US20080001064A1 - Method For Detecting a Source of an Incoming Laser - Google Patents

Method For Detecting a Source of an Incoming Laser Download PDF

Info

Publication number
US20080001064A1
US20080001064A1 US11/678,039 US67803907A US2008001064A1 US 20080001064 A1 US20080001064 A1 US 20080001064A1 US 67803907 A US67803907 A US 67803907A US 2008001064 A1 US2008001064 A1 US 2008001064A1
Authority
US
United States
Prior art keywords
laser
determining
source
incoming laser
incoming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/678,039
Inventor
Vicraj Thomas
Michael Rhodes
Philip Zumsteg
Jan Jelinek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to US11/678,039 priority Critical patent/US20080001064A1/en
Publication of US20080001064A1 publication Critical patent/US20080001064A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/789Systems for determining direction or deviation from predetermined direction using rotating or oscillating beam systems, e.g. using mirrors, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to laser source detection, and more particularly, to a system and method for laser source detection.
  • Modern weapons systems frequently use lasers to assist in targeting. Because the path of a laser beam is essentially a straight line, it can be used as a starting point for sighting a weapon, and adjustments may be made to compensate for gravity, wind, and other factors.
  • Some weapons systems employ a beam-riding scheme, in which a munition, such as a missile, tracks the path of a laser beam to a target painted by the laser.
  • a munition such as a missile
  • a party painted by such a laser needs to be able to react in a quick and appropriate manner. Regardless of whether the source of the laser is an enemy or friendly party, the painted party needs to avoid any munitions that may be fired. If the source of the painting laser is a friendly party, the painted party will preferably be identified as a non-enemy, and no munitions will be fired. “Friendly-party notification” is becoming increasingly important, as friendly-fire incidents are making up increasingly larger percentages of total wartime casualties.
  • CIDDS Compbat IDentification Dismounted Soldier
  • an interrogator set shines a laser on a target. If the targeted soldier is friendly and has a similar system, laser detectors will decode the signal and a radio transmitter on the targeted soldier responds with a coded message indicating he or she is friendly. This response message breaks radio silence, and thus, is a security risk.
  • the CIDDS system is strictly a combat identification system, and does not detect or respond to lasers from range finders, battlefield illuminators, or target designator systems.
  • the CIDDS helmet-mounted transponder is about 335 grams and has a range of approximately 1100 meters.
  • BCIS Bottlefield Combat Identification System
  • HARLID High Angular Resolution Laser Irradiance Detector
  • HARLID uses an array of detectors to locate the source of a laser within one degree (azimuth and elevation).
  • HARLID is purely a detection system and provides no combat identification or reciprocal targeting capabilities.
  • Raytheon's ANVVR-1 Laser Warning Receiver may be an example of a HARLID-based system.
  • An exemplary embodiment of the system includes a first array of movable lenses with associated positioning mechanisms, a second array of opto devices (including laser sources and laser detectors), and at least one processor.
  • a first array of movable lenses with associated positioning mechanisms By positioning the individual lenses in the array to maximize the energy on their detectors, the approximate location of the laser source may be determined.
  • responsive action may be taken. If the incoming laser is from a friendly party, a friendly-party notification may be provided. If the incoming laser is from an enemy, reciprocal targeting may be used to allow a laser-guided munition to be fired.
  • at least one laser may be transmitted in a plurality of directions to cause false reflections, in an attempt to break a lock maintained by an incoming laser-guided munition.
  • FIG. 1 is a simplified block diagram illustrating a system for laser source detection, according to an exemplary embodiment of the present invention
  • FIG. 2 is a perspective pictorial diagram illustrating a system for laser source detection, according to an exemplary embodiment of the present invention
  • FIG. 3A is a pictorial diagram illustrating a top view of a representative cell in a system for laser source detection, according to an exemplary embodiment of the present invention
  • FIG. 3B is a pictorial diagram illustrating a side view of a representative cell in a system for laser source detection, according to an exemplary embodiment of the present invention
  • FIGS. 4A and 4B are pictorial diagrams illustrating placement of a system for laser source detection on military vehicles, according to exemplary embodiments of the present invention.
  • FIGS. 5A and 5B are pictorial diagrams illustrating placement of a system for laser source detection on military personnel, according to exemplary embodiments of the present invention.
  • FIGS. 6A and 6B show a flow diagram illustrating a method for laser source detection, according to an exemplary embodiment of the present invention.
  • FIG. 1 is a simplified block diagram illustrating a system 100 for laser source detection, according to an exemplary embodiment of the present invention.
  • the system 100 includes an array 102 of cells, such as cell 104 .
  • the system 100 is operable to detect a remote laser source based on energy incident of the system.
  • the facility 106 upon which the array 102 is mounted can take appropriate responsive action, such as transmitting a communication (e.g. a friendly-party notification) to the laser source or taking defensive action (e.g. transmitting light back toward the source to break any lock that an incoming light-guided munition may have on the facility 106 ).
  • a communication e.g. a friendly-party notification
  • defensive action e.g. transmitting light back toward the source to break any lock that an incoming light-guided munition may have on the facility 106 .
  • the array 102 comprises many (e.g. tens, hundreds, thousands or more) cells 104 , with each cell being small (e.g. approximately 1 mm 2 ), resulting in an overall array size of approximately 0.1 m 2 for use on military personnel to approximately 1 m 2 for use on military vehicles or installations). Smaller array sizes may be advantageous for portability and/or ease of placement, while larger array sizes will allow for more accurate laser source detection and location.
  • the array 102 preferably includes cells 104 for detecting light as well as cells 104 for transmitting light. So configured, the system 100 is operable to detect and locate light, as well as transmit light back for communication and/or reciprocal targeting. Because transmitted communications are preferably composed of light signals, radio silence is not compromised, resulting in potentially safer conditions for the facility 106 . Another advantage of using light instead of radio is it is less susceptible to jamming and spoofing. For purposes of convenience and to more accurately describe how embodiments of the invention are likely to be used in the field, the remainder of this detailed description will assume the light is from a laser source.
  • FIG. 2 is a perspective pictorial diagram illustrating a system 200 for laser source detection, according to an exemplary embodiment of the present invention.
  • the system 200 includes a lens array 202 , an opto device array 204 , and a driver array 206 that includes one or more compute elements.
  • the system 200 is also likely to include an interface (not shown) that may be used to connect the system 200 to other equipment, such as weaponry and communications and/or computing systems, for example.
  • the lens array 202 includes a plurality of lens array cells 208 , with each cell 208 preferably including an integrated MEMS (Micro-Electro-Mechanical Systems) diffractive microlens and actuator for positioning the lens.
  • Each cell is preferably about 1 mm 2 , however other sizes may be used as well. A smaller cell size will allow for increased cell density and improved accuracy. Details of a preferred implementation of the cell 208 are presented in FIGS. 3A and 3B .
  • the opto device array 204 includes a plurality of opto device cells 210 , with each cell 210 preferably including either an optical detector (such as a photodiode) or a light source, such as a laser. Each cell 210 in the opto device array 204 is preferably associated with a respective cell 208 in the lens array 202 to enable each microlens to operate in cooperation with its associated optical detector or light source.
  • an optical detector such as a photodiode
  • a light source such as a laser.
  • the driver array 206 includes a plurality of driver cells 212 and provides power, communication, and computation functionality to the system 200 .
  • Power may be provided by connection to an external power source, such as a battery or solar cell array, or it may emanate from an integrated power source.
  • Communications may be provided by a grid of connections linking the plurality of driver cells 212 to one another.
  • the driver array 206 may provide one or more output signals to external equipment, such as weaponry or communication/computation equipment, for example.
  • the driver array 206 may provide the processing capability to perform computations for determining the location of a detected remote laser source and/or for positioning microlenses in the lens array 208 for to cause lasers in the system 200 to perform reciprocal targeting.
  • the driver array 206 includes a plurality of distributed processors, rather than a single processor for the entire system 200 . If each lens array cell 208 and associated opto device cell 210 has its own processor in its own associated driver cell 212 , the computational burden is distributed throughout the entire array, resulting in simplified calculations and faster operation.
  • the distributed processors may be implemented in any of several forms, including commercially available micro-processors (e.g. from IBM, HP, and others) or ASICs (Application Specific Integrated Circuits), for example. To allow the processors to perform calculations, a memory may provided with each processor (or for use by a plurality of processors).
  • the system 200 is approximately between 0.1 m 2 for use on military personnel to approximately 1 m 2 for use on military vehicles or installations.
  • smaller or larger implementations may be used to meet design goals, such as size, power draw, and/or accuracy.
  • a larger implementation is likely to be more accurate at the expense of increased power consumption, while a smaller implementation will be more portable and lightweight.
  • the system 200 is shown as a single contiguous unit, it may alternatively be distributed less densely over a larger area. This may improve accuracy, but might sacrifice speed due to longer links between individual cells.
  • the system 200 is preferably constructed using MEMS hardware, it is lightweight and easy to deploy. Power consumption is minimal, with very little power consumption until a light source, such as a semiconductor laser, is deployed.
  • FIGS. 3A and 3B are pictorial diagrams illustrating top and side views, respectively, of a representative cell 300 in an apparatus for laser source detection, according to an exemplary embodiment of the present invention.
  • the cell 300 includes a lens portion 302 , an opto device portion 304 , and a driver portion 306 .
  • Portions 302 , 304 , and 306 may be respective portions of arrays 202 , 204 , and 206 described with reference to FIG. 2 .
  • the lens portion 302 includes a microlens 308 , y-axis comb drives 314 a and 314 b, x-axis comb drives 316 a and 316 b, x-axis suspension members 318 a - d, y-axis suspension members 320 a - d, a base portion 322 , and lens holders 324 a and 324 b.
  • the representative cell 300 has an approximate size of 1 mm 2 .
  • the structure of lens portion 302 may be realized through standard MEMS processing techniques, such as a series of silicon structuring steps including patterning and etching appropriate layers of silicon and oxides.
  • the suspended lens arrangement may be constructed, for example by depositing an optically transparent material over a sacrificial layer, which is removed to produce the cavity through with the lens may focus light from a remote source or from an opto device contained in the opto device portion.
  • the lens is approximately 0.1 mm in diameter and has a travel range of approximately 0.05 mm in the x- and y- directions, a resolution of approximately 0.0005 mm (0.5 ⁇ m), a speed of 5-10 kHz, a focal length of approximately 0.12/0.32 mm, and a refractive index of about 3.4.
  • a potential may be applied to the comb drives 314 a - b and 316 a - b to cause an electrostatic force to move the microlens 308 in the x- and y-axes.
  • the final position of the microlens 308 may be determined through any of a number of techniques, such as by measuring the capacitance of the comb drives or by applying a sinusoidal wave voltage to the comb drives at the natural resonant frequency of the suspended microlens, so that its position may be calculated based on the applied voltage. Determining the position of the lens allows the cell 300 to be used to determine the location of the source of incoming light, or to confirm that outgoing light is accurately positioned.
  • the suspension members 318 a - d and 320 a - d allow movement of the microlens 308 along the x- and y-axes of the comb drives 314 a - b and 316 a - b.
  • actuators and movement mechanisms have been described and illustrated for two perpendicular axes, other arrangements for movement and actuation may also be used.
  • the opto device portion 304 includes an opto device 310 , and may include additional circuitry and/or connections to enable the opto device 310 . Alternatively, some or all of the additional circuitry and/or connections may be located elsewhere, such as in the driver layer 306 .
  • the opto device is a semiconductor laser, namely, a VCSEL (Vertical Cavity Surface Emitting Laser).
  • VCSEL Vertical Cavity Surface Emitting Laser
  • Other types of semiconductor lasers may be used, as may other types of light sources.
  • Aperature 328 a - b provides the opening for emitting laser energy.
  • the microlens 308 is located at a sufficient distance from the opto device 310 (i.e. the VCSEL) to allow the emitted laser to be focused adequately.
  • the laser described has an active region with bulk or one or more quantum well layers.
  • the quantum well layers are interleaved with barrier layers.
  • mirror stacks formed by interleaved semiconductor layers having properties such that each layer is typically a quarter wavelength thick at the wavelength (in the medium) of interest thereby forming the mirrors for the laser cavity.
  • conductivity type regions on opposite sides of the active region, and the laser is turned on and off by varying the current through the active region.
  • the opto device 310 may alternatively be a light detector, such as a photodiode. While a semiconductor laser, such as a VCSEL, may be used to transmit light out (e.g. for optical communication and/or reciprocal targeting), a light detector allows for detection of incoming light, and, in some embodiments, location of the source of the received light.
  • the distance (i.e. the focal length) between the microlens 308 and the opto device 310 (i.e. the photodiode) is such that light passing through the microlens 308 is substantially focused onto the opto device 310 . Then, as the microlens 308 is moved along the x- and y-axes, the light detector will be best able to determine intensity, which, in some embodiments, is used to determine the location of the source, as described in further detail below.
  • the driver portion 306 includes a processor 312 , a connection 330 a - b, a substrate 332 , and a spacer layer 334 . In some embodiments, more or fewer components may make up the driver portion 306 .
  • the processor 312 is in communication with the lens portion 302 and the opto device portion 304 to provide control, calculation, and data acquisition functions.
  • the processor 312 may provide appropriate signals, such as through semiconductor traces or metallizations, to cause translation of the microlens 308 in the x-or y-axis and to determine lens position, as discussed above.
  • the processor 312 may control the opto device 310 (e.g. power-up the VCSEL or receive information from the photodiode). In determining the lens location at which the strongest energy is detected, four samples are preferably taken for each cell 300 to determine a vector toward the center of the laser energy seen by the cell 300 .
  • the processor 312 for the cell 300 is shown as a single cell-based processor, rather than a processor serving many cells or even the whole array. While a processor could serve many cells in some embodiments, preferred implementations maintain the one processor per cell arrangement, to promote faster computation and control, as speed is essential in a battlefield context.
  • the algorithms for determining lens position, calculating vectors for determining strongest energy locations, and determining the source of incoming light are preferably done in hardware to achieve faster and more robust results.
  • the connections 330 a and 330 b allow the processor 312 to communicate with processors in four neighboring cells. (See, for example, the neighboring cells and neighboring processors in the arrays shown in the system 200 of FIG. 2 .)
  • the processor 312 may also pass on information from all or some of its neighboring processors to each neighboring processor. As a result, every processor can obtain communications from every other processor in the array.
  • information from cells containing photodiodes may be used for detecting light (and possibly location), while information from cells containing semiconductor lasers may be used for transmitting a focused column of light.
  • each processor can assist in determining the approximate location of a light source.
  • each processor stores a table of these observations.
  • Table A TABLE A NODE ENERGY SEEN LOCATION WHEN 425 1020 45.367° 121.24M 12:00 01.0035 431 1044 45.380° 121.25M 12:00 01.0102 418 989 45.388° 121.24M 12:00 01.0199 . . . . . . . . . .
  • tens of thousands of cells 300 are included in each array. When control is distributed over this many cells processing loads are distributed, errors are averaged, and greater fault-tolerance is realized. Of course, as MEMS technology improves fewer cells may provide similar performance.
  • Errors in location of a target may be due to errors in positioning the lens 308 .
  • Tangential (side-to-side) errors are likely to be very low, so that a target 1 km away could be located to within 1.0 m.
  • the radial (distance away) error can be more significant, however.
  • average errors result in tighter bounds on the target location.
  • Simple averaging of location estimates of pairs of cells is not likely to work, however, due to a highly skewed distribution of location estimates.
  • alternative coordinate systems such as an angular coordinate system can be used, and the results can be converted to polar or Cartesian coordinates.
  • FIGS. 4A and 4B are pictorial diagrams illustrating placement of systems 402 and 452 for laser source detection on military vehicles 400 and 450 , according to exemplary embodiments of the present invention.
  • FIG. 5A and 5B are pictorial diagrams illustrating placement of systems 502 and 552 for laser source detection on military personnel 500 and 550 , according to exemplary embodiments of the present invention.
  • the systems 402 , 452 , 502 , and 552 may be similar to the system 200 shown in FIG. 2 , utilizing cells like cell 300 in FIGS. 3A and 3B .
  • a facility such as a vehicle, is more likely to be able to accommodate a larger system than would a person.
  • the system is implemented as a “patch” attached to a soldier or vehicle.
  • FIGS. 6A and 6B show a flow diagram illustrating a method 600 for laser source detection, according to an exemplary embodiment of the present invention.
  • the system determines that an incoming laser has been detected.
  • the direction of the incoming laser is determined.
  • a determination is made as to whether the incoming laser is from a friend or enemy. If the incoming laser is from a friend, then the system provides friendly-party notification, as shown in 608 . If the incoming laser is from an enemy, then at least two options are available. According to a first option, the source of the incoming laser is targeted, as shown in 610 .
  • the system transmits a laser in a plurality of directions to create a “false reflection.”
  • the false reflection may cause an incoming munition having a laser lock to break its lock and miss the facility upon which the system is mounted.
  • the method 600 may make use of the system described in FIGS. 1-5B or it may make use of a different system.
  • Detection of an incoming laser (block 602 ) may be accomplished using practically any laser detection scheme.
  • Location of the laser source (block 604 ) may be done using computerized or manual techniques or a combination of the two. For example, the approach described with respect to FIGS. 1-5B may be used, in which an array of photodiodes receive light through an array of lenses and an array of communicating processors determines the location based on energy strength.
  • Determining whether an incoming laser is from a friend or enemy ( 606 ) is preferably accomplished by examining an optical code carried by the incoming laser and the wavelength of the laser. For example, identification may be based on a targeting code used by a designator.
  • Some typical laser target designator codes include A-Code laser codes (AGM-114K Hellfire missile) and NATO STANAG No. 3733 codes.
  • the codes specify the PRF (Pulse Repetition Frequency) of a laser emitter. Lower codes indicate a lower PRF, which allows for better target designation due to higher emitted power.
  • the wavelength of the laser may be determined by having different detectors 310 in the array 200 tuned to be sensitive to different wavelengths.
  • Friendly-party notification (block 608 ) preferably comprises transmitting back an identification code (e.g. a combat ID) by laser.
  • an identification code e.g. a combat ID
  • known signaling techniques may be used, and one or more lasers may be used for signaling.
  • other means of providing friendly-party notification may be used, such as RF transmissions, visible light, or others.
  • Reciprocal targeting may be performed using techniques similar to those used by typical laser designators. If the system of FIGS. 1-5B is used, the lenses overlying the semiconductor lasers should be translated to provide the desired intensity of laser light. The laser should be directed toward the target, as determined in block 604 . Obviously, a system having a faster response time will be better able to provide location information for reciprocal targeting.
  • the source target can be targeted by a smart munition. For example, the laser can be used to guide a beam-riding munition.
  • false reflection includes using a large number of lasers, such as the array of VCSELs shown in FIGS. 1-5B , to overwhelm and confuse an incoming laser-guided munition. Alternatively, and likely less effectively, a smaller number of lasers can be pulsed in different directions.
  • determining the direction of an incoming laser may be performed after determining whether the incoming laser is from a friend or enemy (block 606 ).
  • determining the direction of an incoming laser may be performed after determining whether the incoming laser is from a friend or enemy (block 606 ).
  • other similar sequences or combinations of sequences may be employed without departing from the intended scope of the application.

Abstract

A system and method for laser source detection. An exemplary embodiment of the system includes a first array of lenses, a second array of opto devices (including light sources and light detectors), and at least one processor. By positioning the array of lenses to determine the lens position at which energy from an incoming laser is greatest on the light detectors, the approximate location of the laser source may be determined. Upon determining the source, responsive action may be taken. If the incoming laser is from a friendly party, a friendly-party notification may be provided. If the incoming laser is from an enemy, reciprocal targeting or false reflections may be employed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 10/622,819 filed Jul. 18, 2003
  • GOVERNMENT CONTRACT
  • The Government may have rights in this invention pursuant to Contract F33615-02-C-1175, awarded by the Department of the Air Force.
  • BACKGROUND
  • The present invention relates to laser source detection, and more particularly, to a system and method for laser source detection.
  • Modern weapons systems frequently use lasers to assist in targeting. Because the path of a laser beam is essentially a straight line, it can be used as a starting point for sighting a weapon, and adjustments may be made to compensate for gravity, wind, and other factors. Some weapons systems employ a beam-riding scheme, in which a munition, such as a missile, tracks the path of a laser beam to a target painted by the laser. One of the effects of laser-assisted targeting is improved accuracy and precision.
  • At the same time, a party painted by such a laser needs to be able to react in a quick and appropriate manner. Regardless of whether the source of the laser is an enemy or friendly party, the painted party needs to avoid any munitions that may be fired. If the source of the painting laser is a friendly party, the painted party will preferably be identified as a non-enemy, and no munitions will be fired. “Friendly-party notification” is becoming increasingly important, as friendly-fire incidents are making up increasingly larger percentages of total wartime casualties.
  • One approach similar to friendly-party notification is CIDDS (Combat IDentification Dismounted Soldier). In CIDDS, an interrogator set shines a laser on a target. If the targeted soldier is friendly and has a similar system, laser detectors will decode the signal and a radio transmitter on the targeted soldier responds with a coded message indicating he or she is friendly. This response message breaks radio silence, and thus, is a security risk. The CIDDS system is strictly a combat identification system, and does not detect or respond to lasers from range finders, battlefield illuminators, or target designator systems. The CIDDS helmet-mounted transponder is about 335 grams and has a range of approximately 1100 meters.
  • Another approach that provides a greater range (about 5500 meters ground-to-ground and 8000 meters air-to-ground), but is much heavier, is BCIS (Battlefield Combat Identification System). This vehicle-mounted system operates similarly to, but is not compatible with, CIDDS. Because communication responses are by radio, radio silence is broken. While BCIS is capable of identifying the source of a laser within a quadrant, it is still primarily a combat identification system, and does not detect or respond to lasers from range finding systems, battlefield illuminators, or target designator systems. Other similar systems, such as LWS-CV, also exist.
  • A technology that may improve laser detection capabilities is HARLID (High Angular Resolution Laser Irradiance Detector). While still primarily a prototype system, HARLID uses an array of detectors to locate the source of a laser within one degree (azimuth and elevation). However, HARLID is purely a detection system and provides no combat identification or reciprocal targeting capabilities. Raytheon's ANVVR-1 Laser Warning Receiver may be an example of a HARLID-based system.
  • Other approaches have been developed to detect target designator, range finder, and beam rider threats, but actions taken upon detection (e.g. friendly-party notification) still suffer from shortcomings. To improve battlefield situation awareness, it would be desirable to accurately detect if a soldier or vehicle has been painted by a laser (e.g. range finder, target designator, beam rider, spotting beam, battlefield illuminator), locate the source of the laser, and provide friendly-party identification/notification. In addition, it would be desirable, in some embodiments, to provide reciprocal targeting to respond to imminent threats. The preferred solution should be relatively lightweight, easy-to-deploy, small, and interfaceable with existing systems, such as situation awareness systems (e.g. Objective Force Warrior displays and vehicle cockpit display systems) and target designators.
  • SUMMARY
  • A system and method for laser source detection are disclosed. An exemplary embodiment of the system includes a first array of movable lenses with associated positioning mechanisms, a second array of opto devices (including laser sources and laser detectors), and at least one processor. By positioning the individual lenses in the array to maximize the energy on their detectors, the approximate location of the laser source may be determined. Upon determining the source, responsive action may be taken. If the incoming laser is from a friendly party, a friendly-party notification may be provided. If the incoming laser is from an enemy, reciprocal targeting may be used to allow a laser-guided munition to be fired. Alternatively, at least one laser may be transmitted in a plurality of directions to cause false reflections, in an attempt to break a lock maintained by an incoming laser-guided munition.
  • These as well as other aspects of the present invention will become apparent to those of ordinary skill in the art by reading the following detailed description, with appropriate reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified block diagram illustrating a system for laser source detection, according to an exemplary embodiment of the present invention;
  • FIG. 2 is a perspective pictorial diagram illustrating a system for laser source detection, according to an exemplary embodiment of the present invention;
  • FIG. 3A is a pictorial diagram illustrating a top view of a representative cell in a system for laser source detection, according to an exemplary embodiment of the present invention;
  • FIG. 3B is a pictorial diagram illustrating a side view of a representative cell in a system for laser source detection, according to an exemplary embodiment of the present invention;
  • FIGS. 4A and 4B are pictorial diagrams illustrating placement of a system for laser source detection on military vehicles, according to exemplary embodiments of the present invention;
  • FIGS. 5A and 5B are pictorial diagrams illustrating placement of a system for laser source detection on military personnel, according to exemplary embodiments of the present invention; and
  • FIGS. 6A and 6B show a flow diagram illustrating a method for laser source detection, according to an exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION OF PRESENTLY PREFERRED EMBODIMENTS
  • FIG. 1 is a simplified block diagram illustrating a system 100 for laser source detection, according to an exemplary embodiment of the present invention. The system 100 includes an array 102 of cells, such as cell 104. The system 100 is operable to detect a remote laser source based on energy incident of the system. Upon detecting the laser, the facility 106 upon which the array 102 is mounted can take appropriate responsive action, such as transmitting a communication (e.g. a friendly-party notification) to the laser source or taking defensive action (e.g. transmitting light back toward the source to break any lock that an incoming light-guided munition may have on the facility 106).
  • In a preferred embodiment, the array 102 comprises many (e.g. tens, hundreds, thousands or more) cells 104, with each cell being small (e.g. approximately 1 mm2), resulting in an overall array size of approximately 0.1 m2 for use on military personnel to approximately 1 m2 for use on military vehicles or installations). Smaller array sizes may be advantageous for portability and/or ease of placement, while larger array sizes will allow for more accurate laser source detection and location.
  • As described in detail in FIGS. 2, 3A, and 3B, the array 102 preferably includes cells 104 for detecting light as well as cells 104 for transmitting light. So configured, the system 100 is operable to detect and locate light, as well as transmit light back for communication and/or reciprocal targeting. Because transmitted communications are preferably composed of light signals, radio silence is not compromised, resulting in potentially safer conditions for the facility 106. Another advantage of using light instead of radio is it is less susceptible to jamming and spoofing. For purposes of convenience and to more accurately describe how embodiments of the invention are likely to be used in the field, the remainder of this detailed description will assume the light is from a laser source.
  • FIG. 2 is a perspective pictorial diagram illustrating a system 200 for laser source detection, according to an exemplary embodiment of the present invention. The system 200 includes a lens array 202, an opto device array 204, and a driver array 206 that includes one or more compute elements. The system 200 is also likely to include an interface (not shown) that may be used to connect the system 200 to other equipment, such as weaponry and communications and/or computing systems, for example.
  • The lens array 202 includes a plurality of lens array cells 208, with each cell 208 preferably including an integrated MEMS (Micro-Electro-Mechanical Systems) diffractive microlens and actuator for positioning the lens. Each cell is preferably about 1 mm2, however other sizes may be used as well. A smaller cell size will allow for increased cell density and improved accuracy. Details of a preferred implementation of the cell 208 are presented in FIGS. 3A and 3B.
  • The opto device array 204 includes a plurality of opto device cells 210, with each cell 210 preferably including either an optical detector (such as a photodiode) or a light source, such as a laser. Each cell 210 in the opto device array 204 is preferably associated with a respective cell 208 in the lens array 202 to enable each microlens to operate in cooperation with its associated optical detector or light source.
  • The driver array 206 includes a plurality of driver cells 212 and provides power, communication, and computation functionality to the system 200. Power may be provided by connection to an external power source, such as a battery or solar cell array, or it may emanate from an integrated power source. Communications may be provided by a grid of connections linking the plurality of driver cells 212 to one another. In addition, the driver array 206 may provide one or more output signals to external equipment, such as weaponry or communication/computation equipment, for example. In addition to power and communications, the driver array 206 may provide the processing capability to perform computations for determining the location of a detected remote laser source and/or for positioning microlenses in the lens array 208 for to cause lasers in the system 200 to perform reciprocal targeting. In a preferred embodiment, the driver array 206 includes a plurality of distributed processors, rather than a single processor for the entire system 200. If each lens array cell 208 and associated opto device cell 210 has its own processor in its own associated driver cell 212, the computational burden is distributed throughout the entire array, resulting in simplified calculations and faster operation. The distributed processors may be implemented in any of several forms, including commercially available micro-processors (e.g. from IBM, HP, and others) or ASICs (Application Specific Integrated Circuits), for example. To allow the processors to perform calculations, a memory may provided with each processor (or for use by a plurality of processors).
  • In a preferred embodiment, the system 200 is approximately between 0.1 m2 for use on military personnel to approximately 1 m2 for use on military vehicles or installations. Of course, smaller or larger implementations may be used to meet design goals, such as size, power draw, and/or accuracy. A larger implementation is likely to be more accurate at the expense of increased power consumption, while a smaller implementation will be more portable and lightweight. In addition, while the system 200 is shown as a single contiguous unit, it may alternatively be distributed less densely over a larger area. This may improve accuracy, but might sacrifice speed due to longer links between individual cells.
  • Because the system 200 is preferably constructed using MEMS hardware, it is lightweight and easy to deploy. Power consumption is minimal, with very little power consumption until a light source, such as a semiconductor laser, is deployed.
  • FIGS. 3A and 3B are pictorial diagrams illustrating top and side views, respectively, of a representative cell 300 in an apparatus for laser source detection, according to an exemplary embodiment of the present invention. The cell 300 includes a lens portion 302, an opto device portion 304, and a driver portion 306. Portions 302, 304, and 306 may be respective portions of arrays 202, 204, and 206 described with reference to FIG. 2.
  • The lens portion 302 includes a microlens 308, y-axis comb drives 314 a and 314 b, x-axis comb drives 316 a and 316 b, x-axis suspension members 318 a-d, y-axis suspension members 320 a-d, a base portion 322, and lens holders 324 a and 324 b. The representative cell 300 has an approximate size of 1 mm2.
  • The structure of lens portion 302 may be realized through standard MEMS processing techniques, such as a series of silicon structuring steps including patterning and etching appropriate layers of silicon and oxides. The suspended lens arrangement may be constructed, for example by depositing an optically transparent material over a sacrificial layer, which is removed to produce the cavity through with the lens may focus light from a remote source or from an opto device contained in the opto device portion. In a preferred embodiment, the lens is approximately 0.1 mm in diameter and has a travel range of approximately 0.05 mm in the x- and y- directions, a resolution of approximately 0.0005 mm (0.5 μm), a speed of 5-10 kHz, a focal length of approximately 0.12/0.32 mm, and a refractive index of about 3.4.
  • A potential may be applied to the comb drives 314 a-b and 316 a-b to cause an electrostatic force to move the microlens 308 in the x- and y-axes. The final position of the microlens 308 may be determined through any of a number of techniques, such as by measuring the capacitance of the comb drives or by applying a sinusoidal wave voltage to the comb drives at the natural resonant frequency of the suspended microlens, so that its position may be calculated based on the applied voltage. Determining the position of the lens allows the cell 300 to be used to determine the location of the source of incoming light, or to confirm that outgoing light is accurately positioned.
  • The suspension members 318 a-d and 320 a-d allow movement of the microlens 308 along the x- and y-axes of the comb drives 314 a-b and 316 a-b. Although actuators and movement mechanisms have been described and illustrated for two perpendicular axes, other arrangements for movement and actuation may also be used.
  • The opto device portion 304 includes an opto device 310, and may include additional circuitry and/or connections to enable the opto device 310. Alternatively, some or all of the additional circuitry and/or connections may be located elsewhere, such as in the driver layer 306.
  • In the example of FIGS. 3A and 3B, the opto device is a semiconductor laser, namely, a VCSEL (Vertical Cavity Surface Emitting Laser). Other types of semiconductor lasers may be used, as may other types of light sources. Aperature 328 a-b provides the opening for emitting laser energy. The microlens 308 is located at a sufficient distance from the opto device 310 (i.e. the VCSEL) to allow the emitted laser to be focused adequately.
  • Details on construction and operation of surface emitting lasers may be found, for example, in “Surface-emitting microlasers for photonic switching and interchip connections,” Optical Engineering, 29, pp. 210-214, March 1990. For other examples, note U.S. Pat. No. 5,115,442, by Yong H. Lee et al., issued May 19, 1992, and entitled “Top-emitting surface emitting laser structures,” and U.S. Pat. No. 5,475,701, by Mary K. Hibbs-Brenner, entitled “Integrated laser power monitor,” which are both hereby incorporated by reference. Also, see “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85 .mu.m,” Electronics Letters, 26, pp. 710-711, May 24, 1990. The laser described has an active region with bulk or one or more quantum well layers. The quantum well layers are interleaved with barrier layers. On opposite sides of the active region are mirror stacks formed by interleaved semiconductor layers having properties such that each layer is typically a quarter wavelength thick at the wavelength (in the medium) of interest thereby forming the mirrors for the laser cavity. There are opposite conductivity type regions on opposite sides of the active region, and the laser is turned on and off by varying the current through the active region. However, a technique for digitally turning the laser on and off, varying the intensity of the emitted radiation from a vertical cavity surface emitting laser by voltage, with fixed injected current, is desirable. Such control is available with a three terminal voltage-controlled VCSEL described in U.S. Pat. No. 5,056,098, by Philip J. Anthony et al., and issued Oct. 8, 1991, which is hereby incorporated by reference.
  • The opto device 310 may alternatively be a light detector, such as a photodiode. While a semiconductor laser, such as a VCSEL, may be used to transmit light out (e.g. for optical communication and/or reciprocal targeting), a light detector allows for detection of incoming light, and, in some embodiments, location of the source of the received light. The distance (i.e. the focal length) between the microlens 308 and the opto device 310 (i.e. the photodiode) is such that light passing through the microlens 308 is substantially focused onto the opto device 310. Then, as the microlens 308 is moved along the x- and y-axes, the light detector will be best able to determine intensity, which, in some embodiments, is used to determine the location of the source, as described in further detail below.
  • The driver portion 306 includes a processor 312, a connection 330 a-b, a substrate 332, and a spacer layer 334. In some embodiments, more or fewer components may make up the driver portion 306.
  • The processor 312 is in communication with the lens portion 302 and the opto device portion 304 to provide control, calculation, and data acquisition functions. For example, the processor 312 may provide appropriate signals, such as through semiconductor traces or metallizations, to cause translation of the microlens 308 in the x-or y-axis and to determine lens position, as discussed above. Similarly, the processor 312 may control the opto device 310 (e.g. power-up the VCSEL or receive information from the photodiode). In determining the lens location at which the strongest energy is detected, four samples are preferably taken for each cell 300 to determine a vector toward the center of the laser energy seen by the cell 300.
  • The processor 312 for the cell 300 is shown as a single cell-based processor, rather than a processor serving many cells or even the whole array. While a processor could serve many cells in some embodiments, preferred implementations maintain the one processor per cell arrangement, to promote faster computation and control, as speed is essential in a battlefield context. In addition, the algorithms for determining lens position, calculating vectors for determining strongest energy locations, and determining the source of incoming light are preferably done in hardware to achieve faster and more robust results.
  • The connections 330 a and 330 b allow the processor 312 to communicate with processors in four neighboring cells. (See, for example, the neighboring cells and neighboring processors in the arrays shown in the system 200 of FIG. 2.) The processor 312, in turn, may also pass on information from all or some of its neighboring processors to each neighboring processor. As a result, every processor can obtain communications from every other processor in the array. Of course, information from cells containing photodiodes may be used for detecting light (and possibly location), while information from cells containing semiconductor lasers may be used for transmitting a focused column of light.
  • By receiving communications corresponding to many cells, the processor 312 can assist in determining the approximate location of a light source. In one embodiment, each processor stores a table of these observations. A partial example of such a table is shown below as Table A.
    TABLE A
    NODE ENERGY SEEN LOCATION WHEN
    425 1020 45.367° 121.24M 12:00 01.0035
    431 1044 45.380° 121.25M 12:00 01.0102
    418  989 45.388° 121.24M 12:00 01.0199
    . . . . . . . . . . . .
  • In a preferred embodiment, tens of thousands of cells 300 are included in each array. When control is distributed over this many cells processing loads are distributed, errors are averaged, and greater fault-tolerance is realized. Of course, as MEMS technology improves fewer cells may provide similar performance.
  • Errors in location of a target, such as the source of received laser light may be due to errors in positioning the lens 308. Tangential (side-to-side) errors are likely to be very low, so that a target 1 km away could be located to within 1.0 m. The radial (distance away) error can be more significant, however. By including a large number of cells, average errors result in tighter bounds on the target location. Simple averaging of location estimates of pairs of cells is not likely to work, however, due to a highly skewed distribution of location estimates. To ease the computational burden, alternative coordinate systems, such as an angular coordinate system can be used, and the results can be converted to polar or Cartesian coordinates. In a preferred embodiment, the output of 10,000 pairs of cells 300 1 m apart includes a tangential location along with an estimated distance and confidence indicator (e.g. lower bound=967.57 m, upper bound=1034.68 m, confidence=95%).
  • FIGS. 4A and 4B are pictorial diagrams illustrating placement of systems 402 and 452 for laser source detection on military vehicles 400 and 450, according to exemplary embodiments of the present invention. FIG. 5A and 5B are pictorial diagrams illustrating placement of systems 502 and 552 for laser source detection on military personnel 500 and 550, according to exemplary embodiments of the present invention. The systems 402, 452, 502, and 552 may be similar to the system 200 shown in FIG. 2, utilizing cells like cell 300 in FIGS. 3A and 3B. Of course, a facility, such as a vehicle, is more likely to be able to accommodate a larger system than would a person. In a preferred embodiment, the system is implemented as a “patch” attached to a soldier or vehicle.
  • FIGS. 6A and 6B show a flow diagram illustrating a method 600 for laser source detection, according to an exemplary embodiment of the present invention. In 602, the system determines that an incoming laser has been detected. In 604, the direction of the incoming laser is determined. In 606, a determination is made as to whether the incoming laser is from a friend or enemy. If the incoming laser is from a friend, then the system provides friendly-party notification, as shown in 608. If the incoming laser is from an enemy, then at least two options are available. According to a first option, the source of the incoming laser is targeted, as shown in 610. According to a second option, as shown in 612, the system transmits a laser in a plurality of directions to create a “false reflection.” The false reflection may cause an incoming munition having a laser lock to break its lock and miss the facility upon which the system is mounted.
  • The method 600 may make use of the system described in FIGS. 1-5B or it may make use of a different system. Detection of an incoming laser (block 602) may be accomplished using practically any laser detection scheme. Location of the laser source (block 604) may be done using computerized or manual techniques or a combination of the two. For example, the approach described with respect to FIGS. 1-5B may be used, in which an array of photodiodes receive light through an array of lenses and an array of communicating processors determines the location based on energy strength.
  • Determining whether an incoming laser is from a friend or enemy (606) is preferably accomplished by examining an optical code carried by the incoming laser and the wavelength of the laser. For example, identification may be based on a targeting code used by a designator. Some typical laser target designator codes include A-Code laser codes (AGM-114K Hellfire missile) and NATO STANAG No. 3733 codes. The codes specify the PRF (Pulse Repetition Frequency) of a laser emitter. Lower codes indicate a lower PRF, which allows for better target designation due to higher emitted power. The wavelength of the laser may be determined by having different detectors 310 in the array 200 tuned to be sensitive to different wavelengths.
  • Friendly-party notification (block 608) preferably comprises transmitting back an identification code (e.g. a combat ID) by laser. Known signaling techniques may be used, and one or more lasers may be used for signaling. In alternative embodiments, other means of providing friendly-party notification may be used, such as RF transmissions, visible light, or others.
  • Reciprocal targeting (block 610) may be performed using techniques similar to those used by typical laser designators. If the system of FIGS. 1-5B is used, the lenses overlying the semiconductor lasers should be translated to provide the desired intensity of laser light. The laser should be directed toward the target, as determined in block 604. Obviously, a system having a faster response time will be better able to provide location information for reciprocal targeting. Once reciprocal targeting has been employed, the source target can be targeted by a smart munition. For example, the laser can be used to guide a beam-riding munition.
  • In a preferred embodiment, false reflection (block 612) includes using a large number of lasers, such as the array of VCSELs shown in FIGS. 1-5B, to overwhelm and confuse an incoming laser-guided munition. Alternatively, and likely less effectively, a smaller number of lasers can be pulsed in different directions.
  • The blocks shown in FIGS. 6A and 6B may be performed in orders other than those shown. For example, determining the direction of an incoming laser (block 604) may be performed after determining whether the incoming laser is from a friend or enemy (block 606). Moreover, while a number of post-detection action sequences have been described, other similar sequences or combinations of sequences may be employed without departing from the intended scope of the application.
  • Exemplary embodiments of the present invention have been illustrated and described. It will be understood, however, that changes and modifications may be made to the invention without deviating from the spirit and scope of the invention, as defined by the following claims.

Claims (12)

1. A method for detecting a source of an incoming laser, comprising:
determining a direction of an incoming laser;
determining a wavelength of the incoming laser;
determining whether the incoming laser is from a friendly party; and
upon determining that the incoming laser is from a friendly-party, providing a friendly-party notification.
2. The method of claim 1, further comprising:
upon determining that the incoming laser is from an enemy, targeting the source of the incoming laser.
3. The method of claim 1, further comprising:
upon determining that the incoming laser is from an enemy, transmitting at least one laser in a plurality of different directions to create a false reflection.
4. The method of claim 1, wherein determining the direction of the incoming laser includes determining an approximate location of the source.
5. The method of claim 4, wherein determining the direction of the incoming laser further includes determining a confidence level of the determined approximate location of the source.
6. The method of claim 1, wherein determining the wavelength of the incoming laser includes utilizing different detectors sensitive to different wavelengths.
7. The method of claim 1, wherein determining whether the incoming laser is from a friendly party includes examining an optical code carried by the incoming laser.
8. The method of claim 7, wherein the optical code includes an indication of the pulse repetition frequency of a laser emitter.
9. The method of claim 7, wherein the optical code is selected from the group consisting of A-Code laser codes (AGM-114K Hellfire missile) and NATO STANAG No. 3733.
10. The method of claim 2, wherein providing a friendly-party notification includes using a laser to transmit an identification code to the source.
11. The method of claim 3, wherein targeting the source of the incoming laser includes painting the source with a laser.
12. The method of claim 4, wherein the at least one laser is part of an array of semiconductor lasers disposed under a corresponding plurality of lenses positionable by actuators controlled by at least one processor.
US11/678,039 2003-07-18 2007-02-22 Method For Detecting a Source of an Incoming Laser Abandoned US20080001064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/678,039 US20080001064A1 (en) 2003-07-18 2007-02-22 Method For Detecting a Source of an Incoming Laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/622,819 US7196301B2 (en) 2003-07-18 2003-07-18 System for detecting incoming light from a remote laser source
US11/678,039 US20080001064A1 (en) 2003-07-18 2007-02-22 Method For Detecting a Source of an Incoming Laser

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/622,819 Division US7196301B2 (en) 2003-07-18 2003-07-18 System for detecting incoming light from a remote laser source

Publications (1)

Publication Number Publication Date
US20080001064A1 true US20080001064A1 (en) 2008-01-03

Family

ID=34063253

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/622,819 Expired - Fee Related US7196301B2 (en) 2003-07-18 2003-07-18 System for detecting incoming light from a remote laser source
US11/678,039 Abandoned US20080001064A1 (en) 2003-07-18 2007-02-22 Method For Detecting a Source of an Incoming Laser
US11/678,043 Expired - Fee Related US7427732B2 (en) 2003-07-18 2007-02-22 Method for targeting a source of an incoming laser

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/622,819 Expired - Fee Related US7196301B2 (en) 2003-07-18 2003-07-18 System for detecting incoming light from a remote laser source

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/678,043 Expired - Fee Related US7427732B2 (en) 2003-07-18 2007-02-22 Method for targeting a source of an incoming laser

Country Status (1)

Country Link
US (3) US7196301B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090164045A1 (en) * 2007-12-19 2009-06-25 Deguire Daniel R Weapon robot with situational awareness
US20140222249A1 (en) * 2011-06-24 2014-08-07 Bae Systems Plc Apparatus for use on unmanned vehicles
US11599816B2 (en) 2019-12-24 2023-03-07 Bae Systems Information And Electronic Systems Integration Inc. Method and system for identifying target platform

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121826A1 (en) * 2003-07-18 2008-05-29 Honeywell International Inc. Laser source detection system and method
US7196301B2 (en) * 2003-07-18 2007-03-27 Honeywell International, Inc. System for detecting incoming light from a remote laser source
US8553113B2 (en) * 2003-08-20 2013-10-08 At&T Intellectual Property I, L.P. Digital image capturing system and method
US7658751B2 (en) * 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US20070071056A1 (en) * 2005-09-09 2007-03-29 Ye Chen Laser ranging with large-format VCSEL array
US8305252B2 (en) * 2009-08-14 2012-11-06 The United States Of America As Represented By The Secretary Of The Navy Countermeasure device for a mobile tracking device
US10880035B2 (en) * 2009-07-28 2020-12-29 The United States Of America, As Represented By The Secretary Of The Navy Unauthorized electro-optics (EO) device detection and response system
US8946647B2 (en) * 2011-02-17 2015-02-03 Drs Rsta, Inc. System and method for identifying non-cooperative pulsed radiation sources in a field-of-view of an imaging sensor
US9335398B2 (en) 2012-08-16 2016-05-10 Nanohmics, Inc. Apparatus and methods for locating source of and analyzing electromagnetic radiation
US8878114B2 (en) 2012-08-16 2014-11-04 Nanohmics, Inc. Apparatus and methods for locating source of and analyzing electromagnetic radiation
US10228451B2 (en) 2016-05-10 2019-03-12 Lockheed Martin Corporation Aircraft laser detector
WO2018213200A1 (en) 2017-05-15 2018-11-22 Ouster, Inc. Optical imaging transmitter with brightness enhancement
US10267889B1 (en) 2017-11-15 2019-04-23 Avalex Technologies Corporation Laser source location system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187360A (en) * 1990-11-30 1993-02-16 Combined Optical Industries Limited Aspheric lens having a plurality of lenslets disposed substantially contiguously in an array
US5436720A (en) * 1984-02-29 1995-07-25 Litton Systems, Inc. Acousto-optical laser discriminator
US6137535A (en) * 1996-11-04 2000-10-24 Eastman Kodak Company Compact digital camera with segmented fields of view
US20020180631A1 (en) * 2001-05-15 2002-12-05 Yair Alon False reflected target elimination and automatic reflector mapping in secondary surveillance radar
US6660988B2 (en) * 2001-05-01 2003-12-09 Innovative Technology Licensing, Llc Detector selective FPA architecture for ultra-high FPA operability and fabrication method
US20030234349A1 (en) * 2002-06-20 2003-12-25 Wootton John R. Laser warning systems and methods
US20040021853A1 (en) * 2002-07-30 2004-02-05 Stam Joseph S. Light source detection and categorization system for automatic vehicle exterior light control and method of manufacturing
US20040208596A1 (en) * 2002-01-07 2004-10-21 Bringans Ross D. Steerable free space optical interconnect apparatus
US6842290B2 (en) * 2002-09-18 2005-01-11 Dmetrix, Inc. Multi-axis imaging system having individually-adjustable elements
US6884985B2 (en) * 2000-12-08 2005-04-26 Stmicroelectronics Ltd. Solid state image sensors and microlens arrays
US7196301B2 (en) * 2003-07-18 2007-03-27 Honeywell International, Inc. System for detecting incoming light from a remote laser source

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142288A (en) * 1987-12-11 1992-08-25 Cleveland William C Electro-optical IFF system
CA2055198A1 (en) * 1991-11-08 1993-05-09 Raymond Carbonneau Optical identification friend-or-foe
CA2071580C (en) * 1992-06-18 2000-04-11 Jacques Dubois Very high angular resolution laser beam rider detector
IL106544A (en) * 1993-08-01 1996-10-16 Israel State Area surveying apparatus for communication system
FR2734065B1 (en) * 1995-05-12 1997-06-06 Commissariat Energie Atomique MICROOPTIC COMPONENTS AND OPTOMECHANICAL MICRODEFLECTORS WITH MICROLENTILLAL DISPLACEMENT
FR2747802B1 (en) * 1996-04-18 1998-05-15 Commissariat Energie Atomique OPTOMECHANICAL MICRODISPOSITIVE, AND APPLICATION TO AN OPTOMECHANICAL MICRODEFLECTOR
US6445514B1 (en) * 2000-10-12 2002-09-03 Honeywell International Inc. Micro-positioning optical element
US6720905B2 (en) * 2002-08-28 2004-04-13 Personnel Protection Technologies Llc Methods and apparatus for detecting concealed weapons

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436720A (en) * 1984-02-29 1995-07-25 Litton Systems, Inc. Acousto-optical laser discriminator
US5187360A (en) * 1990-11-30 1993-02-16 Combined Optical Industries Limited Aspheric lens having a plurality of lenslets disposed substantially contiguously in an array
US6137535A (en) * 1996-11-04 2000-10-24 Eastman Kodak Company Compact digital camera with segmented fields of view
US6884985B2 (en) * 2000-12-08 2005-04-26 Stmicroelectronics Ltd. Solid state image sensors and microlens arrays
US6660988B2 (en) * 2001-05-01 2003-12-09 Innovative Technology Licensing, Llc Detector selective FPA architecture for ultra-high FPA operability and fabrication method
US20020180631A1 (en) * 2001-05-15 2002-12-05 Yair Alon False reflected target elimination and automatic reflector mapping in secondary surveillance radar
US20040208596A1 (en) * 2002-01-07 2004-10-21 Bringans Ross D. Steerable free space optical interconnect apparatus
US20030234349A1 (en) * 2002-06-20 2003-12-25 Wootton John R. Laser warning systems and methods
US20040021853A1 (en) * 2002-07-30 2004-02-05 Stam Joseph S. Light source detection and categorization system for automatic vehicle exterior light control and method of manufacturing
US6842290B2 (en) * 2002-09-18 2005-01-11 Dmetrix, Inc. Multi-axis imaging system having individually-adjustable elements
US7196301B2 (en) * 2003-07-18 2007-03-27 Honeywell International, Inc. System for detecting incoming light from a remote laser source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090164045A1 (en) * 2007-12-19 2009-06-25 Deguire Daniel R Weapon robot with situational awareness
US7962243B2 (en) * 2007-12-19 2011-06-14 Foster-Miller, Inc. Weapon robot with situational awareness
US20140222249A1 (en) * 2011-06-24 2014-08-07 Bae Systems Plc Apparatus for use on unmanned vehicles
US9156552B2 (en) * 2011-06-24 2015-10-13 Bae Systems Plc Apparatus for use on unmanned vehicles
US11599816B2 (en) 2019-12-24 2023-03-07 Bae Systems Information And Electronic Systems Integration Inc. Method and system for identifying target platform

Also Published As

Publication number Publication date
US7196301B2 (en) 2007-03-27
US20070278391A1 (en) 2007-12-06
US7427732B2 (en) 2008-09-23
US20050012031A1 (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US7427732B2 (en) Method for targeting a source of an incoming laser
US6864965B2 (en) Dual-mode focal plane array for missile seekers
US5966227A (en) Active cooperative tuned identification friend or foe (ACTIFF)
US10823825B2 (en) System and method for wide-area surveillance
US8451432B2 (en) Laser spot tracking with off-axis angle detection
US7336345B2 (en) LADAR system with SAL follower
USRE40927E1 (en) Optical detection system
US4834531A (en) Dead reckoning optoelectronic intelligent docking system
US20190302246A1 (en) Noise Adaptive Solid-State LIDAR System
US7916278B2 (en) Polyspectral rangefinder for close-in target ranging and identification of incoming threats
US7773202B2 (en) Laser spot tracker and target identifier
US7742151B2 (en) Laser-based system with LADAR and SAL capabilities
AU2004252884A1 (en) Integrated optical communication and range finding system and applications thereof
KR20220016211A (en) Aerial terrain-depth lidar system and method therefor
US20080121826A1 (en) Laser source detection system and method
US5015844A (en) Optical surveillance sensor apparatus
CN115268097A (en) Optical system and laser radar with same
RU2639321C1 (en) Optical-electronic object detecting system
RU2335728C1 (en) Optical-electronic search and tracking system
CN112986954A (en) Laser radar transmitting unit, laser radar receiving unit and laser radar
CN103615934A (en) Anti-sniper detection system
CN115327791A (en) Optical system and laser radar with same
CN117751302A (en) Receiving optical system, laser radar system and terminal equipment
KR20110099690A (en) Rangefinder
CN115524857B (en) Optical system and laser radar with same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE