US20080007837A1 - Method for manufacturing a tree-dimensional puzzle - Google Patents

Method for manufacturing a tree-dimensional puzzle Download PDF

Info

Publication number
US20080007837A1
US20080007837A1 US11/900,963 US90096307A US2008007837A1 US 20080007837 A1 US20080007837 A1 US 20080007837A1 US 90096307 A US90096307 A US 90096307A US 2008007837 A1 US2008007837 A1 US 2008007837A1
Authority
US
United States
Prior art keywords
puzzle
approximately
layer
cutting
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/900,963
Inventor
Krzysztof Ustarbowski
Aleksandra Emmanouilidou
Grzegorz Traczykowski
Roman Kornela
Gordy Cockburn
Krzysztof Furmanczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOBBICO Inc
Original Assignee
HOBBICO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOBBICO Inc filed Critical HOBBICO Inc
Priority to US11/900,963 priority Critical patent/US20080007837A1/en
Publication of US20080007837A1 publication Critical patent/US20080007837A1/en
Assigned to HOBBICO, INC. reassignment HOBBICO, INC. RELEASE OF SECURITY INTEREST Assignors: CYPRIUM INTERNATIONAL INVESTORS III LP, CYPRIUM INVESTORS III LP, KEY PRINCIPAL PARTNERS IIIA LLC
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AXIAL R/C INC., ESTES-COX CORP., GREAT PLANES MODEL MANUFACTURING, INC., HOBBICO, INC., REVELL INC., TOWER HOBBIES, INC., UNITED MODEL, INC.
Assigned to HOBBICO, INC., GREAT PLANES MODEL MANUFACTURING, INC., TOWER HOBBIES, INC., AXIAL R/C INC. reassignment HOBBICO, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/10Two-dimensional jig-saw puzzles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/0613Puzzles or games based on the use of optical filters or elements, e.g. coloured filters, polaroid filters, transparent sheets with opaque parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/0613Puzzles or games based on the use of optical filters or elements, e.g. coloured filters, polaroid filters, transparent sheets with opaque parts
    • A63F2009/0629Puzzles or games based on the use of optical filters or elements, e.g. coloured filters, polaroid filters, transparent sheets with opaque parts with lenses or other refractive optical elements
    • A63F2009/0633Fresnel lenses
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/10Two-dimensional jig-saw puzzles
    • A63F2009/1072Manufacturing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/10Two-dimensional jig-saw puzzles
    • A63F2009/1083Two-dimensional jig-saw puzzles having plural layers on top of each other
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/12Three-dimensional jig-saw puzzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0491Cutting of interdigitating products

Definitions

  • This invention pertains to puzzles in general and, more particularly, to three-dimensional puzzles.
  • Puzzles have long been a source of entertainment and enjoyment for individuals both young and old. For the youngest child, puzzles which usually involve a few large pieces, serve not only as entertainment, but also help to develop coordination along with color and shape recognition. As children get older, puzzles with many smaller pieces become popular as they offer more of a challenge to build than puzzles with large pieces.
  • puzzle manufacturers must continue to come up with new ways to make the puzzle challenging. This is done, for example, by making the puzzle from a multi-colored picture or using scenes where colors blend in with one another such as the reds, yellows and orange of a sunset or the various shades of blue and green involved with a seascape.
  • a three-dimensional puzzle gives the added dimension of depth to the scene, thereby making it more difficult to construct.
  • U.S. Pat. No. 6,547,243 discloses a portable three-dimensional puzzle having a magnetic backing that makes it easier to use when traveling.
  • U.S. Pat. No. 5,896,230 discloses a method for producing a multidimensional image using a lenticular lens.
  • Three-dimensional puzzles that can be cut into several small pieces, such as a 500 piece puzzle set, are not well known, however. This is because when cutting the photographic sheet into a puzzle, the greater the amount of rule in a square inch, the greater the amount of tension or pressure in the sheet. In other words, the larger the pieces of the puzzle, the less pressure involved in cutting them.
  • the invention is directed to a puzzle comprised of a lenticular lens layer having a lens surface and a flat surface.
  • a layer of four colors of ink is applied to the flat surface and a layer of opaque ink is applied to the four colors of ink.
  • a white paper backing is adhered to the layer of opaque ink using an emulsion based adhesive having a viscosity of approximately 1,600 mPas at 23° C., and a backer board comprised of four layers of cardboard is applied to the white paper backing.
  • a method for cutting the puzzle involves the steps of (a) providing a cutting platform; (b) cutting at least one groove in the platform, the groove forming the shape of at least one puzzle piece; (c) positioning a cutting instrument in the at least one groove; (d) placing a piece of rubber over the cutting instrument; (e) inserting at least one insert in at least one location between the rubber and the cutting platform; and (f) pressing the three-dimensional puzzle over the cutting instrument, thereby cutting the three-dimensional puzzle into at lest one puzzle piece.
  • FIG. 1 is a schematic showing the layers of the three-dimensional puzzle.
  • FIG. 2 is a schematic view of the steps of the puzzle manufacturing method.
  • FIG. 3 is a top view of a puzzle piece.
  • the invention involves a puzzle 10 comprised of a lenticular lens layer 12 having a lens surface 14 and a flat surface 16 .
  • a layer of four colors of ink 18 is applied to the flat surface 16
  • a layer of opaque ink 20 applied to the four colors of ink 18 .
  • a white paper backing 22 is adhered to the layer of opaque ink 20 using an emulsion-based adhesive having a viscosity of approximately 1,600 mPas at 23° C., and a backer board 24 comprised of four layers of cardboard is applied to the white paper backing 22 .
  • the puzzle 10 is further comprised of a layer of primer 26 located between the flat surface 16 of the lenticular lens layer 12 and the layer of four colors of ink 18 .
  • the primer is a UV/EB Curable adhesive, primer, coating that is sold under various trade names including Rad-Cure, Rad-Kote and Rad-Prime.
  • the lenticular lens layer 12 used with the puzzle 10 has a thickness in the range of approximately at least 10 to approximately at least 15 mil, and more preferably approximately 14 mil. Furthermore, each of the layers of the four layer backer board 24 is perpendicular to their adjoining layers, and the four layer backer board 24 has a thickness of approximately 1.25 mm.
  • the layer of four colors of ink 18 used with the puzzle 10 can be an ultraviolet lamination formulation or a hybrid ultraviolet formulation.
  • the opaque ink may be white.
  • the invention also involves a method for manufacturing a three-dimensional puzzle 10 , the method comprising the steps of: (a) providing a lenticular lens layer 12 having a lens surface 14 and a flat surface 16 ; (b) priming the flat surface 16 of the lenticular lens layer 12 ; (c) exposing the primed flat surface 16 of the lenticular lens layer 12 to ultraviolet light; (d) applying a layer of four colors of ink 18 to the flat surface 16 of the lenticular lens layer 12 ; (e) providing a first exposure 28 of ultraviolet light to the layer of four colors of ink 18 ; (f) adding a layer of opaque ink 20 to the layer of four colors of ink 18 ; (g) providing a second exposure 30 of ultraviolet light to all layers of the puzzle 10 ; (h) providing a third exposure 32 of ultraviolet light to all layers of the puzzle 10 ; (i) providing a fourth exposure 34 of ultraviolet light to all layers of the puzzle 10 ; (j) providing a fifth exposure 36
  • the primed flat surface 16 of the lenticular lens 12 is cured using exposure to ultraviolet light of approximately 840 watts for less than one second.
  • the puzzle is exposed to approximately 1 , 120 watts of ultraviolet light for less than one second.
  • a layer of opaque ink 20 which may be white, is added.
  • the layers of the puzzle are then given another exposure to ultraviolet light, this time the exposure being approximately 1,330 watts of ultraviolet light for less than one second.
  • the layers of the puzzle are exposed to approximately 840 watts of ultraviolet light for less than one second.
  • This exposure is followed by a still another exposure of ultraviolet light to the layers of the puzzle 10 . This latest exposure being approximately 1,120 watts of light for less than one second.
  • the layers of the puzzle 10 are exposed to ultraviolet light for a final time, this final time being approximately 1,190 watts of light for less than one second.
  • the layer of white paper backing 22 is applied to the layer of opaque ink 20 using a polyacid adhesive.
  • the backer board layer 24 is then applied to the white paper backing layer 22 using a conventional glue or adhesive.
  • the lenticular lens 12 used in constructing the puzzle 10 has a thickness in the range of approximately 10 to approximately 15 mil, and more preferably approximately 14 mil. This is because a lenticular lens having a thickness less than approximately 10 mil tends to alter the visual appearance of the puzzle by distorting the perception of depth. On the other hand, although a thickness greater than 15 mil produces a greater perception of depth to the viewer, it is more difficult to cut without causing the images on the puzzle pieces to delaminate, thereby decreasing the sharpness of the image.
  • puzzles having a lenticular lens with a thickness of approximately 18 mil are known, these puzzles are a 2-image flip lenticular, not three-dimensional puzzles.
  • a 2-image flip lenticular is a puzzle that allows one to see two different images depending on how the puzzle is tilted. Because of the thickness of the lens, it is difficult to cut the puzzle into anything smaller than a few large pieces that are common in children's puzzle. In fact, puzzles utilizing a lenticular lens that is 18 mil thick have been discontinued in that it is cost prohibitive to cut a puzzle having a lens of this thickness into smaller pieces such as those used in 250 or 500 piece puzzles.
  • the backer board 24 used in the inventive puzzle is comprised of four layers of cardboard.
  • This four-layer backer board 24 has a thickness of approximately 1.25 mm and each of the four layers of cardboard are oriented perpendicular to their adjacent layers.
  • the method of manufacturing the puzzle 10 may also involve the steps of (a) providing a cutting platform; (b) cutting at least one groove in the platform, the groove forming the shape of at least one puzzle piece; (c) positioning a cutting instrument in the at least one groove; (d) placing a piece of rubber over the cutting instrument; (e) inserting at least one insert in at least one location between the rubber and the cutting platform; and (f) pressing the three-dimensional puzzle over the cutting instrument, thereby cutting the three-dimensional puzzle into at least one puzzle piece 40 , as shown in FIG. 3 .
  • the at least one groove is part of a plurality of grooves.
  • This plurality of grooves form the shapes of a plurality of puzzle pieces, and the pressing of the three-dimensional puzzle over the cutting instrument, cuts the three-dimensional puzzle into a plurality of puzzle pieces. Once the puzzle has been cut into a plurality of pieces, the plurality of puzzle pieces are then separated from one another. This is done when the puzzle is “crushed” for packaging. When the puzzle is crushed for packaging, special rubber tips are affixed to the “teeth” in the delivery portion of the packaging machine. These rubber tips provide the additional force needed to separate the pieces without marring the image on the puzzle.
  • the cutting instrument used to cut the puzzle may be a double-sharpened, hardened steel rule or knife that uses harder steel than is normally associated with puzzle die-cutting.
  • This knife has a body and a blade with the hardness of the body being at least approximately 39 HRC, and the hardness of the blade being at least approximately 57 HRC.
  • the rubber used in the cutting process may be ejection rubber having a thickness of approximately 7 mm and a hardness of approximately 45 shore. This is a more rigid material than is normally used in puzzle cutting. Additionally, a plurality of inserts may be positioned in a plurality of locations between the rubber and the cutting platform. This plurality of inserts may vary the height of the ejection rubber from approximately 0.001 mm to approximately 0.01 mm at certain locations in the die. This altering of the height of the ejection rubber allows for a clean cut across the entire surface of the puzzle.

Abstract

A three-dimensional puzzle including a lenticular lens layer having a lens surface and a flat surface. A four color ink is applied to the flat surface and a layer of opaque ink is applied to the four color ink. A white paper backing is adhered to the layer of opaque ink using an emulsion based adhesive having a viscosity of approximately 1,600 mPas at 23° C., and a backer board comprised of four layers of cardboard is applied to the white paper backing. A method of manufacturing the three-dimensional puzzle is also disclosed.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATION
  • This patent application is a divisional of copending U.S. patent application Ser. No. 10/993,120, filed Nov. 19, 2004, the content of which is incorporated herein by reference in its entirety for all purposes.
  • FIELD OF THE INVENTION
  • This invention pertains to puzzles in general and, more particularly, to three-dimensional puzzles.
  • BACKGROUND OF THE INVENTION
  • Puzzles have long been a source of entertainment and enjoyment for individuals both young and old. For the youngest child, puzzles which usually involve a few large pieces, serve not only as entertainment, but also help to develop coordination along with color and shape recognition. As children get older, puzzles with many smaller pieces become popular as they offer more of a challenge to build than puzzles with large pieces.
  • Because the pieces of a puzzle can only be cut so small in order for the puzzle to be practical to construct, puzzle manufacturers must continue to come up with new ways to make the puzzle challenging. This is done, for example, by making the puzzle from a multi-colored picture or using scenes where colors blend in with one another such as the reds, yellows and orange of a sunset or the various shades of blue and green involved with a seascape. A three-dimensional puzzle gives the added dimension of depth to the scene, thereby making it more difficult to construct.
  • Three-dimensional puzzles are known in the art. For example, U.S. Pat. No. 6,547,243 (Juenger) discloses a portable three-dimensional puzzle having a magnetic backing that makes it easier to use when traveling. Furthermore, U.S. Pat. No. 5,896,230 discloses a method for producing a multidimensional image using a lenticular lens.
  • Three-dimensional puzzles that can be cut into several small pieces, such as a 500 piece puzzle set, are not well known, however. This is because when cutting the photographic sheet into a puzzle, the greater the amount of rule in a square inch, the greater the amount of tension or pressure in the sheet. In other words, the larger the pieces of the puzzle, the less pressure involved in cutting them.
  • The greater pressure involved in cutting a puzzle into numerous small pieces causes the backing board to weaken, thus causing the images on the puzzle pieces to delaminate. This decreases the sharpness of the image and results in cloudy condition on the edges of the puzzle piece. For this reason, a three-dimensional puzzle that is capable of being cut into numerous small pieces without causing deterioration of the image of the puzzle would be an important improvement in the art.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention is directed to a puzzle comprised of a lenticular lens layer having a lens surface and a flat surface. A layer of four colors of ink is applied to the flat surface and a layer of opaque ink is applied to the four colors of ink. A white paper backing is adhered to the layer of opaque ink using an emulsion based adhesive having a viscosity of approximately 1,600 mPas at 23° C., and a backer board comprised of four layers of cardboard is applied to the white paper backing.
  • The invention also involves a method of manufacturing a three-dimensional puzzle. The method is comprised of the steps of: (a) providing a lenticular lens layer having a lens surface and a flat surface; (b) applying a layer of four colors of ink to the flat surface of the lenticular lens layer; (c) providing a first exposure of ultraviolet light to the layer of four colors of ink; (d) adding a layer of opaque ink to the layer of four colors of ink; (e) providing a second exposure of ultraviolet light to all layers of the puzzle; (f) providing a third exposure of ultraviolet light to all layers of the puzzle; (g) providing a fourth exposure of ultraviolet light to all layers of the puzzle; (h) providing a fifth exposure of ultraviolet light to all layers of the puzzle; (i) adhering a layer of white paper backing on top of the layer of opaque ink; and (j) attaching a backer board on top of the layer of white paper backing.
  • A method for cutting the puzzle is also disclosed. This involves the steps of (a) providing a cutting platform; (b) cutting at least one groove in the platform, the groove forming the shape of at least one puzzle piece; (c) positioning a cutting instrument in the at least one groove; (d) placing a piece of rubber over the cutting instrument; (e) inserting at least one insert in at least one location between the rubber and the cutting platform; and (f) pressing the three-dimensional puzzle over the cutting instrument, thereby cutting the three-dimensional puzzle into at lest one puzzle piece.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic showing the layers of the three-dimensional puzzle.
  • FIG. 2 is a schematic view of the steps of the puzzle manufacturing method.
  • FIG. 3 is a top view of a puzzle piece.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope. As shown in FIGS. 1-3, the invention involves a puzzle 10 comprised of a lenticular lens layer 12 having a lens surface 14 and a flat surface 16. A layer of four colors of ink 18 is applied to the flat surface 16, and a layer of opaque ink 20 applied to the four colors of ink 18. A white paper backing 22 is adhered to the layer of opaque ink 20 using an emulsion-based adhesive having a viscosity of approximately 1,600 mPas at 23° C., and a backer board 24 comprised of four layers of cardboard is applied to the white paper backing 22.
  • In one embodiment, the puzzle 10 is further comprised of a layer of primer 26 located between the flat surface 16 of the lenticular lens layer 12 and the layer of four colors of ink 18. The primer is a UV/EB Curable adhesive, primer, coating that is sold under various trade names including Rad-Cure, Rad-Kote and Rad-Prime.
  • The lenticular lens layer 12 used with the puzzle 10 has a thickness in the range of approximately at least 10 to approximately at least 15 mil, and more preferably approximately 14 mil. Furthermore, each of the layers of the four layer backer board 24 is perpendicular to their adjoining layers, and the four layer backer board 24 has a thickness of approximately 1.25 mm.
  • The layer of four colors of ink 18 used with the puzzle 10 can be an ultraviolet lamination formulation or a hybrid ultraviolet formulation. The opaque ink may be white.
  • As shown in FIG. 3, the invention also involves a method for manufacturing a three-dimensional puzzle 10, the method comprising the steps of: (a) providing a lenticular lens layer 12 having a lens surface 14 and a flat surface 16; (b) priming the flat surface 16 of the lenticular lens layer 12; (c) exposing the primed flat surface 16 of the lenticular lens layer 12 to ultraviolet light; (d) applying a layer of four colors of ink 18 to the flat surface 16 of the lenticular lens layer 12; (e) providing a first exposure 28 of ultraviolet light to the layer of four colors of ink 18; (f) adding a layer of opaque ink 20 to the layer of four colors of ink 18; (g) providing a second exposure 30 of ultraviolet light to all layers of the puzzle 10; (h) providing a third exposure 32 of ultraviolet light to all layers of the puzzle 10; (i) providing a fourth exposure 34 of ultraviolet light to all layers of the puzzle 10; (j) providing a fifth exposure 36 of ultraviolet light to all layers of the puzzle 10; (k) adhering a layer of white paper backing 22 on top of the layer of opaque ink 20; and (l) attaching a backer board 24 on top of the layer of white paper backing 22.
  • In the inventive method, once the primer is applied, the primed flat surface 16 of the lenticular lens 12 is cured using exposure to ultraviolet light of approximately 840 watts for less than one second.
  • The four colors of ink used with the invention are comprised of black, cyan, magenta and yellow inks. In one embodiment, the black ink is first applied to the lenticular lens 12, the cyan ink is applied second, the magenta ink is applied third, and the yellow ink is applied fourth. These four colors of ink may be printed using stochastic screen printing methods; however, conventional screening methods may also be used without departing from the scope and spirit of the invention.
  • When performing the inventive method, after the layer of the four colors of ink 18 is applied, the puzzle is exposed to approximately 1,120 watts of ultraviolet light for less than one second. Following this exposure, a layer of opaque ink 20, which may be white, is added. The layers of the puzzle are then given another exposure to ultraviolet light, this time the exposure being approximately 1,330 watts of ultraviolet light for less than one second. Once this exposure is complete, the layers of the puzzle are exposed to approximately 840 watts of ultraviolet light for less than one second. This exposure is followed by a still another exposure of ultraviolet light to the layers of the puzzle 10. This latest exposure being approximately 1,120 watts of light for less than one second. Finally, the layers of the puzzle 10 are exposed to ultraviolet light for a final time, this final time being approximately 1,190 watts of light for less than one second.
  • In constructing the puzzle 10, the layer of white paper backing 22 is applied to the layer of opaque ink 20 using a polyacid adhesive. The backer board layer 24 is then applied to the white paper backing layer 22 using a conventional glue or adhesive.
  • The lenticular lens 12 used in constructing the puzzle 10 has a thickness in the range of approximately 10 to approximately 15 mil, and more preferably approximately 14 mil. This is because a lenticular lens having a thickness less than approximately 10 mil tends to alter the visual appearance of the puzzle by distorting the perception of depth. On the other hand, although a thickness greater than 15 mil produces a greater perception of depth to the viewer, it is more difficult to cut without causing the images on the puzzle pieces to delaminate, thereby decreasing the sharpness of the image.
  • Although puzzles having a lenticular lens with a thickness of approximately 18 mil are known, these puzzles are a 2-image flip lenticular, not three-dimensional puzzles. A 2-image flip lenticular is a puzzle that allows one to see two different images depending on how the puzzle is tilted. Because of the thickness of the lens, it is difficult to cut the puzzle into anything smaller than a few large pieces that are common in children's puzzle. In fact, puzzles utilizing a lenticular lens that is 18 mil thick have been discontinued in that it is cost prohibitive to cut a puzzle having a lens of this thickness into smaller pieces such as those used in 250 or 500 piece puzzles.
  • The backer board 24 used in the inventive puzzle is comprised of four layers of cardboard. This four-layer backer board 24 has a thickness of approximately 1.25 mm and each of the four layers of cardboard are oriented perpendicular to their adjacent layers.
  • The method of manufacturing the puzzle 10 may also involve the steps of (a) providing a cutting platform; (b) cutting at least one groove in the platform, the groove forming the shape of at least one puzzle piece; (c) positioning a cutting instrument in the at least one groove; (d) placing a piece of rubber over the cutting instrument; (e) inserting at least one insert in at least one location between the rubber and the cutting platform; and (f) pressing the three-dimensional puzzle over the cutting instrument, thereby cutting the three-dimensional puzzle into at least one puzzle piece 40, as shown in FIG. 3.
  • In one embodiment of the inventive method, the at least one groove is part of a plurality of grooves. This plurality of grooves form the shapes of a plurality of puzzle pieces, and the pressing of the three-dimensional puzzle over the cutting instrument, cuts the three-dimensional puzzle into a plurality of puzzle pieces. Once the puzzle has been cut into a plurality of pieces, the plurality of puzzle pieces are then separated from one another. This is done when the puzzle is “crushed” for packaging. When the puzzle is crushed for packaging, special rubber tips are affixed to the “teeth” in the delivery portion of the packaging machine. These rubber tips provide the additional force needed to separate the pieces without marring the image on the puzzle.
  • The cutting instrument used to cut the puzzle may be a double-sharpened, hardened steel rule or knife that uses harder steel than is normally associated with puzzle die-cutting. This knife has a body and a blade with the hardness of the body being at least approximately 39 HRC, and the hardness of the blade being at least approximately 57 HRC.
  • The rubber used in the cutting process may be ejection rubber having a thickness of approximately 7 mm and a hardness of approximately 45 shore. This is a more rigid material than is normally used in puzzle cutting. Additionally, a plurality of inserts may be positioned in a plurality of locations between the rubber and the cutting platform. This plurality of inserts may vary the height of the ejection rubber from approximately 0.001 mm to approximately 0.01 mm at certain locations in the die. This altering of the height of the ejection rubber allows for a clean cut across the entire surface of the puzzle.
  • All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
  • Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.

Claims (25)

1. A method of manufacturing a three-dimensional puzzle, comprising the steps of:
providing a lenticular lens layer having a lens surface and a flat surface;
priming the flat surface of the lenticular lens layer;
exposing the primed flat surface of the lenticular lens layer to ultraviolet light;
applying a layer of four colors of ink to the flat surface of the lenticular lens layer;
providing a second exposure of ultraviolet light to the layer of four colors of ink;
adding a layer of opaque ink to the layer of four colors of ink;
providing a third exposure of ultraviolet light to all layers of the puzzle;
providing a fourth exposure of ultraviolet light to all layers of the puzzle;
providing a fifth exposure of ultraviolet light to all layers of the puzzle;
providing a sixth exposure of ultraviolet light to all layers of the puzzle;
adhering a layer of white paper backing on top of the layer of opaque ink; and
attaching a backer board on top of the layer of white paper backing.
2. The method of claim 1, wherein the primed flat surface of the lenticular lens layer is cured using exposure to ultraviolet light of approximately 840 watts for less than one second.
3. The method of claim 1, wherein the four colors of ink is comprised of black, cyan, magenta and yellow inks.
4. The method of claim 1, wherein the layer of four colors of ink is applied using stochastic screening.
5. The method of claim 1, wherein the second exposure of ultraviolet light to the layer of four color is approximately 1,120 watts for less than one second.
6. The method of claim 1, wherein the third exposure of ultraviolet light to the layers of the puzzle is approximately 1,330 watts for less than one second.
7. The method of claim 1, wherein the fourth exposure of ultraviolet light to the layers of the puzzle is approximately 840 watts for less than one second.
8. The method of claim 1, wherein the fifth exposure of ultraviolet light to the layers of the puzzle is approximately 1,120 watts for less than one second.
9. The method of claim 1, wherein the sixth exposure of ultraviolet light to the layers of the puzzle is of approximately 1,190 watts for less than one second.
10. The method of claim 1, wherein the layer of white paper backing is applied to the layer of opaque ink using a polyacid adhesive.
11. The method of claim 1, wherein the lenticular lens has a thickness of at least approximately 10 mil.
12. The method of claim 1, wherein the lenticular lens has a thickness in the range of approximately 10 mil to approximately 15 mil.
13. The method of claim 1, wherein the backer board is comprised of:
four layers of cardboard;
each of the four layers of cardboard are oriented perpendicular to their adjacent layers; and
the four-layer backer board has a thickness of approximately 1.25 mm.
14. The method of claim 1, further comprising the steps of:
providing a cutting platform;
cutting at least one groove in the platform, the groove forming the shape of at least one puzzle piece;
positioning a cutting instrument in the at least one groove;
placing a piece of rubber over the cutting instrument;
inserting at least one insert in at least one location between the rubber and the cutting platform; and
pressing the three-dimensional puzzle over the cutting instrument, thereby cutting the three-dimensional puzzle into at least one puzzle piece.
15. The method of claim 14, wherein:
the at least one groove is part of a plurality of grooves;
the plurality of grooves forms the shape of a plurality of puzzle pieces; and
pressing the three-dimensional puzzle over the cutting instrument, cuts the three-dimensional puzzle into a plurality of puzzle pieces.
16. The method of claim 14, wherein:
the cutting instrument is comprised of a double-sharpened, hardened steel knife;
the knife has a body and a blade;
the hardness of the body is at least approximately 39 HRC; and
the hardness of the blade is at least approximately 57 HRC.
17. The method of claim 14, wherein the rubber is ejection rubber having a thickness of approximately 7 mm and a hardness of approximately 45 shore.
18. The method of claim 14, wherein a plurality of inserts are positioned in a plurality of locations between the rubber and the cutting platform.
19. The method of claim 14, wherein the plurality of inserts vary in height from approximately 0.001 mm to approximately 0.01 mm.
20. A method for cutting a puzzle, the method comprising the steps of:
providing a cutting platform;
cutting at least one groove in the platform, the groove forming the shape of at least one puzzle piece;
positioning a cutting instrument in the at least one groove;
placing a piece of rubber over the cutting instrument;
inserting at least one insert in at least one location between the rubber and the cutting platform; and
pressing the three-dimensional puzzle over the cutting instrument, thereby cutting the three-dimensional puzzle into at least one puzzle piece.
21. The method of claim 20, wherein:
the at least one groove is part of a plurality of grooves;
the plurality of grooves forms the shape of a plurality of puzzle pieces; and
pressing the three-dimensional puzzle over the cutting instrument, cuts the three-dimensional puzzle into a plurality of puzzle pieces.
22. The method of claim 20, wherein:
the cutting instrument is comprised of a double-sharpened, hardened steel knife;
the knife has a body and a blade;
the hardness of the body is at least approximately 39 HRC; and
the hardness of the blade is at least approximately 57 HRC.
23. The method of claim 20, wherein the rubber is ejection rubber.
24. The method of claim 23, wherein the ejection rubber has a thickness of approximately 7 mm and a hardness of approximately 45 shore.
25. The method of claim 23, wherein a plurality of inserts are positioned in a plurality of locations between the rubber and the cutting platform.
US11/900,963 2004-11-19 2007-09-14 Method for manufacturing a tree-dimensional puzzle Abandoned US20080007837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/900,963 US20080007837A1 (en) 2004-11-19 2007-09-14 Method for manufacturing a tree-dimensional puzzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/993,120 US7441776B2 (en) 2004-11-19 2004-11-19 Three-dimensional puzzle
US11/900,963 US20080007837A1 (en) 2004-11-19 2007-09-14 Method for manufacturing a tree-dimensional puzzle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/993,120 Division US7441776B2 (en) 2004-11-19 2004-11-19 Three-dimensional puzzle

Publications (1)

Publication Number Publication Date
US20080007837A1 true US20080007837A1 (en) 2008-01-10

Family

ID=36460214

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/993,120 Expired - Fee Related US7441776B2 (en) 2004-11-19 2004-11-19 Three-dimensional puzzle
US11/900,963 Abandoned US20080007837A1 (en) 2004-11-19 2007-09-14 Method for manufacturing a tree-dimensional puzzle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/993,120 Expired - Fee Related US7441776B2 (en) 2004-11-19 2004-11-19 Three-dimensional puzzle

Country Status (1)

Country Link
US (2) US7441776B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854050A (en) * 2018-06-06 2018-11-23 美盈森集团股份有限公司 A kind of manufacturing method of track jigsaw

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127718A1 (en) * 2009-12-01 2011-06-02 Patch Products, Inc. Apparatus and Method for an Illusionary Three-Dimensional Puzzle
US9302176B2 (en) * 2012-08-31 2016-04-05 Mindware Corporation Three-dimensional playing device and method of use
US10276070B2 (en) 2016-02-22 2019-04-30 Travel Tags, Inc. Stored value card and carrier system with tamper evident label
US10275698B2 (en) 2016-05-03 2019-04-30 Travel Tags, Inc. Stored value card and carrier assembly with tamper evident label
US11214091B2 (en) * 2016-09-21 2022-01-04 Travel Tags, Inc. Secure packs for transaction cards
US10350460B2 (en) * 2017-02-28 2019-07-16 Nike, Inc. Sports ball
US20200324193A1 (en) * 2019-04-09 2020-10-15 4D Cityscape lnc. Puzzle Kit and Method of Playing a Puzzle Game

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264164A (en) * 1962-04-30 1966-08-02 Toscony Inc Color dynamic, three-dimensional flexible film and method of making it
US3411208A (en) * 1965-06-14 1968-11-19 Sandvikens Jernverks Ab Cutting strips, cutting die knives, cutting rules and the like
US3692312A (en) * 1971-01-15 1972-09-19 Alvin Meyer Method of fabricating picture puzzle and puzzle produced thereby
US4522095A (en) * 1982-09-21 1985-06-11 Container Graphics Corporation Hole punch for a cutting die
US4908403A (en) * 1986-05-02 1990-03-13 Union Oil Of California Pressure sensitive adhesives of acetoacetoxy-alkyl acrylate polymers
US5560799A (en) * 1993-12-22 1996-10-01 Jacobsen; Gary A. In-line printing production of three dimensional image products incorporating lenticular transparent material
US5672412A (en) * 1994-09-19 1997-09-30 Phares; Randy Lee Recyclable cross-laminated corrugated and fiber core pallet
US5896230A (en) * 1994-05-03 1999-04-20 National Graphics, Inc. Lenticular lens with multidimensional display having special effects layer
US5967032A (en) * 1998-05-21 1999-10-19 Lti Corporation Printing process using a thin sheet lenticular lens material
US6206473B1 (en) * 1998-11-24 2001-03-27 Igor Kondratiev Apparatus and method for constructing knockdown furniture from paperboard material and the like
US6457823B1 (en) * 2001-04-13 2002-10-01 Vutek Inc. Apparatus and method for setting radiation-curable ink
US6547243B2 (en) * 2001-02-02 2003-04-15 Arthur William Juenger Portable three dimensional puzzles
US6626965B2 (en) * 2001-06-29 2003-09-30 Provo Craft & Novelty, Inc. Apparatus for forming die cuts and method of manufacturing same
US6739270B1 (en) * 2001-03-02 2004-05-25 James D. Sewell Wrapped deck pallet formed of two orthogonally related cardboard sheets and method
US6900944B2 (en) * 2000-11-02 2005-05-31 Taylor Corporation Lenticular card and processes for making

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896280A (en) * 1997-11-25 1999-04-20 Exide Electronics Corporation Frequency converter and improved UPS employing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264164A (en) * 1962-04-30 1966-08-02 Toscony Inc Color dynamic, three-dimensional flexible film and method of making it
US3411208A (en) * 1965-06-14 1968-11-19 Sandvikens Jernverks Ab Cutting strips, cutting die knives, cutting rules and the like
US3692312A (en) * 1971-01-15 1972-09-19 Alvin Meyer Method of fabricating picture puzzle and puzzle produced thereby
US4522095A (en) * 1982-09-21 1985-06-11 Container Graphics Corporation Hole punch for a cutting die
US4908403A (en) * 1986-05-02 1990-03-13 Union Oil Of California Pressure sensitive adhesives of acetoacetoxy-alkyl acrylate polymers
US5560799A (en) * 1993-12-22 1996-10-01 Jacobsen; Gary A. In-line printing production of three dimensional image products incorporating lenticular transparent material
US5896230A (en) * 1994-05-03 1999-04-20 National Graphics, Inc. Lenticular lens with multidimensional display having special effects layer
US5672412A (en) * 1994-09-19 1997-09-30 Phares; Randy Lee Recyclable cross-laminated corrugated and fiber core pallet
US5967032A (en) * 1998-05-21 1999-10-19 Lti Corporation Printing process using a thin sheet lenticular lens material
US6206473B1 (en) * 1998-11-24 2001-03-27 Igor Kondratiev Apparatus and method for constructing knockdown furniture from paperboard material and the like
US6900944B2 (en) * 2000-11-02 2005-05-31 Taylor Corporation Lenticular card and processes for making
US6547243B2 (en) * 2001-02-02 2003-04-15 Arthur William Juenger Portable three dimensional puzzles
US6739270B1 (en) * 2001-03-02 2004-05-25 James D. Sewell Wrapped deck pallet formed of two orthogonally related cardboard sheets and method
US6457823B1 (en) * 2001-04-13 2002-10-01 Vutek Inc. Apparatus and method for setting radiation-curable ink
US6626965B2 (en) * 2001-06-29 2003-09-30 Provo Craft & Novelty, Inc. Apparatus for forming die cuts and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854050A (en) * 2018-06-06 2018-11-23 美盈森集团股份有限公司 A kind of manufacturing method of track jigsaw

Also Published As

Publication number Publication date
US20060108734A1 (en) 2006-05-25
US7441776B2 (en) 2008-10-28

Similar Documents

Publication Publication Date Title
US20080007837A1 (en) Method for manufacturing a tree-dimensional puzzle
JP6888002B2 (en) Modeling equipment, modeling method, and modeled object
EP1462266B1 (en) Three-dimensional image forming method and apparatus
US8490976B2 (en) Double-sided jigsaw puzzle and method of making the same
US20050091886A1 (en) Origami and origami folding
US3692312A (en) Method of fabricating picture puzzle and puzzle produced thereby
US7833598B2 (en) Splittable sheet structure
US20080271351A1 (en) Lenticular License Plate and Method
CN1970317A (en) Laminated stereo drawing making process
US20050106995A1 (en) Origami paper, origami kit and origami folding
US7846521B2 (en) Printable and splittable medium
KR101389748B1 (en) Craftwork having three-dimensional structure and manufacturing method thereof
US11094231B2 (en) Metal poster with relief printed frame
US7119963B1 (en) Lenticular screen with removable alignment tab
US20180072078A1 (en) Stamps and overlays for producing animated images and motion effects
US20230084781A1 (en) Multi-dimensional printing method and apparatus
JP5270826B2 (en) Photo plate
US20080252006A1 (en) Multi-level game board and its method of manufacture
WO2021015290A1 (en) Viewing angle-dependent printed matter, method for manufacturing viewing angle-dependent printed matter, and method for printing viewing angle-dependent printed matter
KR102516669B1 (en) Method for manufacturing korea paper pricture haing deckle edge
US11007810B2 (en) Method for manufacturing a card
US20230123952A1 (en) Luminous picture
US8439361B2 (en) Slat puzzle
JP3112335U (en) Photo album
JP3100236U (en) Engraving art

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HOBBICO, INC., ILLINOIS

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNORS:CYPRIUM INVESTORS III LP;KEY PRINCIPAL PARTNERS IIIA LLC;CYPRIUM INTERNATIONAL INVESTORS III LP;REEL/FRAME:033303/0872

Effective date: 20140711

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:HOBBICO, INC.;TOWER HOBBIES, INC.;GREAT PLANES MODEL MANUFACTURING, INC.;AND OTHERS;REEL/FRAME:040591/0856

Effective date: 20161206

AS Assignment

Owner name: GREAT PLANES MODEL MANUFACTURING, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION;REEL/FRAME:045618/0571

Effective date: 20180406

Owner name: AXIAL R/C INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION;REEL/FRAME:045618/0571

Effective date: 20180406

Owner name: TOWER HOBBIES, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION;REEL/FRAME:045618/0571

Effective date: 20180406

Owner name: HOBBICO, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION;REEL/FRAME:045618/0571

Effective date: 20180406