US20080016769A1 - Conversion of carbonaceous materials to synthetic natural gas by pyrolysis, reforming, and methanation - Google Patents

Conversion of carbonaceous materials to synthetic natural gas by pyrolysis, reforming, and methanation Download PDF

Info

Publication number
US20080016769A1
US20080016769A1 US11/880,690 US88069007A US2008016769A1 US 20080016769 A1 US20080016769 A1 US 20080016769A1 US 88069007 A US88069007 A US 88069007A US 2008016769 A1 US2008016769 A1 US 2008016769A1
Authority
US
United States
Prior art keywords
zone
product stream
methanation
pyrolysis
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/880,690
Inventor
Stanley R. Pearson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clean Energy LLC
Original Assignee
Clean Energy LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Energy LLC filed Critical Clean Energy LLC
Priority to US11/880,690 priority Critical patent/US20080016769A1/en
Assigned to CLEAN ENERGY, L.L.C. reassignment CLEAN ENERGY, L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PEARSON, STANLEY R.
Publication of US20080016769A1 publication Critical patent/US20080016769A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/62Processes with separate withdrawal of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/14Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic
    • C10K1/143Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic containing amino groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/16Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids
    • C10K1/165Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids at temperatures below zero degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/16Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids
    • C10K1/18Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane (SNG)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to the production of synthetic natural gas from a carbonaceous material, preferably a biomass material, such as wood.
  • the carbonaceous material is first pyrolyzed, then subjected to steam reforming to produce a syngas, which is then passed to several clean-up steps then to a methanation zone to produce synthetic natural gas.
  • biomass energy is regarded as one of the most promising natural energy from the viewpoint of its abundance, renewability and storability.
  • Cellulosic materials, such as wood have great potential for providing large amounts of energy.
  • Direct combustion of woody biomass suffers from a limited amount of resource and low efficiency, and, further, only electric power can effectively be supplied from the direct combustion of woody biomass.
  • Synthetic natural gas A large portion of synthetic natural gas is often referred to as “green gas” because it is a renewable gas typically obtained from biomass and having natural gas specifications. Thus, it can be transported through the existing natural gas infrastructure, substituting for natural gas in all existing applications. Also, the use of biomass as the feedstock will not generally result in a net CO 2 emission as long as the source material can be replanted to replace those used as fuel. It may even be possible to reduce atmospheric CO 2 by sequestering the CO 2 that is released during the conversion of biomass (negative CO 2 emission).
  • Exposing the base fuel during the pyrolysis to air, water vapor or other components has a direct impact on the products of pyrolysis, as does the temperature of the process and the duration thereof.
  • a fluidized bed which is, at least initially exposed to air and can be additionally exposed to oxygen, or other input gasses, some portion of the fuel for gasification is consumed, as by oxidation (burning) affecting the output of the process by producing ash or other undesirable residue.
  • the carbonaceous material is selected from the group consisting of wood and dried distillers grains.
  • FIG. 1 hereof is a generalized flow scheme of a preferred embodiment of the present invention wherein a carbonaceous material, such as wood chips, are pryolyzed to produce a pyrolysis oil, which is then reformed to produce a syngas, which is then sent through various clean-up steps then to a methanation unit to produce synthetic natural gas.
  • a carbonaceous material such as wood chips
  • the present invention is directed to the production of synthetic natural gas (predominantly methane) from carbonaceous materials, preferably biomass materials.
  • Synthetic natural gas also sometimes called “green gas” is a renewable gas from biomass with natural gas specifications. Therefore, it can be transported through the existing gas infrastructure, substituting for natural gas in all existing applications.
  • Another advantage of green gas is that is carbon neutral. That is, using biomass as an energy supply will typically not result in a net CO 2 emission since its source can be replanted and uses CO 2 from the atmosphere during its growth period.
  • biomass feedstocks suitable for being converted in accordance with the present invention include trees such as red cedar, southern pine, hardwoods such as oak, cedar, maple and ash, as well as bagasse, rice hulls, rice straw, kennaf, old railroad ties, dried distiller grains, corn stalks and cobs and straw.
  • biomass feedstocks suitable for being converted in accordance with the present invention include trees such as red cedar, southern pine, hardwoods such as oak, cedar, maple and ash, as well as bagasse, rice hulls, rice straw, kennaf, old railroad ties, dried distiller grains, corn stalks and cobs and straw.
  • Cellulosic materials are the more preferred biomass feedstocks, with wood and dried distillers grains being the most preferred.
  • Biomass is typically comprised of three major components: cellulose, hemicellulose and lignin.
  • Cellulose is a straight and relatively stiff molecule with a polymerization degree of approximately 10,000 glucose units (C 6 sugar).
  • Hemicellulose are polymers built of C 5 and C 6 sugars with a polymerization degree of about 200 glucose units. Both cellulose and hemicellulose can be vaporized with negligible char formation at temperatures above about 500° C.
  • lignin is a three dimensional branched polymer composed of phenolic units. Due to the aromatic content of lignin, it degrades slowly on heating and contributes to a major fraction of undesirable char formation.
  • biomass In addition to the major cell wall composition of cellulose, hemicellulose and lignin, biomass often contains varying amounts of species called “extractives”. These extractives, which are soluble in polar or non-polar solvents, are comprised of terpenes, fatty acids, aromatic compounds and volatile oil.
  • the carbonaceous mateials used in the practice of the present invention will be found in a form in which the particles are too large for conducting through the tubes of the pyrolysis unit.
  • it will usually be necessary to grind the carbonaceous material to an effective size.
  • the carbonaceous material is ground, otherwise reduced in size, to a suitable size of about 1/32 inch to about 1 inch, preferably from about 1/16 inch to about 1 ⁇ 2 inch, and more preferably from about 1 ⁇ 8 inch to about 1 ⁇ 4 inch. Grinding techniques are well know and varied, thus any suitable grinding technique and equipment can be used for the particular carbonaceous material being converted.
  • the type of pyrolysis preferred for use in the practice of the present invention is known as “fast pyrolysis” which is a thermal decomposition process that occurs at moderate temperatures with a high heat transfer rate to the carbonaceous particles and a short hot vapor residence time in the reaction zone.
  • fast pyrolysis is a thermal decomposition process that occurs at moderate temperatures with a high heat transfer rate to the carbonaceous particles and a short hot vapor residence time in the reaction zone.
  • Several conventional reactor configurations have been used in the art, such as bubbling fluid beds, circulating and transported beds, vortex or cyclonic reactors, and ablative reactors. While all of these reactors have their advantages they are all faced with limitations, such as the tendency of fluid bed reactors to produce more gas and coke then the desired pyrolysis oil, the preferred pyrolysis product of the present invention.
  • the pyrolysis reactor of the present invention contains a plurality of vertically oriented straight tubes within the enclosed reactor vessel which is heated by use of a suitable heating device, such
  • Pyrolysis oil is a renewable liquid fuel can be used for production of chemicals and liquid fuels, or as herein for the production of synthetic natural gas.
  • synthetic natural gas is a very desirable product because it is derived from a renewable source and it can be used as a substitute for natural gas for all natural gas applications.
  • pyrolysis requires that a feedstock have less than about 15% moisture content, but there is an optimization between moisture content and conversion process efficiency.
  • the actual moisture content will vary somewhat depending on the commercial process equipment used. Since some of the biomass received for processing can have a moisture content from about 40 to 60% it will have to be dried before pyrolysis. Any conventional drying technique can be used as long as the moisture content is lowered to less than about 15% when mixed with the superheated steam. For example, passive drying during summer storage can reduce the moisture content to about 30% or less. Active silo drying can reduce the moisture content down to about 12%. Drying can be accomplished either by very simple means, such as near ambient, solar drying or by waste heat flows or by specifically designed dryers operated on location. Also, commercial dryers are available in many forms and most common are rotary kilns and shallow fluidized bed dryers.
  • the carbonaceous feedstock is conducted via line 10 and superheated steam is conducted via line 12 to mixing zone Mix wherein the two are sufficiently mixed before being conducted via line 14 into pyrolysis process unit P.
  • the superheated steam which will be at a temperature from about 315° C. to about 700° C. acts as both a source of hydrogen as well as a transport medium.
  • the amount of superheated steam to feedstock will be an effective amount. By effective amount we mean at least that amount needed to provide sufficient transport of the feedstock.
  • That ratio of superheated steam to feedstock, on a volume to volume basis will typically be from about 0.2 to 2.5, preferably from about 0.3 to 1.0.
  • the temperature conditions for the pyrolysis reaction will be described later in detail.
  • the steam is preferably introduced so that the feedstock is diluted to the point where it can easily be transported through the reactor tubes. Fluidization will typically result and can realize fluid pyrolysis by virtue of good contact among steam, feed polymers and heat decomposition products of carbonaceous material liberated in the gas phase.
  • the mixture of steam and feedstock which will be at a temperature of above its dew point of greater than about 230° C., is fed to the pyrolysis reactor P via line 14 into a flow divider FD where it is distributed into the plurality of vertically oriented straight reactor tubes of effective internal diameter and length within a metal cylindrical vessel of suitable size.
  • Flow divider FD can be any suitable design that will divide the feedstock substantially equally among the plurality of reactor tubes.
  • the reactor tubes for the pyrolysis reactor are straight instead of coiled because the residence time needs to be very short in order to produce the maximum amount of oil without the production of an undesirable amount of gas.
  • the temperature of the mixture entering the pyrolysis unit will be at least about 230° C.
  • Typical internal diameters for the pyrolysis reactor tubes will be from about 2 to about 4 inches, preferably from about 2.5 to about 3.5 inches, and more preferably about 3 inches.
  • the feedstock passing though the pyrolysis reactor tubes is subjected to fast pyrolysis at temperatures from about 400° C. to about 650° C. and pressures from about 3 to 35 psig, preferably from about 5 psig to about 35 psig.
  • the residence time of the feedstock in the pyrolysis reactor will be an effective residence time.
  • effective residence time we mean that amount of time that will result in the maximum yield of oil without excess gas make.
  • this effective amount of time for purposes of this invention will be from about 0.2 to about 7 seconds, preferably from about 0.3 seconds to about 5 seconds.
  • the heating rate will be a relatively high heating rate of about 1,000° C. per second to about 10,000° C. per second.
  • the high heating rate in the pyrolysis reactor of the present invention causes the liquid intermediate products of pyrolysis to condense before further reaction breaks down higher molecular weight species into gaseous products.
  • the high reaction rates also minimize char formation, and under preferred conditions substantially no char is formed.
  • the major products is gas, thus the need for the present process to operate at low enough temperatures to maximize the production of pyrolysis oils.
  • the source of heat for the pyrolysis unit, as well as the reformer of the present invention can be any suitable source, it is preferred that the source of heat be one or more burners B located at bottom of the pyrolysis and reforming process unit.
  • Fuel for the burners B can be any suitable fuel. It is preferred that at least a portion of the fuel to the burners be obtained from the present process itself, such as the syngas produced in either the pyrolysis reactor or in the reformer.
  • at least a portion of syngas stream 20 can be diverted via line 21 and used as a fuel to burners B.
  • a portion of the syngas stream 20 can also be combined with syngas stream of line 30 .
  • Flue gas which will typically be comprised of CO 2 and N 2 is exhausted from the pyrolysis reactor via line 15 and the reaction products from the pyrolysis reactor are sent via line 16 to quench zone Q resulting in a mixture of liquid, gaseous and solid products. Most of the solids, which will typically be in the form of ash, will be collected from quench zone Q via line 17 .
  • the liquid product will be in the form of a pyrolysis oil and the gaseous product will be a syngas.
  • the resulting liquid and gaseous products are conducted via line 18 to first separation zone Si wherein a syngas stream is separated from the pyrolysis oil and collected overhead via line 20 or a portion being diverted via line 21 to either or both of burners B.
  • This syngas stream is comprised primarily of hydrogen, carbon dioxide, carbon monoxide, and methane.
  • the pyrolysis oil stream which may contain some remnants of char and ash formed during pyrolysis, is conducted via line 22 to reformer R along with an effective amount of superheated steam via line 23 . It is preferred that reformer R contains a plurality of coiled reactor tubes within an enclosed reactor vessel heated by a suitable heating means, such as one or more burners.
  • At least a portion of the pyrolysis oil is converted to syngas in reformer R, which syngas is also composed primarily of hydrogen, carbon dioxide, carbon monoxide and methane.
  • the inlet temperature of the feedstock and superheated steam entering reformer R will preferably be about 200° C.
  • the exit temperature of the product syngas leaving reformer R via line 24 will typically be from about 850° C. and 1200° C., preferably between about 900° C. and about 1000° C. At a temperature of about 1100° C. and above and with a contact time of about 5 seconds, one obtains less than about 5 mole percent of methane and about 15 mole percent of CO 2 , which is an undesirable result.
  • Pressure in the reformer is not critical, but it will typically be at about 3 to 500 psig. Also, it is preferred that the residence time in the reformer be from about 0.4 to about 1.5 seconds.
  • syngas product stream For any given feedstock, one can vary the proportions of hydrogen, carbon dioxide, carbon monoxide and methane that comprise the resulting syngas product stream as a function of the contact time of the pyrolysis oil feedstock in the reformer, the exit temperature, the amount of steam introduced, and to a lesser extent, pressure. Certain proportions of syngas components are better than others for producing synthetic natural gas, thus conditions should be such as to maximize the production of carbon monoxide and methane at the expense of hydrogen.
  • heat recovery zone HR 1 where it is preferred that water be the heat exchange medium and that the water be passed as preheated steam to one or both of the pyrolysis reactor P or reformer R via lines 25 where it is further heated to produce at least a portion of the superheated steam used for both units.
  • Heat Recovery zone HR 1 can be any suitable heat exchange device, such as the shell-and-tube type wherein water is used to remove heat from product stream 24 .
  • second separation zone S 2 contains a gas filtering means and preferably a cyclone (not shown) and optionally a bag house (not shown) to remove at least a portion, preferably substantially all, of the remaining ash and other solid fines from the syngas.
  • the filtered solids are collected via line 28 for disposal.
  • the filtered syngas stream is then passed via line 30 to water wash zone WW wherein it is conducted upward and countercurrent to down-flowing water via line 31 .
  • the water wash zone preferably comprises a column packed with conventional packing material, such as copper tubing, pall rings, metal mesh or other such materials.
  • the syngas passes upward countercurrent to down-flowing water which serves to further cool the syngas stream to about ambient temperature, and to remove any remaining ash that may not have been removed in second separation zone S 2 .
  • the water washed syngas stream is then passed via line 32 to oil wash zone OW where it is passed countercurrent to a down-flowing organic liquid stream to remove any organics present, such as benzene, toluene, xylene, or heavier hydrocarbon components via line 35 that may have been produced in the reformer.
  • the down-flowing organic stream will be any organic stream in which the organic material being removed is substantially soluble. It is preferred that the down-flowing organic stream be a hydrocarbon stream, more preferably a petroleum fraction.
  • the preferred petroleum fractions are those boiling in naphtha to distillate boiling range, more preferably a C 16 to C 20 hydrocarbon stream, most preferably a C 18 hydrocarbon stream.
  • the resulting syngas stream is conducted via line 34 to acid gas scrubbing zone AGS wherein acidic gases, preferably CO 2 and H 2 S are removed.
  • acidic gases preferably CO 2 and H 2 S are removed.
  • Any suitable acid gas treating technology can be used in the practice of the present invention.
  • any suitable scrubbing agent preferably a basic solution can be used in the acid gas scrubbing zone AGS that will adsorb the desired level of acid gases from the vapor stream. It will be understood that it may be desirable to leave a certain amount of CO 2 in the scrubbed stream depending on the intended use of resulting methane product stream from the methanation unit. For example, if the methane product stream is to be introduced into a natural gas pipeline, no more than about 4 vol. % of CO 2 should be remain.
  • One suitable acid gas scrubbing technology is the use of an amine scrubber.
  • Non-limiting examples of such basic solutions are the amines, preferably diethanol amine, mono-ethanol amine, and the like. More preferred is diethanol amine.
  • Another preferred acid gas scrubbing technology is the so-called “Rectisol Wash” which uses an organic solvent, typically methanol, at subzero temperatures.
  • the scrubbed stream can also be passed through one or more guard beds (not shown) to remove catalyst poisoning impurities such as sulfur, halides etc.
  • the treated stream is passed via line 36 from acid gas scrubbing zone AGS to methanation zone M.
  • Methanation of syngas involves a reaction between carbon oxides, i.e. carbon monoxide and carbon dioxide, and hydrogen in the syngas to produce methane and water, as follows:
  • Methanation reactions (1) and (2) take place at temperatures of about 300° C. to about 900° C. in methanation zone M which is preferably comprised of two or more, more preferably three, reactors each containing a suitable methanation catalyst.
  • the methanation reaction is strongly exothermic.
  • the temperature increase in a typical methanator gas composition is about 74° C. for each 1% of carbon monoxide converted and 60° C. for each 1% carbon dioxide converted.
  • the temperature in the methanation reactor during methanation of syngas has to be controlled to prevent overheating of the reactor catalyst.
  • high temperatures are undesirable from an equilibrium standpoint and reduce the amount of conversion of syngas to methane since methane formation is favored at lower temperatures. Formation of soot on the catalyst is also a concern and may require the addition of water to the syngas feedstock.
  • methanation zone M preferably comprises a series of three adiabatic methanation reactors R 1 , R 2 and R 3 .
  • Each of these reactors is configured to react carbon oxide and hydrogen contained in the syngas in the presence of a suitable catalyst to produce methane and water, in accordance with the reactions ( 1 ) and ( 2 ) set forth hereinabove.
  • Each of the methanation reactors includes a catalyst capable of promoting methanation reactions between carbon oxides and hydrogen in the syngas feedstock.
  • Any conventional methanation catalyst is suitable for use in the practice of the present invention, although nickel catalysts are most commonly used and the more preferred for this invention.
  • Such catalysts are, especially those containing greater than 50% nickel, are generally stable against thermal and chemical sintering during methanation of undiluted syngas streams.
  • other stable catalysts that are active and selective towards methane may be used in the methanation reactors.
  • heat recover zones HR 2 and HR 3 are used to remove heat from the stream as it passed from reactor R 1 to reactor R 2 and reactor R 2 to reactor R 3 respectively.
  • Any suitable exchange device can be used, preferably a shell-and-tube type wherein water can be used to remove heat from the product stream. The water can then be recycled to one or both of 12 and 23 where it can be further heated to produce superheated steam.
  • the inlet and outlet temperatures of the streams entering and exiting methanation reactors R 1 -R 3 can be controlled by varying the percentage of syngas being delivered to each of the reactors as well as how much heat is exchanged by heat exchangers HR 2 and HR 3 .
  • the inlet temperature of reactors R 1 and R 2 will be from about 400° F. to about 450° F. with an outlet temperature of about 500° F. to about 800° F.
  • the third reactor, which will operate at a lower temperature than that of reactors R 1 and R 2 will have an inlet temperature of about 400° F. and an outlet temperature of about 500° F.
  • the step of recovering at least a part of generated heat and/or at least a part of waste heat in the regeneration zone and effectively utilizing the recovered heat is further provided.
  • the recovered heat can be effectively utilized, for example, for drying and heating of the biomass feedstock and the generation of steam as the gasifying agent.
  • the product stream from the methanation unit will be comprised predominantly of methane. That is, it will contain at least about 75 vol. %, preferably at least about 85 vol. %, and more preferably at least about 95 vol. % methane. If the methane product stream is to be introduced into a natural gas pipeline, then it must meet the specification requirements for the pipeline. Such a specification for most pipelines, with respect to CO 2 content will be less than about 4 volume percent. If the methane product stream is to be used for the production of methanol, then higher amounts of CO 2 will be required.
  • the product methane stream is preferably introduced into a natural gas pipeline and utilized at any downstream facility.
  • One such facility if preferably a plant that converts the methane to syngas then to other products, such as alcohols, transportation fuels, or lubricant base stocks.
  • any suitable process can be used that convert methane or natural gas to syngas.
  • Preferred methods include steam reforming and partial oxidation. More preferred is steam reforming. Steam reforming of methane is a highly endothermic process and involves following reactions:
  • the steam reformer will preferably be one similar to reformer R hereof, which is a coiled tubular reactor.
  • Preferred steam reforming catalysts are nickel containing catalysts, particularly nickel (with or without other elements) supported on alumina or other refractory materials, in the above catalytic processes for conversion of methane (or natural gas) to syngas is also well known in the prior art. Kirk and Othmer, Encyclopedia of Chemical Technology, 3rd Ed., 1990, vol. 12, p. 951; Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., 1989, vol. A12, pp. 186 and 202; U.S. Pat. No. 2,942,958 (1960); U.S. Pat. No. 4,877,550 (1989); U.S. Pat. No. 4,888,131 (1989); EP 0 084 273 A2 (1983); EP 0 303 438 A2 (1989); and Dissanayske et al., Journal of Catalysis, vol. 132, p. 117
  • the catalytic steam reforming of methane, or natural gas, to syngas is a well established technology practiced for commercial production of hydrogen, carbon monoxide and syngas (i.e., a mixture of hydrogen and carbon monoxide).
  • hydrocarbon feed is converted to a mixture of H 2 , CO and CO 2 by reacting hydrocarbons with steam over a supported nickel catalyst such as NiO supported on alumina at elevated temperature (850° C. to 1000° C.) and pressure (10-40 atm) and at steam to carbon mole ratio of 2-5 and gas hourly space velocity of about 5000-8000 per hour.

Abstract

The production of synthetic natural gas from a carbonaceous material, preferably a biomass material, such as wood. The carbonaceous material is first pyrolyzed, then subjected to steam reforming to produce a syngas, which is then passed to several clean-up steps then to a methanation zone to produce synthetic natural gas.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is based on Provisional Application 60/832803 filed Jul. 24, 2006.
  • FIELD OF THE INVENTION
  • The present invention relates to the production of synthetic natural gas from a carbonaceous material, preferably a biomass material, such as wood. The carbonaceous material is first pyrolyzed, then subjected to steam reforming to produce a syngas, which is then passed to several clean-up steps then to a methanation zone to produce synthetic natural gas.
  • BACKGROUND OF THE INVENTION
  • The world's energy supplies, particularly liquid and gaseous fuel from fossil fuels, are being depleted faster than they are replaced. Consequently, the development of techniques for producing energy are urgently needed for avoiding the depletion of limited fossil fuel resources as well as for alleviating the global warming problem. Among various types of natural energy, biomass energy is regarded as one of the most promising natural energy from the viewpoint of its abundance, renewability and storability. Cellulosic materials, such as wood, have great potential for providing large amounts of energy. Direct combustion of woody biomass suffers from a limited amount of resource and low efficiency, and, further, only electric power can effectively be supplied from the direct combustion of woody biomass. The development of techniques that can utilize the entire biomass, including cellulose and hemicellulose, to produce energy, particularly in the form of liquid and gaseous fuels is of great interest. At the present time, however, such techniques are not in a practical stage for technical as well as economical reasons.
  • There is increasing interest in the production of synthetic natural gas as an alternative to natural gas. Synthetic natural gas, A large portion of synthetic natural gas is often referred to as “green gas” because it is a renewable gas typically obtained from biomass and having natural gas specifications. Thus, it can be transported through the existing natural gas infrastructure, substituting for natural gas in all existing applications. Also, the use of biomass as the feedstock will not generally result in a net CO2 emission as long as the source material can be replanted to replace those used as fuel. It may even be possible to reduce atmospheric CO2 by sequestering the CO2 that is released during the conversion of biomass (negative CO2 emission).
  • Various problems exist in the art for pyrolyzing or gasifying carbonaceous materials, such as cellulosic materials. For example, vessels that have traditionally been used for gasifying biomass, such as wood chips and similar cellulosic material have been cylindrical, or often wider or narrower at the grate level than at the surface of the fuel bed, relative to the flow of feed and the forced air (or other gases) draft. Concerns with the settling of the fuel bed so that combustion takes place without the need to poke or otherwise stir the fuel bed have provoked a variety of vessel construction. None of these lends themselves well to a high volume, precisely controlled, continuous process wherein the biomass fuel is efficiently converted to the target gas for supply to and likely, additional energy or waste in the process. Exposing the base fuel during the pyrolysis to air, water vapor or other components has a direct impact on the products of pyrolysis, as does the temperature of the process and the duration thereof. By using any of the processes of the prior art, such as a fluidized bed, which is, at least initially exposed to air and can be additionally exposed to oxygen, or other input gasses, some portion of the fuel for gasification is consumed, as by oxidation (burning) affecting the output of the process by producing ash or other undesirable residue.
  • Although several prior processes have met with varying degrees of both commercial and technical success, there is still a need in the art for improved and more efficient processes for converting biomass to synthetic natural gas.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention there is provided a process for converting carbonaceous material to synthetic natural gas, which process comprising:
  • a) feeding said carbonaceous material and an effective amount of superheated steam in a plurality of vertically oriented straight tubes in a pyrolysis furnace, which tubes are at a temperature of about 400° C. to about 650° C. for an effective amount of time to produce a reaction product stream;
  • b) quenching the reaction product stream thereby resulting in a gaseous fraction, a liquid fraction and a solids fraction;
  • c) collecting at least a portion of the solids fraction;
  • d) passing the gaseous and liquid fractions to a separation zone wherein the gaseous fraction is separated from the liquid fraction;
  • e) collecting the gaseous fraction for further use;
  • f) passing at least a portion of the liquid fraction and an effective amount of superheated steam to a reforming zone operated at a temperature of about 850° C. to about 1200° C. and a pressure form about 3 psig to about 500 psig wherein said liquid fraction is reformed to produce a synthetic gaseous product comprised of hydrogen, carbon monoxide, carbon dioxide, and methane, which synthetic gaseous product stream is at an elevated temperature;
  • g) passing said synthetic gaseous product stream at an elevated temperature to a heat recovery zone wherein its temperature is substantially lowered;
  • h) passing said lowered temperature synthetic gaseous product stream to a solids recovery zone wherein substantially all remaining solids are removed;
  • i) passing said synthetic gaseous product stream having a reduced amount of solids to an organics removal zone wherein substantially any remaining organic material is removed by contact with an organic liquid in which the organic material is at least partially soluble;
  • j) passing said synthetic gaseous product stream from said organics removal zone to an acid gas removal zone wherein substantially all acid gases are removed;
  • k) passing said synthetic gaseous product stream from said acid gas removal zone to a methanation process unit containing at least one methanation catalyst and operated at methanation process conditions thereby resulting in a product stream comprised predominantly of methane.
  • In a preferred embodiment there is a water wash step between before the organic removal step wherein the synthetic gaseous product stream is passed countercurrent to a stream of water to remove any remaining solids.
  • In another preferred embodiment the carbonaceous material is selected from the group consisting of wood and dried distillers grains.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 hereof is a generalized flow scheme of a preferred embodiment of the present invention wherein a carbonaceous material, such as wood chips, are pryolyzed to produce a pyrolysis oil, which is then reformed to produce a syngas, which is then sent through various clean-up steps then to a methanation unit to produce synthetic natural gas.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to the production of synthetic natural gas (predominantly methane) from carbonaceous materials, preferably biomass materials. Synthetic natural gas, also sometimes called “green gas” is a renewable gas from biomass with natural gas specifications. Therefore, it can be transported through the existing gas infrastructure, substituting for natural gas in all existing applications. Another advantage of green gas is that is carbon neutral. That is, using biomass as an energy supply will typically not result in a net CO2 emission since its source can be replanted and uses CO2 from the atmosphere during its growth period.
  • While this invention is applicable to a broad range of carbonaceous feedstocks including the traditional naturally occurring solid fossil fuels such as coal, peat, lignite, tar sands, and bitumen from oil shale, the preferred feedstocks for use in the present invention are biomass feedstocks Non-limiting examples of biomass feedstocks suitable for being converted in accordance with the present invention include trees such as red cedar, southern pine, hardwoods such as oak, cedar, maple and ash, as well as bagasse, rice hulls, rice straw, kennaf, old railroad ties, dried distiller grains, corn stalks and cobs and straw. Cellulosic materials are the more preferred biomass feedstocks, with wood and dried distillers grains being the most preferred. Biomass is typically comprised of three major components: cellulose, hemicellulose and lignin. Cellulose is a straight and relatively stiff molecule with a polymerization degree of approximately 10,000 glucose units (C6 sugar). Hemicellulose are polymers built of C5 and C6 sugars with a polymerization degree of about 200 glucose units. Both cellulose and hemicellulose can be vaporized with negligible char formation at temperatures above about 500° C. On the other hand, lignin is a three dimensional branched polymer composed of phenolic units. Due to the aromatic content of lignin, it degrades slowly on heating and contributes to a major fraction of undesirable char formation. In addition to the major cell wall composition of cellulose, hemicellulose and lignin, biomass often contains varying amounts of species called “extractives”. These extractives, which are soluble in polar or non-polar solvents, are comprised of terpenes, fatty acids, aromatic compounds and volatile oil.
  • In most instances the carbonaceous mateials used in the practice of the present invention will be found in a form in which the particles are too large for conducting through the tubes of the pyrolysis unit. Thus, it will usually be necessary to grind the carbonaceous material to an effective size. In this case, the carbonaceous material is ground, otherwise reduced in size, to a suitable size of about 1/32 inch to about 1 inch, preferably from about 1/16 inch to about ½ inch, and more preferably from about ⅛ inch to about ¼ inch. Grinding techniques are well know and varied, thus any suitable grinding technique and equipment can be used for the particular carbonaceous material being converted.
  • The type of pyrolysis preferred for use in the practice of the present invention is known as “fast pyrolysis” which is a thermal decomposition process that occurs at moderate temperatures with a high heat transfer rate to the carbonaceous particles and a short hot vapor residence time in the reaction zone. Several conventional reactor configurations have been used in the art, such as bubbling fluid beds, circulating and transported beds, vortex or cyclonic reactors, and ablative reactors. While all of these reactors have their advantages they are all faced with limitations, such as the tendency of fluid bed reactors to produce more gas and coke then the desired pyrolysis oil, the preferred pyrolysis product of the present invention. The pyrolysis reactor of the present invention contains a plurality of vertically oriented straight tubes within the enclosed reactor vessel which is heated by use of a suitable heating device, such as one or more burners.
  • The pyrolysis of biomass as practiced by the present invention produces a liquid product, pyrolysis oil or bio-oil that can be readily stored and transported. Pyrolysis oil is a renewable liquid fuel can be used for production of chemicals and liquid fuels, or as herein for the production of synthetic natural gas. As previously mentioned, synthetic natural gas is a very desirable product because it is derived from a renewable source and it can be used as a substitute for natural gas for all natural gas applications.
  • Generally, pyrolysis requires that a feedstock have less than about 15% moisture content, but there is an optimization between moisture content and conversion process efficiency. The actual moisture content will vary somewhat depending on the commercial process equipment used. Since some of the biomass received for processing can have a moisture content from about 40 to 60% it will have to be dried before pyrolysis. Any conventional drying technique can be used as long as the moisture content is lowered to less than about 15% when mixed with the superheated steam. For example, passive drying during summer storage can reduce the moisture content to about 30% or less. Active silo drying can reduce the moisture content down to about 12%. Drying can be accomplished either by very simple means, such as near ambient, solar drying or by waste heat flows or by specifically designed dryers operated on location. Also, commercial dryers are available in many forms and most common are rotary kilns and shallow fluidized bed dryers.
  • This invention can be better understood with reference to the sole figure hereof. The carbonaceous feedstock is conducted via line 10 and superheated steam is conducted via line 12 to mixing zone Mix wherein the two are sufficiently mixed before being conducted via line 14 into pyrolysis process unit P. The superheated steam, which will be at a temperature from about 315° C. to about 700° C. acts as both a source of hydrogen as well as a transport medium. The amount of superheated steam to feedstock will be an effective amount. By effective amount we mean at least that amount needed to provide sufficient transport of the feedstock. That ratio of superheated steam to feedstock, on a volume to volume basis, will typically be from about 0.2 to 2.5, preferably from about 0.3 to 1.0. The temperature conditions for the pyrolysis reaction will be described later in detail. The steam is preferably introduced so that the feedstock is diluted to the point where it can easily be transported through the reactor tubes. Fluidization will typically result and can realize fluid pyrolysis by virtue of good contact among steam, feed polymers and heat decomposition products of carbonaceous material liberated in the gas phase.
  • The mixture of steam and feedstock, which will be at a temperature of above its dew point of greater than about 230° C., is fed to the pyrolysis reactor P via line 14 into a flow divider FD where it is distributed into the plurality of vertically oriented straight reactor tubes of effective internal diameter and length within a metal cylindrical vessel of suitable size. Flow divider FD can be any suitable design that will divide the feedstock substantially equally among the plurality of reactor tubes. The reactor tubes for the pyrolysis reactor are straight instead of coiled because the residence time needs to be very short in order to produce the maximum amount of oil without the production of an undesirable amount of gas. The temperature of the mixture entering the pyrolysis unit will be at least about 230° C. Typical internal diameters for the pyrolysis reactor tubes will be from about 2 to about 4 inches, preferably from about 2.5 to about 3.5 inches, and more preferably about 3 inches.
  • The feedstock passing though the pyrolysis reactor tubes is subjected to fast pyrolysis at temperatures from about 400° C. to about 650° C. and pressures from about 3 to 35 psig, preferably from about 5 psig to about 35 psig. The residence time of the feedstock in the pyrolysis reactor will be an effective residence time. By “effective residence time” we mean that amount of time that will result in the maximum yield of oil without excess gas make. Typically this effective amount of time for purposes of this invention will be from about 0.2 to about 7 seconds, preferably from about 0.3 seconds to about 5 seconds. The heating rate will be a relatively high heating rate of about 1,000° C. per second to about 10,000° C. per second. The high heating rate in the pyrolysis reactor of the present invention, at temperatures below about 650° C. and with rapid quenching, causes the liquid intermediate products of pyrolysis to condense before further reaction breaks down higher molecular weight species into gaseous products. The high reaction rates also minimize char formation, and under preferred conditions substantially no char is formed. At high maximum temperature, the major products is gas, thus the need for the present process to operate at low enough temperatures to maximize the production of pyrolysis oils.
  • Although the source of heat for the pyrolysis unit, as well as the reformer of the present invention, can be any suitable source, it is preferred that the source of heat be one or more burners B located at bottom of the pyrolysis and reforming process unit. Fuel for the burners B can be any suitable fuel. It is preferred that at least a portion of the fuel to the burners be obtained from the present process itself, such as the syngas produced in either the pyrolysis reactor or in the reformer. For example at least a portion of syngas stream 20 can be diverted via line 21 and used as a fuel to burners B. A portion of the syngas stream 20 can also be combined with syngas stream of line 30.
  • Flue gas, which will typically be comprised of CO2 and N2 is exhausted from the pyrolysis reactor via line 15 and the reaction products from the pyrolysis reactor are sent via line 16 to quench zone Q resulting in a mixture of liquid, gaseous and solid products. Most of the solids, which will typically be in the form of ash, will be collected from quench zone Q via line 17. The liquid product will be in the form of a pyrolysis oil and the gaseous product will be a syngas. The resulting liquid and gaseous products are conducted via line 18 to first separation zone Si wherein a syngas stream is separated from the pyrolysis oil and collected overhead via line 20 or a portion being diverted via line 21 to either or both of burners B. This syngas stream is comprised primarily of hydrogen, carbon dioxide, carbon monoxide, and methane. The pyrolysis oil stream, which may contain some remnants of char and ash formed during pyrolysis, is conducted via line 22 to reformer R along with an effective amount of superheated steam via line 23. It is preferred that reformer R contains a plurality of coiled reactor tubes within an enclosed reactor vessel heated by a suitable heating means, such as one or more burners.
  • At least a portion of the pyrolysis oil is converted to syngas in reformer R, which syngas is also composed primarily of hydrogen, carbon dioxide, carbon monoxide and methane. The inlet temperature of the feedstock and superheated steam entering reformer R will preferably be about 200° C. The exit temperature of the product syngas leaving reformer R via line 24 will typically be from about 850° C. and 1200° C., preferably between about 900° C. and about 1000° C. At a temperature of about 1100° C. and above and with a contact time of about 5 seconds, one obtains less than about 5 mole percent of methane and about 15 mole percent of CO2, which is an undesirable result. Pressure in the reformer is not critical, but it will typically be at about 3 to 500 psig. Also, it is preferred that the residence time in the reformer be from about 0.4 to about 1.5 seconds.
  • For any given feedstock, one can vary the proportions of hydrogen, carbon dioxide, carbon monoxide and methane that comprise the resulting syngas product stream as a function of the contact time of the pyrolysis oil feedstock in the reformer, the exit temperature, the amount of steam introduced, and to a lesser extent, pressure. Certain proportions of syngas components are better than others for producing synthetic natural gas, thus conditions should be such as to maximize the production of carbon monoxide and methane at the expense of hydrogen.
  • Returning now to the Figure hereof flue gas is exhausted from the reformer via line 23 and the product syngas stream from reformer R is conducted via line 24 to heat recovery zone HR1 where it is preferred that water be the heat exchange medium and that the water be passed as preheated steam to one or both of the pyrolysis reactor P or reformer R via lines 25 where it is further heated to produce at least a portion of the superheated steam used for both units. Heat Recovery zone HR1 can be any suitable heat exchange device, such as the shell-and-tube type wherein water is used to remove heat from product stream 24. From heat recovery zone HR1 the product syngas is passed via line 26 through second separation zone S2 which contains a gas filtering means and preferably a cyclone (not shown) and optionally a bag house (not shown) to remove at least a portion, preferably substantially all, of the remaining ash and other solid fines from the syngas. The filtered solids are collected via line 28 for disposal.
  • The filtered syngas stream is then passed via line 30 to water wash zone WW wherein it is conducted upward and countercurrent to down-flowing water via line 31. The water wash zone preferably comprises a column packed with conventional packing material, such as copper tubing, pall rings, metal mesh or other such materials. The syngas passes upward countercurrent to down-flowing water which serves to further cool the syngas stream to about ambient temperature, and to remove any remaining ash that may not have been removed in second separation zone S2. The water washed syngas stream is then passed via line 32 to oil wash zone OW where it is passed countercurrent to a down-flowing organic liquid stream to remove any organics present, such as benzene, toluene, xylene, or heavier hydrocarbon components via line 35 that may have been produced in the reformer. The down-flowing organic stream will be any organic stream in which the organic material being removed is substantially soluble. It is preferred that the down-flowing organic stream be a hydrocarbon stream, more preferably a petroleum fraction. The preferred petroleum fractions are those boiling in naphtha to distillate boiling range, more preferably a C16 to C20 hydrocarbon stream, most preferably a C18 hydrocarbon stream.
  • The resulting syngas stream is conducted via line 34 to acid gas scrubbing zone AGS wherein acidic gases, preferably CO2 and H2S are removed. Any suitable acid gas treating technology can be used in the practice of the present invention. Also, any suitable scrubbing agent, preferably a basic solution can be used in the acid gas scrubbing zone AGS that will adsorb the desired level of acid gases from the vapor stream. It will be understood that it may be desirable to leave a certain amount of CO2 in the scrubbed stream depending on the intended use of resulting methane product stream from the methanation unit. For example, if the methane product stream is to be introduced into a natural gas pipeline, no more than about 4 vol. % of CO2 should be remain. If the methane product stream is to be used for the production of methanol, then at least that stoichiometric amount of CO2 needed to result in the production of methanol should remaing. One suitable acid gas scrubbing technology is the use of an amine scrubber. Non-limiting examples of such basic solutions are the amines, preferably diethanol amine, mono-ethanol amine, and the like. More preferred is diethanol amine. Another preferred acid gas scrubbing technology is the so-called “Rectisol Wash” which uses an organic solvent, typically methanol, at subzero temperatures. The scrubbed stream can also be passed through one or more guard beds (not shown) to remove catalyst poisoning impurities such as sulfur, halides etc. The treated stream is passed via line 36 from acid gas scrubbing zone AGS to methanation zone M. Methanation of syngas involves a reaction between carbon oxides, i.e. carbon monoxide and carbon dioxide, and hydrogen in the syngas to produce methane and water, as follows:

  • CO+3H2→CH4+H2O   (1)

  • CO2+4H2→CH4+2H2O   (2)
  • Methanation reactions (1) and (2) take place at temperatures of about 300° C. to about 900° C. in methanation zone M which is preferably comprised of two or more, more preferably three, reactors each containing a suitable methanation catalyst. The methanation reaction is strongly exothermic. Generally, the temperature increase in a typical methanator gas composition is about 74° C. for each 1% of carbon monoxide converted and 60° C. for each 1% carbon dioxide converted. Because of the exothermic nature of methanation reactions (1) and (2), the temperature in the methanation reactor during methanation of syngas has to be controlled to prevent overheating of the reactor catalyst. Also high temperatures are undesirable from an equilibrium standpoint and reduce the amount of conversion of syngas to methane since methane formation is favored at lower temperatures. Formation of soot on the catalyst is also a concern and may require the addition of water to the syngas feedstock.
  • A preferred way to control heat during the methanation reaction is use a plurality of reactors with heat removed between each reactor. Thus, methanation zone M preferably comprises a series of three adiabatic methanation reactors R1, R2 and R3. Each of these reactors is configured to react carbon oxide and hydrogen contained in the syngas in the presence of a suitable catalyst to produce methane and water, in accordance with the reactions (1) and (2) set forth hereinabove. Each of the methanation reactors includes a catalyst capable of promoting methanation reactions between carbon oxides and hydrogen in the syngas feedstock. Any conventional methanation catalyst is suitable for use in the practice of the present invention, although nickel catalysts are most commonly used and the more preferred for this invention. Such catalysts are, especially those containing greater than 50% nickel, are generally stable against thermal and chemical sintering during methanation of undiluted syngas streams. Alternatively, other stable catalysts that are active and selective towards methane may be used in the methanation reactors.
  • As previously mentioned because the methanation reaction is strongly exothermic, heat needs to be removed between reactors. Thus, heat recover zones HR2 and HR3 are used to remove heat from the stream as it passed from reactor R1 to reactor R2 and reactor R2 to reactor R3 respectively. Any suitable exchange device can be used, preferably a shell-and-tube type wherein water can be used to remove heat from the product stream. The water can then be recycled to one or both of 12 and 23 where it can be further heated to produce superheated steam. As can be appreciated from the above and as shown in the examples discussed below, the inlet and outlet temperatures of the streams entering and exiting methanation reactors R1-R3 can be controlled by varying the percentage of syngas being delivered to each of the reactors as well as how much heat is exchanged by heat exchangers HR2 and HR3. Typically, the inlet temperature of reactors R1 and R2 will be from about 400° F. to about 450° F. with an outlet temperature of about 500° F. to about 800° F. The third reactor, which will operate at a lower temperature than that of reactors R1 and R2 will have an inlet temperature of about 400° F. and an outlet temperature of about 500° F.
  • In a preferred embodiment of the present invention, the step of recovering at least a part of generated heat and/or at least a part of waste heat in the regeneration zone and effectively utilizing the recovered heat is further provided. The recovered heat can be effectively utilized, for example, for drying and heating of the biomass feedstock and the generation of steam as the gasifying agent.
  • The product stream from the methanation unit will be comprised predominantly of methane. That is, it will contain at least about 75 vol. %, preferably at least about 85 vol. %, and more preferably at least about 95 vol. % methane. If the methane product stream is to be introduced into a natural gas pipeline, then it must meet the specification requirements for the pipeline. Such a specification for most pipelines, with respect to CO2 content will be less than about 4 volume percent. If the methane product stream is to be used for the production of methanol, then higher amounts of CO2 will be required. The product methane stream is preferably introduced into a natural gas pipeline and utilized at any downstream facility. One such facility if preferably a plant that converts the methane to syngas then to other products, such as alcohols, transportation fuels, or lubricant base stocks. If it is desired to produce syngas from the methane produced in the methanation unit M, then any suitable process can be used that convert methane or natural gas to syngas. Preferred methods include steam reforming and partial oxidation. More preferred is steam reforming. Steam reforming of methane is a highly endothermic process and involves following reactions:
  • Main reaction

  • CH4+H2O→CO+3H2 −54.2 Kcal per mole of CH4 at about 800° C. to about 900° C.
  • Side reaction

  • CO+H2O→CO2+H2 +8.0 kcal per mole of CO at about 800° C. to about 900° C.
  • CO2 reforming of methane: It is also a highly endothermic process and involves the following reactions:
  • Main reaction

  • CH4+CO→2CO+2H2 −62.2 kcal per mole of CH4 at about 800° C. to about 900° C.
  • Side reaction: Reverse water gas shift reaction

  • CO2+H2→CO+H2O −8.0 kcal per mole of CO2 at about 800° C. to about 900° C.
  • The steam reformer will preferably be one similar to reformer R hereof, which is a coiled tubular reactor. Preferred steam reforming catalysts are nickel containing catalysts, particularly nickel (with or without other elements) supported on alumina or other refractory materials, in the above catalytic processes for conversion of methane (or natural gas) to syngas is also well known in the prior art. Kirk and Othmer, Encyclopedia of Chemical Technology, 3rd Ed., 1990, vol. 12, p. 951; Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., 1989, vol. A12, pp. 186 and 202; U.S. Pat. No. 2,942,958 (1960); U.S. Pat. No. 4,877,550 (1989); U.S. Pat. No. 4,888,131 (1989); EP 0 084 273 A2 (1983); EP 0 303 438 A2 (1989); and Dissanayske et al., Journal of Catalysis, vol. 132, p. 117 (1991).
  • The catalytic steam reforming of methane, or natural gas, to syngas is a well established technology practiced for commercial production of hydrogen, carbon monoxide and syngas (i.e., a mixture of hydrogen and carbon monoxide). In this process, hydrocarbon feed is converted to a mixture of H2, CO and CO2 by reacting hydrocarbons with steam over a supported nickel catalyst such as NiO supported on alumina at elevated temperature (850° C. to 1000° C.) and pressure (10-40 atm) and at steam to carbon mole ratio of 2-5 and gas hourly space velocity of about 5000-8000 per hour.
  • This process is highly endothermic and hence it is carried out in a number of parallel tubes packed with a catalyst and externally heated by flue gas to a temperature of 980° C. to about 1040° C. (Kirk and Othmer, Encyclopedia of chemical Technology, 3rd, Ed., 1990, vol. 12, p. 951, Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., 1989, vol. A12, p. 186).

Claims (19)

1. A process for converting carbonaceous material to synthetic natural gas, which process comprising:
a) feeding said carbonaceous material and an effective amount of superheated steam through a plurality of vertically oriented tubes in a pyrolysis furnace, which tubes are at a temperature of about 400° C. to about 650° C. for an effective amount of time to produce a reaction product stream;
b) quenching the reaction product stream thereby resulting in a gaseous fraction, a liquid fraction and a solids fraction;
c) collecting at least a portion of the solids fraction;
d) passing the gaseous and liquid fractions of the reaction product stream to a separation zone wherein the gaseous fraction is separated from the liquid fraction;
e) collecting the gaseous fraction for further use;
f) passing at least a portion of the liquid fraction and an effective amount of superheated steam to a reforming zone operated at a temperature of about 850° C. to about 1000° C. and a pressure form about 3 psig to about 500 psig wherein said liquid fraction is reformed to produce a synthetic gaseous product comprised of hydrogen, carbon monoxide, carbon dioxide, and methane, which synthetic gaseous product stream is at an elevated temperature;
g) passing said synthetic gaseous product stream at an elevated temperature to a heat recovery zone wherein its temperature is substantially lowered;
h) passing said lowered temperature synthetic gaseous product stream to a solids recovery zone wherein substantially all remaining solids are removed;
i) passing said synthetic gaseous product stream having a reduced amount of solids to an organics removal zone wherein substantially any remaining organic material is removed by contact with an organic liquid in which the organic material is at least partially soluble;
j) passing said synthetic gaseous product stream from said organics removal zone to an acid gas removal zone wherein substantially all acid gases are removed;
k) passing said synthetic gaseous product stream from said acid gas removal zone to a methanation process unit containing at least one methanation catalyst and operated at methanation process conditions thereby resulting in a product stream comprised predominantly of methane.
2. The process of claim 1 wherein the carbonaceous material is a source of fossil fuels selected from the group consisting of coal, peat, lignite, tar sands, and bitumen from oil shale.
3. The process of claim 1 wherein the carbonaceous material is a biomass material.
4. The process of claim 3 wherein the biomass material is a cellulosic material.
5. The process of claim 4 wherein the cellulosic material is selected from the group consisting of wood, bagasse, rice hulls, rice straw, kennaf, old railroad ties, dried distiller grains, corn stalks and cobs and straw.
6. The process of claim 5 wherein the cellulosic material is selected from wood and dried distiller grains.
7. The process of claim 1 wherein the carbonaceous material is dried to a moisture content of less than or equal to about 15% by weight before pyrolysis.
8. The process of claim 1 wherein the carbonaceous material is with the size range of about 1/16 inch to about ½ inch.
9. The process of claim 1 wherein the gaseous product collected from the separation zone is a fuel gas a portion of which is used to fuel the pyrolysis unit, the reforming zone, or both.
10. The process of claim 1 wherein the heat recovery zone uses water to recover heat and wherein at least a portion of the heated water is used as preheated steam to the pyrolysis unit, the reforming zone, or both.
11. The process of claim 1 wherein the scrubbing agent used in the acid gas removal zone is selected from the group consisting of alcohols and amines.
12. The process of claim 11 wherein the scrubbing agent is an alcohol.
13. The process of claim 12 wherein the alcohol is methanol.
14. The process of claim 11 wherein the amine is selected from the group consisting of diethanol amine and mono-ethanol amine.
15. The process of claim 14 wherein the amine is diethanol amine.
16. The process of claim 1 wherein the methanation zone contains three reactors in series and wherein heat is removed from the stream passing from the first reactor and the second reactor.
17. The process of claim 1 wherein at least a portion of the methane produced in the methanation unit is introduced into a natural gas pipeline.
18. The process of claim 17 wherein methane is removed from a pipeline and converted to a syngas.
19. The process of claim 1 wherein prior to organic removal step (j) the synthetic gaseous product stream is subjected to a water wash wherein is flowed countercurrent to a stream of water to remove any remaining solids material.
US11/880,690 2006-07-24 2007-07-24 Conversion of carbonaceous materials to synthetic natural gas by pyrolysis, reforming, and methanation Abandoned US20080016769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/880,690 US20080016769A1 (en) 2006-07-24 2007-07-24 Conversion of carbonaceous materials to synthetic natural gas by pyrolysis, reforming, and methanation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US83280306P 2006-07-24 2006-07-24
US11/880,690 US20080016769A1 (en) 2006-07-24 2007-07-24 Conversion of carbonaceous materials to synthetic natural gas by pyrolysis, reforming, and methanation

Publications (1)

Publication Number Publication Date
US20080016769A1 true US20080016769A1 (en) 2008-01-24

Family

ID=38982018

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/880,690 Abandoned US20080016769A1 (en) 2006-07-24 2007-07-24 Conversion of carbonaceous materials to synthetic natural gas by pyrolysis, reforming, and methanation

Country Status (2)

Country Link
US (1) US20080016769A1 (en)
WO (1) WO2008013794A2 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228294A1 (en) * 2005-04-12 2006-10-12 Davis William H Process and apparatus using a molten metal bath
US20080171899A1 (en) * 2007-01-16 2008-07-17 Peter Pulkrabek Production of Synthesis Gas from Biomass and Any Organic Matter by Reactive Contact with Superheated Steam
US20090038314A1 (en) * 2007-08-10 2009-02-12 International Financial Services #1, Llc Integrated process for carbonaceous material to co2-free fuel gas for power plants and biomass to ethanol
US20090038316A1 (en) * 2007-08-10 2009-02-12 International Financial Services #1, Llc Integrated process for carbonaceous material to co2-free fuel gas for power plants and to ethylene
US20090126433A1 (en) * 2007-11-20 2009-05-21 Jan Piskorz Method of producing hodge carbonyls and oligomeric lignin
US20090221725A1 (en) * 2008-02-28 2009-09-03 Enerkem, Inc. Production of ethanol from methanol
US20100158792A1 (en) * 2006-08-23 2010-06-24 Raymond Francis Drnevich Gasification and steam methane reforming integrated polygeneration method and system
WO2010071677A1 (en) * 2008-12-16 2010-06-24 Kior Inc. Pretreatment of biomass with carbonaceous material
US20100236309A1 (en) * 2009-03-23 2010-09-23 Celia Wayne M Method and matrix for enhancing growth media
US20100319255A1 (en) * 2009-06-18 2010-12-23 Douglas Struble Process and system for production of synthesis gas
WO2011056142A1 (en) * 2009-11-06 2011-05-12 Meva Innovation Ab System and process for gasifying biomass
WO2011115739A1 (en) * 2010-03-17 2011-09-22 General Electric Company System for heat integration with methanation system
US20110232163A1 (en) * 2010-03-25 2011-09-29 Exxonmobil Research And Engineering Company Biomass oil conversion using carbon monoxide and water
US20110232161A1 (en) * 2010-03-25 2011-09-29 Exxonmobil Research And Engineering Company Biomass oil conversion process
WO2012058903A1 (en) * 2010-11-05 2012-05-10 四川亚连科技有限责任公司 Preparation method of synthetic natural gas using gas produced by straw
CN102643676A (en) * 2012-04-28 2012-08-22 广西大学 Method for self-heating pyrolysis gasification of biomass by gas backflow combustion
US8317891B1 (en) * 2011-06-06 2012-11-27 Cool Planet Biofuels, Inc. Method for enhancing soil growth using bio-char
US20130011803A1 (en) * 2010-02-17 2013-01-10 Roland Siemons Batch-wise operated retort using temporary storage of heat
US20130019529A1 (en) * 2010-03-23 2013-01-24 Wuhan Kaidi Engineering Technology Research Institute Co., Ltd. Method and system for producing synthesis gas
US8361186B1 (en) * 2009-06-08 2013-01-29 Full Circle Biochar, Inc. Biochar
CN103060504A (en) * 2013-01-24 2013-04-24 北京科技大学 Method for preparing sponge iron by biomass char
CN103074093A (en) * 2013-01-30 2013-05-01 南京工业大学 Integral process and system for directly drying and pyrolyzing lignite
CN103591605A (en) * 2013-11-30 2014-02-19 广州广重企业集团有限公司 Combustion monitoring control system of waste wood fuel boiler using non-pre-treatment technology
US20140250858A1 (en) * 2013-03-07 2014-09-11 General Electric Company Integrated steam gasification and entrained flow gasification systems and methods for low rank fuels
WO2014151528A1 (en) * 2013-03-15 2014-09-25 Altex Technologies Corporation Method and apparatus for conversion of carbonaceous materials to liquid fuel
US8852313B2 (en) 2009-03-23 2014-10-07 Diversified Global Technologies, Llc Method and matrix for enhancing growth media
WO2014004203A3 (en) * 2012-06-27 2014-10-09 Chevron U.S.A. Inc. Carbon oxides removal
CN104293403A (en) * 2014-10-22 2015-01-21 华南理工大学 System and process for integrating preparation of methane by using dry distillation gas into refining of solid heat carrier oil shale
CN105419879A (en) * 2015-11-05 2016-03-23 东华工程科技股份有限公司 Device and method for catalytically decomposing coal substances and separating coal substances at high temperatures
US9493380B2 (en) 2011-06-06 2016-11-15 Cool Planet Energy Systems, Inc. Method for enhancing soil growth using bio-char
US9493379B2 (en) 2011-07-25 2016-11-15 Cool Planet Energy Systems, Inc. Method for the bioactivation of biochar for use as a soil amendment
US9725371B2 (en) 2012-04-05 2017-08-08 Full Circle Biochar Inc. Biochar compositions and methods of use thereof
US9809502B2 (en) 2011-06-06 2017-11-07 Cool Planet Energy Systems, Inc. Enhanced Biochar
US9944538B2 (en) 2013-10-25 2018-04-17 Cool Planet Energy Systems, Inc. System and method for purifying process water
US9963650B2 (en) 2011-07-25 2018-05-08 Cool Planet Energy Systems, Inc. Method for making sequesterable biochar
US9980912B2 (en) 2014-10-01 2018-05-29 Cool Planet Energy Systems, Inc. Biochars for use with animals
CN108160337A (en) * 2017-12-27 2018-06-15 安徽理工大学 A kind of method that coal slime flotation collector is prepared using agricultural crop straw
US10059634B2 (en) 2011-06-06 2018-08-28 Cool Planet Energy Systems, Inc. Biochar suspended solution
US10066167B2 (en) 2011-05-09 2018-09-04 Cool Planet Energy Systems, Inc. Method for biomass fractioning by enhancing biomass thermal conductivity
US10118870B2 (en) 2011-06-06 2018-11-06 Cool Planet Energy Systems, Inc. Additive infused biochar
US10173937B2 (en) 2011-06-06 2019-01-08 Cool Planet Energy Systems, Inc. Biochar as a microbial carrier
US10233129B2 (en) 2011-06-06 2019-03-19 Cool Planet Energy Systems, Inc. Methods for application of biochar
US10252951B2 (en) 2011-06-06 2019-04-09 Cool Planet Energy Systems, Inc. Biochars and biochar treatment processes
US10301228B2 (en) 2011-06-06 2019-05-28 Cool Planet Energy Systems, Inc. Enhanced biochar
US10322389B2 (en) 2014-10-01 2019-06-18 Cool Planet Energy Systems, Inc. Biochar aggregate particles
US10392313B2 (en) 2011-06-06 2019-08-27 Cool Planet Energy Systems, Inc. Method for application of biochar in turf grass and landscaping environments
US10472297B2 (en) 2014-10-01 2019-11-12 Cool Planet Energy System, Inc. Biochars for use in composting
US10550044B2 (en) 2011-06-06 2020-02-04 Cool Planet Energy Systems, Inc. Biochar coated seeds
CN111004649A (en) * 2019-12-13 2020-04-14 西安润川环保科技有限公司 Gas fine desulfurization purification system
US10870608B1 (en) 2014-10-01 2020-12-22 Carbon Technology Holdings, LLC Biochar encased in a biodegradable material
CN112480973A (en) * 2020-10-16 2021-03-12 西北农林科技大学 Method for directly separating wood vinegar and wood tar on line
US11053171B2 (en) 2014-10-01 2021-07-06 Carbon Technology Holdings, LLC Biochars for use with animals
US11097241B2 (en) 2014-10-01 2021-08-24 Talipot Cool Extract (Ip), Llc Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
US11214528B2 (en) 2011-06-06 2022-01-04 Carbon Technology Holdings, LLC Treated biochar for use in water treatment systems
US11248184B2 (en) 2015-06-16 2022-02-15 Itero Technologies Limited Gasification system
US11279662B2 (en) 2011-06-06 2022-03-22 Carbon Technology Holdings, LLC Method for application of biochar in turf grass and landscaping environments
US11312666B2 (en) 2011-06-06 2022-04-26 Carbon Technology Holdings, LLC Mineral solubilizing microorganism infused biochars
US11390569B2 (en) 2011-06-06 2022-07-19 Carbon Technology Holdings, LLC Methods for application of biochar
US11426350B1 (en) 2014-10-01 2022-08-30 Carbon Technology Holdings, LLC Reducing the environmental impact of farming using biochar
US11866329B2 (en) 2017-12-15 2024-01-09 Talipot Cool Extract (Ip), Llc Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0801266A0 (en) * 2008-05-29 2009-12-21 Blasiak Wlodzimierz Two stage carburetors using high temperature preheated steam
CN102021037B (en) * 2009-09-14 2013-06-19 新奥科技发展有限公司 Method and apparatus for preparing methane by catalytic gasification of coal
WO2011138356A1 (en) * 2010-05-07 2011-11-10 Basf Se Process for preparing synthesis gas and at least one organic, liquid or liquefiable value product
CN102634396B (en) * 2012-01-06 2014-06-18 孔令增 Cylindrical granular fuel, preparation method thereof and equipment used for preparation method
CN102899091B (en) * 2012-11-14 2014-03-19 程培胜 Method for preparing coal gas by cracking biomasses and municipal wastes by using system self heat source
CN104152166B (en) * 2014-06-11 2016-05-04 华南理工大学 A kind of oil shale oil-refining integrated association hydrogen production from coal gasification utilization system and technique
CN108998097B (en) * 2018-08-28 2020-11-24 南京六创科技发展有限公司 Coal gasification method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963426A (en) * 1974-07-22 1976-06-15 Cameron Engineers, Incorporated Process for gasifying carbonaceous matter
US4124628A (en) * 1977-07-28 1978-11-07 Union Carbide Corporation Serial adiabatic methanation and steam reforming
US4292048A (en) * 1979-12-21 1981-09-29 Exxon Research & Engineering Co. Integrated catalytic coal devolatilization and steam gasification process
US5139650A (en) * 1989-06-05 1992-08-18 Procedes Petroliers Et Petrochimiques Method and installation for steam cracking hydrocarbons
US20030047437A1 (en) * 2001-08-24 2003-03-13 Vladilen Stankevitch Process for the conversion of waste plastics to produce hydrocarbon oils
US20070256360A1 (en) * 2006-05-08 2007-11-08 Alchemix Corporation Method for the gasification of moisture-containing hydrocarbon feedstocks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993457A (en) * 1973-07-30 1976-11-23 Exxon Research And Engineering Company Concurrent production of methanol and synthetic natural gas
US4597776A (en) * 1982-10-01 1986-07-01 Rockwell International Corporation Hydropyrolysis process
US5079267A (en) * 1989-09-16 1992-01-07 Xytel Technologies Partnership Methanol production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963426A (en) * 1974-07-22 1976-06-15 Cameron Engineers, Incorporated Process for gasifying carbonaceous matter
US4124628A (en) * 1977-07-28 1978-11-07 Union Carbide Corporation Serial adiabatic methanation and steam reforming
US4292048A (en) * 1979-12-21 1981-09-29 Exxon Research & Engineering Co. Integrated catalytic coal devolatilization and steam gasification process
US5139650A (en) * 1989-06-05 1992-08-18 Procedes Petroliers Et Petrochimiques Method and installation for steam cracking hydrocarbons
US20030047437A1 (en) * 2001-08-24 2003-03-13 Vladilen Stankevitch Process for the conversion of waste plastics to produce hydrocarbon oils
US20070256360A1 (en) * 2006-05-08 2007-11-08 Alchemix Corporation Method for the gasification of moisture-containing hydrocarbon feedstocks

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228294A1 (en) * 2005-04-12 2006-10-12 Davis William H Process and apparatus using a molten metal bath
US20100158792A1 (en) * 2006-08-23 2010-06-24 Raymond Francis Drnevich Gasification and steam methane reforming integrated polygeneration method and system
US8409307B2 (en) * 2006-08-23 2013-04-02 Praxair Technology, Inc. Gasification and steam methane reforming integrated polygeneration method and system
US20080171899A1 (en) * 2007-01-16 2008-07-17 Peter Pulkrabek Production of Synthesis Gas from Biomass and Any Organic Matter by Reactive Contact with Superheated Steam
US7833512B2 (en) 2007-01-16 2010-11-16 Peter Pulkrabek Production of synthesis gas from biomass and any organic matter by reactive contact with superheated steam
US20090038314A1 (en) * 2007-08-10 2009-02-12 International Financial Services #1, Llc Integrated process for carbonaceous material to co2-free fuel gas for power plants and biomass to ethanol
US20090038316A1 (en) * 2007-08-10 2009-02-12 International Financial Services #1, Llc Integrated process for carbonaceous material to co2-free fuel gas for power plants and to ethylene
US8436120B2 (en) * 2007-11-20 2013-05-07 Jan Piskorz Method of producing hodge carbonyls and oligomeric lignin
US20090126433A1 (en) * 2007-11-20 2009-05-21 Jan Piskorz Method of producing hodge carbonyls and oligomeric lignin
CN101440026A (en) * 2007-11-20 2009-05-27 让·皮斯科日 Method of producing hodge' carbonyls and oligomeric lignin
US20090221725A1 (en) * 2008-02-28 2009-09-03 Enerkem, Inc. Production of ethanol from methanol
WO2010071677A1 (en) * 2008-12-16 2010-06-24 Kior Inc. Pretreatment of biomass with carbonaceous material
US8552233B2 (en) 2008-12-16 2013-10-08 Kior Inc. Pretreatment of biomass with carbonaceous material
US20100236309A1 (en) * 2009-03-23 2010-09-23 Celia Wayne M Method and matrix for enhancing growth media
US8852313B2 (en) 2009-03-23 2014-10-07 Diversified Global Technologies, Llc Method and matrix for enhancing growth media
US9328032B2 (en) 2009-06-08 2016-05-03 Full Circle Biochar, Inc. Biochar
US8747797B2 (en) 2009-06-08 2014-06-10 Full Circle Biochar, Inc. Biochar
US10947167B2 (en) * 2009-06-08 2021-03-16 Full Circle Biochar, Inc. Biochar
US8361186B1 (en) * 2009-06-08 2013-01-29 Full Circle Biochar, Inc. Biochar
US20190315662A1 (en) * 2009-06-08 2019-10-17 Full Circle Biochar, Inc. Biochar
US10233131B2 (en) 2009-06-08 2019-03-19 Full Circle Biochar, Inc. Biochar
WO2010148233A1 (en) * 2009-06-18 2010-12-23 Douglas Struble Process and system for production of synthesis gas
US20100319255A1 (en) * 2009-06-18 2010-12-23 Douglas Struble Process and system for production of synthesis gas
US9249368B2 (en) 2009-11-06 2016-02-02 Meva Innovation Ab System and process for gasifying biomass
WO2011056142A1 (en) * 2009-11-06 2011-05-12 Meva Innovation Ab System and process for gasifying biomass
US20130011803A1 (en) * 2010-02-17 2013-01-10 Roland Siemons Batch-wise operated retort using temporary storage of heat
WO2011115739A1 (en) * 2010-03-17 2011-09-22 General Electric Company System for heat integration with methanation system
US8354082B2 (en) 2010-03-17 2013-01-15 General Electric Company System for heat integration with methanation system
CN102791835A (en) * 2010-03-17 2012-11-21 通用电气公司 System for heat integration with methanation system
US20110229382A1 (en) * 2010-03-17 2011-09-22 General Electric Company System for heat integration with methanation system
US20130019529A1 (en) * 2010-03-23 2013-01-24 Wuhan Kaidi Engineering Technology Research Institute Co., Ltd. Method and system for producing synthesis gas
US9249358B2 (en) * 2010-03-23 2016-02-02 Wuhan Kaidi Engineering Technology Research Institute Co., Ltd. Method and system for producing synthesis gas
US9902907B2 (en) * 2010-03-23 2018-02-27 Wuhan Kaidi Engineering Technology Research Institute Co., Ltd. System for producing synthesis gas from biomass
US20110232163A1 (en) * 2010-03-25 2011-09-29 Exxonmobil Research And Engineering Company Biomass oil conversion using carbon monoxide and water
US8500829B2 (en) * 2010-03-25 2013-08-06 Exxonmobil Research And Engineering Company Biomass oil conversion using carbon monoxide and water
US8480765B2 (en) * 2010-03-25 2013-07-09 Exxonmobil Research And Engineering Company Biomass oil conversion process
US20110232161A1 (en) * 2010-03-25 2011-09-29 Exxonmobil Research And Engineering Company Biomass oil conversion process
US9334454B2 (en) * 2010-11-05 2016-05-10 Sichuan Yalian Technology Co., Tdl Method for producing synthesis natural gas using straw gas
WO2012058903A1 (en) * 2010-11-05 2012-05-10 四川亚连科技有限责任公司 Preparation method of synthetic natural gas using gas produced by straw
US10066167B2 (en) 2011-05-09 2018-09-04 Cool Planet Energy Systems, Inc. Method for biomass fractioning by enhancing biomass thermal conductivity
US10392313B2 (en) 2011-06-06 2019-08-27 Cool Planet Energy Systems, Inc. Method for application of biochar in turf grass and landscaping environments
US10273195B2 (en) 2011-06-06 2019-04-30 Cool Planet Energy Systems, Inc. Method for the bioactivation of biochar for use as a soil amendment
US11390569B2 (en) 2011-06-06 2022-07-19 Carbon Technology Holdings, LLC Methods for application of biochar
US10556838B2 (en) 2011-06-06 2020-02-11 Cool Planet Energy Systems, Inc. Biochars and biochar treatment processes
US11384031B2 (en) 2011-06-06 2022-07-12 Carbon Technology Holdings, LLC Biochar as a microbial carrier
US10550044B2 (en) 2011-06-06 2020-02-04 Cool Planet Energy Systems, Inc. Biochar coated seeds
US10472298B2 (en) 2011-06-06 2019-11-12 Cool Planet Energy System, Inc. Biochar suspended solution
US11130715B2 (en) 2011-06-06 2021-09-28 Talipot Cool Extract (Ip), Llc Biochar coated seeds
US9493380B2 (en) 2011-06-06 2016-11-15 Cool Planet Energy Systems, Inc. Method for enhancing soil growth using bio-char
US8317891B1 (en) * 2011-06-06 2012-11-27 Cool Planet Biofuels, Inc. Method for enhancing soil growth using bio-char
US20120304718A1 (en) * 2011-06-06 2012-12-06 Michael Cheiky Method for enhancing soil growth using bio-char
US11180428B2 (en) 2011-06-06 2021-11-23 Talipot Cool Extract (Ip), Llc Biochar suspended solution
US9809502B2 (en) 2011-06-06 2017-11-07 Cool Planet Energy Systems, Inc. Enhanced Biochar
US11312666B2 (en) 2011-06-06 2022-04-26 Carbon Technology Holdings, LLC Mineral solubilizing microorganism infused biochars
US10301228B2 (en) 2011-06-06 2019-05-28 Cool Planet Energy Systems, Inc. Enhanced biochar
US10252951B2 (en) 2011-06-06 2019-04-09 Cool Planet Energy Systems, Inc. Biochars and biochar treatment processes
US11279662B2 (en) 2011-06-06 2022-03-22 Carbon Technology Holdings, LLC Method for application of biochar in turf grass and landscaping environments
US11214528B2 (en) 2011-06-06 2022-01-04 Carbon Technology Holdings, LLC Treated biochar for use in water treatment systems
US10023503B2 (en) 2011-06-06 2018-07-17 Cool Planet Energy Systems, Inc. Biochars and biochar treatment processes
US10059634B2 (en) 2011-06-06 2018-08-28 Cool Planet Energy Systems, Inc. Biochar suspended solution
US10233129B2 (en) 2011-06-06 2019-03-19 Cool Planet Energy Systems, Inc. Methods for application of biochar
US10093588B2 (en) 2011-06-06 2018-10-09 Cool Planet Energy Systems, Inc. Method for enhancing soil growth using bio-char
US10106471B2 (en) 2011-06-06 2018-10-23 Cool Planet Energy Systems, Inc. Biochars and biochar treatment processes
US10118870B2 (en) 2011-06-06 2018-11-06 Cool Planet Energy Systems, Inc. Additive infused biochar
US10173937B2 (en) 2011-06-06 2019-01-08 Cool Planet Energy Systems, Inc. Biochar as a microbial carrier
US9963650B2 (en) 2011-07-25 2018-05-08 Cool Planet Energy Systems, Inc. Method for making sequesterable biochar
US9493379B2 (en) 2011-07-25 2016-11-15 Cool Planet Energy Systems, Inc. Method for the bioactivation of biochar for use as a soil amendment
US9725371B2 (en) 2012-04-05 2017-08-08 Full Circle Biochar Inc. Biochar compositions and methods of use thereof
CN102643676A (en) * 2012-04-28 2012-08-22 广西大学 Method for self-heating pyrolysis gasification of biomass by gas backflow combustion
AU2013280850B2 (en) * 2012-06-27 2017-06-22 Chevron U.S.A. Inc. Carbon oxides removal
WO2014004203A3 (en) * 2012-06-27 2014-10-09 Chevron U.S.A. Inc. Carbon oxides removal
CN103060504A (en) * 2013-01-24 2013-04-24 北京科技大学 Method for preparing sponge iron by biomass char
CN103074093A (en) * 2013-01-30 2013-05-01 南京工业大学 Integral process and system for directly drying and pyrolyzing lignite
US9453171B2 (en) * 2013-03-07 2016-09-27 General Electric Company Integrated steam gasification and entrained flow gasification systems and methods for low rank fuels
US20140250858A1 (en) * 2013-03-07 2014-09-11 General Electric Company Integrated steam gasification and entrained flow gasification systems and methods for low rank fuels
US9199889B2 (en) 2013-03-15 2015-12-01 Altex Technologies Corporation Method and apparatus for conversion of carbonaceous materials to liquid fuel
WO2014151528A1 (en) * 2013-03-15 2014-09-25 Altex Technologies Corporation Method and apparatus for conversion of carbonaceous materials to liquid fuel
US9944538B2 (en) 2013-10-25 2018-04-17 Cool Planet Energy Systems, Inc. System and method for purifying process water
CN103591605A (en) * 2013-11-30 2014-02-19 广州广重企业集团有限公司 Combustion monitoring control system of waste wood fuel boiler using non-pre-treatment technology
US11053171B2 (en) 2014-10-01 2021-07-06 Carbon Technology Holdings, LLC Biochars for use with animals
US11097241B2 (en) 2014-10-01 2021-08-24 Talipot Cool Extract (Ip), Llc Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
US11739031B2 (en) 2014-10-01 2023-08-29 Carbon Technology Holdings, LLC Biochar encased in a biodegradable material
US10864492B2 (en) 2014-10-01 2020-12-15 Carbon Technology Holdings, LLC Method for producing biochar aggregate particles
US11426350B1 (en) 2014-10-01 2022-08-30 Carbon Technology Holdings, LLC Reducing the environmental impact of farming using biochar
US11111185B2 (en) 2014-10-01 2021-09-07 Carbon Technology Holdings, LLC Enhanced biochar
US10472297B2 (en) 2014-10-01 2019-11-12 Cool Planet Energy System, Inc. Biochars for use in composting
US9980912B2 (en) 2014-10-01 2018-05-29 Cool Planet Energy Systems, Inc. Biochars for use with animals
US10870608B1 (en) 2014-10-01 2020-12-22 Carbon Technology Holdings, LLC Biochar encased in a biodegradable material
US10322389B2 (en) 2014-10-01 2019-06-18 Cool Planet Energy Systems, Inc. Biochar aggregate particles
CN104293403A (en) * 2014-10-22 2015-01-21 华南理工大学 System and process for integrating preparation of methane by using dry distillation gas into refining of solid heat carrier oil shale
US11248184B2 (en) 2015-06-16 2022-02-15 Itero Technologies Limited Gasification system
CN105419879A (en) * 2015-11-05 2016-03-23 东华工程科技股份有限公司 Device and method for catalytically decomposing coal substances and separating coal substances at high temperatures
US11866329B2 (en) 2017-12-15 2024-01-09 Talipot Cool Extract (Ip), Llc Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
CN108160337A (en) * 2017-12-27 2018-06-15 安徽理工大学 A kind of method that coal slime flotation collector is prepared using agricultural crop straw
CN111004649A (en) * 2019-12-13 2020-04-14 西安润川环保科技有限公司 Gas fine desulfurization purification system
CN112480973A (en) * 2020-10-16 2021-03-12 西北农林科技大学 Method for directly separating wood vinegar and wood tar on line

Also Published As

Publication number Publication date
WO2008013794A2 (en) 2008-01-31
WO2008013794A3 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US20080016769A1 (en) Conversion of carbonaceous materials to synthetic natural gas by pyrolysis, reforming, and methanation
US20080016756A1 (en) Conversion of carbonaceous materials to synthetic natural gas by reforming and methanation
RU2600373C2 (en) Partial oxidation of methane and higher hydrocarbons in flows of synthesis gas
DK2190950T3 (en) Method and apparatus for production of liquid biofuel from solid biomass
US8404910B2 (en) Low oxygen biomass-derived pyrolysis oils and methods for producing the same
US8541637B2 (en) Process and system for thermochemical conversion of biomass
US4298453A (en) Coal conversion
US20100270505A1 (en) Integrated, high-efficiency processes for biomass conversion to synthesis gas
US20090183431A1 (en) Process for producing a purified synthesis gas stream
EP2350233B1 (en) Method and apparatus for producing liquid biofuel from solid biomass
JP2018532032A (en) Fuels and fuel additives with high biogenic content derived from renewable organic raw materials
CN101896580A (en) Methods and apparatus for producing syngas and alcohols
KR101644760B1 (en) Two stage gasification with dual quench
Moreira et al. Clean syngas production by gasification of lignocellulosic char: State of the art and future prospects
US20090038314A1 (en) Integrated process for carbonaceous material to co2-free fuel gas for power plants and biomass to ethanol
US11834614B2 (en) Gasification process
US4303415A (en) Gasification of coal
KR101890952B1 (en) Integrated Gasification Apparatus for Carbonaceous Fuel Including Flash Dryer
US20090038316A1 (en) Integrated process for carbonaceous material to co2-free fuel gas for power plants and to ethylene
US20130326954A1 (en) Process for producing synthesis gas
AU2021106819A4 (en) Method and Process for producing Hydrogen
WO2023088881A1 (en) Process to continuously prepare a gas oil product
Alamia et al. Hydrogen from biomass gasification for utilization in oil refineries
WO2023230195A1 (en) Continuous carbonaceous matter thermolysis and pressurized char activation with hydrogen production

Legal Events

Date Code Title Description
AS Assignment

Owner name: CLEAN ENERGY, L.L.C., LOUISIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PEARSON, STANLEY R.;REEL/FRAME:019659/0828

Effective date: 20070724

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION