US20080105772A2 - Shredder throat safety system - Google Patents

Shredder throat safety system Download PDF

Info

Publication number
US20080105772A2
US20080105772A2 US11/177,480 US17748005A US2008105772A2 US 20080105772 A2 US20080105772 A2 US 20080105772A2 US 17748005 A US17748005 A US 17748005A US 2008105772 A2 US2008105772 A2 US 2008105772A2
Authority
US
United States
Prior art keywords
shredder
cutter elements
opening
switch
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/177,480
Other versions
US7661614B2 (en
US20060054725A1 (en
Inventor
Tai Hoon MATLIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fellowes Inc
Original Assignee
Fellowes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/937,304 external-priority patent/US7311276B2/en
Application filed by Fellowes Inc filed Critical Fellowes Inc
Priority to US11/177,480 priority Critical patent/US7661614B2/en
Priority to CN2009102622639A priority patent/CN101716545B/en
Priority to CA2579137A priority patent/CA2579137C/en
Priority to AU2005285398A priority patent/AU2005285398B2/en
Priority to EP05784240.3A priority patent/EP1819442B1/en
Priority to CN2005800344785A priority patent/CN101180130B/en
Priority to PCT/US2005/028290 priority patent/WO2006031324A1/en
Priority to PL05784240T priority patent/PL1819442T3/en
Priority to DE202005021450U priority patent/DE202005021450U1/en
Priority to DE202005021676U priority patent/DE202005021676U1/en
Priority to CA2683280A priority patent/CA2683280C/en
Priority to EP08102126.3A priority patent/EP1935497B1/en
Priority to CN2009102523243A priority patent/CN101850288B/en
Priority to DE202005021604U priority patent/DE202005021604U1/en
Priority to RU2007108715A priority patent/RU2379111C2/en
Priority to JP2005261612A priority patent/JP2006075831A/en
Assigned to FELLOWES INC. reassignment FELLOWES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MATLIN, TAI HOON KIM
Publication of US20060054725A1 publication Critical patent/US20060054725A1/en
Priority to US11/444,491 priority patent/US7631822B2/en
Priority to JP2006347558A priority patent/JP4653066B2/en
Priority to US11/766,521 priority patent/US7635102B2/en
Priority to US11/767,152 priority patent/US7631823B2/en
Priority to US11/768,651 priority patent/US7631824B2/en
Priority to US11/770,223 priority patent/US7712689B2/en
Priority to AU2008100182A priority patent/AU2008100182B4/en
Publication of US20080105772A2 publication Critical patent/US20080105772A2/en
Priority to AU2008202504A priority patent/AU2008202504B2/en
Priority to RU2009134476/13A priority patent/RU2446891C2/en
Priority to US12/578,292 priority patent/US7946514B2/en
Priority to US12/616,567 priority patent/US7963468B2/en
Priority to US12/630,488 priority patent/US7946515B2/en
Priority to JP2009298593A priority patent/JP5330987B2/en
Assigned to FELLOWES, INC. reassignment FELLOWES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MATLIN, TAI HOON K, GACH, ERIC
Assigned to FELLOWES, INC. reassignment FELLOWES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMD TECHNOLOGIES, INC.
Priority to AU2010100056A priority patent/AU2010100056B4/en
Application granted granted Critical
Publication of US7661614B2 publication Critical patent/US7661614B2/en
Priority to US12/732,899 priority patent/US8783592B2/en
Priority to US13/020,553 priority patent/US8870106B2/en
Priority to US13/030,849 priority patent/USRE44161E1/en
Priority to US13/213,857 priority patent/US8672247B2/en
Priority to US13/213,809 priority patent/US8757526B2/en
Priority to US13/760,768 priority patent/US20130146693A1/en
Priority to US14/172,687 priority patent/US9573135B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/0007Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating documents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/04Safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/141Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using sound propagation, e.g. sonar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/145Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using magnetic technology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/147Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using electro-magnetic technology, e.g. tags or radar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • F16P3/12Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine
    • F16P3/14Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact
    • F16P3/148Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body with means, e.g. feelers, which in case of the presence of a body part of a person in or near the danger zone influence the control or operation of the machine the means being photocells or other devices sensitive without mechanical contact using capacitive technology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/0007Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating documents
    • B02C2018/0015Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating documents for disintegrating CDs, DVDs and/or credit cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C2018/164Prevention of jamming and/or overload
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C2018/168User safety devices or measures in shredders

Definitions

  • the present invention relates to shredders for destroying articles, such as documents, CDs, etc.
  • Shredders are well known devices for destroying articles, such as documents, CDs, floppy disks, etc.
  • articles such as documents, CDs, floppy disks, etc.
  • users purchase shredders to destroy sensitive articles, such as credit card statements with account information, documents containing company trade secrets, etc.
  • a common type of shredder has a shredder mechanism contained within a housing that is removably mounted atop a container.
  • the shredder mechanism typically has a series of cutter elements that shred articles fed therein and discharge the shredded articles downwardly into the container. It is generally desirable to prevent a person's or animal's body part from contacting these cutter elements during the shredding operation.
  • the present invention endeavors to provide various improvements over known shredders.
  • One aspect of the present invention provides a shredder comprising a housing, a shredder mechanism including a motor and cutter elements, a proximity sensor, and a controller.
  • the shredder mechanism enables articles to be shredded to be fed into the cutter elements, and the motor is operable to drive the cutter elements so that the cutter elements shred the articles fed therein.
  • the housing has an opening enabling articles to be fed therethrough into the cutter elements of the shredder mechanism for shredding.
  • the proximity sensor is located adjacent the opening and configured to indicate the presence of a person or animal in proximity to the opening.
  • the controller is operable to perform a predetermined operation (e.g., to disable the shredder mechanism) responsive to the indicated presence of the person or animal.
  • Another aspect of the invention provides a shredder with a proximity sensor that includes an electroconductive element and circuitry to sense a state of the electroconductive element.
  • the proximity sensor is configured to indicate a change in the state of the electroconductive element corresponding to a change in capacitance caused by a person or animal approaching in proximity to the electroconductive element.
  • a controller of the shredder is operable to perform a predetermined operation responsive to the indicated change in the state of the electroconductive element.
  • a shredder having a housing, a shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the shredder mechanism enabling articles to be shredded to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the articles fed therein, the housing having a movable part providing at least part of an opening enabling articles to be fed therethrough into the cutter elements of the shredder mechanism for shredding, the movable part being movable from a first position to a second position and being biased to the first position, a detector configured to detect movement of the movable part to the second position, the movable part being constructed to move from the first position to the second position upon a user attempting to force an article having a thickness greater than a predetermined thickness through the opening, and a controller operable to perform a predetermined operation responsive to the detector detecting that the movable part has moved to the second position.
  • FIG. 1 is a perspective view of a shredder constructed in accordance with an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the shredder of FIG. 1 ;
  • FIG. 3 is a perspective view of a shredder constructed in accordance with an embodiment of the present invention.
  • FIGS. 4-7 are cross-sectional views each showing a shredder housing, opening, cutting elements, and conductor configuration for a sensor in accordance with various embodiments of the present invention.
  • FIGS. 8 and 9 illustrate example capacitive sensor circuits according to respective embodiments of the present invention.
  • FIGS. 10 a and 10 b are cross-sectional views showing a shredder opening having a pressure-sensitive switch in accordance with embodiments of the present invention.
  • FIGS. 11 a and 11 b are cross-sectional views showing a shredder opening having an alternate pressure-sensitive switch in accordance with embodiments of the present invention
  • FIGS. 12 and 12 a are illustrations of a shredder constructed in accordance with an additional embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an example of an electronic circuit for controlling the operation of a shredder in accordance with the embodiment of FIG. 12 ;
  • FIG. 14 is a schematic diagram of an electrical connection used in an embodiment of the present invention configured for retrofitting to an existing shredder.
  • FIGS. 15 and 15 a are illustrations of a retrofit embodiment of the present invention.
  • FIGS. 1 and 2 illustrate a shredder constructed in accordance with an embodiment of the present invention.
  • the shredder is generally indicated at 10 .
  • the shredder 10 sits atop a waste container, generally indicated at 12 , which is formed of molded plastic or any other material.
  • the shredder 10 illustrated is designed specifically for use with the container 12 , as the shredder housing 14 sits on the upper periphery of the waste container 12 in a nested relation.
  • the shredder 10 may also be designed so as to sit atop a wide variety of standard waste containers, and the shredder 10 would not be sold with the container.
  • the shredder 10 could be part of a large freestanding housing, and a waste container would be enclosed in the housing. An access door would provide for access to and removal of the container.
  • the shredder 10 may have any suitable construction or configuration and the illustrated embodiment is not intended to be limiting in any way.
  • the shredder 10 includes a shredder mechanism 16 including an electrically powered motor 18 and a plurality of cutter elements (not shown).
  • “Shredder mechanism” is a generic structural term to denote a device that shreds articles using cutter elements. Such shredding may be done in any particular way.
  • the cutter elements are generally mounted on a pair of parallel rotating shafts (not shown).
  • the motor 18 operates using electrical power to rotatably drive the shafts and the cutter elements through a conventional transmission 23 so that the cutter elements shred articles fed therein.
  • the shredder mechanism 16 may also include a sub-frame 21 for mounting the shafts, the motor 18 , and the transmission 23 .
  • the operation and construction of such a shredder mechanism 16 are well known and need not be described herein in detail. Generally, any suitable shredder mechanism 16 known in the art or developed hereafter may be used.
  • the shredder 10 also includes the shredder housing 14 , mentioned above.
  • the shredder housing 14 includes top wall 24 that sits atop the container 12 .
  • the top wall 14 is molded from plastic and an opening 26 is located at a front portion thereof.
  • the opening 26 is formed in part by a downwardly depending generally U-shaped member 28 .
  • the U-shaped member 28 has a pair of spaced apart connector portions 27 on opposing sides thereof and a hand grip portion 28 extending between the connector portions 27 in spaced apart relation from the housing 14 .
  • the opening 26 allows waste to be discarded into the container 12 without being passed through the shredder mechanism 16 , and the member 28 may act as a handle for carrying the shredder 10 separate from the container 12 .
  • this opening 26 may be provided with a lid, such as a pivoting lid, that opens and closes the opening 26 .
  • a lid such as a pivoting lid
  • this opening in general is optional and may be omitted entirely.
  • the shredder housing 14 and its top wall 24 may have any suitable construction or configuration.
  • the shredder housing 14 also includes a bottom receptacle 30 having a bottom wall, four side walls and an open top.
  • the shredder mechanism 16 is received therein, and the receptacle 30 is affixed to the underside of the top wall 24 by fasteners.
  • the receptacle 30 has an opening 32 in its bottom wall through which the shredder mechanism 16 discharges shredded articles into the container 12 .
  • the top wall 24 has a generally laterally extending opening 36 extending generally parallel and above the cutter elements.
  • the opening 36 often referred to as a throat, enables the articles being shredded to be fed into the cutter elements.
  • the opening 36 is relatively narrow, which is desirable for preventing overly thick items, such as large stacks of documents, from being fed into cutter elements, which could lead to jamming.
  • the opening 36 may have any configuration.
  • the top wall 24 also has a switch recess 38 with an opening therethrough.
  • An on/off switch 42 includes a switch module (not shown) mounted to the top wall 24 underneath the recess 38 by fasteners, and a manually engageable portion 46 that moves laterally within the recess 38 .
  • the switch module has a movable element (not shown) that connects to the manually engageable portion 46 through the opening 40 . This enables movement of the manually engageable portion 46 to move the switch module between its states.
  • the switch module connects the motor 18 to the power supply (not shown).
  • the power supply will be a standard power cord 44 with a plug 48 on its end that plugs into a standard AC outlet.
  • the switch 42 is movable between an on position and an off position by moving the portion 46 laterally within the recess 38 . In the on position, contacts in the switch module are closed by movement of the manually engageable portion 46 and the movable element to enable a delivery of electrical power to the motor 18 . In the off position, contacts in the switch module are opened to disable the delivery of electric power to the motor 18 .
  • the switch 42 may also have a reverse position wherein contacts are closed to enable delivery of electrical power to operate the motor 18 in a reverse manner. This would be done by using a reversible motor and applying a current that is of a reverse polarity relative to the on position.
  • the capability to operate the motor 18 in a reversing manner is desirable to move the cutter elements in a reversing direction for clearing jams.
  • the manually engageable portion 46 and the movable element would be located generally in the center of the recess 38 , and the on and reverse positions would be on opposing lateral sides of the off position.
  • the construction and operation of the switch 42 for controlling the motor 42 are well known and any construction for such a switch 42 may be used.
  • the top cover 24 also includes another recess 50 associated with a switch lock 52 .
  • the switch lock 52 includes a manually engageable portion 54 that is movable by a user's hand and a locking portion (not shown).
  • the manually engageable portion 54 is seated in the recess 50 and the locking portion is located beneath the top wall 24 .
  • the locking portion is integrally formed as a plastic piece with the manually engageable portion 54 and extends beneath the top wall 24 via an opening formed in the recess 50 .
  • the switch lock 52 causes the switch 42 to move from either its on position or reverse position to its off position by a camming action as the switch lock 52 is moved from a releasing position to a locking position.
  • the locking portion is disengaged from the movable element of the switch 42 , thus enabling the switch 42 to be moved between its on, off, and reverse positions.
  • the movable element of the switch 42 is restrained in its off position against movement to either its on or reverse position by the locking portion of the switch lock 52 .
  • the manually engageable portion 54 of the switch lock 52 has an upwardly extending projection 56 for facilitating movement of the switch lock 52 between the locking and releasing positions.
  • switch lock 52 One advantage of the switch lock 52 is that, by holding the switch 42 in the off position, to activate the shredder mechanism 16 the switch lock 52 must first be moved to its releasing position, and then the switch 42 is moved to its on or reverse position. This reduces the likelihood of the shredder mechanism 16 being activated unintentionally.
  • the shredder housing 14 is designed specifically for use with the container 12 and it is intended to sell them together.
  • the upper peripheral edge 60 of the container 12 defines an upwardly facing opening 62 , and provides a seat 61 on which the shredder 10 is removably mounted.
  • the seat 61 includes a pair of pivot guides 64 provided on opposing lateral sides thereof.
  • the pivot guides 64 include upwardly facing recesses 66 that are defined by walls extending laterally outwardly from the upper edge 60 of the container 12 .
  • the walls defining the recesses 66 are molded integrally from plastic with the container 12 , but may be provided as separate structures and formed from any other material.
  • At the bottom of each recess 66 is provided a step down or ledge providing a generally vertical engagement surface 68 . This step down or ledge is created by two sections of the recesses 66 being provided with different radii.
  • the shredder 10 has a proximity sensor to detect the presence of a person or thing (e.g., animal or inanimate object) in proximity to the opening 36 .
  • a person or thing is “in proximity” to the opening 36 when a part thereof is outside and adjacent to the opening 36 or at least partially within the opening 36 .
  • the proximity sensor may be implemented in various ways, such as is described in further detail below.
  • U.S. patent application Ser. Nos. 10/828,254 (filed Apr. 21, 2004), 10/815,761 (filed Apr. 2, 2004), and 10/347,700 (filed Jan. 22, 2003), each of which is hereby incorporated into the present application by reference.
  • the proximity sensor may be used with any type of shredder, and the examples identified herein are not intended to be limiting.
  • FIG. 3 is a perspective view of a shredder 100 constructed in accordance with an embodiment of the present invention.
  • the shredder 100 incorporates a capacitive sensor.
  • the illustrated capacitive sensor is a switch that detects the presence of a person or thing without requiring physical contact.
  • the capacitive sensor includes a conductor/contact plate 112 connected to a circuit, such as those shown in FIGS. 8 and 9 .
  • the conductor 112 serves as the first plate of a capacitor, while the person or thing to be detected serves as the second plate thereof.
  • the mutual capacitance therebetween increases. This increase in capacitance results in increased signal levels in the sensor, which levels can be used to detect the proximity of the person or thing.
  • capacitance depends in part on the dielectric constant of the second plate of a capacitor.
  • a higher dielectric constant translates into a larger capacitance. Therefore, the capacitive sensor of the shredder 100 can detect the proximity of a nearby animate or inanimate entity provided that its respective dielectric constant is sufficiently high. Because human beings and various animals have relatively high dielectric constants, they are detectable by the capacitive sensor. Inanimate objects with relatively high dielectric constants also are detectable. Conversely, objects with low or moderate dielectric constants, such as paper, are not detectable.
  • the shredder 100 includes a shredder housing 104 , an opening 108 , and a control switch 128 with on, off, and reverse positions.
  • a shredder mechanism such as the one described above, is located beneath the opening 108 so that documents can be fed into the shredder mechanism through the opening 108 .
  • the conductor 112 can be, for example, a strip of metal, foil tape (e.g., copper tape), conductive paint, a silk-screened conductive ink pattern, or another suitable conductive material. As shown in FIG. 3 , the conductor 112 is a 9-inch by 1-inch capacitive sensing strip that is affixed to the housing 104 near the opening 108 . As such, when a person or thing nears the opening 108 and thus the cutter elements of the shredding mechanism of the shredder 100 , the capacitance between the conductor 112 and the person or thing increases, resulting in an increase in the signal level used for detection, as will be described below.
  • the conductor 112 extends into the opening 108 to increase the overall surface area of the conductor 112 and thus the amount of capacitance between the conductor 112 and the nearby person or thing.
  • the conductor 112 optionally can be covered by non-conductive plastic, for example, thus concealing the switch from a user of the shredder 100 .
  • non-conductive plastic can be covered with a conductive material, such as metal foil.
  • the shredder 100 can include a sensor light, an error light, and/or a light indicative of normal operation.
  • the sensor light which can be an LED, is illuminated when a person or thing is detected.
  • the error light which also can be an LED, is illuminated when a person or thing is detected, and optionally under other conditions (e.g., the shredder container is not properly engaged with the shredder 100 , or the shredder mechanism has become jammed). These lights, however, are not necessary, and are only optional features.
  • FIGS. 4-7 are cross-sectional views each showing a shredder housing 104 , opening 108 , cutting elements 132 , and a conductor configuration for a sensor in accordance with various embodiments of the present invention.
  • the conductor configurations can include conductor(s) of different areas to tailor the amount of capacitance and thus the signal level produced when a person or thing nears the shredder. Where multiple conductors are employed, the distance therebetween may be designed also to tailor the amount of capacitive coupling and thus the capacitance produced.
  • the conductor 136 comprises a conductive material embedded within the upper wall of the housing 104 beneath the upper surface partially into the opening 108 .
  • the conductor 136 also is optionally embedded in the wall defining the opening 108 and extends along it for a portion.
  • the conductive material of the conductor 140 covers an upper surface portion of the housing 104 , extends substantially into the opening 108 , and curves around a Range of the housing 104 so as to cover an inside surface portion of the housing 104 .
  • the top portion of the upper surface where the conductor 140 is mounted may be recessed.
  • the conductor 144 of FIG. 6 includes two conductive portions respectively affixed to outside and inside surface portions of the housing 104 . Such use of multiple portions increases the surface area of the capacitor, as well as the capacitive coupling, capacitance, and signal level produced when a person or thing nears the conductive portions.
  • the conductor 148 of FIG. 7 comprises a conductive material on an inside surface portion of the housing 104 . This is desirable for concealing the conductor 148 without adding the manufacturing step of embedding the conductor in a housing wall, such as is shown in FIG. 4 . It is to be appreciated that the conductors of FIGS. 4-7 may be of any suitable configuration, and the examples illustrated are in no way intended to be limiting.
  • FIGS. 8 and 9 illustrate example capacitive sensor circuits according to respective embodiments of the present invention.
  • the example circuits may be incorporated into the overall circuit design of a shredder, and are in no way intended to be limiting.
  • the capacitive sensor circuit 260 includes a conductor 300 that can have a configuration such as shown above or another suitable configuration.
  • the conductor 300 is connected to a pad P 8 , which is in turn connected to circuit loops including capacitors C 8 and C 9 , resistors R 31 , R 32 , and R 36 , and a high-speed double diode D 8 .
  • the loops are connected to a voltage supply Vcc, circuit ground, and a resistor R 33 .
  • the voltage supply Vcc is connected to the AC line voltage of the shredder, and a negative regulator can generate ⁇ 5 volts for the circuit ground.
  • the capacitive sensor output 320 may be in turn coupled as an input to a controller 330 , such as a microprocessor or discrete circuit components (e.g., comparators, transistors), which takes appropriate action in response to signal levels at the output 320 .
  • a controller 330 may also be a relay switch that opens to disable the delivery of power to an element (e.g., the motor of the shredder mechanism) and closes to enable the delivery of power.
  • controller is a generic structural term that denotes structure(s) that control one or more modules, devices, and/or circuit components.
  • the controller 330 can, for example, disable the cutting elements of the shredder, illuminate a sensor or error light, and/or activate an audible alert.
  • FIG. 9 illustrates a capacitive sensor circuit 360 , as well as control and illumination circuitry 365 .
  • the capacitive sensor circuit 360 includes a conductor 400 that can have a configuration such as shown above or another suitable configuration.
  • the conductor 400 is connected to a pad P 1 , which is in turn connected to series resistors R 19 and R 20 .
  • the resistor R 19 is connected to circuit loops including a capacitor C 4 , a resistor R 16 , and a high-speed double diode D 1 .
  • the loops are connected to a voltage supply Vcc, circuit ground, and a resistor R 17 .
  • the voltage supply Vcc is connected to the AC line voltage of the shredder, and a negative regulator can generate ⁇ 5 volts for the circuit ground.
  • the capacitive sensor output 420 is coupled as an input to a controller 430 , which can be, for example, a simple analog circuit or an ATtiny11 8-bit microcontroller offered by Atmel Corporation (
  • the controller 430 sends appropriate control signals. For example, the controller 430 sends a control signal 490 to cut off power (such as supplied by a triac) to the motor that drives the cutting elements of the shredder, and a control signal 435 to illuminate a sensor LED 450 or error LED 440 coupled to comparators 460 .
  • a control signal 490 to cut off power (such as supplied by a triac) to the motor that drives the cutting elements of the shredder, and a control signal 435 to illuminate a sensor LED 450 or error LED 440 coupled to comparators 460 .
  • Embodiments of the present invention may be incorporated, for instance, in a shredder such as the PS80C-2 shredder of Fellowes, Inc. (Itasca, Ill.). If desired, existing shredder designs may be adapted, without major modification of existing modules, to incorporate proximity sensing circuitry.
  • a shredder such as the PS80C-2 shredder of Fellowes, Inc. (Itasca, Ill.).
  • existing shredder designs may be adapted, without major modification of existing modules, to incorporate proximity sensing circuitry.
  • a shredder can provide two or more sensitivity settings for proximity sensing.
  • the settings can be selectably enabled by a user and tailored to detect, e.g., infants or pets.
  • objects are distinguished based on load times. A smaller capacitive load results in a shorter load time than a large capacitance.
  • various objects can be distinguished.
  • a mechanical switch or another type of detector is used to detect insertion of a foreign object.
  • the mechanical switch When the mechanical switch is actuated, the shredder blades are shut off, stopping the shredding operation (or some other operation is performed).
  • objects that are appropriate for shredding are thin and flat, e.g., paper, CDs, disks, credit cards and the like.
  • Human and animal body parts on the other hand are generally thicker.
  • insertion of a body part into a shredder opening will result in pressure against the sides of the opening. For an opening having angled sides, this pressure will include both a component in the direction in which articles are fed through the opening (typically vertical) and a component perpendicular to the feed direction (typically horizontal).
  • the shredder By allowing for some relative movement of the throat plate, this pressure may be used to actuate the mechanical switch.
  • the shredder can be designed not to allow any object greater than a predetermined size (e.g., the size of a human finger, the size of a stack of paper too large for the shredder to handle) to enter the shredder throat without actuating the switch.
  • a predetermined size e.g., the size of a human finger, the size of a stack of paper too large for the shredder to handle
  • This arrangement can also be used to prevent a user from inserting overly thick stacks of documents or other articles that could jam the shredder mechanism.
  • FIGS. 10 a and 10 b illustrate a first embodiment of a mechanical switch for use in a shredder.
  • the shredder housing 104 includes an opening 108 .
  • the walls 150 of the opening 108 are moveable parts that form a throat plate that is moveable relative to the shredder housing 104 .
  • Each of these walls 150 has an upper portion mounted against a pressure sensitive switch 152 which may be, for example, a foil switch.
  • the mechanical switch may have, for example, an open state and a closed state, which may otherwise be considered as an on position or an off position.
  • the foil switch includes an upward biasing member (not separately illustrated) that tends to maintain the switch in an open position, as well as to bias the walls 150 of the opening 108 in their upper position.
  • each wall 150 is independently moveable and each has an associated switch 152 , however as will be appreciated, the symmetrical arrangement is not required and either one or both of the walls may have an associated switch or detector. Likewise, the walls need not be independently moveable and may move together.
  • FIG. 10 a illustrates the open position of the switch
  • FIG. 10 b illustrates what happens when a relatively large object is inserted into the opening 108 .
  • an object (schematically illustrated by the arrow) is inserted into the opening 108 , it presses against the walls 150 , and moves them downwardly, compressing the foil switch 152 .
  • This action completes a circuit that shuts off the cutting blades.
  • Such a system has the further potential to reduce damage to the shredder caused by oversize objects becoming partially lodged in the opening, placing a strain on the cutter motors.
  • FIG. 11 a illustrates another alternate embodiment of the invention.
  • the walls 150 of the opening include plunger portions 154 .
  • the plunger portions 154 extend through apertures 156 in the shredder housing 104 .
  • the plunger portions 154 are biased upward by a corresponding spring 158 , maintaining the walls 150 in their upper position.
  • the switches 160 is a lever-type switch, however as will be apparent to one of ordinary skill in the art, a foil switch or other mechanical switch could be substituted.
  • a strain gauge to measure deflection of a structure could be used or an optical sensor for detecting the position of the walls 150 or other structure could be used.
  • any suitable type of detector may be used.
  • FIGS. 10 a , 10 b , 11 a and 11 b each rely generally on downward pressure of the throat plate to actuate the switch that ends the shredding operation.
  • the pressure of a large object inserted into the angled walls of the opening will tend to have a horizontal component as well.
  • a pressure plate that is sensitive to outward movement of the walls of the throat plate would also be suitable for use in embodiments of the present invention.
  • activating the switch could cause a warning indicator such as a light or sound to be activated. Any such predetermined safety operation could be used.
  • the lower portion of one or both the walls 150 could be resiliently deflectable. This could be done by, for example, by pivotally connecting a relatively rigid member so that it pushes against a spring or by making the lever portion from a resiliently deflectable material.
  • a detector such as a mechanical switch or any other suitable detector could be used to determine when the respective wall 150 has flexed outwardly to a certain extent. This would indicate that an article of greater than a predetermined thickness has been inserted into the opening. Then, a predetermined operation (e.g., shutting off the shredding mechanism, emitting a warning signal) can be performed.
  • FIG. 12 illustrates an additional embodiment of a switch in accordance with the present invention
  • FIG. 12 a is a magnified view isolating the switch portion.
  • the structure of the embodiment of FIG. 12 is similar to that of the embodiment of FIG. 3 .
  • a switch 502 is affixed to the housing 104 near to the opening 108 .
  • the switch is configured to sense contact by a change in resistance, for example as a result of contact with the switch by a person's hand.
  • the switch includes a conductive grid, separated into two mutually adjacent conductors, this embodiment is represented schematically in FIG. 13 along with a control circuit.
  • VHi is set to be nominally 20V less than Vcc.
  • Pads P 1 and P 2 provide connectivity to the remainder of the circuit.
  • the resistors R 3 -R 6 are selected to have a large resistance, thereby limiting the current flowing through the circuit when activated. When a user's hand comes into contact with the grid, the circuit is completed and a current flows.
  • the amplifier U 1 A (which may be, by way of example, an LM358, available from National Semiconductor), buffers the analog voltage produced, and passes it to an analog input of the microprocessor 504 .
  • the resistors R 8 , R 9 , R 10 can be varied in order to change a sensitivity of the system, as desired.
  • the microprocessor can be selected to control the shredder in response to the signal from the amplifier U 1 A.
  • the microprocessor can be set to control, for example, a triac that in turn controls the power to the shredder motor so that the blades stop when the switch 502 is contacted.
  • a warning light or LED may be activated to inform the user why the motor has been deactivated.
  • the shredder's control software can include routines for monitoring nominal resistance over time, and adjust a threshold accordingly.
  • one embodiment of the present invention allows for monitoring a change in the signal rather than a strength of the signal, thereby discriminating between a slow build-up of dirt and a transitory contact.
  • an indicator e.g., an LED, can be used to inform the user that the grid should be cleaned.
  • the switch may be a retrofit device.
  • the retrofit device is interposed between the shredder and the power supply.
  • the shredder is plugged into a controller rather than directly into a wall power supply.
  • the retrofit device acts as a pass-through for power from the wall outlet to the shredder, and the shredder will operate substantially as it does when normally plugged into the wall.
  • a controller which may be, for example, similar to the one illustrated in FIG. 13 , can cut off power to the shredder and/or provide an indication of a fault condition.
  • the retrofit switch 512 itself may be a resistance sensitive switch, a capacitance sensitive switch or a pressure sensitive switch such as a membrane or foil switch, for example.
  • the switch is affixed, permanently or removably, by use of an adhesive or a fastener to a position proximate the opening 108 .
  • It is electrically connected to a controller 514 which may be entirely separate, or may simply be a small package that can be affixed to the shredder housing.
  • the controller includes a receptacle 516 for the power cord 518 of the shredder, and will generally include its own power cord 520 for engaging a wall outlet 522 or other power source.

Abstract

The present invention relates to a shredder that includes a housing having a movable part that forms at least a part of an opening for the insertion of articles to be fed into the shredder. A detector detects motion of the movable part, and in response, a controller performs a predetermined operation, including, for example, stopping cutting elements of the shredder mechanism.

Description

  • This application is a continuation-in-part of U.S. patent application Ser. No. 10/937,304, filed Sep. 1, 2004, and claims priority thereto, that application is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to shredders for destroying articles, such as documents, CDs, etc.
  • BACKGROUND OF THE INVENTION
  • Shredders are well known devices for destroying articles, such as documents, CDs, floppy disks, etc. Typically, users purchase shredders to destroy sensitive articles, such as credit card statements with account information, documents containing company trade secrets, etc.
  • A common type of shredder has a shredder mechanism contained within a housing that is removably mounted atop a container. The shredder mechanism typically has a series of cutter elements that shred articles fed therein and discharge the shredded articles downwardly into the container. It is generally desirable to prevent a person's or animal's body part from contacting these cutter elements during the shredding operation.
  • The present invention endeavors to provide various improvements over known shredders.
  • SUMMARY OF THE INVENTION
  • One aspect of the present invention provides a shredder comprising a housing, a shredder mechanism including a motor and cutter elements, a proximity sensor, and a controller. The shredder mechanism enables articles to be shredded to be fed into the cutter elements, and the motor is operable to drive the cutter elements so that the cutter elements shred the articles fed therein.
  • The housing has an opening enabling articles to be fed therethrough into the cutter elements of the shredder mechanism for shredding. The proximity sensor is located adjacent the opening and configured to indicate the presence of a person or animal in proximity to the opening. The controller is operable to perform a predetermined operation (e.g., to disable the shredder mechanism) responsive to the indicated presence of the person or animal.
  • Another aspect of the invention provides a shredder with a proximity sensor that includes an electroconductive element and circuitry to sense a state of the electroconductive element. The proximity sensor is configured to indicate a change in the state of the electroconductive element corresponding to a change in capacitance caused by a person or animal approaching in proximity to the electroconductive element. A controller of the shredder is operable to perform a predetermined operation responsive to the indicated change in the state of the electroconductive element.
  • Another aspect of the invention provides a shredder having a housing, a shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the shredder mechanism enabling articles to be shredded to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the articles fed therein, the housing having a movable part providing at least part of an opening enabling articles to be fed therethrough into the cutter elements of the shredder mechanism for shredding, the movable part being movable from a first position to a second position and being biased to the first position, a detector configured to detect movement of the movable part to the second position, the movable part being constructed to move from the first position to the second position upon a user attempting to force an article having a thickness greater than a predetermined thickness through the opening, and a controller operable to perform a predetermined operation responsive to the detector detecting that the movable part has moved to the second position.
  • Other objects, features, and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a shredder constructed in accordance with an embodiment of the present invention;
  • FIG. 2 is an exploded perspective view of the shredder of FIG. 1;
  • FIG. 3 is a perspective view of a shredder constructed in accordance with an embodiment of the present invention;
  • FIGS. 4-7 are cross-sectional views each showing a shredder housing, opening, cutting elements, and conductor configuration for a sensor in accordance with various embodiments of the present invention;
  • FIGS. 8 and 9 illustrate example capacitive sensor circuits according to respective embodiments of the present invention;
  • FIGS. 10 a and 10 b are cross-sectional views showing a shredder opening having a pressure-sensitive switch in accordance with embodiments of the present invention.
  • FIGS. 11 a and 11 b are cross-sectional views showing a shredder opening having an alternate pressure-sensitive switch in accordance with embodiments of the present invention;
  • FIGS. 12 and 12 a are illustrations of a shredder constructed in accordance with an additional embodiment of the present invention;
  • FIG. 13 is a schematic diagram of an example of an electronic circuit for controlling the operation of a shredder in accordance with the embodiment of FIG. 12;
  • FIG. 14 is a schematic diagram of an electrical connection used in an embodiment of the present invention configured for retrofitting to an existing shredder; and
  • FIGS. 15 and 15 a are illustrations of a retrofit embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • FIGS. 1 and 2 illustrate a shredder constructed in accordance with an embodiment of the present invention. The shredder is generally indicated at 10. The shredder 10 sits atop a waste container, generally indicated at 12, which is formed of molded plastic or any other material. The shredder 10 illustrated is designed specifically for use with the container 12, as the shredder housing 14 sits on the upper periphery of the waste container 12 in a nested relation. However, the shredder 10 may also be designed so as to sit atop a wide variety of standard waste containers, and the shredder 10 would not be sold with the container. Likewise, the shredder 10 could be part of a large freestanding housing, and a waste container would be enclosed in the housing. An access door would provide for access to and removal of the container. Generally speaking, the shredder 10 may have any suitable construction or configuration and the illustrated embodiment is not intended to be limiting in any way.
  • The shredder 10 includes a shredder mechanism 16 including an electrically powered motor 18 and a plurality of cutter elements (not shown). “Shredder mechanism” is a generic structural term to denote a device that shreds articles using cutter elements. Such shredding may be done in any particular way. The cutter elements are generally mounted on a pair of parallel rotating shafts (not shown). The motor 18 operates using electrical power to rotatably drive the shafts and the cutter elements through a conventional transmission 23 so that the cutter elements shred articles fed therein. The shredder mechanism 16 may also include a sub-frame 21 for mounting the shafts, the motor 18, and the transmission 23. The operation and construction of such a shredder mechanism 16 are well known and need not be described herein in detail. Generally, any suitable shredder mechanism 16 known in the art or developed hereafter may be used.
  • The shredder 10 also includes the shredder housing 14, mentioned above. The shredder housing 14 includes top wall 24 that sits atop the container 12. The top wall 14 is molded from plastic and an opening 26 is located at a front portion thereof. The opening 26 is formed in part by a downwardly depending generally U-shaped member 28. The U-shaped member 28 has a pair of spaced apart connector portions 27 on opposing sides thereof and a hand grip portion 28 extending between the connector portions 27 in spaced apart relation from the housing 14. The opening 26 allows waste to be discarded into the container 12 without being passed through the shredder mechanism 16, and the member 28 may act as a handle for carrying the shredder 10 separate from the container 12. As an optional feature, this opening 26 may be provided with a lid, such as a pivoting lid, that opens and closes the opening 26. However, this opening in general is optional and may be omitted entirely. Moreover, the shredder housing 14 and its top wall 24 may have any suitable construction or configuration.
  • The shredder housing 14 also includes a bottom receptacle 30 having a bottom wall, four side walls and an open top. The shredder mechanism 16 is received therein, and the receptacle 30 is affixed to the underside of the top wall 24 by fasteners. The receptacle 30 has an opening 32 in its bottom wall through which the shredder mechanism 16 discharges shredded articles into the container 12.
  • The top wall 24 has a generally laterally extending opening 36 extending generally parallel and above the cutter elements. The opening 36, often referred to as a throat, enables the articles being shredded to be fed into the cutter elements. As can be appreciated, the opening 36 is relatively narrow, which is desirable for preventing overly thick items, such as large stacks of documents, from being fed into cutter elements, which could lead to jamming. The opening 36 may have any configuration.
  • The top wall 24 also has a switch recess 38 with an opening therethrough. An on/off switch 42 includes a switch module (not shown) mounted to the top wall 24 underneath the recess 38 by fasteners, and a manually engageable portion 46 that moves laterally within the recess 38. The switch module has a movable element (not shown) that connects to the manually engageable portion 46 through the opening 40. This enables movement of the manually engageable portion 46 to move the switch module between its states.
  • In the illustrated embodiment, the switch module connects the motor 18 to the power supply (not shown). Typically, the power supply will be a standard power cord 44 with a plug 48 on its end that plugs into a standard AC outlet. The switch 42 is movable between an on position and an off position by moving the portion 46 laterally within the recess 38. In the on position, contacts in the switch module are closed by movement of the manually engageable portion 46 and the movable element to enable a delivery of electrical power to the motor 18. In the off position, contacts in the switch module are opened to disable the delivery of electric power to the motor 18.
  • As an option, the switch 42 may also have a reverse position wherein contacts are closed to enable delivery of electrical power to operate the motor 18 in a reverse manner. This would be done by using a reversible motor and applying a current that is of a reverse polarity relative to the on position. The capability to operate the motor 18 in a reversing manner is desirable to move the cutter elements in a reversing direction for clearing jams. In the illustrated embodiment, in the off position the manually engageable portion 46 and the movable element would be located generally in the center of the recess 38, and the on and reverse positions would be on opposing lateral sides of the off position.
  • Generally, the construction and operation of the switch 42 for controlling the motor 42 are well known and any construction for such a switch 42 may be used.
  • The top cover 24 also includes another recess 50 associated with a switch lock 52. The switch lock 52 includes a manually engageable portion 54 that is movable by a user's hand and a locking portion (not shown). The manually engageable portion 54 is seated in the recess 50 and the locking portion is located beneath the top wall 24. The locking portion is integrally formed as a plastic piece with the manually engageable portion 54 and extends beneath the top wall 24 via an opening formed in the recess 50.
  • The switch lock 52 causes the switch 42 to move from either its on position or reverse position to its off position by a camming action as the switch lock 52 is moved from a releasing position to a locking position. In the releasing position, the locking portion is disengaged from the movable element of the switch 42, thus enabling the switch 42 to be moved between its on, off, and reverse positions. In the locking position, the movable element of the switch 42 is restrained in its off position against movement to either its on or reverse position by the locking portion of the switch lock 52.
  • Preferably, but not necessarily, the manually engageable portion 54 of the switch lock 52 has an upwardly extending projection 56 for facilitating movement of the switch lock 52 between the locking and releasing positions.
  • One advantage of the switch lock 52 is that, by holding the switch 42 in the off position, to activate the shredder mechanism 16 the switch lock 52 must first be moved to its releasing position, and then the switch 42 is moved to its on or reverse position. This reduces the likelihood of the shredder mechanism 16 being activated unintentionally.
  • In the illustrated embodiment, the shredder housing 14 is designed specifically for use with the container 12 and it is intended to sell them together. The upper peripheral edge 60 of the container 12 defines an upwardly facing opening 62, and provides a seat 61 on which the shredder 10 is removably mounted. The seat 61 includes a pair of pivot guides 64 provided on opposing lateral sides thereof. The pivot guides 64 include upwardly facing recesses 66 that are defined by walls extending laterally outwardly from the upper edge 60 of the container 12. The walls defining the recesses 66 are molded integrally from plastic with the container 12, but may be provided as separate structures and formed from any other material. At the bottom of each recess 66 is provided a step down or ledge providing a generally vertical engagement surface 68. This step down or ledge is created by two sections of the recesses 66 being provided with different radii.
  • The shredder 10 has a proximity sensor to detect the presence of a person or thing (e.g., animal or inanimate object) in proximity to the opening 36. A person or thing is “in proximity” to the opening 36 when a part thereof is outside and adjacent to the opening 36 or at least partially within the opening 36. The proximity sensor may be implemented in various ways, such as is described in further detail below. For further examples of shredders on which a proximity sensor may be used, reference may be made to U.S. patent application Ser. Nos. 10/828,254 (filed Apr. 21, 2004), 10/815,761 (filed Apr. 2, 2004), and 10/347,700 (filed Jan. 22, 2003), each of which is hereby incorporated into the present application by reference. Generally, the proximity sensor may be used with any type of shredder, and the examples identified herein are not intended to be limiting.
  • FIG. 3 is a perspective view of a shredder 100 constructed in accordance with an embodiment of the present invention. The shredder 100 incorporates a capacitive sensor. The illustrated capacitive sensor is a switch that detects the presence of a person or thing without requiring physical contact. The capacitive sensor includes a conductor/contact plate 112 connected to a circuit, such as those shown in FIGS. 8 and 9. The conductor 112 serves as the first plate of a capacitor, while the person or thing to be detected serves as the second plate thereof. As the distance between the conductor 112 and the person or thing decreases, the mutual capacitance therebetween increases. This increase in capacitance results in increased signal levels in the sensor, which levels can be used to detect the proximity of the person or thing.
  • It is to be appreciated that capacitance depends in part on the dielectric constant of the second plate of a capacitor. A higher dielectric constant translates into a larger capacitance. Therefore, the capacitive sensor of the shredder 100 can detect the proximity of a nearby animate or inanimate entity provided that its respective dielectric constant is sufficiently high. Because human beings and various animals have relatively high dielectric constants, they are detectable by the capacitive sensor. Inanimate objects with relatively high dielectric constants also are detectable. Conversely, objects with low or moderate dielectric constants, such as paper, are not detectable.
  • The shredder 100 includes a shredder housing 104, an opening 108, and a control switch 128 with on, off, and reverse positions. A shredder mechanism, such as the one described above, is located beneath the opening 108 so that documents can be fed into the shredder mechanism through the opening 108.
  • The conductor 112 can be, for example, a strip of metal, foil tape (e.g., copper tape), conductive paint, a silk-screened conductive ink pattern, or another suitable conductive material. As shown in FIG. 3, the conductor 112 is a 9-inch by 1-inch capacitive sensing strip that is affixed to the housing 104 near the opening 108. As such, when a person or thing nears the opening 108 and thus the cutter elements of the shredding mechanism of the shredder 100, the capacitance between the conductor 112 and the person or thing increases, resulting in an increase in the signal level used for detection, as will be described below. To ensure that the switch is sensitive enough to detect the person or thing through multiple sheets of paper, the conductor 112 extends into the opening 108 to increase the overall surface area of the conductor 112 and thus the amount of capacitance between the conductor 112 and the nearby person or thing. The conductor 112 optionally can be covered by non-conductive plastic, for example, thus concealing the switch from a user of the shredder 100. In addition, to increase sensitivity of the switch, such non-conductive plastic can be covered with a conductive material, such as metal foil.
  • Though not illustrated in FIG. 3, the shredder 100 can include a sensor light, an error light, and/or a light indicative of normal operation. The sensor light, which can be an LED, is illuminated when a person or thing is detected. The error light, which also can be an LED, is illuminated when a person or thing is detected, and optionally under other conditions (e.g., the shredder container is not properly engaged with the shredder 100, or the shredder mechanism has become jammed). These lights, however, are not necessary, and are only optional features.
  • FIGS. 4-7 are cross-sectional views each showing a shredder housing 104, opening 108, cutting elements 132, and a conductor configuration for a sensor in accordance with various embodiments of the present invention. The conductor configurations can include conductor(s) of different areas to tailor the amount of capacitance and thus the signal level produced when a person or thing nears the shredder. Where multiple conductors are employed, the distance therebetween may be designed also to tailor the amount of capacitive coupling and thus the capacitance produced.
  • In FIG. 4, the conductor 136 comprises a conductive material embedded within the upper wall of the housing 104 beneath the upper surface partially into the opening 108. The conductor 136 also is optionally embedded in the wall defining the opening 108 and extends along it for a portion.
  • In FIG. 5, the conductive material of the conductor 140 covers an upper surface portion of the housing 104, extends substantially into the opening 108, and curves around a Range of the housing 104 so as to cover an inside surface portion of the housing 104. For a conductor 140 that has a noticeable amount of thickness, the top portion of the upper surface where the conductor 140 is mounted may be recessed.
  • The conductor 144 of FIG. 6 includes two conductive portions respectively affixed to outside and inside surface portions of the housing 104. Such use of multiple portions increases the surface area of the capacitor, as well as the capacitive coupling, capacitance, and signal level produced when a person or thing nears the conductive portions.
  • The conductor 148 of FIG. 7 comprises a conductive material on an inside surface portion of the housing 104. This is desirable for concealing the conductor 148 without adding the manufacturing step of embedding the conductor in a housing wall, such as is shown in FIG. 4. It is to be appreciated that the conductors of FIGS. 4-7 may be of any suitable configuration, and the examples illustrated are in no way intended to be limiting.
  • A conductor or conductive material such as described above in connection with FIGS. 3-7 is typically connected to circuitry on a circuit board. FIGS. 8 and 9 illustrate example capacitive sensor circuits according to respective embodiments of the present invention. The example circuits may be incorporated into the overall circuit design of a shredder, and are in no way intended to be limiting.
  • In FIG. 8, the capacitive sensor circuit 260 includes a conductor 300 that can have a configuration such as shown above or another suitable configuration. The conductor 300 is connected to a pad P8, which is in turn connected to circuit loops including capacitors C8 and C9, resistors R31, R32, and R36, and a high-speed double diode D8. The loops are connected to a voltage supply Vcc, circuit ground, and a resistor R33. The voltage supply Vcc is connected to the AC line voltage of the shredder, and a negative regulator can generate −5 volts for the circuit ground. The capacitive sensor output 320 may be in turn coupled as an input to a controller 330, such as a microprocessor or discrete circuit components (e.g., comparators, transistors), which takes appropriate action in response to signal levels at the output 320. Such a controller 330 may also be a relay switch that opens to disable the delivery of power to an element (e.g., the motor of the shredder mechanism) and closes to enable the delivery of power. It is to be appreciated that “controller” is a generic structural term that denotes structure(s) that control one or more modules, devices, and/or circuit components.
  • The principles of operation of the circuit 260 will be readily understood by those conversant with the art. When a person or thing moves close to the conductor 300, the increased capacitance therebetween causes the amplitude of the sinusoidal waveform at the output 320 to increase by a voltage sufficient to indicate the presence of the person or thing. Based on the increased signal level, the controller 330 can, for example, disable the cutting elements of the shredder, illuminate a sensor or error light, and/or activate an audible alert.
  • FIG. 9 illustrates a capacitive sensor circuit 360, as well as control and illumination circuitry 365. The capacitive sensor circuit 360 includes a conductor 400 that can have a configuration such as shown above or another suitable configuration. The conductor 400 is connected to a pad P1, which is in turn connected to series resistors R19 and R20. The resistor R19 is connected to circuit loops including a capacitor C4, a resistor R16, and a high-speed double diode D1. The loops are connected to a voltage supply Vcc, circuit ground, and a resistor R17. The voltage supply Vcc is connected to the AC line voltage of the shredder, and a negative regulator can generate −5 volts for the circuit ground. The capacitive sensor output 420 is coupled as an input to a controller 430, which can be, for example, a simple analog circuit or an ATtiny11 8-bit microcontroller offered by Atmel Corporation (San Jose, Calif.).
  • The principles of operation of the circuitry of FIG. 9 will be readily understood by those conversant with the art. When a person or thing moves close to the conductor 400, the increased capacitance therebetween causes the amplitude of the sinusoidal waveform at the output 420 to increase by a voltage sufficient to indicate the presence of the person or thing. Based on the increased signal level, the controller 430 sends appropriate control signals. For example, the controller 430 sends a control signal 490 to cut off power (such as supplied by a triac) to the motor that drives the cutting elements of the shredder, and a control signal 435 to illuminate a sensor LED 450 or error LED 440 coupled to comparators 460.
  • Embodiments of the present invention may be incorporated, for instance, in a shredder such as the PS80C-2 shredder of Fellowes, Inc. (Itasca, Ill.). If desired, existing shredder designs may be adapted, without major modification of existing modules, to incorporate proximity sensing circuitry.
  • In another embodiment of the invention, a shredder can provide two or more sensitivity settings for proximity sensing. The settings can be selectably enabled by a user and tailored to detect, e.g., infants or pets. In an example embodiment employing a capacitive sensor, objects are distinguished based on load times. A smaller capacitive load results in a shorter load time than a large capacitance. Thus, by measuring (e.g., with a microprocessor) differences in load times resulting from capacitive loads near a sensor, various objects can be distinguished.
  • In yet another embodiment of the invention, a mechanical switch or another type of detector is used to detect insertion of a foreign object. When the mechanical switch is actuated, the shredder blades are shut off, stopping the shredding operation (or some other operation is performed). In general, objects that are appropriate for shredding are thin and flat, e.g., paper, CDs, disks, credit cards and the like. Human and animal body parts, on the other hand are generally thicker. As a result, insertion of a body part into a shredder opening will result in pressure against the sides of the opening. For an opening having angled sides, this pressure will include both a component in the direction in which articles are fed through the opening (typically vertical) and a component perpendicular to the feed direction (typically horizontal). By allowing for some relative movement of the throat plate, this pressure may be used to actuate the mechanical switch. By appropriate selection of the size of the opening and the throw distance of the switch (or, when another type of detector such as an optical switch or a strain gauge is used, the sensitivity or active detection region), the shredder can be designed not to allow any object greater than a predetermined size (e.g., the size of a human finger, the size of a stack of paper too large for the shredder to handle) to enter the shredder throat without actuating the switch. This arrangement can also be used to prevent a user from inserting overly thick stacks of documents or other articles that could jam the shredder mechanism.
  • FIGS. 10 a and 10 b, illustrate a first embodiment of a mechanical switch for use in a shredder. As shown in FIG. 10 a, the shredder housing 104 includes an opening 108. The walls 150 of the opening 108 are moveable parts that form a throat plate that is moveable relative to the shredder housing 104. Each of these walls 150 has an upper portion mounted against a pressure sensitive switch 152 which may be, for example, a foil switch. The mechanical switch may have, for example, an open state and a closed state, which may otherwise be considered as an on position or an off position.
  • In a particular embodiment, the foil switch includes an upward biasing member (not separately illustrated) that tends to maintain the switch in an open position, as well as to bias the walls 150 of the opening 108 in their upper position. As illustrated each wall 150 is independently moveable and each has an associated switch 152, however as will be appreciated, the symmetrical arrangement is not required and either one or both of the walls may have an associated switch or detector. Likewise, the walls need not be independently moveable and may move together.
  • While FIG. 10 a illustrates the open position of the switch, FIG. 10 b illustrates what happens when a relatively large object is inserted into the opening 108. As an object (schematically illustrated by the arrow) is inserted into the opening 108, it presses against the walls 150, and moves them downwardly, compressing the foil switch 152. This action completes a circuit that shuts off the cutting blades. Such a system has the further potential to reduce damage to the shredder caused by oversize objects becoming partially lodged in the opening, placing a strain on the cutter motors.
  • FIG. 11 a illustrates another alternate embodiment of the invention. In this embodiment, the walls 150 of the opening include plunger portions 154. The plunger portions 154 extend through apertures 156 in the shredder housing 104. The plunger portions 154 are biased upward by a corresponding spring 158, maintaining the walls 150 in their upper position.
  • When a large object is inserted into the opening 108 as illustrated in FIG. 11 b, the walls 150 are pressed downward and the plunger portions 154 come into contact with a mechanical switch 160. In the illustration, the switch 160 is a lever-type switch, however as will be apparent to one of ordinary skill in the art, a foil switch or other mechanical switch could be substituted. Likewise, a strain gauge to measure deflection of a structure could be used or an optical sensor for detecting the position of the walls 150 or other structure could be used. Generally, any suitable type of detector may be used.
  • The embodiments of FIGS. 10 a, 10 b, 11 a and 11 b each rely generally on downward pressure of the throat plate to actuate the switch that ends the shredding operation. As noted above, the pressure of a large object inserted into the angled walls of the opening will tend to have a horizontal component as well. Thus, a pressure plate that is sensitive to outward movement of the walls of the throat plate would also be suitable for use in embodiments of the present invention. Likewise, though the embodiments of FIGS. 10 a, 10 b, 11 a and 11 b are described in terms of automatically stopping the cutting blades, in one alternate configuration, activating the switch could cause a warning indicator such as a light or sound to be activated. Any such predetermined safety operation could be used.
  • As another alternative, the lower portion of one or both the walls 150 could be resiliently deflectable. This could be done by, for example, by pivotally connecting a relatively rigid member so that it pushes against a spring or by making the lever portion from a resiliently deflectable material. A detector, such as a mechanical switch or any other suitable detector could be used to determine when the respective wall 150 has flexed outwardly to a certain extent. This would indicate that an article of greater than a predetermined thickness has been inserted into the opening. Then, a predetermined operation (e.g., shutting off the shredding mechanism, emitting a warning signal) can be performed.
  • FIG. 12 illustrates an additional embodiment of a switch in accordance with the present invention, and FIG. 12 a is a magnified view isolating the switch portion. The structure of the embodiment of FIG. 12 is similar to that of the embodiment of FIG. 3. A switch 502 is affixed to the housing 104 near to the opening 108. The switch is configured to sense contact by a change in resistance, for example as a result of contact with the switch by a person's hand.
  • In one example, the switch includes a conductive grid, separated into two mutually adjacent conductors, this embodiment is represented schematically in FIG. 13 along with a control circuit. In a particular implementation, VHi is set to be nominally 20V less than Vcc. Pads P1 and P2 provide connectivity to the remainder of the circuit. The resistors R3-R6 are selected to have a large resistance, thereby limiting the current flowing through the circuit when activated. When a user's hand comes into contact with the grid, the circuit is completed and a current flows. The amplifier U1A (which may be, by way of example, an LM358, available from National Semiconductor), buffers the analog voltage produced, and passes it to an analog input of the microprocessor 504. The resistors R8, R9, R10 can be varied in order to change a sensitivity of the system, as desired.
  • The microprocessor can be selected to control the shredder in response to the signal from the amplifier U1A. In particular, the microprocessor can be set to control, for example, a triac that in turn controls the power to the shredder motor so that the blades stop when the switch 502 is contacted. Further, as noted above, a warning light or LED may be activated to inform the user why the motor has been deactivated.
  • Because the total resistance of the switch grid 502 can change, for example due to build up of dirt, the signal level can vary. Likewise, a user with moist fingers will provide less resistance than one with dry fingers, etc. Therefore, in one embodiment, the shredder's control software can include routines for monitoring nominal resistance over time, and adjust a threshold accordingly. Similarly, one embodiment of the present invention allows for monitoring a change in the signal rather than a strength of the signal, thereby discriminating between a slow build-up of dirt and a transitory contact. Finally, in one embodiment, as the measured nominal resistance falls below a predetermined level, an indicator, e.g., an LED, can be used to inform the user that the grid should be cleaned.
  • In another alternate embodiment, the switch may be a retrofit device. As shown schematically in FIG. 14, the retrofit device is interposed between the shredder and the power supply. The shredder is plugged into a controller rather than directly into a wall power supply. During normal operation, the retrofit device acts as a pass-through for power from the wall outlet to the shredder, and the shredder will operate substantially as it does when normally plugged into the wall. However, when the switch is activated, a controller, which may be, for example, similar to the one illustrated in FIG. 13, can cut off power to the shredder and/or provide an indication of a fault condition.
  • As illustrated in FIGS. 15 and 15 a, the retrofit switch 512 itself may be a resistance sensitive switch, a capacitance sensitive switch or a pressure sensitive switch such as a membrane or foil switch, for example. The switch is affixed, permanently or removably, by use of an adhesive or a fastener to a position proximate the opening 108. It is electrically connected to a controller 514 which may be entirely separate, or may simply be a small package that can be affixed to the shredder housing. As noted above, the controller includes a receptacle 516 for the power cord 518 of the shredder, and will generally include its own power cord 520 for engaging a wall outlet 522 or other power source.
  • Although various illustrated embodiments herein employ particular sensors, it is to be noted that other approaches may be employed to detect the presence of a person or thing near a shredder, such as, for example, approaches utilizing eddy current, inductive, photoelectric, ultrasonic, Hall effect, or infrared proximity sensor technologies.
  • The foregoing illustrated embodiments have been provided to illustrate the structural and functional principles of the present invention and are not intended to be limiting. To the contrary, the present invention is intended to encompass all modifications, alterations and substitutions within the spirit and scope of the appended claims.

Claims (70)

1. A shredder comprising:
a housing;
a shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the shredder mechanism enabling articles to be shredded to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the articles fed therein;
the housing having a movable part comprising a pair of spaced apart opposing walls providing at least part of an opening enabling articles to be fed therethrough into the cutter elements of the shredder mechanism for shredding, the movable part being movable from a first position to a second position and being biased to the first position;
a detector configured to detect movement of the movable part to the second position;
the movable part being constructed to move from the first position to the second position upon a user attempting to force an article having a thickness greater than a predetermined thickness through the opening, the predetermined distance being defined by a distance between the spaced apart opposing walls; and
a controller operable to perform a predetermined operation responsive to the detector detecting that the movable part has moved to the second position.
2. A shredder according to claim 1, wherein the detector comprises a switch that is actuated in response to the movable part moving to the second position.
3. A shredder according to claim 1, wherein the predetermined operation is illuminating an indicator.
4. A shredder according to claim 1, wherein the predetermined operation is sounding an alarm indicator.
5. A shredder according to claim 1, wherein the predetermined operation is disabling the cutter elements.
6. A shredder according to claim 1, wherein the controller comprises a microcontroller.
7-9. (canceled)
10. A shredder according to claim 1, further comprising at least one spring for biasing the moveable part to the first position.
11. A shredder according to claim 1, wherein the movable part includes a plunger.
12. A shredder according to claim 11, wherein the detector comprises a switch that is actuated by the plunger as the movable part moves to the second position.
13. A shredder according to claim 2, wherein the switch is a foil switch.
14. A shredder according to claim 2, wherein the switch is a lever switch.
15. A shredder according to claim 1, wherein the detector comprises a mechanical switch.
16. A shredder according to claim 1, wherein the detector comprises an optical detector.
17. A shredder according to claim 1, wherein the detector comprises a strain gauge configured and arranged to measure a movement of the movable part.
18. A shredder comprising:
a housing;
a shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the shredder mechanism enabling articles to be shredded to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the articles fed therein;
the housing having an opening enabling articles to be fed therethrough into the cutter elements of the shredder mechanism for shredding;
a resistive switch, at least in part located adjacent the opening and configured to indicate the presence of a person or animal in contact with the switch; and
a controller operable to perform a predetermined operation responsive to the indicated presence of the person or animal.
19. A shredder according to claim 18, wherein the predetermined operation is illuminating an indicator.
20. A shredder according to claim 18, wherein the predetermined operation is sounding an alarm indicator.
21. A shredder according to claim 18, wherein the predetermined operation is stopping the cutter elements.
22. A shredder according to claim 18, wherein the resistive switch further comprises a pair of electrically isolated conductive elements that, when simultaneously contacted by a part of the person or animal, are in electrical communication.
23. A shredder according to claim 18, wherein the controller is configured to monitor changes in signal strength from the switch over time, and to adjust a threshold value for performing the predetermined operation.
24. A shredder according to claim 18, wherein the controller is configured to perform the predetermined operation based at least in part on a rate of change of a monitored resistance of the resistive switch.
25. A shredder according to claim 18, wherein the controller is configured to perform the predetermined operation based at least in part on a monitored resistance of the resistive switch.
26. A device for use with a shredder, the shredder including a housing having an opening enabling articles to be fed therethrough into cutter elements of a shredder mechanism for shredding, the device comprising:
a switch, affixable to a portion of a shredder proximate the opening and configured to indicate the presence of a person or animal in contact with the switch;
a controller, in electrical communication with the switch, the controller having a connector constructed and arranged to engage a power supply and a receptacle constructed and arranged to accept a power cord of the shredder, the controller further being configured to provide power from the power supply to the shredder and to stop providing power to the shredder responsive to the indicated presence of the person or animal.
27. A device as in claim 26, wherein the switch is removably affixable to the shredder.
28. A device as in claim 26, wherein the switch is a capacitive switch.
29. A device as in claim 26, wherein the switch is a resistive switch.
30. A device as in claim 26, wherein the switch is a mechanical switch.
31. A device as in claim 30, wherein the mechanical switch is a pressure switch.
32. A shredder according to claim 1, wherein the walls of the movable part are parallel to one another.
33. A shredder according to claim 1, wherein the distance between the walls of the movable part varies.
34. A shredder according to claim 33, wherein the walls are angled inwardly towards one another.
35. A shredder according to claim 1, wherein the walls are joined together and move together with the movable part between the first and second positions.
36. A shredder according to claim 1, wherein the walls of the movable part move independently of one another.
37. A document shredder for shredding one or more data bearing documents selected from the group consisting of paper, optical discs, and floppy disks, comprising:
a housing;
a document shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the document shredder mechanism enabling one or more data bearing documents selected from the group consisting of paper, optical discs, and floppy disks to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the one or more documents fed therein;
the housing having an opening enabling the one or more data bearing documents to be fed therethrough into the cutter elements of the document shredder mechanism for shredding;
a discriminating proximity sensor comprising an electroconductive sensor element at least in part adjacent the opening, the proximity sensor being configured to indicate a presence of a person or animal, but not a presence of the one or more data bearing documents, in proximity to the opening based on the detection via the sensor element of an inherent electrical characteristic of the person or animal; and
a controller operable to disable the cutter elements responsive to the indicated presence of the person or animal.
38. A shredder according to claim 37, wherein the cutter elements are disabled by disabling power to the motor responsive to the indicated presence of the person or animal.
39. A shredder according to claim 37, wherein the proximity sensor is a capacitive sensor for detecting a capacitance between the sensor element and the person or animal.
40. A shredder according to claim 39, wherein:
the proximity sensor further comprises circuitry to sense a state of the electroconductive sensor element.
41. A shredder according to claim 40, wherein the electroconductive element is a thin metal member extending along a portion of the housing adjacent the opening.
42. A shredder according to claim 41, wherein the metal member is at least in part covered by a non-conductive member.
43. A shredder according to claim 40, wherein the electroconductive element at least in part comprises metal paint applied to a portion of the housing or to a member associated with the housing.
44. A shredder according to claim 40, wherein the electroconductive element includes at least two metal members each extending along a portion of the housing adjacent the opening.
45. A shredder according to claim 37, wherein the opening is an elongated, narrow opening.
46. A shredder according to claim 45, wherein the elongated, narrow opening is defined by a pair of opposing walls, and wherein the sensor element of the proximity sensor is attached to at least one of the walls.
47. A shredder according to claim 37, wherein:
wherein the proximity sensor further comprises circuitry to sense a state of the electroconductive sensor element.
48. A shredder according to claim 37, wherein the proximity sensor is configured to indicate the presence of the person or the animal in proximity to the opening without requiring contact with the sensor element.
49. A shredder according to claim 40, wherein the cutter elements are disabled by disabling power to the motor responsive to the indicated presence of the person or animal.
50. A shredder according to claim 37, further comprising a waste bin configured to receive shredded documents from the document shredder mechanism.
51. A shredder according to claim 50, wherein the waste bin is beneath the document shredder mechanism, the waste being manually removable from beneath the document shredder mechanism for emptying of the shredded documents therein.
52. A shredder according to claim 37, wherein the proximity sensor is a resistive sensor.
53. A document shredder for shredding one or more data bearing documents, comprising:
a housing;
a document shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the document shredder mechanism enabling one or more data bearing documents to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the one or more documents fed therein;
the housing having an opening enabling the one or more data bearing documents to be fed therethrough into the cutter elements of the document shredder mechanism for shredding;
a proximity sensor comprising an electroconductive sensor element at least in part adjacent the opening, the proximity sensor being configured to detect via the sensor element an inherent electrical characteristic of an object in proximity to the opening; and
a controller operable to disable the cutter elements responsive to detecting the inherent electrical characteristic as reaching a predetermined threshold.
54. A shredder according to claim 53, wherein the cutter elements are disabled by disabling power to the motor responsive to the indicated presence of the person or animal.
55. A shredder according to claim 53, wherein the proximity sensor is a capacitive sensor for detecting a capacitance between the sensor element and the person or animal.
56. A shredder according to claim 53, wherein the proximity sensor is configured to detect the inherent electrical characteristic of the object without requiring contact with the sensor element.
57. A shredder, comprising:
a housing;
a shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the shredder mechanism enabling one or more articles to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the articles fed therein;
the housing having an opening enabling the one or more articles to be fed therethrough into the cutter elements of the shredder mechanism for shredding;
a proximity sensor comprising an electroconductive sensor element at least in part adjacent the opening, the proximity sensor being configured to detect via the sensor element an inherent electrical characteristic of an object in proximity to the opening; and
a controller operable to disable the cutter elements responsive to detecting the inherent electrical characteristic as reaching a predetermined threshold.
58. A shredder according to claim 57, wherein the cutter elements are disabled by disabling power to the motor responsive to the indicated presence of the person or animal.
59. A shredder according to claim 57, wherein the proximity sensor is a capacitive sensor for detecting a capacitance between the sensor element and the person or animal.
60. A shredder according to claim 57, wherein the proximity sensor is configured to detect the inherent electrical characteristic of the object without requiring contact with the sensor element.
61. A method of operating a document shredder for shredding one or more data bearing documents selected from the group consisting of paper, optical discs, and floppy disks, the shredder comprising: (i) a housing; (ii) a document shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the document shredder mechanism enabling one or more data bearing documents selected from the group consisting of paper, optical discs, and floppy disks to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the one or more documents fed therein; (iii) the housing having an opening enabling the one or more data bearing documents to be fed therethrough into the cutter elements of the document shredder mechanism for shredding; (iv) a proximity sensor comprising an electroconductive sensor element at least in part adjacent the opening, the proximity sensor being configured to detect via the sensor element an inherent electrical characteristic of an object in proximity to the opening; and (v) a controller operable to control the cutter elements;
the method comprising:
feeding one or more data bearing documents selected from the group consisting of paper, optical discs, and floppy disks into the cutter elements via the opening;
operating the motor to drive the cutter elements so that the cutter elements shred the one or more documents fed therein;
detecting with the proximity sensor an object in proximity to the opening having an inherent electrical characteristic reaching a predetermined threshold; and
the controller disabling the cutter elements responsive to detecting the object having the inherent electrical characteristic reaching the predetermined threshold.
62. A method according to claim 61, wherein the detected object is a person or animal.
63. A method according to claim 61, wherein the cutter elements are disabled by disabling power to the motor responsive to detecting the object having the inherent electrical characteristic reaching the predetermined threshold.
64. A method according to claim 61, wherein the proximity sensor is a capacitive sensor and the inherent electrical characteristic detected is a capacitance between the sensor element and the object.
65. A method according to claim 62, wherein the proximity sensor is a capacitive sensor and the inherent electrical characteristic detected is a capacitance between the sensor element and the person or animal.
66. A method according to claim 61, wherein the proximity sensor detects the inherent electrical characteristic of the object without requiring contact with the sensor element.
67. A method of operating a shredder comprising: (i) a housing; (ii) a shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the shredder mechanism enabling one or more articles to be shredded to be fed into the cutter elements and the motor being operable to drive the cutter elements so that the cutter elements shred the one or more articles fed therein; (iii) the housing having an opening enabling the one or more articles to be fed therethrough into the cutter elements of the document shredder mechanism for shredding; (iv) a proximity sensor comprising an electroconductive sensor element at least in part adjacent the opening, the proximity sensor being configured to detect via the sensor element an inherent electrical characteristic of an object in proximity to the opening; and (v) a controller operable to control the cutter elements;
the method comprising:
feeding one or more articles into the cutter elements via the opening;
operating the motor to drive the cutter elements so that the cutter elements shred the one or more articles fed therein;
detecting with the proximity sensor an object in proximity to the opening having an inherent electrical characteristic reaching a predetermined threshold; and
the controller disabling the cutter elements responsive to detecting the object having the inherent electrical characteristic reaching the predetermined threshold.
68. A method according to claim 67, wherein the detected object is a person or animal.
69. A method according to claim 67, wherein the cutter elements are disabled by disabling power to the motor responsive to detecting the object having the inherent electrical characteristic reaching the predetermined threshold.
70. A method according to claim 67, wherein the proximity sensor is a capacitive sensor and the inherent electrical characteristic detected is a capacitance between the sensor element and the object.
71. A method according to claim 68, wherein the proximity sensor is a capacitive sensor and the inherent electrical characteristic detected is a capacitance between the sensor element and the person or animal.
72. A method according to claim 67, wherein the proximity sensor detects the inherent electrical characteristic of the object without requiring contact with the sensor element.
US11/177,480 2004-09-10 2005-07-11 Shredder throat safety system Active 2026-05-29 US7661614B2 (en)

Priority Applications (37)

Application Number Priority Date Filing Date Title
US11/177,480 US7661614B2 (en) 2004-09-10 2005-07-11 Shredder throat safety system
CA2683280A CA2683280C (en) 2004-09-10 2005-08-09 Shredder throat safety system
CN2009102523243A CN101850288B (en) 2004-09-10 2005-08-09 Shredder throat safety system
AU2005285398A AU2005285398B2 (en) 2004-09-10 2005-08-09 Shredder with proximity sensing system
EP05784240.3A EP1819442B1 (en) 2004-09-10 2005-08-09 Shredder throat safety system
CN2005800344785A CN101180130B (en) 2004-09-10 2005-08-09 Shredder with throat safety system
PCT/US2005/028290 WO2006031324A1 (en) 2004-09-10 2005-08-09 Shredder throat safety system
PL05784240T PL1819442T3 (en) 2004-09-10 2005-08-09 Shredder throat safety system
DE202005021450U DE202005021450U1 (en) 2004-09-10 2005-08-09 Safety system for material shredder entry port
DE202005021676U DE202005021676U1 (en) 2004-09-10 2005-08-09 Safety system for material shredder entry port
CN2009102622639A CN101716545B (en) 2004-09-10 2005-08-09 Shredder throat safety system
EP08102126.3A EP1935497B1 (en) 2004-09-10 2005-08-09 Shredder throat safety system
CA2579137A CA2579137C (en) 2004-09-10 2005-08-09 Shredder throat safety system
DE202005021604U DE202005021604U1 (en) 2004-09-10 2005-08-09 Safety system for material shredder entry port
RU2007108715A RU2379111C2 (en) 2005-07-11 2005-08-09 Shredder with safe mouth
JP2005261612A JP2006075831A (en) 2004-09-10 2005-09-09 Shredder throat safe system
US11/444,491 US7631822B2 (en) 2004-09-10 2006-06-01 Shredder with thickness detector
JP2006347558A JP4653066B2 (en) 2004-09-10 2006-12-25 Shredder throat safety system
US11/766,521 US7635102B2 (en) 2004-09-10 2007-06-21 Shredder with thickness detector
US11/767,152 US7631823B2 (en) 2004-09-10 2007-06-22 Shredder with thickness detector
US11/768,651 US7631824B2 (en) 2004-09-10 2007-06-26 Shredder with thickness detector
US11/770,223 US7712689B2 (en) 2004-09-10 2007-06-28 Shredder with thickness detector
AU2008100182A AU2008100182B4 (en) 2004-09-10 2008-02-27 Document shredder with safety system
AU2008202504A AU2008202504B2 (en) 2004-09-10 2008-06-05 Shredder with thickness detection means
RU2009134476/13A RU2446891C2 (en) 2004-09-10 2009-09-11 Grinder with safe neck
US12/578,292 US7946514B2 (en) 2004-09-10 2009-10-13 Shredder with thickness detector
US12/616,567 US7963468B2 (en) 2004-09-10 2009-11-11 Shredder with thickness detector
US12/630,488 US7946515B2 (en) 2004-09-10 2009-12-03 Shredder throat safety system
JP2009298593A JP5330987B2 (en) 2004-09-10 2009-12-28 Shredder throat safety system
AU2010100056A AU2010100056B4 (en) 2004-09-10 2010-01-19 Shredder with thickness detection means
US12/732,899 US8783592B2 (en) 2004-09-10 2010-03-26 Shredder with thickness detector
US13/020,553 US8870106B2 (en) 2004-09-10 2011-02-03 Shredder with thickness detector
US13/030,849 USRE44161E1 (en) 2005-07-11 2011-02-18 Shredder with thickness detector
US13/213,809 US8757526B2 (en) 2005-07-11 2011-08-19 Shredder with thickness detector
US13/213,857 US8672247B2 (en) 2005-07-11 2011-08-19 Shredder with thickness detector
US13/760,768 US20130146693A1 (en) 2005-07-11 2013-02-06 Shredder with thickness detector
US14/172,687 US9573135B2 (en) 2005-07-11 2014-02-04 Shredder with thickness detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/937,304 US7311276B2 (en) 2004-09-10 2004-09-10 Shredder with proximity sensing system
US11/177,480 US7661614B2 (en) 2004-09-10 2005-07-11 Shredder throat safety system

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US10/937,304 Continuation-In-Part US7311276B2 (en) 2004-09-10 2004-09-10 Shredder with proximity sensing system
US11/385,864 Continuation-In-Part US7798435B2 (en) 2004-09-10 2006-03-22 Shredder with oiling mechanism
US12/732,899 Division US8783592B2 (en) 2004-09-10 2010-03-26 Shredder with thickness detector

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/444,491 Continuation-In-Part US7631822B2 (en) 2004-09-10 2006-06-01 Shredder with thickness detector
US11/444,491 Continuation US7631822B2 (en) 2004-09-10 2006-06-01 Shredder with thickness detector
US12/630,488 Continuation US7946515B2 (en) 2004-09-10 2009-12-03 Shredder throat safety system

Publications (3)

Publication Number Publication Date
US20060054725A1 US20060054725A1 (en) 2006-03-16
US20080105772A2 true US20080105772A2 (en) 2008-05-08
US7661614B2 US7661614B2 (en) 2010-02-16

Family

ID=35169695

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/177,480 Active 2026-05-29 US7661614B2 (en) 2004-09-10 2005-07-11 Shredder throat safety system
US12/630,488 Active US7946515B2 (en) 2004-09-10 2009-12-03 Shredder throat safety system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/630,488 Active US7946515B2 (en) 2004-09-10 2009-12-03 Shredder throat safety system

Country Status (10)

Country Link
US (2) US7661614B2 (en)
EP (2) EP1935497B1 (en)
JP (3) JP2006075831A (en)
CN (2) CN101850288B (en)
AU (4) AU2005285398B2 (en)
CA (2) CA2579137C (en)
DE (3) DE202005021450U1 (en)
PL (1) PL1819442T3 (en)
RU (1) RU2446891C2 (en)
WO (1) WO2006031324A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080041207A1 (en) * 2006-07-14 2008-02-21 Aurora Office Equipment Co., Ltd. Touch-sensitive paper shredder control system
US20090134252A1 (en) * 2007-06-27 2009-05-28 Aurora Corp. Of America Safety shredder
US20090134253A1 (en) * 2007-11-28 2009-05-28 Simon Huang Shredder safety throat
US20110024535A1 (en) * 2009-07-31 2011-02-03 Aurora Office Equipment Co., Ltd. Safety Inlet Apparatus for a Paper Feed Opening of a Shredder
US8079537B2 (en) 2007-06-27 2011-12-20 Aurora Office Equipment Co., Ltd. Safety shredder
US8678305B2 (en) 2009-06-18 2014-03-25 Fellowes, Inc. Restrictive throat mechanism for paper shredders
US8967510B2 (en) 2012-09-27 2015-03-03 Aurora Office Equipment Co., Ltd. Safety shredder
US9643190B2 (en) 2013-03-26 2017-05-09 Aurora Office Equipment Co., Ltd. Shanghai Safety shredder with bin-full device and time delay
CN112371280A (en) * 2020-10-23 2021-02-19 章苏燕 Recovery unit is smashed to express delivery carton

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0317606A (en) * 2002-12-20 2005-11-29 Dynogen Pharmaceuticals Inc Methods of treating non-painful urinary bladder disorders using subunit (alpha) calcium channel modulators 2 (delta)
US8109455B2 (en) 2003-10-23 2012-02-07 Buttercup Legacy, Llc Delivery of agents to the cutting mechanism of paper shredders
US7902129B2 (en) * 2003-10-23 2011-03-08 Buttercup Legacy, Llc Delivery of agents to the cutting mechanism of paper shredders
US7025293B2 (en) * 2004-04-21 2006-04-11 Fellows Inc. Shredder with pivoting housing for the shredder mechanism
US7661614B2 (en) 2004-09-10 2010-02-16 Fellowes Inc. Shredder throat safety system
US7631822B2 (en) 2004-09-10 2009-12-15 Fellowes Inc. Shredder with thickness detector
US7798435B2 (en) * 2006-03-22 2010-09-21 Fellowes, Inc. Shredder with oiling mechanism
US8870106B2 (en) * 2004-09-10 2014-10-28 Fellowes, Inc. Shredder with thickness detector
US7954737B2 (en) 2007-10-04 2011-06-07 Fellowes, Inc. Shredder thickness with anti-jitter feature
US7263953B2 (en) * 2005-03-30 2007-09-04 Krishnamurthy Sundararajan Automatic pet trainer
US8672247B2 (en) 2005-07-11 2014-03-18 Fellowes, Inc. Shredder with thickness detector
GB2437594B (en) * 2006-04-24 2010-08-11 Acco Uk Ltd A shredding machine
WO2007137761A1 (en) * 2006-06-01 2007-12-06 Dahle Bürotechnik Gmbh Document shredder
US8008812B2 (en) 2006-07-14 2011-08-30 Aurora Office Equipment Co., Ltd. Paper shredder control system responsive to touch-sensitive element
DE102006036136A1 (en) * 2006-07-28 2008-01-31 Martin Yale International Gmbh Paper shredder i.e. document annihilator, for cutting e.g. paper, has thickness measuring device arranged in area of inlet for measuring thickness of flat material and designed in contactless working manner as capacitive measuring device
JP2008062167A (en) * 2006-09-06 2008-03-21 Twinbird Corp Paper shredder and spacer used for this paper shredder
JP4925425B2 (en) * 2006-09-13 2012-04-25 カール事務器株式会社 Cutting device slot structure
US7757982B2 (en) * 2006-09-28 2010-07-20 Fellowes, Inc. Shredder with intelligent activation switch
JP5149501B2 (en) * 2006-10-12 2013-02-20 アイリスオーヤマ株式会社 Shredda
CN200957366Y (en) 2006-10-18 2007-10-10 东莞市邦泽电子有限公司 Paper-cutter with multiple inductors
US20080093488A1 (en) * 2006-10-19 2008-04-24 Staples The Office Superstore, Llc Shredder
TWI302479B (en) * 2006-10-20 2008-11-01 Primax Electronics Ltd Shredder
US20080135655A1 (en) * 2006-10-25 2008-06-12 Tie Chun Wang Shutoff mechanism for shredder
JP5030539B2 (en) * 2006-11-07 2012-09-19 カール事務器株式会社 Shredder slot structure
JP2008132407A (en) * 2006-11-27 2008-06-12 Honda Elesys Co Ltd Shredder apparatus
WO2008094596A2 (en) * 2007-01-30 2008-08-07 Staples The Office Superstore, Llc A shredder
US7673825B2 (en) * 2007-03-08 2010-03-09 Gordon Bud Jeansonne Machine for shredding/collecting drugs and drug packaging incident to permanent disposal
US7673822B2 (en) * 2007-03-12 2010-03-09 Aron Abramson Shredder head having motor driven shredder blades and an associated safety feature and/or a method of shredding material
DE212008000024U1 (en) * 2007-03-22 2009-11-26 Schwelling, Hermann Shredder with a safety device at the intake opening
DE102007020221B4 (en) * 2007-04-28 2014-02-20 Hermann Schwelling paper shredder
DE102007020222B4 (en) * 2007-04-28 2014-03-06 Hermann Schwelling paper shredder
CN201055797Y (en) * 2007-06-11 2008-05-07 周小兴 Circuit apparatus of paper crusher
KR100883958B1 (en) * 2007-06-29 2009-02-18 (주)대진코스탈 Safety paper shredder
GB2450932B (en) * 2007-07-13 2009-06-03 Sean Thomas Hallard An apparatus, system and method for shredding plasterboard
GB2451513B (en) 2007-08-02 2012-04-18 Acco Uk Ltd A shredding machine
CN201239643Y (en) 2008-08-06 2009-05-20 上海震旦办公设备有限公司 Full automatic paper crusher without selecting paper
CN201244502Y (en) 2008-08-19 2009-05-27 上海震旦办公设备有限公司 Structure capable of removing nail of automatic paper crusher
US8430347B2 (en) * 2009-01-05 2013-04-30 Fellowes, Inc. Thickness adjusted motor controller
US8201761B2 (en) * 2009-01-05 2012-06-19 Fellowes, Inc. Thickness sensor based motor controller
US8777138B2 (en) 2009-01-18 2014-07-15 Techtronic Floor Care Technology Limited Overload fault condition detection system for article destruction device
CN201380106Y (en) 2009-02-25 2010-01-13 青岛皇冠电子有限公司 Automatic induction device of paper shredder
WO2010098599A2 (en) * 2009-02-25 2010-09-02 로얄소브린 주식회사 Automatic paper feed-sensing apparatus for a paper shredder, paper-feeding apparatus comprising same, and paper shredder comprising the automatic paper feed-sensing apparatus and the paper-feeding apparatus
US8091809B2 (en) 2009-03-24 2012-01-10 Fellowes, Inc. Shredder with jam proof system
CN101543800A (en) 2009-05-07 2009-09-30 上海震旦办公设备有限公司 Paper jamming prevention protective device of paper shredder
US8205815B2 (en) * 2009-05-15 2012-06-26 Fellowes, Inc. Paper alignment sensor arrangement
US8550387B2 (en) * 2009-06-18 2013-10-08 Tai Hoon K. Matlin Restrictive throat mechanism for paper shredders
US20100327091A1 (en) * 2009-06-24 2010-12-30 Techko, Inc. Safety systems and methods for controlling operation of office equipment
KR101676821B1 (en) * 2010-03-18 2016-11-17 삼성전자주식회사 Magnetic memory device and method of forming the same
US8382019B2 (en) 2010-05-03 2013-02-26 Fellowes, Inc. In-rush current jam proof sensor control
US8511593B2 (en) 2010-05-28 2013-08-20 Fellowes, Inc. Differential jam proof sensor for a shredder
US8413916B2 (en) 2010-08-02 2013-04-09 Techtronic Floor Care Technology Limited Force responsive shredder
US8528452B2 (en) 2010-12-17 2013-09-10 Jeff Buchanan Safety system and method for cutting machine
US8708260B2 (en) 2011-08-08 2014-04-29 Aurora Office Equipment Co., Ltd. Depowered standby paper shredder and method
US20130214072A1 (en) * 2012-02-20 2013-08-22 Tex Year Industries Inc. Rotary cutter door device for paper shredders
DE102014100669A1 (en) 2013-01-26 2014-07-31 Hermann Schwelling Shredder
US10792667B2 (en) * 2013-09-04 2020-10-06 Herman Chang Disposable waste system for paper shredder
US9687854B2 (en) * 2015-03-19 2017-06-27 Aurora Office Equipment Co., Ltd. Shanghai Shredder jam clear apparatus
US10639642B2 (en) * 2015-03-19 2020-05-05 Aurora Office Equipment Co., Ltd. Shanghai Shredder jam clear apparatus
US9827570B2 (en) * 2015-03-19 2017-11-28 Aurora Office Equipment Co., Ltd. Shanghai Shredder jam clear apparatus
US10537898B1 (en) * 2015-04-20 2020-01-21 SMT Medical Technologies, LLC Device and method for processing solid waste material
JP2017104884A (en) * 2015-12-09 2017-06-15 株式会社Tds Volume decrease machine
US10480962B2 (en) * 2017-04-21 2019-11-19 Capsule Technologies, Inc. Electronic device including a capacitive sensor in a housing
WO2019077392A1 (en) * 2017-10-19 2019-04-25 TOMS, Shaun Ivanhoe Sensing means and method
US10842080B2 (en) * 2017-10-27 2020-11-24 Eteros Technologies Inc. Plant trimming apparatus and methods
CN110180644B (en) * 2019-05-31 2021-04-27 浙江理工大学 Paper shredder and paper shredding method thereof
CN110170360B (en) * 2019-05-31 2021-04-13 浙江理工大学 Paper shredder and paper shredding method thereof
DE102019126978A1 (en) * 2019-10-08 2021-04-08 Kleemann Gmbh Rock processing machine with improved control panel
CN113351328A (en) * 2021-05-20 2021-09-07 广东邦泽创科电器股份有限公司 Paper shredder with dual protection function
US20230278042A1 (en) 2022-03-02 2023-09-07 Fellowes, Inc. Lubricant sheet for a shredder

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764819A (en) * 1971-03-16 1973-10-09 H Muller Electronic switch actuated by proximity of the human body
US3785230A (en) * 1972-11-08 1974-01-15 Lokey Tool Inc Automatic safety brake for rotary blade equipment
US3829850A (en) * 1971-12-17 1974-08-13 Tyco Laboratories Inc Proximity detector
US3947734A (en) * 1974-09-06 1976-03-30 The Stanley Works Electronic personnel safety sensor
US4352980A (en) * 1979-04-20 1982-10-05 Laurel Bank Machine Co., Ltd. Paper sheet counting machine provided with safety device
US4497478A (en) * 1982-09-20 1985-02-05 Agfa-Gevaert Ag Apparatus for squaring, stapling, and stacking copy sets
US4683381A (en) * 1983-10-14 1987-07-28 Ets. Bonnet Controlled-access apparatus for the agricultural food industries
US4757949A (en) * 1983-08-04 1988-07-19 Horton Norman P Apparatus for shredding rubber tires
US4814632A (en) * 1986-11-20 1989-03-21 Ernst Peiniger Gmbh Unternehmen Fur Bautenschutz Safety device
US5017972A (en) * 1990-05-30 1991-05-21 Xerox Corporation Elevator tray position control apparatus
US5081406A (en) * 1990-06-26 1992-01-14 Saf-T-Margin, Inc. Proximity responsive capacitance sensitive method, system, and associated electrical circuitry for use in controlling mechanical and electro-mechanical equipment
US5186398A (en) * 1982-09-30 1993-02-16 Paul E. Vigneaux, Jr. Paper shredder
US5342033A (en) * 1987-08-07 1994-08-30 Canon Kabushiki Kaisha Control method for sheet discharger with stapler
US5345138A (en) * 1990-07-16 1994-09-06 The Nippon Signal Co., Ltd. Method and apparatus for assuring safe work
US5353468A (en) * 1991-10-17 1994-10-11 U.S. Philips Corporation Vacuum cleaner comprising a suction tube and suction tube provided with a remote-control circuit comprising a capacitive sensor
US5397890A (en) * 1991-12-20 1995-03-14 Schueler; Robert A. Non-contact switch for detecting the presence of operator on power machinery
US5415355A (en) * 1992-04-10 1995-05-16 Gao Gesellschaft For Automation Und Organisation Mbh Method for functional monitoring of mechanical paper shredders
US5429313A (en) * 1993-03-22 1995-07-04 Schwelling; Hermann Paper shredder with lower cabinet and upper hood
US5436613A (en) * 1993-05-03 1995-07-25 Institut De Recherche En Sante Et En Securite Du Travail System for detecting human presence in hazardous situations
US5453644A (en) * 1991-10-17 1995-09-26 U.S. Philips Corporation Personal-care apparatus comprising a capacitive on/off switch
US5494229A (en) * 1994-08-19 1996-02-27 Cummins-Allison Corp. Paper shredder with an improved lubrication system and method of lubricating
US5823529A (en) * 1995-10-05 1998-10-20 Xerox Corporation Single stack height sensor for plural sheet stacking bins system
USD412716S (en) * 1998-06-30 1999-08-10 Fellowes Manufacturing Company Paper shredder
US5942975A (en) * 1995-09-25 1999-08-24 Soerensen; Joern Method and a device for sensing the distance between a first object and a second object
USD414198S (en) * 1998-05-29 1999-09-21 Iwataryo Co., Ltd. Manual shredder
US6065696A (en) * 1998-12-31 2000-05-23 Tsai; Jeff Dual function paper shredder
USD426805S (en) * 1998-09-30 2000-06-20 Iwataryo Co., Ltd. Manual shredder
US6079645A (en) * 1998-09-15 2000-06-27 General Binding Corporation Desktop shredders
US6116528A (en) * 1997-04-28 2000-09-12 Schwelling; Hermann Safety switch for paper shredders
US6265682B1 (en) * 1998-11-07 2001-07-24 Lg Electronics Inc. Touch switch
US20020017183A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Cutting tool safety system
US20020017336A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Apparatus and method for detecting dangerous conditions in power equipment
US20020017181A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Retraction system for use in power equipment
US20020017179A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Miter saw with improved safety system
US20020017180A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Brake mechanism for power equipment
US20020017178A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Motion detecting system for use in a safety system for power equipment
US20020017176A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Detection system for power equipment
US20020017182A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Brake positioning system
US20020020265A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Translation stop for use in power equipment
US20020020271A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Spring-biased brake mechanism for power equipment
US20020020261A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Replaceable brake mechanism for power equipment
US20020020263A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Firing subsystem for use in a fast-acting safety system
US20020020262A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Logic control for fast-acting safety system
US6376939B1 (en) * 1999-04-02 2002-04-23 Sumitomo Chemical Company, Limited Sensor apparatus and safety apparatus for protecting approach to machines
US20020056350A1 (en) * 2000-09-29 2002-05-16 Gass Stephen F. Table saw with improved safety system
US20020056349A1 (en) * 2000-09-29 2002-05-16 Gass Stephen F. Miter saw with improved safety system
US20020059853A1 (en) * 2000-09-29 2002-05-23 Gass Stephen F. Power saw with improved safety system
US20020059854A1 (en) * 2000-09-29 2002-05-23 Gass Stephen F. Miter saw with improved safety system
US20020059855A1 (en) * 2000-09-29 2002-05-23 Gass Stephen F. Miter saw with improved safety system
US20020066346A1 (en) * 2000-09-29 2002-06-06 Gass Stephen F. Miter saw with improved safety system
US20020069734A1 (en) * 2000-09-29 2002-06-13 Gass Stephen F. Contact detection system for power equipment
US6418004B1 (en) * 1998-12-02 2002-07-09 Corey Alexander Mather Safety system utilizing a passive sensor to detect the presence of a hand of a worker and provide a signal to interrupt the operation of a machine
US20030002942A1 (en) * 2001-07-02 2003-01-02 Gass Stephen F. Discrete proximity detection system
US20030005588A1 (en) * 2001-07-03 2003-01-09 Gass Stephen F. Actuators for use in fast-acting safety systems
US20030015253A1 (en) * 2001-07-18 2003-01-23 Gass Stephen F. Router with improved safety system
US20030019341A1 (en) * 2001-07-27 2003-01-30 Gass Stephen F. Safety systems for band saws
US20030020336A1 (en) * 2001-07-25 2003-01-30 Gass Stephen F. Actuators for use in fast-acting safety systems
US20030037651A1 (en) * 2001-08-13 2003-02-27 Gass Stephen F. Safety systems for power equipment
US20030058121A1 (en) * 2001-09-24 2003-03-27 Gass Stephen F. Logic control with test mode for fast-acting safety system
US20030056853A1 (en) * 2001-09-21 2003-03-27 Gass Stephen F. Router with improved safety system
US20030090224A1 (en) * 2001-11-13 2003-05-15 Gass Stephen F. Detection system for power equipment
US20030117023A1 (en) * 2001-11-21 2003-06-26 Avril John G. Safety-shutoff device for a manually fed processing machine
US20030131703A1 (en) * 2002-01-16 2003-07-17 Gass Stephen F. Apparatus and method for detecting dangerous conditions in power equipment
US20030196824A1 (en) * 1999-04-29 2003-10-23 Gass Stephen F. Power tools
US6676460B1 (en) * 2001-07-05 2004-01-13 Maruta Electric Boatworks Llc Electronic propeller guard
US20040008122A1 (en) * 2000-10-02 2004-01-15 Stephen Michael Apparatus for use with capacitive presence detection systems
US6698640B2 (en) * 2000-06-01 2004-03-02 Max Co., Ltd. Motor operated stapler
US20040040426A1 (en) * 2002-08-27 2004-03-04 Gass Stephen F. Miter saw with improved safety system
US20040069883A1 (en) * 2002-08-28 2004-04-15 Fuji Xerox Co., Ltd. Shredder apparatus and shredding method
US6724324B1 (en) * 2000-08-21 2004-04-20 Delphi Technologies, Inc. Capacitive proximity sensor
US20040159198A1 (en) * 2003-01-31 2004-08-19 Peot David G. Table saw with cutting tool retraction system
US20040173430A1 (en) * 2003-03-05 2004-09-09 Gass Stephen F. Retraction system and motor position for use with safety systems for power equipment
US20040194594A1 (en) * 2003-01-31 2004-10-07 Dils Jeffrey M. Machine safety protection system
US20050039586A1 (en) * 2003-08-20 2005-02-24 Gass Stephen F. Brake cartridges for power equipment
US20050039822A1 (en) * 2003-08-20 2005-02-24 Gass Stephen F. Woodworking machines with overmolded arbors
US20050041359A1 (en) * 2003-08-20 2005-02-24 Gass Stephen F. Motion detecting system for use in a safety system for power equipment
US20050066784A1 (en) * 2000-09-29 2005-03-31 Gass Stephen F. Safety methods for use in power equipment
US20050139459A1 (en) * 2003-12-31 2005-06-30 Gass Stephen F. Switch box for power tools with safety systems
US20050139057A1 (en) * 2003-12-31 2005-06-30 Gass Stephen F. Table saws with safety systems
US20050139058A1 (en) * 2003-12-31 2005-06-30 Gass Stephen F. Brake cartridges and mounting systems for brake cartridges
US20050139056A1 (en) * 2003-12-31 2005-06-30 Gass Stephen F. Fences for table saws
US20050155473A1 (en) * 2003-12-31 2005-07-21 Gass Stephen F. Dectection systems for power equipment
US20050166736A1 (en) * 2004-01-29 2005-08-04 Gass Stephen F. Table saws with safety systems and systems to mount and index attachments
US20060016919A1 (en) * 2004-07-26 2006-01-26 Castronovo Charles A Feeding mechanism auto-adjusting to load for use in automatic high-security destruction of a mixed load, and other feeding systems
US20060091247A1 (en) * 2004-11-02 2006-05-04 Fellowes, Inc. Shredder with separate waste opening
US7040559B2 (en) * 2004-04-02 2006-05-09 Fellowes Inc. Shredder with lock for on/off switch
US7166561B2 (en) * 2003-10-23 2007-01-23 Buttercup Legacy, Llc Lubricant-carrying substrate for maintenance of paper shredders
US20070080252A1 (en) * 2005-08-19 2007-04-12 Seanet Development, Inc. Shredder maintenance material delivery system
US20070087942A1 (en) * 2003-10-23 2007-04-19 Allen Mark S Delivery of agents to the cutting mechanism of paper shredders
US20070164138A1 (en) * 2003-10-23 2007-07-19 Allen Mark S Delivery of agents to the cutting mechanism of paper shredders
US20070215728A1 (en) * 2004-01-22 2007-09-20 Wolfgang Priester Comminuting Apparatus, Especially Document Shredder

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US268244A (en) * 1882-11-28 Stove-pipe shelf
US562076A (en) * 1896-06-16 Molder s screen
US1177832A (en) * 1915-03-22 1916-04-04 Harold Sage Truscott Method of handling sugar-cane juices.
US1199903A (en) * 1916-02-19 1916-10-03 Arthur Neal Kerr Refining method and apparatus.
US2022566A (en) * 1935-03-27 1935-11-26 Inman Mfg Company Inc Fruit basket
US2171029A (en) * 1937-02-02 1939-08-29 Geldhof Silver Pneumatic tool
US2221516A (en) 1937-04-01 1940-11-12 Gen Electric Continuous thickness gauge
US2209963A (en) * 1938-06-18 1940-08-06 California Inst Of Techn X-ray generating device
US2449087A (en) * 1938-08-17 1948-09-14 Salomon Francois Marie Bernard Oscillation reducing device
US2442942A (en) * 1941-09-11 1948-06-08 Distillers Co Yeast Ltd Recovery of acetaldehyde from gaseous mixtures containing the same
US2440651A (en) * 1943-09-18 1948-04-27 Continental Oil Co Tool joint
GB1199903A (en) 1969-01-10 1970-07-22 Acral Ltd Shredding Machine
JPS5311911Y1 (en) * 1970-05-25 1978-03-31
US3619537A (en) 1970-10-12 1971-11-09 Matsushita Electric Ind Co Ltd High-frequency heating device
US3724766A (en) 1971-05-14 1973-04-03 Ketcham & Mcdougall Shredder
US3829580A (en) * 1972-04-24 1974-08-13 Rohm & Haas Fungicidal dithiomalonamides and their congeners
JPS5211691U (en) * 1975-07-14 1977-01-27
JPS6039165B2 (en) * 1976-06-24 1985-09-04 ミノルタ株式会社 Exposure information setting circuit
SU887662A1 (en) * 1977-04-19 1981-12-07 За витель Apparatus for disintegrating waste paper bales
JPS5814992Y2 (en) * 1980-10-23 1983-03-25 株式会社岡村製作所 Shredder safety device
SU948443A1 (en) * 1980-12-10 1982-08-07 Кутаисское Отделение Специального Конструкторско-Технологического Бюро Копировально-Множительной Техники Министерства Приборостроения,Средств Автоматизации И Систем Управления Apparatus for destroying documents
US4495456A (en) 1982-09-23 1985-01-22 General Binding Corporation Automatic reversing system for shredder
JPS59150554A (en) * 1983-02-18 1984-08-28 富士ゼロックス株式会社 Paper shredding apparatus
US4489897A (en) 1983-03-02 1984-12-25 General Binding Corporation Apparatus for shredding documents
DE3312991A1 (en) * 1983-04-12 1984-10-18 Feinwerktechnik Schleicher & Co, 7778 Markdorf DEVICE FOR CRUSHING MATERIALS, LIKE DOCUMENTS ETC.
DE3313232A1 (en) 1983-04-13 1984-10-18 Geha-Werke Gmbh, 3000 Hannover Cover flap for the paper inlet of an office machine
JPS61702A (en) * 1984-06-14 1986-01-06 Sumitomo Electric Ind Ltd Plane contact sensor
DE3505074A1 (en) 1985-02-14 1985-08-14 Alois Zettler Elektrotechnische Fabrik GmbH, 8000 München HOUSING FOR DEVICE FOR DESTROYING SHEET-SHAPED MATERIAL
US4707704A (en) 1986-05-09 1987-11-17 Advanced Color Technology, Inc. Control system and method for handling sheet materials
JPS62183555U (en) * 1986-05-13 1987-11-21
DE8619856U1 (en) * 1986-07-24 1988-09-08 Feinwerktechnik Schleicher & Co, 7778 Markdorf, De
EP0414278B1 (en) 1987-01-13 1994-07-06 Sharp Kabushiki Kaisha Shredding machine
GB8722063D0 (en) 1987-09-18 1987-10-28 De La Rue Syst Shredding sheets
SU1756148A1 (en) * 1990-03-30 1992-08-23 Научно-Производственная Организация Внедрения Перспективных Разработок И Патентно-Информационных Исследований "Инновация" Control device of feeding sheet blanks
JPH0568907A (en) * 1991-03-13 1993-03-23 Riso Kagaku Corp Paper sheet data disposal treatment apparatus
US5166679A (en) 1991-06-06 1992-11-24 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Driven shielding capacitive proximity sensor
DE4121330A1 (en) 1991-06-28 1993-01-14 Schleicher & Co Int Document shredding machine - has intake side and conveyor with openings to accept goods with limiting gap and safety device to protect against damage.
JP2531011Y2 (en) * 1991-12-25 1997-04-02 松下電器産業株式会社 Cutting machine
JPH06277548A (en) * 1993-03-23 1994-10-04 Ricoh Elemex Corp Paper feed device of shredder
JP3303448B2 (en) * 1993-08-02 2002-07-22 松下電器産業株式会社 Shredder
JP3202482B2 (en) * 1994-05-10 2001-08-27 リコーエレメックス株式会社 Shredder paper feeder
JP3095114B2 (en) 1994-08-31 2000-10-03 リコーエレメックス株式会社 Paper feeder for shredder and paper feed method using the same
JPH0975763A (en) * 1995-09-14 1997-03-25 Matsushita Electric Ind Co Ltd Document shredder
JPH1048344A (en) * 1996-08-05 1998-02-20 Sumitomo Chem Co Ltd Sensor and safety unit
US5850342A (en) 1996-09-24 1998-12-15 Nakamura; Kaoru Machine tool control system
US5924637A (en) 1997-04-16 1999-07-20 Niederholtmeyer; Werner Oversize tire and rubber debris shredder
TW320997U (en) 1997-04-09 1997-11-21 Shao-Nong Tsai Switch of shredder
DE19835093A1 (en) 1997-07-25 1999-02-25 Fellowes Mfg Co Paper shredder with DC motor
JPH11132396A (en) * 1997-10-31 1999-05-21 Sumitomo Chem Co Ltd Sensor and safety device
US5988542A (en) 1998-05-18 1999-11-23 General Binding Corporation Document shredding devices
US6561444B1 (en) 1999-02-16 2003-05-13 Kabushiki Kaisha Meiko Shokai Shredder drive control device and method of drivingly controlling the shredder
JP2001065789A (en) * 1999-08-25 2001-03-16 Sumitomo Chem Co Ltd Sensor and safety device
MXPA02003291A (en) 1999-09-30 2004-09-10 Gregory J Peterson Artificial firelog and firestarter chip producing apparatus and method and products produced therefrom.
US7350444B2 (en) 2000-08-14 2008-04-01 Sd3, Llc Table saw with improved safety system
US9724840B2 (en) 1999-10-01 2017-08-08 Sd3, Llc Safety systems for power equipment
US9927796B2 (en) 2001-05-17 2018-03-27 Sawstop Holding Llc Band saw with improved safety system
US7137326B2 (en) 2000-08-14 2006-11-21 Sd3, Llc Translation stop for use in power equipment
US6945148B2 (en) 2000-09-29 2005-09-20 Sd3, Llc Miter saw with improved safety system
US7231856B2 (en) 2001-06-13 2007-06-19 Sd3, Llc Apparatus and method for detecting dangerous conditions in power equipment
US20030140749A1 (en) 2002-01-25 2003-07-31 Gass Stephen F. Brake Pawls for power equipment
JP2001137730A (en) * 1999-11-17 2001-05-22 Meiko Shokai Co Ltd Shredder having door lock means
JP2002066978A (en) * 2000-08-24 2002-03-05 Sharp Corp Human-coexistence type robot
US6601787B1 (en) 2000-08-31 2003-08-05 Bertwin Langenecker Method and an apparatus for managing contaminated material
US6550701B1 (en) 2000-10-10 2003-04-22 Frank Chang Dual-functional medium shredding machine structure
JP4836332B2 (en) 2001-01-16 2011-12-14 三菱電機株式会社 Motor control circuit for document shredder
JP2002239405A (en) 2001-02-22 2002-08-27 Nakabayashi Co Ltd Charging port for material to be shredded in shredder
US7607598B2 (en) 2001-12-26 2009-10-27 Castronovo Charles A Self-healing cutting apparatus and other self-healing machinery
US6983903B2 (en) 2003-01-22 2006-01-10 Fellowes, Inc. Multi-functional shredder
JP2004321993A (en) 2003-04-25 2004-11-18 Ishizawa Seisakusho:Kk Feeding port for document to be shredded in document shredder
US6922153B2 (en) 2003-05-13 2005-07-26 Credo Technology Corporation Safety detection and protection system for power tools
US7025293B2 (en) 2004-04-21 2006-04-11 Fellows Inc. Shredder with pivoting housing for the shredder mechanism
US7661614B2 (en) 2004-09-10 2010-02-16 Fellowes Inc. Shredder throat safety system
US7954737B2 (en) 2007-10-04 2011-06-07 Fellowes, Inc. Shredder thickness with anti-jitter feature
US7311276B2 (en) 2004-09-10 2007-12-25 Fellowes Inc. Shredder with proximity sensing system
US7631822B2 (en) 2004-09-10 2009-12-15 Fellowes Inc. Shredder with thickness detector
US7798435B2 (en) 2006-03-22 2010-09-21 Fellowes, Inc. Shredder with oiling mechanism
JP2008516744A (en) 2004-09-27 2008-05-22 ピアース デビッド Shredder lubrication system
US7490786B2 (en) 2005-01-04 2009-02-17 Fellowes, Inc. Shredder with stack thickness gauge
US20060243631A1 (en) 2005-04-20 2006-11-02 Duke Derek A Method and apparatus for lubricating a shredding device
US7483424B2 (en) 2005-07-28 2009-01-27 International Business Machines Corporation Method, for securely maintaining communications network connection data
CN100389883C (en) 2006-01-17 2008-05-28 钟奋强 Intelligent gearshift paper shredder and its automatic gearshifting method
GB2437594B (en) 2006-04-24 2010-08-11 Acco Uk Ltd A shredding machine
EP1862768A3 (en) 2006-04-27 2011-03-02 Hirschmann Automotive GmbH Hall effect sensor assembly designed for measuring linear movement
DE102006036136A1 (en) 2006-07-28 2008-01-31 Martin Yale International Gmbh Paper shredder i.e. document annihilator, for cutting e.g. paper, has thickness measuring device arranged in area of inlet for measuring thickness of flat material and designed in contactless working manner as capacitive measuring device
TWI302479B (en) 2006-10-20 2008-11-01 Primax Electronics Ltd Shredder
TWI325790B (en) 2007-07-27 2010-06-11 Primax Electronics Ltd Floating detection device for measuring the thickness of a sheet-like article
GB2451513B (en) 2007-08-02 2012-04-18 Acco Uk Ltd A shredding machine
US7663769B2 (en) 2007-09-27 2010-02-16 Kabushiki Kaisha Toshiba Sheet thickness measuring device and image forming apparatus
TWI346002B (en) 2008-12-01 2011-08-01 Primax Electronics Ltd Shredder with detecting mechanism for width and thickness of shredded object
US8430347B2 (en) 2009-01-05 2013-04-30 Fellowes, Inc. Thickness adjusted motor controller
US8201761B2 (en) 2009-01-05 2012-06-19 Fellowes, Inc. Thickness sensor based motor controller

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764819A (en) * 1971-03-16 1973-10-09 H Muller Electronic switch actuated by proximity of the human body
US3829850A (en) * 1971-12-17 1974-08-13 Tyco Laboratories Inc Proximity detector
US3785230A (en) * 1972-11-08 1974-01-15 Lokey Tool Inc Automatic safety brake for rotary blade equipment
US3947734A (en) * 1974-09-06 1976-03-30 The Stanley Works Electronic personnel safety sensor
US4352980A (en) * 1979-04-20 1982-10-05 Laurel Bank Machine Co., Ltd. Paper sheet counting machine provided with safety device
US4497478A (en) * 1982-09-20 1985-02-05 Agfa-Gevaert Ag Apparatus for squaring, stapling, and stacking copy sets
US5186398A (en) * 1982-09-30 1993-02-16 Paul E. Vigneaux, Jr. Paper shredder
US4757949A (en) * 1983-08-04 1988-07-19 Horton Norman P Apparatus for shredding rubber tires
US4683381A (en) * 1983-10-14 1987-07-28 Ets. Bonnet Controlled-access apparatus for the agricultural food industries
US4914721A (en) * 1986-11-20 1990-04-03 Ernst Peiniger Gmbh Unternehmen Fuer Bautenschutz Safety device
US4814632A (en) * 1986-11-20 1989-03-21 Ernst Peiniger Gmbh Unternehmen Fur Bautenschutz Safety device
US5342033A (en) * 1987-08-07 1994-08-30 Canon Kabushiki Kaisha Control method for sheet discharger with stapler
US5017972A (en) * 1990-05-30 1991-05-21 Xerox Corporation Elevator tray position control apparatus
US5081406A (en) * 1990-06-26 1992-01-14 Saf-T-Margin, Inc. Proximity responsive capacitance sensitive method, system, and associated electrical circuitry for use in controlling mechanical and electro-mechanical equipment
US5345138A (en) * 1990-07-16 1994-09-06 The Nippon Signal Co., Ltd. Method and apparatus for assuring safe work
US5353468A (en) * 1991-10-17 1994-10-11 U.S. Philips Corporation Vacuum cleaner comprising a suction tube and suction tube provided with a remote-control circuit comprising a capacitive sensor
US5453644A (en) * 1991-10-17 1995-09-26 U.S. Philips Corporation Personal-care apparatus comprising a capacitive on/off switch
US5397890A (en) * 1991-12-20 1995-03-14 Schueler; Robert A. Non-contact switch for detecting the presence of operator on power machinery
US5415355A (en) * 1992-04-10 1995-05-16 Gao Gesellschaft For Automation Und Organisation Mbh Method for functional monitoring of mechanical paper shredders
US5429313A (en) * 1993-03-22 1995-07-04 Schwelling; Hermann Paper shredder with lower cabinet and upper hood
US5436613A (en) * 1993-05-03 1995-07-25 Institut De Recherche En Sante Et En Securite Du Travail System for detecting human presence in hazardous situations
US5494229A (en) * 1994-08-19 1996-02-27 Cummins-Allison Corp. Paper shredder with an improved lubrication system and method of lubricating
US5942975A (en) * 1995-09-25 1999-08-24 Soerensen; Joern Method and a device for sensing the distance between a first object and a second object
US5823529A (en) * 1995-10-05 1998-10-20 Xerox Corporation Single stack height sensor for plural sheet stacking bins system
US6116528A (en) * 1997-04-28 2000-09-12 Schwelling; Hermann Safety switch for paper shredders
USD414198S (en) * 1998-05-29 1999-09-21 Iwataryo Co., Ltd. Manual shredder
USD412716S (en) * 1998-06-30 1999-08-10 Fellowes Manufacturing Company Paper shredder
US6079645A (en) * 1998-09-15 2000-06-27 General Binding Corporation Desktop shredders
USD426805S (en) * 1998-09-30 2000-06-20 Iwataryo Co., Ltd. Manual shredder
US6265682B1 (en) * 1998-11-07 2001-07-24 Lg Electronics Inc. Touch switch
US6418004B1 (en) * 1998-12-02 2002-07-09 Corey Alexander Mather Safety system utilizing a passive sensor to detect the presence of a hand of a worker and provide a signal to interrupt the operation of a machine
US6065696A (en) * 1998-12-31 2000-05-23 Tsai; Jeff Dual function paper shredder
US6376939B1 (en) * 1999-04-02 2002-04-23 Sumitomo Chemical Company, Limited Sensor apparatus and safety apparatus for protecting approach to machines
US20050103510A1 (en) * 1999-04-29 2005-05-19 Gass Stephen F. Power tools
US20030196824A1 (en) * 1999-04-29 2003-10-23 Gass Stephen F. Power tools
US6698640B2 (en) * 2000-06-01 2004-03-02 Max Co., Ltd. Motor operated stapler
US20020017180A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Brake mechanism for power equipment
US6920814B2 (en) * 2000-08-14 2005-07-26 Sd3, Llc Cutting tool safety system
US20020017182A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Brake positioning system
US20020020265A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Translation stop for use in power equipment
US20020020271A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Spring-biased brake mechanism for power equipment
US20020020261A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Replaceable brake mechanism for power equipment
US20020020263A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Firing subsystem for use in a fast-acting safety system
US20020020262A1 (en) * 2000-08-14 2002-02-21 Gass Stephen F. Logic control for fast-acting safety system
US20020017178A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Motion detecting system for use in a safety system for power equipment
US20020017176A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Detection system for power equipment
US20050139051A1 (en) * 2000-08-14 2005-06-30 Gass Stephen F. Brake positioning system
US20020017179A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Miter saw with improved safety system
US20020017181A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Retraction system for use in power equipment
US6857345B2 (en) * 2000-08-14 2005-02-22 Sd3, Llc Brake positioning system
US20020017183A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Cutting tool safety system
US20020017336A1 (en) * 2000-08-14 2002-02-14 Gass Stephen F. Apparatus and method for detecting dangerous conditions in power equipment
US6724324B1 (en) * 2000-08-21 2004-04-20 Delphi Technologies, Inc. Capacitive proximity sensor
US20020059854A1 (en) * 2000-09-29 2002-05-23 Gass Stephen F. Miter saw with improved safety system
US20020059855A1 (en) * 2000-09-29 2002-05-23 Gass Stephen F. Miter saw with improved safety system
US20020056350A1 (en) * 2000-09-29 2002-05-16 Gass Stephen F. Table saw with improved safety system
US20020066346A1 (en) * 2000-09-29 2002-06-06 Gass Stephen F. Miter saw with improved safety system
US20020056349A1 (en) * 2000-09-29 2002-05-16 Gass Stephen F. Miter saw with improved safety system
US20050066784A1 (en) * 2000-09-29 2005-03-31 Gass Stephen F. Safety methods for use in power equipment
US20020069734A1 (en) * 2000-09-29 2002-06-13 Gass Stephen F. Contact detection system for power equipment
US20020059853A1 (en) * 2000-09-29 2002-05-23 Gass Stephen F. Power saw with improved safety system
US6880440B2 (en) * 2000-09-29 2005-04-19 Sd3, Llc Miter saw with improved safety system
US6877410B2 (en) * 2000-09-29 2005-04-12 Sd3, Llc Miter saw with improved safety system
US20040008122A1 (en) * 2000-10-02 2004-01-15 Stephen Michael Apparatus for use with capacitive presence detection systems
US20030002942A1 (en) * 2001-07-02 2003-01-02 Gass Stephen F. Discrete proximity detection system
US20030005588A1 (en) * 2001-07-03 2003-01-09 Gass Stephen F. Actuators for use in fast-acting safety systems
US6676460B1 (en) * 2001-07-05 2004-01-13 Maruta Electric Boatworks Llc Electronic propeller guard
US20030015253A1 (en) * 2001-07-18 2003-01-23 Gass Stephen F. Router with improved safety system
US20030020336A1 (en) * 2001-07-25 2003-01-30 Gass Stephen F. Actuators for use in fast-acting safety systems
US20030019341A1 (en) * 2001-07-27 2003-01-30 Gass Stephen F. Safety systems for band saws
US20030037651A1 (en) * 2001-08-13 2003-02-27 Gass Stephen F. Safety systems for power equipment
US20040163514A1 (en) * 2001-08-13 2004-08-26 Gass Stephen F. Safety systems for power equipment
US20030056853A1 (en) * 2001-09-21 2003-03-27 Gass Stephen F. Router with improved safety system
US20030058121A1 (en) * 2001-09-24 2003-03-27 Gass Stephen F. Logic control with test mode for fast-acting safety system
US20030090224A1 (en) * 2001-11-13 2003-05-15 Gass Stephen F. Detection system for power equipment
US20030117023A1 (en) * 2001-11-21 2003-06-26 Avril John G. Safety-shutoff device for a manually fed processing machine
US20030131703A1 (en) * 2002-01-16 2003-07-17 Gass Stephen F. Apparatus and method for detecting dangerous conditions in power equipment
US20040040426A1 (en) * 2002-08-27 2004-03-04 Gass Stephen F. Miter saw with improved safety system
US20040069883A1 (en) * 2002-08-28 2004-04-15 Fuji Xerox Co., Ltd. Shredder apparatus and shredding method
US20040194594A1 (en) * 2003-01-31 2004-10-07 Dils Jeffrey M. Machine safety protection system
US20040159198A1 (en) * 2003-01-31 2004-08-19 Peot David G. Table saw with cutting tool retraction system
US20040173430A1 (en) * 2003-03-05 2004-09-09 Gass Stephen F. Retraction system and motor position for use with safety systems for power equipment
US20050039586A1 (en) * 2003-08-20 2005-02-24 Gass Stephen F. Brake cartridges for power equipment
US20050039822A1 (en) * 2003-08-20 2005-02-24 Gass Stephen F. Woodworking machines with overmolded arbors
US20050041359A1 (en) * 2003-08-20 2005-02-24 Gass Stephen F. Motion detecting system for use in a safety system for power equipment
US20070164138A1 (en) * 2003-10-23 2007-07-19 Allen Mark S Delivery of agents to the cutting mechanism of paper shredders
US7166561B2 (en) * 2003-10-23 2007-01-23 Buttercup Legacy, Llc Lubricant-carrying substrate for maintenance of paper shredders
US20070087942A1 (en) * 2003-10-23 2007-04-19 Allen Mark S Delivery of agents to the cutting mechanism of paper shredders
US20050139058A1 (en) * 2003-12-31 2005-06-30 Gass Stephen F. Brake cartridges and mounting systems for brake cartridges
US20050155473A1 (en) * 2003-12-31 2005-07-21 Gass Stephen F. Dectection systems for power equipment
US20050139056A1 (en) * 2003-12-31 2005-06-30 Gass Stephen F. Fences for table saws
US20050139057A1 (en) * 2003-12-31 2005-06-30 Gass Stephen F. Table saws with safety systems
US20050139459A1 (en) * 2003-12-31 2005-06-30 Gass Stephen F. Switch box for power tools with safety systems
US20070215728A1 (en) * 2004-01-22 2007-09-20 Wolfgang Priester Comminuting Apparatus, Especially Document Shredder
US20050166736A1 (en) * 2004-01-29 2005-08-04 Gass Stephen F. Table saws with safety systems and systems to mount and index attachments
US7040559B2 (en) * 2004-04-02 2006-05-09 Fellowes Inc. Shredder with lock for on/off switch
US20060016919A1 (en) * 2004-07-26 2006-01-26 Castronovo Charles A Feeding mechanism auto-adjusting to load for use in automatic high-security destruction of a mixed load, and other feeding systems
US20060091247A1 (en) * 2004-11-02 2006-05-04 Fellowes, Inc. Shredder with separate waste opening
US20070080252A1 (en) * 2005-08-19 2007-04-12 Seanet Development, Inc. Shredder maintenance material delivery system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622831B2 (en) 2006-07-14 2009-11-24 Aurora Office Equipment Co., Ltd. Shanghai Touch-sensitive paper shredder control system
US20100116916A1 (en) * 2006-07-14 2010-05-13 Aurora Office Equipment Co., Ltd. Shanghai Touch-Sensitive Paper Shredder Control System
US20080041207A1 (en) * 2006-07-14 2008-02-21 Aurora Office Equipment Co., Ltd. Touch-sensitive paper shredder control system
US8018099B2 (en) 2006-07-14 2011-09-13 Aurora Office Equipment Co., Ltd. Touch-sensitive paper shredder control system
US20090134252A1 (en) * 2007-06-27 2009-05-28 Aurora Corp. Of America Safety shredder
US7757985B2 (en) 2007-06-27 2010-07-20 Aurora Office Equipment Co., Ltd. Safety shredder
US8079537B2 (en) 2007-06-27 2011-12-20 Aurora Office Equipment Co., Ltd. Safety shredder
US20090134253A1 (en) * 2007-11-28 2009-05-28 Simon Huang Shredder safety throat
US8678305B2 (en) 2009-06-18 2014-03-25 Fellowes, Inc. Restrictive throat mechanism for paper shredders
US20110024535A1 (en) * 2009-07-31 2011-02-03 Aurora Office Equipment Co., Ltd. Safety Inlet Apparatus for a Paper Feed Opening of a Shredder
US8267338B2 (en) 2009-07-31 2012-09-18 Aurora Office Equipment Co., Ltd. Shanghai Safety inlet apparatus for a paper feed opening of a shredder
US8967510B2 (en) 2012-09-27 2015-03-03 Aurora Office Equipment Co., Ltd. Safety shredder
US9643190B2 (en) 2013-03-26 2017-05-09 Aurora Office Equipment Co., Ltd. Shanghai Safety shredder with bin-full device and time delay
CN112371280A (en) * 2020-10-23 2021-02-19 章苏燕 Recovery unit is smashed to express delivery carton

Also Published As

Publication number Publication date
US7661614B2 (en) 2010-02-16
US7946515B2 (en) 2011-05-24
AU2008202504B2 (en) 2010-04-15
AU2010100056B4 (en) 2010-04-08
WO2006031324A1 (en) 2006-03-23
AU2008100182B4 (en) 2008-07-17
CN101850288A (en) 2010-10-06
AU2008202504A1 (en) 2008-06-26
JP5330987B2 (en) 2013-10-30
AU2010100056A4 (en) 2010-02-18
DE202005021450U1 (en) 2008-02-14
EP1819442B1 (en) 2019-06-19
CN101716545B (en) 2012-06-27
CN101850288B (en) 2013-05-29
JP2010131598A (en) 2010-06-17
JP4653066B2 (en) 2011-03-16
DE202005021604U1 (en) 2008-11-06
CA2579137A1 (en) 2006-03-23
DE202005021676U1 (en) 2009-06-18
JP2006075831A (en) 2006-03-23
PL1819442T3 (en) 2019-11-29
AU2005285398A1 (en) 2006-03-23
CA2683280C (en) 2010-04-20
CA2579137C (en) 2010-06-22
EP1935497A1 (en) 2008-06-25
CN101716545A (en) 2010-06-02
AU2005285398B2 (en) 2008-04-24
RU2009134476A (en) 2011-03-20
EP1935497B1 (en) 2019-08-07
AU2008100182A4 (en) 2008-04-03
EP1819442A1 (en) 2007-08-22
RU2446891C2 (en) 2012-04-10
US20060054725A1 (en) 2006-03-16
US20100102153A1 (en) 2010-04-29
CA2683280A1 (en) 2010-01-14
JP2007075822A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US7661614B2 (en) Shredder throat safety system
US7311276B2 (en) Shredder with proximity sensing system
US7757982B2 (en) Shredder with intelligent activation switch
US8205815B2 (en) Paper alignment sensor arrangement
US7475836B2 (en) Shredder head having shredder blades and an associated safety feature for protecting a portion of a person's body
RU2379111C2 (en) Shredder with safe mouth

Legal Events

Date Code Title Description
AS Assignment

Owner name: FELLOWES INC.,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATLIN, TAI HOON KIM;REEL/FRAME:017031/0692

Effective date: 20050815

Owner name: FELLOWES INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATLIN, TAI HOON KIM;REEL/FRAME:017031/0692

Effective date: 20050815

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: FELLOWES, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EMD TECHNOLOGIES, INC.;REEL/FRAME:023776/0632

Effective date: 20091203

Owner name: FELLOWES, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATLIN, TAI HOON K;GACH, ERIC;REEL/FRAME:023776/0673;SIGNING DATES FROM 20091207 TO 20091208

Owner name: FELLOWES, INC.,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EMD TECHNOLOGIES, INC.;REEL/FRAME:023776/0632

Effective date: 20091203

Owner name: FELLOWES, INC.,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATLIN, TAI HOON K;GACH, ERIC;SIGNING DATES FROM 20091207 TO 20091208;REEL/FRAME:023776/0673

Owner name: FELLOWES, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATLIN, TAI HOON K;GACH, ERIC;SIGNING DATES FROM 20091207 TO 20091208;REEL/FRAME:023776/0673

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12