US20080004111A1 - Non Impact Video Game Controller for Dancing Games - Google Patents

Non Impact Video Game Controller for Dancing Games Download PDF

Info

Publication number
US20080004111A1
US20080004111A1 US11/428,161 US42816106A US2008004111A1 US 20080004111 A1 US20080004111 A1 US 20080004111A1 US 42816106 A US42816106 A US 42816106A US 2008004111 A1 US2008004111 A1 US 2008004111A1
Authority
US
United States
Prior art keywords
controller
signal
game controller
game
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/428,161
Inventor
Vance Alan Prather
Alexander Vitalyevich Korolenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Logitech Europe SA
Original Assignee
Logitech Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Logitech Europe SA filed Critical Logitech Europe SA
Priority to US11/428,161 priority Critical patent/US20080004111A1/en
Assigned to LOGITECH EUROPE S.A. reassignment LOGITECH EUROPE S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOROLENKO, ALEXANDER VITALYEVICH, PRATHER, VANCE ALAN
Publication of US20080004111A1 publication Critical patent/US20080004111A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/80Special adaptations for executing a specific game genre or game mode
    • A63F13/814Musical performances, e.g. by evaluating the player's ability to follow a notation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/213Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/214Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • A63F13/245Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1062Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted to a type of game, e.g. steering wheel
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1068Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted to detect the point of contact of the player on a surface, e.g. floor mat, touch pad
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/80Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game
    • A63F2300/8047Music games

Definitions

  • the present application is generally related to a video game controller, and specifically to one that detects the movement of a player's feet optically.
  • Video games are an enjoyable diversion and the video game industry enjoys ever increasing sales and penetration. Some time ago, video games that make a player physically dance were developed. In particular, an arcade game console called Dance Dance Revolution is extremely popular in Japanese arcades. Dancing games are now available for home video game systems and are gaining in popularity.
  • Some prior controllers for use with dancing games generally involve a large mat that covers the full game play area. A player dances on top of the mat and the mat transmits the user's position to the game system. These dance mats tend to wear out quickly when used by zealous gamers that frequently and vigorously dance upon them. Furthermore, they are bulky and inconvenient to use and transport. Other prior controllers detect the movement of the player by sensing when an optical or other type of beam is interrupted on a path from a transmitter to a receiver. In these devices, when the beam is not received by the receiver, the player's position is determined to be in the path from transmitter to receiver.
  • the present invention comprises a corded or cordless game controller that detects a player's foot position. It can be used with any game that requires a user to move his feet around from position to position, but is especially useful in dancing related video games. It can be used with any home video gaming system.
  • the controller is a small unit that fits in between a player's feet. The player then dances around it, rather than on it. Although the player may stand on the platform, and in some embodiments, game control buttons are activated from the top of the platform, the dance steps are performed and detected outside of the perimeter of the controller. Unlike in dance pads or mats where the user plays within the footprint of the mat and lands on it repeatedly, the present invention utilizes non-impact position detection, and is therefore more durable as it does not wear out due to repeated impact. Furthermore, it is significantly more compact than those designs.
  • the controller of the present invention transmits a beam from a detection unit of the controller, which is reflected off the user or player's foot back towards the controller. It is then sensed by a receiver of the given detection unit.
  • the use of this reflective technique allows the controller to have a small footprint.
  • a single receiver, or receiving module is used in each detection unit of the preferred embodiment. This is achieved with time division modulation as several beams can be sent and received well within the time a foot is in a given location. The time sent and/or received indicates which beam was reflected and the position of the foot.
  • some embodiments may utilize more than one receiver per detection unit.
  • a detection unit is located on each of the left, right, top and bottom sides of the controller, for a total of four detection units.
  • Game control buttons that allow a user to navigate and select from menus of the game are located at one or more of the corners of the controller. In other embodiments they may be otherwise distributed. They can be activated from above or from the side, but are preferably activated from the side as it is more convenient for a user during play, and lessens inadvertent strikes that tend to occur with a top activated switch when a user's foot travels over the top of the controller in the heat of game play.
  • the detection modules will sense an object at the left, right, top and bottom of the controller, but not at the corners. This eliminates inadvertent detection of a move (at or near a corner) when a player's foot sweeps from one side to another, for instance from a position near the top of the controller to position at the right of the controller.
  • not all pairs of overlapping signals indicate a game location, and therefore, those that do not are ignored. This improves accuracy of the controller by minimizing the detection of unwanted reflections from an object other than a player's foot or from the player's foot when it is in a location outside of the area meant to define a position of the controller and the game being played. For example, inadvertent reflections from nearby walls or other objects are not interpreted as steps of the player's feet.
  • the optical emitters are directed substantially parallel to the ground while in others they are angled toward the ground such that they hit the ground near the controller.
  • a foot can be detected before the beam hits the ground, or by the weakened signal after it has been reflected by the ground, so long as it is reflected back to the controller a short enough distance thereafter that it will have sufficient energy at the detector. Otherwise, in the case of a ground reflected signal reflected far from the controller, it will not have the proper trajectory back to the receiver, or will otherwise have insufficient energy to be deemed a foot position or dance step.
  • FIG. 1A is top view of game controller 100 , an embodiment of the present invention.
  • FIG. 1B is a profile elevation of game controller 100 .
  • FIG. 1C is a diagram illustrating the game play zones 112 surrounding game controller 100 .
  • FIG. 1D is a diagram illustrating activation of foot activated game control switches/buttons 104 in directions 105 .
  • FIG. 1E is an exploded view of game controller 100 .
  • FIG. 2A is an illustration of a position detection unit 120 of game controller 100 , and the footprint of a detection area or game play zone 112 .
  • FIG. 2B is an illustration of the areas defined by the overlap of beams created by position detection unit 120 .
  • FIG. 2C is reproduction of Table 1, a table of the areas defined by the overlap of the beams shown in FIG. 2B .
  • FIG. 3 is an illustration of reflection from an object inside a predefined detection area.
  • FIG. 4 is an illustration of reflection from objects outside the predefined detection areas.
  • FIG. 5 is an illustration of a reflection from a nearby object 150 outside of the game play zones 112 shown in FIG. 1C .
  • FIG. 6 is a side view elevation of position detection unit 120 illustrating the path of signals emitted and received by the unit, relative to the ground and bottom of game controller 100 .
  • FIG. 1A is a top view of game controller 100 , an embodiment of the present invention.
  • a game player can stand on controller 100 and steps around the platform of controller 100 to play the game. For example, if the game instructs the player to step to the player's right the player will then step on the ground to the right side of controller 100 . Likewise, the position of the player's feet will be detected relative to controller 100 for actions required in front, back or to the left of the player's relative position.
  • Arrows 110 A, B, C, and D serve to indicate to a user that the controller is sensitive to positions at the front side, right side, back side, and left side respectively. In some embodiments the arrows may be of translucent material and will illuminate in sync with the user's detected movements.
  • Game control buttons or switches 104 A, B, C, and D are located at the corners of the controller 100 .
  • the preferred embodiment of controller 100 is substantially rectangular as shown, with the corner clipped or rounded. Other embodiments may have other shapes.
  • the game control buttons may in certain embodiments be activated from the top of the controller platform, or, as illustrated, may be activated with a motion and in a direction parallel to the ground. This way, a user can touch the switch with either his toe or heel from around the perimeter of the controller. For example, a user may choose to back her heel into button 104 A, while it may be more convenient for a user to kick or touch button 104 B with the front of her foot.
  • FIG. 1B is a profile elevation of game controller 100 seen in FIG. 1B .
  • Controller 106 comprises a housing with a top plate 106 and a base plate 108 .
  • the electronic components (not shown) are generally between top plate 106 and base plate 108 .
  • Controller 100 preferably communicates wirelessly to a video game system, although corded communication is provided in certain embodiments.
  • Logic of the controller is accomplished either with a microprocessor or other logic circuitry.
  • Wireless communication is preferably according to the well known Bluetooth radio specification 2.0, although any RF transmission spectrum and protocol can be utilized.
  • the controller also preferably interfaces as a human interface device regardless of the transmission frequency and protocol.
  • Base plate 108 rests upon the floor during game play or otherwise.
  • FIG. 1C is a diagram illustrating the game play zones 112 surrounding game controller 100 .
  • game play is detected at the front, right, back and left sides of the controller 100 , as represented by zones 112 A, 112 B, 112 C, and 112 D respectively.
  • the front of the controller may also be thought of as the north side, or the zero degree point of the axes.
  • the zones are depicted in FIG. 1C as rectangular, although in reality the geometry of the zones is more complex, as will be described later. Many different positions can be determined within each of the zones.
  • a user's position will not be detected in areas 114 , adjacent to the corners of the controller. In games that do not require position detection location in those areas, this reduces false detection as the user's feet pass though the areas 114 .
  • position may be detected all around the controller, including locations at or near the corners.
  • FIG. 1D is a diagram illustrating activation of foot activated game control switches or buttons 104 in directions 105 .
  • Button 104 A may be activated by a stroke in direction 105 A.
  • Direction 105 A a can be anywhere from 0 to 90 degrees but is preferably between 30 and 60 degrees.
  • button 104 B may be activated by a stroke in direction 105 B, which can be anywhere from 90 to 180 degrees, but is preferably between 120 and 150 degrees
  • button 104 C may be activated by a stroke in direction 105 C, which can be anywhere from 180 to 270 degrees, but is preferably between 210 and 240 degrees
  • button 104 D may be activated by a stroke in direction 105 D, which can be anywhere from 270 to 360 degrees but is preferably between 300 and 330 degrees.
  • FIG. 1E is an exploded view of game controller 100 .
  • position detection units 120 A, 120 B, 120 C, and 120 D can be seen. These serve to detect the position of the user's feet around the game controller. Of course, greater or fewer position detection units may be utilized depending on the embodiment and geometry of controller 100 .
  • FIG. 2A is an illustration of a position detection unit 120 ( 120 A, B, C, or D) of game controller 100 , and the footprint of game play zone 112 , where the position of a user's foot will be detected.
  • Each position detection unit 120 comprises two optical illumination modules 122 and 126 .
  • Each optical illumination module comprises a group of 2 or more of illumination chambers.
  • Module 122 comprises illumination chambers 124 A, 124 B, and 124 C.
  • Module 126 comprises chambers 124 D, 124 E, and 124 F.
  • Each illumination chamber 124 comprises a source or emitter, which is preferably an IR emitting LED, and other optical components such as lenses and optical guides to shape and direct the IR light emitted by the LED.
  • Position detection unit 120 also comprises optical receiver 128 .
  • FIG. 2B is an illustration of the areas defined by the overlap of beams created by position detection unit 120 .
  • Each of the illumination chambers 124 produces a beam.
  • the beams are positioned such that pairs of beams overlap in a given area. These are shown as position detection areas 131 - 136 .
  • Each pair is comprised of a beam from a chamber of module 122 and a beam from a chamber of module 126 .
  • the pairs used for each detection area are as shown in Table 1 below, which is also reproduced as FIG. 2C .
  • the detection signals from the different chambers are distributed in time. Only one chamber emits the detection signal during a given period or moment of time.
  • Each position detection signal comprises a plurality of bursts, preferably 4 or 5, and each burst in turn comprises a plurality of pulses, preferably between 15-25 pulses.
  • the emitted signal preferably comprises IR light of approximately 880 nm wavelength, and the frequency of the pulses is approximately 455 kHz.
  • the period between bursts is approximately 150 us.
  • receiver 128 receives a signal with an energy level above a minimum threshold, it provides an output signal to the processing circuitry of the controller.
  • the output signal comprises pulses of output voltage.
  • the receiver provides one pulse per burst of received light. This modulation filters out ambient noise such as sun light, light from nearby lamps, and from IR remote controls, that may otherwise contain sufficient energy to be interpreted as position data.
  • a foot In the games with the fastest action or changing of foot positions, the minimum time a foot may be in a given position is about 120 milliseconds, although in the vast majority of situations a foot will be present in a given position for much longer.
  • a foot can be detected within about 16 milliseconds. That is to say that position detection unit 120 can sequence though one cycle where all the illumination chambers of a given detection unit emit a signal in about 16 milliseconds. In certain embodiments the cycle can be repeated to increase accuracy. For example, if four cycles are performed, this will require about 60-65 milliseconds. This means that about 7 or 8 cycles could be performed within the minimum detection window. All position detection units 120 may cycle simultaneously, or may alternatively be sequenced to cycle at different times.
  • FIG. 3 is an illustration of reflection from an object inside a predefined detection area.
  • Object 140 can be seen within area 131 .
  • Table 1 this means that a signal emitted from chambers 124 A and 124 F has been reflected to and received by receiver 128 .
  • Signal 144 is emitted by chamber 124 A, and the directly emitted portion is shown as 144 D, while the portion reflected from object 140 is shown as 144 R.
  • signal 142 is emitted by chamber 124 F, and the directly emitted portion is shown as 142 D, while the portion reflected from object 144 is shown as 142 R.
  • Receiver 128 has a field of view sufficient to receive signals from any of the predefined position detection areas.
  • FIG. 4 is an illustration of reflection from objects outside the predefined detection areas.
  • two different objects 146 and 148 are located outside of the predefined areas.
  • Object 146 reflects a signal 145 from chamber 124 F, but not from any other chamber. It is therefore not indicative of a user position.
  • Object 148 reflects signals 147 and 149 from chambers 124 B and 124 D. However, since this pair of signals does not correlate with a desired detection area, it does not indicate a user position. Again, as mentioned previously, this selectivity and rejection aids in eliminating erroneous position detection.
  • FIG. 5 is an illustration of a reflection from a nearby object 150 outside of the game play zones 112 shown in FIG. 1C .
  • the field of view of the various chambers and the resulting detection areas is potentially vulnerable to unwanted detection of “ghost” objects that are not actually within one of the detection areas, as touched upon earlier.
  • the surrounding obstacles could simulate or “ghost” an object in a position detection area due to reflections from paired chambers.
  • the wall or other distant object 150 would indicate a ghost object 149 in area 132 .
  • the emitted beams are transmitted in a direction substantially parallel to the ground.
  • FIG. 6 is a side view elevation of position detection unit 120 illustrating the path of signals emitted and received by the unit, relative to the ground and bottom of game controller 100 .
  • the furthest distance for game play is significantly less than the nearest recommended distance from potential obstacles. For example, a player's feet may be detected within about 3 feet, and the player will be instructed to keep objects approximately 4-6 feet away from controller 100 .
  • Theses distances can of course vary, as can the strength of the LED's and the minimum energy levels at the receiver used to indicate a detected position, all of which factor into the size and geometry of the game play zones and detection areas, and the minimum distance in relation to obstacles.
  • beam 152 created by one of chambers 124 , is shown as having a direct component 152 D and a component reflected from the floor, 152 F. Angling the beam 152 reduces the chance that it will be reflected from a nearby obstacle. A reflection of either the direct component 152 D or the reflected component 152 F may be sensed by receiver 128 when it is within the field of view 160 of receiver 128 , if it has sufficient energy and the proper trajectory. The component reflected from the floor will in most circumstances be of a diffused nature and will have significantly less energy than the direct component.
  • any subsequent reflection from a foot or any other object will have much less energy than a reflection of direct component 152 D and it is preferable that reflections from reflected component 152 F not be used for position data. This is accomplished by selecting the strength and trajectory of the LED's and the minimum energy levels at the receiver such that the reflections of component 152 F will not indicate position data. Such an embodiment is effective at limiting unwanted detection of obstacles and ghosting.

Abstract

A video game controller for home video game systems is situated between a player's feet and is used to detect positions outside the footprint of the controller. The controller transmits the position data to the video game system and enables game play. In dance games, the controller detects dance steps when the player dances around the controller. A signal is transmitted from locations at the perimeter of the controller, reflected by the player's foot, and then received back at the controller. In a preferred embodiment the location is detected as a function of the time the signal is transmitted/received and by the matrix of signals received. Modulation of the transmission and reception minimizes detection of noise and distant reflections and therefore minimizes or eliminates false position detection.

Description

    FIELD OF THE INVENTION
  • The present application is generally related to a video game controller, and specifically to one that detects the movement of a player's feet optically.
  • BACKGROUND OF THE INVENTION
  • Video games are an enjoyable diversion and the video game industry enjoys ever increasing sales and penetration. Some time ago, video games that make a player physically dance were developed. In particular, an arcade game console called Dance Dance Revolution is extremely popular in Japanese arcades. Dancing games are now available for home video game systems and are gaining in popularity.
  • Some prior controllers for use with dancing games generally involve a large mat that covers the full game play area. A player dances on top of the mat and the mat transmits the user's position to the game system. These dance mats tend to wear out quickly when used by zealous gamers that frequently and vigorously dance upon them. Furthermore, they are bulky and inconvenient to use and transport. Other prior controllers detect the movement of the player by sensing when an optical or other type of beam is interrupted on a path from a transmitter to a receiver. In these devices, when the beam is not received by the receiver, the player's position is determined to be in the path from transmitter to receiver.
  • There exists a need for a reliable, accurate, and portable game controller for use with dancing and other games that does not deteriorate with regular gaming usage.
  • SUMMARY OF INVENTION
  • The present invention comprises a corded or cordless game controller that detects a player's foot position. It can be used with any game that requires a user to move his feet around from position to position, but is especially useful in dancing related video games. It can be used with any home video gaming system.
  • The controller is a small unit that fits in between a player's feet. The player then dances around it, rather than on it. Although the player may stand on the platform, and in some embodiments, game control buttons are activated from the top of the platform, the dance steps are performed and detected outside of the perimeter of the controller. Unlike in dance pads or mats where the user plays within the footprint of the mat and lands on it repeatedly, the present invention utilizes non-impact position detection, and is therefore more durable as it does not wear out due to repeated impact. Furthermore, it is significantly more compact than those designs.
  • The controller of the present invention transmits a beam from a detection unit of the controller, which is reflected off the user or player's foot back towards the controller. It is then sensed by a receiver of the given detection unit. The use of this reflective technique allows the controller to have a small footprint. Two or more signals that overlap, each sent from different locations and received by the receiver, identify the location of an object (e.g. a foot). A single receiver, or receiving module is used in each detection unit of the preferred embodiment. This is achieved with time division modulation as several beams can be sent and received well within the time a foot is in a given location. The time sent and/or received indicates which beam was reflected and the position of the foot. However, some embodiments may utilize more than one receiver per detection unit.
  • In a preferred embodiment a detection unit is located on each of the left, right, top and bottom sides of the controller, for a total of four detection units. Game control buttons that allow a user to navigate and select from menus of the game are located at one or more of the corners of the controller. In other embodiments they may be otherwise distributed. They can be activated from above or from the side, but are preferably activated from the side as it is more convenient for a user during play, and lessens inadvertent strikes that tend to occur with a top activated switch when a user's foot travels over the top of the controller in the heat of game play.
  • In a preferred embodiment, the detection modules will sense an object at the left, right, top and bottom of the controller, but not at the corners. This eliminates inadvertent detection of a move (at or near a corner) when a player's foot sweeps from one side to another, for instance from a position near the top of the controller to position at the right of the controller.
  • In a preferred embodiment, not all pairs of overlapping signals indicate a game location, and therefore, those that do not are ignored. This improves accuracy of the controller by minimizing the detection of unwanted reflections from an object other than a player's foot or from the player's foot when it is in a location outside of the area meant to define a position of the controller and the game being played. For example, inadvertent reflections from nearby walls or other objects are not interpreted as steps of the player's feet. In some embodiments, the optical emitters are directed substantially parallel to the ground while in others they are angled toward the ground such that they hit the ground near the controller. In such an embodiment, a foot can be detected before the beam hits the ground, or by the weakened signal after it has been reflected by the ground, so long as it is reflected back to the controller a short enough distance thereafter that it will have sufficient energy at the detector. Otherwise, in the case of a ground reflected signal reflected far from the controller, it will not have the proper trajectory back to the receiver, or will otherwise have insufficient energy to be deemed a foot position or dance step.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is top view of game controller 100, an embodiment of the present invention.
  • FIG. 1B is a profile elevation of game controller 100.
  • FIG. 1C is a diagram illustrating the game play zones 112 surrounding game controller 100.
  • FIG. 1D is a diagram illustrating activation of foot activated game control switches/buttons 104 in directions 105.
  • FIG. 1E is an exploded view of game controller 100.
  • FIG. 2A is an illustration of a position detection unit 120 of game controller 100, and the footprint of a detection area or game play zone 112.
  • FIG. 2B is an illustration of the areas defined by the overlap of beams created by position detection unit 120.
  • FIG. 2C is reproduction of Table 1, a table of the areas defined by the overlap of the beams shown in FIG. 2B.
  • FIG. 3 is an illustration of reflection from an object inside a predefined detection area.
  • FIG. 4 is an illustration of reflection from objects outside the predefined detection areas.
  • FIG. 5 is an illustration of a reflection from a nearby object 150 outside of the game play zones 112 shown in FIG. 1C.
  • FIG. 6 is a side view elevation of position detection unit 120 illustrating the path of signals emitted and received by the unit, relative to the ground and bottom of game controller 100.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1A is a top view of game controller 100, an embodiment of the present invention. A game player can stand on controller 100 and steps around the platform of controller 100 to play the game. For example, if the game instructs the player to step to the player's right the player will then step on the ground to the right side of controller 100. Likewise, the position of the player's feet will be detected relative to controller 100 for actions required in front, back or to the left of the player's relative position. Arrows 110 A, B, C, and D serve to indicate to a user that the controller is sensitive to positions at the front side, right side, back side, and left side respectively. In some embodiments the arrows may be of translucent material and will illuminate in sync with the user's detected movements.
  • Game control buttons or switches 104 A, B, C, and D are located at the corners of the controller 100. The preferred embodiment of controller 100 is substantially rectangular as shown, with the corner clipped or rounded. Other embodiments may have other shapes. The game control buttons may in certain embodiments be activated from the top of the controller platform, or, as illustrated, may be activated with a motion and in a direction parallel to the ground. This way, a user can touch the switch with either his toe or heel from around the perimeter of the controller. For example, a user may choose to back her heel into button 104A, while it may be more convenient for a user to kick or touch button 104B with the front of her foot.
  • FIG. 1B is a profile elevation of game controller 100 seen in FIG. 1B. Controller 106 comprises a housing with a top plate 106 and a base plate 108. The electronic components (not shown) are generally between top plate 106 and base plate 108. Controller 100 preferably communicates wirelessly to a video game system, although corded communication is provided in certain embodiments. Logic of the controller is accomplished either with a microprocessor or other logic circuitry. Wireless communication is preferably according to the well known Bluetooth radio specification 2.0, although any RF transmission spectrum and protocol can be utilized. The controller also preferably interfaces as a human interface device regardless of the transmission frequency and protocol. Base plate 108 rests upon the floor during game play or otherwise.
  • FIG. 1C is a diagram illustrating the game play zones 112 surrounding game controller 100. In the preferred embodiments, game play is detected at the front, right, back and left sides of the controller 100, as represented by zones 112A, 112B, 112C, and 112D respectively. As seen by the axes, the front of the controller may also be thought of as the north side, or the zero degree point of the axes. For simplicity the zones are depicted in FIG. 1C as rectangular, although in reality the geometry of the zones is more complex, as will be described later. Many different positions can be determined within each of the zones. In the preferred embodiment, a user's position will not be detected in areas 114, adjacent to the corners of the controller. In games that do not require position detection location in those areas, this reduces false detection as the user's feet pass though the areas 114. In other embodiments, position may be detected all around the controller, including locations at or near the corners.
  • FIG. 1D is a diagram illustrating activation of foot activated game control switches or buttons 104 in directions 105. Button 104A may be activated by a stroke in direction 105A. Direction 105A a can be anywhere from 0 to 90 degrees but is preferably between 30 and 60 degrees. Likewise, button 104B may be activated by a stroke in direction 105B, which can be anywhere from 90 to 180 degrees, but is preferably between 120 and 150 degrees, button 104C may be activated by a stroke in direction 105C, which can be anywhere from 180 to 270 degrees, but is preferably between 210 and 240 degrees, and button 104D may be activated by a stroke in direction 105D, which can be anywhere from 270 to 360 degrees but is preferably between 300 and 330 degrees.
  • FIG. 1E is an exploded view of game controller 100. In addition to the components previously described, position detection units 120A, 120B, 120C, and 120D can be seen. These serve to detect the position of the user's feet around the game controller. Of course, greater or fewer position detection units may be utilized depending on the embodiment and geometry of controller 100.
  • FIG. 2A is an illustration of a position detection unit 120 (120A, B, C, or D) of game controller 100, and the footprint of game play zone 112, where the position of a user's foot will be detected. Each position detection unit 120 comprises two optical illumination modules 122 and 126. Each optical illumination module comprises a group of 2 or more of illumination chambers. Module 122 comprises illumination chambers 124A, 124B, and 124C. Module 126 comprises chambers 124D, 124E, and 124F. Each illumination chamber 124 comprises a source or emitter, which is preferably an IR emitting LED, and other optical components such as lenses and optical guides to shape and direct the IR light emitted by the LED. Position detection unit 120 also comprises optical receiver 128.
  • FIG. 2B is an illustration of the areas defined by the overlap of beams created by position detection unit 120. Each of the illumination chambers 124 produces a beam. The beams are positioned such that pairs of beams overlap in a given area. These are shown as position detection areas 131-136. Each pair is comprised of a beam from a chamber of module 122 and a beam from a chamber of module 126. When a signal transmitted from each chamber of the pair is sensed as having been reflected by an object, the position of the object is within the corresponding position detection area. The pairs used for each detection area are as shown in Table 1 below, which is also reproduced as FIG. 2C.
  • TABLE 1
    Module Module Position
    122 126 detection area
    124A
    124F
    131
    124C 124D 132
    124C 124F 133
    124B 124F 134
    124C 124E 135
    124B 124E 136
  • The detection signals from the different chambers are distributed in time. Only one chamber emits the detection signal during a given period or moment of time. Each position detection signal comprises a plurality of bursts, preferably 4 or 5, and each burst in turn comprises a plurality of pulses, preferably between 15-25 pulses. The emitted signal preferably comprises IR light of approximately 880 nm wavelength, and the frequency of the pulses is approximately 455 kHz. The period between bursts is approximately 150 us.
  • If receiver 128 receives a signal with an energy level above a minimum threshold, it provides an output signal to the processing circuitry of the controller. In one preferred embodiment, the output signal comprises pulses of output voltage. In such a case, the receiver provides one pulse per burst of received light. This modulation filters out ambient noise such as sun light, light from nearby lamps, and from IR remote controls, that may otherwise contain sufficient energy to be interpreted as position data.
  • In the games with the fastest action or changing of foot positions, the minimum time a foot may be in a given position is about 120 milliseconds, although in the vast majority of situations a foot will be present in a given position for much longer. With the preferred embodiment, a foot can be detected within about 16 milliseconds. That is to say that position detection unit 120 can sequence though one cycle where all the illumination chambers of a given detection unit emit a signal in about 16 milliseconds. In certain embodiments the cycle can be repeated to increase accuracy. For example, if four cycles are performed, this will require about 60-65 milliseconds. This means that about 7 or 8 cycles could be performed within the minimum detection window. All position detection units 120 may cycle simultaneously, or may alternatively be sequenced to cycle at different times.
  • FIG. 3 is an illustration of reflection from an object inside a predefined detection area. Object 140 can be seen within area 131. As seen in Table 1, this means that a signal emitted from chambers 124A and 124F has been reflected to and received by receiver 128. Signal 144 is emitted by chamber 124A, and the directly emitted portion is shown as 144D, while the portion reflected from object 140 is shown as 144R. Likewise, signal 142 is emitted by chamber 124F, and the directly emitted portion is shown as 142D, while the portion reflected from object 144 is shown as 142R. Receiver 128 has a field of view sufficient to receive signals from any of the predefined position detection areas.
  • FIG. 4 is an illustration of reflection from objects outside the predefined detection areas. In this figure, two different objects 146 and 148 are located outside of the predefined areas. Object 146 reflects a signal 145 from chamber 124F, but not from any other chamber. It is therefore not indicative of a user position. Object 148 reflects signals 147 and 149 from chambers 124B and 124D. However, since this pair of signals does not correlate with a desired detection area, it does not indicate a user position. Again, as mentioned previously, this selectivity and rejection aids in eliminating erroneous position detection.
  • FIG. 5 is an illustration of a reflection from a nearby object 150 outside of the game play zones 112 shown in FIG. 1C. The field of view of the various chambers and the resulting detection areas is potentially vulnerable to unwanted detection of “ghost” objects that are not actually within one of the detection areas, as touched upon earlier. In some cases, the surrounding obstacles could simulate or “ghost” an object in a position detection area due to reflections from paired chambers. In FIG. 5, the wall or other distant object 150 would indicate a ghost object 149 in area 132. In the aforementioned embodiments, the emitted beams are transmitted in a direction substantially parallel to the ground.
  • One solution employed in other embodiments in order to minimize unwanted reflections involves angling the beams from illumination chambers 124 towards the ground, as seen in FIG. 6. FIG. 6 is a side view elevation of position detection unit 120 illustrating the path of signals emitted and received by the unit, relative to the ground and bottom of game controller 100. The furthest distance for game play is significantly less than the nearest recommended distance from potential obstacles. For example, a player's feet may be detected within about 3 feet, and the player will be instructed to keep objects approximately 4-6 feet away from controller 100. Theses distances can of course vary, as can the strength of the LED's and the minimum energy levels at the receiver used to indicate a detected position, all of which factor into the size and geometry of the game play zones and detection areas, and the minimum distance in relation to obstacles.
  • In FIG. 6, beam 152, created by one of chambers 124, is shown as having a direct component 152D and a component reflected from the floor, 152F. Angling the beam 152 reduces the chance that it will be reflected from a nearby obstacle. A reflection of either the direct component 152D or the reflected component 152F may be sensed by receiver 128 when it is within the field of view 160 of receiver 128, if it has sufficient energy and the proper trajectory. The component reflected from the floor will in most circumstances be of a diffused nature and will have significantly less energy than the direct component. Thus, any subsequent reflection from a foot or any other object will have much less energy than a reflection of direct component 152D and it is preferable that reflections from reflected component 152F not be used for position data. This is accomplished by selecting the strength and trajectory of the LED's and the minimum energy levels at the receiver such that the reflections of component 152F will not indicate position data. Such an embodiment is effective at limiting unwanted detection of obstacles and ghosting.
  • While the preferred embodiments have been described with regard to dancing games, many different types of games can be played with a controller according to the present invention. Although the various aspects of the present invention have been described with respect to exemplary embodiments thereof, it will be understood that the present invention is entitled to protection within the full scope of the appended claims.

Claims (27)

1. A game controller comprising:
a platform where a game player may stand from time to time,
the platform comprising a perimeter, the player's feet positioned around the perimeter of the central pad during game play; and
two or more position detection units, each position detection unit located at the perimeter of the pad,
each position detection unit comprising a first and a second group of illumination chambers, the first group spaced apart from the second group,
each position detection unit further comprising an optical receiver between the first and the second group,
wherein the intersection of a signal emitted from the first and group and a signal emitted from the second group defines a location of player's foot.
2. The game controller of claim 1, wherein the signals emitted from the first and second group are reflected off the player and received by the optical receiver.
3. The game controller of claim 1, wherein within a detection unit, each chamber of each of the groups of illumination chambers emits a signal at a time different than the other chambers of the unit.
4. The game controller of claim 3, wherein the location is determined as a function of the time of a received signal.
5. The game controller of claim 4, wherein the time of the received signal correlates with the originating chamber.
6. The game controller of claim 1, wherein predefined intersections define discrete locations for use in a game controlled by the controller.
7. The game controller of claim 6, wherein if a first and second signal are received at an intersection other than a predefined intersection a location is not detected.
8. An optical position detection unit for use in a game controller, comprising:
a first plurality of optical emitters located at a first region of the unit;
a second plurality of optical emitters located at a second region of the unit; and
an optical receiver located at a third region of the unit, the third region located between the first and second regions,
wherein signals emitted from each emitter of the first and second pluralities are distributed in time and received by the receiver,
and wherein a position to be detected is uniquely defined by the intersection of a signal emitted from the first plurality and a signal emitted from the second plurality.
9. The unit of claim 8, wherein the first plurality comprises three emitters, and the second plurality comprises three emitters, all of said emitters transmitting signals detected by the optical receiver.
10. The unit of claim 9, wherein of a potential total number of intersections of signals emitted by the first and second plurality, less than the total number of intersections are used to uniquely define user positions.
11. The unit of claim 8, wherein a position to be detected is predefined by the intersection of a pair of emitters, the pair comprising one of the first plurality and one of the second plurality of emitters.
12. The unit of claim 11, wherein signals received from pairs of emitters not predefined to indicate a user position are ignored by the controller, thereby minimizing the impact from unwanted reflections.
13. The unit of claim 8, wherein the game controller comprises a bottom surface in contact with a room floor when the controller is in use, and wherein the emitters of the plurality are angled toward the floor.
14. The unit of claim 13, wherein a signal emitted from the angled emitters strikes the floor within about 1.5 feet from the controller, thereby minimizing reflections from objects located more than about 1.5 feet from the controller.
15. A method of optically detecting the position of a foot of a user of a game controller, the method comprising:
transmitting a first signal from a transducer of a first group of transducers located at a first area of the controller;
receiving the first signal at a detector during a first time period, the first signal reflected by the foot to the detector;
transmitting a second signal from a transducer of a second group of transducers at a second area of the controller;
receiving the second signal at the detector during a second time period, the second signal reflected by the foot to the detector; and
determining, based on the time received, the position of the foot based on which transducers of the first and second group transmitted the first and second signals.
16. The method of claim 15, wherein the first and second time periods together comprise less time than the time the user's foot is in a given position.
17. The method of claim 15, wherein transmitting a signal comprises transmitting a plurality of bursts.
18. The method of claim 17, wherein transmitting a burst of the plurality of bursts comprises transmitting a plurality of pulses.
19. The method of claim 17, further comprising providing a pulse from the receiver for each burst received by the receiver, thereby minimizing ambient noise that the receiver may falsely interpret as a signal from one of the transducers.
20. The method of claim 19, wherein a pulse is provided from the receiver only if the burst received is above a threshold energy level.
21. The method of claim 15, wherein the transducers and the receiver respectively produce and detect signals in the infrared spectrum.
22. A game controller, comprising:
a platform; and
one or more position detection units, each position detection unit comprising:
a plurality of light emitting transmitters each producing a beam of light;
a single receiver for receiving beams from the plurality of transmitters,
the plurality of transmitters and the receiver arranged so as to create a matrix of overlapping beams,
means for determining the position of a player in relation to the platform based upon the matrix of overlapping beams.
23. The game controller of claim 22 wherein the light is infrared light.
24. The game controller of claim 22, wherein the platform is substantially rectangular and comprises four principle sides, a position detection unit positioned at each principle side of the controller in order to detect a position at each of the four principle sides of the platform.
25. The game controller of claim 22, further comprising one or more game control buttons located at one or more corners of the platform.
26. The game controller of claim 25, wherein the platform has a north-south and east-west axis, the one or more game control buttons activated by a strike of one of the buttons in either a northwest, northeast, southwest, or southeast direction.
27. The came controller of claim 25, wherein the corners are clipped or rounded.
US11/428,161 2006-06-30 2006-06-30 Non Impact Video Game Controller for Dancing Games Abandoned US20080004111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/428,161 US20080004111A1 (en) 2006-06-30 2006-06-30 Non Impact Video Game Controller for Dancing Games

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/428,161 US20080004111A1 (en) 2006-06-30 2006-06-30 Non Impact Video Game Controller for Dancing Games

Publications (1)

Publication Number Publication Date
US20080004111A1 true US20080004111A1 (en) 2008-01-03

Family

ID=38877385

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/428,161 Abandoned US20080004111A1 (en) 2006-06-30 2006-06-30 Non Impact Video Game Controller for Dancing Games

Country Status (1)

Country Link
US (1) US20080004111A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080261694A1 (en) * 2007-04-17 2008-10-23 Yu Zheng Hand-held interactive game
US20090137185A1 (en) * 2007-11-28 2009-05-28 Yu Brian Zheng System, Method, and Apparatus for Interactive Play
US20090156308A1 (en) * 2007-12-17 2009-06-18 Hsu Kent T J Foot-actuated mat with flashing indicators for video game console
US20110300938A1 (en) * 2010-06-02 2011-12-08 Sony Computer Entertainment Inc. Capacitive input for computer program
WO2012035161A1 (en) * 2010-09-16 2012-03-22 Bigben Interactive Sa Device for the interactive practice of video games
WO2013016955A1 (en) * 2011-07-30 2013-02-07 Zhou Haitao Game controller
US20130224708A1 (en) * 2012-02-28 2013-08-29 Kevin L. Martin Physical Training System and Method
DE202016103071U1 (en) 2015-06-10 2016-08-17 Protective Comfort Group, S.L. Device for performing exercises by a user
WO2018092947A1 (en) * 2016-11-18 2018-05-24 주식회사 트라이캐치미디어 Smart robot game system
US11292505B1 (en) * 2021-03-10 2022-04-05 Victoria Williams Cyrus car converter
JP2022124453A (en) * 2021-02-15 2022-08-25 桜井 英三 Step detection unit
US11590402B2 (en) * 2018-05-31 2023-02-28 The Quick Board, Llc Automated physical training system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309781A (en) * 1980-05-09 1982-01-12 Sloan Valve Company Automatic flushing system
US5017770A (en) * 1985-10-07 1991-05-21 Hagai Sigalov Transmissive and reflective optical control of sound, light and motion
US5051574A (en) * 1989-06-30 1991-09-24 Dowa Mining Co., Ltd. Optical coordinate detection apparatus
US5117100A (en) * 1989-12-27 1992-05-26 Dowa Mining Co., Ltd. Apparatus for and method of optical position detection
US5442168A (en) * 1991-10-15 1995-08-15 Interactive Light, Inc. Dynamically-activated optical instrument for producing control signals having a self-calibration means
US5760389A (en) * 1996-05-21 1998-06-02 Microgate S.R.L. Optoelectronic device for measuring the ground contact time and position of a hollow body within a preset region
US6008798A (en) * 1995-06-07 1999-12-28 Compaq Computer Corporation Method of determining an object's position and associated apparatus
US6554706B2 (en) * 2000-05-31 2003-04-29 Gerard Jounghyun Kim Methods and apparatus of displaying and evaluating motion data in a motion game apparatus
US6572389B2 (en) * 2000-12-14 2003-06-03 Intel Corporation Contact elements for surface mounting of burn-in socket
US6572108B1 (en) * 2002-01-30 2003-06-03 Radica China Ltd Game pad controller
US6628265B2 (en) * 2000-01-24 2003-09-30 Bestsoft Co., Ltd. Program drive device for computers
US6685480B2 (en) * 2000-03-24 2004-02-03 Yamaha Corporation Physical motion state evaluation apparatus
US6927385B2 (en) * 2001-04-02 2005-08-09 Omron Corporation Optical sensor and method of suppressing interference light therefor
US7456815B2 (en) * 2001-07-16 2008-11-25 Gerd Reime Optoelectronic device for position and/or movement detection as well as the associated method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309781A (en) * 1980-05-09 1982-01-12 Sloan Valve Company Automatic flushing system
US5017770A (en) * 1985-10-07 1991-05-21 Hagai Sigalov Transmissive and reflective optical control of sound, light and motion
US5051574A (en) * 1989-06-30 1991-09-24 Dowa Mining Co., Ltd. Optical coordinate detection apparatus
US5117100A (en) * 1989-12-27 1992-05-26 Dowa Mining Co., Ltd. Apparatus for and method of optical position detection
US5442168A (en) * 1991-10-15 1995-08-15 Interactive Light, Inc. Dynamically-activated optical instrument for producing control signals having a self-calibration means
US6008798A (en) * 1995-06-07 1999-12-28 Compaq Computer Corporation Method of determining an object's position and associated apparatus
US5760389A (en) * 1996-05-21 1998-06-02 Microgate S.R.L. Optoelectronic device for measuring the ground contact time and position of a hollow body within a preset region
US6628265B2 (en) * 2000-01-24 2003-09-30 Bestsoft Co., Ltd. Program drive device for computers
US6685480B2 (en) * 2000-03-24 2004-02-03 Yamaha Corporation Physical motion state evaluation apparatus
US6554706B2 (en) * 2000-05-31 2003-04-29 Gerard Jounghyun Kim Methods and apparatus of displaying and evaluating motion data in a motion game apparatus
US6572389B2 (en) * 2000-12-14 2003-06-03 Intel Corporation Contact elements for surface mounting of burn-in socket
US6927385B2 (en) * 2001-04-02 2005-08-09 Omron Corporation Optical sensor and method of suppressing interference light therefor
US7456815B2 (en) * 2001-07-16 2008-11-25 Gerd Reime Optoelectronic device for position and/or movement detection as well as the associated method
US6572108B1 (en) * 2002-01-30 2003-06-03 Radica China Ltd Game pad controller

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7909697B2 (en) * 2007-04-17 2011-03-22 Patent Catefory Corp. Hand-held interactive game
US20110177864A1 (en) * 2007-04-17 2011-07-21 Yu Zheng Hand-held interactive game
US20130267315A1 (en) * 2007-04-17 2013-10-10 Patent Category Corp. Hand-Held Interactive Game
US20080261694A1 (en) * 2007-04-17 2008-10-23 Yu Zheng Hand-held interactive game
US8460102B2 (en) * 2007-04-17 2013-06-11 Patent Category Corp. Hand-held interactive game
US20090137185A1 (en) * 2007-11-28 2009-05-28 Yu Brian Zheng System, Method, and Apparatus for Interactive Play
US8926395B2 (en) 2007-11-28 2015-01-06 Patent Category Corp. System, method, and apparatus for interactive play
US20090156308A1 (en) * 2007-12-17 2009-06-18 Hsu Kent T J Foot-actuated mat with flashing indicators for video game console
US8496527B2 (en) * 2010-06-02 2013-07-30 Sony Computer Entertainment Inc. Capacitive input for computer program
US20110300938A1 (en) * 2010-06-02 2011-12-08 Sony Computer Entertainment Inc. Capacitive input for computer program
CN103299252A (en) * 2010-09-16 2013-09-11 彼格本因特拉克提夫公司 Device for the interactive practice of video games
FR2965076A1 (en) * 2010-09-16 2012-03-23 Bigben Interactive Sa DEVICE FOR THE INTERACTIVE PRACTICE OF VIDEO GAMES
WO2012035161A1 (en) * 2010-09-16 2012-03-22 Bigben Interactive Sa Device for the interactive practice of video games
US9295911B2 (en) 2010-09-16 2016-03-29 Bigben Interactive Sa Electronic balancing platform with removable legs
WO2013016955A1 (en) * 2011-07-30 2013-02-07 Zhou Haitao Game controller
US10446049B2 (en) * 2012-02-28 2019-10-15 Kevin L. Martin Physical training system and method
US20130224708A1 (en) * 2012-02-28 2013-08-29 Kevin L. Martin Physical Training System and Method
DE202016103071U1 (en) 2015-06-10 2016-08-17 Protective Comfort Group, S.L. Device for performing exercises by a user
WO2018092947A1 (en) * 2016-11-18 2018-05-24 주식회사 트라이캐치미디어 Smart robot game system
US11590402B2 (en) * 2018-05-31 2023-02-28 The Quick Board, Llc Automated physical training system
JP2022124453A (en) * 2021-02-15 2022-08-25 桜井 英三 Step detection unit
WO2023068114A1 (en) 2021-02-15 2023-04-27 桜井英三 Step detection unit
JP7336495B2 (en) 2021-02-15 2023-08-31 桜井 英三 Step detection unit
US11292505B1 (en) * 2021-03-10 2022-04-05 Victoria Williams Cyrus car converter

Similar Documents

Publication Publication Date Title
US20080004111A1 (en) Non Impact Video Game Controller for Dancing Games
US6863609B2 (en) Method for controlling movement of viewing point of simulated camera in 3D video game, and 3D video game machine
US7632187B1 (en) Device and method for an electronic tag game
US20080039199A1 (en) Object detection for an interactive human interface device
US6918829B2 (en) Fighting video game machine
ES2717910T3 (en) Device for interactive video game practice
US5459312A (en) Action apparatus and method with non-contact mode selection and operation
US10744405B2 (en) Video game incorporating safe live-action combat
JP2012515899A (en) Method and apparatus for ranging detection, orientation determination, and / or positioning of a single device and / or multiple devices
WO1994016381A1 (en) Dual mode portable game control device
US20070072705A1 (en) System for pitching of baseball
KR100923069B1 (en) Virtual golf simulation device and swing plate for the same
WO2007001050A1 (en) Network game system, network game system control method, game machine, game machine control method, and information storage medium
US5888179A (en) Agility exercise apparatus
JP4867586B2 (en) Game device
US20150126260A1 (en) System and method for proximity and motion detection for interactive activity
US7102119B1 (en) Ball bounce game using electromagnetic beams
KR100437979B1 (en) Dance game device
US8075400B2 (en) Game apparatus
CN115335128A (en) Interactive object system and method
JP2007525669A (en) Ultrasonic / electromagnetic non-contact button / switch for elevator
US9746558B2 (en) Proximity sensor apparatus for a game device
KR20020033303A (en) robot location recognizing apparatus for robot soccer game machine
US20100309155A1 (en) Two-dimensional input device, control device and interactive game system
JP2001017738A (en) Game device

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOGITECH EUROPE S.A., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRATHER, VANCE ALAN;KOROLENKO, ALEXANDER VITALYEVICH;REEL/FRAME:018240/0764

Effective date: 20060905

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION