US20080115485A1 - Purification device for decreasing particulate matter and nitrogen oxides in diesel engine - Google Patents

Purification device for decreasing particulate matter and nitrogen oxides in diesel engine Download PDF

Info

Publication number
US20080115485A1
US20080115485A1 US11/647,786 US64778606A US2008115485A1 US 20080115485 A1 US20080115485 A1 US 20080115485A1 US 64778606 A US64778606 A US 64778606A US 2008115485 A1 US2008115485 A1 US 2008115485A1
Authority
US
United States
Prior art keywords
catalyst
nitrogen oxide
post
fuel
diesel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/647,786
Inventor
Jin-Ha Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Assigned to HYUNDAI MOTOR COMPANY reassignment HYUNDAI MOTOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, JIN-HA
Publication of US20080115485A1 publication Critical patent/US20080115485A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel

Definitions

  • the present invention relates to a purification device for diesel engine exhaust and, more particularly, for decreasing particulate matter and nitrogen oxides contained in exhaust gases of diesel engines.
  • a Catalyzed Diesel Particulate Filter CDPF
  • a nitrogen oxide adsorbing catalyst de-NOx catalyst
  • a Diesel Oxidation Catalyst DOC
  • CDPF Catalyzed Diesel Particulate Filter
  • DEC Diesel Fuel Decomposition Catalyst
  • a differential pressure sensor for detecting the amount of particulate matter (PM) accumulated in the Catalyzed Diesel Particulate Filter (CDPF) is connected to the front and rear ends of the Catalyzed Diesel Particulate Filter (CDPF), and a nitrogen oxide sensor for detecting the concentration of nitrogen oxides from exhaust gases is disposed at the rear end of the Diesel Oxidation Catalyst (DOC).
  • a reducing agent was formed by decomposing fuel using the Diesel Fuel Decomposition Catalyst (DFC), and then the formed reducing agent was supplied to the nitrogen oxide adsorbing catalyst (de-NOx catalyst).
  • DFC Diesel Fuel Decomposition Catalyst
  • de-NOx catalyst nitrogen oxide adsorbing catalyst
  • the fuel injected from the secondary injection system causes the Diesel Fuel Decomposition Catalyst (DFC) to catalyze rapid oxidation reactions, so that the temperature of exhaust gases at the inlet of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) is rapidly increased, with the result that the nitrogen oxide adsorbing catalyst (de-NOx catalyst) deteriorates too rapidly.
  • DFC Diesel Fuel Decomposition Catalyst
  • the conventional purification device has a complicated structure, in which an additional bypass conduit, which is branched from the exhaust conduit in front of the Catalyzed Diesel Particulate Filter (CDPF) and includes an outlet in front of the nitrogen oxide adsorbing catalyst (de-NOx catalyst), is provided, and the Diesel Fuel Decomposition Catalyst (DFC) is contained in the bypass conduit.
  • CDPF Catalyzed Diesel Particulate Filter
  • DE-NOx catalyst nitrogen oxide adsorbing catalyst
  • Embodiments of the present invention provide a purification device which can reliably realize the purification for nitrogen oxides (NOx) by forming a reducing agent from fuel post-injected at the time of the regeneration of a nitrogen oxide adsorbing catalyst and regenerating the nitrogen oxide adsorbing catalyst using the reducing agent.
  • NOx nitrogen oxides
  • a purification device for decreasing particulate matter and nitrogen oxides includes a Catalyzed Diesel Particulate Filter (CDPF) disposed in an exhaust conduit to capture particulate matter (PM).
  • CDPF Catalyzed Diesel Particulate Filter
  • a differential pressure sensor detects the amount of particulate matter (PM) contained in the Catalyzed Diesel Particulate Filter (CDPF).
  • a post-injection injector is disposed in the exhaust conduit to post-inject fuel.
  • a Diesel Fuel Decomposition Catalyst (DFC) forms a reducing agent by decomposing the fuel injected from the post-injection injector.
  • a nitrogen oxide adsorbing catalyst reduces nitrogen oxides accumulated therein and thus removes them using the reducing agent formed by the Diesel Fuel Decomposition Catalyst (DFC).
  • a nitrogen oxide sensor is disposed in the exhaust conduit to detect the amount of the nitrogen oxides (NOx) contained in exhaust gases.
  • a control unit controls the amount of fuel post-injected through the injector of a diesel engine by determining the regeneration time of the Catalyzed Diesel Particulate Filter (CDPF) from signals detected by the differential pressure sensor, and controls the amount of fuel post-injected through the post-injection injector by determining the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) from signals detected by the nitrogen oxide sensor.
  • CDPF Catalyzed Diesel Particulate Filter
  • FIG. 1 is a schematic diagram of a purification device for decreasing particulate matter and nitrogen oxides according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a purification device for decreasing particulate matter and nitrogen oxides according to another exemplary embodiment of the present invention.
  • a Catalyzed Diesel Particulate Filter (CDPF) 14 a Diesel Fuel Decomposition Catalyst (DFC) 16 and a nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 are disposed in an exhaust conduit 12 of a diesel engine 10 , respectively.
  • a differential pressure sensor 20 which is connected to the front and rear ends of the Catalyzed Diesel Particulate Filter (CDPF) 14 and detects a pressure difference therebetween, is disposed to detect the amount of the particulate matter (PM) contained in the Catalyzed Diesel Particulate Filter (CDPF) 14 .
  • a post-injection injector 22 for post-injecting fuel and a nitrogen oxide sensor 24 for detecting the amount of nitrogen oxide (NOx) accumulated in the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 are disposed at the upstream end of the Diesel Fuel Decomposition Catalyst (DFC) 16 on the basis of an exhaust path, that is, the flow direction of exhaust gases in the exhaust conduit 12 .
  • DFC Diesel Fuel Decomposition Catalyst
  • the Catalyzed Diesel Particulate Filter (CDPF) 14 captures particulate matter (PM) contained in exhaust gases discharged through the exhaust conduit 12 , and the captured particulate matter (PM) is burned and removed through fuel post-injection performed by injectors 10 a of the diesel engine 10 at the time of the regeneration of the Catalyzed Diesel Particulate Filter (CDPF) 14 .
  • the Catalyzed Diesel Particulate Filter (CDPF) 14 which is configured into a so-called “Closed Catalyst Converter” (CCC) type catalytic device, is locally coated with a Diesel Oxidation Catalyst (DOC) 14 a at the front end thereof.
  • CCC Cell Catalyst Converter
  • DOC Diesel Oxidation Catalyst
  • the Catalyzed Diesel Particulate Filter (CDPF) 14 is disposed adjacent to an exhaust manifold 11 of the diesel engine 10 so as to directly receive exhaust heat from the manifold 11 .
  • the Diesel Fuel Decomposition Catalyst (DFC) 16 forms a reducing agent by decomposing the fuel injected from the post-injection injector 22 , and the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 reduces and thus removes nitrogen oxides accumulated therein using the reducing agent formed by the Diesel Fuel Decomposition Catalyst (DFC) 16 .
  • the Diesel Fuel Decomposition Catalyst (DFC) 16 functions to convert diesel oil, which is the fuel of the diesel engine 10 , into reducing agents such as carbon monoxide (CO), having high reactivity, short-chained hydrocarbons (HC) and hydrogen (H 2 ) by cutting and decomposing carbon chains through a catalytic reaction.
  • Diesel Fuel Decomposition Catalyst DFC 16 functions to convert diesel oil, which is the fuel of the diesel engine 10 , into reducing agents such as carbon monoxide (CO), having high reactivity, short-chained hydrocarbons (HC) and hydrogen (H 2 ) by cutting and decomposing carbon chains through a catalytic reaction.
  • the Diesel Fuel Decomposition Catalyst (DFC) 16 cuts chains of carbon constituting hydrocarbon compounds, which are main components of fuel, and thus decomposes the hydrocarbon compounds, through a thermal cracking function, as described below.
  • Diesel Fuel Decomposition Catalyst (DFC) 16 conducts a Steam Reforming function and a Partial Oxidation function, which allow for formation of a reducing agent from the decomposed fuel, as described below.
  • the reducing agent formed by the Diesel Fuel Decomposition Catalyst (DFC) 16 prevents a rapid oxidation reaction generated in the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 by directly reacting the fuel injected from the post-injection injector 22 with the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 , thereby preventing the deterioration of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 due to an oxidation reaction.
  • DFC Diesel Fuel Decomposition Catalyst
  • the Diesel Fuel Decomposition Catalyst (DFC) 16 can reduce adsorbed nitrogen oxide (NOx) to nitrogen (N 2 ).
  • the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 constitutes a catalytic device which is locally provided with a reducing agent forming catalyst 18 a at the upstream end thereof on the basis of the exhaust path, like the Diesel Fuel Decomposition Catalyst (DFC) 16 described previously, thus forming the reducing agent by decomposing the fuel injected from the post-injection injector 22 .
  • DFC Diesel Fuel Decomposition Catalyst
  • the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 essentially includes a catalyst coated portion for purifying nitrogen oxides, and additionally includes a further coated portion of the reducing agent forming catalyst 18 a at the front end thereof, which supplements the function of the Diesel Fuel Decomposition Catalyst (DFC) 16 , that is, which forms the reducing agent by decomposing fuel. Consequently, since the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 partially includes the reducing agent forming catalyst 18 a , the Diesel Fuel Decomposition Catalyst (DFC) 16 , which is relatively expensive, can be used in a decreased amount.
  • DFC Diesel Fuel Decomposition Catalyst
  • a control unit 26 determines the regeneration time of the Catalyzed Diesel Particulate Filter (CDPF) 14 from signals detected by the differential pressure sensor 20 , and determines the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 from signals detected by the nitrogen oxide sensor 24 .
  • a control unit 26 may comprise a processor, accessory and associated hardware and software as may be selected and programmed by a person of ordinary skill as it is based on the teachings of the present invention as set forth herein.
  • control unit 26 controls the amount of the fuel post-injected through injectors 10 a by controlling the operation of the injectors 10 a of a diesel engine 10 when determining the regeneration time of the Catalyzed Diesel Particulate Filter (CDPF) 14 through the differential pressure sensor 20 , and the control unit 26 controls the amount of the fuel post-injected through the post-injection injector 22 by controlling the operation of the post-injection injector 22 when determining the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 through the nitrogen oxide sensor 24 .
  • CDPF Catalyzed Diesel Particulate Filter
  • the Diesel Fuel Decomposition Catalyst (DFC) 16 is located at the upstream end of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 on the basis of an exhaust path
  • the Catalyzed Diesel Particulate Filter (CDPF) 14 is located at the upstream end of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 on the basis of an exhaust path.
  • the Catalyzed Diesel Particulate Filter (CDPF) 14 is configured to be located in front of the Diesel Fuel Decomposition Catalyst (DFC) 16 .
  • the Diesel Fuel Decomposition Catalyst (DFC) 16 and the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 are sequentially disposed in the same housing.
  • a Diesel Fuel Decomposition Catalyst (DFC) 16 is configured to be located upstream of a Catalyzed Diesel Particulate Filter (CDPF) 14 on the basis of an exhaust path.
  • the Diesel Fuel Decomposition Catalyst (DFC) 16 and a nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 are spaced apart from each other and sequentially disposed in separate housings.
  • the post-injection injector 22 is located on an exhaust conduit 12 in front of the Diesel Fuel Decomposition Catalyst (DFC) 16
  • the nitrogen oxide sensor 24 is located on the exhaust conduit 12 in front of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 .
  • the nitrogen oxide sensor 24 detects the amount of nitrogen oxides (NOx) contained in exhaust gases flowing through the exhaust conduit 12 in real time and then outputs them to the control unit 26 .
  • the control unit 26 estimates the amount of nitrogen oxides (NOx) accumulated on the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 through signals input from the nitrogen oxide sensor 24 , compares the amount of the accumulated nitrogen oxides (NOx) with the capacity of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 , and then calculates the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 .
  • the control unit 26 can more accurately calculate the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 , therefore the emission of the nitrogen oxides (NOx) can be more positively prevented.
  • control unit 26 determines the regeneration time of the Catalyzed Diesel Particulate Filter (CDPF) 14 through the differential pressure sensor 20 .
  • CDPF Catalyzed Diesel Particulate Filter
  • the control unit 26 outputs post-injection signals to the injectors 10 a of the diesel engine 10 and then removes the particulate matter (PM) captured through the post-injected fuel by oxidizing it.
  • control unit 26 determines the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 through the nitrogen oxide sensor 24 .
  • the control unit 26 outputs post-injection signals to the post-injection injector 22 .
  • the fuel post-injected through the post-injection injector is converted into reducing agents such as carbon monoxide (CO) having a high reactivity, short-chained hydrocarbons (HC) and hydrogen (H 2 ) through the Diesel Fuel Decomposition Catalyst (DFC) 16 and the reducing agent forming catalyst 18 a , and is then supplied to the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 .
  • CO carbon monoxide
  • HC short-chained hydrocarbons
  • H 2 hydrogen
  • the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 reduces the accumulated nitrogen oxides (NOx) to nitrogen (N 2 ) through the supplied reducing agents and then discharges them.
  • a rapid oxidation reaction generated by directly reacting the fuel post-injected from the post-injection injector 22 with the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 can be prevented, thereby preventing damage to the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 due to the deterioration thereof.
  • a process of desulfurizing and regenerating exhaust gases at high temperature which is usually performed to remove a poisonous sulfur coating, which is the result of sulfur components contained in diesel fuel, from the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 , is not additionally performed, and the desulfurization and regeneration of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 using exhaust heat transferred from an exhaust manifold 11 of the diesel engine 10 can be realized using heat discharged at the time of the regeneration of the Catalyzed Diesel Particulate Filter (CDPF) 14 .
  • CDPF Catalyzed Diesel Particulate Filter
  • a heat source necessary for a process of desulfurizing the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 can be obtained from exhaust heat generated in the process of regenerating the Catalyzed Diesel Particulate Filter (CDPF) 14 , which is generated by the post-injection of fuel through the injectors 10 a of the diesel engine 10 , thereby improving an air-fuel ratio by decreasing the amount of fuel that is post-injected.
  • CDPF Catalyzed Diesel Particulate Filter
  • the purification device for decreasing particulate matter and nitrogen oxides forms a reducing agent by decomposing the fuel that is post-injected at the time of the regeneration of the nitrogen oxide adsorbing catalyst through the diesel fuel decomposition catalyst, prevents damage to the nitrogen oxide adsorbing catalyst due to the deterioration thereof, resulting from overheating of the nitrogen oxides and the catalyst by the oxidation reaction at the time of the regeneration of the nitrogen oxides accumulated in the nitrogen oxide adsorbing catalyst using the formed reducing agent, thereby realizing the normal removal of the nitrogen oxides.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

A diesel exhaust purification device for decreasing the amount of particulate matter and nitrogen oxides includes a Catalyzed Diesel Particulate Filter (CDPF) disposed in an exhaust conduit to capture particulate matter (PM). A differential pressure sensor detects the amount of PM contained in the CDPF. A post-injection injector is in the exhaust conduit. A Diesel Fuel Decomposition Catalyst (DFC) forms a reducing agent by decomposing the fuel injected from the post-injection injector. A nitrogen oxide adsorbing catalyst reduces nitrogen oxides accumulated therein and removes them using the reducing agent. A nitrogen oxide sensor in the exhaust conduit detects the amount of nitrogen oxides in exhaust gases. A control unit determines the regeneration time of the CDPF from signals detected by the differential pressure sensor, controls the amount of the fuel post-injected, determines the regeneration time of the nitrogen oxide adsorbing catalyst from signals detected by the nitrogen oxide sensor, controls the fuel post-injected through the post-injection injector.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is based on, and claims priority from, Korean Application Serial Number 10-2006-0115167, filed on Nov. 21, 2006, the disclosure of which is hereby incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a purification device for diesel engine exhaust and, more particularly, for decreasing particulate matter and nitrogen oxides contained in exhaust gases of diesel engines.
  • BACKGROUND OF THE INVENTION
  • Generally, in a conventional purification device for decreasing both particulate matter and nitrogen oxides contained in exhaust gases of diesel engines, a Catalyzed Diesel Particulate Filter (CDPF), a nitrogen oxide adsorbing catalyst (de-NOx catalyst) and a Diesel Oxidation Catalyst (DOC) are disposed in sequence in an exhaust conduit, a subsidiary exhaust conduit branched from the exhaust conduit is disposed in the exhaust conduit at a position located in front of the Catalyzed Diesel Particulate Filter (CDPF), an on-off valve, a secondary injection system and a Diesel Fuel Decomposition Catalyst (DFC) are disposed in the subsidiary exhaust conduit, and an outlet of the subsidiary exhaust conduit is located in front of the de-NOx catalyst.
  • In this case, a differential pressure sensor for detecting the amount of particulate matter (PM) accumulated in the Catalyzed Diesel Particulate Filter (CDPF) is connected to the front and rear ends of the Catalyzed Diesel Particulate Filter (CDPF), and a nitrogen oxide sensor for detecting the concentration of nitrogen oxides from exhaust gases is disposed at the rear end of the Diesel Oxidation Catalyst (DOC).
  • In the above conventional purification device, a reducing agent was formed by decomposing fuel using the Diesel Fuel Decomposition Catalyst (DFC), and then the formed reducing agent was supplied to the nitrogen oxide adsorbing catalyst (de-NOx catalyst). However, there has been a problem in that the Diesel Fuel Decomposition Catalyst (DFC) is rapidly oxidized depending on the condition of exhaust gases, with the result that a phenomenon of purifying exhaust gases by oxidizing fuel, rather than by decomposing fuel injected from the secondary injection system, thus forming a reducing agent, occurs.
  • In addition, at the time of the desulfurization activity of the nitrogen oxide adsorbing catalyst (de-NOx catalyst), which is performed behind the Catalyzed Diesel Particulate Filter (CDPF) using regeneration heat occurring at the time of the coercive regeneration of the CDPF, the fuel injected from the secondary injection system causes the Diesel Fuel Decomposition Catalyst (DFC) to catalyze rapid oxidation reactions, so that the temperature of exhaust gases at the inlet of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) is rapidly increased, with the result that the nitrogen oxide adsorbing catalyst (de-NOx catalyst) deteriorates too rapidly.
  • Moreover, there has been a problem in that the conventional purification device has a complicated structure, in which an additional bypass conduit, which is branched from the exhaust conduit in front of the Catalyzed Diesel Particulate Filter (CDPF) and includes an outlet in front of the nitrogen oxide adsorbing catalyst (de-NOx catalyst), is provided, and the Diesel Fuel Decomposition Catalyst (DFC) is contained in the bypass conduit.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention provide a purification device which can reliably realize the purification for nitrogen oxides (NOx) by forming a reducing agent from fuel post-injected at the time of the regeneration of a nitrogen oxide adsorbing catalyst and regenerating the nitrogen oxide adsorbing catalyst using the reducing agent.
  • A purification device for decreasing particulate matter and nitrogen oxides according to an exemplary embodiment of the present invention includes a Catalyzed Diesel Particulate Filter (CDPF) disposed in an exhaust conduit to capture particulate matter (PM). A differential pressure sensor detects the amount of particulate matter (PM) contained in the Catalyzed Diesel Particulate Filter (CDPF). A post-injection injector is disposed in the exhaust conduit to post-inject fuel. A Diesel Fuel Decomposition Catalyst (DFC) forms a reducing agent by decomposing the fuel injected from the post-injection injector. A nitrogen oxide adsorbing catalyst (de-NOx catalyst) reduces nitrogen oxides accumulated therein and thus removes them using the reducing agent formed by the Diesel Fuel Decomposition Catalyst (DFC). A nitrogen oxide sensor is disposed in the exhaust conduit to detect the amount of the nitrogen oxides (NOx) contained in exhaust gases. A control unit controls the amount of fuel post-injected through the injector of a diesel engine by determining the regeneration time of the Catalyzed Diesel Particulate Filter (CDPF) from signals detected by the differential pressure sensor, and controls the amount of fuel post-injected through the post-injection injector by determining the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) from signals detected by the nitrogen oxide sensor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the nature and objects of the present invention, reference should be made to the following detailed description with the accompanying drawings, in which:
  • FIG. 1 is a schematic diagram of a purification device for decreasing particulate matter and nitrogen oxides according to a first embodiment of the present invention; and
  • FIG. 2 is a schematic diagram of a purification device for decreasing particulate matter and nitrogen oxides according to another exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the attached drawings.
  • Referring to FIG. 1, there is shown a first exemplary embodiment of the present invention. As shown in the drawing, a Catalyzed Diesel Particulate Filter (CDPF) 14, a Diesel Fuel Decomposition Catalyst (DFC) 16 and a nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 are disposed in an exhaust conduit 12 of a diesel engine 10, respectively. A differential pressure sensor 20, which is connected to the front and rear ends of the Catalyzed Diesel Particulate Filter (CDPF) 14 and detects a pressure difference therebetween, is disposed to detect the amount of the particulate matter (PM) contained in the Catalyzed Diesel Particulate Filter (CDPF) 14. A post-injection injector 22 for post-injecting fuel and a nitrogen oxide sensor 24 for detecting the amount of nitrogen oxide (NOx) accumulated in the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 are disposed at the upstream end of the Diesel Fuel Decomposition Catalyst (DFC) 16 on the basis of an exhaust path, that is, the flow direction of exhaust gases in the exhaust conduit 12.
  • Here, the Catalyzed Diesel Particulate Filter (CDPF) 14 captures particulate matter (PM) contained in exhaust gases discharged through the exhaust conduit 12, and the captured particulate matter (PM) is burned and removed through fuel post-injection performed by injectors 10 a of the diesel engine 10 at the time of the regeneration of the Catalyzed Diesel Particulate Filter (CDPF) 14.
  • Further, the Catalyzed Diesel Particulate Filter (CDPF) 14, which is configured into a so-called “Closed Catalyst Converter” (CCC) type catalytic device, is locally coated with a Diesel Oxidation Catalyst (DOC) 14 a at the front end thereof. The Catalyzed Diesel Particulate Filter (CDPF) 14 is disposed adjacent to an exhaust manifold 11 of the diesel engine 10 so as to directly receive exhaust heat from the manifold 11.
  • Further, the Diesel Fuel Decomposition Catalyst (DFC) 16 forms a reducing agent by decomposing the fuel injected from the post-injection injector 22, and the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 reduces and thus removes nitrogen oxides accumulated therein using the reducing agent formed by the Diesel Fuel Decomposition Catalyst (DFC) 16.
  • In this case, the Diesel Fuel Decomposition Catalyst (DFC) 16 functions to convert diesel oil, which is the fuel of the diesel engine 10, into reducing agents such as carbon monoxide (CO), having high reactivity, short-chained hydrocarbons (HC) and hydrogen (H2) by cutting and decomposing carbon chains through a catalytic reaction.
  • That is, the Diesel Fuel Decomposition Catalyst (DFC) 16 cuts chains of carbon constituting hydrocarbon compounds, which are main components of fuel, and thus decomposes the hydrocarbon compounds, through a thermal cracking function, as described below.
  • A process of decomposing fuel (Thermal Cracking):

  • C16H34→2n-C8H17*→n-C6H13*→2n-C4H9*→C4H5*→C2H4

  • C16H34→8 C2H4+H2
  • (wherein, * designates radical).
  • Further, the Diesel Fuel Decomposition Catalyst (DFC) 16 conducts a Steam Reforming function and a Partial Oxidation function, which allow for formation of a reducing agent from the decomposed fuel, as described below.
  • A process of forming carbon monoxide (CO) and hydrogen (H2), which are reducing agents, from the decomposed fuel (Steam Reforming):

  • C16H34+16 H2O→16 CO+33 H2
  • A process of forming carbon monoxide (CO), hydrocarbons (HC) and hydrogen (H2), which are reducing agents, from the decomposed fuel (Partial Oxidation):

  • C16H34+½ O2→8 C2H4+H2O

  • C16H34+8 O2→16 CO+17 H2.
  • Accordingly, the reducing agent formed by the Diesel Fuel Decomposition Catalyst (DFC) 16 prevents a rapid oxidation reaction generated in the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 by directly reacting the fuel injected from the post-injection injector 22 with the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18, thereby preventing the deterioration of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 due to an oxidation reaction.
  • As a result, the Diesel Fuel Decomposition Catalyst (DFC) 16 can reduce adsorbed nitrogen oxide (NOx) to nitrogen (N2).
  • Meanwhile, the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 constitutes a catalytic device which is locally provided with a reducing agent forming catalyst 18 a at the upstream end thereof on the basis of the exhaust path, like the Diesel Fuel Decomposition Catalyst (DFC) 16 described previously, thus forming the reducing agent by decomposing the fuel injected from the post-injection injector 22.
  • More specifically, the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 essentially includes a catalyst coated portion for purifying nitrogen oxides, and additionally includes a further coated portion of the reducing agent forming catalyst 18 a at the front end thereof, which supplements the function of the Diesel Fuel Decomposition Catalyst (DFC) 16, that is, which forms the reducing agent by decomposing fuel. Consequently, since the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 partially includes the reducing agent forming catalyst 18 a, the Diesel Fuel Decomposition Catalyst (DFC) 16, which is relatively expensive, can be used in a decreased amount.
  • A control unit 26 determines the regeneration time of the Catalyzed Diesel Particulate Filter (CDPF) 14 from signals detected by the differential pressure sensor 20, and determines the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 from signals detected by the nitrogen oxide sensor 24. A control unit 26 may comprise a processor, accessory and associated hardware and software as may be selected and programmed by a person of ordinary skill as it is based on the teachings of the present invention as set forth herein.
  • In this case, the control unit 26 controls the amount of the fuel post-injected through injectors 10 a by controlling the operation of the injectors 10 a of a diesel engine 10 when determining the regeneration time of the Catalyzed Diesel Particulate Filter (CDPF) 14 through the differential pressure sensor 20, and the control unit 26 controls the amount of the fuel post-injected through the post-injection injector 22 by controlling the operation of the post-injection injector 22 when determining the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 through the nitrogen oxide sensor 24.
  • Moreover, in the present invention, the Diesel Fuel Decomposition Catalyst (DFC) 16 is located at the upstream end of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 on the basis of an exhaust path, and the Catalyzed Diesel Particulate Filter (CDPF) 14 is located at the upstream end of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 on the basis of an exhaust path. According to the first embodiment of the present invention, the Catalyzed Diesel Particulate Filter (CDPF) 14 is configured to be located in front of the Diesel Fuel Decomposition Catalyst (DFC) 16. In this case, the Diesel Fuel Decomposition Catalyst (DFC) 16 and the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 are sequentially disposed in the same housing.
  • Referring to FIG. 2, there is shown a second exemplary embodiment of the present invention. According to this second embodiment, a Diesel Fuel Decomposition Catalyst (DFC) 16 is configured to be located upstream of a Catalyzed Diesel Particulate Filter (CDPF) 14 on the basis of an exhaust path. In this case, the Diesel Fuel Decomposition Catalyst (DFC) 16 and a nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 are spaced apart from each other and sequentially disposed in separate housings.
  • According to the first and second embodiments of the present invention, the post-injection injector 22 is located on an exhaust conduit 12 in front of the Diesel Fuel Decomposition Catalyst (DFC) 16, and the nitrogen oxide sensor 24 is located on the exhaust conduit 12 in front of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18. In this case, the nitrogen oxide sensor 24 detects the amount of nitrogen oxides (NOx) contained in exhaust gases flowing through the exhaust conduit 12 in real time and then outputs them to the control unit 26. The control unit 26 estimates the amount of nitrogen oxides (NOx) accumulated on the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 through signals input from the nitrogen oxide sensor 24, compares the amount of the accumulated nitrogen oxides (NOx) with the capacity of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18, and then calculates the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18. As a result, the control unit 26 can more accurately calculate the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18, therefore the emission of the nitrogen oxides (NOx) can be more positively prevented.
  • Hereinafter, an operation of the purification device for decreasing particulate matter and nitrogen oxides according to the present invention will be described.
  • First, when exhaust gases are discharged through an exhaust conduit 12 after the burning in the diesel engine 10, particulate matter (PM) contained in the exhaust gases is captured in the Catalyzed Diesel Particulate Filter (CDPF) 14, and nitrogen oxides (NOx) are accumulated in the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18.
  • In the course of these processes, the control unit 26 determines the regeneration time of the Catalyzed Diesel Particulate Filter (CDPF) 14 through the differential pressure sensor 20. When the regeneration time thereof is reached, the control unit 26 outputs post-injection signals to the injectors 10 a of the diesel engine 10 and then removes the particulate matter (PM) captured through the post-injected fuel by oxidizing it.
  • Further, the control unit 26 determines the regeneration time of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 through the nitrogen oxide sensor 24. When the regeneration time thereof is reached, the control unit 26 outputs post-injection signals to the post-injection injector 22. The fuel post-injected through the post-injection injector is converted into reducing agents such as carbon monoxide (CO) having a high reactivity, short-chained hydrocarbons (HC) and hydrogen (H2) through the Diesel Fuel Decomposition Catalyst (DFC) 16 and the reducing agent forming catalyst 18 a, and is then supplied to the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18.
  • In this case, the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 reduces the accumulated nitrogen oxides (NOx) to nitrogen (N2) through the supplied reducing agents and then discharges them. As a result, a rapid oxidation reaction, generated by directly reacting the fuel post-injected from the post-injection injector 22 with the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 can be prevented, thereby preventing damage to the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 due to the deterioration thereof.
  • Further, according to the present invention, a process of desulfurizing and regenerating exhaust gases at high temperature, which is usually performed to remove a poisonous sulfur coating, which is the result of sulfur components contained in diesel fuel, from the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18, is not additionally performed, and the desulfurization and regeneration of the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 using exhaust heat transferred from an exhaust manifold 11 of the diesel engine 10 can be realized using heat discharged at the time of the regeneration of the Catalyzed Diesel Particulate Filter (CDPF) 14.
  • That is, a heat source necessary for a process of desulfurizing the nitrogen oxide adsorbing catalyst (de-NOx catalyst) 18 can be obtained from exhaust heat generated in the process of regenerating the Catalyzed Diesel Particulate Filter (CDPF) 14, which is generated by the post-injection of fuel through the injectors 10 a of the diesel engine 10, thereby improving an air-fuel ratio by decreasing the amount of fuel that is post-injected.
  • As described above, the purification device for decreasing particulate matter and nitrogen oxides according to the present invention forms a reducing agent by decomposing the fuel that is post-injected at the time of the regeneration of the nitrogen oxide adsorbing catalyst through the diesel fuel decomposition catalyst, prevents damage to the nitrogen oxide adsorbing catalyst due to the deterioration thereof, resulting from overheating of the nitrogen oxides and the catalyst by the oxidation reaction at the time of the regeneration of the nitrogen oxides accumulated in the nitrogen oxide adsorbing catalyst using the formed reducing agent, thereby realizing the normal removal of the nitrogen oxides.

Claims (9)

1. A purification device for decreasing particulate matter and nitrogen oxides, comprising:
a filter disposed in an exhaust conduit to capture particulate matter;
a differential pressure sensor for detecting an amount of the particulate matter contained in said filter;
a post-injection injector disposed in the exhaust conduit to post-inject fuel;
a first catalyst for forming a reducing agent by decomposing the fuel injected from the post-injection injector;
a second catalyst for reducing nitrogen oxides accumulated therein and thus removing them using the reducing agent formed by the catalyst;
a nitrogen oxide sensor disposed in the exhaust conduit to detect an amount of nitrogen oxides contained in exhaust gases; and
a control unit for determining a regeneration time of said filter from signals detected by the differential pressure sensor and controlling an amount of the fuel post-injected through injectors of a diesel engine, and determining a regeneration time of the second catalyst from signals detected by the nitrogen oxide sensor and controlling the amount of the fuel post-injected through the post-injection injector.
2. The purification device as defined in claim 1, wherein:
said filter is a catalyzed diesel particulate filter;
3. The purification device as defined in claim 2, wherein the catalyzed diesel particulate filter is directly connected to an exhaust manifold and is a closed catalyst converter type catalytic device partially provided with a diesel oxidation catalyst.
4. The purification device as defined in claim 2, wherein the nitrogen oxide adsorbing catalyst is a catalytic device partially provided with a reducing agent forming catalyst, which forms the reducing agent by decomposing fuel.
5. The purification device as defined in claim 2, wherein the diesel fuel decomposition catalyst is located upstream of the nitrogen oxide adsorbing catalyst on a basis of an exhaust path, and the catalyzed diesel particulate filter is located upstream of the nitrogen oxide adsorbing catalyst on a basis of an exhaust path.
6. The purification device as defined in claim 5, wherein the catalyzed diesel particulate filter is located upstream of the diesel fuel decomposition catalyst on a basis of an exhaust path.
7. The purification device as defined in claim 5, wherein the diesel fuel decomposition catalyst is located upstream of the catalyzed diesel particulate filter on a basis of an exhaust path.
8. The purification device as defined in any one of claims 2 to 7, wherein the post-injection injector is located in front of the diesel fuel decomposition catalyst in an exhaust conduit.
9. The purification device as defined in claims 8, wherein the nitrogen oxide sensor is located in front of the nitrogen oxide adsorbing catalyst in an exhaust conduit.
US11/647,786 2006-11-21 2006-12-29 Purification device for decreasing particulate matter and nitrogen oxides in diesel engine Abandoned US20080115485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2006-0115167 2006-11-21
KR1020060115167A KR100836367B1 (en) 2006-11-21 2006-11-21 purification device for diminishing PM and NOx of diesel engine

Publications (1)

Publication Number Publication Date
US20080115485A1 true US20080115485A1 (en) 2008-05-22

Family

ID=39326484

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/647,786 Abandoned US20080115485A1 (en) 2006-11-21 2006-12-29 Purification device for decreasing particulate matter and nitrogen oxides in diesel engine

Country Status (4)

Country Link
US (1) US20080115485A1 (en)
KR (1) KR100836367B1 (en)
CN (1) CN101187326A (en)
DE (1) DE102006062085A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151340A1 (en) * 2007-12-13 2009-06-18 Yoshifumi Kato Exhaust gas purification device
US20100186382A1 (en) * 2009-01-26 2010-07-29 Caterpillar Inc. Emissions system mounting device with reductant mixing
US20100223919A1 (en) * 2009-03-09 2010-09-09 Hyundai Motor Company Nox reduction catalyst and exhaust system using the same
US20110023455A1 (en) * 2009-07-31 2011-02-03 Hyundai Motor Company Method for purifying nitrogen oxide in exhaust gas and exhaust system operating the same
US20110047977A1 (en) * 2009-08-21 2011-03-03 Hyundai Motor Company Exhaust device for diesel vehicle
US20110099976A1 (en) * 2009-11-02 2011-05-05 Hyundai Motor Company Exhaust system
WO2012045423A3 (en) * 2010-10-04 2012-08-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Exhaust-gas purification device, method for exhaust-gas purification, catalytic converter and pyrolysis reactor
US20140157759A1 (en) * 2012-12-10 2014-06-12 Hyundai Motor Company Exhaust gas after-treatment method
US20170081999A1 (en) * 2015-09-18 2017-03-23 Hyundai Motor Company Catalytic converter for vehicle
US10018130B2 (en) 2015-05-11 2018-07-10 General Electric Company Fuel injector wear compensation methodology by altering injection schedule
CN109356690A (en) * 2018-12-14 2019-02-19 大连海事大学 Diesel engine pollutant disposal system and method
US10316783B2 (en) 2015-05-11 2019-06-11 Ge Global Sourcing Llc Fuel injector wear correction methodology

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011758B1 (en) * 2008-07-17 2011-02-07 희성촉매 주식회사 After-treatment apparatus for treating exhaust gases from diesel engines
KR100993358B1 (en) 2008-10-16 2010-11-09 현대자동차주식회사 Purification device of exhaust gas
KR20110012498A (en) 2009-07-30 2011-02-09 현대자동차주식회사 Exhaust system
US20110047992A1 (en) * 2009-08-25 2011-03-03 International Engine Intellectual Property Company, Llc Partial coating of platinum group metals on filter for increased soot mass limit and reduced costs
KR20110023158A (en) 2009-08-28 2011-03-08 현대자동차주식회사 Exhaust system
KR101189238B1 (en) * 2010-08-11 2012-10-09 기아자동차주식회사 NOx Storage and Reduction Catalyst, Preparation Method thereof, and NOx Removing System Comprising the Same
KR101023438B1 (en) 2011-01-18 2011-03-24 파카코리아 주식회사 Apparatus for reducing exhaust gas of diesel engine
IN2014DN10230A (en) * 2012-05-22 2015-08-07 Toyota Motor Co Ltd
WO2014076815A1 (en) * 2012-11-16 2014-05-22 トヨタ自動車株式会社 Exhaust gas purification system for internal-combustion engine
GB2547873B (en) * 2014-12-31 2021-03-10 Cummins Emission Solutions Inc Close coupled single module aftertreatment system
CN105545418A (en) * 2016-01-29 2016-05-04 中国人民解放军军事交通学院 Combustion-supporting regeneration method and equipment for filtering body of exhaust particles of diesel engine by spraying anhydrous ethanol

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974791A (en) * 1997-03-04 1999-11-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
US6176078B1 (en) * 1998-11-13 2001-01-23 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
US6735940B2 (en) * 2002-07-11 2004-05-18 Fleetguard, Inc. Adsorber aftertreatment system having dual adsorbers
US6742328B2 (en) * 2001-10-11 2004-06-01 Southwest Research Institute Systems and methods for controlling diesel engine emissions
US20040232046A1 (en) * 2001-08-21 2004-11-25 Hiroshi Tanaka Method and apparatus for recycling hydrocarbon resource
US6959542B2 (en) * 2002-01-25 2005-11-01 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to regenerate a DPNR device
US7146801B2 (en) * 2003-01-09 2006-12-12 Nissan Motor Co., Ltd. Fuel vaporizing device
US20080006025A1 (en) * 2006-07-06 2008-01-10 Eaton Corporation LNT regeneration during transient operation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60225321T2 (en) * 2001-12-03 2009-02-26 Eaton Corp., Cleveland SYSTEM AND METHOD FOR IMPROVED EMISSION CONTROL OF INTERNAL COMBUSTION ENGINES
KR20050118762A (en) * 2004-06-15 2005-12-20 현대자동차주식회사 Exhaust gas purifying system using diesel reformer
KR100610425B1 (en) * 2004-07-01 2006-08-08 현대자동차주식회사 NOx-PM simultaneous reduction system using fuel cracking catalyzer
KR20060115939A (en) * 2005-05-07 2006-11-13 (주)네오포텍 System for purifying exhaust gas of diesel engine and method use of the same system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974791A (en) * 1997-03-04 1999-11-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
US6176078B1 (en) * 1998-11-13 2001-01-23 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
US20040232046A1 (en) * 2001-08-21 2004-11-25 Hiroshi Tanaka Method and apparatus for recycling hydrocarbon resource
US6742328B2 (en) * 2001-10-11 2004-06-01 Southwest Research Institute Systems and methods for controlling diesel engine emissions
US6959542B2 (en) * 2002-01-25 2005-11-01 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to regenerate a DPNR device
US6735940B2 (en) * 2002-07-11 2004-05-18 Fleetguard, Inc. Adsorber aftertreatment system having dual adsorbers
US7146801B2 (en) * 2003-01-09 2006-12-12 Nissan Motor Co., Ltd. Fuel vaporizing device
US20080006025A1 (en) * 2006-07-06 2008-01-10 Eaton Corporation LNT regeneration during transient operation

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151340A1 (en) * 2007-12-13 2009-06-18 Yoshifumi Kato Exhaust gas purification device
US20100186382A1 (en) * 2009-01-26 2010-07-29 Caterpillar Inc. Emissions system mounting device with reductant mixing
US8128880B2 (en) * 2009-03-09 2012-03-06 Hyundai Motor Company NOx reduction catalyst and exhaust system using the same
US20100223919A1 (en) * 2009-03-09 2010-09-09 Hyundai Motor Company Nox reduction catalyst and exhaust system using the same
US8240139B2 (en) * 2009-07-31 2012-08-14 Hyundai Motor Company Method for purifying nitrogen oxide in exhaust gas and exhaust system operating the same
JP2011033018A (en) * 2009-07-31 2011-02-17 Hyundai Motor Co Ltd Method for eliminating nitrogen oxide in exhaust gas and exhaust device for performing the same
US20110023455A1 (en) * 2009-07-31 2011-02-03 Hyundai Motor Company Method for purifying nitrogen oxide in exhaust gas and exhaust system operating the same
US8601797B2 (en) * 2009-08-21 2013-12-10 Hyundai Motor Company Exhaust device for diesel vehicle
US20110047977A1 (en) * 2009-08-21 2011-03-03 Hyundai Motor Company Exhaust device for diesel vehicle
US20110099976A1 (en) * 2009-11-02 2011-05-05 Hyundai Motor Company Exhaust system
US8555619B2 (en) * 2009-11-02 2013-10-15 Hyundai Motor Company Exhaust system
WO2012045423A3 (en) * 2010-10-04 2012-08-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Exhaust-gas purification device, method for exhaust-gas purification, catalytic converter and pyrolysis reactor
US9074508B2 (en) 2010-10-04 2015-07-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Exhaust-gas purification device, method for exhaust-gas purification, catalytic converter and pyrolysis reactor
US20140157759A1 (en) * 2012-12-10 2014-06-12 Hyundai Motor Company Exhaust gas after-treatment method
US10018130B2 (en) 2015-05-11 2018-07-10 General Electric Company Fuel injector wear compensation methodology by altering injection schedule
US10316783B2 (en) 2015-05-11 2019-06-11 Ge Global Sourcing Llc Fuel injector wear correction methodology
US20170081999A1 (en) * 2015-09-18 2017-03-23 Hyundai Motor Company Catalytic converter for vehicle
US9869221B2 (en) * 2015-09-18 2018-01-16 Hyundai Motor Company Catalytic converter for vehicle
CN109356690A (en) * 2018-12-14 2019-02-19 大连海事大学 Diesel engine pollutant disposal system and method

Also Published As

Publication number Publication date
KR20080045912A (en) 2008-05-26
CN101187326A (en) 2008-05-28
DE102006062085A1 (en) 2008-05-29
KR100836367B1 (en) 2008-06-09

Similar Documents

Publication Publication Date Title
US20080115485A1 (en) Purification device for decreasing particulate matter and nitrogen oxides in diesel engine
JP5630024B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP6508229B2 (en) Abnormality diagnosis device for exhaust gas purification device for internal combustion engine
US8056323B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
EP2808512B1 (en) Exhaust post-processing apparatus and control method
JP5630025B2 (en) Diesel engine exhaust purification device and exhaust purification method
JP6305128B2 (en) Lean knock strap desulfurization apparatus and method
WO2009107298A1 (en) Method for controlling exhaust gas purification system and exhaust gas purification system
KR20110023597A (en) Exhaust system
WO2004097197A2 (en) N0x aftertreatment system and method for internal combustion engines
KR20060012642A (en) Exhaust gas purifier
KR20110062149A (en) Exhaust purification system for internal combustion engine and desulfurization method for the same
US7216481B2 (en) Method and apparatus for regeneration of engine exhaust aftertreatment devices
JP5431677B2 (en) Exhaust gas purification device
US7204082B1 (en) System for combustion of reformate in an engine exhaust stream
CN109891064B (en) Exhaust gas aftertreatment system
JP3758389B2 (en) Diesel engine exhaust gas purification system
US8763373B2 (en) System for purifying exhaust gas and method for controlling the same
JP5608962B2 (en) Exhaust gas purification system
KR101055834B1 (en) Secondary fuel injection control device of internal combustion engine
FR2924749A1 (en) Exhaust gas line for e.g. diesel engine, of motor vehicle, has valves and conduit that are controlled by logic controller to bypass part of gaseous flow containing quantity of fuel directed on catalyst, without passing via another catalyst
JP2001140630A (en) Exhaust emission control device for internal combustion engine
JP2009002179A (en) Exhaust emission control device for internal combustion engine
EP2093396A1 (en) An exhaust system and a method for such a system
CN1806099A (en) Treatment of NOx sorber regeneration gas

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, JIN-HA;REEL/FRAME:018743/0997

Effective date: 20061228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION