner Sulfonate-thiocarbonate copolymers
US4175175A (en) * 1963-07-16 1979-11-20 Union Carbide Corporation Polyarylene polyethers
US3383092A (en) * 1963-09-06 1968-05-14 Garrett Corp Gas turbine with pulsating gas flows
US4075163A (en) * 1970-10-22 1978-02-21 Sandoz Ltd. Benzene phosphonous acid compounds, their production and use as stabilizers for organic materials
US3825629A (en) * 1970-10-22 1974-07-23 Sandoz Ltd Benzene phosphonates
US3962175A (en) * 1970-10-22 1976-06-08 Sandoz Ltd. Benzene phosphonous acid compounds, their production and use as stabilizers for organic materials
US3847867A (en) * 1971-01-20 1974-11-12 Gen Electric Polyetherimides
US3972902A (en) * 1971-01-20 1976-08-03 General Electric Company 4,4'-Isopropylidene-bis(3- and 4-phenyleneoxyphthalic anhydride)
US3671487A (en) * 1971-05-05 1972-06-20 Gen Electric Glass reinforced polyester resins containing polytetrafluoroethylene and flame retardant additives
US3787364A (en) * 1971-09-01 1974-01-22 Gen Electric Process for making polyetherimides
US3723373A (en) * 1971-10-04 1973-03-27 American Cyanamid Co 0.1% to about 2.0% by weight polytetrafluoroethylene emulsion modified polyethylene terephthalate with improved processing characteristics
US3814869A (en) * 1971-10-13 1974-06-04 Porta Systems Corp Outgoing trunk extender test and monitor apparatus for central telephone equipment
US3803085A (en) * 1972-12-29 1974-04-09 Gen Electric Method for making polyetherimides
US3905942A (en) * 1973-06-22 1975-09-16 Gen Electric Method for making polyetherimides and products produced thereby
US3917643A (en) * 1973-06-22 1975-11-04 Gen Electric Method for making polyetherimides and products produced thereby
US3847869A (en) * 1973-09-28 1974-11-12 Gen Electric Method for preparing polyetherimides
US3850885A (en) * 1973-11-23 1974-11-26 Gen Electric Method for making polyetherimides
US3855178A (en) * 1973-12-03 1974-12-17 Gen Electric Method for making polyetherimides
US3852242A (en) * 1973-12-03 1974-12-03 Gen Electric Method for making polyetherimide
US3983093A (en) * 1975-05-19 1976-09-28 General Electric Company Novel polyetherimides
US4176222A (en) * 1977-02-01 1979-11-27 Imperial Chemical Industries Limited Production of aromatic polyethers
US4154775A (en) * 1977-09-06 1979-05-15 General Electric Company Flame retardant composition of polyphenylene ether, styrene resin and cyclic phosphate
US4217438A (en) * 1978-12-15 1980-08-12 General Electric Company Polycarbonate transesterification process
US4398020A (en) * 1981-04-29 1983-08-09 Imperial Chemical Industries Plc Production of aromatic polyketones
US4396755A (en) * 1981-11-12 1983-08-02 Imperial Chemical Industries Plc Production of aromatic polyketones
US4455410A (en) * 1982-03-18 1984-06-19 General Electric Company Polyetherimide-polysulfide blends
US4468506A (en) * 1982-04-02 1984-08-28 General Electric Company Polyetherimide blends
US4443591A (en) * 1983-01-21 1984-04-17 General Electric Company Method for making polyetherimide
US5705574A (en) * 1983-09-27 1998-01-06 The Boeing Company Method for making a polyimide blend
US4689391A (en) * 1984-12-21 1987-08-25 General Electric Company Process for making polyetherimides
US5091028A (en) * 1985-03-30 1992-02-25 Totoku Electric Co., Ltd. Method for manufacturing a heat resistant voice coil
US5171796A (en) * 1985-07-23 1992-12-15 Amoco Corporation Miscible blends of a poly(aryl ether ketone) and an imide containing polymer
US4847311A (en) * 1986-04-09 1989-07-11 Mitsui Toatsu Chemicals, Inc. Polyimide resin composition
US5079309A (en) * 1986-12-24 1992-01-07 Amoco Corporation Miscible blends of a poly(aryl ether ketone) and an imide containing polymer
US4835249A (en) * 1986-12-31 1989-05-30 General Electric Company Process for preparing polyimides
US4965337A (en) * 1987-12-31 1990-10-23 General Electric Company Very high heat thermoplastic polyetherimides containing aromatic structure
US4910288A (en) * 1989-02-07 1990-03-20 General Electric Company Process for the preparation of polyetherimides
US5260407A (en) * 1989-07-17 1993-11-09 Mitsui Toatsu Chemicals, Incorporated Polyimide film and preparation process of the film
US5331063A (en) * 1989-10-31 1994-07-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tough high performance composite matrix
US5534602A (en) * 1990-07-02 1996-07-09 General Electric Company High temperature polyether imide compositions and method for making
US5298331A (en) * 1990-08-27 1994-03-29 E. I. Du Pont De Nemours And Company Flexible multi-layer polyimide film laminates and preparation thereof
US5229482A (en) * 1991-02-28 1993-07-20 General Electric Company Phase transfer catalyzed preparation of aromatic polyether polymers
US5324475A (en) * 1991-10-30 1994-06-28 E. I. Du Pont De Nemours And Company Process for preparing biaxially stretched isotropic polyimide film
US5460890A (en) * 1991-10-30 1995-10-24 E. I. Du Pont De Nemours And Company Biaxially stretched isotropic polyimide film having specific properties
US5633319A (en) * 1996-01-16 1997-05-27 General Electric Company Compatibilized blends of polyetherimides and liquid crystalline polyesters
US5830974A (en) * 1997-02-13 1998-11-03 General Electric Company Method for preparing aromatic polyether polymers
US6458912B1 (en) * 1998-05-13 2002-10-01 Mitsui Chemicals, Inc. Crystalline polyimide for melt molding with satisfactory thermal stability
US6187874B1 (en) * 1998-08-14 2001-02-13 Tomoegawa Paper Co., Ltd. Adhesive for electronic parts and adhesive tape for electronic parts
US6103806A (en) * 1998-12-21 2000-08-15 Mitsui Chemicals, Inc. Polyimide resin composition
US6548180B2 (en) * 2000-10-02 2003-04-15 Ube Industries, Ltd. Aromatic polyimide film and film laminate
US6476177B2 (en) * 2000-12-21 2002-11-05 E. I. Du Pont De Nemours And Company Melt-processible, thermoplastic random copolyimides having recoverable crystallinity and associated processes
US20040161711A1 (en) * 2002-12-12 2004-08-19 Arch Specialty Chemicals, Inc. Stable non-photosensitive polyimide precursor compositions for use in bilayer imaging systems
US20040249117A1 (en) * 2003-06-03 2004-12-09 General Electric Company Benzimidazole diamine-based polyetherimide compositions and methods for making them
US20040260055A1 (en) * 2003-06-20 2004-12-23 General Electric Company Polyimide resin with reduced mold deposit
US20050112362A1 (en) * 2003-06-20 2005-05-26 Hsu Yen-Huey Polyimide resin and cast-on-copper laminate
US6919422B2 (en) * 2003-06-20 2005-07-19 General Electric Company Polyimide resin with reduced mold deposit
US6849706B1 (en) * 2003-08-25 2005-02-01 General Electric Company Copolyetherimides
US20050070684A1 (en) * 2003-09-26 2005-03-31 General Electric Company Polyimide sulfones, method and articles made therefrom
US20050149390A1 (en) * 2003-12-30 2005-07-07 Scholl Nathaniel B. Method and system for generating and placing keyword-targeted advertisements
US20070066740A1 (en) * 2005-09-16 2007-03-22 Odle Roy R Annular or tubular shaped articles of novel polymer blends

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070149629A1 (en) * 2005-12-22 2007-06-28 Michael Stephen Donovan Expanded and expandable high glass transition temperature polymers
WO2009105377A3 (en) * 2008-02-20 2009-10-22 Sabic Innovative Plastics Ip B.V. Polyetherimide and polyetherimide sulfone blends having automotive lighting applications
US20090258991A1 (en) * 2008-02-25 2009-10-15 Sabic Innovative Plastics Ip B.V. Polyetherimide and Polyetherimide Sulfone Blends Having Automotive Lighting Applications
US8545988B2 (en) 2008-02-25 2013-10-01 Sabic Innovative Plastics Ip B.V. Polyetherimide and polyetherimide sulfone blends having automotive lighting applications
US8507615B2 (en) * 2009-10-27 2013-08-13 E I Du Pont De Nemours And Company Polyimide resins for high temperature wear applications
US20120273731A1 (en) * 2009-10-27 2012-11-01 E.I. Du Pont De Nemours And Company Polyimide resins for high temperature wear applications
CZ306811B6 (en) * 2010-09-01 2017-07-19 Jiangxi Advance Nanofiber S&T Co., LTD A mixed polyimide nanofibre and its use in battery separators
US9209444B2 (en) * 2010-09-01 2015-12-08 Jiangxi Advance Nanofiber S&T Co., Ltd. Polymide blend nanofiber and its use in battery separator
US20130164629A1 (en) * 2010-09-01 2013-06-27 Jiangxi Advance Nanofiber S&T Co., Ltd. Polymide blend nanofiber and its use in battery separator
US8824945B2 (en) * 2011-02-09 2014-09-02 Xerox Corporation Metallic nanoparticle reinforced polyimide for fuser belt with high thermal conductivity
US20120201580A1 (en) * 2011-02-09 2012-08-09 Xerox Corporation Metallic nanoparticle reinforced polyimide for fuser belt with high thermal conductivity
US9498905B2 (en) * 2012-05-11 2016-11-22 Ford Global Technologies, Llc Single-shot molded vehicle structural body component and method of making the same
CN102910840A (en) * 2012-10-31 2013-02-06 东华大学 High-temperature resistant benzimidazole optical fiber coating and preparation method of coating
US20160196912A1 (en) * 2013-05-10 2016-07-07 Sabic Global Technologies B.V. Dual layer wire coatings
US9522364B2 (en) 2013-12-16 2016-12-20 Sabic Global Technologies B.V. Treated mixed matrix polymeric membranes
US9492785B2 (en) 2013-12-16 2016-11-15 Sabic Global Technologies B.V. UV and thermally treated polymeric membranes
US11078378B2 (en) 2015-03-31 2021-08-03 Asahi Kasei Kabushiki Kaisha Polyimide film, polyimide varnish, and product and layered product using the polyimide film
US20230127585A1 (en) * 2019-07-17 2023-04-27 Taiwan Textile Research Institute Thermoplastic composition and method of preparing the same
WO2021138401A1 (en) * 2019-12-30 2021-07-08 Shpp Global Technologies B.V. Reinforced linear and branched polyimide composition
US20210301426A1 (en) * 2020-03-31 2021-09-30 Taiwan Textile Research Institute Fiber masterbatch and melt spun fiber
US11572639B2 (en) * 2020-03-31 2023-02-07 Taiwan Textile Research Institute Fiber masterbatch and melt spun fiber
CN112852154A (en) * 2021-01-22 2021-05-28 宁波惠璞新材料有限公司 High-temperature-resistant easy-to-process thermoplastic transparent polyimide resin material with low thermal expansion coefficient and preparation method thereof
CN114621435A (en) * 2021-08-26 2022-06-14 中瀚新材料科技有限公司 Chemical-resistant high-wear-resistance polyimide material and preparation method thereof

Also Published As

Publication number Publication date
TW200823263A (en) 2008-06-01
IN2009DE03148A (en) 2009-07-17
US20140357796A1 (en) 2014-12-04
JP2010510378A (en) 2010-04-02
CN101589110A (en) 2009-11-25
JP5628521B2 (en) 2014-11-19
US9181431B2 (en) 2015-11-10
JP2014159592A (en) 2014-09-04
WO2008063720A1 (en) 2008-05-29
EP2092019A1 (en) 2009-08-26
CN103613926A (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US9181431B2 (en) Polyimide resin compositions
US9096760B2 (en) Polymer blend compositions
US8268934B2 (en) Methods of making polymer blend compositions
US8013076B2 (en) Aromatic polyketone and polysiloxane/polyimide block copolymer composition
US8492474B2 (en) Methods of making polymer blend compositions
US8013251B2 (en) Electrical wire comprising an aromatic polyketone and polysiloxane/polyimide block copolymer composition
EP2238196B1 (en) Flame retardant polyimide/polyester-polycarbonate compositions, methods of manufacture, and articles formed therefrom
US20090099299A1 (en) Polymer blend compositions
EP1963433A2 (en) Annular or tubular shaped articles of novel polymer blends
EP2760936A1 (en) Blends of polysiloxane/polyimide block copolymer and poly(arylene sulfide)

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DONOVAN, MICHAEL;GALLUCCI, ROBERT RUSSELL;ODLE, ROY;AND OTHERS;REEL/FRAME:019014/0264;SIGNING DATES FROM 20070226 TO 20070306

AS Assignment

Owner name: SABIC INNOVATIVE PLASTICS IP B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:020985/0551

Effective date: 20070831

Owner name: SABIC INNOVATIVE PLASTICS IP B.V.,NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:020985/0551

Effective date: 20070831

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001

Effective date: 20080307

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001

Effective date: 20080307

AS Assignment

Owner name: SABIC INNOVATIVE PLASTICS IP B.V., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:032459/0798

Effective date: 20140312

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033591/0673

Effective date: 20140402

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT REMOVE 10 APPL. NUMBERS PREVIOUSLY RECORDED AT REEL: 033591 FRAME: 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033649/0529

Effective date: 20140402

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 12/116841, 12/123274, 12/345155, 13/177651, 13/234682, 13/259855, 13/355684, 13/904372, 13/956615, 14/146802, 62/011336 PREVIOUSLY RECORDED ON REEL 033591 FRAME 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033663/0427

Effective date: 20140402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION