US20080024157A1 - Array testing method using electric bias stress for tft array - Google Patents

Array testing method using electric bias stress for tft array Download PDF

Info

Publication number
US20080024157A1
US20080024157A1 US11/461,381 US46138106A US2008024157A1 US 20080024157 A1 US20080024157 A1 US 20080024157A1 US 46138106 A US46138106 A US 46138106A US 2008024157 A1 US2008024157 A1 US 2008024157A1
Authority
US
United States
Prior art keywords
tfts
tft
panel
current
threshold voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/461,381
Other versions
US7327158B1 (en
Inventor
Myungchul Jun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbotech Ltd
Original Assignee
Photon Dynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photon Dynamics Inc filed Critical Photon Dynamics Inc
Priority to US11/461,381 priority Critical patent/US7327158B1/en
Assigned to PHOTON DYNAMICS, INC. reassignment PHOTON DYNAMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JUN, MYUNGCHUL
Priority to PCT/US2007/073333 priority patent/WO2008016767A2/en
Priority to CNA2007800287809A priority patent/CN101495877A/en
Priority to KR1020097002644A priority patent/KR101428115B1/en
Priority to TW096126130A priority patent/TWI397140B/en
Publication of US20080024157A1 publication Critical patent/US20080024157A1/en
Publication of US7327158B1 publication Critical patent/US7327158B1/en
Application granted granted Critical
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST Assignors: PHOTON DYNAMICS, INC.
Assigned to PHOTON DYNAMICS, INC. reassignment PHOTON DYNAMICS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to ORBOTECH LTD. reassignment ORBOTECH LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PHOTON DYNAMICS, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to testing of thin film transistor (TFT) arrays, and more particularly to testing the functionality and reliability of such arrays.
  • TFT thin film transistor
  • FIG. 1 is a cross-sectional view of a TFT-LCD module assembly.
  • the stack includes a polarizer layer 14 and optical film 12 , followed by the TFT panel 10 above which liquid crystal layer 16 is formed, and then the backlight 20 .
  • Color filter 22 and polarizer 14 are disposed above liquid crystal layer 16 .
  • Brighter backlight increases the temperature of TFT-LCD during operation, thus resulting in an increase in the TFT-LCD off current I off .
  • the variation in I off as a function of temperature is relatively small, and does not affect the TFT-LCD image quality.
  • the off-current variation with temperature is large enough to deteriorate the TFT-LCD image quality during operation.
  • FIG. 2 is a cross-sectional view of a typical amorphous silicon (a-Si) TFT, which are typically N-channel enhancement type field effect transistors.
  • Metal gate 40 is patterned first on a glass plate, followed by plasma enhanced CVD (chemical vapor deposition) deposition of a gate insulator dielectric material 42 , such as silicon nitride (SiN), and layers of amorphous silicon semiconductor (a-Si) 44 and n+ a-Si 46 .
  • Source metal layer 48 and drain metal layer 50 are then patterned.
  • a passivation layer 52 is deposited over the whole structure.
  • the n+ a-Si layer 46 acts as a low resistance ohmic contact for electrons to maximize the ON current. It also blocks injection of holes into the intrinsic layer to minimize the leakage current in the OFF state.
  • TFTs in flat panel displays operate as switches. If the gate voltage exceeds the threshold voltage, and a voltage is applied across the source and drain terminals, current flows from the source to drain. Gate layer 40 and a-Si layer 44 act as parallel plates of a capacitor between which dielectric SiN layer 42 is disposed.
  • Amorphous silicon is not very stable and its properties can be modified when exposed to strong illumination or injection of charge carriers.
  • the interface between the a-Si layer 44 and SiN dielectric layer 42 can accumulate charge during normal operation of the TFT, thereby causing a shift over time of the threshold of the a-Si TFT.
  • the threshold voltage shift during the ON-times is of the opposite polarity to that occurring during the OFF-times. Therefore, the shifts partially cancel one another. Furthermore, as long as the TFT drive can overcome this shift or variation, operation is not compromised.
  • FIG. 4A is an energy band diagram for an ideal amorphous semiconductor.
  • amorphous semiconductors intrinsic localized states separated by the gap between the conduction band and valence band are established near the band edges.
  • impurities such as defects or dangling bonds within the amorphous material, populate the band gap with localized defect states, as shown in FIG. 4B .
  • the localized defect states result in mobility of charges at nonzero temperatures due to thermally assisted tunneling between localized states.
  • the activation energy in amorphous semiconductors such as a-Si is related to the mobility gap rather than an energy gap.
  • the source-to-drain current ISD of a TFT is related to the density of states by the following expression:
  • FIG. 5 is an energy band diagram of the metal-insulator-semiconductor (MIS) structure, shown in FIG. 3 .
  • MIS metal-insulator-semiconductor
  • the source-to-drain current ISD (I OFF ) of the TFT has a small but nonzero value. As temperature increases, I SD rises, as illustrated in FIG. 6 . In some TFT-LCD panel applications, such as televisions, in which the TFTs are illuminated and therefore heated by backlights, current I off normally remains sufficiently low.
  • a-Si is deposited through plasma enhanced chemical vapor deposition (PECVD) of silane or similar materials and methods.
  • PECVD plasma enhanced chemical vapor deposition
  • the resulting a-Si film is left with dangling bonds when the silicon-to-silicon bonds are broken.
  • the dangling bonds are defects within the amorphous semiconductor layer and contribute to a nonzero density of states within the band gap, thereby resulting in the mobility of charges (off current).
  • the a-Si is hydrogenated.
  • a-Si:H film contains approximately 10 to 20% hydrogen.
  • the Si:H bond can be inadvertently broken.
  • high energy ions can break the Si:H bond, leaving dangling bonds that lead to an increase in the density of states, and higher I off .
  • Generation of high energy ions during processing can be due to poor or incorrect process parameters, and may result in a global plate (panel) effect rather than in a single, stand-alone TFT defect. In other words, a whole area of a panel rather than a single isolated TFT may have poor quality a-Si:H film.
  • a good TFT has a lower density of states in the band gap of a-Si:H and SiNx film, whereas a defective TFT has a higher density of states in the band gap of a-Si:H and SiNx film.
  • a defective TFT will have a larger I off at higher temperature (See FIG. 6 ).
  • a method of detecting thin film transistor (TFT) defects in a TFT-liquid crystal display (LCD) panel includes, in part, applying a stress bias to the TFTs disposed on the panel; and detecting a change in electrical characteristics of the TFTs.
  • the change in the electrical characteristics of the TFTs may be detected using a voltage imaging optical system or an electron beam.
  • the panel temperature is varied while the bias stress is being applied.
  • the panel may be heated or cooled while the bias stress is being applied.
  • the change in the electrical characteristics is detected across an array of the TFTs.
  • the defect detection may be applied at the TFT fabrication level to screen defective plates prior to assembly into modules.
  • the defect detection is performed at an early stage in the process and thus reduces the overall costs.
  • FIG. 1 is a cross sectional view of a flat panel display (FPD) assembly, as known in the prior art.
  • FPD flat panel display
  • FIG. 2 is a cross sectional view of an amorphous silicon (a-Si) thin film transistor (TFT), as known in the prior art.
  • a-Si amorphous silicon
  • TFT thin film transistor
  • FIG. 3 shows the formation of the conductive channel and current flow in the TFT of FIG. 2 , as known in the prior art.
  • FIG. 4A is an energy band diagram of an ideal amorphous semiconductor, as known in the prior art.
  • FIG. 4B is an energy band diagram of a typical amorphous semiconductor, as known in the prior art.
  • FIG. 5 is an energy band diagram of an MIS (metal-insulator-semiconductor), as known in the prior art.
  • FIG. 6 shows a number of plots of drain-to-source currents of TFTs as a function of inverse temperature, as known in the prior art.
  • FIG. 7A is an energy band diagram of an MIS device prior to the application of an electric bias.
  • FIG. 7B is an energy band diagram of the MIS device of FIG. 7A after the application of an electric bias causing charges to be trapped in the band gap.
  • FIG. 7C is an energy band diagram of the MIS device of FIG. 7A after the application of an electric bias causing states to be created in the band gap
  • FIG. 8 shows the dependence of TFT threshold voltage shift on bias stress time and bias stress voltage.
  • FIG. 9 show various plots of the drain-to-source current as a function of gate-to-source voltage for a good and a defective TFT before and after application of a bias stress.
  • FIG. 10 is a flowchart of steps taken to detect defects related to the a-Si:H layer in TFTs, in accordance with one embodiment of the present invention.
  • an electric bias is applied to the TFT panel for a known time period.
  • the applied electric bias induces charge trapping in the SiNx film and/or state creation in the a-Si:H film, thus giving rise to the TFT threshold voltage shift.
  • the shift in the threshold voltage results in the variation of the TFT I OFF current.
  • the amount of the threshold voltage shift ( ⁇ V T ) depends on the applied bias voltage, the duration of the bias, as well as the initial density of state in the films.
  • FIG. 7A is an energy band diagram of an MIS device prior to the application of an electric bias.
  • FIG. 7B is an energy band diagram of the MIS device of FIG. 7A after the application of an electric bias causing charges to be trapped in the band gap.
  • FIG. 7C is an energy band diagram of the MIS device of FIG. 7A after the application of an electric bias causing states to be created in the band gap.
  • FIG. 8 shows the dependence of TFT threshold voltage shift on the bias stress time and bias stress voltage. As seen from FIG. 8 , the longer the stress time or the greater the bias voltage VGB, the greater is the amount of the threshold voltage shift AVT.
  • Plot 100 of FIG. 9 shows the drain-to-source current as a function of gate-to-source voltage for both a good and a defective TFT before application of a bias stress.
  • Plot 102 of FIG. 9 shows the drain-to-source current as a function of gate-to-source voltage for a good TFT after application of a bias stress.
  • Plot 104 of FIG. 9 shows the drain-to-source current as a function of gate-to-source voltage for a defective TFT after the application of a bias stress.
  • the shift in current—caused by the shift in the threshold voltage— is greater for a defective TFT than a good TFT.
  • an electric bias stress is applied for a time sufficient to increase the defect's density of states.
  • the increase in the defect's density of states causes a corresponding shift in the threshold voltage and the I off of the device.
  • the stressed plate or panel with shifted threshold voltage can then be electrically tested using standard TFT array testers, such as the Array Checker manufactured by Photon Dynamics, Inc., located at 5970 Optical Court, San Jose, Calif. 95138, which uses a voltage imaging optical system (VIOS) technology.
  • VIOS voltage imaging optical system
  • Other electrical array testers such as those using electron beam technology or any other means to measure threshold voltage shift, may also be used.
  • FIG. 10 is a flowchart of steps taken to detect defects related to the a-Si:H layer in TFTs in accordance with one embodiment of the present invention.
  • Electric (voltage) bias stress is applied to the panel under test 202 .
  • the voltage level and the duration of the bias is selected by the user.
  • the application of the electric bias test ends at 204 .
  • the bias stress causes defective panels to have shifted threshold voltage shift.
  • a pixel electric test using a tester, such as the Array Checker, manufactured by Photon Dynamics, Inc. is performed to measure voltage changes.
  • the defect threshold is set either prior or after the application of the stress test 208 .
  • the bias stress causes defective panels to have shifted threshold voltage shift which is detectable by the VIOS. Following the defect extraction 210 , the worthiness of panel based on degree of defectiveness is determined 212 .
  • the user adjustable stress voltage may be ⁇ 50 volts, and the user adjustable stress time may vary between 1000 to 2000 seconds.
  • the stress may be applied on a sample of panels in the fabrication flow or on every panel.
  • the bias stress time may be reduced if accompanied by a temperature change in the panel.
  • the plate under test may be warmed or cooled simultaneously with the application of the voltage stress.
  • the plate under test may be warmed or cooled either before or after the application of the voltage stress.
  • the TFTs (both good and defective) are not further damaged. Elevating the TFT temperature to, for example, 50° C. in combination with the stress test may be sufficient to reveal the defects.
  • TFTs stressed by the application of the heat relax back to their normal (good or defective) condition after the heat source is removed.
  • heating may be required as the voltage testing is in progress.
  • This arrangement may have a drawback if the voltage testing method has a dependency on temperature.
  • TFTs stressed by the application of a bias voltage relax back to their normal (good or defective) condition after the bias voltage is removed.
  • Typical relaxation time may be several hours, and usually less than a day.
  • a bias voltage may be applied to a plate at a different location from the array tester machine. The plate may subsequently be placed into the array tester for testing within a short period of time (less than a few hours). This may be helpful to keep the utilization of the array tester high.

Abstract

A method of detecting thin film transistor (TFT) defects in a TFT-liquid crystal display (LCD) panel, includes, in part, applying a stress bias to the TFTs disposed on the panel; and detecting a change in electrical characteristics of the TFTs. The change in the electrical characteristics of the TFTs may be detected using a voltage imaging optical system or an electron beam. The panel temperature may be varied while the bias stress is being applied. The change in the electrical characteristics is optionally detected across an array of the TFTs.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to testing of thin film transistor (TFT) arrays, and more particularly to testing the functionality and reliability of such arrays.
  • Thin film transistor liquid crystal displays (TFT-LCD) for, e.g., television applications require brighter backlight for better image quality. FIG. 1 is a cross-sectional view of a TFT-LCD module assembly. The stack includes a polarizer layer 14 and optical film 12, followed by the TFT panel 10 above which liquid crystal layer 16 is formed, and then the backlight 20. Color filter 22 and polarizer 14 are disposed above liquid crystal layer 16. Brighter backlight increases the temperature of TFT-LCD during operation, thus resulting in an increase in the TFT-LCD off current Ioff. For good TFTs, the variation in Ioff as a function of temperature is relatively small, and does not affect the TFT-LCD image quality. However, In the case of defective TFTs, the off-current variation with temperature is large enough to deteriorate the TFT-LCD image quality during operation.
  • FIG. 2 is a cross-sectional view of a typical amorphous silicon (a-Si) TFT, which are typically N-channel enhancement type field effect transistors. Metal gate 40 is patterned first on a glass plate, followed by plasma enhanced CVD (chemical vapor deposition) deposition of a gate insulator dielectric material 42, such as silicon nitride (SiN), and layers of amorphous silicon semiconductor (a-Si) 44 and n+ a-Si 46. Source metal layer 48 and drain metal layer 50 are then patterned. Next, a passivation layer 52 is deposited over the whole structure. The n+ a-Si layer 46 acts as a low resistance ohmic contact for electrons to maximize the ON current. It also blocks injection of holes into the intrinsic layer to minimize the leakage current in the OFF state.
  • TFTs in flat panel displays operate as switches. If the gate voltage exceeds the threshold voltage, and a voltage is applied across the source and drain terminals, current flows from the source to drain. Gate layer 40 and a-Si layer 44 act as parallel plates of a capacitor between which dielectric SiN layer 42 is disposed.
  • Amorphous silicon is not very stable and its properties can be modified when exposed to strong illumination or injection of charge carriers. Over time, the interface between the a-Si layer 44 and SiN dielectric layer 42 can accumulate charge during normal operation of the TFT, thereby causing a shift over time of the threshold of the a-Si TFT. Under normal operating conditions, the threshold voltage shift during the ON-times is of the opposite polarity to that occurring during the OFF-times. Therefore, the shifts partially cancel one another. Furthermore, as long as the TFT drive can overcome this shift or variation, operation is not compromised.
  • FIG. 4A is an energy band diagram for an ideal amorphous semiconductor. For amorphous semiconductors, intrinsic localized states separated by the gap between the conduction band and valence band are established near the band edges. However, impurities, such as defects or dangling bonds within the amorphous material, populate the band gap with localized defect states, as shown in FIG. 4B. The localized defect states result in mobility of charges at nonzero temperatures due to thermally assisted tunneling between localized states. Thus, unlike normal semiconductors, the activation energy in amorphous semiconductors such as a-Si is related to the mobility gap rather than an energy gap.
  • The source-to-drain current ISD of a TFT is related to the density of states by the following expression:
  • ln I SD [ A - E C - E F - q Ψ S kT ]
  • where A is a constant, EC is the conduction energy, EF is Fermi energy, ΨS is density of states, q is charge of electron, k is Boltzmann's constant, and T is temperature in Kelvin. FIG. 5 is an energy band diagram of the metal-insulator-semiconductor (MIS) structure, shown in FIG. 3.
  • With no voltages applied and at room temperature, the source-to-drain current ISD (IOFF) of the TFT has a small but nonzero value. As temperature increases, ISD rises, as illustrated in FIG. 6. In some TFT-LCD panel applications, such as televisions, in which the TFTs are illuminated and therefore heated by backlights, current Ioff normally remains sufficiently low.
  • During the processing of a TFT, a-Si is deposited through plasma enhanced chemical vapor deposition (PECVD) of silane or similar materials and methods. The resulting a-Si film is left with dangling bonds when the silicon-to-silicon bonds are broken. The dangling bonds are defects within the amorphous semiconductor layer and contribute to a nonzero density of states within the band gap, thereby resulting in the mobility of charges (off current). To minimize the density of states due to dangling bonds, the a-Si is hydrogenated. Typically for TFTs, a-Si:H film contains approximately 10 to 20% hydrogen.
  • During processing, however, the Si:H bond can be inadvertently broken. For example, during ion bombardment of the a-Si:H film, high energy ions can break the Si:H bond, leaving dangling bonds that lead to an increase in the density of states, and higher Ioff. Generation of high energy ions during processing can be due to poor or incorrect process parameters, and may result in a global plate (panel) effect rather than in a single, stand-alone TFT defect. In other words, a whole area of a panel rather than a single isolated TFT may have poor quality a-Si:H film.
  • A good TFT has a lower density of states in the band gap of a-Si:H and SiNx film, whereas a defective TFT has a higher density of states in the band gap of a-Si:H and SiNx film. As the temperature increases, the charges which are trapped in the band gap transport to the conduction band and contribute to TFT off current. Therefore, a defective TFT will have a larger Ioff at higher temperature (See FIG. 6).
  • Before the introduction of high illumination backlights for TFT-LCD televisions, the defects described above did not result in failed pixels, and the threshold voltage shifts due to turning the TFTs on and off canceled one another. Recently, the TFT-LCD panel manufacturers have noticed at module assembly that the powerful (and therefore heating) backlights cause such defects and adversely affect the yield. This type of defect cannot be repaired, but detecting it sufficiently early in the fabrication process is important to enable feedback and correction to the fabrication operational parameters to minimize loss.
  • One known method of detecting these defects takes advantage of the dependency of doff on temperature. Off current is measured while heat is applied to a TFT-LCD plate or panel that has been assembled into a module. In practice, however, such a method is difficult to implement at the high throughput rates required by the TFT-LCD manufacturers. Sampling is an acceptable technique, and currently manufacturers test fully assembled modules after the array is fabricated and after many of the assembly steps are completed. The main drawbacks associated with heating full panels and measuring Ioff are (a) the time required to heat the panels and (b) the complexity of the apparatus needed to accommodate the large-sized panels, which may be two meters long, and two meters wide.
  • A need continues to exist for a method and apparatus that detects this type of TFT defect during array testing of LCD plates and well before the process steps in which plates are divided into panels and assembled into modules.
  • BRIEF SUMMARY OF THE INVENTION
  • A method of detecting thin film transistor (TFT) defects in a TFT-liquid crystal display (LCD) panel, includes, in part, applying a stress bias to the TFTs disposed on the panel; and detecting a change in electrical characteristics of the TFTs. The change in the electrical characteristics of the TFTs may be detected using a voltage imaging optical system or an electron beam.
  • In some embodiments, the panel temperature is varied while the bias stress is being applied. The panel may be heated or cooled while the bias stress is being applied. In some embodiments, the change in the electrical characteristics is detected across an array of the TFTs.
  • The defect detection may be applied at the TFT fabrication level to screen defective plates prior to assembly into modules. The defect detection is performed at an early stage in the process and thus reduces the overall costs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of a flat panel display (FPD) assembly, as known in the prior art.
  • FIG. 2 is a cross sectional view of an amorphous silicon (a-Si) thin film transistor (TFT), as known in the prior art.
  • FIG. 3 shows the formation of the conductive channel and current flow in the TFT of FIG. 2, as known in the prior art.
  • FIG. 4A is an energy band diagram of an ideal amorphous semiconductor, as known in the prior art.
  • FIG. 4B is an energy band diagram of a typical amorphous semiconductor, as known in the prior art.
  • FIG. 5 is an energy band diagram of an MIS (metal-insulator-semiconductor), as known in the prior art.
  • FIG. 6 shows a number of plots of drain-to-source currents of TFTs as a function of inverse temperature, as known in the prior art.
  • FIG. 7A is an energy band diagram of an MIS device prior to the application of an electric bias.
  • FIG. 7B is an energy band diagram of the MIS device of FIG. 7A after the application of an electric bias causing charges to be trapped in the band gap.
  • FIG. 7C is an energy band diagram of the MIS device of FIG. 7A after the application of an electric bias causing states to be created in the band gap
  • FIG. 8 shows the dependence of TFT threshold voltage shift on bias stress time and bias stress voltage.
  • FIG. 9 show various plots of the drain-to-source current as a function of gate-to-source voltage for a good and a defective TFT before and after application of a bias stress.
  • FIG. 10 is a flowchart of steps taken to detect defects related to the a-Si:H layer in TFTs, in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In accordance with the present invention, to detect defects in a TFT panel, an electric bias is applied to the TFT panel for a known time period. The applied electric bias induces charge trapping in the SiNx film and/or state creation in the a-Si:H film, thus giving rise to the TFT threshold voltage shift. The shift in the threshold voltage results in the variation of the TFT IOFF current. The amount of the threshold voltage shift (ΔVT) depends on the applied bias voltage, the duration of the bias, as well as the initial density of state in the films.
  • FIG. 7A is an energy band diagram of an MIS device prior to the application of an electric bias. FIG. 7B is an energy band diagram of the MIS device of FIG. 7A after the application of an electric bias causing charges to be trapped in the band gap. FIG. 7C is an energy band diagram of the MIS device of FIG. 7A after the application of an electric bias causing states to be created in the band gap.
  • FIG. 8 shows the dependence of TFT threshold voltage shift on the bias stress time and bias stress voltage. As seen from FIG. 8, the longer the stress time or the greater the bias voltage VGB, the greater is the amount of the threshold voltage shift AVT.
  • Plot 100 of FIG. 9 shows the drain-to-source current as a function of gate-to-source voltage for both a good and a defective TFT before application of a bias stress. Plot 102 of FIG. 9 shows the drain-to-source current as a function of gate-to-source voltage for a good TFT after application of a bias stress. Plot 104 of FIG. 9 shows the drain-to-source current as a function of gate-to-source voltage for a defective TFT after the application of a bias stress. As seen from FIG. 9, for each gate-to-source voltage, the shift in current—caused by the shift in the threshold voltage—is greater for a defective TFT than a good TFT.
  • Thus, in accordance with the present invention, to detect defects related to the a-Si:H layer in TFTs, an electric bias stress is applied for a time sufficient to increase the defect's density of states. The increase in the defect's density of states causes a corresponding shift in the threshold voltage and the Ioff of the device. The stressed plate or panel with shifted threshold voltage can then be electrically tested using standard TFT array testers, such as the Array Checker manufactured by Photon Dynamics, Inc., located at 5970 Optical Court, San Jose, Calif. 95138, which uses a voltage imaging optical system (VIOS) technology. Other electrical array testers, such as those using electron beam technology or any other means to measure threshold voltage shift, may also be used.
  • FIG. 10 is a flowchart of steps taken to detect defects related to the a-Si:H layer in TFTs in accordance with one embodiment of the present invention. Electric (voltage) bias stress is applied to the panel under test 202. The voltage level and the duration of the bias is selected by the user. The application of the electric bias test ends at 204. The bias stress causes defective panels to have shifted threshold voltage shift. Next, a pixel electric test using a tester, such as the Array Checker, manufactured by Photon Dynamics, Inc., is performed to measure voltage changes. The defect threshold is set either prior or after the application of the stress test 208. The bias stress causes defective panels to have shifted threshold voltage shift which is detectable by the VIOS. Following the defect extraction 210, the worthiness of panel based on degree of defectiveness is determined 212.
  • In some embodiments, the user adjustable stress voltage may be ±50 volts, and the user adjustable stress time may vary between 1000 to 2000 seconds. The stress may be applied on a sample of panels in the fabrication flow or on every panel.
  • In some embodiments, the bias stress time may be reduced if accompanied by a temperature change in the panel. As such, the plate under test may be warmed or cooled simultaneously with the application of the voltage stress. Alternatively, the plate under test may be warmed or cooled either before or after the application of the voltage stress.
  • As long as the temperature of the a-Si:H film remains below the a-Si:H deposition temperature of approximately, e.g., 250 to 350° C., the TFTs (both good and defective) are not further damaged. Elevating the TFT temperature to, for example, 50° C. in combination with the stress test may be sufficient to reveal the defects.
  • TFTs stressed by the application of the heat relax back to their normal (good or defective) condition after the heat source is removed. Thus, heating may be required as the voltage testing is in progress. This arrangement may have a drawback if the voltage testing method has a dependency on temperature.
  • TFTs stressed by the application of a bias voltage relax back to their normal (good or defective) condition after the bias voltage is removed. Typical relaxation time may be several hours, and usually less than a day. Thus, a bias voltage may be applied to a plate at a different location from the array tester machine. The plate may subsequently be placed into the array tester for testing within a short period of time (less than a few hours). This may be helpful to keep the utilization of the array tester high.
  • The above embodiments of the present invention are illustrative and not limiting. Various alternatives and equivalents are possible. Other additions, subtractions or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.

Claims (10)

1. A method for detecting thin film transistor (TFT) defects in a TFT-liquid crystal display (LCD) panel, the method comprising:
applying a stress bias to the TFTs disposed on the panel to cause a change in a threshold voltage or off current of one or more of the TFTs;
terminating the stress bias;
applying test signals to the TFTs;and
detecting the changes in in the threshold voltage or off current of the one or more of the TFTs in response to the applied test signals.
2. The method of claim 1 wherein the change in the threshold voltage or off current of the one or more of the TFTs is detected using a voltage imaging optical system.
3. The method of claim 1 wherein the change in the threshold voltage or off current of the one or more of the TFTs is detected using an electron beam.
4. The method of claim 1 further comprising:
changing a temperature of the panel while applying the stress bias.
5. The method of claim 4 further comprising:
heating the panel while applying the stress bias.
6. The method of claim 4 further comprising:
cooling the panel while applying the stress bias.
7. The method of claim 1 further comprising:
changing a temperature of the panel while detecting a change in the threshold voltage or off current of the one or more of the TFTs.
8. The method of claim 7 further comprising:
heating the panel while detecting a change in the threshold voltage or off current of the one or more of the TFTs.
9. The method of claim 7 further comprising:
cooling the panel while detecting a change in the threshold voltage or off current of the one or more of the TFTs.
10. The method of claim 1 wherein said TFTs are disposed in an array, the method further comprising:
detecting a change in the threshold voltage or off current of the one or more of the array of TFTs.
US11/461,381 2006-07-31 2006-07-31 Array testing method using electric bias stress for TFT array Active US7327158B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/461,381 US7327158B1 (en) 2006-07-31 2006-07-31 Array testing method using electric bias stress for TFT array
PCT/US2007/073333 WO2008016767A2 (en) 2006-07-31 2007-07-12 Array testing method using electric bias stress for tft array
CNA2007800287809A CN101495877A (en) 2006-07-31 2007-07-12 Array testing method using electric bias stress for TFT array
KR1020097002644A KR101428115B1 (en) 2006-07-31 2007-07-12 Array testing method using electric bias stress for tft array
TW096126130A TWI397140B (en) 2006-07-31 2007-07-18 Array testing method using electric bias stress for tft array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/461,381 US7327158B1 (en) 2006-07-31 2006-07-31 Array testing method using electric bias stress for TFT array

Publications (2)

Publication Number Publication Date
US20080024157A1 true US20080024157A1 (en) 2008-01-31
US7327158B1 US7327158B1 (en) 2008-02-05

Family

ID=38985518

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/461,381 Active US7327158B1 (en) 2006-07-31 2006-07-31 Array testing method using electric bias stress for TFT array

Country Status (5)

Country Link
US (1) US7327158B1 (en)
KR (1) KR101428115B1 (en)
CN (1) CN101495877A (en)
TW (1) TWI397140B (en)
WO (1) WO2008016767A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296437A1 (en) * 2006-05-31 2007-12-27 Johnston Benjamin M Mini-prober for tft-lcd testing
US20070296426A1 (en) * 2006-05-31 2007-12-27 Applied Materials, Inc. Prober for electronic device testing on large area substrates
US20090255216A1 (en) * 2006-08-23 2009-10-15 Illinois Tool Works Inc. Hot melt adhesive systems for zipper assemblies on large bag constructions of various substrates
US11386820B2 (en) * 2019-05-30 2022-07-12 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Method of detecting threshold voltage shift and threshold votage shift detection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664596B2 (en) * 2009-06-23 2014-03-04 Hermes Microvision, Inc. Method for characterizing identified defects during charged particle beam inspection and application thereof
US9035673B2 (en) * 2010-01-25 2015-05-19 Palo Alto Research Center Incorporated Method of in-process intralayer yield detection, interlayer shunt detection and correction
CN104795339B (en) * 2015-03-09 2017-10-20 昆山龙腾光电有限公司 The detection means and detection method of thin-film transistor array base-plate
CN106546638B (en) * 2015-09-23 2019-02-26 中国科学院宁波材料技术与工程研究所 The test method of energy band defect concentration distribution

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504438A (en) * 1991-09-10 1996-04-02 Photon Dynamics, Inc. Testing method for imaging defects in a liquid crystal display substrate
US5982190A (en) * 1998-02-04 1999-11-09 Toro-Lira; Guillermo L. Method to determine pixel condition on flat panel displays using an electron beam
US6020753A (en) * 1993-05-13 2000-02-01 Mitsubishi Denki Kabushiki Kaisha TFT and reliability evaluation method thereof
US20030137318A1 (en) * 2002-01-23 2003-07-24 Marian Enachescu Methods and systems employing infrared thermography for defect detection and analysis
US20040032280A1 (en) * 2002-08-19 2004-02-19 Clark Bernard T. Integrated visual imaging and electronic sensing inspection systems
US20040246015A1 (en) * 2003-06-06 2004-12-09 Yieldboost Tech, Inc. System and method for detecting defects in a thin-film-transistor array
US20050068057A1 (en) * 2001-03-05 2005-03-31 Ishikawajima-Harima Heavy Industries Co., Ltd. Inspection apparatus for liquid crystal drive substrates
US20050104615A1 (en) * 2003-11-13 2005-05-19 Dong-Guk Kim Apparatus for testing liquid crystal display device and testing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI253610B (en) * 2004-12-24 2006-04-21 Quanta Display Inc Display device and display panel, pixel circuitry and compensating mechanism thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504438A (en) * 1991-09-10 1996-04-02 Photon Dynamics, Inc. Testing method for imaging defects in a liquid crystal display substrate
US6020753A (en) * 1993-05-13 2000-02-01 Mitsubishi Denki Kabushiki Kaisha TFT and reliability evaluation method thereof
US5982190A (en) * 1998-02-04 1999-11-09 Toro-Lira; Guillermo L. Method to determine pixel condition on flat panel displays using an electron beam
US20050068057A1 (en) * 2001-03-05 2005-03-31 Ishikawajima-Harima Heavy Industries Co., Ltd. Inspection apparatus for liquid crystal drive substrates
US20030137318A1 (en) * 2002-01-23 2003-07-24 Marian Enachescu Methods and systems employing infrared thermography for defect detection and analysis
US20040032280A1 (en) * 2002-08-19 2004-02-19 Clark Bernard T. Integrated visual imaging and electronic sensing inspection systems
US20040246015A1 (en) * 2003-06-06 2004-12-09 Yieldboost Tech, Inc. System and method for detecting defects in a thin-film-transistor array
US20050104615A1 (en) * 2003-11-13 2005-05-19 Dong-Guk Kim Apparatus for testing liquid crystal display device and testing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296437A1 (en) * 2006-05-31 2007-12-27 Johnston Benjamin M Mini-prober for tft-lcd testing
US20070296426A1 (en) * 2006-05-31 2007-12-27 Applied Materials, Inc. Prober for electronic device testing on large area substrates
US7786742B2 (en) 2006-05-31 2010-08-31 Applied Materials, Inc. Prober for electronic device testing on large area substrates
US20090255216A1 (en) * 2006-08-23 2009-10-15 Illinois Tool Works Inc. Hot melt adhesive systems for zipper assemblies on large bag constructions of various substrates
US8484934B2 (en) 2006-08-23 2013-07-16 Illinois Tool Works Inc. Method for manufacturing high burst zipper assemblies
US11386820B2 (en) * 2019-05-30 2022-07-12 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Method of detecting threshold voltage shift and threshold votage shift detection device

Also Published As

Publication number Publication date
TWI397140B (en) 2013-05-21
CN101495877A (en) 2009-07-29
WO2008016767A3 (en) 2009-04-09
TW200814219A (en) 2008-03-16
KR101428115B1 (en) 2014-08-07
WO2008016767A2 (en) 2008-02-07
KR20090042247A (en) 2009-04-29
US7327158B1 (en) 2008-02-05

Similar Documents

Publication Publication Date Title
US7327158B1 (en) Array testing method using electric bias stress for TFT array
TW487820B (en) Liquid crystal display device and inspection method of the same
Powell The physics of amorphous-silicon thin-film transistors
US6914448B2 (en) Transistor circuit
US20130162327A1 (en) Method and system for reduction of off-current in field effect transistors
US20100244037A1 (en) Thin film transistor, its manufacturing method, and liquid crystal display panel and electronic device using same
JPS6014473A (en) Electrode structure for thin film transistor
Karim et al. High voltage amorphous silicon TFT for use in large area applications
US20080224139A1 (en) Thin film transistor
Tsai et al. Anomalous degradation behaviors under illuminated gate bias stress in a-Si: H thin film transistor
US7038644B2 (en) Apparatus for applying OFF-state stress to P-MOS device
Lemmi et al. The leakage currents of amorphous silicon thin-film transistors: Injection currents, back channel currents and stress effects
JP5640704B2 (en) Biosensor
KR101385471B1 (en) Thin film transistor and method for fabricating the same, liquid crystal display device and organic light emitting diode display device using the same
JPH0755719A (en) Inspecting apparatus and inspecting method for liquid crystal display device and manufacture thereof
JPH11168214A (en) Liquid crystal electrooptical device and manufacture thereof
Murthy et al. Mechanisms underlying leakage current in inverted staggered a-Si: H thin film transistors
KR100580553B1 (en) Liquid crystal display device and method of fabricating the same
Liang et al. Mechanisms for on/off currents in dual‐gate a‐Si: H thin‐film transistors using indium‐tin‐oxide top‐gate electrodes
TWI356961B (en) Active component array substrate
Lee et al. Improved reliability of large-sized a-Si thin-film-transistor by back channel treatment in H2
TWI537633B (en) Display apparatus
CN101206355A (en) Method for decreasing thin-film transistor drain current
Wei et al. P‐21: High Stability and Device Design for Self‐Heating Reduction of a‐Si: H TFT
Yu Amorphous In-Ga-Zn-O Thin-Film Transistors for Next Generation Ultra-High Definition Active-Matrix Liquid Crystal Displays.

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHOTON DYNAMICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JUN, MYUNGCHUL;REEL/FRAME:018094/0608

Effective date: 20060804

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:PHOTON DYNAMICS, INC.;REEL/FRAME:033543/0631

Effective date: 20140807

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: PHOTON DYNAMICS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:039076/0165

Effective date: 20160623

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: ORBOTECH LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHOTON DYNAMICS, INC.;REEL/FRAME:055831/0793

Effective date: 20210326