US20080090886A1 - Aqueous Fungicidal Composition And Use Thereof For Combating Harmful Micro Organisms - Google Patents

Aqueous Fungicidal Composition And Use Thereof For Combating Harmful Micro Organisms Download PDF

Info

Publication number
US20080090886A1
US20080090886A1 US11/587,052 US58705206A US2008090886A1 US 20080090886 A1 US20080090886 A1 US 20080090886A1 US 58705206 A US58705206 A US 58705206A US 2008090886 A1 US2008090886 A1 US 2008090886A1
Authority
US
United States
Prior art keywords
active substance
monomers
weight
composition according
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/587,052
Inventor
Reimer Gottsche
Helga Gottsche
Gunnar Kleist
Joerg Habicht
Holger Schopke
Patrick Amrhein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34965840&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080090886(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Assigned to BASF AKTIENGESELLSCHAFT reassignment BASF AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMRHEIN, PATRICK, GOTTSCHE, REIMER (DECEASED), HABICHT, JOERG, KLEIST, GUNNAR, SCHOPKE, HOLGER
Publication of US20080090886A1 publication Critical patent/US20080090886A1/en
Priority to US12/831,055 priority Critical patent/US8741968B2/en
Priority to US14/261,193 priority patent/US20140234425A1/en
Priority to US15/397,555 priority patent/US10420339B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/12Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing a —O—CO—N< group, or a thio analogue thereof, neither directly attached to a ring nor the nitrogen atom being a member of a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/007Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process employing compositions comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • B27K3/15Impregnating involving polymerisation including use of polymer-containing impregnating agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the present invention relates to aqueous fungicidal active substance compositions and to their use in the control of harmful microorganisms, in particular for the protection of cellulose-comprising materials, in particular wood, from infection by harmful fungi, in particular those harmful fungi which may be harmful to wood or cellulose.
  • wood and also other cellulose-comprising materials can be attacked and in extreme cases destroyed by microorganisms and in particular fungi (subsequently harmful fungi) if they are exposed to environmental conditions which promote the growth and the development of such microorganisms.
  • fungi subsequently harmful fungi
  • wood is frequently treated with wood preservatives.
  • fungicidal active substances which exhibit only a low solubility in water are frequently formulated in the form of aqueous suspensions or emulsions. While emulsions usually still comprise organic solvents, suspensions are usually formulated free from solvents. The active substance is present in these suspensions in the form of fine particles with particle sizes in the micrometer region. If wood is now treated with such a suspension, the active substance remains on the surface of the wood since it, because of the particle size, cannot penetrate into the pores of the wood. However, this is required if effective protection of the wood is to be achieved. In addition, the active substance is easily washed off the surface by the effects of the weather.
  • Fungicidal transparent varnishes have also on several occasions been proposed as wood preservative.
  • these are aqueous painting systems based on aqueous polymer latexes which comprise the active substance in suspended form.
  • the protection of the wood is not satisfactory since the active substances do not penetrate into the wood but remain on the surface of the wood.
  • Such a demixing can, for example, occur if the microemulsion becomes depleted in emulsifier because of a high affinity of the emulsifier for the wood or a depletion in solvent occurs, which can easily happen in the pressure impregnation.
  • aqueous, fungicidally effective, composition of fungicidal active substances with low solubility in water i.e. a solubility in water of less than 5 g/l, in particular less than 1 g/l, at 25° C./1013 mbar, which is advantageously suitable for the protection of cellulose-comprising materials, in particular wood, from infection by harmful fungi.
  • the composition should in particular comprise only small amounts of or no volatile organic compounds, such as organic solvents.
  • the active substance should not, or not to a significant extent, be leached from the treated materials by the effect of water.
  • the aqueous active substance compositions should exhibit a better stability than conventional suspensions or microemulsions.
  • an aqueous active substance composition in which the fungicidal active substance which is insoluble in water or only slightly soluble in water is present in the polymer particles of a finely divided water-insoluble polymer, the polymer particles of which exhibit a average particle size of not more than 300 nm, and in which the polymer is formed from at least 60% by weight, based on the total amount of the monomers M, of at least one neutral monoethylenically unsaturated monomer M1 with a solubility in water of not more than 30 ⁇ l at 25° C. and up to 40% by weight, based on the total amount of the monomers M, of one or more ethylenically unsaturated monomers M2 other than the monomers M1.
  • an aqueous active substance composition comprising:
  • compositions according to the invention are stable aqueous preparations of fungicidal active substances which are insoluble in water or only slightly soluble in water, which in principle are suitable for all applications in which it is desired to achieve effective protection from infection by microorganisms, in particular harmful fungi.
  • the rate of application of active substance necessary for effective protection is, surprisingly, not higher and in a few cases even lower than when conventional aqueous active substance preparations are used.
  • the present invention also relates to the use of such aqueous compositions for the control of microorganisms, in particular for the control of harmful fungi.
  • control comprises, here and subsequently, the prevention or avoidance of infection by microorganisms, in particular harmful fungi and also the destruction of microorganisms, in particular harmful fungi, in infected substrates.
  • compositions according to the invention are particularly suitable for the control of microorganisms, in particular of harmful fungi, in wood and other cellulose materials and in particular for the protection of these materials from infection by microorganisms, in particular harmful fungi.
  • a particular embodiment of the invention relates to the use of such compositions for the protection of cellulose-comprising materials from infection by microorganisms, in particular from infection by wood-destroying fungi.
  • aqueous compositions according to the invention are also suitable for other applications in which control of microorganisms, in particular harmful fungi, is desired, for example in plant protection, for the control of phytotoxic microorganisms, in seed treatment, and also in the protection of materials, as in-can and film preservatives, for antifouling, and for the protection of leather and other organic materials from infection by harmful microorganisms.
  • the particle sizes of the finely divided polymer given here are weight-average particle sizes, as can be determined by dynamic light scattering. Methods for this are familiar to a person skilled in the art, for example from H. Wiese in D. Distler, Wässrige Polymer dispersionen [Aqueous Polymer Dispersions], Wiley-VCH, 1999, chapter 4.2.1, p. 40ff and the literature cited therein, and also H. Auweter, D. Hom, J. Colloid Interf. Sci., 105 (1985), 399, D. Lilge, D. Hom, Colloid Polym. Sci., 269 (1991), 704, or H. Wiese, D. Hom, J. Chem. Phys., 94 (1991), 6429.
  • the average particle size preferably ranges from 10 to 250 nm, in particular from 20 to 200 nm, particularly preferably from 30 to 150 nm and very particularly preferably from 30 to 100 nm.
  • the polymer is, according to the invention, at least 60% by weight, based on the total amount of the monomers M forming the polymer, preferably 60 to 99.5% by weight and particularly preferably 70 to 99% by weight formed from neutral monoethylenically unsaturated monomers M1 with a solubility in water of not more than 30 ⁇ l at 25° C./1013 mbar.
  • the solubility in water of the monomers M1 under these conditions is from 0.1 to 20 g/l.
  • Suitable monomers M1 comprise vinylaromatic monomers, such as styrene, esters of monoethylenically unsaturated mono- and dicarboxylic acids with 3 to 8 and in particular 3 or 4 carbon atoms with C 1 -C 10 -alkanols or with C 5 -C 8 -cycloalkanols, in particular the esters of acrylic acid, of methacrylic acid or of crotonic acid, the diesters of maleic acid, of fumaric acid and of itaconic acid, and particularly preferably the esters of acrylic acid with C 2 -C 10 -alkanols ( ⁇ C 2 -C 10 -alkyl acrylates), such as ethyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate and 3-propylheptyl acrylate,
  • Suitable monomers M1 are, in addition, vinyl and allyl esters of aliphatic carboxylic acids with 2 to 10 carbon atoms, for example vinyl acetate, vinyl propionate and the vinyl esters of Versatic® acids (vinyl versatate), vinyl halides, such as vinyl chloride and vinylidene chloride, conjugated diolefins, such as butadiene and isoprene, and C 2 -C 6 -olefins, such as ethylene, propene, 1-butene and n-hexene.
  • vinyl and allyl esters of aliphatic carboxylic acids with 2 to 10 carbon atoms for example vinyl acetate, vinyl propionate and the vinyl esters of Versatic® acids (vinyl versatate), vinyl halides, such as vinyl chloride and vinylidene chloride, conjugated diolefins, such as butadiene and isoprene, and C 2 -C 6 -olefins, such as
  • Preferred monomers M1 are vinylaromatic monomers, in particular styrene, C 2 -C 10 -alkyl acrylates, in particular C 2 -C 8 -alkyl acrylates, and C 1 -C 10 -alkyl methacrylates.
  • the ethylenically unsaturated monomers M which form the polymer advantageously also comprise at least 0.5 to 40% by weight, in particular 1 to 30% by weight, of at least one ethylenically unsaturated monomer M2 other than the monomers M1.
  • the monomers M2 include in particular monoethylenically unsaturated monomers M2a exhibiting at least one acid group or at least one anionic group, in particular monomers M2a exhibiting a sulfonic acid group, a phosphonic acid group or one or two carboxylic acid groups, and the salts of the monomers M2a, in particular the alkali metal salts, e.g. the sodium or potassium salts, and the ammonium salts.
  • ethylenically unsaturated sulfonic acids in particular vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-acryloxyethanesulfonic acid, 2-methacryloxyethanesulfonic acid, 3-acryloxy- and 3-methacryloxypropanesulfonic acid, vinylbenzenesulfonic acid and their salts, ethylenically unsaturated phosphonic acids, such as vinylphosphonic acid and vinylphosphonic acid dimethyl ester and their salts, and ⁇ , ⁇ -ethylenically unsaturated C 3 -C 8 -mono- and C 4 -C 8 -dicarboxylic acids, in particular acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid.
  • the proportion of the monomers M2a will commonly come to not more than 35% by weight, preferably not more than 20% by weight, e.g. 0.1 to 20% by weight and in particular
  • the monomers M2 additionally include monoethylenically unsaturated neutral monomers M2b exhibiting a solubility in water of at least 50 g/l at 25° C. and in particular of at least 100 ⁇ l at 25° C.
  • monoethylenically unsaturated neutral monomers M2b exhibiting a solubility in water of at least 50 g/l at 25° C. and in particular of at least 100 ⁇ l at 25° C.
  • these are the amides of the above-mentioned ethylenically unsaturated carboxylic acids, in particular acrylamide and methacrylamide, ethylenically unsaturated nitriles, such as methacrylonitrile and acrylonitrile, hydroxyalkyl esters of the abovementioned ⁇ , ⁇ -ethylenically unsaturated C 3 -C 8 -monocarboxylic acids and C 4 -C 8 -dicarboxylic acids, in particular hydroxyethy
  • the monomers M2b furthermore include N-vinylamides, such as N-vinylformamide, N-vinylpyrrolidone, N-vinylimidazole and N-vinylcaprolactam.
  • N-vinylamides such as N-vinylformamide, N-vinylpyrrolidone, N-vinylimidazole and N-vinylcaprolactam.
  • the proportion of the monomers M2b will preferably come to not more than 20% and in particular not more than 10% by weight, e.g. 0.1 to 10 and in particular 0.5 to 5% by weight, based on the total amount of the monomers M.
  • the monomers M2 furthermore include monoethylenically unsaturated monomers M2c exhibiting at least one cationic group and/or at least one group which can be protonated in the aqueous medium.
  • the monomers M2c include in particular those exhibiting a protonatable amino group, a quaternary ammonium group, a protonatable imino group or a quaternized imino group. Examples of monomers with a protonatable imino group are N-vinylimidazole and vinylpyridines.
  • Examples of monomers with a quaternized imino group are N-alkylvinylpyridinium salts and N-Alkyl-N′-vinylimidazolinium salts, such as N-methyl-N′-vinylimidazolinium chloride or methyl sulfate.
  • Preference is given, among the monomers M2c, in particular to the monomers of the general formula (I) in which
  • Examples of such monomers are 2-(N,N-dimethylamino)ethyl acrylate, 2-(N,N-dimethylamino)ethyl methacrylate, 2-(N,N-dimethylamino)ethylacrylamide, 3-(N,N-dimethylamino)propylacrylamide, 3-(N,N-dimethylamino)propylmethacrylamide, 2-(N,N-dimethylamino)ethylmethacrylamide, 2-(N,N,N-trimethylammonio)ethyl acrylate chloride, 2-(N,N,N-trimethylammonio)ethyl methacrylate chloride, 2-(N,N,N-trimethylammonio)ethylmethacrylamide chloride, 3-(N,N,N-trimethylammonio)propylacrylamide chloride, 3-(N,N,N-trimethylammonio)propylacrylamide chloride, 2-(N,N
  • the monomers M which form the polymer comprise at least one monomer M2c.
  • the proportion of the monomers M2c is then advantageously 0.1 to 20% by weight, in particular 0.5 to 10% by weight and particularly preferably 1 to 7% by weight, based on the total amount of the monomers M.
  • the polymer exhibits a net cationic charge, i.e. the molar proportion of the monomers M2c is greater than the molar proportion of the monomers M2a in the polymer and is preferably 110 mol %, in particular at least 120 mol % and particularly preferably at least 150 mol %, based on the monomers M2a.
  • the monomers M2 furthermore include all monomers which can conventionally be used in an emulsion polymerization.
  • the proportion of monomers exhibiting two or more nonconjugated ethylenically unsaturated double bonds usually comes to not more than 5% by weight, in particular not more than 2% by weight, e.g. 0.01 to 2% by weight and in particular 0.05 to 1.5% by weight, based on the total amount of monomers.
  • the polymer present in the compositions according to the invention has proved to be advantageous for the polymer present in the compositions according to the invention to exhibit a glass transition temperature T g of at least 10° C., preferably of at least 20° C. and in particular of at least 30° C. In particular, the glass transition temperature will not exceed a value of 180° C. and particularly preferably 130° C. If the active substance composition according to the invention comprises several polymers with different glass transition temperatures, be it in the form of step or core/shell polymers or in the form of blends of different polymers, the proportion of polymers with a glass transition temperature of at least 10° C., preferably at least 20° C. and in particular at least 30° C. is at least 40% by weight.
  • glass transition temperature T g is to be understood here as the midpoint temperature determined by differential scanning calorimetry (DSC) according to ASTM D 3418-82 (cf. Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, volume A 21, VCH, Weinheim, 1992, p. 169, and Zosel, Aid und Lack, 82 (1976), p. 125-134, see also DIN 53765).
  • X n represent the mass fractions of the monomers 1, 2, . . . , n and T g 1 , T g 2 , . . . , T g n represent, in degrees Kelvin, the glass transition temperatures of the polymers formed in each case only from one of the monomers 1, 2, . . . , n.
  • the latter are, e.g., known from Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, Vol. A 21, (1992) p. 169, or from J. Brandrup, E. H. Immergut, Polymer Handbook, 3rd ed., J. Wiley, New York, 1989.
  • All organic substances with low solubility in water which inhibit the growth or the propagation of harmful fungi or which destroy the latter are suitable in principle as active substances.
  • Their solubility in water at 25° C./1013 mbar is generally not more than 5 g/l, frequently not more than 3 g/l and in particular not more than 1 g/l, e.g. 0.001 g/l to 1 g/l, in particular 0.002 to 0.5 g/l, at 25° C./1013 mbar.
  • Suitable active substances are the compounds listed as fungicides in the Compendium of Pesticide Common Names: http://www.hclrss.demon.co.uk/class-fungicides.html (Index of common names). These include, for example:
  • compositions according to the invention for the protection of cellulose-comprising materials from infection by microorganisms of relevance in wood preservation, mainly molds, wood-discoloring fungi and wood-destroying fungi, preference is given in particular to those fungicides which are effective, for example, against the following groups of microorganisms:
  • Preferred active substances are hence selected from the group of the conazoles, the group of the morpholines, the group of the strobilurins, the group of the thiazoles, the group of the sulfenamides and the group of the iodine compounds.
  • the aqueous active substance preparations according to the invention comprise the fungicidal active substance generally in an amount of 0.1 to 50% by weight, preferably in an amount of 0.2 to 30% by weight and in particular in an amount of 0.5 to 20% by weight, based on the polymer present in the composition or based on the total amount of the monomers M used to prepare the polymer.
  • compositions according to the invention can also comprise one or more insecticidal active substances.
  • insecticidal active substances together with the at least one fungicidal active substance, are present in the polymer particles.
  • the insecticidal active substance is then preferably an organic active substance with a low solubility in water generally of not more than 5 g/l, preferably not more than 3 g/l and in particular not more than 1 g/l, e.g. 0.001 to 1 g/l or 0.002 to 0.5 g/l, at 25° C./1013 mbar.
  • suitable insecticidal active substances are the compounds listed as insecticides in the Compendium of Pesticide Common Names: http://www.hclrss.demon.co.uk/class-insecticides.html (Index of common names). These include, for example:
  • insecticidal active substances from the class of the pyrethroids include in particular the insecticidal active substances from the class of the pyrethroids, arthropod growth regulators, such as chitin biosynthesis inhibitors, ecdysone antagonists, juvenoids or lipid biosynthesis inhibitors, neonicotinoids, pyrazole insecticides and chlorfenapyr.
  • arthropod growth regulators such as chitin biosynthesis inhibitors, ecdysone antagonists, juvenoids or lipid biosynthesis inhibitors, neonicotinoids, pyrazole insecticides and chlorfenapyr.
  • the insecticidal active substance is, if desired, usually present in the active substance composition according to the invention in an amount of 0.1 to 50% by weight, preferably in an amount of 0.2 to 30% by weight and in particular in an amount of 0.5 to 20% by weight, based on the monomers M which form the polymer.
  • the total amount of active substance in the polymer of the compositions according to the invention is preferably 0.2 to 50% by weight, in particular 0.5 to 30% by weight and particularly preferably 1 to 20% by weight, based on the polymer or on the monomers M which form the polymer.
  • the aqueous compositions according to the invention usually comprise surface-active substances in order to stabilize the polymer particles in the aqueous medium.
  • surface-active substances include both protective colloids and low-molecular-weight emulsifiers, the latter, in contrast to the protective colloids, generally exhibiting a molecular weight of less than 2000 g/mol, in particular of less than 1000 g/mol (weight-average).
  • the protective colloids and emulsfiers can be both cationic, anionic or neutral in nature and zwitterionic in nature.
  • anionic surface-active substances are anionic emulsifiers, such as alkylphenylsulfonates, phenylsulfonates, alkyl sulfates, alkylsulfonates, alkyl ether sulfates, alkylphenol ether sulfates, alkyl polyglycol ether phosphates, alkyldiphenyl ether sulfonates, polyarylphenyl ether phosphates, alkyl sulfosuccinates, olefin sulfonates, paraffin sulfonates, petroleum sulfonates, taurides, sarcosides, fatty acids, alkylnaphthalenesulfonic acids or naphthalenesulfonic acids, including their alkali metal, alkaline earth metal, ammonium and amine salts.
  • anionic emulsifiers such as alkylphenylsulfonates,
  • anionic protective colloids examples include lignosulfonic acids, condensation products of sulfonated naphthalenes with formaldehyde or with formaldehyde and phenol and, if appropriate, urea, and also condensation products from phenolsulfonic acid, formaldehyde and urea, lignin sulfite waste liquor and lignosulfonates, and also polycarboxylates, such as polyacrylates, maleic anhydride/olefin copolymers (e.g. Sokalan® CP9, BASF), and also the alkali metal, alkaline earth metal, ammonium and amine salts of the above-mentioned protective colloids.
  • lignosulfonic acids condensation products of sulfonated naphthalenes with formaldehyde or with formaldehyde and phenol and, if appropriate, urea, and also condensation products from phenolsulfonic acid, formaldehyde and urea,
  • Nonionic emulsifiers are, for example, alkylphenol alkoxylates, alcohol alkoxylates, fatty amine alkoxylates, polyoxyethylene glycerol fatty acid esters, castor oil alkoxylates, fatty acid alkoxylates, fatty acid amide alkoxylates, fatty acid polydiethanolamides, lanolin ethoxylates, fatty acid polyglycol esters, isotridecyl alcohol, fatty acid amides, methylcellulose, fatty acid esters, silicone oils, alkylpolyglycosides and glycerol fatty acid esters.
  • nonionic protective colloids are polyethylene glycol, polypropylene glycol, polyethylene glycol/polypropylene glycol block copolymers, polyethylene glycol alkyl ethers, polypropylene glycol alkyl ethers, polyethylene glycovpolypropylene glycol ether block copolymers, and their mixtures.
  • cationic emulsifiers are quaternary ammonium salts, e.g. trimethyl- and triethyl(C 6 -C 30 -alkyl)ammonium salts, such as cocotrimethylammonium salts and trimethylcetylammonium salts, dimethyl- and diethyldi(C 4 -C 20 -alkyl)ammonium salts, such as didecyldimethylammonium salts and dicocodimethylammonium salts, methyl- and ethyltri(C 4 -C 20 -alkyl)ammonium salts, such as methyltrioctylammonium salts, (C 1 -C 20 -alkyl)di(C 1 -C 4 -alkyl)benzylammonium salts, such as triethylbenzylammonium salts and cocobenzyldimethylammonium salts, methyl- and ethyld
  • didecylmethylpoly(oxyethyl)ammonium salts N—(C 6 -C 20 -alkyl)pyridinium salts, e.g. N-laurylpyridinium salts, N-methyl- and N-ethyl-N—(C 6 -C 2 -alkyl)morpholinium salts, and N-methyl- and N-ethyl-N′—C 6 -C 20 -alkyl)imidazolinium salts, in particular the halides, borates, carbonates, formates, acetates, propionates, hydrogencarbonates, sulfates and methyl sulfates.
  • N—(C 6 -C 20 -alkyl)pyridinium salts e.g. N-laurylpyridinium salts
  • N-methyl- and N-ethyl-N—(C 6 -C 2 -alkyl)morpholinium salts N-methyl- and N-e
  • cationic protective colloids are homo- and copolymers of the abovementioned monomers M2c with a content of monomers M2c of at least 20% by weight, in particular at least 30% by weight of monomers M2c, for example homopolymers of N-vinyl-N-methylimidazolinium salts or of N-alkylvinylpyridinium salts and copolymers of these monomers with neutral monomers M2b which are preferably miscible with water.
  • Zwitterionic emulsifiers are those with betaine structures. Such substances are known to a person skilled in the art and can be taken from the relevant state of the art (see, for example, R. Heusch, in Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., on CD-ROM, Wiley-VCH, 1997, “Emulsions”, chapter 7, Table 4).
  • compositions according to the invention usually comprise at least one emulsifier, preferably at least one ionic emulsifier and, if appropriate, one or more nonionic emulsifiers.
  • emulsifier preferably at least one ionic emulsifier and, if appropriate, one or more nonionic emulsifiers.
  • the compositions according to the invention it has proved worthwhile for the compositions according to the invention to comprise at least one cationic emulsifier, in particular if no monomers M2c are used to prepare the polymer.
  • the amount of emulsifier usually ranges from 0.1 to 15% by weight, in particular from 0.2 to 12% by weight and particularly preferably from 0.7 to 10% by weight, based on the monomers M or on the polymer P.
  • the amount of ionic emulsifier is preferably 0.3 to 10% by weight and in particular 0.5 to 8% by weight, based on the monomers M constituting the polymer.
  • the amount of nonionic emulsifier preferably ranges from 0.2 to 12% by weight, in particular from 0.5 to 10% by weight, based on the monomers M constituting the polymer.
  • the preparation of the aqueous compositions according to the invention comprises a radical aqueous emulsion polymerization of an oil-in-water emulsion of the monomers M, in which the monomer droplets of the emulsion comprise at least one fungicidal active substance and, if appropriate, an insecticidal active substance.
  • the polymerization is carried out analogously to a conventional emulsion polymerization, with the difference that the monomer emulsion to be polymerized comprises the active substance dissolved in the monomer droplets.
  • the oil-in-water emulsion of the active substance/monomer solution can be prepared in situ by addition of a solution of the active substance in the monomers M to be polymerized in the polymerization vessel placed under polymerization conditions.
  • the active substance will be dissolved in the monomers M and the monomer solution thus obtained will be converted to an aqueous monomer emulsion, before the monomer/active substance emulsion thus obtained is fed to the polymerization reaction.
  • the polymerization is generally carried out according to a “monomer feed process”, i.e. the greater part, preferably at least 70% and in particular at least 90%, of the solution of the active substance in the monomers M or the greater part, preferably at least 70% and in particular at least 90%, of the monomer/active substance emulsion is fed to the polymerization vessel in the course of the polymerization reaction.
  • the addition of the monomer/active substance solution or emulsion is preferably carried out over a period of at least 0.5 h, preferably at least 1 h, e.g. 1 to 10 h and in particular 2 to 5 h.
  • the addition of the monomer/active substance solution or emulsion can be carried out with a constant or variable addition rate, e.g.
  • composition of the monomer/active substance solution or emulsion can remain constant during the addition or can be changed, it being possible for changes to be made both with regard to the monomer composition and with regard to the type of active substance or the concentration of the active substance.
  • the monomer composition is changed in the course of the monomer addition in such a way that polymer regions with a different glass transition temperature are obtained in the polymer particles.
  • This is achieved by a “step polymerization”.
  • a first monomer/active substance solution or emulsion the monomer composition of which corresponds to a glass transition temperature T g 1
  • a second monomer/active substance solution or emulsion the monomer composition of which corresponds to a glass transition temperature T g 2
  • 2nd step 2nd step
  • one or more additional monomer/active substance solutions or emulsions the monomer composition of which corresponds in each case to a glass transition temperature T g n , n being the respective step, is/are provided for this.
  • the respective glass transition temperatures in polymers obtained in successive polymerization steps preferably differ by at least 10 K, in particular by at least 20 K and particularly preferably by at least 30 K, e.g. 30 K to 200 K, in particular 40 K to 160 K.
  • the monomer amount polymerized in a monomer amount will come to at least 5% by weight, preferably at least 10% by weight, e.g. 5 to 95% by weight, in particular 10 to 90% by weight, in a 2-step polymerization and 5 to 90 or 5 to 85% by weight, in particular 10 to 80% by weight, in a polymerization with three or more steps.
  • seed latex it is a finely divided polymer latex, the average particle size of which is usually not more than 100 nm, in particular not more than 80 nm and particularly preferably not more than 50 nm.
  • the monomers constituting the seed latex are preferably to at least 90% by weight, in particular to at least 95% by weight and frequently to more than 99% by weight selected from the monomers M1, the seed latex also being able to comprise, for the stabilization, small amounts, e.g.
  • the seed latex frequently exhibits a glass transition temperature of at least 10, in particular of at least 50 and frequently of at least 80° C.
  • the amount of seed latex is usually 0.01 to 5% by weight, in particular 0.1 to 4% by weight, based on the monomers M1 to be polymerized.
  • the bulk, and in particular all, of the seed latex is found, at the beginning of the polymerization, completely in the reaction vessel.
  • the seed latex can also be generated in situ in the polymerization vessel by radical emulsion polymerization of the monomers which form the seed latex, the monomers which form the seed latex being selected from the abovementioned monomers M1 and M2 and in particular to at least 90% by weight from the monomers M1.
  • the desired particle size of the seed latex can be controlled in a way known per se via the ratio of monomer to emulsifier.
  • the initiators suitable for the emulsion polymerization according to the invention are the polymerization initiators suitable for and conventionally used for an emulsion polymerization which initiate a radical polymerization of the monomers M.
  • These include azo compounds, such as 2,2′-azobisisobutyronitrile, 2,2′-azobis(2-methyl-butyronitrile), 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 1,1′-azobis(1-cyclohexanecarbonitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(N,N′-dimethyleneisobutyramidine) dihydrochloride and 2,2′-azobis(2-amidinopropane) dihydrochloride, organic or inorganic peroxides, such as diacetyl peroxide, di(tert-butyl)peroxide, diamyl peroxide, dioctanoyl
  • Use is preferably made of water-soluble initiators, e.g. cationic azo compounds, such as azobis(dimethylamidinopropane), salts of peroxydisulfuric acid, in particular a sodium, potassium or ammonium salt, or a redox initiator system, which a salt of peroxydisulfuric acid, hydrogen peroxide or an organic peroxide, such as tert-butyl hydroperoxide, as oxidizing agent.
  • reducing agent they preferably comprise a sulfur compound which is selected in particular from sodium hydrogensulfite, sodium hydroxymethanesulfinate and the hydrogensulfite adduct of acetone.
  • Redox initiator systems can furthermore comprise the addition of small amounts of redox metal salts, such as iron salts, vanadium salts, copper salts, chromium salts or manganese salts, such as, for example, the redox initiator system ascorbic acid/iron(II) sulfate/sodium peroxydisulfate.
  • redox metal salts such as iron salts, vanadium salts, copper salts, chromium salts or manganese salts, such as, for example, the redox initiator system ascorbic acid/iron(II) sulfate/sodium peroxydisulfate.
  • the initiator is generally used in an amount of 0.02 to 2% by weight and in particular 0.05 to 1.5% by weight, based on the amount of the monomers M.
  • the optimal amount of initiator naturally depends on the initiator system used and can be determined by a person skilled in the art by routine experiments.
  • the initiator can be partially or completely introduced into the reaction vessel.
  • the bulk of the initiator in particular at least 80%, e.g. 80 to 99.5%, of the initiator, is provided to the polymerization reactor in the course of the polymerization.
  • the pressure and temperature are of secondary importance for the preparation of the active substance compositions according to the invention.
  • the temperature naturally depends on the initiator system used and an optimal polymerization temperature can be determined by a person skilled in the art through routine experiments.
  • the polymerization temperature usually ranges from 20 to 110° C., frequently from 50 to 95° C.
  • the polymerization is usually carried out at standard pressure or ambient pressure. However, it can also be carried out under increased pressure, e.g. up to 3 bar, or under slightly reduced pressure, e.g. >800 mbar.
  • the emulsifiers and protective colloids conventionally used for emulsion polymerization which have already been mentioned above as constituents of the active substance formulations according to the invention are suitable as surface-active substances.
  • the amounts of surface-active substances conventionally used for an emulsion polymerization generally lie in the ranges given above, so that all or a portion of the surface-active substances in the compositions according to the invention is supplied via the emulsion polymerization.
  • the molecular weight of the polymers can obviously be adjusted by addition of a small amount of regulators, e.g. 0.01 to 2% by weight, based on the monomers M which are being polymerized.
  • regulators e.g. 0.01 to 2% by weight
  • organic thio compounds and also allyl alcohols and aldehydes are suitable as regulator.
  • aqueous polymer dispersions according to the invention may be necessary to substantially free the aqueous polymer dispersions according to the invention from odorous substances, such as residual monomers and other volatile organic constituents.
  • this can be achieved physically by distillative removal (in particular via steam distillation) or by stripping with an inert gas.
  • the residual monomers can be lowered chemically by radical postpolymerization, in particular under the effects of redox initiator systems, such as are listed, e.g., in DE-A 44 35 423, DE-A 44 19 518 and DE-A 44 35 422.
  • the postpolymerization is preferably carried out with a redox initiator system composed of at least one organic peroxide and one organic sulfite.
  • the polymer dispersions used are frequently, before their use according to the invention, adjusted to an alkaline value, preferably to pH values ranging from 7 to 10.
  • Ammonia or organic amines, and also, preferably, hydroxides, such as sodium hydroxide, potassium hydroxide or calcium hydroxide, can be used for the neutralization.
  • aqueous polymer dispersions which comprise, in the polymer particles of the dispersion, at least one fungicidal active substance, and, if appropriate, one or more insecticidal active substances.
  • the dispersions thus obtained comprise the abovementioned surface-active substances.
  • the active substance preparations thus obtained are characterized by a high stability and a low content of volatile organic compounds, which usually come to not more than 1% by weight, frequently not more than 0.1% by weight and in particular not more than 500 ppm, based on the total weight of the composition. Volatile compounds are, here and subsequently, all organic compounds which exhibit a boiling point of less than 200° C. at standard pressure.
  • the solids content of the compositions according to the invention is determined to a first approximation by the active substance and the polymer and generally ranges from 10 to 60% by weight and in particular from 20 to 50% by weight.
  • compositions according to the invention can be used directly as such or after diluting.
  • compositions according to the invention can also comprise conventional additives, e.g. viscosity-modifying additives (thickeners), antifoam agents, bactericides and antifreeze agents.
  • Suitable thickeners are compounds which confer a pseudoplastic flow behavior on the formulation, i.e. high viscosity at rest and low viscosity in the agitated state. Mention may be made, in this connection, for example, of polysaccharides or organic layered minerals, such as Xanthan Gum® (Keizan® from Kelco), Rhodopol® 23 (Rhône-Poulenc) or Veegum® (R.T. Vanderbilt), or Attaclay® (Engelhardt), Xanthan Gum® preferably being used.
  • polysaccharides or organic layered minerals such as Xanthan Gum® (Keizan® from Kelco), Rhodopol® 23 (Rhône-Poulenc) or Veegum® (R.T. Vanderbilt), or Attaclay® (Engelhardt), Xanthan Gum® preferably being used.
  • Silicone emulsions such as, e.g., Silicone SRE, from Wacker, or Rhodorsil® from Rhodia
  • long-chain alcohols such as, e.g., Silicone SRE, from Wacker, or Rhodorsil® from Rhodia
  • fatty acids such as, e.g., fatty acids, fluoroorganic compounds and their mixtures, for example, come into consideration as antifoam agents suitable for the dispersions according to the invention.
  • Bactericides can be added to stabilize the compositions according to the invention from infection by microorganisms.
  • Suitable bactericides are, for example, Proxel® from Avecia (or Arch) or Acticide® RS from Thor Chemie and Kathon® MK from Röhm & Haas.
  • Suitable antifreeze agents are organic polyols, e.g. ethylene glycol, propylene glycol or glycerol. These are generally used in amounts of not more than 10% by weight, based on the total weight of the active substance composition.
  • the active substance compositions according to the invention can, to regulate the pH, comprise 1 to 5% by weight of buffer, based on the total amounts of the formulation prepared, the amounts and the type of the buffer used depending on the chemical properties of the active substance or substances.
  • buffers are alkali metal salts of weak inorganic or organic acids, such as, e.g., phosphoric acid, boric acid, acetic acid, propionic acid, citric acid, fumaric acid, tartaric acid, oxalic acid and succinic acid.
  • aqueous compositions according to the invention can be formulated with conventional binders, for example aqueous polymer dispersions or water-soluble resins, for example water-soluble alkyd resins, or with waxes.
  • conventional binders for example aqueous polymer dispersions or water-soluble resins, for example water-soluble alkyd resins, or with waxes.
  • the aqueous active substance compositions according to the invention can also be formulated with conventional water-soluble wood preservatives, in particular with their aqueous solutions, in order to improve the overall effectiveness against wood-destroying organisms.
  • these are, for example, aqueous preparations of conventional wood-protecting salts, for example of salts based on boric acid and alkali metal borates, salts based on quaternary ammonium compounds, e.g.
  • trimethyl- and triethyl(C 6 -C 30 -alkyl)ammonium salts such as cocotrimethylammonium chloride or trimethylcetylammonium salts, dimethyl- and diethyldi(C 4 -C 20 -alkyl)ammonium salts, such as didecyldimethylammonium chloride, didecyldimethylammonium bromide or dicocodimethylammonium chloride, (C 1 -C 20 -alkyl)di(C 1 -C 4 -alkyl)benzylammonium salts, such as cocobenzyldimethylammonium chloride, or methyl- and ethyldi(C 4 -C 20 -alkyl)poly(oxyethyl)ammonium salts, e.g.
  • aqueous active substance preparations can also be formulated with other aqueous fungicidal and insecticidal active substance compositions, for example with conventional emulsion concentrates, suspension concentrates or suspoemulsion concentrates of the abovementioned active substances, e.g.
  • aqueous active substance composition according to the invention By mixing the aqueous active substance composition according to the invention with conventional aqueous preparations of the abovementioned active substances, a broadening in the spectrum of activity is first obtained, if the conventional preparation comprises a different active substance from the aqueous active substance composition according to the invention.
  • the advantages of the active substance compositions according to the invention are not lost by formulating with conventional aqueous active substance preparations, in particular the improved adhesion to cellulose-comprising materials and especially to wood. Consequently, the application properties of a conventional aqueous active substance preparation can be improved by formulating with an aqueous active substance composition according to the invention of the same active substance.
  • the active substance compositions according to the invention there are a number of advantages to the active substance compositions according to the invention.
  • these are stable aqueous formulations of fungicidal active substances which are insoluble in water or are soluble in water only to a slight extent.
  • the phase separation problems observed in conventional formulations and in micro- or nanodispersions of the active substances are not observed and settling of the active substance is not observed, even when drastic conditions are employed, such as occur in the processes employed for impregnating wood with fungicidal active substances.
  • the content of volatile organic compounds is with conventional additivating lower than with comparable conventional formulations and, in comparison to micro- or nanodispersions of active substances, the proportion of emulsifier is simultaneously lower, based on the active substance used.
  • the active substance is leached from the treated material, under the effect of water, to a markedly lesser extent in comparison with other formulations. Furthermore, interactions of the active substances with other formulation constituents or additional active substances, such as frequently occur with a conventional formulation, are not observed. Furthermore, the decomposition of the active substances by the effects of the substrate or environment, such as pH value of the medium or UV radiation, is slowed down or even completely halted. Surprisingly, a reduced effectiveness of the active substance through the incorporation in a polymer matrix is not observed.
  • the present invention also relates to a process for the protection of cellulose-comprising materials, in particular wood, from infection by harmful fungi, in particular from infection by the abovementioned wood-destroying fungi, in which the cellulose-comprising material, in particular wood, is treated with a composition according to the invention.
  • Cellulose-comprising materials are, in addition to wood and downstream products, e.g. wood blanks, plywood, chipboard, MOF panels or OSB panels, also pulps and intermediates in the manufacture of paper, fabrics based on cellulose, such as cotton, materials based on woody annuals, for example molded articles formed from rape shavings, bargasse panels, straw panels, and the like.
  • the cellulose-comprising materials furthermore include articles formed from cellulose-comprising fiber materials, such as fabrics, formed fabrics, paper, board, heat-insulating materials, ropes, cables, and the like.
  • Suitable fiber materials for the process according to the invention comprise textile fibers, such as flax, linen, hemp, jute, cotton and ramie, paper fibers, such as flax, linen or hemp, bamboo fibers, paper mulberry and lignocellulose fibers, and also nettle fiber, manila hemp, sisal, kenaf and coconut fiber.
  • the treatment can be carried out in a way known per se, depending on the type of substrate, by spraying, painting, dipping or impregnating the substrate with an undiluted active substance composition according to the invention or an active substance composition according to the invention diluted with water or by flooding the substrate in an undiluted aqueous active substance composition according to the invention or an aqueous active substance composition according to the invention diluted with water.
  • the compositions according to the invention can also be present in the manufacture of the cellulose-comprising material, for example as binder or as sizing agent.
  • the substrate according to the invention is wood
  • the treatment of such materials with the active substance compositions according to the invention can be carried out according to the processes conventional for this and will be adapted in a way known per se to the technical realities in each case.
  • the application concentration and the incorporation depend in this connection on the degree of danger of the material and on the respective treatment process and usually range from 0.05 mg to 10 g of active substance per kg of material.
  • the undiluted composition comprising the active substance is frequently used in wood downstream products and cellulose-comprising materials, for example together with the binder used, as cobinder. Obviously, separate treatment during or after the manufacture, for example the sizing, is also possible.
  • the aqueous active substance composition according to the invention can also be used in other areas of material protection from infection by harmful fungi and, if appropriate, from infection by animal pests.
  • skin, fur or leather can be effectively protected, with the aqueous compositions according to the invention, from infection by microorganisms, in particular from infection by the abovementioned harmful fungi, and animal pests.
  • the aqueous compositions according to the invention can also be used as antifouling paints, for example in shipbuilding, or as algicidal paint systems for facades and roofing tiles, depending on the active substance present therein in each case.
  • the compositions according to the invention can be used as in-can and film preservatives.
  • the particle sizes given were determined by quasielastic light scattering according to the methods described above in diluted dispersions (0.01 to 0.1% by weight). The average diameter, determined by the cumulant analysis of the autocorrelation function measured, is given.
  • the glass transition temperature was determined in accordance with ASTM D 3418 using differential scanning calorimetry.
  • the dispersion obtained had a solids content of 38.7% by weight and a viscosity of 30 mPa ⁇ s.
  • the glass transition temperature of the polymer was +16° C.
  • the average particle size, determined by means of light scattering, was 146 nm.
  • the dispersion obtained had a solids content of 39% by weight and a viscosity of 45 mPa ⁇ s.
  • the glass transition temperature of the polymer was 31° C.
  • the average particle size, determined by means of light scattering, was 151 nm.
  • the dispersions obtained had a solids content of 45% by weight and a viscosity of 115 mPa ⁇ s.
  • the polymer showed 2 glass transition temperatures at ⁇ 31 and +99° C. determined by means of DSC.
  • Emulsifier solution E4 40% by weight aqueous solution of a cationic emulsifier obtained by successive ethoxylation of stearylamine with 4-5 mol of ethylene oxide and subsequent quaternization with dimethyl sulfate.
  • Dispersion Active substance x [g] D9 Metconazole 61.8 D10 Cyproconazole 42.9 D11 Epoxiconazole 0.4 D12 Tebuconazole 19.0 D13 IPBC 18.2
  • the dispersion obtained had a solids content of 29.5% by weight and a viscosity of 100 mPa ⁇ s.
  • the polymer showed a glass transition temperature at 87° C. determined by means of DSC.
  • the average particle size, determined by means of light scattering, was 157 to 175 nm.
  • feed 1 and 10% by weight of feed 2 were heated to 80° C. After 10 min, the addition of the remaining amount of feed 2 and of feed 3 was begun. The feed time of feed 2 and feed was 3.5 h. After the end of the addition of the feeds, the mixture was maintained at 80° C. for a further 30 min and was then cooled down to ambient temperature.
  • the dispersion obtained had a solids content of 29.8% by weight and a viscosity of 105 mPa ⁇ s.
  • the polymer showed a glass transition temperature at 110° C. determined by means of DSC.
  • the average particle size, determined by means of light scattering, was 155 to 175 nm.
  • the limits of the effectiveness of the compositions according to the invention with regard to wood-destroying basidiomycetes were determined on wood test specimens of Pinus spp. (southern yellow pine) with the dimensions 40 ⁇ 15 ⁇ 4 mm 3 .
  • the test method on comminuted wood test specimens known as the Bravery test, is closely based on EN 113 and is used to determine the preventive effect of wood preservatives against wood-destroying fungi (see in this connection A. F. Bravery, Intern. Res. Group Wood Pres., Doc. No. IRG/WP/2113, 5S., Sweden, 1978).
  • the wood test specimens impregnated with the composition according to the invention were tested without or with the constraint of leaching according to EN 84.
  • Wood test specimens which, for control purposes, were treated only with a dispersion free of active substance with otherwise an identical composition showed, under test conditions, serious damage to the wood substance by fungal infection which was only slightly less than with untreated wood test samples.

Abstract

The invention relates to aqueous fungicidal active substance compositions and to their use in the control of harmful microorganisms and in particular in the protection of cellulose-comprising materials, particularly wood, from infection by microorganisms, in particular those harmful fungi which can damage wood or cellulose. The active substance composition according to the invention comprises: a) at least one fungicidal organic active substance with a solubility in water of not more than 5 g/l at 25° C./1013 mbar, and b) a finely-divided polymer with an average particle size, determined by dynamic light scattering, of not more than 300 nm, in which the polymer particles comprise the active substance, the polymer being formed from ethylenically unsaturated monomers M comprising: at least 60% by weight, based on the total amount of the monomers M, of at least one neutral monoethylenically unsaturated monomer Ml with a solubility in water of not more than 30 g/l at 25° C., and up to 40% by weight, based on the total amount of the monomers M, of one or more ethylenically unsaturated monomers M2 other than the monomers M1.

Description

  • The present invention relates to aqueous fungicidal active substance compositions and to their use in the control of harmful microorganisms, in particular for the protection of cellulose-comprising materials, in particular wood, from infection by harmful fungi, in particular those harmful fungi which may be harmful to wood or cellulose.
  • It is known that wood and also other cellulose-comprising materials can be attacked and in extreme cases destroyed by microorganisms and in particular fungi (subsequently harmful fungi) if they are exposed to environmental conditions which promote the growth and the development of such microorganisms. In addition, even if some types of wood have a natural resistance to such an infection, others, in particular types of softwood, are extremely susceptible to an infection (see also EN 350, Part 2). For this reason, wood is frequently treated with wood preservatives.
  • Conventional wood preservatives based on tar oils, such as carbolineum, are not very attractive because of their intrinsic smell and their potential carcinogenicity. Organic fungicides have on several occasions been proposed as wood preservatives (see E. H. Pommer in Ullmann's Encyclopedia of Industrial Chemistry on CD Rom, 5th edition, 1997, Wiley VCH, Weinheim, Wood preservation, chapter 2.3.1). Since the fungicidal active substances are usually substances which are insoluble in water, these are frequently formulated for the purposes of wood preservation as solutions in organic solvents. However, the use of solvents is associated with additional costs and, in addition, is undesirable for industrial hygiene reasons and for environmental protection reasons.
  • In plant protection, fungicidal active substances which exhibit only a low solubility in water are frequently formulated in the form of aqueous suspensions or emulsions. While emulsions usually still comprise organic solvents, suspensions are usually formulated free from solvents. The active substance is present in these suspensions in the form of fine particles with particle sizes in the micrometer region. If wood is now treated with such a suspension, the active substance remains on the surface of the wood since it, because of the particle size, cannot penetrate into the pores of the wood. However, this is required if effective protection of the wood is to be achieved. In addition, the active substance is easily washed off the surface by the effects of the weather.
  • Fungicidal transparent varnishes have also on several occasions been proposed as wood preservative. In this connection, these are aqueous painting systems based on aqueous polymer latexes which comprise the active substance in suspended form. Here again the protection of the wood is not satisfactory since the active substances do not penetrate into the wood but remain on the surface of the wood.
  • The proposal has been made on several occasions to formulate water-insoluble fungicidal active substances in the form of aqueous micro- or nanoemulsions (see, e.g., WO 02/082900, WO 02/45507 and WO 99/65301). In contrast to conventional, usually opaque, macroemulsions in which the disperse phase exhibits particle sizes clearly of greater than 1 μm, the active substances in the clear to opaque micro- or nanoemulsions are present in the finely divided form with particle sizes clearly of less than 1000 nm down to 10 nm or less [see in this connection D. J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworths, London, 1986, p. 273]. Admittedly, comparatively large amounts of emulsifier and of organic solvents are necessary for the preparation of such micro- or nanoemulsions. Because of the high proportion of emulsifier, the danger exists that the active substance will be leached out, by the action of water, from the wood or the treated cellulose-comprising material. On the other hand, solvents are undesirable for industrial hygiene reasons and cost reasons. In addition, the water-absorbing capacity of the wood on exposure to moisture and the equilibrium moisture content on storage in a humid atmosphere are increased, in comparison with untreated wood, by the use of the emulsifiers, which makes the wood more susceptible to infection by harmful fungi. An additional problem of such microemulsions is their instability with regard to demixing. Such a demixing can, for example, occur if the microemulsion becomes depleted in emulsifier because of a high affinity of the emulsifier for the wood or a depletion in solvent occurs, which can easily happen in the pressure impregnation.
  • It is therefore an object of the present invention to provide an aqueous, fungicidally effective, composition of fungicidal active substances with low solubility in water, i.e. a solubility in water of less than 5 g/l, in particular less than 1 g/l, at 25° C./1013 mbar, which is advantageously suitable for the protection of cellulose-comprising materials, in particular wood, from infection by harmful fungi. The composition should in particular comprise only small amounts of or no volatile organic compounds, such as organic solvents. In addition, the active substance should not, or not to a significant extent, be leached from the treated materials by the effect of water. Furthermore, the aqueous active substance compositions should exhibit a better stability than conventional suspensions or microemulsions.
  • It has been found, surprisingly, that this object is achieved by an aqueous active substance composition in which the fungicidal active substance which is insoluble in water or only slightly soluble in water is present in the polymer particles of a finely divided water-insoluble polymer, the polymer particles of which exhibit a average particle size of not more than 300 nm, and in which the polymer is formed from at least 60% by weight, based on the total amount of the monomers M, of at least one neutral monoethylenically unsaturated monomer M1 with a solubility in water of not more than 30 μl at 25° C. and up to 40% by weight, based on the total amount of the monomers M, of one or more ethylenically unsaturated monomers M2 other than the monomers M1.
  • Consequently, the present invention relates to an aqueous active substance composition, comprising:
    • a) at least one fungicidal organic active substance with a solubility in water of not more than 5 μl at 25° C./1013 mbar, and
    • b) a finely-divided polymer with an average particle size, determined by dynamic light scattering, of not more than 300 nm, in which the polymer particles comprise the active substance,
      the polymer being formed from ethylenically unsaturated monomers M comprising:
      • at least 60% by weight, based on the total amount of the monomers M, of at least one neutral monoethylenically unsaturated monomer M1 with a solubility in water of not more than 30 g/l at 25° C., and
      • up to 40% by weight, based on the total amount of the monomers M, of one or more ethylenically unsaturated monomers M2 other than the monomers M1.
  • The compositions according to the invention are stable aqueous preparations of fungicidal active substances which are insoluble in water or only slightly soluble in water, which in principle are suitable for all applications in which it is desired to achieve effective protection from infection by microorganisms, in particular harmful fungi. In spite of the incorporation of the fungicidal active substance in a polymer matrix, the rate of application of active substance necessary for effective protection is, surprisingly, not higher and in a few cases even lower than when conventional aqueous active substance preparations are used.
  • The present invention also relates to the use of such aqueous compositions for the control of microorganisms, in particular for the control of harmful fungi. The term control comprises, here and subsequently, the prevention or avoidance of infection by microorganisms, in particular harmful fungi and also the destruction of microorganisms, in particular harmful fungi, in infected substrates.
  • The compositions according to the invention are particularly suitable for the control of microorganisms, in particular of harmful fungi, in wood and other cellulose materials and in particular for the protection of these materials from infection by microorganisms, in particular harmful fungi. Hence, a particular embodiment of the invention relates to the use of such compositions for the protection of cellulose-comprising materials from infection by microorganisms, in particular from infection by wood-destroying fungi.
  • However, the aqueous compositions according to the invention are also suitable for other applications in which control of microorganisms, in particular harmful fungi, is desired, for example in plant protection, for the control of phytotoxic microorganisms, in seed treatment, and also in the protection of materials, as in-can and film preservatives, for antifouling, and for the protection of leather and other organic materials from infection by harmful microorganisms.
  • The particle sizes of the finely divided polymer given here are weight-average particle sizes, as can be determined by dynamic light scattering. Methods for this are familiar to a person skilled in the art, for example from H. Wiese in D. Distler, Wässrige Polymer dispersionen [Aqueous Polymer Dispersions], Wiley-VCH, 1999, chapter 4.2.1, p. 40ff and the literature cited therein, and also H. Auweter, D. Hom, J. Colloid Interf. Sci., 105 (1985), 399, D. Lilge, D. Hom, Colloid Polym. Sci., 269 (1991), 704, or H. Wiese, D. Hom, J. Chem. Phys., 94 (1991), 6429. The average particle size preferably ranges from 10 to 250 nm, in particular from 20 to 200 nm, particularly preferably from 30 to 150 nm and very particularly preferably from 30 to 100 nm. The polymer is, according to the invention, at least 60% by weight, based on the total amount of the monomers M forming the polymer, preferably 60 to 99.5% by weight and particularly preferably 70 to 99% by weight formed from neutral monoethylenically unsaturated monomers M1 with a solubility in water of not more than 30 μl at 25° C./1013 mbar. In particular, the solubility in water of the monomers M1 under these conditions is from 0.1 to 20 g/l. Suitable monomers M1 comprise vinylaromatic monomers, such as styrene, esters of monoethylenically unsaturated mono- and dicarboxylic acids with 3 to 8 and in particular 3 or 4 carbon atoms with C1-C10-alkanols or with C5-C8-cycloalkanols, in particular the esters of acrylic acid, of methacrylic acid or of crotonic acid, the diesters of maleic acid, of fumaric acid and of itaconic acid, and particularly preferably the esters of acrylic acid with C2-C10-alkanols (═C2-C10-alkyl acrylates), such as ethyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate and 3-propylheptyl acrylate, and the esters of methacrylic acid with C1-C10-alkanols, such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, n-hexyl methacrylate and the like. Suitable monomers M1 are, in addition, vinyl and allyl esters of aliphatic carboxylic acids with 2 to 10 carbon atoms, for example vinyl acetate, vinyl propionate and the vinyl esters of Versatic® acids (vinyl versatate), vinyl halides, such as vinyl chloride and vinylidene chloride, conjugated diolefins, such as butadiene and isoprene, and C2-C6-olefins, such as ethylene, propene, 1-butene and n-hexene. Preferred monomers M1 are vinylaromatic monomers, in particular styrene, C2-C10-alkyl acrylates, in particular C2-C8-alkyl acrylates, and C1-C10-alkyl methacrylates.
  • The ethylenically unsaturated monomers M which form the polymer advantageously also comprise at least 0.5 to 40% by weight, in particular 1 to 30% by weight, of at least one ethylenically unsaturated monomer M2 other than the monomers M1.
  • The monomers M2 include in particular monoethylenically unsaturated monomers M2a exhibiting at least one acid group or at least one anionic group, in particular monomers M2a exhibiting a sulfonic acid group, a phosphonic acid group or one or two carboxylic acid groups, and the salts of the monomers M2a, in particular the alkali metal salts, e.g. the sodium or potassium salts, and the ammonium salts. These include ethylenically unsaturated sulfonic acids, in particular vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-acryloxyethanesulfonic acid, 2-methacryloxyethanesulfonic acid, 3-acryloxy- and 3-methacryloxypropanesulfonic acid, vinylbenzenesulfonic acid and their salts, ethylenically unsaturated phosphonic acids, such as vinylphosphonic acid and vinylphosphonic acid dimethyl ester and their salts, and α,β-ethylenically unsaturated C3-C8-mono- and C4-C8-dicarboxylic acids, in particular acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid. The proportion of the monomers M2a will commonly come to not more than 35% by weight, preferably not more than 20% by weight, e.g. 0.1 to 20% by weight and in particular 0.5 to 15% by weight, based on the total amount of the monomers M.
  • The monomers M2 additionally include monoethylenically unsaturated neutral monomers M2b exhibiting a solubility in water of at least 50 g/l at 25° C. and in particular of at least 100 μl at 25° C. Examples of these are the amides of the above-mentioned ethylenically unsaturated carboxylic acids, in particular acrylamide and methacrylamide, ethylenically unsaturated nitriles, such as methacrylonitrile and acrylonitrile, hydroxyalkyl esters of the abovementioned α,β-ethylenically unsaturated C3-C8-monocarboxylic acids and C4-C8-dicarboxylic acids, in particular hydroxyethyl acrylate, hydroxyethyl methacrylate, 2- and 3-hydroxypropyl acrylate, and 2- and 3-hydroxypropyl methacrylate, and esters of the abovementioned monoethylenically unsaturated mono- and dicarboxylic acids with C2-C4-polyalkylene glycols, in particular the esters of these carboxylic acids with polyethylene glycol or alkylpolyethylene glycols, the (alkyl)polyethylene glycol residue usually exhibiting a molecular weight ranging from 100 to 3000. The monomers M2b furthermore include N-vinylamides, such as N-vinylformamide, N-vinylpyrrolidone, N-vinylimidazole and N-vinylcaprolactam. The proportion of the monomers M2b will preferably come to not more than 20% and in particular not more than 10% by weight, e.g. 0.1 to 10 and in particular 0.5 to 5% by weight, based on the total amount of the monomers M.
  • The monomers M2 furthermore include monoethylenically unsaturated monomers M2c exhibiting at least one cationic group and/or at least one group which can be protonated in the aqueous medium. The monomers M2c include in particular those exhibiting a protonatable amino group, a quaternary ammonium group, a protonatable imino group or a quaternized imino group. Examples of monomers with a protonatable imino group are N-vinylimidazole and vinylpyridines. Examples of monomers with a quaternized imino group are N-alkylvinylpyridinium salts and N-Alkyl-N′-vinylimidazolinium salts, such as N-methyl-N′-vinylimidazolinium chloride or methyl sulfate. Preference is given, among the monomers M2c, in particular to the monomers of the general formula (I)
    Figure US20080090886A1-20080417-C00001

    in which
    • R1 is hydrogen or C1-C4-alkyl, in particular hydrogen or methyl,
    • R2 and R3 are, independently of one another, C1-C4-alkyl, in particular methyl, and
    • R4 is hydrogen or C1-C4-alkyl, in particular hydrogen or methyl,
    • Y is oxygen, NH or NR5 with R5═C1-C4-alkyl,
    • A is C2-C8-alkylene, e.g. 1,2-ethanediyl, 1,2- or 1,3-propanediyl, 1,4-butanediyl or 2-methyl-1,2-propanediyl, if appropriate interrupted by 1, 2 or 3 nonadjacent oxygen atoms, and
    • X is an anion equivalent, e.g. Cl, HSO4 , ½SO4 2− or CH3OSO3 , and the like,
      and, for R4=H, the free bases of the monomers of the formula I.
  • Examples of such monomers are 2-(N,N-dimethylamino)ethyl acrylate, 2-(N,N-dimethylamino)ethyl methacrylate, 2-(N,N-dimethylamino)ethylacrylamide, 3-(N,N-dimethylamino)propylacrylamide, 3-(N,N-dimethylamino)propylmethacrylamide, 2-(N,N-dimethylamino)ethylmethacrylamide, 2-(N,N,N-trimethylammonio)ethyl acrylate chloride, 2-(N,N,N-trimethylammonio)ethyl methacrylate chloride, 2-(N,N,N-trimethylammonio)ethylmethacrylamide chloride, 3-(N,N,N-trimethylammonio)propylacrylamide chloride, 3-(N,N,N-trimethylammonio)propylmethacrylamide chloride, 2-(N,N,N-trimethylammonio)ethylacrylamide chloride, and the corresponding sulfates and methyl sulfates.
  • In a preferred embodiment, the monomers M which form the polymer comprise at least one monomer M2c. The proportion of the monomers M2c is then advantageously 0.1 to 20% by weight, in particular 0.5 to 10% by weight and particularly preferably 1 to 7% by weight, based on the total amount of the monomers M.
  • In a particularly preferred embodiment of the invention, the polymer exhibits a net cationic charge, i.e. the molar proportion of the monomers M2c is greater than the molar proportion of the monomers M2a in the polymer and is preferably 110 mol %, in particular at least 120 mol % and particularly preferably at least 150 mol %, based on the monomers M2a.
  • The monomers M2 furthermore include all monomers which can conventionally be used in an emulsion polymerization. However, the proportion of monomers exhibiting two or more nonconjugated ethylenically unsaturated double bonds usually comes to not more than 5% by weight, in particular not more than 2% by weight, e.g. 0.01 to 2% by weight and in particular 0.05 to 1.5% by weight, based on the total amount of monomers.
  • Furthermore, it has proved to be advantageous for the polymer present in the compositions according to the invention to exhibit a glass transition temperature Tg of at least 10° C., preferably of at least 20° C. and in particular of at least 30° C. In particular, the glass transition temperature will not exceed a value of 180° C. and particularly preferably 130° C. If the active substance composition according to the invention comprises several polymers with different glass transition temperatures, be it in the form of step or core/shell polymers or in the form of blends of different polymers, the proportion of polymers with a glass transition temperature of at least 10° C., preferably at least 20° C. and in particular at least 30° C. is at least 40% by weight.
  • The term “glass transition temperature Tg” is to be understood here as the midpoint temperature determined by differential scanning calorimetry (DSC) according to ASTM D 3418-82 (cf. Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, volume A 21, VCH, Weinheim, 1992, p. 169, and Zosel, Farbe und Lack, 82 (1976), p. 125-134, see also DIN 53765).
  • In this connection, it proves to be helpful to estimate the glass transition temperature Tg of the copolymer P. According to Fox (T. G. Fox, Bull. Am. Phys. Soc. (Ser. II), 1, 123 [1956] and Ullmann's Encyclopedia of Industrial Chemistry, Weinheim (1980), p. 17-18), the following equation 1 T g = X 1 T g 1 + X 2 T g 2 + X n T g n
    is, to a good approximation, valid for the glass transition temperature of weakly crosslinked copolymers with high molar masses, in which equation X1, X2, . . . , Xn represent the mass fractions of the monomers 1, 2, . . . , n and Tg 1, Tg 2, . . . , Tg n represent, in degrees Kelvin, the glass transition temperatures of the polymers formed in each case only from one of the monomers 1, 2, . . . , n. The latter are, e.g., known from Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, Vol. A 21, (1992) p. 169, or from J. Brandrup, E. H. Immergut, Polymer Handbook, 3rd ed., J. Wiley, New York, 1989.
  • All organic substances with low solubility in water which inhibit the growth or the propagation of harmful fungi or which destroy the latter are suitable in principle as active substances. Their solubility in water at 25° C./1013 mbar is generally not more than 5 g/l, frequently not more than 3 g/l and in particular not more than 1 g/l, e.g. 0.001 g/l to 1 g/l, in particular 0.002 to 0.5 g/l, at 25° C./1013 mbar.
  • Examples of suitable active substances are the compounds listed as fungicides in the Compendium of Pesticide Common Names: http://www.hclrss.demon.co.uk/class-fungicides.html (Index of common names). These include, for example:
      • acylalanines, such as benalaxyl, metalaxyl, ofurace or oxadixyl;
      • morpholine compounds, such as aldimorph, dodine, dodemorph, fenpropimorph, fenpropidin, guazatine, iminoctadine, spiroxamine or tridemorph;
      • anilinopyrimidines, such as pyrimethanil, mepanipyrim or cyprodinil;
      • antibiotics, such as cycloheximide, griseofulvin, kasugamycin, natamycin, polyoxin or streptomycin;
      • azoles, such as azaconazole, bitertanol, bromoconazole, cyproconazole, diclobutrazol, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, ketoconazole, hexaconazole, imazalil, metconazole, myclobutanil, penconazole, propiconazole, prochloraz, prothioconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole or triticonazole;
      • dicarboximides, such as iprodione, myclozolin, procymidone or vinclozolin;
      • dithiocarbamates, such as ferbam, nabam, maneb, mancozeb, metam, metiram, propineb, polycarbamate, thiram, ziram or zineb;
      • heterocyclic compounds, such as anilazine, benomyl, boscalid, carbendazim, carboxin, oxycarboxin, cyazofamid, dazomet, dithianon, famoxadone, fenamidone, fenarimol, fuberidazole, flutolanil, furametpyr, isoprothiolane, mepronil, nuarimol, probenazole, proquinazid, pyrifenox, pyroquilon, quinoxyfen, silthiofam, thiabendazole, thifluzamide, thiophanate-methyl, tiadinil, tricyclazole or triforine;
      • nitrophenyl derivatives, such as binapacryl, dinocap, dinobuton or nitrothal-isopropyl;
      • phenylpyrroles, such as fenpiclonil or fludioxonil;
      • strobilurins, such as dimoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin and trifloxystrobin;
      • other fungicides, such as acibenzolar-S-methyl, benzoylbenzoate, dodecylguanidine hydrochloride, benthiavalicarb, carpropamid, chlorothalonil, cyflufenamid, cymoxanil, diclomezine, diclocymet, diethofencarb, edifenphos, ethaboxam, fenhexamid, fentin acetate, fenoxanil, ferimzone, fluazinam, fosetyl, fosetyl-aluminum, iprovalicarb, hexachlorobenzene, metrafenone, pencycuron, propamocarb, phthalide, tolclofos-methyl, quintozene or zoxamide;
      • sulfenic acid derivatives, such as captafol, captan, dichlofluanid, folpet or tolylfluanid;
      • cinnamamides and analogous compounds, such as dimethomorph, flumetover or flumorph.
  • These furthermore include:
      • iodine compounds, such as diiodomethyl p-tolyl sulfone, 3-iodo-2-propynyl alcohol, 4-chlorophenyl-3-iodopropargyformal, 3-bromo-2,3-diiodo-3-propenyl ethyl carbonate, 2,3,3-triiodoallyl alcohol, 3-bromo-2,3-diiodo-2-propenyl alcohol, 3-iodo-2-propynyl n-butylcarbamate, 3-iodo-2-propynyl n-hexylcarbamate, 3-iodo-2-propynyl phenylcarbamate, β1-(6-iodo-3-oxohex-5-ynyl)butylcarbamate, O-1-(6-iodo-3-oxohex-5-ynyl)phenylcarbamate or napcocide;
      • phenol derivatives, such as tribromophenol, tetrachlorophenol, 3-methyl-4-chlorophenol, dichlorophen, o-phenylphenol, m-phenylphenol or 2-benzyl-4-chlorophenol;
      • isothiazolinones, such as N-methylisothiazolin-3-one, 5-chloro-N-methyl-isothiazolin-3-one, 4,5-dichloro-N-octylisothiazolin-3-one or N-octylisothiazolin-3-one;
      • (benz)isothiazolinones, such as 1,2-benzisothiazol-3(2H)-one, 4,5-trimethylisothiazol-3-one or 2-octyl-2H-isothiazol-3-one;
      • pyridines, such as 1-hydroxy-2-pyridinethione (and its Na, Fe, Mn and Zn salts), or tetrachloromethylsulfonylpyridine;
      • metal soaps, such as tin, copper or zinc naphthenate, octoate, 2-ethylhexanoate, oleate, phosphate or benzoate;
      • organotin compounds, e.g. tributyltin (TBT) compounds, such as tributyltin and tributyl(mononaphthenoyloxy)tin derivatives;
      • dialkyldithiocarbamates and the Na and Zn salts of dialkyldithiocarbamates, tetramethylthiouram disulfide;
      • nitriles, such as 2,4,5,6-tertrachloroisophthalodinitrile;
      • benzthiazoles, such as 2-mercaptobenzothiazole;
      • quinolines, such as 8-hydroxyquinoline, and their Cu salts;
      • tris-(N-cyclohexyldiazeniumdioxy)aluminum, (N-cyclohexyldiazeniumdioxy)-tributyltin, or bis(N-cyclohexyldiazeniumdioxy)copper;
      • 3-benzo[b]thien-2-yl-5,6-dihydro-1,4,2-oxathiazine 4-oxide (bethoxazin).
  • With regard to the use of the compositions according to the invention for the protection of cellulose-comprising materials from infection by microorganisms of relevance in wood preservation, mainly molds, wood-discoloring fungi and wood-destroying fungi, preference is given in particular to those fungicides which are effective, for example, against the following groups of microorganisms:
  • Wood-Discoloring Fungi:
      • ascomycetes, such as Ophiostoma sp. (e.g. Ophiostoma piceae, Ophiostoma piliferum), Ceratocystis sp. (e.g. Ceratocystis coerulescens), Aureobasidium pullulans or Sclerophoma sp. (e.g. Sclerophoma pityophila);
      • deuteromycetes, such as Aspergillus sp. (e.g. Aspergillus niger), Cladosporium sp. (e.g. Cladosporium sphaerospennum), Penicillium sp. (e.g. Penicillium funiculosum), Trichoderma sp. (e.g. Trichoderma viride), Alternaria sp. (e.g. Alternaria alternata) or Paecilomyces sp. (e.g. Paecilomyces variotii);
      • zygomycetes, such as Mucor sp. (e.g. Mucor hiemalis);
        Wood-Destroying Fungi:
      • ascomycetes, such as Chaetomium sp. (e.g. Chaetomium globosum), Humicola sp. (e.g. Humicola grisea), Petriella sp. (e.g. Petriella setifera) or Trichurus sp. (e.g. Trichurus spiralis);
      • basidiomycetes, such as Coniophora sp. (e.g. Coniophora puteana), Coriolus sp. (e.g. Coriolus versicolor), Gloeophyllum sp. (e.g. Gloeophyllum trabeum), Lentinus sp. (e.g. Lentinus lepideus), Pleurotus sp. (e.g. Pleurotus ostreatus), Poria sp. (e.g. Poria placenta, Poria vaillantii), Serpula sp. (e.g. Serpula lacrymans) and Tyromyces sp. (e.g. Tyromyces palustris),
  • Preferred active substances are hence selected from the group of the conazoles, the group of the morpholines, the group of the strobilurins, the group of the thiazoles, the group of the sulfenamides and the group of the iodine compounds.
  • Preference is given in particular to those fungicides mentioned in category 08 (wood preservatives) in the biocide regulation of the European Union (COMMISSION REGULATION (EC) No. 2032/2003 of Nov. 4, 2003).
  • The aqueous active substance preparations according to the invention comprise the fungicidal active substance generally in an amount of 0.1 to 50% by weight, preferably in an amount of 0.2 to 30% by weight and in particular in an amount of 0.5 to 20% by weight, based on the polymer present in the composition or based on the total amount of the monomers M used to prepare the polymer.
  • In addition to the fungicidal active substance, the compositions according to the invention can also comprise one or more insecticidal active substances. In a preferred embodiment, the insecticidal active substances, together with the at least one fungicidal active substance, are present in the polymer particles. The insecticidal active substance is then preferably an organic active substance with a low solubility in water generally of not more than 5 g/l, preferably not more than 3 g/l and in particular not more than 1 g/l, e.g. 0.001 to 1 g/l or 0.002 to 0.5 g/l, at 25° C./1013 mbar. Examples of suitable insecticidal active substances are the compounds listed as insecticides in the Compendium of Pesticide Common Names: http://www.hclrss.demon.co.uk/class-insecticides.html (Index of common names). These include, for example:
      • organo(thio)phosphates, such as acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyriphos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidophos, methidathion, methyl-parathion, mevinphos, monocrotophos, oxydemeton-methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos-methyl, profenofos, prothiofos, sulprophos, triazophos or trichlorfon;
      • carbamates, such as alanycarb, benfuracarb, bendiocarb, carbaryl, carbosulfan, fenoxycarb, furathiocarb, indoxacarb, methiocarb, methomyl, oxamyl, pirimicarb, propoxur, thiodicarb or triazamate;
      • pyrethroids, such as allethrin, bifenthrin, cyfluthrin, cyphenothrin, cypermethrin, and the alpha-, beta-, theta- und zeta-isomers, deltamethrin, esfenvalerate, ethofenprox, fenpropathrin, fenvalerate, cyhalothrin, lambda-cyhalothrin, imiprothrin, permethrin, prallethrin, pyrethrin 1, pyrethrin 11, silafluofen, tau-fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin or zeta-cypermethrin;
      • arthropod growth regulators, such as a) chitin synthesis inhibitors; e.g. benzoylureas, such as chlorfluazuron, cyromacin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole or clofentezine; b) ecdysone antagonists, such as halofenozide, methoxyfenozide or tebufenozide; c) juvenoids, such as pyriproxyfen, methoprene or fenoxycarb; d) lipid biosynthesis inhibitors, such as spirodiclofen;
      • neonicotinoids, such as flonicamid, clothianidin, dinotefuran, imidacloprid, thiamethoxam, nitenpyram, nithiazine, acetamiprid or thiacloprid;
      • pyrazole insecticides, such as acetoprole, ethiprole, fipronil, tebufenpyrad, tolfenpyrad and vaniliprole.
      • in addition, abamectin, acequinocyl, amitraz, azadirachtin, bifenazate, cartap, chlorfenapyr, chlordimeform, cyromazine, diafenthiuron, diofenolan, emamectin, endosulfan, fenazaquin, formetanate, formetanate hydrochloride, hydramethylnon, indoxacarb, piperonyl butoxide, pyridaben, pymetrozine, spinosad, thiamethoxam, thiocyclam, pyridalyl, fluacyprim, milbemectin, spiro-mesifen, flupyrazofos, NGS 12, flubendiamide, bistrifluoron, benclothiaz, pyrafluprole, pyriprole, amidoflumet, flufenerim, cyflumetofen, lepimectin, profluthrin, dimefluthrin and metaflumizone.
  • Preference is given, among these, to those insecticides which are effective against wood-destroying insects and in particular against the following wood-destroying insects:
  • Order Coleoptera (Beetles):
      • Cerambycidae, such as Hylotrupes bajulus or Callidium violaceum;
      • Lyctidae, such as Lyctus linearis or Lyctus brunneus;
      • Bostrichidae, such as Dinoderus minutus;
      • Anobiidae, such as Anobium punctatum or Xestobium rufovillosum;
      • Lymexylidae, such as Lymexylon navale;
      • Platypodidae, such as Platypus cylindrus;
      • Oedemeridae, such as Nacerda melanura;
        Order Hymenoptera (Hymenopterans):
      • Formicidae, such as Camponotus abdominalis, Lasius flavus, Lasius brunneus or Lasius fuliginosus;
        Order Isoptera (termites):
      • Kalotermitidae, such as Kalotermes flavicollis or Cryptothermes brevis;
      • Hodotermitidae, such as Zootermopsis angusticollis or Zootermopsis nevadensis;
      • Rhinotermitidae, such as Reticulitermes flavipes, Reticulitermes lucifugus, Coptotermes formosanus or Coptotermes acinaciformis;
      • Mastotermitidae, such as Mastotermes darwiniensis.
  • These include in particular the insecticidal active substances from the class of the pyrethroids, arthropod growth regulators, such as chitin biosynthesis inhibitors, ecdysone antagonists, juvenoids or lipid biosynthesis inhibitors, neonicotinoids, pyrazole insecticides and chlorfenapyr.
  • Preference is given in particular to those insecticidal active substances mentioned in category 08 (wood preservatives) and category 18 (insecticides, acaricides and products to control other arthropods) in the biocide regulation of the European Union (COMMISSION REGULATION (EC) No. 2032/2003 of Nov. 4, 2003).
  • The insecticidal active substance is, if desired, usually present in the active substance composition according to the invention in an amount of 0.1 to 50% by weight, preferably in an amount of 0.2 to 30% by weight and in particular in an amount of 0.5 to 20% by weight, based on the monomers M which form the polymer.
  • The total amount of active substance in the polymer of the compositions according to the invention is preferably 0.2 to 50% by weight, in particular 0.5 to 30% by weight and particularly preferably 1 to 20% by weight, based on the polymer or on the monomers M which form the polymer.
  • The aqueous compositions according to the invention usually comprise surface-active substances in order to stabilize the polymer particles in the aqueous medium. These include both protective colloids and low-molecular-weight emulsifiers, the latter, in contrast to the protective colloids, generally exhibiting a molecular weight of less than 2000 g/mol, in particular of less than 1000 g/mol (weight-average). The protective colloids and emulsfiers can be both cationic, anionic or neutral in nature and zwitterionic in nature.
  • Examples of anionic surface-active substances are anionic emulsifiers, such as alkylphenylsulfonates, phenylsulfonates, alkyl sulfates, alkylsulfonates, alkyl ether sulfates, alkylphenol ether sulfates, alkyl polyglycol ether phosphates, alkyldiphenyl ether sulfonates, polyarylphenyl ether phosphates, alkyl sulfosuccinates, olefin sulfonates, paraffin sulfonates, petroleum sulfonates, taurides, sarcosides, fatty acids, alkylnaphthalenesulfonic acids or naphthalenesulfonic acids, including their alkali metal, alkaline earth metal, ammonium and amine salts. Examples of anionic protective colloids are lignosulfonic acids, condensation products of sulfonated naphthalenes with formaldehyde or with formaldehyde and phenol and, if appropriate, urea, and also condensation products from phenolsulfonic acid, formaldehyde and urea, lignin sulfite waste liquor and lignosulfonates, and also polycarboxylates, such as polyacrylates, maleic anhydride/olefin copolymers (e.g. Sokalan® CP9, BASF), and also the alkali metal, alkaline earth metal, ammonium and amine salts of the above-mentioned protective colloids.
  • Nonionic emulsifiers are, for example, alkylphenol alkoxylates, alcohol alkoxylates, fatty amine alkoxylates, polyoxyethylene glycerol fatty acid esters, castor oil alkoxylates, fatty acid alkoxylates, fatty acid amide alkoxylates, fatty acid polydiethanolamides, lanolin ethoxylates, fatty acid polyglycol esters, isotridecyl alcohol, fatty acid amides, methylcellulose, fatty acid esters, silicone oils, alkylpolyglycosides and glycerol fatty acid esters. Examples of nonionic protective colloids are polyethylene glycol, polypropylene glycol, polyethylene glycol/polypropylene glycol block copolymers, polyethylene glycol alkyl ethers, polypropylene glycol alkyl ethers, polyethylene glycovpolypropylene glycol ether block copolymers, and their mixtures.
  • Examples of cationic emulsifiers are quaternary ammonium salts, e.g. trimethyl- and triethyl(C6-C30-alkyl)ammonium salts, such as cocotrimethylammonium salts and trimethylcetylammonium salts, dimethyl- and diethyldi(C4-C20-alkyl)ammonium salts, such as didecyldimethylammonium salts and dicocodimethylammonium salts, methyl- and ethyltri(C4-C20-alkyl)ammonium salts, such as methyltrioctylammonium salts, (C1-C20-alkyl)di(C1-C4-alkyl)benzylammonium salts, such as triethylbenzylammonium salts and cocobenzyldimethylammonium salts, methyl- and ethyldi(C4-C20-alkyl)poly(oxyethyl)ammonium salts, e.g. didecylmethylpoly(oxyethyl)ammonium salts, N—(C6-C20-alkyl)pyridinium salts, e.g. N-laurylpyridinium salts, N-methyl- and N-ethyl-N—(C6-C2-alkyl)morpholinium salts, and N-methyl- and N-ethyl-N′—C6-C20-alkyl)imidazolinium salts, in particular the halides, borates, carbonates, formates, acetates, propionates, hydrogencarbonates, sulfates and methyl sulfates.
  • Examples of cationic protective colloids are homo- and copolymers of the abovementioned monomers M2c with a content of monomers M2c of at least 20% by weight, in particular at least 30% by weight of monomers M2c, for example homopolymers of N-vinyl-N-methylimidazolinium salts or of N-alkylvinylpyridinium salts and copolymers of these monomers with neutral monomers M2b which are preferably miscible with water.
  • Zwitterionic emulsifiers are those with betaine structures. Such substances are known to a person skilled in the art and can be taken from the relevant state of the art (see, for example, R. Heusch, in Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., on CD-ROM, Wiley-VCH, 1997, “Emulsions”, chapter 7, Table 4).
  • The compositions according to the invention usually comprise at least one emulsifier, preferably at least one ionic emulsifier and, if appropriate, one or more nonionic emulsifiers. With regard to the application in wood preservation, it has proved worthwhile for the compositions according to the invention to comprise at least one cationic emulsifier, in particular if no monomers M2c are used to prepare the polymer.
  • The amount of emulsifier usually ranges from 0.1 to 15% by weight, in particular from 0.2 to 12% by weight and particularly preferably from 0.7 to 10% by weight, based on the monomers M or on the polymer P. The amount of ionic emulsifier is preferably 0.3 to 10% by weight and in particular 0.5 to 8% by weight, based on the monomers M constituting the polymer. The amount of nonionic emulsifier preferably ranges from 0.2 to 12% by weight, in particular from 0.5 to 10% by weight, based on the monomers M constituting the polymer.
  • The preparation of the aqueous compositions according to the invention comprises a radical aqueous emulsion polymerization of an oil-in-water emulsion of the monomers M, in which the monomer droplets of the emulsion comprise at least one fungicidal active substance and, if appropriate, an insecticidal active substance. The polymerization is carried out analogously to a conventional emulsion polymerization, with the difference that the monomer emulsion to be polymerized comprises the active substance dissolved in the monomer droplets.
  • The oil-in-water emulsion of the active substance/monomer solution can be prepared in situ by addition of a solution of the active substance in the monomers M to be polymerized in the polymerization vessel placed under polymerization conditions. However, preferably, the active substance will be dissolved in the monomers M and the monomer solution thus obtained will be converted to an aqueous monomer emulsion, before the monomer/active substance emulsion thus obtained is fed to the polymerization reaction.
  • The polymerization is generally carried out according to a “monomer feed process”, i.e. the greater part, preferably at least 70% and in particular at least 90%, of the solution of the active substance in the monomers M or the greater part, preferably at least 70% and in particular at least 90%, of the monomer/active substance emulsion is fed to the polymerization vessel in the course of the polymerization reaction. The addition of the monomer/active substance solution or emulsion is preferably carried out over a period of at least 0.5 h, preferably at least 1 h, e.g. 1 to 10 h and in particular 2 to 5 h. The addition of the monomer/active substance solution or emulsion can be carried out with a constant or variable addition rate, e.g. in intervals with a constant addition rate or with a variable addition rate or continuously with a variable addition rate. The composition of the monomer/active substance solution or emulsion can remain constant during the addition or can be changed, it being possible for changes to be made both with regard to the monomer composition and with regard to the type of active substance or the concentration of the active substance.
  • In a preferred embodiment of the invention, the monomer composition is changed in the course of the monomer addition in such a way that polymer regions with a different glass transition temperature are obtained in the polymer particles. This is achieved by a “step polymerization”. For this, first, a first monomer/active substance solution or emulsion, the monomer composition of which corresponds to a glass transition temperature Tg 1, is polymerized in a first step and subsequently a second monomer/active substance solution or emulsion, the monomer composition of which corresponds to a glass transition temperature Tg 2, is provided for this (2nd step) and, if appropriate, subsequent thereto, successively one or more additional monomer/active substance solutions or emulsions, the monomer composition of which corresponds in each case to a glass transition temperature Tg n, n being the respective step, is/are provided for this. The respective glass transition temperatures in polymers obtained in successive polymerization steps preferably differ by at least 10 K, in particular by at least 20 K and particularly preferably by at least 30 K, e.g. 30 K to 200 K, in particular 40 K to 160 K. Generally, the monomer amount polymerized in a monomer amount will come to at least 5% by weight, preferably at least 10% by weight, e.g. 5 to 95% by weight, in particular 10 to 90% by weight, in a 2-step polymerization and 5 to 90 or 5 to 85% by weight, in particular 10 to 80% by weight, in a polymerization with three or more steps.
  • It has proved to be advantageous, for the preparation of the active substance composition according to the invention and for the properties of the active substance composition, for the emulsion polymerization to be carried out in the presence of a seed polymer (seed latex). In this connection, it is a finely divided polymer latex, the average particle size of which is usually not more than 100 nm, in particular not more than 80 nm and particularly preferably not more than 50 nm. The monomers constituting the seed latex are preferably to at least 90% by weight, in particular to at least 95% by weight and frequently to more than 99% by weight selected from the monomers M1, the seed latex also being able to comprise, for the stabilization, small amounts, e.g. 0.1 to 10% by weight, in particular 0.1 to 5% by weight and especially 0.1 to 1% by weight, thereof different monomers M2, e.g. monomers M2a. The seed latex frequently exhibits a glass transition temperature of at least 10, in particular of at least 50 and frequently of at least 80° C. The amount of seed latex is usually 0.01 to 5% by weight, in particular 0.1 to 4% by weight, based on the monomers M1 to be polymerized. Preferably, the bulk, and in particular all, of the seed latex is found, at the beginning of the polymerization, completely in the reaction vessel. The seed latex can also be generated in situ in the polymerization vessel by radical emulsion polymerization of the monomers which form the seed latex, the monomers which form the seed latex being selected from the abovementioned monomers M1 and M2 and in particular to at least 90% by weight from the monomers M1. The desired particle size of the seed latex can be controlled in a way known per se via the ratio of monomer to emulsifier.
  • The initiators suitable for the emulsion polymerization according to the invention are the polymerization initiators suitable for and conventionally used for an emulsion polymerization which initiate a radical polymerization of the monomers M. These include azo compounds, such as 2,2′-azobisisobutyronitrile, 2,2′-azobis(2-methyl-butyronitrile), 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 1,1′-azobis(1-cyclohexanecarbonitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(N,N′-dimethyleneisobutyramidine) dihydrochloride and 2,2′-azobis(2-amidinopropane) dihydrochloride, organic or inorganic peroxides, such as diacetyl peroxide, di(tert-butyl)peroxide, diamyl peroxide, dioctanoyl peroxide, didecanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, bis(o-toluoyl)peroxide, succinyl peroxide, tert-butyl peracetate, tert-butyl permaleate, tert-butyl perisobutyrate, tert-butyl perpivalate, tert-butyl peroctoate, tert-butyl pemeodecanoate, tert-butyl perbenzoate, tert-butyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, tert-butyl peroxy(2-ethylhexanoate) and diisopropyl peroxydicarbamate, salts of peroxydisulfuric acid and redox initiator systems.
  • Use is preferably made of water-soluble initiators, e.g. cationic azo compounds, such as azobis(dimethylamidinopropane), salts of peroxydisulfuric acid, in particular a sodium, potassium or ammonium salt, or a redox initiator system, which a salt of peroxydisulfuric acid, hydrogen peroxide or an organic peroxide, such as tert-butyl hydroperoxide, as oxidizing agent. As reducing agent, they preferably comprise a sulfur compound which is selected in particular from sodium hydrogensulfite, sodium hydroxymethanesulfinate and the hydrogensulfite adduct of acetone. Additional suitable reducing agents are phosphorus-comprising compounds, such as phosphorous acid, hypophosphites and phosphinates, and also hydrazine or hydrazine hydrate and ascorbic acid. Redox initiator systems can furthermore comprise the addition of small amounts of redox metal salts, such as iron salts, vanadium salts, copper salts, chromium salts or manganese salts, such as, for example, the redox initiator system ascorbic acid/iron(II) sulfate/sodium peroxydisulfate.
  • The initiator is generally used in an amount of 0.02 to 2% by weight and in particular 0.05 to 1.5% by weight, based on the amount of the monomers M. The optimal amount of initiator naturally depends on the initiator system used and can be determined by a person skilled in the art by routine experiments. The initiator can be partially or completely introduced into the reaction vessel. Preferably, the bulk of the initiator, in particular at least 80%, e.g. 80 to 99.5%, of the initiator, is provided to the polymerization reactor in the course of the polymerization.
  • The pressure and temperature are of secondary importance for the preparation of the active substance compositions according to the invention. The temperature naturally depends on the initiator system used and an optimal polymerization temperature can be determined by a person skilled in the art through routine experiments. The polymerization temperature usually ranges from 20 to 110° C., frequently from 50 to 95° C. The polymerization is usually carried out at standard pressure or ambient pressure. However, it can also be carried out under increased pressure, e.g. up to 3 bar, or under slightly reduced pressure, e.g. >800 mbar.
  • The emulsifiers and protective colloids conventionally used for emulsion polymerization which have already been mentioned above as constituents of the active substance formulations according to the invention are suitable as surface-active substances. The amounts of surface-active substances conventionally used for an emulsion polymerization generally lie in the ranges given above, so that all or a portion of the surface-active substances in the compositions according to the invention is supplied via the emulsion polymerization. However, it is also possible to use, in the emulsion polymerization, only a portion, e.g. 10 to 90% by weight, in particular 20 to 80% by weight, of the surface-active substances present in the composition according to the invention and to add the remaining amounts of surface-active substance subsequent to the emulsion polymerization, before or after an optional deodorization of the emulsion polymerization (subsequent saponification).
  • The molecular weight of the polymers can obviously be adjusted by addition of a small amount of regulators, e.g. 0.01 to 2% by weight, based on the monomers M which are being polymerized. In particular, organic thio compounds and also allyl alcohols and aldehydes are suitable as regulator.
  • Subsequent to the actual polymerization reaction, it may be necessary to substantially free the aqueous polymer dispersions according to the invention from odorous substances, such as residual monomers and other volatile organic constituents. In a way known per se, this can be achieved physically by distillative removal (in particular via steam distillation) or by stripping with an inert gas. Furthermore, the residual monomers can be lowered chemically by radical postpolymerization, in particular under the effects of redox initiator systems, such as are listed, e.g., in DE-A 44 35 423, DE-A 44 19 518 and DE-A 44 35 422. The postpolymerization is preferably carried out with a redox initiator system composed of at least one organic peroxide and one organic sulfite.
  • After the end of the polymerization, the polymer dispersions used are frequently, before their use according to the invention, adjusted to an alkaline value, preferably to pH values ranging from 7 to 10. Ammonia or organic amines, and also, preferably, hydroxides, such as sodium hydroxide, potassium hydroxide or calcium hydroxide, can be used for the neutralization.
  • In this way, stable aqueous polymer dispersions are obtained which comprise, in the polymer particles of the dispersion, at least one fungicidal active substance, and, if appropriate, one or more insecticidal active substances. In addition, the dispersions thus obtained comprise the abovementioned surface-active substances. The active substance preparations thus obtained are characterized by a high stability and a low content of volatile organic compounds, which usually come to not more than 1% by weight, frequently not more than 0.1% by weight and in particular not more than 500 ppm, based on the total weight of the composition. Volatile compounds are, here and subsequently, all organic compounds which exhibit a boiling point of less than 200° C. at standard pressure.
  • The solids content of the compositions according to the invention is determined to a first approximation by the active substance and the polymer and generally ranges from 10 to 60% by weight and in particular from 20 to 50% by weight.
  • The active substance compositions thus obtainable can be used directly as such or after diluting. In addition, the compositions according to the invention can also comprise conventional additives, e.g. viscosity-modifying additives (thickeners), antifoam agents, bactericides and antifreeze agents.
  • Suitable thickeners are compounds which confer a pseudoplastic flow behavior on the formulation, i.e. high viscosity at rest and low viscosity in the agitated state. Mention may be made, in this connection, for example, of polysaccharides or organic layered minerals, such as Xanthan Gum® (Keizan® from Kelco), Rhodopol® 23 (Rhône-Poulenc) or Veegum® (R.T. Vanderbilt), or Attaclay® (Engelhardt), Xanthan Gum® preferably being used.
  • Silicone emulsions (such as, e.g., Silicone SRE, from Wacker, or Rhodorsil® from Rhodia), long-chain alcohols, fatty acids, fluoroorganic compounds and their mixtures, for example, come into consideration as antifoam agents suitable for the dispersions according to the invention.
  • Bactericides can be added to stabilize the compositions according to the invention from infection by microorganisms. Suitable bactericides are, for example, Proxel® from Avecia (or Arch) or Acticide® RS from Thor Chemie and Kathon® MK from Röhm & Haas.
  • Suitable antifreeze agents are organic polyols, e.g. ethylene glycol, propylene glycol or glycerol. These are generally used in amounts of not more than 10% by weight, based on the total weight of the active substance composition.
  • If appropriate, the active substance compositions according to the invention can, to regulate the pH, comprise 1 to 5% by weight of buffer, based on the total amounts of the formulation prepared, the amounts and the type of the buffer used depending on the chemical properties of the active substance or substances. Examples of buffers are alkali metal salts of weak inorganic or organic acids, such as, e.g., phosphoric acid, boric acid, acetic acid, propionic acid, citric acid, fumaric acid, tartaric acid, oxalic acid and succinic acid.
  • In addition, the aqueous compositions according to the invention can be formulated with conventional binders, for example aqueous polymer dispersions or water-soluble resins, for example water-soluble alkyd resins, or with waxes.
  • For use in the protection of cellulose-comprising materials, in particular in wood preservation, the aqueous active substance compositions according to the invention can also be formulated with conventional water-soluble wood preservatives, in particular with their aqueous solutions, in order to improve the overall effectiveness against wood-destroying organisms. In this connection, these are, for example, aqueous preparations of conventional wood-protecting salts, for example of salts based on boric acid and alkali metal borates, salts based on quaternary ammonium compounds, e.g. trimethyl- and triethyl(C6-C30-alkyl)ammonium salts, such as cocotrimethylammonium chloride or trimethylcetylammonium salts, dimethyl- and diethyldi(C4-C20-alkyl)ammonium salts, such as didecyldimethylammonium chloride, didecyldimethylammonium bromide or dicocodimethylammonium chloride, (C1-C20-alkyl)di(C1-C4-alkyl)benzylammonium salts, such as cocobenzyldimethylammonium chloride, or methyl- and ethyldi(C4-C20-alkyl)poly(oxyethyl)ammonium salts, e.g. didecylmethylpoly(oxyethyl)ammonium chloride and propionate, and also the borates, carbonates, formates, acetates, hydrogencarbonates, sulfates and methyl sulfates, or aqueous preparations of copper-amine complexes, in particular aqueous preparations of salts comprising copper ethanolamine, for example Cu-HDO. Obviously, the aqueous active substance preparations according to the invention can also be formulated with other aqueous fungicidal and insecticidal active substance compositions, for example with conventional emulsion concentrates, suspension concentrates or suspoemulsion concentrates of the abovementioned active substances, e.g. of the abovementioned fungicides from the group of the azoles and of the strobilurins or of the abovementioned insecticides, or with the microemulsions, mentioned at the start, of the abovementioned fungicides and insecticides. By mixing the aqueous active substance composition according to the invention with conventional aqueous preparations of the abovementioned active substances, a broadening in the spectrum of activity is first obtained, if the conventional preparation comprises a different active substance from the aqueous active substance composition according to the invention. Secondly, the advantages of the active substance compositions according to the invention are not lost by formulating with conventional aqueous active substance preparations, in particular the improved adhesion to cellulose-comprising materials and especially to wood. Consequently, the application properties of a conventional aqueous active substance preparation can be improved by formulating with an aqueous active substance composition according to the invention of the same active substance.
  • There are a number of advantages to the active substance compositions according to the invention. First, these are stable aqueous formulations of fungicidal active substances which are insoluble in water or are soluble in water only to a slight extent. In particular, the phase separation problems observed in conventional formulations and in micro- or nanodispersions of the active substances are not observed and settling of the active substance is not observed, even when drastic conditions are employed, such as occur in the processes employed for impregnating wood with fungicidal active substances. The content of volatile organic compounds is with conventional additivating lower than with comparable conventional formulations and, in comparison to micro- or nanodispersions of active substances, the proportion of emulsifier is simultaneously lower, based on the active substance used. The active substance is leached from the treated material, under the effect of water, to a markedly lesser extent in comparison with other formulations. Furthermore, interactions of the active substances with other formulation constituents or additional active substances, such as frequently occur with a conventional formulation, are not observed. Furthermore, the decomposition of the active substances by the effects of the substrate or environment, such as pH value of the medium or UV radiation, is slowed down or even completely halted. Surprisingly, a reduced effectiveness of the active substance through the incorporation in a polymer matrix is not observed.
  • The present invention also relates to a process for the protection of cellulose-comprising materials, in particular wood, from infection by harmful fungi, in particular from infection by the abovementioned wood-destroying fungi, in which the cellulose-comprising material, in particular wood, is treated with a composition according to the invention.
  • Cellulose-comprising materials are, in addition to wood and downstream products, e.g. wood blanks, plywood, chipboard, MOF panels or OSB panels, also pulps and intermediates in the manufacture of paper, fabrics based on cellulose, such as cotton, materials based on woody annuals, for example molded articles formed from rape shavings, bargasse panels, straw panels, and the like. The cellulose-comprising materials furthermore include articles formed from cellulose-comprising fiber materials, such as fabrics, formed fabrics, paper, board, heat-insulating materials, ropes, cables, and the like. Suitable fiber materials for the process according to the invention comprise textile fibers, such as flax, linen, hemp, jute, cotton and ramie, paper fibers, such as flax, linen or hemp, bamboo fibers, paper mulberry and lignocellulose fibers, and also nettle fiber, manila hemp, sisal, kenaf and coconut fiber.
  • The treatment can be carried out in a way known per se, depending on the type of substrate, by spraying, painting, dipping or impregnating the substrate with an undiluted active substance composition according to the invention or an active substance composition according to the invention diluted with water or by flooding the substrate in an undiluted aqueous active substance composition according to the invention or an aqueous active substance composition according to the invention diluted with water. The compositions according to the invention can also be present in the manufacture of the cellulose-comprising material, for example as binder or as sizing agent.
  • If the substrate according to the invention is wood, use may be made of the processes conventional in wood preservation, such as are known, for example, from Ullmann's Encyclopedia of Industrial Chemistry, Wood preservation, 5th edition on CD-ROM, Wiley VCH, Weinheim, 1997, chapter 7. These include in particular processes for impregnating the wood with the help of pressure differences, e.g. the vacuum-pressure process and double vacuum impregnation.
  • The treatment of such materials with the active substance compositions according to the invention can be carried out according to the processes conventional for this and will be adapted in a way known per se to the technical realities in each case. The application concentration and the incorporation depend in this connection on the degree of danger of the material and on the respective treatment process and usually range from 0.05 mg to 10 g of active substance per kg of material.
  • The undiluted composition comprising the active substance is frequently used in wood downstream products and cellulose-comprising materials, for example together with the binder used, as cobinder. Obviously, separate treatment during or after the manufacture, for example the sizing, is also possible.
  • In addition to the cellulose-based materials mentioned, the aqueous active substance composition according to the invention can also be used in other areas of material protection from infection by harmful fungi and, if appropriate, from infection by animal pests. For example, skin, fur or leather can be effectively protected, with the aqueous compositions according to the invention, from infection by microorganisms, in particular from infection by the abovementioned harmful fungi, and animal pests. In addition, the aqueous compositions according to the invention can also be used as antifouling paints, for example in shipbuilding, or as algicidal paint systems for facades and roofing tiles, depending on the active substance present therein in each case. In addition, the compositions according to the invention can be used as in-can and film preservatives.
  • The following examples should clarify the invention, without, however, limiting it:
  • The viscosities given were determined in a Brookfield rotary viscometer at 23° C. in accordance with ISO 2555.
  • The particle sizes given were determined by quasielastic light scattering according to the methods described above in diluted dispersions (0.01 to 0.1% by weight). The average diameter, determined by the cumulant analysis of the autocorrelation function measured, is given.
  • The glass transition temperature was determined in accordance with ASTM D 3418 using differential scanning calorimetry.
  • I. Preparation of the Active Substance Composition
  • EXAMPLE 1a Aqueous Polymer Dispersion with 3% by Weight of Active Substance, Dispersion D1
  • 300 g of deionized water and 13.6 g of a 33% by weight aqueous polystyrene dispersion (average particle size 30 nm) were introduced into a reaction vessel equipped with a stirrer, the vessel was flushed with nitrogen and was then heated to 75° C. Beginning simultaneously, feed 1 was added within 3 h and feed 2 was added within 3.15 h, with stirring and while maintaining the temperature. After the end of the addition of feed 2, the temperature was maintained for a further 30 min and then 3.0 g of a 25% by weight aqueous ammonia solution were added. Subsequently, for the purposes of chemical deodorization, feed 3 and feed 4 were added within 90 min while maintaining the temperature and then the reaction mixture was cooled down to ambient temperature. Feed 5 was then added in one portion and the reaction mixture was stirred for 10 min, then adjusted to a pH value of 7 to 7.5 with ammonia and then filtered through a mesh with a mesh size of 125 μm.
  • The dispersion obtained had a solids content of 38.7% by weight and a viscosity of 30 mPa·s. The glass transition temperature of the polymer was +16° C. The average particle size, determined by means of light scattering, was 146 nm.
      • Feed 1:
      • 400.0 g of deionized water
      • 25.7 g of a 28% by weight solution of an anionic emulsifier E11)
      • 21.0 g of a 28% by weight solution of a nonionic emulsifier E22)
      • 7.8 g of acrylic acid
      • 292.0 g of styrene
      • 237.0 g of n-butyl acrylate
      • 60.0 g of ethyl acrylate
      • 3.0 g of acrylamide
      • 18.0 g of epoxiconazole
      • Feed 2:
      • 100 g of deionized water
      • 2.4 g of sodium peroxodisulfate
      • Feed 3:
      • 22.0 g of deionized water
      • 2.6 g of t-butyl hydroperoxide (70% by weight)
      • Feed 4:
      • 25.0 g of deionized water
      • 1.7 g of sodium hydroxymethanesulfinate
      • Feed 5:
      • 37.0 g of deionized water
      • 30.0 g of emulsifier solution E2
      • 1) sodium lauryl sulfate
      • 2) C16/C18 fatty alcohol ethoxylate with on average 18 ethylene oxide units per molecule
    EXAMPLE 1b Aqueous Polymer Dispersion with 2% by Weight of Fungicidal Active Substance and 1% by Weight of Insecticidal Active Substance, Dispersion D2
  • The preparation was carried out analogously to the procedure of example 1a, feed 1 having the following composition:
      • Feed 1:
      • 400.0 g of deionized water
      • 25.7 g of a 28% by weight solution of an anionic emulsifier E11)
      • 21.0 g of a 28% by weight solution of a nonionic emulsifier E22)
      • 7.8 g of acrylic acid
      • 322.0 g of styrene
      • 177.0 g of n-butyl acrylate
      • 60.0 g of ethyl acrylate
      • 30.0 g of acrylonitrile
      • 3.0 g of acrylamide
      • 12.0 g of epoxiconazole
      • 6.0 g of chlorfenapyr
  • The dispersion obtained had a solids content of 39% by weight and a viscosity of 45 mPa·s. The glass transition temperature of the polymer was 31° C. The average particle size, determined by means of light scattering, was 151 nm.
  • EXAMPLE 2 Step Polymers with Different Active Substances, Dispersions D3 to D8
  • General Procedure:
  • 183 g of water and 75.8 g of an aqueous polystyrene dispersion (33% by weight, average particle diameter 30 nm) were introduced into a reaction vessel, the vessel was flushed with nitrogen and was heated to 85° C. 25% by weight of a solution of 1.5 g of sodium peroxodisulfate in 21.4 g of water (feed 4) were added hereto while maintaining the temperature. After 10 min, beginning simultaneously, the addition of feed 1 and the addition of the remaining amount of feed 4 were commenced. Feed 1 was added within 90 min while maintaining the temperature, feed 4 within 255 min. After the end of the addition of feed 1, the temperature was maintained for 30 min, then feed 2 was added within 60 min, the temperature was maintained for a further 45 min and then feed 3 was added within 30 min while maintaining the temperature. After the end of the addition of feed 3, the temperature was maintained for a further 30 min and then the reaction mixture was cooled to ambient temperature.
      • Feed 1:
      • 220.1 g of water
      • 220.8 g of styrene
      • 1.6 g of allyl methacrylate
      • 11.1 g of emulsifier solution E3
      • x g of active substance (see table 1)
      • Feed 2:
      • 135.6 g of water
      • 180.4 g of n-butyl acrylate
      • 2.1 g of allyl methacrylate
      • 7.2 g of emulsifier solution E3
      • y g of active substance (see table 1)
      • Feed 3:
      • 92.5 g of water
      • 19.7 g of styrene
      • 75.5 g of methyl methacrylate
      • 1.7 g of emulsifier solution E3
      • z g of active substance (see table 1)
  • Emulsifier solution E3: 45% by weight aqueous solution of a sodium salt of (C16-alkyl)-diphenyl ether sulfonic acid
    TABLE 1
    Dispersion Active substance x [g] y [g] z [g]
    D3 Metconazole 26.4 14.4 12.0
    D4 Cyproconazole 21.6 10.8 10.8
    D5 Epoxiconazole 30.0 6.0 6.0
    D6 Tebuconazole 15.0 18.0
    D7 IPBC1) 21.0 4.2 6.0
    D8 Epoxiconazole + 4.0 4.0 4.0
    Chlorfenapyr 2.0 2.0 2.0

    1)IPBC = 3-iodo-2-propyl butylcarbamate.
  • The dispersions obtained had a solids content of 45% by weight and a viscosity of 115 mPa·s. The polymer showed 2 glass transition temperatures at −31 and +99° C. determined by means of DSC. The average particle size, determined by means of light scattering, was 95 to 105 nm.
  • EXAMPLE 3 Cationic Dispersions D9-D13 with Different Active Substances
  • General Preparation Procedure:
  • 465 g of deionized water, 5% by weight of feed 1 and 10% by weight of feed 2 were heated to 80° C. After 10 min, the addition of the remaining amounts of feed 1 and feed 2 was commenced. The feed time was 3.5 h. After the end of the addition of the feeds, the mixture was maintained at 80° C. for a further 30 min and was cooled down to ambient temperature.
      • Feed 1:
      • 496.1 g of deionized water
      • 7.6 g of sulfuric acid (50% by weight)
      • 361.0 g of methyl methacrylate
      • 19.0 g of dimethylaminoethyl methacrylate
      • 57.0 g of emulsifier solution E4
      • x g of active substance (see table 2)
      • Feed 2:
      • Solution of 1.5 g of 2,2′-azobis(N,N′-dimethylisobutyramidine) in 63.3 g of deionized water
  • Emulsifier solution E4: 40% by weight aqueous solution of a cationic emulsifier obtained by successive ethoxylation of stearylamine with 4-5 mol of ethylene oxide and subsequent quaternization with dimethyl sulfate.
    TABLE 2
    Dispersion Active substance x [g]
    D9 Metconazole 61.8
    D10 Cyproconazole 42.9
    D11 Epoxiconazole 0.4
    D12 Tebuconazole 19.0
    D13 IPBC 18.2
  • The dispersion obtained had a solids content of 29.5% by weight and a viscosity of 100 mPa·s. The polymer showed a glass transition temperature at 87° C. determined by means of DSC. The average particle size, determined by means of light scattering, was 157 to 175 nm.
  • EXAMPLE 4 Cationic Dispersions D14-D18 with Different Active Substances
  • General Preparation Procedure:
  • 465 g of deionized water, feed 1 and 10% by weight of feed 2 were heated to 80° C. After 10 min, the addition of the remaining amount of feed 2 and of feed 3 was begun. The feed time of feed 2 and feed was 3.5 h. After the end of the addition of the feeds, the mixture was maintained at 80° C. for a further 30 min and was then cooled down to ambient temperature.
      • Feed 1:
      • 46.1 g of deionized water
      • 38.0 g of styrene
      • 7.6 g of 3-(N,N-dimethylamino)propylmethacrylamide
      • 14.2 g of emulsifier solution E4 (see above)
      • Feed 2:
      • Solution of 1.5 g of 2,2′-azobis(N,N′-dimethylisobutyramidine) in 63.3 g of deionized water
      • Feed 3:
      • 450.1 g of deionized water
      • 7.6 g of acrylic acid
      • 270.0 g of methyl methacrylate
      • 57.0 g of dimethylaminoethyl methacrylate
      • 42.8 g of emulsifier solution E4 (see above)
  • x g of active substance (see table 3)
    TABLE 3
    Dispersion Active substance x [g]
    D14 Metconazole 61.8
    D15 Cyproconazole 42.9
    D16 Epoxiconazole 0.4
    D17 Tebuconazole 19.0
    D18 IPBC1) 18.2
  • The dispersion obtained had a solids content of 29.8% by weight and a viscosity of 105 mPa·s. The polymer showed a glass transition temperature at 110° C. determined by means of DSC. The average particle size, determined by means of light scattering, was 155 to 175 nm.
  • II. Application Investigation:
  • The limits of the effectiveness of the compositions according to the invention with regard to wood-destroying basidiomycetes were determined on wood test specimens of Pinus spp. (southern yellow pine) with the dimensions 40×15×4 mm3. The test method on comminuted wood test specimens, known as the Bravery test, is closely based on EN 113 and is used to determine the preventive effect of wood preservatives against wood-destroying fungi (see in this connection A. F. Bravery, Intern. Res. Group Wood Pres., Doc. No. IRG/WP/2113, 5S., Stockholm, 1978). The wood test specimens impregnated with the composition according to the invention were tested without or with the constraint of leaching according to EN 84. The investigation was carried out with 6 different active substance concentrations ranging from 0.4 to 4% by weight of active substance (with epoxiconazole) or 0.63 to 6.3% by weight of active substance (with tebuconazole) and each time 5 parallel test specimens per active substance concentration and test fungus. Coniophora puteana BAM Ebw. 15 and Poria placenta FPRL 280 were used as test fungi. The destruction of the wood caused by fungal infection was registered by the loss in weight of the test woods, which was determined after 6 weeks. If the loss in weight is less than 3% by weight, based on the starting dry weight of the test sample, the protection of the wood achieved by the preservative at a particular active substance concentration is regarded as satisfactory. The concentration limit of the effectiveness is given in two concentrations. The lower concentration gives the value at which the wood is no longer satisfactorily protected and the higher concentration corresponds to the minimum concentration with which complete protection is achieved.
  • A dispersion with an active substance content of 5.52% by weight of epoxiconazole (based on the solids content, or 2.4% by weight, based on the dispersion), a solids content of 43.7% by weight and an average particle size of 107 nm, prepared according to the procedure in example 2, and a dispersion with an active substance content of 4.69% by weight of tebuconazole (based on the solids content, or 2.05% by weight, based on the dispersion), a solids content of 43.8% by weight and an average particle size of 98 nm, prepared according to the procedure in example 2, were tested.
  • The limits of the effectiveness are represented in table 4. For comparison, the values determined for a solution of the active substance in acetone are given.
    TABLE 4
    Limits of the effectiveness [kg/m3]
    Test fungus Without leaching With leaching (EN 84)
    Dispersion with epoxiconazole
    CP <0.066 <0.066
    PP <0.066 <0.066
    Solution of epoxiconazole
    CP <0.19 0.11-0.16
    PP <0.19 0.11-0.18
    Dispersion with tebuconazole
    CP <0.092 <0.089
    PP 0.091-0.143 <0.092
    Solution of tebuconazole
    CP <0.052 <0.054
    PP 0.102-0.153 0.095-0.152
  • In practice, the upper value after leaching in particular is decisive for the assessment of a wood preservative. The results represented in table 4 prove that the active substance compositions according to the invention show an effectiveness against wood-destroying fungi which is at least comparable to, in the case of epoxiconazole even better than, that of formulations in organic solvents.
  • Wood test specimens which, for control purposes, were treated only with a dispersion free of active substance with otherwise an identical composition showed, under test conditions, serious damage to the wood substance by fungal infection which was only slightly less than with untreated wood test samples.

Claims (19)

1. An aqueous active substance composition, comprising
a) at least one fungicidal organic active substance with a solubility in water of not more than 5 g/l at 25° C./1013 mbar, and
b) a finely-divided polymer with an average particle size, determined by dynamic light scattering, of not more than 300 nm, in which the polymer particles comprise the active substance,
the polymer being formed from ethylenically unsaturated monomers M comprising:
at least 60% by weight, based on the total amount of the monomers M, of at least one neutral monoethylenically unsaturated monomer M1 with a solubility in water of not more than 30 g/l at 25° C., and
up to 40% by weight, based on the total amount of the monomers M, of one or more ethylenically unsaturated monomers M2 other than the monomers M1.
2. The active substance composition according to claim 1, wherein the monomers M comprise at least one monomer M2 in an amount of 0.5 to 40% by weight, based on the total amount of the monomers M, which is selected from
monoethylenically unsaturated monomers M2a exhibiting at least one acid group or at least one anionic group;
monoethylenically unsaturated neutral monomers M2b exhibiting a solubility in water of at least 50 g/l at 25° C.; and
monoethylenically unsaturated monomers M2c exhibiting at least one cationic group and/or at least one group which can be protonated in the aqueous medium.
3. The active substance composition according to claim 2, wherein the monomers M comprise at least one monomer M2c.
4. The active substance composition according to claim 3, wherein the monomer M2c is selected from monomers of the general formula (I)
Figure US20080090886A1-20080417-C00002
in which
R1 is hydrogen or C1-C4-alkyl,
R2 and R3 are, independently of one another, C1-C4-alkyl, and
R4 is hydrogen or C1-C4-alkyl,
Y is oxygen, NH or NR4 with R4═C1-C4-alkyl,
A is C2-C8-alkylene, if appropriate interrupted by 1, 2 or 3 nonadjacent oxygen atoms, and
X is an anion equivalent,
and, for R4=H, the free bases of the monomers of the formula (I).
5. The active substance composition according to claim 1, wherein the monomers M1 are selected from vinylaromatic monomers, C2-C10-alkyl acrylates and C1-C10-alkyl methacrylates.
6. The active substance composition according to claim 1, wherein the polymer exhibits a glass transition temperature TG of at least 10° C.
7. The active substance composition according to claim 1, comprising at least one fungicidal active substance in an amount of 0.1 to 50% by weight, based on the weight of the monomers M used for the preparation of the polymer.
8. The active substance composition according to claim 1, wherein the fungicidal active substance is selected from fungicides from the group of the conazoles, the group of the morpholines, the group of the strobilurins, the group of the thiazoles, the group of the sulfenamides and the group of the iodine compounds.
9. The active substance composition according to claim 1, wherein the polymer particles additionally comprise an insecticidal active substance.
10. The active substance composition according to claim 9, wherein the insecticidal active substance is selected from pyrethroids, arthropod growth regulators, chlorfenapyr and neonicotinoids.
11. The active substance composition according to claim 1, wherein the total amount of active substance is 0.5 to 50% by weight, based on the total amount of the monomers M.
12. The active substance composition according to claim 1, wherein the polymer can be obtained by radical aqueous emulsion polymerization of an oil-in-water emulsion of the monomers M, the monomer droplets of the oil-in-water emulsion to be polymerized comprising the fungicidal active substance in dissolved form.
13. The active substance composition according to claim 1, with a content of volatile organic constituents of less than 1% by weight, based on the total weight of the composition.
14. The active substance composition according to claim 1, with a solids content of 10 to 60% by weight.
15. A process for the preparation of an active substance composition according to claim 1, comprising a radical aqueous emulsion polymerization of an oil-in-water emulsion of the monomers M, wherein the monomer droplets of the emulsion comprise at least one fungicidal active substance and, if appropriate, an insecticidal active substance.
16. The use of an active substance composition according to claim 1 in the control of microorganisms.
17. The use of an active substance composition according to claim 1 for the protection of cellulose-comprising materials from infection by harmful fungi, in particular from infection by microorganisms.
18. A process for the protection of cellulose-comprising materials from infection by microorganisms comprising the treatment of the cellulose-comprising material with a composition according to claim 1.
19. The process according to claim 18, wherein the cellulose-comprising material is wood.
US11/587,052 2004-04-26 2005-04-25 Aqueous Fungicidal Composition And Use Thereof For Combating Harmful Micro Organisms Abandoned US20080090886A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/831,055 US8741968B2 (en) 2004-04-26 2010-07-06 Aqueous fungicidal composition and use thereof for combating harmful microorganisms
US14/261,193 US20140234425A1 (en) 2004-04-26 2014-04-24 Aqueous fungicidal composition and use thereof for combating harmful microorganisms
US15/397,555 US10420339B2 (en) 2004-04-26 2017-01-03 Aqueous fungicidal composition and use thereof for combating harmful micro organisms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004020332 2004-04-26
DE102004020332.6 2004-04-26
PCT/EP2005/004423 WO2005102044A1 (en) 2004-04-26 2005-04-25 Aqueous fungicidal composition and use thereof for combating harmful micro organisms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/004423 A-371-Of-International WO2005102044A1 (en) 2004-04-26 2005-04-25 Aqueous fungicidal composition and use thereof for combating harmful micro organisms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/831,055 Division US8741968B2 (en) 2004-04-26 2010-07-06 Aqueous fungicidal composition and use thereof for combating harmful microorganisms

Publications (1)

Publication Number Publication Date
US20080090886A1 true US20080090886A1 (en) 2008-04-17

Family

ID=34965840

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/587,052 Abandoned US20080090886A1 (en) 2004-04-26 2005-04-25 Aqueous Fungicidal Composition And Use Thereof For Combating Harmful Micro Organisms
US12/831,055 Active 2026-08-20 US8741968B2 (en) 2004-04-26 2010-07-06 Aqueous fungicidal composition and use thereof for combating harmful microorganisms
US14/261,193 Abandoned US20140234425A1 (en) 2004-04-26 2014-04-24 Aqueous fungicidal composition and use thereof for combating harmful microorganisms
US15/397,555 Expired - Fee Related US10420339B2 (en) 2004-04-26 2017-01-03 Aqueous fungicidal composition and use thereof for combating harmful micro organisms

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/831,055 Active 2026-08-20 US8741968B2 (en) 2004-04-26 2010-07-06 Aqueous fungicidal composition and use thereof for combating harmful microorganisms
US14/261,193 Abandoned US20140234425A1 (en) 2004-04-26 2014-04-24 Aqueous fungicidal composition and use thereof for combating harmful microorganisms
US15/397,555 Expired - Fee Related US10420339B2 (en) 2004-04-26 2017-01-03 Aqueous fungicidal composition and use thereof for combating harmful micro organisms

Country Status (19)

Country Link
US (4) US20080090886A1 (en)
EP (1) EP1742531B2 (en)
JP (1) JP4732442B2 (en)
KR (1) KR20070007839A (en)
CN (1) CN1946288B (en)
AR (1) AR048711A1 (en)
AU (1) AU2005235374B2 (en)
BR (1) BRPI0510188B1 (en)
CA (1) CA2562347C (en)
DK (1) DK1742531T4 (en)
EA (1) EA012571B1 (en)
ES (1) ES2522578T5 (en)
IL (1) IL178831A0 (en)
MX (1) MXPA06011511A (en)
NZ (1) NZ550722A (en)
PL (1) PL1742531T5 (en)
PT (1) PT1742531E (en)
WO (1) WO2005102044A1 (en)
ZA (1) ZA200609798B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090227460A1 (en) * 2008-03-07 2009-09-10 Dow Agrosciences Llc Stabilized oil-in-water emulsions including meptyl dinocap
US20110218108A1 (en) * 2010-03-08 2011-09-08 Brasher Laura L Composition Comprising an Active Substance and a Polyalkyleneoxide Vinylester Graft Polymer
US20110245082A1 (en) * 2010-03-30 2011-10-06 Basf Se Use of Copolymers for Increasing the Activity of a Pesticide
US20120308840A1 (en) * 2010-01-04 2012-12-06 Michael Maier Formulation and use thereof
AU2011234110B2 (en) * 2010-03-30 2013-11-07 Basf Se Use of copolymer for increasing activity of pesticide
US20140154419A1 (en) * 2008-12-31 2014-06-05 Apinee, Inc. Preservation of wood, compositions and methods thereof
JP2016083876A (en) * 2014-10-28 2016-05-19 株式会社プラセラム Functionality adding treatment agent of woody material and functionality adding method of woody material
US9402391B2 (en) 2008-03-25 2016-08-02 Dow Agrosciences Llc Stabilized oil-in-water emulsions including agriculturally active ingredients
US9686979B2 (en) 2011-08-23 2017-06-27 Vive Crop Protection Inc. Pyrethroid formulations
CN108541865A (en) * 2018-04-10 2018-09-18 柳州潜荣健康产业有限公司 A kind of preparation method of fluid food anti-corrosive fresh-keeping material
US10206391B2 (en) 2011-12-22 2019-02-19 Vive Crop Protection Inc. Strobilurin formulations
US11517013B2 (en) 2017-08-25 2022-12-06 Vive Crop Protection Inc. Multi-component, soil-applied, pesticidal compositions

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200621150A (en) * 2004-08-04 2006-07-01 Basf Ag Process for preparing aqueous active compound compositions of active compounds which are poorly soluble in water
AU2006222169B2 (en) 2005-03-09 2012-01-12 Basf Se Aqueous insecticidal compositions and the use thereof for protecting lignocellulose-containing materials
BRPI0609170A2 (en) * 2005-03-10 2010-11-16 Basf Ag processes for producing aqueous polymeric dispersions containing pesticide, and for combating harmful microorganisms and / or for regulating plant growth and / or for combating undesirable plant growth and / or for combating insect infestation or undesirable mites and / or for controlling phytopathogenic fungi and / or to treat seeds, aqueous dispersion, agrochemical formulation, dispersions use, and, seed
WO2006117158A1 (en) * 2005-05-02 2006-11-09 Basf Aktiengesellschaft Use of aqueous wax dispersions to impregnate lignocellulose materials
US20070270612A1 (en) * 2006-02-08 2007-11-22 Pompeo Michael P Biocidal azole emulsion concentrates having high active ingredient content
WO2008069822A1 (en) * 2006-02-21 2008-06-12 Phibro-Tech Inc. Biocidal azole emulsion concentrates having high active ingredient content
WO2008034813A1 (en) * 2006-09-20 2008-03-27 Basf Se Polymer additives containing particles
EP2270087A1 (en) 2009-06-30 2011-01-05 LANXESS Deutschland GmbH Heterocyclic 3-ring connections and polymers containing iodine compounds
KR20130113421A (en) 2010-06-16 2013-10-15 바스프 에스이 Aqueous active ingredient composition
EP2484210A1 (en) 2011-02-08 2012-08-08 Basf Se Pesticidal compositions
EP2791246A4 (en) * 2011-10-06 2016-07-06 Pmb Technologies Pty Ltd Surface stabiliser and uses thereof
CN106342797A (en) * 2011-12-28 2017-01-25 大阪煤气化学株式会社 Controlled release particles, wood treatment agent, and producing method thereof
WO2013100102A1 (en) * 2011-12-28 2013-07-04 日本エンバイロケミカルズ株式会社 Sustained release particles, wood treatment agent, and method for producing same
JP5873790B2 (en) * 2011-12-28 2016-03-01 大阪ガスケミカル株式会社 Sustained release particles and method for producing the same
JP5873714B2 (en) * 2011-12-28 2016-03-01 大阪ガスケミカル株式会社 Method for producing sustained release particles
AR090902A1 (en) * 2012-04-30 2014-12-17 Dow Agrosciences Llc FORMULATIONS FOR SEED TREATMENT
AR090901A1 (en) * 2012-04-30 2014-12-17 Dow Agrosciences Llc FORMULATIONS FOR SEED TREATMENT
JP5873843B2 (en) * 2012-10-12 2016-03-01 大阪ガスケミカル株式会社 Method for producing emulsion
JP5873842B2 (en) * 2012-11-21 2016-03-01 大阪ガスケミカル株式会社 Sustained release particles, method for producing the same, and xylem treating agent using the same
JP2015221892A (en) * 2014-04-30 2015-12-10 大阪ガスケミカル株式会社 particle
US20170105409A1 (en) * 2014-06-03 2017-04-20 Basf Se Agrochemical Suspoemulsion Comprising Polymer Particles Made of Methyl (meth)acrylate and C2-C12 Alkyl (meth)acrylate
EP3325464B1 (en) 2015-07-24 2022-04-20 Basf Se Pyridine compounds useful for combating phytopathogenic fungi
KR102615066B1 (en) 2015-09-02 2023-12-19 란세스 도이치란트 게엠베하 Fenflufen polymer particles
CN107920509A (en) 2015-09-03 2018-04-17 巴斯夫农业公司 Include the microparticle compositions of benzene flumetsulam
CN107351209A (en) * 2017-09-19 2017-11-17 安徽嘉美工艺品有限公司 A kind of wood preservation from decay processing method
EP3982732A1 (en) * 2019-06-15 2022-04-20 Bayer Aktiengesellschaft Stabilized dithiocarbamate formulations
JP7427915B2 (en) * 2019-10-31 2024-02-06 セイコーエプソン株式会社 Inkjet recording method and ink set
EP4011205A1 (en) 2020-12-08 2022-06-15 Basf Se Microparticle compositions comprising trifludimoxazin
EP4011208A1 (en) 2020-12-08 2022-06-15 BASF Corporation Microparticle compositions comprising fluopyram

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922398A (en) * 1996-03-06 1999-07-13 Rohm And Haas Company Quick-drying aqueous coating compositions

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212967A (en) 1962-11-05 1965-10-19 Dow Chemical Co Biocidally-active mixed phosphorothioate ester-containing and mixed phosphoramidate ester-containing polymeric materials
JPS5872501A (en) * 1981-10-24 1983-04-30 Toagosei Chem Ind Co Ltd Liquid agricultural chemical
JPH0699244B2 (en) 1985-04-10 1994-12-07 日本ペイント株式会社 Fine resin particles with anti-pest properties
US4677003A (en) 1985-04-30 1987-06-30 Rohm And Haas Company Microsuspension process for preparing solvent core sequential polymer dispersion
US4783335A (en) 1985-11-18 1988-11-08 The Kendall Company Controlled topical application of bioactive reagent
DE3711680A1 (en) 1987-04-07 1988-10-27 Hoechst Ag AQUEOUS BIOCIDES CATIONIC PLASTIC DISPERSIONS AND THE USE THEREOF AS FUNGICIDES, BACTERICIDES AND ALGICIDES EQUIPMENT
DE4142731A1 (en) 1991-12-21 1993-06-24 Hoechst Ag BIOCIDAL POLYMERISATES AND POLYMERISATE DISPERSIONS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
WO1999065301A1 (en) 1998-06-17 1999-12-23 Uniroyal Chemical Company, Inc. Biologically-active microdispersion composition
EP1048422A3 (en) * 1999-04-19 2001-12-05 Rohm And Haas Company Compositions for the treatment of wood
DE60040411D1 (en) * 1999-11-19 2008-11-13 Nof Corp RELIABLE RELEASE AND METHOD FOR THE PRODUCTION THEREOF
JP2001323218A (en) 2000-05-17 2001-11-22 Asahi Kasei Corp Water-based coating material containing antimicrobial agent
US6521288B2 (en) * 2000-05-31 2003-02-18 Board Of Control Of Michigan Technological University Compositions and methods for wood preservation
KR100867393B1 (en) 2000-12-04 2008-11-06 신젠타 파티서페이션즈 아게 Microemulsifiable agrochemical concentrate
WO2002082900A1 (en) 2001-03-30 2002-10-24 Rhodia Inc. Aqeuous suspension of nanoparticles comprising an agrochemical active ingredient
KR20040055798A (en) * 2001-11-07 2004-06-26 바스프 악티엔게젤샤프트 Cinidon-ethyl containing solid crop protection formulations and corresponding dispersions
DE10351004A1 (en) * 2003-10-30 2005-05-25 Basf Ag Aqueous nanodispersion-forming formulations of active agents, especially plant protectants such as fungicides, comprise random copolymer of unsaturated sulfonic acid(s)
US7666242B2 (en) 2003-11-04 2010-02-23 Winfield Solutions, Llc Adjuvant blend for spray on fruit or foliage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922398A (en) * 1996-03-06 1999-07-13 Rohm And Haas Company Quick-drying aqueous coating compositions

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090227460A1 (en) * 2008-03-07 2009-09-10 Dow Agrosciences Llc Stabilized oil-in-water emulsions including meptyl dinocap
US9402391B2 (en) 2008-03-25 2016-08-02 Dow Agrosciences Llc Stabilized oil-in-water emulsions including agriculturally active ingredients
US20140154419A1 (en) * 2008-12-31 2014-06-05 Apinee, Inc. Preservation of wood, compositions and methods thereof
US9314938B2 (en) * 2008-12-31 2016-04-19 Apinee, Inc. Preservation of wood, compositions and methods thereof
US20120308840A1 (en) * 2010-01-04 2012-12-06 Michael Maier Formulation and use thereof
US20110218108A1 (en) * 2010-03-08 2011-09-08 Brasher Laura L Composition Comprising an Active Substance and a Polyalkyleneoxide Vinylester Graft Polymer
US9832990B2 (en) 2010-03-08 2017-12-05 Basf Se Composition comprising an active substance and a polyalkyleneoxide vinylester graft polymer
AU2011234110B2 (en) * 2010-03-30 2013-11-07 Basf Se Use of copolymer for increasing activity of pesticide
US20110245082A1 (en) * 2010-03-30 2011-10-06 Basf Se Use of Copolymers for Increasing the Activity of a Pesticide
US9686979B2 (en) 2011-08-23 2017-06-27 Vive Crop Protection Inc. Pyrethroid formulations
US10455830B2 (en) 2011-08-23 2019-10-29 Vive Crop Protection Inc. Pyrethroid formulations
US10966422B2 (en) 2011-08-23 2021-04-06 Vive Crop Protection Inc. Pyrethroid formulations
US11503825B2 (en) 2011-08-23 2022-11-22 Vive Crop Protection Inc. Pyrethroid formulations
US10206391B2 (en) 2011-12-22 2019-02-19 Vive Crop Protection Inc. Strobilurin formulations
US11344028B2 (en) 2011-12-22 2022-05-31 Vive Crop Protection Inc. Strobilurin formulations
JP2016083876A (en) * 2014-10-28 2016-05-19 株式会社プラセラム Functionality adding treatment agent of woody material and functionality adding method of woody material
US11517013B2 (en) 2017-08-25 2022-12-06 Vive Crop Protection Inc. Multi-component, soil-applied, pesticidal compositions
CN108541865A (en) * 2018-04-10 2018-09-18 柳州潜荣健康产业有限公司 A kind of preparation method of fluid food anti-corrosive fresh-keeping material

Also Published As

Publication number Publication date
US20170112124A1 (en) 2017-04-27
EP1742531B2 (en) 2017-08-30
EP1742531A1 (en) 2007-01-17
EA012571B1 (en) 2009-10-30
AR048711A1 (en) 2006-05-17
ZA200609798B (en) 2008-08-27
CA2562347A1 (en) 2005-11-03
AU2005235374B2 (en) 2011-06-16
AU2005235374A1 (en) 2005-11-03
BRPI0510188A (en) 2007-10-02
CN1946288A (en) 2007-04-11
BRPI0510188B1 (en) 2014-12-02
PL1742531T5 (en) 2018-04-30
WO2005102044A1 (en) 2005-11-03
JP4732442B2 (en) 2011-07-27
US20140234425A1 (en) 2014-08-21
US10420339B2 (en) 2019-09-24
EP1742531B1 (en) 2014-10-15
CN1946288B (en) 2011-06-22
NZ550722A (en) 2010-02-26
ES2522578T5 (en) 2018-01-18
KR20070007839A (en) 2007-01-16
PT1742531E (en) 2014-10-29
DK1742531T4 (en) 2017-12-11
CA2562347C (en) 2013-04-16
MXPA06011511A (en) 2007-01-16
PL1742531T3 (en) 2015-03-31
US20100273897A1 (en) 2010-10-28
EA200601954A1 (en) 2007-04-27
DK1742531T3 (en) 2015-01-12
ES2522578T3 (en) 2014-11-17
IL178831A0 (en) 2007-03-08
US8741968B2 (en) 2014-06-03
JP2007534679A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
US10420339B2 (en) Aqueous fungicidal composition and use thereof for combating harmful micro organisms
US8999358B2 (en) Aqueous insecticidal compositions and the use thereof for protecting lignocellulose-containing materials
EP1776010B1 (en) Method for producing aqueous active substance compositions of active substances that are hardly soluble in water

Legal Events

Date Code Title Description
AS Assignment

Owner name: BASF AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOTTSCHE, REIMER (DECEASED);KLEIST, GUNNAR;HABICHT, JOERG;AND OTHERS;REEL/FRAME:018475/0704

Effective date: 20060921

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION