US20080068705A1 - Projection optical system and method - Google Patents

Projection optical system and method Download PDF

Info

Publication number
US20080068705A1
US20080068705A1 US11/944,850 US94485007A US2008068705A1 US 20080068705 A1 US20080068705 A1 US 20080068705A1 US 94485007 A US94485007 A US 94485007A US 2008068705 A1 US2008068705 A1 US 2008068705A1
Authority
US
United States
Prior art keywords
optical system
projection optical
lenses
units
siluv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/944,850
Inventor
David Shafer
Susanne Beder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Priority to US11/944,850 priority Critical patent/US20080068705A1/en
Assigned to CARL ZEISS SMT AG reassignment CARL ZEISS SMT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEDER, SUSANNE, SHAFER, DAVID R.
Publication of US20080068705A1 publication Critical patent/US20080068705A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Definitions

  • the present invention relates to a projection optical system, in particular an micro-lithographic projection optical system.
  • Lithographic processes are commonly used in the manufacture of semiconductor elements, such as integrated circuits (ICs), LSIs, liquid crystal elements, micropatterned members and micromechanical components.
  • ICs integrated circuits
  • LSIs liquid crystal elements
  • micropatterned members micropatterned members and micromechanical components.
  • a projection exposure apparatus used for photolithography generally comprises an illumination optical system having a light source and a projection optical system. Light from the illumination optical system illuminates a reticle (a first object) having a given pattern, and the projection optical system transfers an image of the reticle pattern, onto a region of a photo-sensitive substrate (a second object). The image of the reticle pattern may also be reduced in size by the projection optical system so as to produce a smaller image of the reticle pattern on the substrate.
  • Projection exposure systems having a high numerical aperture are known from US 2003/0007253 A1 and WO 2003/075049 A2 and WO 2005/054956 A2 which documents are incorporated herein by reference.
  • Some conventional projection exposure systems are able to achieve a numerical aperture of greater than 1.
  • a projection exposure system of the immersion type known for example from WO 2003/077037 A1, which document is incorporated herein by reference.
  • a projection exposure system of the near field exposure type or solid immersion type known for example from WO 2003/077036 A1, which document is incorporated herein by reference.
  • Projection optical systems tend to increase in weight and size as the numerical aperture of such systems increases.
  • diameters of lenses increase to such an extent that they become very expensive and difficult to manufacture, and the manufacture of aspherical lenses of a high diameter and a sufficient accuracy presents particular problems.
  • the present invention has been accomplished taking the above problems into consideration.
  • Embodiments of the present invention provide a projection optical system having a high numerical aperture and having a good imaging performance.
  • a refractive projection optical system for imaging a first object into a region of a second object comprises: a plurality of lenses disposed along an imaging beam path of the projection optical system; wherein the projection optical system is configured to have a numerical aperture on a side of the second object of greater than 1; wherein the projection optical system is configured to generate an intermediate image of the first object and to image the intermediate image into the region of the second object, wherein the intermediate image is formed in between the first and second objects.
  • the term refractive optical system refers to systems where substantially all optical powers are provided by refractive lens elements. This is in contrast to a catadioptric optical system having at least one mirror providing a substantial amount of optical power. It is not excluded, however, that the refractive optical system according to the present invention comprises one or more mirrors for folding the beam path through the system to reduce its size, provided that such mirror is sufficiently flat to provide substantially no optical power.
  • the radius of curvature of the mirror of the refractive optical system is greater than 10 3 m.
  • the present inventors have found that the concept of generating an intermediate image within the refractive optical system allows for an improved imaging quality at a high numerical aperture while maintaining free diameters of the lenses within an acceptable range.
  • intermediate image stands for a real intermediate image, as opposed to a virtual intermediate image.
  • the refractive optical system comprises a plurality of lenses.
  • the plurality of lenses is dividable into a plurality of non-overlapping groups of lenses, such that a total refractive power of each group of lenses is one of a negative refractive power and a positive refractive power, and that a sum of the absolute values of the total refractive powers of the groups is a maximum value.
  • a lens as used herein, relates to a single lens element and not to an optical system comprised of a plurality of lens elements.
  • a group of lenses may consist of a single lens only or more than one lens.
  • the intermediate image is formed in a region between two adjacent lens groups having positive refractive power, wherein one lens group of negative refractive power may be disposed between these two lens groups of positive refractive power.
  • a lens group of negative optical power and a further lens group of positive optical power is disposed between these two lens groups of positive refractive power and the second object.
  • three lens groups of negative, positive and negative optical powers, respectively, are disposed between these two lens groups of positive refractive power and the first object.
  • four lens groups of positive, negative, positive and negative optical powers, respectively, are disposed between these two lens groups of positive refractive power and the first object.
  • the refractive optical system is of an immersion type, having a liquid having a refractive index of greater than one provided in between of the second object and a front lens of the plurality of lenses disposed closest to the second object.
  • immersion liquid allows to achieve particular high values of the numerical aperture.
  • an immersion liquid having a refractive index of greater than one distilled deionized water may be mentioned which has a refractive index of 1.44 at a wavelength of 193 nm.
  • the projection optical system has a numerical aperture that is greater than 1.1.
  • the projection optical system has a numerical aperture that is greater than 1.2 and in particular greater than 1.3.
  • an imaging magnification of the optical system is less than 1.0, such that the image formed in the region of the second object is reduced in size as compared to the original provided by the first object.
  • an absolute value of a magnification of the imaging of the intermediate image into the region of the second object is less than 0.5.
  • an absolute value of a magnification of the imaging of the first object into the intermediate image is greater than 0.5.
  • a ratio of a magnification of the imaging of the first object into the intermediate image over a magnification of the imaging of the intermediate image into the region of the second object is in a range of about 2 to 10.
  • the ratio may be in a range of about 2.5 to 4.5, or 3 to 10.
  • the choice of magnification of the imaging of the first object and the imaging of the intermediate image and their ratio may be used as a degree of freedom for achieving an improved design of the immersion type projection optical system.
  • the projection optical system is divided into two sub-systems: a first subsystem of lenses which is configured to generate a real intermediate image of the first object, and a second sub-system of lenses which generates a reduced size image of the intermediate image in a region of the second object.
  • a first subsystem of lenses which is configured to generate a real intermediate image of the first object
  • a second sub-system of lenses which generates a reduced size image of the intermediate image in a region of the second object.
  • the second sub-system may be designed such that is generates a good wavefront and comprises only lenses having relatively small effective diameters since the parameters telecentricity and aberration are corrected for or determined, respectively, by the first sub-system, which generates an intermediate image at a magnification of about 1.
  • one group of imaging errors is corrected in the first sub-system whereas a different group of imaging errors is corrected for in the second sub-system, wherein a combination of the correction of both sub-system not only results in good imaging properties, but also allows a projection optical system having only lenses of a relatively small effective diameter.
  • the imaging of the first object into the intermediate image is such that at least one of the following conditions is fulfilled: an angle of at least one chief ray (as a measure for telecentricity) of the intermediate image is greater than 4°, a longitudinal spherical aberration of the intermediate image is greater than 0.8 mm, an astigmatism value of the intermediate image is greater than 11.0 mm, an aberration of the intermediate image is greater than 1.5%, a RMS (root mean square) of a spot diameter on an optical axis of the projection optical system is greater than 0.5 mm, a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system is greater than 5 mm.
  • an intermediate image is not telecentric, or is distorted, or is subject to spherical aberrations, or has coma, or has a chromatic error, or a combination thereof.
  • a RMS (root mean square) deviation of a wavefront at the intermediate image is greater than 10 times a diffraction limit.
  • the diffraction limit may be defined as ⁇ /NA, wherein ⁇ is the wavelength of the light used for imaging and NA is the numerical aperture of the imaging at the intermediate image.
  • is the wavelength of the light used for imaging
  • NA is the numerical aperture of the imaging at the intermediate image.
  • the RMS deviation at the second object may be less than ⁇ /(10 NA), wherein NA is the numerical aperture of the imaging at the second object. According to further preferred exemplary embodiments of the invention, the RMS deviation of wavefronts at the second object may be less than ⁇ /(50 NA).
  • the imaging from the first object into the second object is configured such that at least one, or all, of the following conditions is fulfilled: an angle of at least one chief ray of the image is less than 1°; a longitudinal spherical aberration of the image is less than 0.001 mm; an astigmatism value of the image is less than 100 nm; an aberration of the image is less than 0.001%; a RMS of a spot diameter on an optical axis of the projection optical system is less than 0.001 mm; a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system is less than 0.002 mm; and a RMS deviation of a wave front is less than 0.1 times a diffraction limit.
  • the projection optical system is rotationally symmetrical, i.e. the plurality of lenses are disposed along an optical axis of the projection optical system such that their centers are located on the optical axis.
  • the projection optical system is free of a physical beam splitter, such as a semitransparent mirror.
  • the intermediate image has a significant field curvature with a radius of curvature which is less than four times of its free diameter, in particular less than twice its free diameter or less than its free diameter.
  • design distance or design length stands for a distance between the first object and the second object in an operating or exposure mode, i.e. as foreseen by the design of the projection optical system when both the first and the second objects are in focus. If for example, a folded arrangement is used, the distance between the first object and the second object would be represented by a distance between a plane where the first object is disposed in and a plane where the second object is disposed in.
  • the design length L is greater than about 1100 mm or, preferably greater than about 1300 mm, wherein the embodiment is purely refractive.
  • Embodiments of immersion type projection optical systems generally allow to use lenses having a relatively small effective diameter.
  • an effective diameter of any lens of the plurality of lenses is smaller than 250 mm.
  • the refractive projection optical system having one intermediate image may be divided into lenses that generate the intermediate image, i.e. lenses in between the first object and a location of the intermediate image, and lenses that image the intermediate image, i.e. lenses that are disposed in between the location of the intermediate image and the second object.
  • effective diameters of the lenses that generate the intermediate image are preferably smaller than 220 mm, or effective diameters of the lenses that image the intermediate image are preferably smaller than 245 mm, or both.
  • the plurality of lenses of the projection optical system is dividable into nine non-overlapping groups of lenses, such that a total refractive power of a first group disposed closest to the first object is a positive refractive power; a total refractive power of a second group disposed directly adjacent to the first group is a negative refractive power; a total refractive power of a third group disposed directly adjacent to the second group is a positive refractive power; a total refractive power of a fourth group disposed directly adjacent to the third group is a negative refractive power; a total refractive power of a fifth group disposed directly adjacent to the fourth group is a positive refractive power; a total refractive power of a sixth group disposed directly adjacent to the fifth group is a negative refractive power; a total refractive power of a seventh group disposed directly adjacent to the sixth group is a positive refractive power; a total refractive power of an eighth group disposed directly adjacent to the seventh
  • Such arrangement of lens groups in the projection optical system results in what would generally be referred to as having three waists.
  • the waist indicates constrictions within the projection optical system.
  • a first waist is formed in a region of the fourth group of lenses
  • a second waist is formed in a region of the sixth group of lenses
  • a third waist is formed in a region of the eighth group of lenses.
  • the projection optical system comprises an aperture stop.
  • the projection optical system comprises an aperture stop disposed between two lenses of the ninth group of lenses.
  • the ninth group of lenses consists of a first sub-group of lenses that is disposed in between the first object, or more precisely the eighth group of lenses, and the aperture stop and a second sub-group of lenses in between the aperture stop and the second object.
  • the aperture stop may be disposed in any other group of lenses.
  • the aperture stop may be disposed in a part of the projection optical system that is closer to the second object or a part of the projection optical system that is closer to the first object, with the former being preferred.
  • the aperture stop used in embodiments of the present invention may be adjustable.
  • An example of such an aperture is described in U.S. Pat. No. 6,445,510.
  • an effective diameter of any lens in a group of lenses having a total negative refractive power is equal to or smaller than an effective diameter of any lens in a group of lenses which in total has a positive refractive power and is disposed directly adjacent to the respective group of lenses having a total negative refractive power.
  • an immersion type projection exposure system comprising an illumination optical system for generating a light beam of light, a mount for mounting a patterning structure as a first object, a substrate mount for mounting a radiation sensitive substrate as a second object, and the refractive projection optical system according to the first aspect of the present invention for imaging the patterning structure (first object) into a region of the radiation sensitive substrate (second object).
  • patterning structure refers broadly to any means suited for endowing an illuminating light beam with a patterned cross-section, an image of which pattern (of the illuminated patterning structure) is projected onto the substrate.
  • the patterning structure may be a mask or a reticle, for example.
  • Mask or reticle types include binary, attenuating and alternating phase shift types, and various hybrid types.
  • the mask/reticle may transmit or reflect the illumination light beam whilst imparting a patterned cross-section upon it.
  • Programmable mirror arrays are further examples of patterning structures suitable for use with the present invention. One example of such an array is described, for example, in U.S. Pat. No. 5,296,891. An additional example of a programmable mirror array is disclosed in U.S.
  • Programmable LCD arrays are further examples of patterning structures suitable for use with the present invention. Such an array is disclosed in U.S. Pat. No. 5,229,872, for example.
  • light valves or illumination templates are additional terms used in connection with patterning structures.
  • the imaging beam has a wavelength of shorter than 250 nm, preferably shorter than 200 nm.
  • the imaging is performed using the refractive projection optical system as illustrated above.
  • the first imaging comprises: a first expanding of a cross section of an imaging beam downstream of the patterning structure; a first reducing of the cross section of the imaging beam downstream of the first expanding of the cross section; a second expanding of the cross section of the imaging beam downstream of the first reducing of the cross section; and a second reducing of the cross section of the imaging beam downstream of the second expanding of the cross section.
  • the first imaging further comprises: a third expanding of the cross section of the imaging beam downstream of the second reducing of the cross section; and a third reducing of the cross section of the imaging beam downstream of the third expanding of the cross section.
  • the second imaging comprises: a fourth expanding of the cross section of the imaging beam downstream of the intermediate image; a fourth reducing of the cross section of the imaging beam downstream of the fourth expanding of the cross section; a fifth expanding of the cross section of the imaging beam downstream of the fourth reducing of the cross section; and a fifth reducing of the cross section of the imaging beam downstream of the fifth expanding of the cross section; wherein the imaging beam is incident onto the radiation sensitive substrate downstream of the second reducing of the cross section.
  • the imaging of the projection optical system is colour corrected for only a comparatively narrow range of wavelengths adapted to the light source used for generating the radiation for producing the image.
  • An example of such light source is an excimer laser.
  • the projection optical system is monochromatic.
  • substantially all lenses of the projection optical system are made of a same lens material.
  • An example of such lens material is quartz adapted for ultraviolet light applications (SILUV).
  • the present invention also provides a microstructured device manufactured by the above method.
  • FIG. 1 is a schematic illustration of a first exemplary embodiment of a projection optical system according to the present invention
  • FIG. 2 is a schematic illustration of a second exemplary embodiment of a projection optical system according to the present invention.
  • FIG. 3 is a schematic illustration of a third exemplary embodiment of a projection optical system according to the present invention.
  • FIG. 4 is a schematic illustration of a fourth exemplary embodiment of a projection optical system according to the present invention.
  • FIG. 5 shows a detail of FIG. 4 .
  • a first group of lenses LG 1 includes four lenses 1 , 2 , 3 and has positive refractive power; a second group of lenses LG 2 is formed of (single) lens 4 and has negative optical power; the third group of lenses LG 3 includes five lenses 5 , 6 , 7 , 8 , 9 and has positive refractive power; the fourth group of lenses LG 4 includes two lenses 10 , 11 and has negative refractive power; the fifth group of lenses LG 5 includes four lenses 12 , 13 , 14 , 15 and has positive refractive power; the sixth group of lenses LG 6 includes two lenses 16 , 17 and has negative refractive power; the seventh group of lenses LG 7 includes four lenses 18 , 19 , 20 , 21 and has positive refractive power; the eighth group of lenses LG 8 includes three lenses 22 , 23 , 24 and has negative refractive power; and a first subgroup SG 9
  • the first group of lenses LG 1 includes a plane parallel plate 1 , a biconvex lens 2 , a convex meniscus lens 3 ;
  • lens 4 of LG 2 is a biconcave lens;
  • the third group of lenses LG 3 includes a meniscus lens 5 , a nearly planar convex lens 6 , a biconvex lens 7 and two meniscus lenses 8 , 9 ;
  • the fourth group of lenses LG 4 includes two biconcave lenses 10 , 11 , wherein both of those biconcave lenses have one surface which has a greater curvature than a respective second surface and wherein those surfaces of the biconcave lenses which have the greater curvature face each other;
  • the fifth group of lenses LG 5 is a fairly symmetrical arrangement of two convex meniscus lenses 12 , 15 and two biconvex lenses 13 , 14 in between the two meniscus lenses 12 , 15 ;
  • the sixth group of lenses LG 6 includes two biconcave lenses 16 , 17 ;
  • the projection optical system includes 31 lenses.
  • the ninth group of lenses LG 9 also includes an aperture stop in between the first and the second subgroups.
  • a center of an intermediate image is formed within the sixth group of lenses LG 6 , and is located in particular in between the first lens 16 and the second lens 17 of lens group LG 6 . Rays emanating from a point on the optical axis under different angles cross there in one point. It can also be seen in FIG. 1 that rays emanating from points located at a distance from the optical axis do not cross in a single point, due to coma. Therefore, the intermediate image formed is not a perfect “sharp” image.
  • an angle of at least one chief ray of the intermediate image is about 8.6°
  • a longitudinal spherical aberration of the intermediate image is about 13 mm
  • an astigmatism value of the intermediate image is about 30 mm
  • an aberration of the intermediate image is about 9%
  • a RMS of a spot diameter on the optical axis of the projection optical system is about 1 mm
  • a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system is about 16 mm.
  • parameters of the lenses such as thickness of the lens, lens material, radius of curvature of the optical surface and one half of the effective diameter of the lens are listed in Table 1 (radius, thickness and diameter are given in units of mm; the refractive index is given for a wavelength of 193 nm).
  • an indication of a position of aspherical surfaces in the projection optical system and their parameters are given in Table 1.
  • the lens material SILUV indicated in the Tables designates a quartz glass adapted for applications using ultraviolet light.
  • the lens material CAFUV indicated in the Tables designates a calcium fluoride material adapted for applications using ultraviolet light.
  • the exemplary embodiment of an immersion type projection optical system contains 10 aspherical surfaces.
  • the numerical aperture (NA) at the first object is 0.275
  • the numerical aperture (NA) at the intermediate image is 0.267
  • the numerical aperture (NA) at the second object is 1.1.
  • An imaging magnification ⁇ 1 from the first object to the intermediate image is ⁇ 1.032
  • an imaging magnification ⁇ 2 from the intermediate image to the second object is ⁇ 0.242, such that a total magnification ⁇ 1 ⁇ 2 from the first object to the second object is 0.25.
  • FIG. 2 schematically illustrates a second exemplary embodiment of the projection optical system according to the present invention.
  • This embodiment has a numerical aperture of about 1.3.
  • the brackets indicate which lens or which lenses are attributed to which group of lenses.
  • the first group of lenses LG 1 includes two lenses 1 , 2 and has positive refractive power
  • the second group of lenses LG 2 includes only one lens 3 and has negative refractive power
  • the third group of lenses LG 3 includes four lenses 4 , 5 , 6 , 7 and has positive refractive power
  • the fourth group of lenses LG 4 includes two lenses 8 , 9 and has negative refractive power
  • the fifth group of lenses LG 5 includes three lenses 10 , 11 , 12 and has positive refractive power
  • the sixth group of lenses LG 6 includes only one lens 13 and has negative refractive power
  • the seventh group of lenses LG 7 includes four lenses 4 , 15 , 16 , 17 and has positive refractive power
  • the eighth group of lenses LG 8 includes two lenses 18 , 19 and has negative refractive power
  • the ninth group of lenses LG 9 may be subdivided into two subgroups, the first subgroup SG 9 1 comprising the lenses of the ninth group that are disposed in between the first object and the aperture stop (lenses 20 to 23 ) and the second subgroup SG 9 2 comprising the lenses of the ninth group LG 9 that are disposed in between the aperture stop and the second object (lenses 24 to 26 ).
  • the first group of lenses LG 1 includes a plane parallel plate 1 and a substantially plano-convex lens 2 ;
  • the second group of lenses LG 2 includes a biconcave lens 3 , the second group of lenses LG 2 being separated from the first group of lenses LG 1 by a relatively large air gap;
  • the third group of lenses LG 3 includes a meniscus lens 4 , a convex lens 5 and two meniscus lenses 6 , 7 ,
  • the fourth group of lenses LG 4 includes two biconcave lenses 8 , 9 ;
  • the fifth group of lenses LG 5 includes a meniscus lens 10 , a biconvex lens 11 , and a meniscus lens 12 ;
  • the sixth group of lenses LG 5 includes one biconcave lens 13 ,;
  • the seventh group of lenses includes a plano-convex lens 14 , two biconvex lenses 15 , 16 and a meniscus lens 17 ;
  • the eight group of lenses LG 8 includes two biconcave lenses 18 , 19 , and the ninth group
  • the intermediate image is formed in the sixth group of lenses LG 6 .
  • an angle of at least one chief ray of the intermediate image is about 28.5°
  • a longitudinal spherical aberration of the intermediate image is about 0.94 mm
  • an astigmatism value of the intermediate image is about 11.8 mm
  • an aberration of the intermediate image is about ⁇ 2.1%
  • a RMS of a spot diameter on an optical axis of the projection optical system is about 0.6 mm
  • a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system is about 5.1 mm.
  • lens parameters such as thickness of the lens, lens material, radius of the optical surface and the value of one half of the effective diameter of the lens for the second exemplary embodiment are listed in Table 2 (radius, thickness and diameter are given in units of mm; the refractive index is given for a wavelength of 193 nm).
  • index, thickness and diameter are given in units of mm; the refractive index is given for a wavelength of 193 nm).
  • an indication of a position of aspherical surfaces in the projection optical system and their parameters are given in Table 2.
  • a numerical aperture (NA) at the first object is 0.1625
  • the numerical aperture (NA) at the intermediate image is 0.285
  • the numerical aperture (NA) at the second object is 1.3.
  • An imaging magnification ⁇ 1 from the first object to the intermediate image is ⁇ 0.57
  • an imaging magnification ⁇ 2 from the intermediate image to the second object is ⁇ 0.219, such that a total magnification ⁇ 1 ⁇ 2 from the first object to the second object is 0.125.
  • FIG. 3 schematically illustrates a third exemplary embodiment of the projection optical system according to the present invention.
  • the projection optical system shown in FIG. 3 has a similar structure as that shown in FIG. 2 .
  • Optical data of the projection optical system of FIG. 3 are given in Table 3 below.
  • TABLE 3 Lens Refractive 1 ⁇ 2 Lens # Surface Radius Thickness material Index Diameter 0 ⁇ 32.000000000 1.00000000 56.000 1 1 ⁇ 9.994926454 SILUV 1.56049116 61.487 2 ⁇ 0.983970249 1.00000000 62.576 2 3 104.335302767 50.000128595 SILUV 1.56049116 66.908 4 ⁇ 3106.949722908 AS 76.175374387 1.00000000 62.019 3 5 ⁇ 108.162859030 8.996945596 SILUV 1.56049116 43.312 6 145.872762253 AS 26.612977949 1.00000000 43.188 4 7 ⁇ 63.692112581 41.121449191 SILUV 1.56049116 43.598 8 ⁇ 148.694829892 0.999314823 1.00000000 60.533 5 9 ⁇ 1881.227188585 AS 28.600
  • the numerical aperture of this projection optical system at the first object is 0.16875
  • the numerical aperture (NA) at the intermediate image is 0.343875
  • the numerical aperture (NA) at the second object is 1.35
  • An imaging magnification ⁇ 1 from the first object to the intermediate image is ⁇ 0.49
  • imaging magnification ⁇ 2 from the intermediate image to the second object is ⁇ 0.25, such that a total magnification ⁇ 1 ⁇ 2 from the first object to the second object is 0.125.
  • FIG. 4 schematically illustrates a fourth exemplary embodiment of the projection optical system according to the present invention.
  • Optical data of this projection optical system are given in Table 4 below.
  • Table 4 Lens Refractive 1 ⁇ 2 Lens # Surface Radius Thickness Material Index Diameter 0 ⁇ 32.0177 28.04 1 1 219.726108 16.9641 SILUV 1.56049116 40.832 2 ⁇ 516.629235 25.5543 41.534 2 3 ⁇ 67.647606 9.9997 SILUV 1.56049116 42.327 4 ⁇ 260.983067 29.1106 48.384 3 5 ⁇ 55.926810 22.2539 SILUV 1.56049116 49.734 6 ⁇ 92.468456 0.9991 67.142 4 7 ⁇ 767.680932 37.5784 SILUV 1.56049116 82.094 8 ⁇ 131.658929 0.9988 86.014 5 9 286.557516 28.7046 SILUV 1.56049116 94.284 10 ⁇ 524.762011 0.99
  • This projection optical system is designed to be operated with light of a wavelength of 193 nm and has a numerical aperture (NA) at the second object of 1.3.
  • a distance between the first object and second object is 1300 mm.
  • a diameter of the image field is 14.02 mm, and a RMS deviation of a wavefront at the second object is about 8.5 m ⁇ .
  • a caustic of the intermediate image generated in the embodiments illustrated with reference to FIGS. 1, 2 and 3 above extends over plural lenses of the group LG 7 .
  • Those lenses should be manufactured with a particularly high accuracy, in particular with respect to surface roughness and a homogeneity of the lens material.
  • the intermediate image is completely formed in a space between lens 16 and 17 as illustrated in the enlarged partial view of the projection optical system shown in FIG. 5 .
  • the intermediate image is sufficiently corrected to be completely formed outside of lenses of the projection optical system, even though the intermediate image has a significant field curvature as indicated by a broken line in FIG. 5 .
  • a refractive projection optical system for imaging a first object into a region of a second object comprises a plurality of lenses disposed along an imaging beam path of the projection optical system; wherein the projection optical system is configured to have a numerical aperture on a side of the second object of greater than 1 wherein the projection optical system is configured to generate an intermediate image of the first object and to image the intermediate image into the region of the second object, wherein the intermediate image is formed in between the first and second objects.

Abstract

A refractive projection optical system for imaging a first object into a region of a second object comprises a plurality of lenses disposed along an imaging beam path of the projection optical system; wherein the projection optical system is configured to have a numerical aperture on a side of the second object of greater than 1 wherein the projection optical system is configured to generate an intermediate image of the first object and to image the intermediate image into the region of the second object, wherein the intermediate image is formed in between the first and second objects.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a projection optical system, in particular an micro-lithographic projection optical system.
  • 2. Brief Description of Related Art
  • Lithographic processes are commonly used in the manufacture of semiconductor elements, such as integrated circuits (ICs), LSIs, liquid crystal elements, micropatterned members and micromechanical components.
  • A projection exposure apparatus used for photolithography generally comprises an illumination optical system having a light source and a projection optical system. Light from the illumination optical system illuminates a reticle (a first object) having a given pattern, and the projection optical system transfers an image of the reticle pattern, onto a region of a photo-sensitive substrate (a second object). The image of the reticle pattern may also be reduced in size by the projection optical system so as to produce a smaller image of the reticle pattern on the substrate.
  • The trend to ever smaller and more sophisticated miniaturized devices places increasingly high demands on the projection exposure systems and thus projection optical systems used for the manufacture of these devices. In order to achieve higher resolutions in the exposure of substrates, the imaging of the reticle onto the substrate has to be performed with a sufficiently high numerical aperture (NA) on the side of the substrate. Therefore, an increase of the numerical aperture is a decisive factor in the development of improved projection exposure systems.
  • Projection exposure systems having a high numerical aperture are known from US 2003/0007253 A1 and WO 2003/075049 A2 and WO 2005/054956 A2 which documents are incorporated herein by reference.
  • Some conventional projection exposure systems are able to achieve a numerical aperture of greater than 1. One example of such projection exposure systems is referred to as a projection exposure system of the immersion type, known for example from WO 2003/077037 A1, which document is incorporated herein by reference. Another example of such projection exposure system is referred to as a projection exposure system of the near field exposure type or solid immersion type, known for example from WO 2003/077036 A1, which document is incorporated herein by reference.
  • High numerical apertures also bring about a whole range of challenges in terms of a design of the projection optical system. In purely refractive optical systems for projection exposure the requirements for correction of imaging errors, such as aberrations and the like, are increasing with increasing numerical aperture on an image side of the optical system. In addition to the demand for a well corrected wavefront, parameters such as a telecentricity on a reticle side need to be taken into account. These requirements are typically met by using aspherical lenses close to an image side of the projection optical system.
  • Projection optical systems tend to increase in weight and size as the numerical aperture of such systems increases. In particular, diameters of lenses increase to such an extent that they become very expensive and difficult to manufacture, and the manufacture of aspherical lenses of a high diameter and a sufficient accuracy presents particular problems.
  • SUMMARY OF THE INVENTION
  • The present invention has been accomplished taking the above problems into consideration.
  • Embodiments of the present invention provide a projection optical system having a high numerical aperture and having a good imaging performance.
  • Further embodiments of the present invention provide a projection optical system having a high numerical aperture, wherein diameters of lenses used in the projection optical system can be maintained within an acceptable range.
  • Further embodiments of the present invention provide a projection optical system having a numerical aperture higher than 1 and having a good imaging performance.
  • Further embodiments of the present invention provide a projection optical system having a numerical aperture higher than 1, wherein diameters of lenses used in the projection optical system can be maintained within an acceptable range.
  • Further embodiments of the present invention provide an improved method of manufacturing a microstructured device and provide a microstructured device manufactured by such a method.
  • According to an exemplary embodiment of the present invention a refractive projection optical system for imaging a first object into a region of a second object comprises: a plurality of lenses disposed along an imaging beam path of the projection optical system; wherein the projection optical system is configured to have a numerical aperture on a side of the second object of greater than 1; wherein the projection optical system is configured to generate an intermediate image of the first object and to image the intermediate image into the region of the second object, wherein the intermediate image is formed in between the first and second objects.
  • In the context of the present invention, the term refractive optical system refers to systems where substantially all optical powers are provided by refractive lens elements. This is in contrast to a catadioptric optical system having at least one mirror providing a substantial amount of optical power. It is not excluded, however, that the refractive optical system according to the present invention comprises one or more mirrors for folding the beam path through the system to reduce its size, provided that such mirror is sufficiently flat to provide substantially no optical power.
  • According to an exemplary embodiment of the invention the radius of curvature of the mirror of the refractive optical system is greater than 103 m.
  • The present inventors have found that the concept of generating an intermediate image within the refractive optical system allows for an improved imaging quality at a high numerical aperture while maintaining free diameters of the lenses within an acceptable range.
  • The term intermediate image as used herein stands for a real intermediate image, as opposed to a virtual intermediate image.
  • The refractive optical system comprises a plurality of lenses. The plurality of lenses is dividable into a plurality of non-overlapping groups of lenses, such that a total refractive power of each group of lenses is one of a negative refractive power and a positive refractive power, and that a sum of the absolute values of the total refractive powers of the groups is a maximum value.
  • A lens, as used herein, relates to a single lens element and not to an optical system comprised of a plurality of lens elements.
  • A group of lenses, as used herein, may consist of a single lens only or more than one lens.
  • According to an exemplary embodiment, the intermediate image is formed in a region between two adjacent lens groups having positive refractive power, wherein one lens group of negative refractive power may be disposed between these two lens groups of positive refractive power.
  • According to an exemplary embodiment herein, a lens group of negative optical power and a further lens group of positive optical power is disposed between these two lens groups of positive refractive power and the second object.
  • According to a further exemplary embodiment herein, three lens groups of negative, positive and negative optical powers, respectively, are disposed between these two lens groups of positive refractive power and the first object. According to a further alternative exemplary embodiment herein, four lens groups of positive, negative, positive and negative optical powers, respectively, are disposed between these two lens groups of positive refractive power and the first object.
  • According to an exemplary embodiment, the refractive optical system is of an immersion type, having a liquid having a refractive index of greater than one provided in between of the second object and a front lens of the plurality of lenses disposed closest to the second object. Such immersion liquid allows to achieve particular high values of the numerical aperture. As an example of an immersion liquid having a refractive index of greater than one distilled deionized water may be mentioned which has a refractive index of 1.44 at a wavelength of 193 nm.
  • According to an exemplary embodiment, the projection optical system has a numerical aperture that is greater than 1.1.
  • According to other exemplary embodiments, the projection optical system has a numerical aperture that is greater than 1.2 and in particular greater than 1.3.
  • According to exemplary embodiments, an imaging magnification of the optical system is less than 1.0, such that the image formed in the region of the second object is reduced in size as compared to the original provided by the first object.
  • In exemplary embodiments of the projection optical system, an absolute value of a magnification of the imaging of the intermediate image into the region of the second object is less than 0.5.
  • In further exemplary embodiments, an absolute value of a magnification of the imaging of the first object into the intermediate image is greater than 0.5.
  • In further exemplary embodiments, a ratio of a magnification of the imaging of the first object into the intermediate image over a magnification of the imaging of the intermediate image into the region of the second object is in a range of about 2 to 10. For example, the ratio may be in a range of about 2.5 to 4.5, or 3 to 10.
  • The choice of magnification of the imaging of the first object and the imaging of the intermediate image and their ratio may be used as a degree of freedom for achieving an improved design of the immersion type projection optical system.
  • In an exemplary embodiment of the present invention, the projection optical system is divided into two sub-systems: a first subsystem of lenses which is configured to generate a real intermediate image of the first object, and a second sub-system of lenses which generates a reduced size image of the intermediate image in a region of the second object. In particular in those embodiments, there are substantial deviations from telecentricity in a location of the intermediate image in the projection optical system. Such an embodiment is advantageous in that the second sub-system may be designed such that is generates a good wavefront and comprises only lenses having relatively small effective diameters since the parameters telecentricity and aberration are corrected for or determined, respectively, by the first sub-system, which generates an intermediate image at a magnification of about 1. Therefore, one group of imaging errors is corrected in the first sub-system whereas a different group of imaging errors is corrected for in the second sub-system, wherein a combination of the correction of both sub-system not only results in good imaging properties, but also allows a projection optical system having only lenses of a relatively small effective diameter.
  • The imaging of the first object into the intermediate image, in an exemplary embodiment, is such that at least one of the following conditions is fulfilled: an angle of at least one chief ray (as a measure for telecentricity) of the intermediate image is greater than 4°, a longitudinal spherical aberration of the intermediate image is greater than 0.8 mm, an astigmatism value of the intermediate image is greater than 11.0 mm, an aberration of the intermediate image is greater than 1.5%, a RMS (root mean square) of a spot diameter on an optical axis of the projection optical system is greater than 0.5 mm, a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system is greater than 5 mm. In other words, in exemplary embodiments, an intermediate image is not telecentric, or is distorted, or is subject to spherical aberrations, or has coma, or has a chromatic error, or a combination thereof.
  • For example, in some exemplary embodiments, the imaging of the first object into the intermediate image is such that at least one of the following conditions is fulfilled: an angle of at least one chief ray of the intermediate image may be greater than 8°, in particular greater 15°, and in particular greater 25°; a longitudinal spherical aberration of the intermediate image may be greater than 0.9 mm, in particular 12 mm; an astigmatism value of the intermediate image may be greater than or equal to 20 mm, in particular 30 mm; an absolute value of an aberration of the intermediate image may be greater than 2%, in particular 8%; a RMS of a spot diameter on an optical axis of the projection optical system may be greater than 0.6 mm, in particular 1 mm; a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system may be greater than or equal to 10 mm, in particular 16 mm.
  • According to an exemplary embodiment, a RMS (root mean square) deviation of a wavefront at the intermediate image is greater than 10 times a diffraction limit. The diffraction limit may be defined as λ/NA, wherein λ is the wavelength of the light used for imaging and NA is the numerical aperture of the imaging at the intermediate image. For example, if it is assumed that the imaging is performed with spherical wavefronts emerging from the first object, the imaging wavefronts at the intermediate image will be distorted wavefronts deviating from the spherical shape, wherein an RMS value of such deviation may be greater than 10λ/NA.
  • However, such aberration of wavefronts at the intermediate image is compensated for in the imaging of the intermediate image onto the second object. In exemplary embodiments of the invention, the RMS deviation at the second object may be less than λ/(10 NA), wherein NA is the numerical aperture of the imaging at the second object. According to further preferred exemplary embodiments of the invention, the RMS deviation of wavefronts at the second object may be less than λ/(50 NA).
  • According to further exemplary embodiments, the imaging from the first object into the second object is configured such that at least one, or all, of the following conditions is fulfilled: an angle of at least one chief ray of the image is less than 1°; a longitudinal spherical aberration of the image is less than 0.001 mm; an astigmatism value of the image is less than 100 nm; an aberration of the image is less than 0.001%; a RMS of a spot diameter on an optical axis of the projection optical system is less than 0.001 mm; a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system is less than 0.002 mm; and a RMS deviation of a wave front is less than 0.1 times a diffraction limit.
  • In an exemplary embodiment, the projection optical system is rotationally symmetrical, i.e. the plurality of lenses are disposed along an optical axis of the projection optical system such that their centers are located on the optical axis.
  • In an exemplary embodiment, the projection optical system is free of a physical beam splitter, such as a semitransparent mirror.
  • In further exemplary embodiments, the intermediate image has a significant field curvature with a radius of curvature which is less than four times of its free diameter, in particular less than twice its free diameter or less than its free diameter.
  • The term design distance or design length as used herein stands for a distance between the first object and the second object in an operating or exposure mode, i.e. as foreseen by the design of the projection optical system when both the first and the second objects are in focus. If for example, a folded arrangement is used, the distance between the first object and the second object would be represented by a distance between a plane where the first object is disposed in and a plane where the second object is disposed in.
  • In an exemplary embodiment of the present invention, the design length L is greater than about 1100 mm or, preferably greater than about 1300 mm, wherein the embodiment is purely refractive.
  • Embodiments of immersion type projection optical systems generally allow to use lenses having a relatively small effective diameter. In exemplary embodiments of the immersion type projection optical system, an effective diameter of any lens of the plurality of lenses is smaller than 250 mm.
  • The refractive projection optical system having one intermediate image may be divided into lenses that generate the intermediate image, i.e. lenses in between the first object and a location of the intermediate image, and lenses that image the intermediate image, i.e. lenses that are disposed in between the location of the intermediate image and the second object. In exemplary embodiments of the present invention, effective diameters of the lenses that generate the intermediate image are preferably smaller than 220 mm, or effective diameters of the lenses that image the intermediate image are preferably smaller than 245 mm, or both.
  • In an exemplary embodiment of the present invention, the plurality of lenses of the projection optical system is dividable into nine non-overlapping groups of lenses, such that a total refractive power of a first group disposed closest to the first object is a positive refractive power; a total refractive power of a second group disposed directly adjacent to the first group is a negative refractive power; a total refractive power of a third group disposed directly adjacent to the second group is a positive refractive power; a total refractive power of a fourth group disposed directly adjacent to the third group is a negative refractive power; a total refractive power of a fifth group disposed directly adjacent to the fourth group is a positive refractive power; a total refractive power of a sixth group disposed directly adjacent to the fifth group is a negative refractive power; a total refractive power of a seventh group disposed directly adjacent to the sixth group is a positive refractive power; a total refractive power of an eighth group disposed directly adjacent to the seventh group is a negative refractive power; and a total refractive power of a ninth group disposed directly adjacent to the eighth group is a positive refractive power. The grouping of lenses is defined such that a sum of the absolute values of the total refractive powers of the first to ninth groups is a maximum value.
  • Such arrangement of lens groups in the projection optical system results in what would generally be referred to as having three waists. The waist indicates constrictions within the projection optical system. In an exemplary embodiment of the above arrangement of groups of lenses, a first waist is formed in a region of the fourth group of lenses, a second waist is formed in a region of the sixth group of lenses and a third waist is formed in a region of the eighth group of lenses.
  • It is preferred that the projection optical system comprises an aperture stop. In exemplary embodiments, the projection optical system comprises an aperture stop disposed between two lenses of the ninth group of lenses. In those embodiments, the ninth group of lenses consists of a first sub-group of lenses that is disposed in between the first object, or more precisely the eighth group of lenses, and the aperture stop and a second sub-group of lenses in between the aperture stop and the second object.
  • In alternative exemplary embodiments, the aperture stop may be disposed in any other group of lenses. Generally, the aperture stop may be disposed in a part of the projection optical system that is closer to the second object or a part of the projection optical system that is closer to the first object, with the former being preferred.
  • The aperture stop used in embodiments of the present invention may be adjustable. An example of such an aperture is described in U.S. Pat. No. 6,445,510.
  • Preferably, an effective diameter of any lens in a group of lenses having a total negative refractive power is equal to or smaller than an effective diameter of any lens in a group of lenses which in total has a positive refractive power and is disposed directly adjacent to the respective group of lenses having a total negative refractive power.
  • Further embodiments of the present invention provide an immersion type projection exposure system comprising an illumination optical system for generating a light beam of light, a mount for mounting a patterning structure as a first object, a substrate mount for mounting a radiation sensitive substrate as a second object, and the refractive projection optical system according to the first aspect of the present invention for imaging the patterning structure (first object) into a region of the radiation sensitive substrate (second object).
  • The term patterning structure as used herein refers broadly to any means suited for endowing an illuminating light beam with a patterned cross-section, an image of which pattern (of the illuminated patterning structure) is projected onto the substrate. The patterning structure may be a mask or a reticle, for example. Mask or reticle types include binary, attenuating and alternating phase shift types, and various hybrid types. The mask/reticle may transmit or reflect the illumination light beam whilst imparting a patterned cross-section upon it. Programmable mirror arrays are further examples of patterning structures suitable for use with the present invention. One example of such an array is described, for example, in U.S. Pat. No. 5,296,891. An additional example of a programmable mirror array is disclosed in U.S. Pat. No. 5,523,193. Programmable LCD arrays are further examples of patterning structures suitable for use with the present invention. Such an array is disclosed in U.S. Pat. No. 5,229,872, for example. Generally, light valves or illumination templates are additional terms used in connection with patterning structures.
  • In exemplary embodiments of the projection optical system the imaging beam has a wavelength of shorter than 250 nm, preferably shorter than 200 nm.
  • Further embodiments of the present invention provide a method of manufacturing a microstructured device, the method comprising: a first imaging of a patterning structure into an intermediate image of; and a second imaging of the intermediate image of the patterning structure into a region of a radiation sensitive substrate for exposing the radiation sensitive substrate; wherein the second imaging has a numerical aperture on a side of the radiation sensitive substrate of greater than one, and wherein the first imaging and the second imaging is performed by using a refractive projection optical system.
  • According to an exemplary embodiment, the imaging is performed using the refractive projection optical system as illustrated above.
  • According to an exemplary embodiment herein, the first imaging comprises: a first expanding of a cross section of an imaging beam downstream of the patterning structure; a first reducing of the cross section of the imaging beam downstream of the first expanding of the cross section; a second expanding of the cross section of the imaging beam downstream of the first reducing of the cross section; and a second reducing of the cross section of the imaging beam downstream of the second expanding of the cross section.
  • According to an exemplary embodiment herein, the first imaging further comprises: a third expanding of the cross section of the imaging beam downstream of the second reducing of the cross section; and a third reducing of the cross section of the imaging beam downstream of the third expanding of the cross section.
  • According to an exemplary embodiment herein, the second imaging comprises: a fourth expanding of the cross section of the imaging beam downstream of the intermediate image; a fourth reducing of the cross section of the imaging beam downstream of the fourth expanding of the cross section; a fifth expanding of the cross section of the imaging beam downstream of the fourth reducing of the cross section; and a fifth reducing of the cross section of the imaging beam downstream of the fifth expanding of the cross section; wherein the imaging beam is incident onto the radiation sensitive substrate downstream of the second reducing of the cross section.
  • According to further exemplary embodiments, the imaging of the projection optical system is colour corrected for only a comparatively narrow range of wavelengths adapted to the light source used for generating the radiation for producing the image. An example of such light source is an excimer laser.
  • According to an exemplary embodiment, the projection optical system is monochromatic. According to an exemplary embodiment herein, substantially all lenses of the projection optical system are made of a same lens material. An example of such lens material is quartz adapted for ultraviolet light applications (SILUV).
  • In a further aspect, the present invention also provides a microstructured device manufactured by the above method.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing as well as other advantageous features of the invention will be more apparent from the following detailed description of exemplary embodiments of the invention with reference to the accompanying drawings. It is noted that not all possible embodiments of the present invention necessarily exhibit each and every, or any, of the advantages identified herein.
  • FIG. 1 is a schematic illustration of a first exemplary embodiment of a projection optical system according to the present invention;
  • FIG. 2 is a schematic illustration of a second exemplary embodiment of a projection optical system according to the present invention;
  • FIG. 3 is a schematic illustration of a third exemplary embodiment of a projection optical system according to the present invention;
  • FIG. 4 is a schematic illustration of a fourth exemplary embodiment of a projection optical system according to the present invention; and
  • FIG. 5 shows a detail of FIG. 4.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • In the exemplary embodiments described below, components that are alike in function and structure are designated as far as possible by alike reference numerals. Therefore, to understand the features of the individual components of a specific embodiment, the descriptions of other embodiments and of the summary of the invention should be referred to.
  • In FIG. 1, an optical path diagram of a first exemplary embodiment of a projection optical system according to the present invention is depicted. As indicated by the brackets, a first group of lenses LG1 includes four lenses 1, 2, 3 and has positive refractive power; a second group of lenses LG2 is formed of (single) lens 4 and has negative optical power; the third group of lenses LG3 includes five lenses 5, 6, 7, 8, 9 and has positive refractive power; the fourth group of lenses LG4 includes two lenses 10, 11 and has negative refractive power; the fifth group of lenses LG5 includes four lenses 12, 13, 14, 15 and has positive refractive power; the sixth group of lenses LG6 includes two lenses 16, 17 and has negative refractive power; the seventh group of lenses LG7 includes four lenses 18, 19, 20, 21 and has positive refractive power; the eighth group of lenses LG8 includes three lenses 22, 23, 24 and has negative refractive power; and a first subgroup SG 9 1 of the ninth group of lenses LG9 includes three lenses 25, 26, 27 and has positive refractive power, a second subgroup SG 9 2 of the ninth group of lenses LG9 includes four lenses 28, 29, 30, 31 and has also positive refractive power.
  • In particular, in a direction from the first object to the second object, the first group of lenses LG1 includes a plane parallel plate 1, a biconvex lens 2, a convex meniscus lens 3; lens 4 of LG2 is a biconcave lens; the third group of lenses LG3 includes a meniscus lens 5, a nearly planar convex lens 6, a biconvex lens 7 and two meniscus lenses 8, 9; the fourth group of lenses LG4 includes two biconcave lenses 10, 11, wherein both of those biconcave lenses have one surface which has a greater curvature than a respective second surface and wherein those surfaces of the biconcave lenses which have the greater curvature face each other; the fifth group of lenses LG5 is a fairly symmetrical arrangement of two convex meniscus lenses 12, 15 and two biconvex lenses 13, 14 in between the two meniscus lenses 12, 15; the sixth group of lenses LG6 includes two biconcave lenses 16,17; the seventh group of lenses LG7 includes two meniscus lenses 18, 21 and two biconvex lenses 19, 20 in between the two meniscus lenses 18, 21; the eighth group of lenses LG8 includes a meniscus lens 22, a biconcave lens 23 and a concave meniscus lens 24; and the ninth group of lenses LG9 comprises two convex meniscus 25, 26 lenses, two biconvex lenses 27, 28 and two convex meniscus lenses 29, 30 as well as a lens 31 with a convex surface facing in the direction of the first object and a planar surface in a direction of the second object.
  • Overall, the projection optical system includes 31 lenses. The ninth group of lenses LG9 also includes an aperture stop in between the first and the second subgroups.
  • A center of an intermediate image is formed within the sixth group of lenses LG6, and is located in particular in between the first lens 16 and the second lens 17 of lens group LG6. Rays emanating from a point on the optical axis under different angles cross there in one point. It can also be seen in FIG. 1 that rays emanating from points located at a distance from the optical axis do not cross in a single point, due to coma. Therefore, the intermediate image formed is not a perfect “sharp” image.
  • In this exemplary embodiment of the present invention, an angle of at least one chief ray of the intermediate image is about 8.6°, a longitudinal spherical aberration of the intermediate image is about 13 mm, an astigmatism value of the intermediate image is about 30 mm, an aberration of the intermediate image is about 9%, a RMS of a spot diameter on the optical axis of the projection optical system is about 1 mm, a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system is about 16 mm.
  • Detailed information on parameters of the lenses, such as thickness of the lens, lens material, radius of curvature of the optical surface and one half of the effective diameter of the lens are listed in Table 1 (radius, thickness and diameter are given in units of mm; the refractive index is given for a wavelength of 193 nm). In addition, an indication of a position of aspherical surfaces in the projection optical system and their parameters are given in Table 1.
    TABLE 1
    Lens Refractive ½
    Lens# Surface Radius Thickness material Index Diameter
    0 40.000000000 1.00000000 53.000
     1 1 10.000000000 SILUV 1.56049116 64.526
    2 1.000000000 1.00000000 66.329
     2 3 1188.659667350 AS 21.468222523 SILUV 1.56049116 67.830
    4 −325.055504302 1.000000000 1.00000000 68.736
     3 5 155.617006797 22.934934551 SILUV 1.56049116 69.283
    6 727.536884813 18.174889229 1.00000000 67.710
     4 7 −192.646034091 14.999828607 SILUV 1.56049116 67.126
    8  273.881364877 AS 50.665512844 1.00000000 67.600
     5 9 −77.020751690 45.516341012 SILUV 1.56049116 67.888
    10 −114.604649117 1.000000000 1.00000000 92.155
     6 11 −109987.496020000 40.293744935 SILUV 1.56049116 107.213
    12 −208.761364284 1.000000000 1.00000000 109.107
     7 13 312.047113737 37.896771546 SILUV 1.56049116 107.966
    14 −391.379716197 AS 1.000000000 1.00000000 106.562
     8 15 140.792401571 38.279905762 SILUV 1.56049116 94.431
    16 595.044328920 1.000000000 1.00000000 90.332
     9 17 89.636711846 32.204876945 SILUV 1.56049116 70.645
    18 111.608346837 19.054222657 1.00000000 58.330
    10 19 −429.397084300 AS 18.209656873 SILUV 1.56049116 57.080
    20 98.226077778 50.232325179 1.00000000 41.561
    11 21 −61.703307112 11.999904429 SILUV 1.56049116 37.972
    22 1661.483397630 49.691525854 1.00000000 47.513
    12 23 −344.829665657 42.085244023 SILUV 1.56049116 75.077
    24 −107.671909899 1.000000000 1.000000000 81.492
    13 25 227.651221386 37.735333942 SILUV 1.56049116 96.198
    26 −971.294005629 1.000000000 1.00000000 96.695
    14 27 2411.309898770 35.231061101 SILUV 1.56049116 96.779
    28 −172.470493948 AS 1.000000000 1.00000000 96.697
    15 29 127.199282894 35.979585035 SILUV 1.56049116 83.764
    30 590.640003478 22.420160606 1.00000000 79.423
    16 31 −1136.135888880 11.999850457 SILUV 1.56049116 69.651
    32 97.965840133 33.048150980 1.00000000 58.175
    17 33 −150.955637569 11.999737315 SILUV 1.56049116 57.812
    34  119.446001017 AS 28.704766869 1.00000000 59.976
    18 35 −169.101684614 30.810844072 SILUV 1.56049116 60.862
    36 −143.556940908 1.000000000 1.00000000 71.166
    19 37 6059.614308150 27.240629998 SILUV 1.56049116 78.835
    38 −198.152203067 1.000000000 1.00000000 80.968
    20 39  237.266870348 AS 35.744593296 SILUV 1.56049116 84.978
    40 −432.817798201 1.000000000 1.00000000 83.945
    21 41 118.462571930 35.488600864 SILUV 1.56049116 78.566
    42 685.595455023 33.017147840 1.00000000 74.975
    22 43 428.917580057 12.000000000 SILUV 1.56049116 57.406
    44 227.044290939 20.509997540 1.00000000 52.054
    23 45 −102.067563936 AS 10.000000000 SILUV 1.56049116 51.298
    46 101.557348748 41.525133257 1.00000000 49.401
    24 47 −59.061918360 22.768528549 SILUV 1.56049116 49.766
    48 −1043.526546090 AS  16.290454399 1.00000000 78.032
    25 49 −178.935907735 32.555772497 SILUV 1.56049116 79.473
    50 −106.364609023 1.000000000 1.00000000 85.792
    26 51 −632.435188067 39.079252875 SILUV 1.56049116 107.073
    52 −174.987008053 1.000000000 1.00000000 110.790
    27 53 2805.478184950 38.636643743 SILUV 1.56049116 121.294
    54 −294.402220845 14.000000000 1.00000000 122.565
    55 −13.000000000 1.00000000 120.985
    28 56  341.515594164 AS 41.973867680 SILUV 1.56049116 121.957
    57 −613.012676946 1.000000000 1.00000000 121.709
    29 58 186.221573607 40.343551809 SILUV 1.56049116 113.484
    59 854.107417415 0.999662417 1.00000000 110.285
    30 60 118.210352635 35.190252216 SILUV 1.56049116 91.465
    61 221.690971967 1.000000000 1.00000000 85.108
    31 62 93.839361326 85.998752419 SILUV 1.56049116 70.310
    63 1.999818350 Water 1.43680000 15.666
    64 0.000181480 1.00000000 13.250
    Aspherical Surfaces
    Surface 3 Surface 8 Surface 14
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 5.70001135e−008 C1: −2.34985768e−008 C1: 4.54530065e−008
    C2: 9.7673749ge−012 C2: 5.68067165e−012 C2: −2.99107441e−013
    C3: 8.19029831e−017 C3: −1.05424515e−015 C3: 2.61057788e−017
    C4: 8.84893220e−020 C4: 2.80117106e−019 C4: −2.36906603e−023
    C5: −1.76156850e−023 C5: −4.74649134e−023 C5: 2.40679240e−026
    C6: 1.45768927e−0274 C6: 3.78500346e−027 C6: −9.4351673ge−031
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 19 Surface 28 Surface 34
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 2.63529568e−007 C1: 8.72339285e−008 C1: −3.077I5536e−008
    C2: −1.38048336e−011 C2: −5.87555973e−013 C2: 2.82667732e−012
    C3: 9.47230160e−016 C3: 3.69484334e−017 C3: −3.58560604e−015
    C4: −1.39516446e−019 C4: −8.29838683e−022 C4: 4.34984764e−019
    C5: 3.34855694e−023 C5: 2.8II5454ge−026 C5: −7.279I4300e−024
    C6: −2.5433053ge−027 C6: 1.10167667e−031 C6: −1.84976566e−027
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 39 Surface 45 Surface 48
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 5.07I96594e−008 C1: 2.I7356870e−007 C1: 4.82747886e−009
    C2: 1.34564781−012 C2: −3.86297236e−011 C2: −7.95248576e−012
    C3: −7.71337598e−017 C3: 4.28396866e−015 C3: 9.I45I327Ie−016
    C4: −4.89233493e−021 C4: 3.30679772e−019 C4: −4.70224273e−020
    C5: 2.48728554e−025 C5: −1.4595826ge−022 C5: −3.I9828820e−025
    C6: −1.07698735e−030 C6: −4.8394607ge−027 C6: 6.66424710e−029
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 56
    K: 0:0000
    C1: −8.46890011e−009
    C2: −8.6627038ge−014
    C3: −2.06359620e−018
    C4: 7.65545904e−023
    C5: −3.32533536e−028
    C6: −2.692I0340e−032
    C7: 0.00000000e+000
    C8: 0.00000000e+000
    C9: 0.00000000e+000
  • An aspherical surface can be characterised by the following equation: p ( h ) = h 2 r 1 + 1 - ( 1 + K ) h 2 r 2 + C 1 · h 4 + C 2 · h 6 +
    wherein
    • r is radius of curvature in the apex of the aspherical surface (paraxial curvature),
    • h is a distance of a point on the aspherical surface from the optical axis (or height of the aspherical surface from the optical axis),
    • p(h) is the sag of the surface in axial direction, i.e. a distance along the direction of the optical axis from a tangent plane to a vertex of the aspheric surface,
    • K is a conical coefficient and
    • C1 . . . C6 are aspherical coefficients.
  • The lens material SILUV indicated in the Tables designates a quartz glass adapted for applications using ultraviolet light. The lens material CAFUV indicated in the Tables designates a calcium fluoride material adapted for applications using ultraviolet light.
  • As evident from Table 1, the exemplary embodiment of an immersion type projection optical system contains 10 aspherical surfaces.
  • The numerical aperture (NA) at the first object is 0.275, the numerical aperture (NA) at the intermediate image is 0.267, and the numerical aperture (NA) at the second object is 1.1. An imaging magnification β1 from the first object to the intermediate image is −1.032, an imaging magnification β2 from the intermediate image to the second object is −0.242, such that a total magnification β1·β2 from the first object to the second object is 0.25.
  • FIG. 2 schematically illustrates a second exemplary embodiment of the projection optical system according to the present invention. This embodiment has a numerical aperture of about 1.3. The brackets indicate which lens or which lenses are attributed to which group of lenses. The first group of lenses LG1 includes two lenses 1, 2 and has positive refractive power, the second group of lenses LG2 includes only one lens 3 and has negative refractive power, the third group of lenses LG3 includes four lenses 4, 5, 6, 7 and has positive refractive power, the fourth group of lenses LG4 includes two lenses 8, 9 and has negative refractive power, the fifth group of lenses LG5 includes three lenses 10, 11, 12 and has positive refractive power, the sixth group of lenses LG6 includes only one lens 13 and has negative refractive power, the seventh group of lenses LG7 includes four lenses 4, 15, 16, 17 and has positive refractive power, the eighth group of lenses LG8 includes two lenses 18, 19 and has negative refractive power and the ninth group of lenses LG9 includes seven lenses 20, 21, 22, 23, 24, 25, 25 and has positive refractive power. The ninth group of lenses LG9 may be subdivided into two subgroups, the first subgroup SG 9 1 comprising the lenses of the ninth group that are disposed in between the first object and the aperture stop (lenses 20 to 23) and the second subgroup SG 9 2 comprising the lenses of the ninth group LG9 that are disposed in between the aperture stop and the second object (lenses 24 to 26).
  • In particular, in a direction from the first object to the second object, the first group of lenses LG1 includes a plane parallel plate 1 and a substantially plano-convex lens 2; the second group of lenses LG2 includes a biconcave lens 3, the second group of lenses LG2 being separated from the first group of lenses LG1 by a relatively large air gap; the third group of lenses LG3 includes a meniscus lens 4, a convex lens 5 and two meniscus lenses 6, 7, the fourth group of lenses LG4 includes two biconcave lenses 8, 9; the fifth group of lenses LG5 includes a meniscus lens 10, a biconvex lens 11, and a meniscus lens 12; the sixth group of lenses LG5 includes one biconcave lens 13,; the seventh group of lenses includes a plano-convex lens 14, two biconvex lenses 15, 16 and a meniscus lens 17; the eight group of lenses LG8 includes two biconcave lenses 18, 19, and the ninth group of lenses LG5 includes two meniscus lenses 20, 21, two biconvex lenses 22, 23, two meniscus lenses 24, 25 and a plano-convex lens 26. This projection optical system is further characterized in that the lenses in the first, third, fifth and seventh groups of lenses each have relatively small diameters.
  • In the second exemplary embodiment, the intermediate image is formed in the sixth group of lenses LG6. In this exemplary embodiment of the present invention, an angle of at least one chief ray of the intermediate image is about 28.5°, a longitudinal spherical aberration of the intermediate image is about 0.94 mm, an astigmatism value of the intermediate image is about 11.8 mm, an aberration of the intermediate image is about −2.1%, a RMS of a spot diameter on an optical axis of the projection optical system is about 0.6 mm, a RMS of a spot diameter at a field point farthest away from the optical axis of the projection optical system is about 5.1 mm.
  • Detailed information on lens parameters such as thickness of the lens, lens material, radius of the optical surface and the value of one half of the effective diameter of the lens for the second exemplary embodiment are listed in Table 2 (radius, thickness and diameter are given in units of mm; the refractive index is given for a wavelength of 193 nm). In addition, an indication of a position of aspherical surfaces in the projection optical system and their parameters are given in Table 2.
    TABLE 2
    Lens Refractive ½
    Lens # Surface Radius Thickness material Index Diameter
     0 0 32.000000000 1.00000000 56.000
     1 1 10.000000000 SILUV 1.56049116 61.280
    2 1.000000000 1.00000000 63.329
     2 3 100.733544514 62.667723686 SILUV 1.56049116 66.653
    4 32022.952347600 AS  70134547178 1.00000000 58.743
     3 5 −84.779999894 9.000000000 SILUV 1.56049116 41.640
    6  124.100395299 AS 27.042753966 1.00000000 42.594
     4 7 −58.387067887 32.224091935 SILUV 1.56049116 42.973
    8 −89.495828338 1.000000000 1.00000000 57.226
     5 9  637.424312309 AS 31.249717824 SILUV 1.56049116 63.302
    10 −125.457411370 1.000000000 1.00000000 66.789
     6 11 87.142282901 43.194516336 SILUV 1.56049116 71.140
    12 277.245672397 1.000000000 1.00000000 65.566
     7 13 65.650106643 37.378396547 SILUV 1.56049116 54.716
    14 70.641087666 17.179300000 1.00000000 39.429
     8 15 −222.806366019 10.000000000 SILUV 1.56049116 37.867
    16 148.946283435 10.386040060 1.00000000 32.053
     9 17 −110.856025103 10.000000000 SILUV 1.56049116 31.056
    18 −441.185155014 AS 60.806885163 1.00000000 33.310
    10 19 −115.871220561 29.971002452 SILUV 1.56049116 54.778
    20 −67.675896231 1.000000000 1.00000000 59.166
    11 21 122.823548172 27.522471538 SILUV 1.56049116 57.550
    22 −309.184286918 AS 0.600000000 1.00000000 55.548
    12 23 90.971070084 53.606853082 SILUV 1.56049116 48.656
    24 53.484081747 14.538911633 1.00000000 26.876
    13 25 −79.033769110 10.000000000 SILUV 1.56049116 26.339
    26  72.653436508 AS 38.345474204 1.00000000 28.975
    14 27 −2900.861854210 34.681904182 SILUV 1.56049116 46.375
    28 −89.912398367 1.000000000 1.00000000 52.359
    15 29 185.647971655 43.084526832 SILUV 1.56049116 55.946
    30 −575.357419176 1.000000000 1.00000000 55.177
    16 31  564.297938029 AS 37.364414663 SILUV 1.56049116 55.662
    32 −353.745030574 1.000000000 1.00000000 54.497
    17 33 72.220793243 33.554938963 SILUV 1.56049116 50.519
    34 135.919156304 22.801797274 1.00000000 42.367
    18 35 −559.501580107 AS 10.000000000 SILUV 1.56049116 36.79619
    36 55.246497668 24.571144054 1.00000000 33.677
    19 37 −57.654090614 12.000001146 SILUV 1.56049116 34.184
    38  81.435897123 AS 23.389527676 1.00000000 47.984
    20 39 −138.774239558 24.397599913 SILUV 1.56049116 52.581
    40 −101.724186955 1.000000000 1.00000000 63.478
    21 41 −219.325940773 33.639467701 SILUV 1.56049116 73.220
    42 −115.213916303 0.999998360 1.00000000 81.562
    22 43 1392.045998250 58.673748551 SILUV 1.56049116 101.704
    44 −203.620511778 1.000000000 1.00000000 108.306
    23 45  231.429869259 AS 58.933085574 SILUV 1.56049116 113.649
    46 −272.100613336 33.533113389 1.00000000 113.307
    47 −32.533113389 1.00000000 93.345
    24 48 134.670223347 34.693999198 SILUV 1.56049116 92.605
    49  336.731245700 AS 1.000000000 1.00000000 88.261
    25 50 87.745787808 31.038932143 SILUV 1.56049116 71.327
    51  157.022439156 AS 1.000000000 1.00000000 64.932
    26 52 41.017420667 47.655583536 CAFUV 1.50110592 40.098
    53 3.000000000 H2O 1.43680000 13.439
    54 0.000000000 1.00000000 7.000
    Aspherical Surfaces
    Surface 4 Surface 6 Surface 9
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 6.91762547e−008 C1: −4.27433833e−007 C1: −2.70725252e−007
    C2: −1.00821998e−012 C2: 9.24619398e−011 C2: 7.89014814e−012
    C3: 8.22439961e−016 C3: −6.99952985e−014 C3: −1.45142628e−015
    C4: −1.26146197e−019 C4: 3.04240551e−017 C4: −2.26439260e−019
    C5: −5.92492144e−024 C5: −8.56628971e−021 C5: 7.10185165e−023
    C6: 1.68627707e−027 C6: 6.04286715e−025 C6: −1.37233277e−026
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 18 Surface 22 Surface 26
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 1.13326160e−006 C1: 1.86984594e−007 C1: −1.22627425e−007
    C2: 4.69642710e−010 C2: −7.47098219e−012 C2: −1.73570760e−011
    C3: 1.93983951e−013 C3: 7.81949424e−016 C3: 1.56978236e−014
    C4: 3.77234480e−017 C4: −1.23355413e−019 C4: −1.27740748e−016
    C5: 1.20657590e−020 C5: 1.39727008e−023 C5: 9.41034563e−020
    C6: 1.10191897e−023 C6: 1.72439306e−028 C6: −2.50468463e−023
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 31 Surface 35 Surface 38
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 1.43703293e−007 C1: −1.42590228e−006 C1: −1.21758383e−006
    C2: 1.13355487e−011 C2: −1.97387056e−010 C2: 2.25752422e−011
    C3: −6.75460046e−016 C3: 4.78455973e−014 C3: 1.11782472e−014
    C4: −7.03138870e−020 C4: 1.62503154e−017 C4: −5.16089164e−018
    C5: −1.74001972e−023 C5: 2.50774387e−020 C5: 5.93762703e−022
    C6: 1.93426816e−027 C6: −1.12531033e−027 C6: −5.20615255e−026
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 45 Surface 49 Surface 51
    K: 0:0000 K: 0:0000 K: 0:0000
    C1: −3.74737153e−008 C1: −5.35416508e−009 C1: −6.44904425e−008
    C2: −7.62435274e−013 C2: 5.84206555e−013 C2: −7.20142509e−012
    C3: −6.93980539e−018 C3: −1.02043747e−016 C3: 6.07409160e−016
    C4: −4.33525846e−022 C4: −2.70496897e−020 C4: 9.20273534e−019
    C5: 8.52520503e−026 C5: 1.68712776e−024 C5: −1.85277777e−022
    C6: −2.83405796e−030 C6: −3.20799816e−030 C6: 1.48428230e−026
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
  • A numerical aperture (NA) at the first object is 0.1625, the numerical aperture (NA) at the intermediate image is 0.285, and the numerical aperture (NA) at the second object is 1.3. An imaging magnification β1 from the first object to the intermediate image is −0.57, an imaging magnification β2 from the intermediate image to the second object is −0.219, such that a total magnification β1·β2 from the first object to the second object is 0.125.
  • FIG. 3 schematically illustrates a third exemplary embodiment of the projection optical system according to the present invention. The projection optical system shown in FIG. 3 has a similar structure as that shown in FIG. 2.
  • Optical data of the projection optical system of FIG. 3 are given in Table 3 below.
    TABLE 3
    Lens Refractive ½
    Lens # Surface Radius Thickness material Index Diameter
    0 32.000000000 1.00000000 56.000
     1 1 9.994926454 SILUV 1.56049116 61.487
    2 0.983970249 1.00000000 62.576
     2 3 104.335302767 50.000128595 SILUV 1.56049116 66.908
    4 −3106.949722908 AS  76.175374387 1.00000000 62.019
     3 5 −108.162859030 8.996945596 SILUV 1.56049116 43.312
    6  145.872762253 AS 26.612977949 1.00000000 43.188
     4 7 −63.692112581 41.121449191 SILUV 1.56049116 43.598
    8 −148.694829892 0.999314823 1.00000000 60.533
     5 9 −1881.227188585 AS  28.600200276 SILUV 1.56049116 62.871
    10 −100.640093152 0.998292928 1.00000000 66.648
     6 11 93.310678254 42.633131227 SILUV 1.56049116 74.614
    12 330.638332368 0.996803092 1.00000000 70.108
     7 13 65.552800218 30.873146207 SILUV 1.56049116 57.917
    14 105.866610652 13.963247135 1.00000000 50.783
     8 15 367.134055921 9.793129426 SILUV 1.56049116 46.925
    16 107.242761257 16.571541756 1.00000000 38.861
     9 17 −125.867739347 8.997719804 SILUV 1.56049116 36.093
    18  176.780711857 AS 61.484433369 1.00000000 33.520
    10 19 −102.551788067 37.043696332 SILUV 1.56049116 52.676
    20 −67.900979720 0.997513775 1.00000000 60.304
    11 21 122.872438500 27.058733851 SILUV 1.56049116 58.037
    22 −318.215075265 AS 0.998963808 1.00000000 56.115
    12 23 88.799497079 51.427075983 SILUV 1.56049116 48.524
    24 53.527140946 17.646941838 1.00000000 26.980
    13 25 −80.288767257 8.996807285 SILUV 1.56049116 26.963
    26  73.896625355 AS 37.739389033 1.00000000 29.546
    14 27 −2111.719991198 33.548344902 SILUV 1.56049116 46.806
    28 −90.879698694 2.062998346 1.00000000 52.624
    15 29 207.677300574 36.682295744 SILUV 1.56049116 56.675
    30 −950.438335639 4.239364713 1.00000000 56.460
    16 31  412.576525922 AS 35.094990292 SILUV 1.56049116 55.932
    32 −288.898999836 2.054606078 1.00000000 54.344
    17 33 72.294412199 33.413205228 SILUV 1.56049116 50.689
    34 126.924823744 23.263607131 1.00000000 42.670
    18 35 −610.144871693 AS 9.004431664 SILUV 1.56049116 37.723
    36 56.861698660 29.493986876 1.00000000 35.203
    19 37 −56.969571039 8.997309770 SILUV 1.56049116 36.575
    38  99.784593360 AS 27.465223390 1.00000000 51.821
    20 39 −117.765690318 48.249958252 SILUV 1.56049116 57.605
    40 −90.269492866 0.773643744 1.00000000 77.087
    21 41 −875.910732301 42.249248610 SILUV 1.56049116 104.385
    42 −172.604598891 0.974038994 1.00000000 108.929
    22 43 803.097825670 41.021577890 SILUV 1.56049116 123.629
    44 −376.629540438 30.903940303 1.00000000 124.899
    23 45 287.536526769 55.352280753 SILUV 1.56049116 125.000
    46 −397.989329067 AS 40.345224742 1.00000000 123.309
    47 −39.345382978 1.00000000 100.204
    24 48 237.819815616 30.589038976 SILUV 1.56049116 106.035
    49 1105.595513606 AS 0.999299763 1.00000000 100.156
    25 50 86.934183491 45.380148828 SILUV 1.56049116 77.957
    51  170.242472558 AS 0.997963011 1.00000000 69.126
    27 52 45.257566696 49.528196203 SILUV 1.56049116 43.217
    53 1.974724574 H2O 1.43680000 12.491
    54 0.000000000 1.00000000 7.003
    Aspherical Surfaces
    Surface 4 Surface 6 Surface 9
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 5.79209182e−008 C1: −3.44646611e−007 C1: −3.73442666e−007
    C2: −6.37791028e−013 C2: 8.59385562e−011 C2: 1.43445552e−011
    C3: 3.44372255e−016 C3: −6.71616375e−014 C3: −3.17190498e−015
    C4: −8.85599631e−020 C4: 3.03855181e−017 C4: −2.26702756e−020
    C5: 1.08570138e−023 C5: −8.55350273e−021 C5: 4.11927181e−023
    C6: −6.96227825e−028 C6: 6.00036028e−025 C6: −1.38156455e−026
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 18 Surface 22 Surface 26
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 1.18777440e−006 C1: 1.71075626e−007 C1: −1.10154860e−007
    C2: 4.35580377e−010 C2: −7.64005086e−012 C2: 9.17734618e−012
    C3: 1.88404875e−013 C3: 7.08908253e−016 C3: 1.76187633e−014
    C4: 3.83721549e−017 C4: −1.37311020e−019 C4: −1.28147141e−016
    C5: 1.20493249e−020 C5: 2.02367340e−023 C5: 9.40704126e−020
    C6: 1.10378361e−023 C6: −1.15655593e−027 C6: −2.50493002e−023
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 31 Surface 35 Surface 38
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 1.55330372e−007 C1: −1.37333522e−006 C1: −9.81476763e−007
    C2: 1.27330720e−011 C2: −2.24444706e−010 C2: 2.91363587e−011
    C3: −6.68035467e−016 C3: 4.91877012e−014 C3: 1.01744933e−014
    C4: −1.73835192e−019 C4: 1.64123170e−017 C4: −4.68579579e−018
    C5: 4.68772334e−025 C5: 2.50741808e−020 C5: 6.42028822e−022
    C6: 1.16194092e−027 C6: −1.12492432e−023 C6: −4.96400088e−026
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
    Surface 46 Surface 49 Surface 51
    K: 0.0000 K: 0.0000 K: 0.0000
    C1: 6.28883670e−009 C1: 5.08335169e−008 C1: −1.57589741e−007
    C2: −5.65369265e−014 C2: −8.36178137e−013 C2: 2.00244046e−011
    C3: 3.85725582e−017 C3: 1.52685373e−017 C3: −2.81721098e−015
    C4: 2.41064866e−022 C4: −7.56691426e−021 C4: 1.09133188e−018
    C5: −1.06036768e−025 C5: −1.10112578e−024 C5: −1.77818931e−022
    C6: 3.55992142e−030 C6: 6.92008272e−029 C6: 1.21644794e−026
    C7: 0.00000000e+000 C7: 0.00000000e+000 C7: 0.00000000e+000
    C8: 0.00000000e+000 C8: 0.00000000e+000 C8: 0.00000000e+000
    C9: 0.00000000e+000 C9: 0.00000000e+000 C9: 0.00000000e+000
  • The numerical aperture of this projection optical system at the first object is 0.16875, the numerical aperture (NA) at the intermediate image is 0.343875, and the numerical aperture (NA) at the second object is 1.35. An imaging magnification β1 from the first object to the intermediate image is −0.49, and imaging magnification β2 from the intermediate image to the second object is −0.25, such that a total magnification β1·β2 from the first object to the second object is 0.125.
  • FIG. 4 schematically illustrates a fourth exemplary embodiment of the projection optical system according to the present invention. Optical data of this projection optical system are given in Table 4 below.
    TABLE 4
    Lens Refractive ½
    Lens # Surface Radius Thickness Material Index Diameter
    0 32.0177 28.04
     1 1 219.726108 16.9641 SILUV 1.56049116 40.832
    2 −516.629235 25.5543 41.534
     2 3 −67.647606 9.9997 SILUV 1.56049116 42.327
    4 −260.983067 29.1106 48.384
     3 5 −55.926810 22.2539 SILUV 1.56049116 49.734
    6 −92.468456 0.9991 67.142
     4 7 −767.680932 37.5784 SILUV 1.56049116 82.094
    8 −131.658929 0.9988 86.014
     5 9 286.557516 28.7046 SILUV 1.56049116 94.284
    10 −524.762011 0.9983 94.07
     6 11 179.876647 39.2566 SILUV 1.56049116 94.422
    12 −1720.456551 0.9987 92.365
     7 13 81.367631 46.6132 SILUV 1.56049116 73.745
    14 214.457507 10.7815 65.879
     8 15 988.155084 9.9989 SILUV 1.56049116 61.001
    16 44.128228 58.8087 39.687
     9 17 −54.499122 21.1959 SILUV 1.56049116 37.928
    18 779.716415 7.4192 58.019
    10 19 −2380.510542 41.7009 SILUV 1.56049116 63.429
    20 −116.856539 7.1183 73.297
    11 21 374.105752 27.3570 SILUV 1.56049116 95.272
    22 −939.498386 0.9989 97.02
    12 23 1698.857072 35.5054 SILUV 1.56049116 98.937
    24 −232.675275 0.9998 100.079
    13 25 −637.737295 29.4950 SILUV 1.56049116 98.687
    26 −154.955797 1.6682 98.696
    14 27 143.644278 43.3863 SILUV 1.56049116 82.611
    28 −4991.975215 33.6199 75.464
    15 29 −135.548808 10.0009 SILUV 1.56049116 58.898
    30 −135.939439 15.7718 57.063
    16 31 −155.550081 9.9994 SILUV 1.56049116 39.631
    32 59.823981 34.9249 32.76
    33 40.944395 44.6217 30.661
    17 34 −78.015171 17.8868 SILUV 1.56049116 43.479
    35 −103.229933 0.9990 53.465
    18 36 748.407674 34.9736 SILUV 1.56049116 64.921
    37 −114.726548 0.9986 68.235
    19 38 155.876376 36.7930 SILUV 1.56049116 73.693
    39 −322.561694 0.9993 72.589
    20 40 82.043143 24.2651 SILUV 1.56049116 60.783
    41 123.218503 14.1941 55.017
    21 42 501.513595 9.9987 SILUV 1.56049116 52.632
    43 108.394643 23.2241 45.918
    22 44 −108.072241 9.9973 SILUV 1.56049116 44.309
    45 75.853522 43.3152 42.433
    23 46 −49.580063 10.4777 SILUV 1.56049116 43.795
    47 −135.624067 16.3741 61.989
    24 48 −127.749898 50.3510 SILUV 1.56049116 69.632
    49 −93.339527 1.9988 84.556
    25 50 −230.459673 31.7216 SILUV 1.56049116 100.287
    51 −145.921184 0.9986 105.092
    26 52 438.084235 34.1859 SILUV 1.56049116 119.607
    53 −958.216153 0.9985 119.996
    27 54 148.780263 56.2561 SILUV 1.56049116 119.317
    55 1006.690104 17.5434 115.143
    56 −16.5440 113.484
    28 57 121.754105 46.1167 SILUV 1.56049116 101.339
    58 364.980240 1.0000 94.888
    29 59 92.745174 44.9633 SILUV 1.56049116 76.661
    60 162.095006 1.0000 61.07
    30 61 79.550539 21.2760 SILUV 1.56049116 50.022
    62 52.213824 1.0000 33.7
    31 63 38.877117 23.2198 SILUV 1.56049116 28.052
    64 1.9981 H2O 1.43680000 11.206
    65 0.0000 0.00 7.01
    SRF
    1 4 10 15 26
    K 0 0 0 0 0
    C1 4.949385E−07 −3.024420E−08 6.269111E−08 1.261175E−07 8.504929E−08
    C2 −4.367642E−11 −5.916383E−11 1.324406E−12 8.971294E−12 −7.030475E−14
    C3 4.465807E−14 5.552973E−15 −4.683596E−17 −3.260724E−15 −2.810798E−17
    C4 −8.750418E−18 6.922767E−19 7.650166E−21 −8.196181E−20 9.597806E−21
    C5 2.122243E−21 −2.973575E−22 −5.793979E−25 1.052835E−22 −4.197615E−25
    C6 3.823785E−25 1.235469E−25 1.724683E−29 −1.037823E−26 1.026003E−29
    SRF
    33 36 43 47 55
    K −4.00584 0 0 0 0
    C1 0.000000E+00 −1.247396E−08 −3.505754E−08 3.209461E−07 4.027043E−08
    C2 0.000000E+00 1.139915E−12 −8.285113E−13 −1.311727E−11 −9.830902E−13
    C3 0.000000E+00 −1.179022E−15 −3.632752E−15 −6.000578E−15 3.287892E−17
    C4 0.000000E+00 1.461992E−19 −7.761827E−18 3.031884E−19 8.492315E−21
    C5 0.000000E+00 −2.604272E−24 2.347772E−21 1.642062E−22 −6.295963E−25
    C6 0.000000E+00 −6.658674E−28 −6.931183E−25 −2.108137E−26 1.638768E−29
    SRF
    58 60 62
    K 0 0 0
    C1 6.832442E−08 −3.313614E−07 −1.637842E−06
    C2 5.874159E−12 1.413471E−10 −1.031046E−09
    C3 −7.216686E−16 −2.638118E−14 8.964353E−13
    C4 −6.194479E−21 3.624962E−18 1.249258E−16
    C5 1.981698E−24 −2.616814E−22 −4.210636E−19
    C6 −3.629080E−29 1.122394E−27 1.742133E−22
  • This projection optical system is designed to be operated with light of a wavelength of 193 nm and has a numerical aperture (NA) at the second object of 1.3. A distance between the first object and second object is 1300 mm. A diameter of the image field is 14.02 mm, and a RMS deviation of a wavefront at the second object is about 8.5 mλ.
  • A caustic of the intermediate image generated in the embodiments illustrated with reference to FIGS. 1, 2 and 3 above extends over plural lenses of the group LG7. Those lenses should be manufactured with a particularly high accuracy, in particular with respect to surface roughness and a homogeneity of the lens material.
  • In the embodiment shown in FIG. 4, the intermediate image is completely formed in a space between lens 16 and 17 as illustrated in the enlarged partial view of the projection optical system shown in FIG. 5. Thus, in this embodiment, the intermediate image is sufficiently corrected to be completely formed outside of lenses of the projection optical system, even though the intermediate image has a significant field curvature as indicated by a broken line in FIG. 5.
  • Summarized, a refractive projection optical system for imaging a first object into a region of a second object comprises a plurality of lenses disposed along an imaging beam path of the projection optical system; wherein the projection optical system is configured to have a numerical aperture on a side of the second object of greater than 1 wherein the projection optical system is configured to generate an intermediate image of the first object and to image the intermediate image into the region of the second object, wherein the intermediate image is formed in between the first and second objects.
  • While the invention has been described with respect to certain exemplary embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the exemplary embodiments of the invention set forth herein are intended to be illustrative and not limiting in any way. Various changes may be made without departing from the spirit and scope of the present invention as defined in the following claims.

Claims (20)

1-30. (canceled)
31. A projection optical system used for an exposure apparatus to projecting a reduced size of an image of an object onto an image plane, said projection optical system comprising plural refractive elements that dispense with a reflective element having a substantial optical power, wherein said projection optical system forms an intermediate image.
32. The projection optical system according to claim 31, wherein only the plural refractive elements have optical powers in said projection optical system.
33. The projection optical system according to claim 31, wherein said projection optical system has a numerical aperture of 1.1 or greater.
34. The projection optical system according to claim 31, wherein a maximum effective diameter of said projection optical system divided by an overall length of said projection optical system is equal to or smaller than 0.20.
35. The projection optical system according to claim 31, wherein a maximum effective diameter of said projection optical system divided by an overall length of said projection optical system is equal to or smaller than 0.25.
36. The projection optical system according to claim 31, wherein −1.50≦β1≦−0.50, where β1 is a magnification of a first imaging system for forming an intermediate image in said projection optical system.
37. The projection optical system according to claim 31, wherein −1.50≦β1≦−0.40, where β1 is a magnification of a first imaging system for forming an intermediate image in said projection optical system.
38. The projection optical system according to claim 31, wherein said projection optical system is substantially telecentric both at object side and image side.
39. The projection optical system according to claim 31, wherein a distance between the image plane and an optical surface of said projection optical system closest to the image plane is 20 mm or smaller.
40. The projection optical system according to claim 31, wherein said projection optical system includes, in order from an object side to an image side, first, second, third and fourth units having optically positive powers, a first pupil being formed between the first and second units, the intermediate image being formed between the second and third units, and a second pupil being formed between the third and fourth units.
41. The projection optical system according to claim 31, wherein said projection optical system includes, in order from an object side to an image side, first, second, third and fourth units, at least three units having optically positive powers, a first pupil being formed between the first and second units, the intermediate image being formed between the second and third units, and a second pupil being formed between the third and fourth units.
42. The projection optical system according to claim 31, wherein said projection optical system includes, in order from an object side to an image side, first, second, third and fourth units, the first, second and fourth units having optically positive powers, a first pupil being formed between the first and second units, the intermediate image being formed between the second and third units, and a second pupil being formed between the third and fourth units.
43. The projection optical system according to claim 42, wherein said projection optical system consists of the first, second, third and fourth units.
44. The projection optical system according to claim 42, wherein at least three of the first, second, third and fourth units include a negative lens.
45. The projection optical system according to claim 42, wherein each of the first, second, and third units includes a negative lens.
46. The projection optical system according to claim 42, wherein f1≧f4, and f3≧f4 are met, where f1 denotes a focal length of the first unit, f2 denotes a focal length of the second unit, f3 denotes a focal length of the third unit, and f4 denotes a focal length of the fourth unit.
47. The projection optical system according to claim 42, wherein 0.078≦f1≦0.15, 0.055≦f2/L≦1.917, 0.084≦f3/L≦0.276, 0.056≦f4/L≦0.066 are met, where f1 denotes an absolute value of a focal length of the first unit, f2 denotes an absolute value of a focal length of the second unit, f3 denotes an absolute value of a focal length of the third unit, and f4 denotes an absolute value of a focal length of the fourth unit.
48. An exposure apparatus comprising:
an illumination optical system for illuminating an original from light from a light source; and
a projection optical system according to claim 31 for projecting a pattern of the original onto an object to be exposed.
49. A device manufacturing method comprising the steps of:
exposing an object using an exposure apparatus according to claim 48; and
developing the object that has been exposed.
US11/944,850 2004-09-03 2007-11-26 Projection optical system and method Abandoned US20080068705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/944,850 US20080068705A1 (en) 2004-09-03 2007-11-26 Projection optical system and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60707504P 2004-09-03 2004-09-03
US11/219,594 US7301707B2 (en) 2004-09-03 2005-09-01 Projection optical system and method
US11/944,850 US20080068705A1 (en) 2004-09-03 2007-11-26 Projection optical system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/219,594 Continuation US7301707B2 (en) 2004-09-03 2005-09-01 Projection optical system and method

Publications (1)

Publication Number Publication Date
US20080068705A1 true US20080068705A1 (en) 2008-03-20

Family

ID=36163670

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/219,594 Active US7301707B2 (en) 2004-09-03 2005-09-01 Projection optical system and method
US11/944,850 Abandoned US20080068705A1 (en) 2004-09-03 2007-11-26 Projection optical system and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/219,594 Active US7301707B2 (en) 2004-09-03 2005-09-01 Projection optical system and method

Country Status (2)

Country Link
US (2) US7301707B2 (en)
JP (1) JP2006085166A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208198B2 (en) * 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US20080151365A1 (en) * 2004-01-14 2008-06-26 Carl Zeiss Smt Ag Catadioptric projection objective
KR20170028451A (en) 2004-05-17 2017-03-13 칼 짜이스 에스엠티 게엠베하 Catadioptric projection objective with intermediate images
EP1924890A1 (en) * 2005-09-14 2008-05-28 Carl Zeiss SMT AG Optical system of a microlithographic exposure system
EP2003478A4 (en) * 2006-04-03 2009-06-24 Nikon Corp Projection optical system, aligner, and method for fabricating device
EP1890191A1 (en) * 2006-08-14 2008-02-20 Carl Zeiss SMT AG Catadioptric projection objective with pupil mirror
DE102007062894A1 (en) 2007-01-23 2008-07-24 Carl Zeiss Smt Ag Lithographic projection lens has optical array of optical elements between object plane and image plane, and optical array has two correction elements for correcting aberration
EP1998223A2 (en) * 2007-01-23 2008-12-03 Carl Zeiss SMT AG Projection lens for lithography
US20080259308A1 (en) * 2007-04-18 2008-10-23 Carl Zeiss Smt Ag Projection objective for microlithography
US8665418B2 (en) * 2007-04-18 2014-03-04 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
US20100123883A1 (en) * 2008-11-17 2010-05-20 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
TWI708961B (en) 2015-08-13 2020-11-01 新加坡商海特根微光學公司 Illumination assembly for 3d data acquisition
JP6545128B2 (en) * 2016-07-25 2019-07-17 富士フイルム株式会社 Head-up display device
CN109581622B (en) * 2017-09-29 2020-12-04 上海微电子装备(集团)股份有限公司 Projection objective
EP3519875B1 (en) * 2017-11-29 2023-07-19 Opto Engineering S.p.A. Telecentric objective

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229872A (en) * 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
US5296891A (en) * 1990-05-02 1994-03-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Illumination device
US5523193A (en) * 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US5805334A (en) * 1996-05-20 1998-09-08 Nikon Corporation Catadioptric projection systems
US5982558A (en) * 1995-12-27 1999-11-09 Carl-Zeiss-Stiftung REMA objective for microlithographic projection exposure systems
US6445510B1 (en) * 1999-11-20 2002-09-03 Carl-Zeiss-Stiftung Optical imaging device, in particular lens system, with at least one system diaphragm
US20030007253A1 (en) * 1998-11-30 2003-01-09 Karl-Heinz Schuster Large-apertured projection lens with minimal diaphragm error
US6590718B2 (en) * 2000-02-05 2003-07-08 Carl-Zeiss-Stiftung Projection exposure system having a reflective reticle
US6624880B2 (en) * 2001-01-18 2003-09-23 Micronic Laser Systems Ab Method and apparatus for microlithography
US6646718B2 (en) * 1999-12-29 2003-11-11 Carl Zeiss Semiconductor Manufacturing Technologies Ag Projection objective having adjacently mounted aspheric lens surfaces
US6891596B2 (en) * 2002-03-08 2005-05-10 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003210214A1 (en) 2002-03-01 2003-09-16 Carl Zeiss Smt Ag Refractive projection lens
JP2004022708A (en) * 2002-06-14 2004-01-22 Nikon Corp Imaging optical system, illumination optical system, aligner and method for exposure
JP2004205698A (en) * 2002-12-24 2004-07-22 Nikon Corp Projection optical system, exposure device and exposing method
EP1690139B1 (en) 2003-12-02 2009-01-14 Carl Zeiss SMT AG Projection optical system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) * 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US5296891A (en) * 1990-05-02 1994-03-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Illumination device
US5229872A (en) * 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
US5982558A (en) * 1995-12-27 1999-11-09 Carl-Zeiss-Stiftung REMA objective for microlithographic projection exposure systems
US5805334A (en) * 1996-05-20 1998-09-08 Nikon Corporation Catadioptric projection systems
US20030007253A1 (en) * 1998-11-30 2003-01-09 Karl-Heinz Schuster Large-apertured projection lens with minimal diaphragm error
US6445510B1 (en) * 1999-11-20 2002-09-03 Carl-Zeiss-Stiftung Optical imaging device, in particular lens system, with at least one system diaphragm
US6646718B2 (en) * 1999-12-29 2003-11-11 Carl Zeiss Semiconductor Manufacturing Technologies Ag Projection objective having adjacently mounted aspheric lens surfaces
US6590718B2 (en) * 2000-02-05 2003-07-08 Carl-Zeiss-Stiftung Projection exposure system having a reflective reticle
US6624880B2 (en) * 2001-01-18 2003-09-23 Micronic Laser Systems Ab Method and apparatus for microlithography
US6891596B2 (en) * 2002-03-08 2005-05-10 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US20050141098A1 (en) * 2002-03-08 2005-06-30 Carl Zeiss Smt Ag Very high-aperture projection objective

Also Published As

Publication number Publication date
US20060056064A1 (en) 2006-03-16
US7301707B2 (en) 2007-11-27
JP2006085166A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US7301707B2 (en) Projection optical system and method
US7760425B2 (en) Chromatically corrected catadioptric objective and projection exposure apparatus including the same
US7834981B2 (en) Projection exposure apparatus, projection exposure method and projection objective
US7403262B2 (en) Projection optical system and exposure apparatus having the same
US20080213703A1 (en) Imaging System With Mirror Group
US20080117532A1 (en) Unit magnification projection objective
US20050231813A1 (en) Refractive projection objective
US7848016B2 (en) High-NA projection objective
US9146475B2 (en) Projection exposure system and projection exposure method
US7965453B2 (en) Projection objective and projection exposure apparatus including the same
US7957069B2 (en) Projection optical system
KR101432822B1 (en) Imaging systems in particular for a microlithographic projection illumination unit
US7787177B2 (en) High-NA projection objective with aspheric lens surfaces
US7920338B2 (en) Reduction projection objective and projection exposure apparatus including the same
JP2007515660A (en) Refractive projection objective for immersion lithography
EP2040123B1 (en) Projection optical system
US8780441B2 (en) Catadioptric projection objective with pupil correction
EP1927891A1 (en) Projection objective with conjugated pupils
WO2007071569A1 (en) Projection objective of a microlithographic projection exposure apparatus
EP1936421A1 (en) Catadioptric optical system and catadioptric optical element
US7511890B2 (en) Refractive optical imaging system, in particular projection objective for microlithography
US7551361B2 (en) Lithography lens system and projection exposure system provided with at least one lithography lens system of this type

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARL ZEISS SMT AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAFER, DAVID R.;BEDER, SUSANNE;REEL/FRAME:020169/0001

Effective date: 20051014

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION