US20080051299A1 - DNA-protein fusions and uses thereof - Google Patents

DNA-protein fusions and uses thereof Download PDF

Info

Publication number
US20080051299A1
US20080051299A1 US11/726,717 US72671707A US2008051299A1 US 20080051299 A1 US20080051299 A1 US 20080051299A1 US 72671707 A US72671707 A US 72671707A US 2008051299 A1 US2008051299 A1 US 2008051299A1
Authority
US
United States
Prior art keywords
dna
protein
molecule
population
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/726,717
Inventor
Peter Lohse
Markus Kurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Co
Original Assignee
Adnexus a Bristol Myers Squibb R&D Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adnexus a Bristol Myers Squibb R&D Co filed Critical Adnexus a Bristol Myers Squibb R&D Co
Priority to US11/726,717 priority Critical patent/US20080051299A1/en
Publication of US20080051299A1 publication Critical patent/US20080051299A1/en
Assigned to COMPOUND THERAPEUTICS INC. reassignment COMPOUND THERAPEUTICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PHYLOS, INC.
Assigned to ADNEXUS, A BRISTOL-MYERS SQUIBB R&D COMPANY reassignment ADNEXUS, A BRISTOL-MYERS SQUIBB R&D COMPANY CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ADNEXUS, A BMS R&D COMPANY
Assigned to BRISTOL-MYERS SQUIBB COMPANY reassignment BRISTOL-MYERS SQUIBB COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADNEXUS, A BRISTOL-MYERS SQUIBB R&D COMPANY
Assigned to ADNEXUS THERAPEUTICS, INC. reassignment ADNEXUS THERAPEUTICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: COMPOUND THERAPEUTICS, INC.
Assigned to PHYLOS, INC. reassignment PHYLOS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KURZ, MARKUS, LOHSE, PETER
Assigned to ADNEXUS, A BMS R&D COMPANY reassignment ADNEXUS, A BMS R&D COMPANY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ADNEXUS THERAPEUTICS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1062Isolating an individual clone by screening libraries mRNA-Display, e.g. polypeptide and encoding template are connected covalently
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1075Isolating an individual clone by screening libraries by coupling phenotype to genotype, not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • C40B40/08Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof

Definitions

  • the invention features DNA-protein fusions and their uses, particularly for the selection of desired proteins and their corresponding nucleic acid sequences.
  • the present invention provides methods for covalently tagging proteins with their encoding DNA sequences.
  • DNA-protein fusions which may be used in molecular evolution and recognition techniques, are chemically more stable than RNA-protein fusions and therefore provide a number of advantages (as discussed in more detail below).
  • a first method involves: (a) linking a nucleic acid primer to an RNA molecule (preferably, at or near the RNA 3′ end), the primer being bound to a peptide acceptor (for example, puromycin); (b) translating the RNA to produce a protein product, the protein product being covalently bound to the primer; and (c) reverse transcribing the RNA to produce a DNA-protein fusion.
  • a nucleic acid primer to an RNA molecule (preferably, at or near the RNA 3′ end), the primer being bound to a peptide acceptor (for example, puromycin);
  • a peptide acceptor for example, puromycin
  • a second method involves: (a) generating an RNA-protein fusion; (b) hybridizing a nucleic acid primer to the fusion (preferably, at or near the RNA 3′ end); and (c) reverse transcribing the RNA to produce a DNA-protein fusion.
  • the method may further involve treating the product of step (c) to remove the RNA (for example, by contacting the product of step (c) with RNase H under conditions sufficient to digest the RNA).
  • the nucleic acid primer is a DNA primer; the translating step is carried out in vitro; and the nucleic acid primer has a hairpin structure.
  • the primer may further include a photocrosslinking agent, such as psoralen, and the primer may be crosslinked to an oligonucleotide which is bound to a peptide acceptor or, alternatively, may be hybridized to the RNA molecule, followed by a linking step that is carried out by photocrosslinking.
  • the invention also features a molecule including a DNA covalently bonded to a protein (preferably, of at least 10 amino acids) through a peptide acceptor (for example, puromycin), as well as a molecule including a DNA covalently bonded to a protein, in which the protein includes at least 10 amino acids.
  • a protein preferably, of at least 10 amino acids
  • a peptide acceptor for example, puromycin
  • the protein includes at least 30 amino acids, more preferably, at least 100 amino acids, and may even include at least 200 or 250 amino acids.
  • the protein is encoded by the DNA and is preferably entirely encoded by the DNA; the molecule further includes a ribonucleic acid covalently bonded to the DNA; the protein is encoded by the ribonucleic acid; and the DNA is double stranded.
  • the invention features a population of at least 10 5 , and preferably, at least 10 14 , DNA-protein fusions of the invention, each fusion including a DNA covalently bonded to a protein.
  • a first selection method involves the steps of: (a) providing a population of DNA-protein fusions, each including a DNA covalently bonded to a candidate protein; and (b) selecting a desired DNA-protein fusion, thereby selecting the desired protein or DNA.
  • a second selection method involves the steps of: (a) producing a population of candidate DNA-protein fusions, each including a DNA covalently bonded to a candidate protein and having a candidate protein coding sequence which differs from a reference protein coding sequence; and (b) selecting a DNA-protein fusion having an altered function, thereby selecting the protein having the altered function or its encoding DNA.
  • the selection step involves either binding of the desired protein to an immobilized binding partner or assaying for a functional activity of the desired protein.
  • the method may further involve repeating steps (a) and (b).
  • the invention features a solid support including an array of immobilized molecules, each including a covalently-bonded DNA-protein fusion of the invention.
  • the solid support is a microchip.
  • a “population” is meant 110 or more molecules (for example, DNA-protein fusion molecules). Because the methods of the invention facilitate selections which begin, if desired, with large numbers of candidate molecules, a “population” according to the invention preferably means more than 10 7 molecules, more preferably, more than 10 9 , 10 13 , or 10 14 molecules, and, most preferably, more than 10 15 molecules.
  • selecting is meant substantially partitioning a molecule from other molecules in a population.
  • a “selecting” step provides at least a 2-fold, preferably, a 30-fold, more preferably, a 100-fold, and, most preferably, a 1000-fold enrichment of a desired molecule relative to undesired molecules in a population following the selection step.
  • a selection step may be repeated any number of times, and different types of selection steps may be combined in a given approach.
  • Protein By a “protein” is meant any two or more naturally occurring or modified amino acids joined by one or more peptide bonds. “Protein” and “peptide” are used interchangeably herein.
  • RNA is meant a sequence of two or more covalently bonded, naturally occurring or modified ribonucleotides.
  • a modified RNA included within this term is phosphorothioate RNA.
  • DNA is meant a sequence of two or more covalently bonded, naturally occurring or modified deoxyribonucleotides.
  • nucleic acid is meant any two or more covalently bonded nucleotides or nucleotide analogs or derivatives. As used herein, this term includes, without limitation, DNA, RNA, and PNA.
  • a “peptide acceptor” is meant any molecule capable of being added to the C-terminus of a growing protein chain by the catalytic activity of the ribosomal peptidyl transferase function.
  • such molecules contain (i) a nucleotide or nucleotide-like moiety (for example, adenosine or an adenosine analog (di-methylation at the N-6 amino position is acceptable)), (ii) an amino acid or amino acid-like moiety (for example, any of the 20 D- or L-amino acids or any amino acid analog thereof (for example, O-methyl tyrosine or any of the analogs described by Ellman et al., Meth. Enzymol.
  • Peptide acceptors may also possess a nucleophile, which may be, without limitation, an amino group, a hydroxyl group, or a sulfhydryl group.
  • peptide acceptors may be composed of nucleotide mimetics, amino acid mimetics, or mimetics of the combined nucleotide-amino acid structure.
  • altered function is meant any qualitative or quantitative change in the function of a molecule.
  • binding partner any molecule which has a specific, covalent or non-covalent affinity for a portion of a desired DNA-protein fusion.
  • binding partners include, without limitation, members of antigen/antibody pairs, protein/inhibitor pairs, receptor/ligand pairs (for example cell surface receptor/ligand pairs, such as hormone receptor/peptide hormone pairs), enzyme/substrate pairs (for example, kinase/substrate pairs), lectin/carbohydrate pairs, oligomeric or heterooligomeric protein aggregates, DNA binding protein/DNA binding site pairs, RNA/protein pairs, and nucleic acid duplexes, heteroduplexes, or ligated strands, as well as any molecule which is capable of forming one or more covalent or non-covalent bonds (for example, disulfide bonds) with any portion of a DNA-protein fusion.
  • solid support is meant, without limitation, any column (or column material), bead, test tube, microtiter dish, solid particle (for example, agarose or sepharose), microchip (for example, silicon, silicon-glass, or gold chip), or membrane (for example, the membrane of a liposome or vesicle) to which an affinity complex may be bound, either directly or indirectly (for example, through other binding partner intermediates such as other antibodies or Protein A), or in which an affinity complex may be embedded (for example, through a receptor or channel).
  • solid particle for example, agarose or sepharose
  • microchip for example, silicon, silicon-glass, or gold chip
  • membrane for example, the membrane of a liposome or vesicle
  • the present invention provides methods for the creation of fusions between proteins and their encoding cDNAs. These constructs possess greatly enhanced chemical stability, first, due to the DNA component of the fusion and, second, due to the covalent bond linking of the DNA and protein moieties. These properties allow for easier handling of the fusion products and thereby allow selection and recognition experiments to be carried out under a range of reaction conditions.
  • the present invention facilitates applications where a single-stranded nucleic acid portion is mandatory, for example, in hybridization assays in which the coding fusions are immobilized to a solid support.
  • incubations may be performed under more rigorous conditions, involving high pH, elevated concentrations of multivalent metal ions, prolonged heat treatment, and exposure to various biological materials.
  • single-stranded DNA is relatively resistant to secondary structure formation, providing a great advantage for techniques involving or requiring nucleic acid hybridization steps.
  • the methods of the present invention allow for the production of fusions involving DNA and protein components of any length, as well as fusion libraries of high complexity.
  • FIG. 1 is a schematic illustration of a method for the generation of DNA-protein fusions (Type A1) that involves ligation of a puromycin-modified DNA hairpin-like structure to an mRNA molecule.
  • FIG. 2 is a schematic illustration of a method for the generation of branched hairpin structures.
  • FIG. 3 is a schematic illustration of a method for the synthesis of puromycin-5′-phosphoramidite.
  • FIG. 4 is a schematic illustration of a method for the generation of branched hairpin structures.
  • FIG. 5 is a schematic illustration of a method for the generation of DNA-protein fusions that involves photocrosslinking of a 5′-psoralen-modified primer DNA to a suitable linker that bears a 3′-puromycin.
  • FIG. 6 is a schematic illustration of exemplary methods for the chemical ligation of mRNA and DNA molecules.
  • FIG. 7 is a schematic illustration of a method for the synthesis of hydrazide phosphoramidite.
  • FIG. 8 is a schematic illustration of a method for the synthesis of hydrazine phosphoramidite.
  • FIG. 9 is a schematic illustration of a method for the generation of DNA-protein fusions that involves chemical crosslinking of a puromycin-modified linker to the 3′-end of an mRNA molecule.
  • FIG. 10 is a schematic illustration of a method for the generation of DNA-protein fusions that involves psoralen-mediated photocrosslinking of a combined linker/reverse transcription primer construct to the 3′-end of an mRNA molecule.
  • FIG. 11 is a schematic illustration of an alternative method for the generation of DNA-protein fusions that involves psoralen photocrosslinking of a combined linker/reverse transcription primer construct.
  • FIG. 12 is a schematic illustration of a method for the generation of DNA-protein fusions that involves crosslinking of a reverse transcription primer to a preexisting mRNA-linker construct.
  • FIG. 13 is a schematic illustration of a method for the generation of DNA-protein fusions that involves crosslinking of a reverse transcription primer to a preexisting mRNA-protein fusion.
  • FIG. 14 is a schematic illustration of the oligonucleotide constructs (SEQ ID NOS: 1-6) used for the preparation of the exemplary DNA-protein fusions described herein.
  • FIG. 15 is a schematic illustration of the preparation of Type C2 DNA-protein fusions.
  • FIG. 16 is a photograph illustrating a product analysis of the Type C2 DNA-protein fusions.
  • FIG. 17 is a schematic illustration of the preparation of Type B3 DNA-protein fusions.
  • FIG. 18 is a schematic illustration of the preparation of Type B2 DNA-protein fusions.
  • FIG. 19 is a photograph illustrating the resistance analysis of Type B3 DNA-protein fusions against nuclease and base treatment.
  • FIG. 20 is a graph illustrating the experimentally determined half-lives of RNA- and DNA-protein fusion products in the presence of cell membrane preparations.
  • Type A1 Template-Directed Ligation of a Puromycin-Modified Hairpin-Like Structure to an mRNA
  • DNA-protein fusions are generated by ligating a puromycin-modified DNA hairpin-like structure to an mRNA molecule, as illustrated in FIG. 1 .
  • the first step of this procedure is the attachment of puromycin to the hairpin, and this may be accomplished by a number of techniques, one of which is shown in FIG. 2 .
  • a DNA hairpin is synthesized with a puromycin-terminated side chain branching out from the DNA molecule.
  • This construct may be generated using an asymmetric branched phosphoramidite (Clontech, Palo Alto, Calif.) in any standard automated DNA synthesis of the hairpin structure (see, for example, User Guide to Expedite Nucleic Acid Synthesis System, Perseptive Biosystems, Framingham, Mass.), followed by the addition of a 5′-phosphate using a chemical phosphorylation reagent (Glen Research, Sterling Va.).
  • the protecting group is selectively removed from the branch (Product Protocol for Asymmetric Branching Phosphoramidite, Clontech, Palo Alto, Calif.), followed by the attachment of the linker portion through standard automated DNA synthesis. Before reaching the end of the linker, the strand orientation is reversed by the addition of a few 5′-phosphoramidites (Glen Research, Sterling, Va.). Finally, the synthesis is terminated through attachment of the puromycin-5′-phosphoramidite, preferably using the synthetic technique shown in FIG. 3 . In FIG. 3 , steps (a)-(c) may be carried out as described in Greene & Wuts (Protective Groups in Organic Synthesis, 2 nd ed.
  • step (d) may be carried out as described in Beaucage (Methods in Molecular Biology, vol. 20, Protocols for Oligonucleotides and Analogs, ed. S. Agarwal (1993) Humana Press, Totowa, N.J., pp. 33-61).
  • the puromycin-modified branched hairpin may be synthesized as shown in FIG. 4 .
  • synthesis is initiated from a puromycin-CPG solid support (Glen Research, Sterling, Va.) by first synthesizing the linker portion, followed by incorporation of the branched amidite (Clontech, Palo Alto, Calif.) and addition of the 5′-portion of the hairpin. After deprotection of the branch, the 3′-arm of the hairpin is added by using nucleoside-5′-phosphoramidites (Glen Research, Sterling, Va.).
  • the mRNA is ligated to the hairpin, for example, using T4 DNA ligase and the 3′-overhang as a template (Sambrook, Fritsch & Maniatis Molecular Cloning (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). Ribosomal translation of the RNA then leads to protein synthesis with subsequent fusion formation (see, for example, Szostak et al., U.S. Ser. No. 09/007,005 and U.S. Ser. No. 09/247,190; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol.
  • the branching point is located in the loop region of the hairpin. Other positions of the branching point (e.g., within the stem structure) may also be utilized.
  • a dA n linker of between approximately 10-60 nucleotides, and more preferably approximately 30 nucleotides, is utilized, both the length and the chemical composition (e.g., PEG (Glen Research, Sterling, Va.) rather than dA n ) of the linker may be optimized.
  • RNA portion of the construct is reverse transcribed into cDNA (for example, as described in Sambrook, Fritsch & Maniatis, Molecular Cloning, (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) using the hairpin 3′ end as a primer.
  • RNase H optionally digests the mRNA by RNase H (see, for example, Sambrook, Fritsch & Maniatis Molecular Cloning, (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) yields a single stranded DNA-protein fusion.
  • This method also facilitates the formation of truncated DNA transcripts by adding didesoxynucleoside triphosphates during transcription (see, for example, Sanger, Science (1981) vol. 214, p. 1205-1210).
  • truncated DNA-protein fusions are useful in protein display experiments (Kuimelis et al., U.S. Ser. No. 60/080,686, filed Apr. 3, 1998), for example, where only the 3′-region of the original message (now the 5′-region of the DNA transcript) is used for hybridization with immobilized oligonucleotide probes.
  • Type A2 Crosslinking of a Puromycin-Modified Linker to a Primer DNA
  • a closely related structure may also be prepared through photocrosslinking of a 5′-psoralen-modified primer DNA with a suitable linker that bears a 3′-puromycin.
  • An exemplary crosslinking method is illustrated in FIG. 5 .
  • the puromycin-bearing linker may be constructed as described, for example, in Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No.
  • the psoralen-modified primer may be generated and the photocrosslinking step carried out as described, for example, in Pieles & Englisch, Nucl. Acids Res. (1989) vol. 17, p. 285-299. The remaining steps may be carried out as described above. This approach does not require the use of non-standard nucleoside/puromycin-5′-phosphoramidites (i.e., which were used during the automated synthesis of the hairpin-linker structure), providing an advantage over the hairpin method.
  • dA n linker of between approximately 10-60 nucleotides, and more preferably approximately 30 nucleotides, is utilized, both the length and the chemical composition (e.g., PEG (Glen Research, Sterling, Va.) rather than dA n ) of the linker may be optimized.
  • the ligation reaction between the mRNA and the DNA portion of the construct may be carried out by several alternative techniques.
  • this step may be accomplished using chemical methods.
  • the 5′-end of the hairpin may be modified with one (or multiple) amino-groups using the appropriate phosphoramidite (Clontech, Palo Alto, Calif.).
  • the two substrates may be joined through a reductive amination reaction. This is illustrated as scheme “A” in FIG. 6 and is described, for example, in Lemaitre et al., Proc.
  • this chemical ligation step may involve carbohydrazide or hydrazine modified structures for hydrazone formation or reductive amination.
  • carbohydrazide or hydrazine modified structures for hydrazone formation or reductive amination.
  • FIG. 6 These approaches are illustrated in FIG. 6 , respectively, as schemes “B” and “C” and are described, respectively, in Gosh et al. (Anal. Biochem. (1989) vol. 178, p. 43-51) and Proudnikov & Mirzabekov (Nucl. Acids Res. (1996) vol. 24 p. 4535-4542).
  • Hydrazide phosphoramidite synthesis may be carried out as shown in FIG.
  • step (e) hydrazine phosphoramidite synthesis as shown in FIG. 8 and as described in Greene & Wuts (Protective Groups in Organic Synthesis, 2 nd ed. (1991) John Wiley & Sons, Inc., New York, N.Y. (steps (a) and (c)), Proudnikov & Mirzabekov (Nucl. Acids Res. (1996) vol. 24 p. 4535-4542 (step b)), and Beaucage (Methods in Molecular Biology, vol. 20, Protocols for Oligonucleotides and Analogs, ed. S. Agarwal (1993) Humana Press, Totowa, N.J., pp. 33-61 (step (e)).
  • Types B1-B3 Chemical Crosslinking to the 3′-End of an mRNA
  • Yet another approach to the generation of DNA-protein fusions involves the chemical crosslinking of a puromycin-modified linker to the 3′-end of an mRNA molecule. Such crosslinking may be accomplished by a number of approaches.
  • FIG. 9 One exemplary approach is shown schematically in FIG. 9 .
  • a reactive group e.g., one of the amino derivatives, hydrazides, or hydrazines described above
  • Duplex formation of the RNA and the primer site takes place immediately adjacent to this reactive group, which then is allowed to react with the periodate-oxidized 3′-end of the RNA leading to a crosslink (as shown in FIG. 6 and as described above).
  • This reaction may occur through reductive amination ( FIG. 6 , scheme “A” or “C”; Lemaitre et al., Proc. Natl. Acad. Sci.
  • a photoreactive psoralen moiety is included in the linker as a reactive group ( FIG. 10 ).
  • Such a construct may be synthesized using a psoralen-modified desoxynucleotide phosphoramidite (Pieles et al., Nucleic Acids Res. (1989) vol. 17, p. 8967-8978) or by incorporating a branched phosphoramidite (Clontech, Palo Alto, Calif.) to which a standard psoralen phosphoramidite is attached (Glen Research, Sterling, Va.).
  • crosslink formation is achieved through irradiation with UV-light, for example, as described in Pieles and Englisch (Nucl. Acids Res. (1989) vol. 17, p. 285-299).
  • the resulting construct is then subjected to translation and fusion formation (Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO 98/31700; Roberts and Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302).
  • Reverse transcription and RNase H digestion yields the final DNA-protein fusions.
  • crosslinking may be accomplished using a combined linker/reverse transcriptase primer construct as depicted in FIG. 11 (“B3”).
  • the psoralen moiety is not directly attached between the linker and primer region, but rather connected to a short DNA branch. This DNA portion also hybridizes to the target RNA and thus provides an optimized double-stranded environment for the psoralen to react (Pieles and Englisch, Nucl. Acids. Res. (1989) vol. 17, p. 285-299). Preparation of DNA-protein fusions using this psoralen construct may be carried out as described above.
  • Types C1 and C2 Crosslinking of the Reverse Transcription Primer to Preexisting mRNA-Linker Constructs
  • RNA is initially ligated to a linker molecule as previously described (Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302).
  • a suitable primer bearing a 5′-photocrosslinking reagent e.g., psoralen, Glen Research, Sterling, Va.
  • a 5′-photocrosslinking reagent e.g., psoralen, Glen Research, Sterling, Va.
  • Irradiation with light furnishes a covalent crosslink between the two oligonucleotide strands (as described, for example, in Pieles & Englisch, Nucl. Acids Res. (1989) vol. 17, p. 285-299).
  • translation and fusion formation may be carried out, followed by a reverse transcription step and an optional RNase H digestion step to yield DNA-protein fusions ( FIG. 12 ).
  • the initial steps of the above procedure may be carried out in the opposite order.
  • This approach allows translation and fusion formation to be performed prior to crosslinking and reverse transcription. Accordingly, this method allows for the use of previously described and well established reaction conditions and components for translation and RNA-protein fusion formation.
  • Model RNA substrates 1 GGG ACA AUU ACU AUU UAC AAU UAC AAU GGA CUA CAA GGA CGA UGA CGA UAA GGG CGG CUG GUC CCA CCC CCA GWU CGA GAA GGC AUC CGC U (SEQ ID NO: 7); 2: GGG ACA AWU ACU AUU UAC AAU UAC AAU GGA CUA CAA GGA CGA UGA CGA UAA GGG CGG CUG GUC CCA CCC CCA GUU CGA GAA GGC AUC CGC UCU UUC ACU AUA (SEQ ID NO: 8); and 3: GGG ACA AUU ACU AUU UAC AAU UAC AAU GGA CUA CAA GGA CGA UGA CGA UAA GGG CGG CUG GUC CCA CCC CCA GUU CGA GAA GGC AUC CGC UAU UUA (SEQ ID NO: 8); and 3: GGG ACA AUU ACU AUU UAC
  • the main chain was synthesized first and concluded with a final capping step.
  • the levulinyl protecting group was removed from the branching unit through treatment with 0.5 M hydrazine monohydrate in pyridine-acetic acid for 15 minutes at room temperature. Automated synthesis was then resumed and the side chain sequences (indicated in square brackets) were attached. The oligos were fully deprotected in concentrated ammonium hydroxide for 8 hours at 55° C. and purified by denaturing gel electrophoresis.
  • the DNA sequences 8: d(TTT TTT TTT TAG CGG ATG C) (SEQ ID NO: 14) and 9: d(TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TTT ACA ATT) (SEQ ID NO: 15) were purchased from Oligos etc. (Wilsonville, Oreg.) and used without further purification.
  • RNA 1 and linker 4 were hybridized to template DNA 8 and enzymatically ligated by T4 DNA ligase as previously described (Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts and Szostak, Proc. Natl. Acad. Sci. USA (1997) Vol. 94, p. 12297-12302).
  • mRNA-linker construct was used as a template for in vitro translation using rabbit reticulocyte lysate kits from Ambion.
  • Reaction mixtures contained 50 pmole ligated mRNA 10, 10 mM creatine phosphate, 150 mM potassium acetate, 0.5 mM magnesium chloride, 0.1 mM of each amino acid except methionine, 150 ⁇ Ci[ 35 S]methionine (Amersham, Arlington Heights, Ill.) and 67% v/v of lysate in a total volume of 300 ⁇ l and were carried out for 30 minutes at 30° C.
  • KCl and MgCl 2 were added to 590 mM and 50 mM final concentrations, respectively, in a volume of 500 ⁇ l. Incubation was continued for 60 minutes at 20° C. Products were isolated by diluting the lysate into 10 ml of binding buffer (100 mM Tris pH 8.0, 10 mM EDTA, 1 M NaCl, 0.25% v/v Triton X-100) and adding 10 mg oligo-dT cellulose type 7 (Pharmacia, Piscataway, N.J.).
  • binding buffer 100 mM Tris pH 8.0, 10 mM EDTA, 1 M NaCl, 0.25% v/v Triton X-100
  • RNA-protein fusions 11 For the conversion of the RNA-protein fusions 11 into DNA-protein fusions 13, the following reactions were performed ( FIG. 15 ). First, 20 ⁇ l of the above oligo-dT-purified material 11 was mixed with 0.5 ⁇ l primers 5 (50 ⁇ M) and 6 ⁇ L first strand buffer (Superscript II kit from GibcoBRL; 250 mM Tris-HCl pH 8.3, 375 KCl, 15 mM MgCl 2 ) and briefly heated to 80° C. for 2 minutes, followed by slowly cooling to 0° C. Psoralen photocrosslink formation was induced by irradiating the sample for 15 minutes at 0° C.
  • first strand buffer Superscript II kit from GibcoBRL; 250 mM Tris-HCl pH 8.3, 375 KCl, 15 mM MgCl 2
  • RNA sample was then removed by continuing incubation for 60 minutes at 37° C. after addition of 0.5 ⁇ l (1 unit) RNase H (Promega, Madison, Wis.).
  • double-stranded DNA 14 was generated by adding 50 pmoles of primer 9 and incubating for another 60 minutes at 42° C. Control reactions with non-crosslinked samples were performed as indicated in FIG. 15 .
  • Product analysis was performed by electrophoresis on denaturing 6% TBE-Urea gels (Novex, San Diego, Calif.), followed by visualization of the [ 35 S]-labelled product bands by exposure on a phosphorimager screen ( FIG. 16 ).
  • Type B3 DNA-protein fusion formation was demonstrated as follows ( FIG. 17 ).
  • the branched linker construct 7 (5 ⁇ M) was annealed to the target RNA 3 (2.5 ⁇ M) in 25 mM Tris buffer pH 7.0 containing 100 mM NaCl and crosslinked by irradiation for 15 minutes at room temperature in a borosilicate glass vial (Kimble/Kontes, Vineland, N.J.) using a handheld multiwavelength UV lamp model UVGL-25 (UVP, Upland, Calif.) set to long wave.
  • Product analysis was performed by electrophoresis on a 6% TBE-Urea polyacrylamide gel followed by visualization by UV shadowing.
  • RNA-fusion 15 was obtained. Its conversion into single-stranded and double-stranded DNA-protein fusions 16 and 17, respectively, was done by reverse transcription (Superscript II kit, GibcoBRL, Grand Island, N.Y.) and RNase H (Promega, Madison, Wis.) treatment as described for Type C2 fusions (gel “B” in FIG. 17 ).
  • Type B2 DNA-protein fusion formation was demonstrated as outlined in FIG. 18 . Specifically, following the procedure outlined for Type B3 fusions above, RNA 2 was crosslinked to linker 6. Following denaturing polyacrylamide electrophoresis, the ligated product 18 was isolated in 12% yield. In vitro translation, fusion formation, and preparation of DNA-protein fusions 19 were carried out as described for Type B3 fusions above, with similar efficiencies of fusion formation.
  • RNA fusions 11 or 12 were incubated with 3 ⁇ g/[l CHO-KI cell membranes (Receptor Biology, Beltsville, Md.) in 50 mM Tris-HCl pH 8.3, 75 mM KCl, 3 mM MgCl 2 , and 10 mM DTT at room temperature. Additional samples of RNA fusions 11 and 12 were prepared containing 20 mM vanadyl ribonucleoside complex (“VRC”) to inhibit ribonuclease activity.
  • VRC vanadyl ribonucleoside complex
  • the DNA-protein fusions described herein may be used in any selection method for desired proteins, including molecular evolution and recognition approaches. Exemplary selection methods are described, for example, in Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302; Lipovsek et al., U.S. Ser. No.
  • DNA-protein fusions described herein may be used for any application previously described or envisioned for RNA-protein fusions.
  • Commercial uses include the isolation of polypeptides with desired properties through in vitro evolution techniques (see, for example, Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p.
  • DNA-protein fusions described herein may be used in binding and molecular recognition assays that involve biological materials that presumably contain ribonucleases, such as whole cells, lysates, or biological fluids. These DNA-protein fusions may be used for any appropriate therapeutic, diagnostic, or research purpose, particularly in the pharmaceutical and agricultural areas.

Abstract

Disclosed herein are molecules that include a deoxyribonucleic acid (DNA) covalently bonded to a protein and uses thereof.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of the filing date of co-pending U.S. utility application, U.S. Ser. No. 09/453,190, filed Dec. 2, 1999, and U.S. provisional application, U.S. Ser. No. 60/110,549, filed Dec. 2, 1998, now abandoned, all hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • In general, the invention features DNA-protein fusions and their uses, particularly for the selection of desired proteins and their corresponding nucleic acid sequences.
  • Recently, a combinatorial method was developed for the isolation of proteins with desired properties from large pools of proteins (Szostak et al., U.S. Ser. No. 09/007,005; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302). By this method, the protein portion is linked to its encoding RNA by a covalent chemical bond. Due to the covalent nature of this linkage, selection experiments are not limited to the extremely mild reaction conditions that must be used for approaches that involve non-covalent complex formation such as ribosome display (Hanes & Plückthun, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 4937-4942; He & Taussig, Nucl. Acids Res. (1997) vol. 25, p 5132-5143). However, precautions do need to be taken during the selection process to minimize RNA degradation, since the accidental cleavage of ribo-bonds can result in the irreversible loss of encoded information. For this reason, these selection procedures are typically carried out using reaction media and equipment that are free of ribonucleases or other deleterious contaminants.
  • SUMMARY OF THE INVENTION
  • The present invention provides methods for covalently tagging proteins with their encoding DNA sequences. These DNA-protein fusions, which may be used in molecular evolution and recognition techniques, are chemically more stable than RNA-protein fusions and therefore provide a number of advantages (as discussed in more detail below).
  • Accordingly, in general, the invention features methods for generating DNA-protein fusions. A first method involves: (a) linking a nucleic acid primer to an RNA molecule (preferably, at or near the RNA 3′ end), the primer being bound to a peptide acceptor (for example, puromycin); (b) translating the RNA to produce a protein product, the protein product being covalently bound to the primer; and (c) reverse transcribing the RNA to produce a DNA-protein fusion.
  • A second method involves: (a) generating an RNA-protein fusion; (b) hybridizing a nucleic acid primer to the fusion (preferably, at or near the RNA 3′ end); and (c) reverse transcribing the RNA to produce a DNA-protein fusion.
  • In a preferred embodiment of the above methods, the method may further involve treating the product of step (c) to remove the RNA (for example, by contacting the product of step (c) with RNase H under conditions sufficient to digest the RNA). In additional preferred embodiments, the nucleic acid primer is a DNA primer; the translating step is carried out in vitro; and the nucleic acid primer has a hairpin structure. In addition, the primer may further include a photocrosslinking agent, such as psoralen, and the primer may be crosslinked to an oligonucleotide which is bound to a peptide acceptor or, alternatively, may be hybridized to the RNA molecule, followed by a linking step that is carried out by photocrosslinking.
  • In related aspects, the invention also features a molecule including a DNA covalently bonded to a protein (preferably, of at least 10 amino acids) through a peptide acceptor (for example, puromycin), as well as a molecule including a DNA covalently bonded to a protein, in which the protein includes at least 10 amino acids.
  • In preferred embodiments of both of these aspects, the protein includes at least 30 amino acids, more preferably, at least 100 amino acids, and may even include at least 200 or 250 amino acids. In other preferred embodiments, the protein is encoded by the DNA and is preferably entirely encoded by the DNA; the molecule further includes a ribonucleic acid covalently bonded to the DNA; the protein is encoded by the ribonucleic acid; and the DNA is double stranded.
  • In another related aspect, the invention features a population of at least 105, and preferably, at least 1014, DNA-protein fusions of the invention, each fusion including a DNA covalently bonded to a protein.
  • In addition, the invention features selection methods which utilize the DNA-protein fusions described herein. A first selection method involves the steps of: (a) providing a population of DNA-protein fusions, each including a DNA covalently bonded to a candidate protein; and (b) selecting a desired DNA-protein fusion, thereby selecting the desired protein or DNA.
  • A second selection method involves the steps of: (a) producing a population of candidate DNA-protein fusions, each including a DNA covalently bonded to a candidate protein and having a candidate protein coding sequence which differs from a reference protein coding sequence; and (b) selecting a DNA-protein fusion having an altered function, thereby selecting the protein having the altered function or its encoding DNA.
  • In preferred embodiments, the selection step involves either binding of the desired protein to an immobilized binding partner or assaying for a functional activity of the desired protein. In addition, the method may further involve repeating steps (a) and (b).
  • In a final aspect, the invention features a solid support including an array of immobilized molecules, each including a covalently-bonded DNA-protein fusion of the invention. In a preferred embodiment, the solid support is a microchip.
  • As used herein, by a “population” is meant 110 or more molecules (for example, DNA-protein fusion molecules). Because the methods of the invention facilitate selections which begin, if desired, with large numbers of candidate molecules, a “population” according to the invention preferably means more than 107 molecules, more preferably, more than 109, 1013, or 1014 molecules, and, most preferably, more than 1015 molecules.
  • By “selecting” is meant substantially partitioning a molecule from other molecules in a population. As used herein, a “selecting” step provides at least a 2-fold, preferably, a 30-fold, more preferably, a 100-fold, and, most preferably, a 1000-fold enrichment of a desired molecule relative to undesired molecules in a population following the selection step. A selection step may be repeated any number of times, and different types of selection steps may be combined in a given approach.
  • By a “protein” is meant any two or more naturally occurring or modified amino acids joined by one or more peptide bonds. “Protein” and “peptide” are used interchangeably herein.
  • By “RNA” is meant a sequence of two or more covalently bonded, naturally occurring or modified ribonucleotides. One example of a modified RNA included within this term is phosphorothioate RNA.
  • By “DNA” is meant a sequence of two or more covalently bonded, naturally occurring or modified deoxyribonucleotides.
  • By a “nucleic acid” is meant any two or more covalently bonded nucleotides or nucleotide analogs or derivatives. As used herein, this term includes, without limitation, DNA, RNA, and PNA.
  • By a “peptide acceptor” is meant any molecule capable of being added to the C-terminus of a growing protein chain by the catalytic activity of the ribosomal peptidyl transferase function. Typically, such molecules contain (i) a nucleotide or nucleotide-like moiety (for example, adenosine or an adenosine analog (di-methylation at the N-6 amino position is acceptable)), (ii) an amino acid or amino acid-like moiety (for example, any of the 20 D- or L-amino acids or any amino acid analog thereof (for example, O-methyl tyrosine or any of the analogs described by Ellman et al., Meth. Enzymol. 202:301, 1991), and (iii) a linkage between the two (for example, an ester, amide, or ketone linkage at the 3′ position or, less preferably, the 2′ position); preferably, this linkage does not significantly perturb the pucker of the ring from the natural ribonucleotide conformation. Peptide acceptors may also possess a nucleophile, which may be, without limitation, an amino group, a hydroxyl group, or a sulfhydryl group. In addition, peptide acceptors may be composed of nucleotide mimetics, amino acid mimetics, or mimetics of the combined nucleotide-amino acid structure.
  • By an “altered function” is meant any qualitative or quantitative change in the function of a molecule.
  • By “binding partner,” as used herein, is meant any molecule which has a specific, covalent or non-covalent affinity for a portion of a desired DNA-protein fusion. Examples of binding partners include, without limitation, members of antigen/antibody pairs, protein/inhibitor pairs, receptor/ligand pairs (for example cell surface receptor/ligand pairs, such as hormone receptor/peptide hormone pairs), enzyme/substrate pairs (for example, kinase/substrate pairs), lectin/carbohydrate pairs, oligomeric or heterooligomeric protein aggregates, DNA binding protein/DNA binding site pairs, RNA/protein pairs, and nucleic acid duplexes, heteroduplexes, or ligated strands, as well as any molecule which is capable of forming one or more covalent or non-covalent bonds (for example, disulfide bonds) with any portion of a DNA-protein fusion.
  • By a “solid support” is meant, without limitation, any column (or column material), bead, test tube, microtiter dish, solid particle (for example, agarose or sepharose), microchip (for example, silicon, silicon-glass, or gold chip), or membrane (for example, the membrane of a liposome or vesicle) to which an affinity complex may be bound, either directly or indirectly (for example, through other binding partner intermediates such as other antibodies or Protein A), or in which an affinity complex may be embedded (for example, through a receptor or channel).
  • The present invention provides methods for the creation of fusions between proteins and their encoding cDNAs. These constructs possess greatly enhanced chemical stability, first, due to the DNA component of the fusion and, second, due to the covalent bond linking of the DNA and protein moieties. These properties allow for easier handling of the fusion products and thereby allow selection and recognition experiments to be carried out under a range of reaction conditions. In addition, the present invention facilitates applications where a single-stranded nucleic acid portion is mandatory, for example, in hybridization assays in which the coding fusions are immobilized to a solid support. In addition, incubations may be performed under more rigorous conditions, involving high pH, elevated concentrations of multivalent metal ions, prolonged heat treatment, and exposure to various biological materials. Finally, single-stranded DNA is relatively resistant to secondary structure formation, providing a great advantage for techniques involving or requiring nucleic acid hybridization steps.
  • In addition, the methods of the present invention allow for the production of fusions involving DNA and protein components of any length, as well as fusion libraries of high complexity.
  • Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic illustration of a method for the generation of DNA-protein fusions (Type A1) that involves ligation of a puromycin-modified DNA hairpin-like structure to an mRNA molecule.
  • FIG. 2 is a schematic illustration of a method for the generation of branched hairpin structures.
  • FIG. 3 is a schematic illustration of a method for the synthesis of puromycin-5′-phosphoramidite.
  • FIG. 4 is a schematic illustration of a method for the generation of branched hairpin structures.
  • FIG. 5 is a schematic illustration of a method for the generation of DNA-protein fusions that involves photocrosslinking of a 5′-psoralen-modified primer DNA to a suitable linker that bears a 3′-puromycin.
  • FIG. 6 is a schematic illustration of exemplary methods for the chemical ligation of mRNA and DNA molecules.
  • FIG. 7 is a schematic illustration of a method for the synthesis of hydrazide phosphoramidite.
  • FIG. 8 is a schematic illustration of a method for the synthesis of hydrazine phosphoramidite.
  • FIG. 9 is a schematic illustration of a method for the generation of DNA-protein fusions that involves chemical crosslinking of a puromycin-modified linker to the 3′-end of an mRNA molecule.
  • FIG. 10 is a schematic illustration of a method for the generation of DNA-protein fusions that involves psoralen-mediated photocrosslinking of a combined linker/reverse transcription primer construct to the 3′-end of an mRNA molecule.
  • FIG. 11 is a schematic illustration of an alternative method for the generation of DNA-protein fusions that involves psoralen photocrosslinking of a combined linker/reverse transcription primer construct.
  • FIG. 12 is a schematic illustration of a method for the generation of DNA-protein fusions that involves crosslinking of a reverse transcription primer to a preexisting mRNA-linker construct.
  • FIG. 13 is a schematic illustration of a method for the generation of DNA-protein fusions that involves crosslinking of a reverse transcription primer to a preexisting mRNA-protein fusion.
  • FIG. 14 is a schematic illustration of the oligonucleotide constructs (SEQ ID NOS: 1-6) used for the preparation of the exemplary DNA-protein fusions described herein.
  • FIG. 15 is a schematic illustration of the preparation of Type C2 DNA-protein fusions.
  • FIG. 16 is a photograph illustrating a product analysis of the Type C2 DNA-protein fusions.
  • FIG. 17 is a schematic illustration of the preparation of Type B3 DNA-protein fusions.
  • FIG. 18 is a schematic illustration of the preparation of Type B2 DNA-protein fusions.
  • FIG. 19 is a photograph illustrating the resistance analysis of Type B3 DNA-protein fusions against nuclease and base treatment.
  • FIG. 20 is a graph illustrating the experimentally determined half-lives of RNA- and DNA-protein fusion products in the presence of cell membrane preparations.
  • DETAILED DESCRIPTION
  • There are now provided below a number of exemplary techniques for the production of DNA-protein fusions, and descriptions for their use. These examples are provided for the purpose of illustrating, and not limiting, the invention.
  • Type A1: Template-Directed Ligation of a Puromycin-Modified Hairpin-Like Structure to an mRNA
  • According to a first exemplary approach, DNA-protein fusions are generated by ligating a puromycin-modified DNA hairpin-like structure to an mRNA molecule, as illustrated in FIG. 1. The first step of this procedure is the attachment of puromycin to the hairpin, and this may be accomplished by a number of techniques, one of which is shown in FIG. 2. By this approach, a DNA hairpin is synthesized with a puromycin-terminated side chain branching out from the DNA molecule. This construct may be generated using an asymmetric branched phosphoramidite (Clontech, Palo Alto, Calif.) in any standard automated DNA synthesis of the hairpin structure (see, for example, User Guide to Expedite Nucleic Acid Synthesis System, Perseptive Biosystems, Framingham, Mass.), followed by the addition of a 5′-phosphate using a chemical phosphorylation reagent (Glen Research, Sterling Va.).
  • Subsequently the protecting group is selectively removed from the branch (Product Protocol for Asymmetric Branching Phosphoramidite, Clontech, Palo Alto, Calif.), followed by the attachment of the linker portion through standard automated DNA synthesis. Before reaching the end of the linker, the strand orientation is reversed by the addition of a few 5′-phosphoramidites (Glen Research, Sterling, Va.). Finally, the synthesis is terminated through attachment of the puromycin-5′-phosphoramidite, preferably using the synthetic technique shown in FIG. 3. In FIG. 3, steps (a)-(c) may be carried out as described in Greene & Wuts (Protective Groups in Organic Synthesis, 2nd ed. (1991) John Wiley & Sons, Inc., New York, N.Y.), and step (d) may be carried out as described in Beaucage (Methods in Molecular Biology, vol. 20, Protocols for Oligonucleotides and Analogs, ed. S. Agarwal (1993) Humana Press, Totowa, N.J., pp. 33-61).
  • Alternatively, the puromycin-modified branched hairpin may be synthesized as shown in FIG. 4. By this technique, synthesis is initiated from a puromycin-CPG solid support (Glen Research, Sterling, Va.) by first synthesizing the linker portion, followed by incorporation of the branched amidite (Clontech, Palo Alto, Calif.) and addition of the 5′-portion of the hairpin. After deprotection of the branch, the 3′-arm of the hairpin is added by using nucleoside-5′-phosphoramidites (Glen Research, Sterling, Va.).
  • By either of the above approaches, in the next step, the mRNA is ligated to the hairpin, for example, using T4 DNA ligase and the 3′-overhang as a template (Sambrook, Fritsch & Maniatis Molecular Cloning (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). Ribosomal translation of the RNA then leads to protein synthesis with subsequent fusion formation (see, for example, Szostak et al., U.S. Ser. No. 09/007,005 and U.S. Ser. No. 09/247,190; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302). In one particular embodiment, the branching point is located in the loop region of the hairpin. Other positions of the branching point (e.g., within the stem structure) may also be utilized. In addition, while a dAn linker of between approximately 10-60 nucleotides, and more preferably approximately 30 nucleotides, is utilized, both the length and the chemical composition (e.g., PEG (Glen Research, Sterling, Va.) rather than dAn) of the linker may be optimized.
  • In a final step, the RNA portion of the construct is reverse transcribed into cDNA (for example, as described in Sambrook, Fritsch & Maniatis, Molecular Cloning, (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) using the hairpin 3′ end as a primer. Optional digestion of the mRNA by RNase H (see, for example, Sambrook, Fritsch & Maniatis Molecular Cloning, (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) yields a single stranded DNA-protein fusion.
  • This method also facilitates the formation of truncated DNA transcripts by adding didesoxynucleoside triphosphates during transcription (see, for example, Sanger, Science (1981) vol. 214, p. 1205-1210). Such truncated DNA-protein fusions are useful in protein display experiments (Kuimelis et al., U.S. Ser. No. 60/080,686, filed Apr. 3, 1998), for example, where only the 3′-region of the original message (now the 5′-region of the DNA transcript) is used for hybridization with immobilized oligonucleotide probes.
  • Type A2: Crosslinking of a Puromycin-Modified Linker to a Primer DNA
  • As an alternative to the hairpin-like construct described above, a closely related structure may also be prepared through photocrosslinking of a 5′-psoralen-modified primer DNA with a suitable linker that bears a 3′-puromycin. An exemplary crosslinking method is illustrated in FIG. 5. In this method, the puromycin-bearing linker may be constructed as described, for example, in Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302. The psoralen-modified primer may be generated and the photocrosslinking step carried out as described, for example, in Pieles & Englisch, Nucl. Acids Res. (1989) vol. 17, p. 285-299. The remaining steps may be carried out as described above. This approach does not require the use of non-standard nucleoside/puromycin-5′-phosphoramidites (i.e., which were used during the automated synthesis of the hairpin-linker structure), providing an advantage over the hairpin method. Again, as above, while a dAn linker of between approximately 10-60 nucleotides, and more preferably approximately 30 nucleotides, is utilized, both the length and the chemical composition (e.g., PEG (Glen Research, Sterling, Va.) rather than dAn) of the linker may be optimized.
  • In addition, for each of the Type A1 and Type A2 methods, the ligation reaction between the mRNA and the DNA portion of the construct may be carried out by several alternative techniques. For example, in addition to the enzymatic ligation with T4 DNA ligase described above, this step may be accomplished using chemical methods. In one particular example, the 5′-end of the hairpin may be modified with one (or multiple) amino-groups using the appropriate phosphoramidite (Clontech, Palo Alto, Calif.). After periodate oxidation of the 3′-end of the RNA, the two substrates may be joined through a reductive amination reaction. This is illustrated as scheme “A” in FIG. 6 and is described, for example, in Lemaitre et al., Proc. Natl. Acad. Sci. USA (1987) vol. 84, p. 648-652. Alternatively, this chemical ligation step may involve carbohydrazide or hydrazine modified structures for hydrazone formation or reductive amination. These approaches are illustrated in FIG. 6, respectively, as schemes “B” and “C” and are described, respectively, in Gosh et al. (Anal. Biochem. (1989) vol. 178, p. 43-51) and Proudnikov & Mirzabekov (Nucl. Acids Res. (1996) vol. 24 p. 4535-4542). Hydrazide phosphoramidite synthesis may be carried out as shown in FIG. 7, and hydrazine phosphoramidite synthesis as shown in FIG. 8 and as described in Greene & Wuts (Protective Groups in Organic Synthesis, 2nd ed. (1991) John Wiley & Sons, Inc., New York, N.Y. (steps (a) and (c)), Proudnikov & Mirzabekov (Nucl. Acids Res. (1996) vol. 24 p. 4535-4542 (step b)), and Beaucage (Methods in Molecular Biology, vol. 20, Protocols for Oligonucleotides and Analogs, ed. S. Agarwal (1993) Humana Press, Totowa, N.J., pp. 33-61 (step (e)).
  • Types B1-B3: Chemical Crosslinking to the 3′-End of an mRNA
  • Yet another approach to the generation of DNA-protein fusions involves the chemical crosslinking of a puromycin-modified linker to the 3′-end of an mRNA molecule. Such crosslinking may be accomplished by a number of approaches.
  • One exemplary approach is shown schematically in FIG. 9. In this approach (“B1”), an oligonucleotide is synthesized that bears a reactive group (e.g., one of the amino derivatives, hydrazides, or hydrazines described above) located between the primer and the linker regions. Duplex formation of the RNA and the primer site takes place immediately adjacent to this reactive group, which then is allowed to react with the periodate-oxidized 3′-end of the RNA leading to a crosslink (as shown in FIG. 6 and as described above). This reaction may occur through reductive amination (FIG. 6, scheme “A” or “C”; Lemaitre et al., Proc. Natl. Acad. Sci. USA (1987) vol. 84, p. 648-652; Proudnikov & Mirzabekov, Nucl. Acids Res. (1996) vol. 24 p. 4535-4542) or hydrazone formation (FIG. 6, scheme “B”; Gosh et al., Anal. Biochem. (1989) vol. 178, p. 43-51). Following translation and fusion formation (Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302), the primer is extended by reverse transcriptase on the RNA template and an optional RNase H digestion step is carried out, generating the DNA-protein fusion (FIG. 9).
  • As in methods A1 and A2 above, the strand direction of the linker portion's terminal nucleotides is reversed, which can be accomplished by the use of 5′-phosphoramidites (Glen Research, Sterling, Va.) during synthesis.
  • In yet another exemplary crosslinking approach (“B2”), a photoreactive psoralen moiety is included in the linker as a reactive group (FIG. 10). Such a construct may be synthesized using a psoralen-modified desoxynucleotide phosphoramidite (Pieles et al., Nucleic Acids Res. (1989) vol. 17, p. 8967-8978) or by incorporating a branched phosphoramidite (Clontech, Palo Alto, Calif.) to which a standard psoralen phosphoramidite is attached (Glen Research, Sterling, Va.). Following hybridization of the linker to the target RNA, crosslink formation is achieved through irradiation with UV-light, for example, as described in Pieles and Englisch (Nucl. Acids Res. (1989) vol. 17, p. 285-299). The resulting construct is then subjected to translation and fusion formation (Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO 98/31700; Roberts and Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302). Reverse transcription and RNase H digestion yields the final DNA-protein fusions.
  • Alternatively, crosslinking may be accomplished using a combined linker/reverse transcriptase primer construct as depicted in FIG. 11 (“B3”). In a variant of the above approach, the psoralen moiety is not directly attached between the linker and primer region, but rather connected to a short DNA branch. This DNA portion also hybridizes to the target RNA and thus provides an optimized double-stranded environment for the psoralen to react (Pieles and Englisch, Nucl. Acids. Res. (1989) vol. 17, p. 285-299). Preparation of DNA-protein fusions using this psoralen construct may be carried out as described above.
  • Types C1 and C2: Crosslinking of the Reverse Transcription Primer to Preexisting mRNA-Linker Constructs
  • Another method for generating DNA-protein fusions is shown schematically in FIG. 12. By this approach, RNA is initially ligated to a linker molecule as previously described (Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302). In a subsequent step, a suitable primer bearing a 5′-photocrosslinking reagent (e.g., psoralen, Glen Research, Sterling, Va.) is annealed to the RNA-linker product. Irradiation with light furnishes a covalent crosslink between the two oligonucleotide strands (as described, for example, in Pieles & Englisch, Nucl. Acids Res. (1989) vol. 17, p. 285-299). As in methods Type A1, A2, and B1-B3 above, translation and fusion formation may be carried out, followed by a reverse transcription step and an optional RNase H digestion step to yield DNA-protein fusions (FIG. 12).
  • Alternatively, as shown in FIG. 13, the initial steps of the above procedure may be carried out in the opposite order. This approach allows translation and fusion formation to be performed prior to crosslinking and reverse transcription. Accordingly, this method allows for the use of previously described and well established reaction conditions and components for translation and RNA-protein fusion formation.
  • EXPERIMENTAL RESULTS
  • Exemplary techniques described above were carried out to demonstrate DNA-protein fusion formation. These experiments made use of the oligonucleotides depicted in FIG. 14.
  • Model RNA substrates 1: GGG ACA AUU ACU AUU UAC AAU UAC AAU GGA CUA CAA GGA CGA UGA CGA UAA GGG CGG CUG GUC CCA CCC CCA GWU CGA GAA GGC AUC CGC U (SEQ ID NO: 7); 2: GGG ACA AWU ACU AUU UAC AAU UAC AAU GGA CUA CAA GGA CGA UGA CGA UAA GGG CGG CUG GUC CCA CCC CCA GUU CGA GAA GGC AUC CGC UCU UUC ACU AUA (SEQ ID NO: 8); and 3: GGG ACA AUU ACU AUU UAC AAU UAC AAU GGA CUA CAA GGA CGA UGA CGA UAA GGG CGG CUG GUC CCA CCC CCA GUU CGA GAA GGC AUC CGC UAU UUA AAA AAA AAA AAA AAA AAA A (SEQ ID NO: 9) were synthesized by T7 transcription (Megashortscript transkiption kit, Ambion, Austin, Tex.) using appropriate dsDNA templates. Following transcription, the RNAs were purified by denaturing polyacrylamide gel electrophoresis.
  • The modified oligonucleotides 4: 5′ pd(AAA AAA AAA ACG GCT ATA TAA AAA AAA CC)-Pu (SEQ ID NO: 10); 5: 5′ psoralen C2-TAG CCG TTT TTT TTT TAG CGG ATG C (SEQ ID NO: 11); 6: 5′ d(cgt agg cga gaa agt gat)-branch[psoralen C6]-d(AAA AAA AAA AAA AAA AAA AAA AAA AAA CC)-Pu (SEQ ID NO: 12); and 7: 5′ ggt caa gct ctt-branch[5′ psoralen C6-TAG CGG ATG C 3′] spacer6 CC-Pu (SEQ ID NO: 13) [[uppercase=standard DNA-3′-phosphoramidites; lowercase=DNA-5′-phosphoramidites; spacer=spacer-9 phosphoramidite; Pu puromycin-CPG (all from Glen Research, Sterling, Va.); branch=asymmetric branching amidite (Clontech, Palo Alto, Calif.)] were synthesized on an Expedite Synthesizer Model 8909 (PerSeptive Biosystems, Framingham, Mass.) according to recommended protocols for the corresponding phosphoramidites. For the branched constructs 6 and 7, the main chain was synthesized first and concluded with a final capping step. Next, the levulinyl protecting group was removed from the branching unit through treatment with 0.5 M hydrazine monohydrate in pyridine-acetic acid for 15 minutes at room temperature. Automated synthesis was then resumed and the side chain sequences (indicated in square brackets) were attached. The oligos were fully deprotected in concentrated ammonium hydroxide for 8 hours at 55° C. and purified by denaturing gel electrophoresis.
  • The DNA sequences 8: d(TTT TTT TTT TAG CGG ATG C) (SEQ ID NO: 14) and 9: d(TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA TTT ACA ATT) (SEQ ID NO: 15) were purchased from Oligos etc. (Wilsonville, Oreg.) and used without further purification.
  • Type C2 DNA-Protein Fusion Formation
  • Type C2 DNA-protein fusion formation was demonstrated as follows (FIG. 15). RNA 1 and linker 4 were hybridized to template DNA 8 and enzymatically ligated by T4 DNA ligase as previously described (Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts and Szostak, Proc. Natl. Acad. Sci. USA (1997) Vol. 94, p. 12297-12302). After purification by electrophoresis on a denaturing polyacrylamide gel, the resulting mRNA-linker construct was used as a template for in vitro translation using rabbit reticulocyte lysate kits from Ambion. Reaction mixtures contained 50 pmole ligated mRNA 10, 10 mM creatine phosphate, 150 mM potassium acetate, 0.5 mM magnesium chloride, 0.1 mM of each amino acid except methionine, 150 μCi[35S]methionine (Amersham, Arlington Heights, Ill.) and 67% v/v of lysate in a total volume of 300 μl and were carried out for 30 minutes at 30° C. To promote the subsequent fusion formation, KCl and MgCl2 were added to 590 mM and 50 mM final concentrations, respectively, in a volume of 500 μl. Incubation was continued for 60 minutes at 20° C. Products were isolated by diluting the lysate into 10 ml of binding buffer (100 mM Tris pH 8.0, 10 mM EDTA, 1 M NaCl, 0.25% v/v Triton X-100) and adding 10 mg oligo-dT cellulose type 7 (Pharmacia, Piscataway, N.J.). Samples were rotated for 60 minutes at 4° C., and the solid support was then washed with 5 ml ice-cold binding buffer that was devoid of EDTA, followed by elution with 100 μl aliquots of water. Fusion product was found in fractions 2 and 3, and these fractions were combined. The total yield of fusion 11 was determined by scintillation counting of the incorporated [35S]methionine to be 1.6 pmole (3.2% of input RNA).
  • For the conversion of the RNA-protein fusions 11 into DNA-protein fusions 13, the following reactions were performed (FIG. 15). First, 20 μl of the above oligo-dT-purified material 11 was mixed with 0.5 μl primers 5 (50 μM) and 6 μL first strand buffer (Superscript II kit from GibcoBRL; 250 mM Tris-HCl pH 8.3, 375 KCl, 15 mM MgCl2) and briefly heated to 80° C. for 2 minutes, followed by slowly cooling to 0° C. Psoralen photocrosslink formation was induced by irradiating the sample for 15 minutes at 0° C. with λ>310 nm [450 W medium pressure immersion lamp (ACE Glass, Vineland, N.J.) equipped with a Pyrex absorption sleeve in a Quartz immersion well]. Next, 0.6 μl of a dNTP mix (25 mM each), 3 μl of 0.1M DTT, and 0.4 μl (80 units) Superscript II reverse transcriptase were added, and cDNA synthesis was carried out for 60 minutes at 42° C. The RNA portion was then removed by continuing incubation for 60 minutes at 37° C. after addition of 0.5 μl (1 unit) RNase H (Promega, Madison, Wis.). Finally, double-stranded DNA 14 was generated by adding 50 pmoles of primer 9 and incubating for another 60 minutes at 42° C. Control reactions with non-crosslinked samples were performed as indicated in FIG. 15. Product analysis was performed by electrophoresis on denaturing 6% TBE-Urea gels (Novex, San Diego, Calif.), followed by visualization of the [35S]-labelled product bands by exposure on a phosphorimager screen (FIG. 16).
  • Samples were applied to the gel in the same order as they appear in FIG. 15, beginning with RNA-protein fusion 11 and following the reaction pathway with and without having been photocrosslinked. As indicated in FIG. 16, the gel mobilities correspond well with the expected behavior and clearly confirm the constitution of DNA-protein fusion 13.
  • Type B3 DNA-Protein Fusion Formation
  • Type B3 DNA-protein fusion formation was demonstrated as follows (FIG. 17). The branched linker construct 7 (5 μM) was annealed to the target RNA 3 (2.5 μM) in 25 mM Tris buffer pH 7.0 containing 100 mM NaCl and crosslinked by irradiation for 15 minutes at room temperature in a borosilicate glass vial (Kimble/Kontes, Vineland, N.J.) using a handheld multiwavelength UV lamp model UVGL-25 (UVP, Upland, Calif.) set to long wave. Product analysis was performed by electrophoresis on a 6% TBE-Urea polyacrylamide gel followed by visualization by UV shadowing. These results indicated nearly quantitative conversion of the starting material (gel “A” in FIG. 17). The photoligated product RNA was used for in vitro translation without further separation from remaining unligated RNA and excess linker. In vitro translation and fusion formation reactions were performed as described for Type C2 above, with 100 pmole input RNA in a 300 μl total volume. After purification on oligo-dT cellulose, 5.5 pmole RNA-fusion 15 was obtained. Its conversion into single-stranded and double-stranded DNA- protein fusions 16 and 17, respectively, was done by reverse transcription (Superscript II kit, GibcoBRL, Grand Island, N.Y.) and RNase H (Promega, Madison, Wis.) treatment as described for Type C2 fusions (gel “B” in FIG. 17).
  • Type B2 DNA-Protein Fusion Formation
  • Type B2 DNA-protein fusion formation was demonstrated as outlined in FIG. 18. Specifically, following the procedure outlined for Type B3 fusions above, RNA 2 was crosslinked to linker 6. Following denaturing polyacrylamide electrophoresis, the ligated product 18 was isolated in 12% yield. In vitro translation, fusion formation, and preparation of DNA-protein fusions 19 were carried out as described for Type B3 fusions above, with similar efficiencies of fusion formation.
  • DNA-Protein Fusion Stability Tests
  • To evaluate the nuclease and base resistance of DNA fusions in comparison with the corresponding RNA fusions, the following experiments were carried out. To 10 μl DNA-fusion 16 (Type B3) or RNA-fusion 15 in reverse transcription buffer was added either 0.2 μl (0.4 units) RNase H, 0.2 μl (2 units) RNase I, 0.2 μl (0.6 units) T4 DNA polymerase (3′-5′ exonuclease activity), or 2.5 μl of 2.0 M NaOH. Samples were incubated for 30 minutes at 37° C. and then analyzed on a 4-12% NuPage gel (Novex, San Diego, Calif.) followed by autoradiography. Results are shown in FIG. 19 and confirm the increased stability of DNA fusions against ribonucleases and base treatment.
  • To test stability of DNA fusion constructs in biological media, 5 nM of either RNA fusions 11 or 12, or DNA fusions 13 or 14 (Type C2) were incubated with 3 μg/[l CHO-KI cell membranes (Receptor Biology, Beltsville, Md.) in 50 mM Tris-HCl pH 8.3, 75 mM KCl, 3 mM MgCl2, and 10 mM DTT at room temperature. Additional samples of RNA fusions 11 and 12 were prepared containing 20 mM vanadyl ribonucleoside complex (“VRC”) to inhibit ribonuclease activity. Aliquots were taken after 0, 5, 15, 30, 60, 120 minutes, and 24 hours and analyzed by electrophoresis on 4-12% NuPage gels (Novex) followed by exposure on a phosphorimager screen. The relative amounts of remaining fusion were plotted against incubation time and half-lives graphically extracted from the resulting curves. As indicated in FIG. 20, all constructs showed more than 50% decay during the initial two hour period except for dsDNA fusion 14, which appeared to be entirely stable under the conditions tested. Following a 24 hour incubation, all fusion constructs were completely degraded due to either nuclease or protease activity.
  • In Vitro Selection of Desired Proteins
  • The DNA-protein fusions described herein may be used in any selection method for desired proteins, including molecular evolution and recognition approaches. Exemplary selection methods are described, for example, in Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302; Lipovsek et al., U.S. Ser. No. 60/096,818 and U.S. Ser. No. 09/374,962, now U.S. Pat. No. 6,312,927; and Kuimelis et al. U.S. Ser. No. 60/080,686 and U.S. Ser. No. 09/282,734, all hereby incorporated by reference.
  • Use
  • The DNA-protein fusions described herein may be used for any application previously described or envisioned for RNA-protein fusions. Commercial uses include the isolation of polypeptides with desired properties through in vitro evolution techniques (see, for example, Szostak et al., U.S. Ser. No. 09/007,005, now U.S. Pat. No. 6,258,558 B1, and U.S. Ser. No. 09/247,190, now U.S. Pat. No. 6,261,804 B1; Szostak et al., WO98/31700; Roberts & Szostak, Proc. Natl. Acad. Sci. USA (1997) vol. 94, p. 12297-12302)), screening of cDNA libraries that are derived from cellular mRNA (see, for example, Lipovsek et al., U.S. Ser. No. 60/096,818, filed Aug. 17, 1998, now U.S. Pat. No. 6,312,927), and the cloning of new genes on the basis of protein-protein interactions (Szostak et al., U.S. Ser. No. 09/007,005 now U.S. Pat. No. 6,312,927; Szostak et al., WO98/31700), as well as the use of these fusions in protein display experiments (Kuimelis et al. U.S. Ser. No. 60/080,686 and U.S. Ser. No. 09/282,734). In addition, the DNA-protein fusions described herein may be used in binding and molecular recognition assays that involve biological materials that presumably contain ribonucleases, such as whole cells, lysates, or biological fluids. These DNA-protein fusions may be used for any appropriate therapeutic, diagnostic, or research purpose, particularly in the pharmaceutical and agricultural areas.

Claims (27)

1-15. (canceled)
16. A molecule comprising a DNA covalently bonded to a protein through a peptide acceptor.
17. The molecule of claim 16, wherein said peptide acceptor is puromycin.
18. The molecule of claim 16, wherein said protein comprises at least 10 amino acids.
19. A molecule comprising a DNA covalently bonded to a protein, said protein comprising at least 10 amino acids.
20. The molecule of claim 16 or 19, wherein said protein comprises at least 30 amino acids.
21. The molecule of claim 20, wherein said protein comprises at least 100 amino acids.
22. The molecule of claim 16 or 19, wherein said protein is encoded by said DNA.
23. The molecule of claim 16 or 19, wherein said protein is entirely encoded by said DNA.
24. The molecule of claim 16 or 19, wherein said molecule further comprises a ribonucleic acid covalently bonded to said DNA.
25. The molecule of claim 24, wherein said protein is encoded by said ribonucleic acid.
26. The molecule of claim 16 or 19, wherein said DNA is double stranded.
27. A population of at least 105 DNA-protein fusions, each fusion comprising a DNA covalently bonded to a protein.
28. The population of claim 27, wherein said population comprises at least 1014 fusions.
29. The population of claim 27, wherein said protein comprises at least 10 amino acids.
30. The population of claim 29, wherein said protein comprises at least 30 amino acids.
31. The population of claim 30, wherein said protein comprises at least 100 amino acids.
32. The population of claim 27, wherein said protein is encoded by said covalently bonded DNA.
33. The population of claim 27, wherein said protein is entirely encoded by said covalently bonded DNA.
34. The population of claim 27, wherein said fusions further comprise a ribonucleic acid covalently bonded to said DNA.
35. The population of claim 34, wherein said protein is encoded by said ribonucleic acid.
36. The population of claim 27, wherein said DNA is covalently bonded to said protein through a peptide acceptor.
37. The population of claim 36, wherein said peptide acceptor is puromycin.
38. The population of claim 27, wherein said DNA is double stranded.
39. A solid support comprising an array of immobilized molecules, each comprising a DNA covalently bonded to a protein.
40. The solid support of claim 39, wherein said protein is encoded by said DNA.
41. The solid support of claim 39, wherein said solid support is a microchip.
US11/726,717 1998-12-02 2007-03-22 DNA-protein fusions and uses thereof Abandoned US20080051299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/726,717 US20080051299A1 (en) 1998-12-02 2007-03-22 DNA-protein fusions and uses thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11054998P 1998-12-02 1998-12-02
US09/453,190 US6416950B1 (en) 1998-12-02 1999-12-02 DNA-protein fusions and uses thereof
US10/180,819 US7195880B2 (en) 1998-12-02 2002-06-26 DNA-protein fusions and uses thereof
US11/726,717 US20080051299A1 (en) 1998-12-02 2007-03-22 DNA-protein fusions and uses thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/180,819 Continuation US7195880B2 (en) 1998-12-02 2002-06-26 DNA-protein fusions and uses thereof

Publications (1)

Publication Number Publication Date
US20080051299A1 true US20080051299A1 (en) 2008-02-28

Family

ID=22333628

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/453,190 Expired - Lifetime US6416950B1 (en) 1998-12-02 1999-12-02 DNA-protein fusions and uses thereof
US10/180,819 Expired - Lifetime US7195880B2 (en) 1998-12-02 2002-06-26 DNA-protein fusions and uses thereof
US11/726,717 Abandoned US20080051299A1 (en) 1998-12-02 2007-03-22 DNA-protein fusions and uses thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/453,190 Expired - Lifetime US6416950B1 (en) 1998-12-02 1999-12-02 DNA-protein fusions and uses thereof
US10/180,819 Expired - Lifetime US7195880B2 (en) 1998-12-02 2002-06-26 DNA-protein fusions and uses thereof

Country Status (16)

Country Link
US (3) US6416950B1 (en)
EP (1) EP1137812B1 (en)
JP (1) JP4808315B2 (en)
KR (1) KR20010099821A (en)
AT (1) ATE354675T1 (en)
AU (1) AU775997B2 (en)
CA (1) CA2350417C (en)
DE (1) DE69935248T2 (en)
DK (1) DK1137812T3 (en)
ES (1) ES2280131T3 (en)
HK (1) HK1039355B (en)
IL (2) IL143238A0 (en)
NO (1) NO20012735L (en)
NZ (1) NZ511699A (en)
PT (1) PT1137812E (en)
WO (1) WO2000032823A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382579A (en) * 2013-07-06 2013-11-06 中国科学院成都生物研究所 Method used for screening polypeptide in vitro
CN104774923A (en) * 2015-03-11 2015-07-15 华中农业大学 Method for determining transcriptional control complex

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1137812E (en) * 1998-12-02 2007-05-31 Adnexus Therapeutics Inc Dna-protein fusions and uses thereof
US6623926B1 (en) 1999-06-01 2003-09-23 Phylos, Inc. Methods for producing 5′-nucleic acid-protein conjugates
EP1194594A4 (en) 1999-07-12 2005-06-01 Compound Therapeutics Inc C-terminal protein tagging
JP2003520050A (en) 2000-01-24 2003-07-02 フィロス インク. Sensitive multiplexed diagnostic assays for protein analysis
US7022479B2 (en) 2000-01-24 2006-04-04 Compound Therapeutics, Inc. Sensitive, multiplexed diagnostic assays for protein analysis
US7410761B2 (en) * 2000-05-19 2008-08-12 Proteonova, Inc. System for rapid identification and selection of nucleic acids and polypeptides, and method thereof
US6962781B1 (en) 2000-05-19 2005-11-08 Proteonova, Inc. In vitro evolution of nucleic acids and encoded polypeptide
US20040229271A1 (en) 2000-05-19 2004-11-18 Williams Richard B. Compositions and methods for the identification and selection of nucleic acids and polypeptides
DE60136715D1 (en) * 2000-08-11 2009-01-08 Nanogen Recognomics Gmbh HYDRAZINE COMPONENTS AND HYDRATINE-MODIFIED BIOMOLECULES
AU7861301A (en) 2000-08-15 2002-02-25 Discerna Ltd Functional protein arrays
DK1332209T3 (en) 2000-09-08 2010-03-29 Univ Zuerich Collections of repeat proteins containing repeat modules
CA2423487C (en) * 2000-09-26 2015-12-15 Hybridon, Inc. Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes
EP1356075A4 (en) 2000-10-16 2005-04-13 Compound Therapeutics Inc Protein scaffolds for antibody mimics and other binding proteins
JP4963142B2 (en) * 2000-12-14 2012-06-27 学校法人慶應義塾 Genotype-phenotype mapping molecule and its constituents, and method for producing and using mapping molecule
US6689568B2 (en) 2001-02-01 2004-02-10 Agilent Technologies, Inc. Capture arrays using polypeptide capture agents
US20040253578A1 (en) * 2001-04-02 2004-12-16 Roberts Radclyffe L. Dynamic action reference tools
AU2002256076A1 (en) * 2001-04-10 2002-10-28 Interlock Industries, Inc. Water based adhesive
US7727713B2 (en) 2001-06-20 2010-06-01 Nuevolution A/S Templated molecules and methods for using such molecules
NZ530098A (en) * 2001-06-20 2006-02-24 Nuevolution As Templated molecules and methods for using such molecules
AU2002310502A1 (en) * 2001-06-21 2003-01-08 Phylos, Inc. In vitro protein interaction detection systems
US20040161741A1 (en) 2001-06-30 2004-08-19 Elazar Rabani Novel compositions and processes for analyte detection, quantification and amplification
US9261460B2 (en) 2002-03-12 2016-02-16 Enzo Life Sciences, Inc. Real-time nucleic acid detection processes and compositions
US9777312B2 (en) 2001-06-30 2017-10-03 Enzo Life Sciences, Inc. Dual polarity analysis of nucleic acids
CA2456105A1 (en) * 2001-07-31 2003-02-13 Phylos, Inc. Modular assembly of nucleic acid-protein fusion multimers
DE10145226A1 (en) * 2001-09-13 2003-04-10 Lifebits Ag Manufacture of carrier-bound molecules
US7125669B2 (en) 2001-11-27 2006-10-24 Compound Therapeutics, Inc. Solid-phase immobilization of proteins and peptides
US9353405B2 (en) 2002-03-12 2016-05-31 Enzo Life Sciences, Inc. Optimized real time nucleic acid detection processes
DK1487978T3 (en) 2002-03-15 2009-03-23 Nuevolution As Improved method for synthesis of template molecules
AU2003242344A1 (en) * 2002-06-12 2003-12-31 Keio University Translation templates and library thereof, proteins synthesized therefrom and protein library, constituents thereof, process for producing the same and method of using the same
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
AU2003247266A1 (en) 2002-08-01 2004-02-23 Nuevolution A/S Multi-step synthesis of templated molecules
AU2003263937B2 (en) 2002-08-19 2010-04-01 The President And Fellows Of Harvard College Evolving new molecular function
DK2348124T3 (en) 2002-10-30 2014-03-10 Nuevolution As Synthesis of a bifunctional complex
AU2011226815B2 (en) * 2002-10-30 2014-09-25 Nuevolution A/S Enzymatic encoding
WO2004056994A2 (en) 2002-12-19 2004-07-08 Nuevolution A/S Quasirandom structure and function guided synthesis methods
JP4761202B2 (en) * 2003-01-31 2011-08-31 学校法人慶應義塾 Cleavage mapping molecule and screening method using the same
KR100858081B1 (en) 2003-02-14 2008-09-10 삼성전자주식회사 Apparatus for coding gene information and method of the same
US20070026397A1 (en) 2003-02-21 2007-02-01 Nuevolution A/S Method for producing second-generation library
DK1608748T3 (en) 2003-03-20 2009-06-29 Nuevolution As Ligation coding of small molecules
WO2005074417A2 (en) * 2003-09-03 2005-08-18 Salk Institute For Biological Studies Multiple antigen detection assays and reagents
JPWO2005024018A1 (en) * 2003-09-08 2007-11-08 株式会社モレキュエンス Nucleic acid construct and method for producing the same
WO2005026387A1 (en) * 2003-09-18 2005-03-24 Nuevolution A/S A method for obtaining structural information concerning an encoded molecule and method for selecting compounds
CA2546343A1 (en) * 2003-11-20 2005-06-09 Sanofi Pasteur, Inc. Methods for purifying pertussis toxin and peptides useful therefor
US20050191662A1 (en) * 2003-12-22 2005-09-01 Syngenta Participations Ag In vitro screening and evolution of proteins
EP1730277B1 (en) 2004-03-22 2009-10-28 Nuevolution A/S Ligational encoding using building block oligonucleotides
WO2006091628A2 (en) * 2005-02-22 2006-08-31 Arizona Board Of Regents For And On Behalf Of Arizona State University Dna crosslinking for primer extension assays
US20060275780A1 (en) * 2005-06-06 2006-12-07 Beckman Coulter, Inc. Cross-linking reagents and uses thereof
CA2626522A1 (en) 2005-11-16 2007-05-24 Ambrx, Inc. Methods and compositions comprising non-natural amino acids
EP2341140B1 (en) 2005-12-01 2017-07-19 Nuevolution A/S Enzymatic encoding methods for efficient synthesis of large libraries
US7749957B2 (en) 2006-04-06 2010-07-06 E.I. Du Pont De Nemours And Company Clay-binding peptides and methods of use
US7829311B2 (en) 2007-07-25 2010-11-09 E.I. Du Pont De Nemours And Company Ketosteroid isomerase inclusion body tag engineered to be acid-resistant by replacing aspartates with glutamate
US7951559B2 (en) 2007-07-25 2011-05-31 E.I. Du Pont De Nemours And Company Recombinant peptide production using a cross-linkable solubility tag
US7678883B2 (en) * 2007-07-25 2010-03-16 E.I. Du Pont De Nemours And Company Solubility tags for the expression and purification of bioactive peptides
US7794963B2 (en) 2007-11-02 2010-09-14 E.I. Du Pont De Nemours And Company Use of tetracysteine tags in fluorescence-activated cell sorting analysis of prokaryotic cells producing peptides or proteins
AU2008334099B2 (en) 2007-11-30 2014-07-24 Abbvie Biotechnology Ltd. Protein formulations and methods of making same
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
PT2274331E (en) 2008-05-02 2014-02-27 Novartis Ag Improved fibronectin-based binding molecules and uses thereof
EP3629022A1 (en) 2008-07-25 2020-04-01 Richard W. Wagner Protein screening methods
WO2010060748A1 (en) 2008-11-03 2010-06-03 Molecular Partners Ag Binding proteins inhibiting the vegf-a receptor interaction
US8287845B2 (en) * 2008-12-18 2012-10-16 E I Du Pont De Nemours And Company Hair-binding peptides
US20100158822A1 (en) * 2008-12-18 2010-06-24 E .I. Du Pont De Nemours And Company Peptides that bind to silica-coated particles
US20100158837A1 (en) 2008-12-18 2010-06-24 E. I. Du Pont De Nemours And Company Iron oxide-binding peptides
US20100158846A1 (en) * 2008-12-18 2010-06-24 E. I. Du Pont De Nemours And Company Hair-binding peptides
EA021797B1 (en) 2009-02-13 2015-09-30 Икс-Чем, Инк. Methods of creating and screening dna-encoded libraries
US20100247590A1 (en) * 2009-03-30 2010-09-30 Johnson & Johnson Peptide-Based Systems For Delivery Of Cosmetic Agents
US8481678B2 (en) 2009-03-30 2013-07-09 E I Du Pont De Nemours And Company Peptide-based tooth whitening reagents
WO2010127186A1 (en) 2009-04-30 2010-11-04 Prognosys Biosciences, Inc. Nucleic acid constructs and methods of use
WO2011051327A2 (en) 2009-10-30 2011-05-05 Novartis Ag Small antibody-like single chain proteins
WO2011051466A1 (en) 2009-11-02 2011-05-05 Novartis Ag Anti-idiotypic fibronectin-based binding molecules and uses thereof
WO2011092233A1 (en) 2010-01-29 2011-08-04 Novartis Ag Yeast mating to produce high-affinity combinations of fibronectin-based binders
MX2012009318A (en) 2010-02-10 2012-09-07 Novartis Ag Methods and compounds for muscle growth.
JP5893607B2 (en) 2010-04-05 2016-03-23 プログノシス バイオサイエンシズ インコーポレイテッドPrognosys Biosciences,Inc. Spatial-encoded biological assay
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
ES2537814T3 (en) 2010-04-09 2015-06-12 Amgen Inc. Proteins, nucleic acids, and BTNL9 antibodies and uses thereof
LT2558577T (en) 2010-04-16 2019-03-12 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes
AR081361A1 (en) 2010-04-30 2012-08-29 Molecular Partners Ag MODIFIED UNION PROTEINS THAT INHIBIT THE RECEPTOR INTERACTION OF THE VASCULAR ENDOTELIAL GROWTH FACTOR FROM GLICOPROTEIN TO VEGF-A
US20130230884A1 (en) * 2010-07-16 2013-09-05 John Chaput Methods to Identify Synthetic and Natural RNA Elements that Enhance Protein Translation
WO2012016245A2 (en) 2010-07-30 2012-02-02 Novartis Ag Fibronectin cradle molecules and libraries thereof
US9284361B2 (en) 2010-11-26 2016-03-15 Molecular Partners Ag Designed repeat proteins binding to serum albumin
DE102010056289A1 (en) 2010-12-24 2012-06-28 Geneart Ag Process for the preparation of reading frame correct fragment libraries
ES2873375T3 (en) 2011-03-15 2021-11-03 X Body Inc Antibody screening methods
WO2012139110A2 (en) 2011-04-08 2012-10-11 Prognosys Biosciences, Inc. Peptide constructs and assay systems
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
KR102151656B1 (en) 2011-04-28 2020-09-03 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Identification of polynucleotides associated with a sample
EP2702069A4 (en) 2011-04-29 2015-04-29 Janssen Biotech Inc Il4/il13 binding repeat proteins and uses
CA2843955A1 (en) 2011-08-01 2013-02-07 The General Hospital Corporation Protein and peptide libraries
CA2848023C (en) 2011-09-07 2022-03-15 X-Chem, Inc. Methods for tagging dna-encoded libraries
RU2019133467A (en) 2011-10-11 2020-07-06 МЕДИММЬЮН, ЭлЭлСи CD40L-SPECIFIC FRAME STRUCTURES ORIGINING FROM TN3, AND METHODS OF APPLICATION
EP2788379B1 (en) 2011-12-05 2020-02-05 X-Body, Inc. Pdgf receptor beta binding polypeptides
WO2013185042A2 (en) * 2012-06-08 2013-12-12 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Rapid affinity measurement of peptide ligands and reagents therefor
SG11201408196RA (en) 2012-06-28 2015-03-30 Molecular Partners Ag Designed ankyrin repeat proteins binding to platelet-derived growth factor
NZ703766A (en) 2012-07-13 2018-03-23 X Chem Inc Dna-encoded libraries having encoding oligonucleotide linkages not readable by polymerases
JP6448056B2 (en) 2012-07-19 2019-01-09 アムジェン インコーポレイテッド Human BTNL3 protein, nucleic acid, and antibody and uses thereof
EP2738180A1 (en) 2012-11-30 2014-06-04 Molecular Partners AG Binding proteins comprising at least two binding domains against HER2.
US9816120B2 (en) * 2013-01-09 2017-11-14 The Penn State Research Foundation Low sequence bias single-stranded DNA ligation
GB2547875B (en) * 2013-02-01 2017-12-13 Univ California Methods for meta-genomics analysis of microbes
US9411930B2 (en) 2013-02-01 2016-08-09 The Regents Of The University Of California Methods for genome assembly and haplotype phasing
EP2975121A4 (en) 2013-03-13 2016-07-20 Univ Tokyo Nucleic acid linker
US11231419B2 (en) 2013-03-15 2022-01-25 Prognosys Biosciences, Inc. Methods for detecting peptide/MHC/TCR binding
WO2014210225A1 (en) 2013-06-25 2014-12-31 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
RU2678421C2 (en) 2013-06-28 2019-01-28 Экс-Боди, Инк. Target antigen discovery, phenotypic screens and use thereof for identification of target cell specific target epitopes
EP3049811B1 (en) 2013-09-23 2020-09-09 X-Body, Inc. Methods and compositions for generation of binding agents against cell surface antigens
US10288608B2 (en) 2013-11-08 2019-05-14 Prognosys Biosciences, Inc. Polynucleotide conjugates and methods for analyte detection
WO2015120058A2 (en) 2014-02-05 2015-08-13 Molecular Templates, Inc. Methods of screening, selecting, and identifying cytotoxic recombinant polypeptides based on an interim diminution of ribotoxicity
CN114057857A (en) 2014-06-20 2022-02-18 豪夫迈·罗氏有限公司 CHAGASIN-based scaffold compositions, methods and uses
EP4219710A3 (en) 2014-08-01 2023-08-16 Dovetail Genomics, LLC Tagging nucleic acids for sequence assembly
JP6491233B2 (en) * 2014-12-12 2019-03-27 国立研究開発法人産業技術総合研究所 Nucleic acid complex for stabilizing hybridization, method for stabilizing nucleic acid hybridization, antisense nucleic acid pharmaceutical and microRNA inhibitor
WO2016134034A1 (en) 2015-02-17 2016-08-25 Dovetail Genomics Llc Nucleic acid sequence assembly
CN107428817B (en) 2015-03-12 2022-07-12 免疫医疗有限责任公司 Method for purifying albumin fusion proteins
US11807896B2 (en) 2015-03-26 2023-11-07 Dovetail Genomics, Llc Physical linkage preservation in DNA storage
US10774374B2 (en) 2015-04-10 2020-09-15 Spatial Transcriptomics AB and Illumina, Inc. Spatially distinguished, multiplex nucleic acid analysis of biological specimens
CN116063543A (en) 2015-04-24 2023-05-05 豪夫迈·罗氏有限公司 Multispecific antigen-binding proteins
CN108368542B (en) 2015-10-19 2022-04-08 多弗泰尔基因组学有限责任公司 Methods for genome assembly, haplotype phasing, and target-independent nucleic acid detection
EP3420108A4 (en) 2016-02-23 2019-11-06 Dovetail Genomics LLC Generation of phased read-sets for genome assembly and haplotype phasing
IL262946B2 (en) 2016-05-13 2023-03-01 Dovetail Genomics Llc Recovering long-range linkage information from preserved samples
WO2018005559A1 (en) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Method of identifying peptide epitopes, molecules that bind such epitopes and related uses
MA45491A (en) 2016-06-27 2019-05-01 Juno Therapeutics Inc CMH-E RESTRICTED EPITOPES, BINDING MOLECULES AND RELATED METHODS AND USES
CN110475785B (en) 2017-03-21 2023-06-13 富士胶片株式会社 Peptide compound, method for producing same, composition for screening, and method for selecting peptide compound
WO2020227554A1 (en) 2019-05-09 2020-11-12 Genentech, Inc. Methods of making antibodies

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587044A (en) * 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US5270163A (en) * 1990-06-11 1993-12-14 University Research Corporation Methods for identifying nucleic acid ligands
US5360714A (en) * 1992-08-28 1994-11-01 Fox Chase Cancer Center Hepadnavirus polymerase gene product having RNA-dependent DNA priming and reverse transcriptase activities and methods of measuring the activities thereof
US5422253A (en) * 1992-12-07 1995-06-06 Wisconsin Alumni Research Foundation Method of site specific nucleic acid cleavage
US5541061A (en) * 1992-04-29 1996-07-30 Affymax Technologies N.V. Methods for screening factorial chemical libraries
US5643768A (en) * 1989-10-05 1997-07-01 Optein, Inc. Cell-free synthesis and isolation of novel genes and polypeptides
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5849878A (en) * 1993-08-13 1998-12-15 The Regents Of The University Of California Design and synthesis of bispecific reagents: use of double stranded DNAs as chemically and spatially defined cross-linkers
US5922545A (en) * 1993-10-29 1999-07-13 Affymax Technologies N.V. In vitro peptide and antibody display libraries
US5962425A (en) * 1987-11-30 1999-10-05 University Of Iowa Research Foundation Methods for decreasing the expression of specifically targeted genes
US5965133A (en) * 1994-01-31 1999-10-12 Trustees Of Boston University Self-assembling multimeric nucleic acid constructs
US6207446B1 (en) * 1997-01-21 2001-03-27 The General Hospital Corporation Selection of proteins using RNA-protein fusions
US6261804B1 (en) * 1997-01-21 2001-07-17 The General Hospital Corporation Selection of proteins using RNA-protein fusions
US6361943B1 (en) * 1996-10-17 2002-03-26 Mitsubishi Chemical Corporation Molecule that homologizes genotype and phenotype and utilization thereof
US6416950B1 (en) * 1998-12-02 2002-07-09 Phylos, Inc. DNA-protein fusions and uses thereof
US20050038229A1 (en) * 1998-12-10 2005-02-17 Dasa Lipovsek Protein scaffolds for antibody mimics and other binding proteins
US20080058217A1 (en) * 1997-01-21 2008-03-06 Szostak Jack W Selection of proteins using RNA-protein fusions

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547839A (en) 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US5843701A (en) 1990-08-02 1998-12-01 Nexstar Pharmaceticals, Inc. Systematic polypeptide evolution by reverse translation
AU8498091A (en) 1990-08-02 1992-03-02 Regents Of The University Of Colorado, The Systematic polypeptide evolution by reverse translation
AU2313392A (en) 1991-08-01 1993-03-02 University Research Corporation Systematic polypeptide evolution by reverse translation
US5270170A (en) 1991-10-16 1993-12-14 Affymax Technologies N.V. Peptide library and screening method
DK0744958T3 (en) 1994-01-31 2003-10-20 Univ Boston Polyclonal antibody libraries
US5627024A (en) 1994-08-05 1997-05-06 The Scripps Research Institute Lambdoid bacteriophage vectors for expression and display of foreign proteins
KR100214267B1 (en) 1995-04-07 1999-08-02 김영환 Semiconductor device fabrication method
DE19646372C1 (en) 1995-11-11 1997-06-19 Evotec Biosystems Gmbh Conjugates of polypeptide and encoding nucleic acid
GB9703369D0 (en) 1997-02-18 1997-04-09 Lindqvist Bjorn H Process
US5985575A (en) 1998-05-20 1999-11-16 Wisconsin Alumni Research Foundation Tethered function assay for protein function
AU781478B2 (en) 1999-08-20 2005-05-26 Johns Hopkins University School Of Medicine, The Methods and compositions for the construction and use of fusion libraries
KR20060129246A (en) 2003-12-05 2006-12-15 컴파운드 쎄라퓨틱스, 인크. Inhibitors of type 2 vascular endothelial growth factor receptors

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587044A (en) * 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US5962425A (en) * 1987-11-30 1999-10-05 University Of Iowa Research Foundation Methods for decreasing the expression of specifically targeted genes
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5643768A (en) * 1989-10-05 1997-07-01 Optein, Inc. Cell-free synthesis and isolation of novel genes and polypeptides
US5658754A (en) * 1989-10-05 1997-08-19 Optein, Inc. Cell-free synthesis and isolation of novel genes and polypeptides
US5270163A (en) * 1990-06-11 1993-12-14 University Research Corporation Methods for identifying nucleic acid ligands
US5541061A (en) * 1992-04-29 1996-07-30 Affymax Technologies N.V. Methods for screening factorial chemical libraries
US5360714A (en) * 1992-08-28 1994-11-01 Fox Chase Cancer Center Hepadnavirus polymerase gene product having RNA-dependent DNA priming and reverse transcriptase activities and methods of measuring the activities thereof
US5422253A (en) * 1992-12-07 1995-06-06 Wisconsin Alumni Research Foundation Method of site specific nucleic acid cleavage
US5849878A (en) * 1993-08-13 1998-12-15 The Regents Of The University Of California Design and synthesis of bispecific reagents: use of double stranded DNAs as chemically and spatially defined cross-linkers
US5922545A (en) * 1993-10-29 1999-07-13 Affymax Technologies N.V. In vitro peptide and antibody display libraries
US5965133A (en) * 1994-01-31 1999-10-12 Trustees Of Boston University Self-assembling multimeric nucleic acid constructs
US6361943B1 (en) * 1996-10-17 2002-03-26 Mitsubishi Chemical Corporation Molecule that homologizes genotype and phenotype and utilization thereof
US6207446B1 (en) * 1997-01-21 2001-03-27 The General Hospital Corporation Selection of proteins using RNA-protein fusions
US6258558B1 (en) * 1997-01-21 2001-07-10 The General Hospital Corporation Method for selection of proteins using RNA-protein fusions
US6261804B1 (en) * 1997-01-21 2001-07-17 The General Hospital Corporation Selection of proteins using RNA-protein fusions
US6281344B1 (en) * 1997-01-21 2001-08-28 The General Hospital Corporation Nucleic acid-protein fusion molecules and libraries
US6214553B1 (en) * 1997-01-21 2001-04-10 Massachusetts General Hospital Libraries of protein encoding RNA-protein fusions
US6518018B1 (en) * 1997-01-21 2003-02-11 The General Hospital Corporation RNA-antibody fusions and their selection
US7270950B2 (en) * 1997-01-21 2007-09-18 The General Hospital Corporation Nucleic acid-protein fusions and methods of making and selecting fusions
US20080058217A1 (en) * 1997-01-21 2008-03-06 Szostak Jack W Selection of proteins using RNA-protein fusions
US6416950B1 (en) * 1998-12-02 2002-07-09 Phylos, Inc. DNA-protein fusions and uses thereof
US20050038229A1 (en) * 1998-12-10 2005-02-17 Dasa Lipovsek Protein scaffolds for antibody mimics and other binding proteins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382579A (en) * 2013-07-06 2013-11-06 中国科学院成都生物研究所 Method used for screening polypeptide in vitro
CN104774923A (en) * 2015-03-11 2015-07-15 华中农业大学 Method for determining transcriptional control complex

Also Published As

Publication number Publication date
EP1137812B1 (en) 2007-02-21
JP4808315B2 (en) 2011-11-02
CA2350417A1 (en) 2000-06-08
EP1137812A4 (en) 2002-04-24
ES2280131T3 (en) 2007-09-01
IL143238A (en) 2010-06-30
DE69935248D1 (en) 2007-04-05
NZ511699A (en) 2003-02-28
PT1137812E (en) 2007-05-31
DK1137812T3 (en) 2007-05-21
IL143238A0 (en) 2002-04-21
US7195880B2 (en) 2007-03-27
US6416950B1 (en) 2002-07-09
HK1039355A1 (en) 2002-04-19
CA2350417C (en) 2010-02-09
EP1137812A1 (en) 2001-10-04
WO2000032823A9 (en) 2001-03-29
NO20012735L (en) 2001-07-23
AU775997B2 (en) 2004-08-19
US20020177158A1 (en) 2002-11-28
NO20012735D0 (en) 2001-06-01
WO2000032823A1 (en) 2000-06-08
JP2002531105A (en) 2002-09-24
HK1039355B (en) 2007-09-21
AU2350900A (en) 2000-06-19
DE69935248T2 (en) 2007-11-08
ATE354675T1 (en) 2007-03-15
KR20010099821A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
US7195880B2 (en) DNA-protein fusions and uses thereof
RU2238326C2 (en) Method for producing library of genes (variants), method for selection of necessary protein and nucleic acid
AU779653B2 (en) Methods for encoding and sorting in vitro translated proteins
EP0971946B1 (en) Selection of proteins using rna-protein fusions
US8207093B2 (en) Selection of proteins using RNA-protein fusions
KR20020033743A (en) Peptide acceptor ligation methods
AU776478B2 (en) Selection of proteins using RNA-protein fusions

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADNEXUS, A BMS R&D COMPANY, MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:ADNEXUS THERAPEUTICS, INC.;REEL/FRAME:022680/0530

Effective date: 20071019

Owner name: ADNEXUS, A BRISTOL-MYERS SQUIBB R&D COMPANY, MASSA

Free format text: CHANGE OF NAME;ASSIGNOR:ADNEXUS, A BMS R&D COMPANY;REEL/FRAME:022679/0861

Effective date: 20071111

Owner name: COMPOUND THERAPEUTICS INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHYLOS, INC.;REEL/FRAME:022679/0730

Effective date: 20031216

Owner name: PHYLOS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOHSE, PETER;KURZ, MARKUS;REEL/FRAME:022680/0525

Effective date: 20000224

Owner name: ADNEXUS THERAPEUTICS, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:COMPOUND THERAPEUTICS, INC.;REEL/FRAME:022680/0412

Effective date: 20060620

Owner name: BRISTOL-MYERS SQUIBB COMPANY, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADNEXUS, A BRISTOL-MYERS SQUIBB R&D COMPANY;REEL/FRAME:022680/0302

Effective date: 20080513

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION