US20080099893A1 - Connecting a plurality of bond pads and/or inner leads with a single bond wire - Google Patents

Connecting a plurality of bond pads and/or inner leads with a single bond wire Download PDF

Info

Publication number
US20080099893A1
US20080099893A1 US11/955,856 US95585607A US2008099893A1 US 20080099893 A1 US20080099893 A1 US 20080099893A1 US 95585607 A US95585607 A US 95585607A US 2008099893 A1 US2008099893 A1 US 2008099893A1
Authority
US
United States
Prior art keywords
integrated circuit
bond
wire
bond pads
single bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/955,856
Inventor
Bruce Beauchamp
Andrew Tuthill
Joseph Fernandez
Anucha Phongsantichai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microchip Technology Inc
Original Assignee
Microchip Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/209,502 external-priority patent/US7157790B2/en
Application filed by Microchip Technology Inc filed Critical Microchip Technology Inc
Priority to US11/955,856 priority Critical patent/US20080099893A1/en
Publication of US20080099893A1 publication Critical patent/US20080099893A1/en
Assigned to MICROCHIP TECHNOLOGY INCORPORATED reassignment MICROCHIP TECHNOLOGY INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TUTHILL, ANDREW, PHONGSANTICHAI, ANUCHA, BEAUCHAMP, BRUCE, FERNANDEZ, JOSEPH D.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5382Adaptable interconnections, e.g. for engineering changes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48655Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48744Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48755Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48855Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present disclosure relates to connections made to integrated circuit bond pads and integrated circuit package external connections, and more particularly to connecting related bond pads and/or integrated circuit package external connections with a continuous single bond wire.
  • An Integrated circuit device may comprise a semiconductor integrated circuit die mounted on a leadframe.
  • the semiconductor integrated circuit die may comprise a plurality of bond pads that are electrically connected to inner leads of the leadframe, e.g., using bond wires.
  • the semiconductor integrated circuit die, the inner portion of the leadframe (inner leads) and the bond wires may be encapsulated in an integrated circuit package. After encapsulation, a border or frame on the outer portion of the leadframe is cut to separate outer leads of the leadframe into connecting pins or surface mount contacts which are used to electrically connect the electronic circuitry in the semiconductor integrated circuit die with other externally arranged electronic components mounted on a substrate or printed circuit board.
  • Integrated circuit devices are becoming more and more sophisticated while integrated circuit package size and the number of available package connections are being reduced. Limiting the number of package connections available for connecting to device circuits is necessary for both size and cost constraints. However, this may create a problem for the integrated circuit device manufacturer who must offer integrated circuit devices for many different types of configurations and applications. Integrated circuit device cost is reduced when a large quantity of the same device is produced. It is relatively easy to fabricate an integrated circuit device capable of many different configurations and uses then to have to perform various different metal mask operations so as to fabricate differently configured integrated circuit devices. A specific device configuration may then be selected during fabrication of the integrated circuit device with the leadframe by appropriate jumper connections between the die bond pads and inner lead fingers of the leadframe.
  • integrated circuit dice with a great number of functionalities enables fabrication of one type of integrated circuit die that may be configured for many different applications, thus saving inventories of many different types of dice and/or having to run die wafers through different masking operations.
  • the integrated circuit die becomes smaller, so does the integrated circuit package become smaller as does the availability of fewer external package connections, e.g., pins. Therefore the most economical way to produce integrated circuit devices is to increase the quantity during fabrication and production thereof, and selectively configure the integrated circuit device during automatic wire bonding of the integrated circuit die to the external package connections, e.g., leadframe.
  • the newer fabrication processes that produce smaller integrated circuit dice result in being able to put more than one integrated circuit die in an integrated circuit package.
  • electrically connecting the two or more dice together and/or to the external leadframe connections of the integrated circuit package also presents a problem because of the ever decreasing bond pad sizes and closer proximity between the smaller bond pads on the newer technology integrated circuit dice.
  • a single wire may be ball or wedge (stitch) bonded between one or more die bond pads and one or more inner leads of a leadframe, and/or between a plurality of bond pads to create a common connection therebetween.
  • Bond pads between two or more integrated circuit dice may be interconnected for configuring certain specific connections and/or functionalities in a single integrated circuit package.
  • an integrated circuit device may comprise: a leadframe having a plurality of inner leads; an integrated circuit die having a plurality of bond pads; and a single bond wire electrically coupling together at least two of the plurality of bond pads and at least one of the plurality of inner leads, wherein the single bond wire makes a first connection to a one of the at least two of the plurality of bond pads and a last connection to a one of the at least one of the plurality of inner leads such that the single bond wire is connected only once to each of the at least two of the plurality of bond pads and each of the at least one of the plurality of inner leads.
  • an integrated circuit device may comprise: a leadframe having a plurality of inner leads; an integrated circuit die having a plurality of bond pads; and a single bond wire electrically coupling together at least two of the plurality of bond pads and at least one of the plurality of inner leads, wherein the single bond wire makes a first connection to a one of the at least one of the plurality of inner leads and a last connection to a one of the at least two of the plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the plurality of inner leads and each of the at least two of the plurality of bond pads.
  • an integrated circuit device may comprise: an integrated circuit die having a plurality of bond pads; and a single bond wire electrically coupling together at least three of the plurality of bond pads, wherein the single bond wire makes a first connection to a first one of the at least three of the plurality of bond pads and a last connection to a last one of the at least three of the plurality of bond pads such that the single bond wire is connected only once to each of the at least three of the plurality of bond pads.
  • an integrated circuit device may comprise: a leadframe having a plurality of inner leads; a first integrated circuit die having a first plurality of bond pads and at least one re-route bond pad; a second integrated circuit die having a second plurality of bond pads; and a single bond wire electrically coupling together at least one of the first plurality of bond pads, the at least one re-route bond pad and at least one of the second plurality of bond pads; wherein the single bond wire makes a first connection to a first one of the at least one of the first plurality of bond pads, an intermediate connection to the at least one re-route bond pad and a last connection to a last one of the at least one of the second plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the first plurality of bond pads, the at least one re-route bond pad and each of the at least one of the second plurality of bond pads.
  • a method of making electrical connections between an integrated circuit die and a leadframe with a single bond wire may comprise the steps of: providing a leadframe having a plurality of inner leads; providing an integrated circuit die having a plurality of bond pads; providing a single bond wire; and connecting together at least two of the plurality of bond pads and at least one of the plurality of inner leads with the single bond wire, wherein the single bond wire makes a first connection to a one of the at least two of the plurality of bond pads and a last connection to a one of the at least one of the plurality of inner leads such that the single bond wire is connected only once to each of the at least two of the plurality of bond pads and each of the at least one of the plurality of inner leads.
  • a method of making electrical connections between an integrated circuit die and a leadframe with a single bond wire may comprise the steps of: providing a leadframe having a plurality of inner leads; providing an integrated circuit die having a plurality of bond pads; providing a single bond wire; and connecting together at least two of the plurality of bond pads and at least one of the plurality of inner leads with the single bond wire, wherein the single bond wire makes a first connection to a one of the at least one of the plurality of inner leads and a last connection to a one of the at least two of the plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the plurality of inner leads and each of the at least two of the plurality of bond pads.
  • a method of making electrical connections on an integrated circuit die with a single bond wire may comprise the steps of: providing an integrated circuit die having a plurality of bond pads; providing a single bond wire; and connecting together at least three of the plurality of bond pads with the single bond wire, wherein the single bond wire makes a first connection to a first one of the at least three of the plurality of bond pads and a last connection to a last one of the at least three of the plurality of bond pads such that the single bond wire is connected only once to each of the at least three of the plurality of bond pads.
  • a method of making electrical connections on an integrated circuit die with a single bond wire may comprise the steps of: providing a first integrated circuit die having a first plurality of bond pads and at least one re-route bond pad; providing a second integrated circuit die having a second plurality of bond pads; providing a single bond wire; and connecting together at least one of the first plurality of bond pads, the at least one re-route bond pad and at least one of the second plurality of bond pads with the single bond wire, wherein the single bond wire makes a first connection to a first one of the at least one of the first plurality of bond pads, an intermediate connection to the at least one re-route bond pad and a last connection to a last one of the at least one of the second plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the first plurality of bond pads, the at least one re-route bond pad and each of the at least one of the second plurality of bond pads.
  • FIG. 1 is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having bond pads thereon and connected with bond wires to respective ones of inner leads of a leadframe;
  • FIG. 2 is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having two bond pads thereon and connected with two bond wires to a common inner lead of a leadframe;
  • FIG. 3 is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having two bond pads thereon and connected with an internal metal mask jumper;
  • FIG. 4 is a schematic plan view of an integrated circuit device comprising an integrated circuit die having two bond pads thereon and an inner lead of a leadframe and connected together with a single bond wire, and two other inner leads of the leadframe connected to another bond pad with another single bond wire, according to specific example embodiments of this disclosure;
  • FIG. 5 is a schematic plan view of the integrated circuit device illustrated in FIG. 4 and further comprising a device mode selection jumper connecting mode option selection bond pads on the die, according to another specific example embodiment of this disclosure;
  • FIG. 6 is a schematic elevational view of an integrated circuit device having a single bond wire connecting bond pads of an integrated circuit die to an inner leadframe, according to specific example embodiments of this disclosure
  • FIG. 7 is a schematic plan view of an integrated circuit device comprising an integrated circuit die having bond pads and re-route bond pads thereon and an inner lead of a leadframe connected together with a single bond wire, according to yet another specific example embodiment of this disclosure.
  • FIG. 8 is a schematic plan view of an integrated circuit device comprising two integrated circuit dice in an integrated circuit package with certain ones of the bond pads of the two integrated circuit dice being connected together and to certain inner leads of a leadframe, according to another specific example embodiments of this disclosure.
  • wirebonding is generally accepted to mean the interconnection (via wire) of components, contact pads and conducting tracks.
  • T/C thermocompression
  • T/S thermosonic
  • U/S ultrasonic
  • the ball at the end of the wire is pressed onto a bond pad 104 of the semiconductor die 102 with sufficient force to cause plastic deformation and atomic interdiffusion of the ball and the underlying metallization of the bond pad 104 . This creates a low resistance connection between the bond pad 104 and the ball at the end of the bond wire 110 .
  • the capillary tool containing the wire is then raised and repositioned over the next connection point, e.g., inner lead 106 of the leadframe.
  • a precisely shaped wire connection called a wire loop is thus created.
  • Deforming the wire against the inner lead 106 makes the second bond (e.g., wedge bond or stitch bond).
  • the deformation of the wire against the inner lead 106 may have a crescent or fishtail shape made by the imprint of the capillary tool's outer geometry. After this second connection is made, the wire is clamped and then broken off after the bond connection.
  • Wedge bonding derives its name from the shape of the bonding capillary tool.
  • the wire is fed at an angle from about 30-60 degrees from the horizontal bonding surface through a hole in the back of a bonding wedge of the capillary tool.
  • forward bonding is preferred, i.e., the first bond is made to the die bond pad 104 and the second bond is made to the inner lead 106 of the leadframe.
  • the wedge bonding capillary tool rises and executes a motion to create a desired wire loop shape (bond wire).
  • the wedge bonding capillary tool descends and makes the second bond connection.
  • the movement of the axis of the wedge bonding capillary tool allows the wire to freely feed through the hole in the wedge bonding capillary tool.
  • the bonded wire may be separated from the wire remaining in the wedge bonding capillary tool by using clamps to break the wire while machine bonding force is maintained on the second bond (clamp tear), or the clamp remains stationary and the wedge bonding capillary tool raises off the second bond area to tear the wire apart (table tear).
  • the wire is made of a conductive material such as metal, e.g., gold, copper, aluminum, combinations of these metals (alloys), or alloys of these metals in combination with other metals, e.g., Silicon (Si) and/or magnesium (Mg).
  • a conductive material such as metal, e.g., gold, copper, aluminum, combinations of these metals (alloys), or alloys of these metals in combination with other metals, e.g., Silicon (Si) and/or magnesium (Mg).
  • the bonding surfaces may be coated or plated with a compatible conductive material, e.g., gold, aluminum, gold, or nickel, etc. It is contemplated and within the scope of this disclosure that any type of conductive material, e.g., metal or metal alloy may be used.
  • FIG. 1 depicted is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having bond pads thereon and connected with bond wires to respective ones of inner leads of a leadframe.
  • the integrated circuit die 102 may have a plurality of bond pads 104 thereon.
  • the bond pads 104 are connected to the electronic circuits (not shown) of the integrated circuit die 102 .
  • a leadframe (not entirely shown, but well known to those skilled in the art of integrated circuits) comprises a plurality of inner leads 106 , a plurality of outer leads 108 and a support structure or “die paddle” (not shown).
  • the integrated circuit die 102 is initially supported by the leadframe die paddle.
  • the outer leads 108 may be formed into connecting pins or surface mount contacts as desired.
  • Bond wires 110 electrically connect the bond pads 104 to respective ones of the inner leads 106 .
  • the integrated circuit die 102 and supporting die paddle, bond pads 104 , inner leads 106 and bond wires 110 may be encapsulated in an integrated circuit package, schematically depicted by the outline referenced by the numeral 112 .
  • FIG. 2 depicted is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having two bond pads thereon and connected with two bond wires to a common inner lead of a leadframe.
  • Two bond wires 110 a and 110 b are attached to the inner lead 106 a and thereby electrically interconnect bond pad 104 a , bond pad 104 b and the inner lead 106 a together.
  • a problem exists however in that the inner lead 106 a must have sufficient free bonding area to accommodate two bond wire connections. When more than two interconnections are required, this bonding area problem is further exasperated. As semiconductor integrated circuit devices become smaller and more complex, there may not be sufficient bonding area on an inner lead or bond pad to accommodate more than one bond wire connection.
  • FIG. 3 depicted is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having two bond pads thereon and connected with an internal metal mask jumper.
  • a conductive jumper 310 may be created during a metallization step in the die fabrication process so as to interconnect, for example, bond pads 104 a and 104 b .
  • the jumper 310 may be used to configure or set options within the die 102 a , however, different metallization masks and batch runs must be performed during the integrated circuit die fabrication process to achieve these different integrated circuit options.
  • using mask jumper(s) 310 is not cost effective for a small quantity of semiconductor devices.
  • a greater parts inventory is required when using mask jumpers since larger quantities of each semiconductor die configuration must be fabricated in order to be cost effective.
  • FIG. 4 depicted is a schematic plan view of integrated circuit device comprising an integrated circuit die having two bond pads and an inner lead of a leadframe and connected together with a single bond wire, and two other inner leads of the leadframe connected to another bond pad with another single bond wire, according to specific example embodiments of this disclosure.
  • a single bond wire 410 a connects bond pad 104 a , inner lead 106 a and inner lead 106 b together and requires only one bond point a each connection area of the bond pad 104 a , inner lead 106 a and inner lead 106 b .
  • a ball or wedge bond connection may be used at the first connection point of the bond wire 410 a , and subsequent connection points may use wedge (stitch) bonding.
  • the bond wire 410 a remains unbroken (continuous) until the last connection has been made.
  • the first connection of the bond wire 410 a may begin at either bond pad 104 a or inner lead 106 b .
  • the first connection may be at the bond pad 104 a .
  • the intermediate connection at the inner lead 106 a may be a wedge (stitch) bond wherein the bond wire 410 a remains unbroken.
  • a simple interconnection operation may be performed as follows. First, the capillary tool bonds the bond wire 410 a to the bond pad 104 a of the die 102 , then the capillary tool moves to the inner lead 106 a .
  • a wedge (stitch) bond is made to the inner lead 106 a , and then the capillary tool moves to the inner lead 106 b and bonds the bond wire 410 a thereto.
  • bond wire 410 b may interconnect bond pad 104 b , bond pad 104 c and inner lead 106 c together.
  • Bond pads 404 a , 404 b and 404 c are exemplary and may be greater or fewer in number depending upon the application and number of operational modes that may be selected for the semiconductor integrated circuit die 102 b .
  • a single bond wire 510 may connect bond pads 404 a , 404 b and 404 c together.
  • the bond pads 404 a , 404 b and 404 c may be interconnected or left unconnected as required.
  • the first connection of the bond wire 410 b may begin at either bond pad 104 a or inner lead 106 .
  • the first connection will be at the bond pad 104 a .
  • a connection to bond pad 104 b may be made by wedge bonding the bond wire 410 b which remains unbroken or continuous until bonded to the inner lead 106 . After the bond wire 410 b has been bonded to the inner lead 106 , it is separated from the wire at the tip of the capillary tool, thus completing the wedge (stitch) bond using the single bond wire 410 b.
  • FIG. 7 depicted is a schematic plan view of an integrated circuit device comprising an integrated circuit die having bond pads and re-route bond pads thereon and an inner lead of a leadframe connected together with a single bond wire, according to yet another specific example embodiment of this disclosure.
  • Bond pad 104 b is connected to inner lead 106 c with a single bond wire 710 .
  • the single bond wire 710 must be routed across the face of the integrated circuit die 102 c and between the bond pads 104 at the lower left thereof. Doing so without intermediate support and routing of the single bond wire 710 would not work for fabrication and reliability reasons.
  • the re-route bond pads 704 a and 704 b the single bond wire 710 routing may be easily fabricated and produce a reliable integrated circuit device 112 .
  • FIG. 8 depicted is a schematic plan view of an integrated circuit device comprising two integrated circuit dice in an integrated circuit package with certain ones of the bond pads of the two integrated circuit dice being connected together and to certain inner leads of a leadframe, according to specific example embodiments of this disclosure.
  • a first integrated circuit die 102 c has re-route bond pads 704 a and 704 b
  • a second integrated circuit die 202 has re-route bond pads 704 c and 704 d .
  • Both the first and second integrated circuit dice 102 c and 202 , and leadframe inner leads 106 are enclosed in an integrated circuit package 112 a .
  • Bond pads 104 are connected to the inner leads 108 with bond wires 110
  • bond pad 104 a is connected to inner leads 106 a and 106 b with a single bond wire 410 a
  • bond pads 104 b and 104 c are connected to inner lead 106 c with a single bond wire 410 b , as more fully described hereinabove.
  • the bond pad 104 d on die 102 c may be connected to the bond pad 104 e on die 202 with a single bond wire 810 a .
  • the bond pads 104 d and 104 e are too far apart in distance for reliable connection using a bond wire.
  • the distance (and support) between connection points of the single bond wire 810 a are within safe design limits.
  • the bond pad 104 f on die 102 c may be connected to the inner lead 106 d on die 202 with a single bond wire 810 b .
  • the bond pad 104 f inner lead 106 d are too far apart in distance (and the die 202 is in the way) for reliable connection using a bond wire.
  • the distance, and support and interference of the die 202 between connection points of the single bond wire 810 a are within safe and reliable design limits.

Abstract

An integrated circuit device comprising an integrated circuit die having a plurality of bond pads that are selectively connected to a plurality of inner leads of a leadframe. At least two bond pads are connected to at least one of the inner leads, and/or at least two inner leads are connected to at least one of bond pads with a single bond wire. A single bond wire is ball or wedge bonded to a first bond pad or inner lead and subsequently wedge bonded to one or more second bond pads or inner leads, then it is connected to a third or last bond pad or inner lead. The single bond wire requires only one connection area at each of the bond pad(s) and/or inner lead(s). The bond pad(s) of the die and/or inner lead(s) of the leadframe are thereby electrically connected together by the single bond wire.

Description

    RELATED PATENT APPLICATION
  • This application is a continuation-in-part of commonly owned U.S. patent application Ser. No. 10/209,502, filed Jul. 31, 2002, now U.S. Pat. No. ______, issued ______, entitled “Single Die Stitch Bonding” by Bruce Beauchamp, Andrew Tuthill, Joseph D. Fernandez and Anucha Phongsantichai, and is hereby incorporated by reference herein for all purposes.
  • TECHNICAL FIELD
  • The present disclosure relates to connections made to integrated circuit bond pads and integrated circuit package external connections, and more particularly to connecting related bond pads and/or integrated circuit package external connections with a continuous single bond wire.
  • BACKGROUND
  • An Integrated circuit device may comprise a semiconductor integrated circuit die mounted on a leadframe. The semiconductor integrated circuit die may comprise a plurality of bond pads that are electrically connected to inner leads of the leadframe, e.g., using bond wires. The semiconductor integrated circuit die, the inner portion of the leadframe (inner leads) and the bond wires may be encapsulated in an integrated circuit package. After encapsulation, a border or frame on the outer portion of the leadframe is cut to separate outer leads of the leadframe into connecting pins or surface mount contacts which are used to electrically connect the electronic circuitry in the semiconductor integrated circuit die with other externally arranged electronic components mounted on a substrate or printed circuit board.
  • Integrated circuit devices are becoming more and more sophisticated while integrated circuit package size and the number of available package connections are being reduced. Limiting the number of package connections available for connecting to device circuits is necessary for both size and cost constraints. However, this may create a problem for the integrated circuit device manufacturer who must offer integrated circuit devices for many different types of configurations and applications. Integrated circuit device cost is reduced when a large quantity of the same device is produced. It is relatively easy to fabricate an integrated circuit device capable of many different configurations and uses then to have to perform various different metal mask operations so as to fabricate differently configured integrated circuit devices. A specific device configuration may then be selected during fabrication of the integrated circuit device with the leadframe by appropriate jumper connections between the die bond pads and inner lead fingers of the leadframe. Typically, various combinations of die bond pads are connected together through common connections to an inner lead(s) of the leadframe. However selecting a specific configuration in this fashion for configuration of the integrated circuit device becomes problematic when the reduced die, package and leadframe areas available for interconnecting option selection pads of the integrated circuit die are reduced in size. Making more than one wirebond connection to a die bond pad and/or inner lead of a leadframe may not be practical or even possible in the smaller and more densely packaged integrated circuits.
  • Having integrated circuit dice with a great number of functionalities enables fabrication of one type of integrated circuit die that may be configured for many different applications, thus saving inventories of many different types of dice and/or having to run die wafers through different masking operations. As the integrated circuit die becomes smaller, so does the integrated circuit package become smaller as does the availability of fewer external package connections, e.g., pins. Therefore the most economical way to produce integrated circuit devices is to increase the quantity during fabrication and production thereof, and selectively configure the integrated circuit device during automatic wire bonding of the integrated circuit die to the external package connections, e.g., leadframe.
  • In addition to having greater functionality available in the newer technology integrated circuit die, the newer fabrication processes that produce smaller integrated circuit dice result in being able to put more than one integrated circuit die in an integrated circuit package. However, electrically connecting the two or more dice together and/or to the external leadframe connections of the integrated circuit package also presents a problem because of the ever decreasing bond pad sizes and closer proximity between the smaller bond pads on the newer technology integrated circuit dice.
  • SUMMARY
  • Therefore, there is a need for connecting a plurality of integrated circuit bond pads and/or inner leads of a leadframe together without requiring multiple connections thereto. According to the teachings of this disclosure, the above-identified problems may be overcome as well as other shortcomings and deficiencies of existing technologies by providing multiple common connections in an integrated circuit device while requiring only a single connection point at each of the commonly connected integrated circuit die bond pads and/or inner leads of a leadframe. A single wire may be ball or wedge (stitch) bonded between one or more die bond pads and one or more inner leads of a leadframe, and/or between a plurality of bond pads to create a common connection therebetween. Bond pads between two or more integrated circuit dice may be interconnected for configuring certain specific connections and/or functionalities in a single integrated circuit package.
  • According to a specific example embodiment of this disclosure, an integrated circuit device may comprise: a leadframe having a plurality of inner leads; an integrated circuit die having a plurality of bond pads; and a single bond wire electrically coupling together at least two of the plurality of bond pads and at least one of the plurality of inner leads, wherein the single bond wire makes a first connection to a one of the at least two of the plurality of bond pads and a last connection to a one of the at least one of the plurality of inner leads such that the single bond wire is connected only once to each of the at least two of the plurality of bond pads and each of the at least one of the plurality of inner leads.
  • According to another specific example embodiment of this disclosure, an integrated circuit device may comprise: a leadframe having a plurality of inner leads; an integrated circuit die having a plurality of bond pads; and a single bond wire electrically coupling together at least two of the plurality of bond pads and at least one of the plurality of inner leads, wherein the single bond wire makes a first connection to a one of the at least one of the plurality of inner leads and a last connection to a one of the at least two of the plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the plurality of inner leads and each of the at least two of the plurality of bond pads.
  • According to yet another specific example embodiment of this disclosure, an integrated circuit device may comprise: an integrated circuit die having a plurality of bond pads; and a single bond wire electrically coupling together at least three of the plurality of bond pads, wherein the single bond wire makes a first connection to a first one of the at least three of the plurality of bond pads and a last connection to a last one of the at least three of the plurality of bond pads such that the single bond wire is connected only once to each of the at least three of the plurality of bond pads.
  • According to another specific example embodiment of this disclosure, an integrated circuit device may comprise: a leadframe having a plurality of inner leads; a first integrated circuit die having a first plurality of bond pads and at least one re-route bond pad; a second integrated circuit die having a second plurality of bond pads; and a single bond wire electrically coupling together at least one of the first plurality of bond pads, the at least one re-route bond pad and at least one of the second plurality of bond pads; wherein the single bond wire makes a first connection to a first one of the at least one of the first plurality of bond pads, an intermediate connection to the at least one re-route bond pad and a last connection to a last one of the at least one of the second plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the first plurality of bond pads, the at least one re-route bond pad and each of the at least one of the second plurality of bond pads.
  • According to still another specific example embodiment of this disclosure, a method of making electrical connections between an integrated circuit die and a leadframe with a single bond wire may comprise the steps of: providing a leadframe having a plurality of inner leads; providing an integrated circuit die having a plurality of bond pads; providing a single bond wire; and connecting together at least two of the plurality of bond pads and at least one of the plurality of inner leads with the single bond wire, wherein the single bond wire makes a first connection to a one of the at least two of the plurality of bond pads and a last connection to a one of the at least one of the plurality of inner leads such that the single bond wire is connected only once to each of the at least two of the plurality of bond pads and each of the at least one of the plurality of inner leads.
  • According to another specific example embodiment of this disclosure, a method of making electrical connections between an integrated circuit die and a leadframe with a single bond wire may comprise the steps of: providing a leadframe having a plurality of inner leads; providing an integrated circuit die having a plurality of bond pads; providing a single bond wire; and connecting together at least two of the plurality of bond pads and at least one of the plurality of inner leads with the single bond wire, wherein the single bond wire makes a first connection to a one of the at least one of the plurality of inner leads and a last connection to a one of the at least two of the plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the plurality of inner leads and each of the at least two of the plurality of bond pads.
  • According to another specific example embodiment of this disclosure, a method of making electrical connections on an integrated circuit die with a single bond wire may comprise the steps of: providing an integrated circuit die having a plurality of bond pads; providing a single bond wire; and connecting together at least three of the plurality of bond pads with the single bond wire, wherein the single bond wire makes a first connection to a first one of the at least three of the plurality of bond pads and a last connection to a last one of the at least three of the plurality of bond pads such that the single bond wire is connected only once to each of the at least three of the plurality of bond pads.
  • According to yet another specific example embodiment of this disclosure, a method of making electrical connections on an integrated circuit die with a single bond wire may comprise the steps of: providing a first integrated circuit die having a first plurality of bond pads and at least one re-route bond pad; providing a second integrated circuit die having a second plurality of bond pads; providing a single bond wire; and connecting together at least one of the first plurality of bond pads, the at least one re-route bond pad and at least one of the second plurality of bond pads with the single bond wire, wherein the single bond wire makes a first connection to a first one of the at least one of the first plurality of bond pads, an intermediate connection to the at least one re-route bond pad and a last connection to a last one of the at least one of the second plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the first plurality of bond pads, the at least one re-route bond pad and each of the at least one of the second plurality of bond pads.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the present disclosure thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings wherein:
  • FIG. 1 is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having bond pads thereon and connected with bond wires to respective ones of inner leads of a leadframe;
  • FIG. 2 is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having two bond pads thereon and connected with two bond wires to a common inner lead of a leadframe;
  • FIG. 3 is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having two bond pads thereon and connected with an internal metal mask jumper;
  • FIG. 4 is a schematic plan view of an integrated circuit device comprising an integrated circuit die having two bond pads thereon and an inner lead of a leadframe and connected together with a single bond wire, and two other inner leads of the leadframe connected to another bond pad with another single bond wire, according to specific example embodiments of this disclosure;
  • FIG. 5 is a schematic plan view of the integrated circuit device illustrated in FIG. 4 and further comprising a device mode selection jumper connecting mode option selection bond pads on the die, according to another specific example embodiment of this disclosure;
  • FIG. 6 is a schematic elevational view of an integrated circuit device having a single bond wire connecting bond pads of an integrated circuit die to an inner leadframe, according to specific example embodiments of this disclosure;
  • FIG. 7 is a schematic plan view of an integrated circuit device comprising an integrated circuit die having bond pads and re-route bond pads thereon and an inner lead of a leadframe connected together with a single bond wire, according to yet another specific example embodiment of this disclosure; and
  • FIG. 8 is a schematic plan view of an integrated circuit device comprising two integrated circuit dice in an integrated circuit package with certain ones of the bond pads of the two integrated circuit dice being connected together and to certain inner leads of a leadframe, according to another specific example embodiments of this disclosure.
  • While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims.
  • DETAILED DESCRIPTION
  • Referring now to the drawings, the details of specific example embodiments are schematically illustrated. Like elements in the drawings will be represented by like numbers, and similar elements will be represented by like numbers with a different lower case letter suffix.
  • The term “wirebonding” is generally accepted to mean the interconnection (via wire) of components, contact pads and conducting tracks. There are two basic wirebonding techniques that may be used in thermocompression (T/C), thermosonic (T/S) or ultrasonic (U/S) bonding processes, they are “ball bonding” and “wedge bonding.” Referring to FIG. 1, in ball bonding a wire, e.g., bond wire 110, is passed through a hollow capillary tool (not shown) and a small portion of the end of this wire is heated to a molten condition wherein the surface tension of the molten metal forms a spherical shape, or ball, as the bond wire material solidifies. The ball at the end of the wire is pressed onto a bond pad 104 of the semiconductor die 102 with sufficient force to cause plastic deformation and atomic interdiffusion of the ball and the underlying metallization of the bond pad 104. This creates a low resistance connection between the bond pad 104 and the ball at the end of the bond wire 110.
  • The capillary tool containing the wire is then raised and repositioned over the next connection point, e.g., inner lead 106 of the leadframe. A precisely shaped wire connection called a wire loop is thus created. Deforming the wire against the inner lead 106 makes the second bond (e.g., wedge bond or stitch bond). The deformation of the wire against the inner lead 106 may have a crescent or fishtail shape made by the imprint of the capillary tool's outer geometry. After this second connection is made, the wire is clamped and then broken off after the bond connection.
  • Wedge bonding derives its name from the shape of the bonding capillary tool. In wedge bonding, the wire is fed at an angle from about 30-60 degrees from the horizontal bonding surface through a hole in the back of a bonding wedge of the capillary tool. Normally, forward bonding is preferred, i.e., the first bond is made to the die bond pad 104 and the second bond is made to the inner lead 106 of the leadframe. After the first bond operation, the wedge bonding capillary tool rises and executes a motion to create a desired wire loop shape (bond wire). At the second bond location, the wedge bonding capillary tool descends and makes the second bond connection. The movement of the axis of the wedge bonding capillary tool allows the wire to freely feed through the hole in the wedge bonding capillary tool. The bonded wire may be separated from the wire remaining in the wedge bonding capillary tool by using clamps to break the wire while machine bonding force is maintained on the second bond (clamp tear), or the clamp remains stationary and the wedge bonding capillary tool raises off the second bond area to tear the wire apart (table tear).
  • The wire is made of a conductive material such as metal, e.g., gold, copper, aluminum, combinations of these metals (alloys), or alloys of these metals in combination with other metals, e.g., Silicon (Si) and/or magnesium (Mg). The bonding surfaces may be coated or plated with a compatible conductive material, e.g., gold, aluminum, gold, or nickel, etc. It is contemplated and within the scope of this disclosure that any type of conductive material, e.g., metal or metal alloy may be used.
  • Referring to FIG. 1, depicted is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having bond pads thereon and connected with bond wires to respective ones of inner leads of a leadframe. The integrated circuit die 102 may have a plurality of bond pads 104 thereon. The bond pads 104 are connected to the electronic circuits (not shown) of the integrated circuit die 102. A leadframe (not entirely shown, but well known to those skilled in the art of integrated circuits) comprises a plurality of inner leads 106, a plurality of outer leads 108 and a support structure or “die paddle” (not shown). The integrated circuit die 102 is initially supported by the leadframe die paddle. The outer leads 108 may be formed into connecting pins or surface mount contacts as desired. Bond wires 110 electrically connect the bond pads 104 to respective ones of the inner leads 106. The integrated circuit die 102 and supporting die paddle, bond pads 104, inner leads 106 and bond wires 110 may be encapsulated in an integrated circuit package, schematically depicted by the outline referenced by the numeral 112.
  • Referring to FIG. 2, depicted is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having two bond pads thereon and connected with two bond wires to a common inner lead of a leadframe. Two bond wires 110 a and 110 b are attached to the inner lead 106 a and thereby electrically interconnect bond pad 104 a, bond pad 104 b and the inner lead 106 a together. A problem exists however in that the inner lead 106 a must have sufficient free bonding area to accommodate two bond wire connections. When more than two interconnections are required, this bonding area problem is further exasperated. As semiconductor integrated circuit devices become smaller and more complex, there may not be sufficient bonding area on an inner lead or bond pad to accommodate more than one bond wire connection.
  • Referring to FIG. 3, depicted is a schematic plan view of a prior art integrated circuit device comprising an integrated circuit die having two bond pads thereon and connected with an internal metal mask jumper. During fabrication of the semiconductor integrated circuit die 102 a, a conductive jumper 310 may be created during a metallization step in the die fabrication process so as to interconnect, for example, bond pads 104 a and 104 b. The jumper 310 may be used to configure or set options within the die 102 a, however, different metallization masks and batch runs must be performed during the integrated circuit die fabrication process to achieve these different integrated circuit options. Thus, using mask jumper(s) 310 is not cost effective for a small quantity of semiconductor devices. In addition, a greater parts inventory is required when using mask jumpers since larger quantities of each semiconductor die configuration must be fabricated in order to be cost effective.
  • Referring now to FIG. 4, depicted is a schematic plan view of integrated circuit device comprising an integrated circuit die having two bond pads and an inner lead of a leadframe and connected together with a single bond wire, and two other inner leads of the leadframe connected to another bond pad with another single bond wire, according to specific example embodiments of this disclosure. A single bond wire 410 a connects bond pad 104 a, inner lead 106 a and inner lead 106 b together and requires only one bond point a each connection area of the bond pad 104 a, inner lead 106 a and inner lead 106 b. A ball or wedge bond connection may be used at the first connection point of the bond wire 410 a, and subsequent connection points may use wedge (stitch) bonding. The bond wire 410 a remains unbroken (continuous) until the last connection has been made. The first connection of the bond wire 410 a may begin at either bond pad 104 a or inner lead 106 b. The first connection may be at the bond pad 104 a. The intermediate connection at the inner lead 106 a may be a wedge (stitch) bond wherein the bond wire 410 a remains unbroken. For example, a simple interconnection operation may be performed as follows. First, the capillary tool bonds the bond wire 410 a to the bond pad 104 a of the die 102, then the capillary tool moves to the inner lead 106 a. A wedge (stitch) bond is made to the inner lead 106 a, and then the capillary tool moves to the inner lead 106 b and bonds the bond wire 410 a thereto. In a similar fashion, bond wire 410 b may interconnect bond pad 104 b, bond pad 104 c and inner lead 106 c together.
  • Referring now to FIG. 5, depicted is a schematic plan view of the integrated circuit die illustrated in FIG. 4 with the addition of a device mode selection jumper commonly connecting mode option selection bond pads on the die, according to another specific example embodiment of this disclosure. Bond pads 404 a, 404 b and 404 c are exemplary and may be greater or fewer in number depending upon the application and number of operational modes that may be selected for the semiconductor integrated circuit die 102 b. A single bond wire 510 may connect bond pads 404 a, 404 b and 404 c together. When a different option or die configuration is desired, the bond pads 404 a, 404 b and 404 c may be interconnected or left unconnected as required.
  • Referring now to FIG. 6, depicted is a schematic elevational view of an integrated circuit device having a single bond wire connecting bond pads of an integrated circuit die to an inner leadframe, according to specific example embodiments of this disclosure. The first connection of the bond wire 410 b may begin at either bond pad 104 a or inner lead 106. Preferably, the first connection will be at the bond pad 104 a. A connection to bond pad 104 b may be made by wedge bonding the bond wire 410 b which remains unbroken or continuous until bonded to the inner lead 106. After the bond wire 410 b has been bonded to the inner lead 106, it is separated from the wire at the tip of the capillary tool, thus completing the wedge (stitch) bond using the single bond wire 410 b.
  • Referring now to FIG. 7, depicted is a schematic plan view of an integrated circuit device comprising an integrated circuit die having bond pads and re-route bond pads thereon and an inner lead of a leadframe connected together with a single bond wire, according to yet another specific example embodiment of this disclosure. Bond pad 104 b is connected to inner lead 106 c with a single bond wire 710. However, the single bond wire 710 must be routed across the face of the integrated circuit die 102 c and between the bond pads 104 at the lower left thereof. Doing so without intermediate support and routing of the single bond wire 710 would not work for fabrication and reliability reasons. By using the re-route bond pads 704 a and 704 b, the single bond wire 710 routing may be easily fabricated and produce a reliable integrated circuit device 112.
  • Referring now to FIG. 8, depicted is a schematic plan view of an integrated circuit device comprising two integrated circuit dice in an integrated circuit package with certain ones of the bond pads of the two integrated circuit dice being connected together and to certain inner leads of a leadframe, according to specific example embodiments of this disclosure. A first integrated circuit die 102 c has re-route bond pads 704 a and 704 b, and a second integrated circuit die 202 has re-route bond pads 704 c and 704 d. Both the first and second integrated circuit dice 102 c and 202, and leadframe inner leads 106 are enclosed in an integrated circuit package 112 a. Bond pads 104 are connected to the inner leads 108 with bond wires 110, bond pad 104 a is connected to inner leads 106 a and 106 b with a single bond wire 410 a, and bond pads 104 b and 104 c are connected to inner lead 106 c with a single bond wire 410 b, as more fully described hereinabove.
  • When a circuit function, e.g., input, output, input-output, etc., of the integrated circuit die 102 c is to be connected to another circuit function of the integrated circuit die 202, the bond pad 104 d on die 102 c may be connected to the bond pad 104 e on die 202 with a single bond wire 810 a. However the bond pads 104 d and 104 e are too far apart in distance for reliable connection using a bond wire. By using the re-route bond pads 704 a and 704 b as intermediate support/connection points for the single bond wire 810 a the distance (and support) between connection points of the single bond wire 810 a are within safe design limits.
  • When a circuit function, e.g., input, output, input-output, etc., of the integrated circuit die 102 c is to be connected to an inner lead 106 d but there is an obstacle, e.g., die 202, in the way, the bond pad 104 f on die 102 c may be connected to the inner lead 106 d on die 202 with a single bond wire 810 b. However the bond pad 104 f inner lead 106 d are too far apart in distance (and the die 202 is in the way) for reliable connection using a bond wire. By using the re-route bond pads 704 c and 704 d as intermediate support/connection points for the single bond wire 810 b the distance, and support and interference of the die 202 between connection points of the single bond wire 810 a are within safe and reliable design limits.
  • While embodiments of this disclosure have been depicted, described, and are defined by reference to example embodiments of the disclosure, such references do not imply a limitation on the disclosure, and no such limitation is to be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only, and are not exhaustive of the scope of the disclosure.

Claims (21)

1. An integrated circuit device, comprising:
a leadframe having a plurality of inner leads;
an integrated circuit die having a plurality of bond pads; and
a single bond wire electrically coupling together at least two of the plurality of bond pads and at least one of the plurality of inner leads, wherein the single bond wire makes a first connection to a one of the at least two of the plurality of bond pads and a last connection to a one of the at least one of the plurality of inner leads such that the single bond wire is connected only once to each of the at least two of the plurality of bond pads and each of the at least one of the plurality of inner leads.
2. The integrated circuit device of claim 1, wherein the first connection of the single bond wire is made with a ball bond and subsequent connections are made with wedge bonds.
3. The integrated circuit device of claim 1, wherein the first and subsequent connections of the single bond wire are made with wedge bonds.
4. The integrated circuit device of claim 1, further comprising an integrated circuit package encapsulating the plurality of inner leads of the leadframe, the integrated circuit die, the plurality of bond pads and the single bond wire.
5. The integrated circuit device of claim 1, further comprising at least one re-route bond pad, wherein the single bond wire is connected to the at least one re-route bond pad between the first connection and the last connection thereof.
6. An integrated circuit device, comprising:
a leadframe having a plurality of inner leads;
an integrated circuit die having a plurality of bond pads; and
a single bond wire electrically coupling together at least two of the plurality of bond pads and at least one of the plurality of inner leads, wherein the single bond wire makes a first connection to a one of the at least one of the plurality of inner leads and a last connection to a one of the at least two of the plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the plurality of inner leads and each of the at least two of the plurality of bond pads.
7. The integrated circuit device of claim 6, wherein the first connection of the single bond wire is made with a ball bond and subsequent connections are made with wedge bonds.
8. The integrated circuit device of claim 6, wherein the first and subsequent connections of the single bond wire are made with wedge bonds.
9. The integrated circuit device of claim 6, further comprising an integrated circuit package encapsulating the plurality of inner leads of the leadframe, the integrated circuit die, the plurality of bond pads and the single bond wire.
10. The integrated circuit device of claim 6, further comprising at least one re-route bond pad, wherein the single bond wire is connected to the at least one re-route bond pad between the first connection and the last connection thereof.
11. An integrated circuit device, comprising:
an integrated circuit die having a plurality of bond pads; and
a single bond wire electrically coupling together at least three of the plurality of bond pads, wherein the single bond wire makes a first connection to a first one of the at least three of the plurality of bond pads and a last connection to a last one of the at least three of the plurality of bond pads such that the single bond wire is connected only once to each of the at least three of the plurality of bond pads.
12. The integrated circuit device of claim 11, wherein the first connection of the single bond wire is made with a ball bond and subsequent connections are made with wedge bonds.
13. The integrated circuit device of claim 11, wherein the first and subsequent connections of the single bond wire are made with wedge bonds.
14. The integrated circuit device of claim 11, further comprising an integrated circuit package encapsulating the integrated circuit die, the plurality of bond pads, and the single bond wire.
15. The integrated circuit device of claim 11, wherein the single bond wire connection to the at least three of the plurality of bond pads determines an option configuration of the integrated circuit die.
16. The integrated circuit device of claim 11, further comprising at least one re-route bond pad, wherein the single bond wire is connected to the at least one re-route bond pad between the first connection and the last connection thereof.
17. An integrated circuit device, comprising:
a leadframe having a plurality of inner leads;
a first integrated circuit die having a first plurality of bond pads and at least one re-route bond pad;
a second integrated circuit die having a second plurality of bond pads; and
a single bond wire electrically coupling together at least one of the first plurality of bond pads, the at least one re-route bond pad and at least one of the second plurality of bond pads;
wherein the single bond wire makes a first connection to a first one of the at least one of the first plurality of bond pads, an intermediate connection to the at least one re-route bond pad and a last connection to a last one of the at least one of the second plurality of bond pads such that the single bond wire is connected only once to each of the at least one of the first plurality of bond pads, the at least one re-route bond pad and each of the at least one of the second plurality of bond pads.
18. The integrated circuit device of claim 17, wherein the first connection of the single bond wire is made with a ball bond and subsequent connections are made with wedge bonds.
19. The integrated circuit device of claim 17, wherein the first and subsequent connections of the single bond wire are made with wedge bonds.
20. The integrated circuit device of claim 17, further comprising an integrated circuit package encapsulating the plurality of inner leads of the leadframe, the first and second integrated circuit dice, the plurality of first and second bond pads, the at least one re-route bond pad and the single bond wire.
21-36. (canceled)
US11/955,856 2002-07-31 2007-12-13 Connecting a plurality of bond pads and/or inner leads with a single bond wire Abandoned US20080099893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/955,856 US20080099893A1 (en) 2002-07-31 2007-12-13 Connecting a plurality of bond pads and/or inner leads with a single bond wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/209,502 US7157790B2 (en) 2002-07-31 2002-07-31 Single die stitch bonding
US11/563,803 US7326594B2 (en) 2002-07-31 2006-11-28 Connecting a plurality of bond pads and/or inner leads with a single bond wire
US11/955,856 US20080099893A1 (en) 2002-07-31 2007-12-13 Connecting a plurality of bond pads and/or inner leads with a single bond wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/563,803 Division US7326594B2 (en) 2002-07-31 2006-11-28 Connecting a plurality of bond pads and/or inner leads with a single bond wire

Publications (1)

Publication Number Publication Date
US20080099893A1 true US20080099893A1 (en) 2008-05-01

Family

ID=39329136

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/563,803 Expired - Lifetime US7326594B2 (en) 2002-07-31 2006-11-28 Connecting a plurality of bond pads and/or inner leads with a single bond wire
US11/955,856 Abandoned US20080099893A1 (en) 2002-07-31 2007-12-13 Connecting a plurality of bond pads and/or inner leads with a single bond wire

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/563,803 Expired - Lifetime US7326594B2 (en) 2002-07-31 2006-11-28 Connecting a plurality of bond pads and/or inner leads with a single bond wire

Country Status (1)

Country Link
US (2) US7326594B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791191B2 (en) * 2006-12-28 2010-09-07 Sandisk Corporation Semiconductor device having multiple die redistribution layer
US7560304B2 (en) * 2006-12-28 2009-07-14 Sandisk Corporation Method of making a semiconductor device having multiple die redistribution layer
US8922028B2 (en) * 2007-02-13 2014-12-30 Advanced Semiconductor Engineering, Inc. Semiconductor package
US8389868B2 (en) * 2007-12-31 2013-03-05 Texas Instruments Incorporated Packaged integrated circuits having inductors and methods to form inductors in packaged integrated circuits
US8241953B2 (en) * 2008-06-30 2012-08-14 Sandisk Technologies Inc. Method of fabricating stacked wire bonded semiconductor package with low profile bond line
US8432043B2 (en) * 2008-06-30 2013-04-30 Sandisk Technologies Inc. Stacked wire bonded semiconductor package with low profile bond line
JP2010087403A (en) * 2008-10-02 2010-04-15 Elpida Memory Inc Semiconductor device
JP2011054727A (en) * 2009-09-01 2011-03-17 Oki Semiconductor Co Ltd Semiconductor device, method of manufacturing the same, and wire bonding method
US8448118B2 (en) 2011-02-22 2013-05-21 International Business Machines Corporation Determining intra-die wirebond pad placement locations in integrated circuit
US20120286409A1 (en) * 2011-05-10 2012-11-15 Jitesh Shah Utilizing a jumper chip in packages with long bonding wires
WO2014032228A1 (en) * 2012-08-28 2014-03-06 Sandisk Semiconductor (Shanghai) Co., Ltd. Bridge ball wire bonding
US20150187728A1 (en) * 2013-12-27 2015-07-02 Kesvakumar V.C. Muniandy Emiconductor device with die top power connections

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987475A (en) * 1988-02-29 1991-01-22 Digital Equipment Corporation Alignment of leads for ceramic integrated circuit packages
US5252853A (en) * 1991-09-19 1993-10-12 Mitsubishi Denki Kabushiki Kaisha Packaged semiconductor device having tab tape and particular power distribution lead structure
US5254501A (en) * 1992-09-11 1993-10-19 Cypress Semiconductor Corporation Same-side gated process for encapsulating semiconductor devices
US5502289A (en) * 1992-05-22 1996-03-26 National Semiconductor Corporation Stacked multi-chip modules and method of manufacturing
US5552966A (en) * 1990-12-20 1996-09-03 Kabushiki Kaisha Toshiba Semiconductor device having an interconnecting circuit board and method for manufacturing same
US5646451A (en) * 1995-06-07 1997-07-08 Lucent Technologies Inc. Multifunctional chip wire bonds
US5814881A (en) * 1996-12-20 1998-09-29 Lsi Logic Corporation Stacked integrated chip package and method of making same
US5818114A (en) * 1995-05-26 1998-10-06 Hewlett-Packard Company Radially staggered bond pad arrangements for integrated circuit pad circuitry
US5838072A (en) * 1997-02-24 1998-11-17 Mosel Vitalic Corporation Intrachip power distribution package and method for semiconductors having a supply node electrically interconnected with one or more intermediate nodes
US5886393A (en) * 1997-11-07 1999-03-23 National Semiconductor Corporation Bonding wire inductor for use in an integrated circuit package and method
US5903443A (en) * 1997-04-07 1999-05-11 Micron Technology, Inc. Interdigitated leads-over-chip lead frame, device, and method for supporting an integrated circuit die
US5905639A (en) * 1997-09-29 1999-05-18 Raytheon Company Three-dimensional component stacking using high density multichip interconnect decals and three-bond daisy-chained wedge bonds
US6008533A (en) * 1997-12-08 1999-12-28 Micron Technology, Inc. Controlling impedances of an integrated circuit
US6051887A (en) * 1998-08-28 2000-04-18 Medtronic, Inc. Semiconductor stacked device for implantable medical apparatus
US6133637A (en) * 1997-01-24 2000-10-17 Rohm Co., Ltd. Semiconductor device having a plurality of semiconductor chips
US6169329B1 (en) * 1996-04-02 2001-01-02 Micron Technology, Inc. Semiconductor devices having interconnections using standardized bonding locations and methods of designing
US6208579B1 (en) * 1997-07-30 2001-03-27 Intermedics Inc. Stackable microelectronic components with self-addressing scheme
US20010020749A1 (en) * 1999-06-08 2001-09-13 Shi-Tron Lin Bond-pad with pad edge strengthening structure
US6291894B1 (en) * 1998-08-31 2001-09-18 Micron Technology, Inc. Method and apparatus for a semiconductor package for vertical surface mounting
US20010023994A1 (en) * 2000-03-07 2001-09-27 Takahiro Oka Semiconductor device and the method for manufacturing the same
US6320259B1 (en) * 2000-07-21 2001-11-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, and a manufacturing apparatus for a method of manufacturing the semiconductor device
US6326235B1 (en) * 2000-05-05 2001-12-04 Amkor Technology, Inc. Long wire IC package fabrication method
US6376909B1 (en) * 1999-09-02 2002-04-23 Micron Technology, Inc. Mixed-mode stacked integrated circuit with power supply circuit part of the stack
US6380635B1 (en) * 1998-08-28 2002-04-30 Micron Technology, Inc. Apparatus and methods for coupling conductive leads of semiconductor assemblies
US20020058357A1 (en) * 2000-05-16 2002-05-16 Siliconware Precision Industries Co., Ltd. Die attaching method
US6407456B1 (en) * 1996-02-20 2002-06-18 Micron Technology, Inc. Multi-chip device utilizing a flip chip and wire bond assembly
US6406943B2 (en) * 1998-08-20 2002-06-18 Micron Technology, Inc. Transverse hybrid LOC package
US6476506B1 (en) * 2001-09-28 2002-11-05 Motorola, Inc. Packaged semiconductor with multiple rows of bond pads and method therefor
US6506625B1 (en) * 1999-09-01 2003-01-14 Micron Technology, Inc. Semiconductor package having stacked dice and leadframes and method of fabrication
US6531784B1 (en) * 2000-06-02 2003-03-11 Amkor Technology, Inc. Semiconductor package with spacer strips
US6551860B2 (en) * 2000-03-31 2003-04-22 L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Systems and methods for application of substantially dry atmospheric plasma surface treatment to various electronic component packaging and assembly methods
US6603072B1 (en) * 2001-04-06 2003-08-05 Amkor Technology, Inc. Making leadframe semiconductor packages with stacked dies and interconnecting interposer
US6608368B2 (en) * 1997-02-27 2003-08-19 Seiko Epson Corporation Semiconductor device with power source conductor pattern and grounding conductor pattern
US6674177B2 (en) * 1998-01-22 2004-01-06 Micron Technology, Inc. Apparatus for implementing selected functionality on an integrated circuit device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601968A (en) 1983-06-17 1985-01-08 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987475A (en) * 1988-02-29 1991-01-22 Digital Equipment Corporation Alignment of leads for ceramic integrated circuit packages
US5552966A (en) * 1990-12-20 1996-09-03 Kabushiki Kaisha Toshiba Semiconductor device having an interconnecting circuit board and method for manufacturing same
US5252853A (en) * 1991-09-19 1993-10-12 Mitsubishi Denki Kabushiki Kaisha Packaged semiconductor device having tab tape and particular power distribution lead structure
US5502289A (en) * 1992-05-22 1996-03-26 National Semiconductor Corporation Stacked multi-chip modules and method of manufacturing
US5254501A (en) * 1992-09-11 1993-10-19 Cypress Semiconductor Corporation Same-side gated process for encapsulating semiconductor devices
US5818114A (en) * 1995-05-26 1998-10-06 Hewlett-Packard Company Radially staggered bond pad arrangements for integrated circuit pad circuitry
US5646451A (en) * 1995-06-07 1997-07-08 Lucent Technologies Inc. Multifunctional chip wire bonds
US6407456B1 (en) * 1996-02-20 2002-06-18 Micron Technology, Inc. Multi-chip device utilizing a flip chip and wire bond assembly
US6169329B1 (en) * 1996-04-02 2001-01-02 Micron Technology, Inc. Semiconductor devices having interconnections using standardized bonding locations and methods of designing
US5814881A (en) * 1996-12-20 1998-09-29 Lsi Logic Corporation Stacked integrated chip package and method of making same
US6133637A (en) * 1997-01-24 2000-10-17 Rohm Co., Ltd. Semiconductor device having a plurality of semiconductor chips
US5838072A (en) * 1997-02-24 1998-11-17 Mosel Vitalic Corporation Intrachip power distribution package and method for semiconductors having a supply node electrically interconnected with one or more intermediate nodes
US6608368B2 (en) * 1997-02-27 2003-08-19 Seiko Epson Corporation Semiconductor device with power source conductor pattern and grounding conductor pattern
US5903443A (en) * 1997-04-07 1999-05-11 Micron Technology, Inc. Interdigitated leads-over-chip lead frame, device, and method for supporting an integrated circuit die
US6208579B1 (en) * 1997-07-30 2001-03-27 Intermedics Inc. Stackable microelectronic components with self-addressing scheme
US5905639A (en) * 1997-09-29 1999-05-18 Raytheon Company Three-dimensional component stacking using high density multichip interconnect decals and three-bond daisy-chained wedge bonds
US5886393A (en) * 1997-11-07 1999-03-23 National Semiconductor Corporation Bonding wire inductor for use in an integrated circuit package and method
US6008533A (en) * 1997-12-08 1999-12-28 Micron Technology, Inc. Controlling impedances of an integrated circuit
US6674177B2 (en) * 1998-01-22 2004-01-06 Micron Technology, Inc. Apparatus for implementing selected functionality on an integrated circuit device
US6406943B2 (en) * 1998-08-20 2002-06-18 Micron Technology, Inc. Transverse hybrid LOC package
US6051887A (en) * 1998-08-28 2000-04-18 Medtronic, Inc. Semiconductor stacked device for implantable medical apparatus
US6380635B1 (en) * 1998-08-28 2002-04-30 Micron Technology, Inc. Apparatus and methods for coupling conductive leads of semiconductor assemblies
US6291894B1 (en) * 1998-08-31 2001-09-18 Micron Technology, Inc. Method and apparatus for a semiconductor package for vertical surface mounting
US20010020749A1 (en) * 1999-06-08 2001-09-13 Shi-Tron Lin Bond-pad with pad edge strengthening structure
US6506625B1 (en) * 1999-09-01 2003-01-14 Micron Technology, Inc. Semiconductor package having stacked dice and leadframes and method of fabrication
US6376909B1 (en) * 1999-09-02 2002-04-23 Micron Technology, Inc. Mixed-mode stacked integrated circuit with power supply circuit part of the stack
US20010023994A1 (en) * 2000-03-07 2001-09-27 Takahiro Oka Semiconductor device and the method for manufacturing the same
US6551860B2 (en) * 2000-03-31 2003-04-22 L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Systems and methods for application of substantially dry atmospheric plasma surface treatment to various electronic component packaging and assembly methods
US6326235B1 (en) * 2000-05-05 2001-12-04 Amkor Technology, Inc. Long wire IC package fabrication method
US20020058357A1 (en) * 2000-05-16 2002-05-16 Siliconware Precision Industries Co., Ltd. Die attaching method
US6531784B1 (en) * 2000-06-02 2003-03-11 Amkor Technology, Inc. Semiconductor package with spacer strips
US6320259B1 (en) * 2000-07-21 2001-11-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, and a manufacturing apparatus for a method of manufacturing the semiconductor device
US6603072B1 (en) * 2001-04-06 2003-08-05 Amkor Technology, Inc. Making leadframe semiconductor packages with stacked dies and interconnecting interposer
US6476506B1 (en) * 2001-09-28 2002-11-05 Motorola, Inc. Packaged semiconductor with multiple rows of bond pads and method therefor

Also Published As

Publication number Publication date
US7326594B2 (en) 2008-02-05
US20070215994A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US7326594B2 (en) Connecting a plurality of bond pads and/or inner leads with a single bond wire
US7511363B2 (en) Copper interconnect
US5976964A (en) Method of improving interconnect of semiconductor device by utilizing a flattened ball bond
US9087827B2 (en) Mixed wire semiconductor lead frame package
US6163463A (en) Integrated circuit chip to substrate interconnection
TW531867B (en) Circuit structure integrating the power distribution functions of circuits and leadframes into the chip surface
JPH0661406A (en) Semiconductor device, its manufacture, and tape carrier
JPH0595015A (en) Semiconductor device
JP2005317975A (en) System in package with junction of solder bump and gold bump, and its manufacturing method
US5569956A (en) Interposer connecting leadframe and integrated circuit
US8269356B2 (en) Wire bonding structure and method that eliminates special wire bondable finish and reduces bonding pitch on substrates
US20100181675A1 (en) Semiconductor package with wedge bonded chip
US7157790B2 (en) Single die stitch bonding
JPH03265148A (en) Semiconductor device and manufacture thereof
JPH07283274A (en) Semiconductor device and junction seat

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROCHIP TECHNOLOGY INCORPORATED, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEAUCHAMP, BRUCE;TUTHILL, ANDREW;FERNANDEZ, JOSEPH D.;AND OTHERS;SIGNING DATES FROM 20061201 TO 20070703;REEL/FRAME:024779/0126

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION