US20070282368A1 - Filter element for embolic protection device - Google Patents

Filter element for embolic protection device Download PDF

Info

Publication number
US20070282368A1
US20070282368A1 US11/562,616 US56261606A US2007282368A1 US 20070282368 A1 US20070282368 A1 US 20070282368A1 US 56261606 A US56261606 A US 56261606A US 2007282368 A1 US2007282368 A1 US 2007282368A1
Authority
US
United States
Prior art keywords
filter
filter element
section
distal
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/562,616
Inventor
David Vale
Eamon Brady
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salviac Ltd
Original Assignee
Salviac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IE1999/000033 external-priority patent/WO2000067664A1/en
Priority claimed from PCT/IE2000/000053 external-priority patent/WO2000067668A1/en
Application filed by Salviac Ltd filed Critical Salviac Ltd
Priority to US11/562,616 priority Critical patent/US20070282368A1/en
Publication of US20070282368A1 publication Critical patent/US20070282368A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/0108Both ends closed, i.e. legs gathered at both ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/013Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stenting
    • A61F2002/015Stop means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/018Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body

Definitions

  • This invention relates to a filter element for a transcatheter embolic protection device.
  • the invention is particularly concerned with filter elements for transcatheter embolic protection devices of the type described in our WO-A-9923976.
  • One type of such embolic filter essentially comprises a filter body mounted on an associated collapsible support frame which can be collapsed against the guide wire by means of a catheter for deployment of the filter through a patient's vascular system. Upon retraction of the catheter the support frame and filter body expand outwardly from the guidewire across a blood vessel within which the filter is positioned to filter blood flowing through the blood vessel.
  • a practical problem that arises with filter elements of such embolic protection devices is that they should be able to accommodate blood vessels of different diameter as it would be impractical to manufacture a large range of filters each of different size to accommodate all possible diameters of blood vessel.
  • a relatively soft and elastic filter body material can be used. It is however important that the filter when deployed maintains its shape during use and to prevent distortion or collapsing of the filter body in use. Because of this and also the need for adequate strength in the body material, the walls of the filter body tend to be relatively thick. This presents a problem in that the filter then has a relatively large crossing profile when in the collapsed deployment position, which is undesirable.
  • the present invention is directed towards overcoming these and other problems.
  • a collapsible filter element for a transcatheter embolic protection device comprising:
  • the thickness of the coating is from 4% to 30% of the thickness of the membrane, ideally the thickness of the coating is approximately 20% of the thickness of the membrane.
  • the membrane may be of a material selected from one or more of polyester block amide (PEBAX), polyester, polyethylene, polyurethane, terephthalate, nylon or, as appropriate. copolymers thereof.
  • PEBAX polyester block amide
  • polyester polyethylene
  • polyurethane polyurethane
  • terephthalate nylon
  • copolymers thereof copolymers thereof.
  • the coating is at least partially of a material selected from a non thrombogenic material and a fluoropolymer material.
  • the coating is most preferably of a hydrophilic material.
  • the coating is of a hydrogen material.
  • the coating includes a physiologically acceptable additive.
  • the additive may be a therapeutic additive.
  • the additive is preferably an antithrombogenic additive such as heparin.
  • the filter body is surface treated prior to application of the coating.
  • the filter body comprises a proximal body section, a distal body section and an intermediate body section interconnecting the proximal and distal body sections, one or more of the body sections being of laminate construction.
  • the body sections may be of the same laminate construction. At least two of the body sections may be of different laminate construction.
  • the filter body has regions of varying hardness or stiffness.
  • the filter body has a durometer of between 60D and 70A Shore hardness.
  • the filter body has a first relatively stiff portion and a second relatively soft portion.
  • One portion or section of the filter body may have a larger wall thickness than the wall thickness of another section or portion.
  • the filter body may comprise a proximal body section and a distal body section, one of which forms a stiff first portion and the other of which forms a soft second portion.
  • a proximal body section forms the soft second portion.
  • the filter body comprises a proximal body section and a distal body section interconnected by an intermediate body section, one or both of the proximal body section and the intermediate body section forming the soft second portion, the distal body section forming the stiff first portion.
  • the proximal body section has a ribbed outer surface.
  • a plurality of spaced-apart longitudinal ribs may be provided on the proximal section.
  • the proximal body section includes corrugations.
  • the filter body has expansion means to facilitate retrieval of the captured embolic material.
  • At least the distal portion of the filter body is of a membrane material that is stretchable.
  • Preferably at least the membrane is stretchable in the longitudinal direction to facilitate retrieval from the vasculature.
  • the filter body includes an intermediate portion extending proximally of the distal portion, the intermediate portion being of a membrane material that is stretchable.
  • the filter body is preferably of a membrane of a memory material, especially a polymeric material.
  • the invention also provides a collapsible filter element for a transcatheter embolic protection device, the filter element comprising:
  • the invention further provides a collapsible filter element for a transcatheter embolic protection device, the filter element comprising:
  • transcatheter embolic protection device including:
  • the frame preferably comprises a plurality of support arms having proximal and distal ends.
  • the arms may be formed of an elastic, a superelastic and/or a shape memory material.
  • said frame is constructed such that filter body is biased toward said second deployed configuration.
  • said inlet openings are defined at least partially by said arms, proximal portions of said arms preferably extend generally outwardly and distally from said guidewire when said filter body is in said second, deployed configuration. Distal portions of said arms may extend generally outwardly and proximally from said guidewire when said filter body is in said second, deployed configuration.
  • the distal portion of the tubular member further includes a pod for receiving therein the filter body when in said first, collapsed configuration.
  • said filter body is urged into said first, collapsed configuration by said pod when the guidewire is moved proximally.
  • said guidewire is solid.
  • said filter body comprises a sleeve slidably disposed on said guidewire.
  • the device comprises stops for limiting the range of longitudinal movement of the sleeve on said guidewire.
  • the sleeve may further comprise a guidewire member distal to the filter body tapering distally.
  • FIG. 1 is partially sectioned elevational view of an embolic protection device according to the invention
  • FIG. 2 is a schematic sectional elevational view of the embolic protection device of FIG. 1 ;
  • FIG. 3 is a sectional view of the distal end of the device of FIG. 1 shown in its loaded condition within its delivery catheter:
  • FIG. 4 is a longitudinal cross sectional view of the device of FIG. 1 ;
  • FIG. 5 is a cross sectional view of a distal end of the device of FIG. 1 ;
  • FIG. 6 is a view on the line A-A in FIG. 4 ;
  • FIG. 7 is a perspective view of a filter body of the device of FIGS. 1 to 6 ;
  • FIG. 8 is a side elevational view of the filter body of FIG. 7 ;
  • FIG. 9 is a view on a proximal end of the filter body
  • FIG. 10 is a perspective view of a support frame
  • FIG. 11 is a side elevational view of the support frame
  • FIG. 12 is a perspective view illustrating the manufacture of the support frame
  • FIG. 13 is a view of the support frame and filter body assembly
  • FIGS. 14A to 14 E are developed views of the distal end of a filter body illustrating different arrangements of outlet holes for filter sizes 6 mm, 4 mm, 4.5 mm, 5 mm, and 5.5 mm respectively;
  • FIG. 15 is a side elevational view of another filter body of the invention.
  • FIG. 16 is a developed view of the distal end of the filter body of FIG. 15 illustrating an arrangement of outlet holes
  • FIGS. 17 ( a ) and 17 ( b ) are perspective partially cut-away cross sectional views of a filter body before and after solvent polishing respectively;
  • FIG. 18 is a graph of shear stress with outlet hole size and hole number
  • FIG. 19 is a longitudinal cross sectional view of a filter body according to the invention.
  • FIGS. 20 to 25 are longitudinal cross sectional views of different embodiments of the filter body according to the invention.
  • FIGS. 26 to 28 are longitudinal cross sectional views of further embodiments of the filter body according to the invention.
  • FIG. 29 is a schematic perspective view of a filter element according to another aspect of the invention.
  • FIGS. 30 to 33 are schematic perspective views of different embodiments of the filter element according to the invention:
  • FIG. 34 is a schematic perspective view of a filter element according to a further aspect of the invention.
  • FIGS. 35 ( a ) to 35 ( d ) are longitudinal side views of another filter according to the invention in different configurations of use.
  • FIGS. 1 to 13 there is illustrated an embolic protection device as described in our WO-A-9923976 indicated generally by the reference number 100 .
  • the device 100 has a guidewire 101 with a proximal end 102 and a distal end 103 .
  • a tubular sleeve 104 is slidably mounted on the guidewire 101 .
  • a collapsible filter 105 is mounted on the sleeve 104 the filter 105 being movable between a collapsed stored position against the sleeve 104 and an expanded position as shown in the drawings extended outwardly of the sleeve 104 for deployment in a blood vessel.
  • the sleeve 104 is slidable on the guidewire 101 between a pair of spaced-apart end stops namely an inner stop 106 and an outer stop which in this case is formed by a spring tip 107 at the distal end 103 of the guidewire 101 .
  • the filter 105 comprises a filter body 110 mounted over a collapsible support frame 111 .
  • the filter body 110 is mounted to the sleeve 104 at each end, the body 110 being rigidly attached to a proximal end 112 of the sleeve 104 and the body 110 being attached to a collar 115 which is slidable along a distal end 114 of the sleeve 104 .
  • the distal end of the body 110 is longitudinally slidable along the sleeve 104 .
  • the support frame 111 is also fixed at the proximal end 112 of the sleeve 104 .
  • a distal end 116 of the support frame 111 is not attached to the sleeve 104 and is thus also free to move longitudinally along the sleeve 104 to facilitate collapsing the support frame 111 against the sleeve 104 .
  • the support frame 111 is such that it is naturally expanded as shown in the drawings and can be collapsed inwardly against the sleeve 104 for loading in a catheter 118 or the like.
  • the filter body 110 has large proximal inlet openings 117 and small distal outlet openings 119 .
  • the proximal inlet openings 117 allow blood and embolic material to enter the filter body 110 however, the distal outlet openings 119 allow through passage of blood but retain undesired embolic material within the filter body 110 .
  • An olive guide 120 is mounted at a distal end of the sleeve 104 and has a cylindrical central portion 121 with tapered ends 122 , 123 .
  • the distal end 122 may be an arrowhead configuration for smooth transition between the catheter and olive surfaces.
  • the support frame 111 is shaped to provide a circumferential groove 125 in the filter body 110 . If the filter 105 is too large for a vessel, the body 110 may crease and this groove 125 ensures any crease does not propagate along the filter 105 .
  • Enlarged openings are provided at a proximal end of the filter body 110 to allow ingress of blood and embolic material into an interior of the body 110 .
  • the collapsible support frame 111 has four foldable arms 290 which are collapsed for deployment and upon release extend outwardly to expand the filter body 110 .
  • the support frame 111 can be manufactured from a range of metallic or polymeric components such as a shape memory alloy like nitinol or a shape memory polymer or a shaped stainless steel or metal with similar properties that will recover from the deformation sufficiently to cause the filter body 110 to open.
  • a shape memory alloy like nitinol or a shape memory polymer or a shaped stainless steel or metal with similar properties that will recover from the deformation sufficiently to cause the filter body 110 to open.
  • the support frame 111 may be formed as illustrated in FIG. 12 by machining slots in a tube 291 of shape memory alloy such as nitinol. On machining, the unslotted distal end of the tube 291 forms a distal collar 293 and the unslotted proximal end of the tube 291 forms a proximal collar 294 .
  • the distal collar 293 is slidably movable along the tubular sleeve 104 which in turn is slidably mounted on the guidewire 101 for deployment and retrieval.
  • the proximal collar 294 is fixed relative to the tubular sleeve 104 .
  • the sub assembly of the support frame 111 and filter body 110 is pulled back into the catheter 118 to engage the distal stop 107 .
  • the support arms 290 are hinged inwardly and the distal collar 293 moves forward along the tubular sleeve 104 .
  • the filter body 110 stretches as the filter body collar 115 slides along the tubular sleeve 104 proximal to the olive 120 .
  • the catheter 118 is retracted proximally along the guidewire 101 initially bringing the collapsed filter assembly with it until it engages the proximal stop 106 .
  • the catheter sleeve then begins to pull off the filter 105 freeing the support arms 290 to expand and the filter body 110 apposes the vessel wall.
  • a retrieval catheter For retrieval, a retrieval catheter is introduced by sliding it over the guidewire 101 until it is positioned at the proximal end of the filter body 110 and support frame 111 . Pulling the guidewire 101 will initially engage the distal stop 107 with the filter element and begin to pull it into the retrieval catheter. The initial travel into the retrieval catheter acts to close the proximal openings 117 of the filter element, thus entrapping the embolic load. As the filter 105 continues to be pulled back the filter body 110 and the support frame 111 are enveloped in the retrieval catheter. The collapsed filter 105 may then be removed from the patient.
  • the tip of the catheter which forms a housing or pod for reception of the filter is of an elastic material which can radially expand to accommodate the filter with the captured embolic material.
  • the same catheter or pod can be used to deploy and retrieve the filter.
  • the elastic material holds the filter in a tightly collapsed position to minimise the size of the catheter tip or pod. Then, when retrieving the filter, the catheter tip or pod is sufficiently elastic to accommodate the extra bulk of the filter due to the embolic material.
  • the filter is not fast on the guidewire and thus accidental movement of the guidewire is accommodated without unintentionally moving the filter, for example, during exchange of medical devices or when changing catheters.
  • the filter according to the invention does not have a sharp outer edge as with many umbrella type filters. Rather, the generally tubular filter shape is more accommodating of the interior walls of blood vessels.
  • the catheter can be removed leaving a bare guidewire proximal to the filter for use with known devices such as balloon catheter and stent devices upstream of the filter.
  • the outer filter body 110 is preferably of a resilient biocompatible elastomeric material.
  • the material may be a polyurethane based material.
  • polyurethane based material There are a series of commercially available polyurethane materials that may be suitable. These are typically based on polycarbonate or polycarbonate or silicone macroglycols together with diisocyanate and a diol or diamine or alkanolamine or water chain extender. Examples of these are described in EP-A-461,375 and U.S. Pat. No. 5,621,065.
  • polyurethane elastomers manufactured from polycarbonate polyols as described in U.S. Pat. No. 5,254,622 (Szycher) are also suitable.
  • the filter material may also be a biostable polycarbonate urethane article an example of which may be prepared by reaction of an isocyanate, a chain extender and a polycarbonate copolymer polyol of alkyl carbonates. This material is described in our WO 9924084.
  • the filter body may be manufactured from a block and cut into a desired shape.
  • the filter may be preferably formed by dipping a rod of desired geometry into a solution of the material which coats the rod. The rod is then dissolved.
  • the final geometry of the filter may be determined in the dipping step or the final geometry may be achieved in a finishing operation. Typically the finishing operations involve processes such as mechanical machining operations, laser machining or chemical machining.
  • the filter body is of hollow construction and may be formed as described above by dipping a rod in a solution of polymeric material to coat the rod. The rod is then dissolved, leaving a hollow body polymeric material.
  • the rod may be of an acrylic material which is dissolved by a suitable solvent such as acetone.
  • the polymeric body thus formed is machined to the shape illustrated in FIGS. 1 to 13 .
  • the final machined filter body comprises an inlet or proximal portion 210 with a proximal neck 212 , and outlet or distal portion 213 with a distal neck 214 , and an intermediate portion 215 between the proximal and distal portions.
  • the filter body may be formed by a blow moulding process using a suitably shaped mould. This results in a filter body which has thin walls.
  • the inlet holes 117 are provided in the proximal portion 210 which allow the blood and embolic material to flow into the filter body.
  • the proximal portion 210 is of generally conical shape to maximise the hole size.
  • the intermediate portion 215 is also hollow and in this case is of generally cylindrical construction. This is important in ensuring more than simple point contact with the surrounding blood vessel.
  • the cylindrical structure allows the filter body to come into soft contact with the blood vessel to avoid damaging the vessel wall.
  • the intermediate portion 215 is provided with a radial stiffening means, in this case in the form of a radial strengthening ring or rim 220 .
  • the ring 220 provides localised stiffening of the filter body without stiffening the material in contact with the vessel. Such an arrangement provides appropriate structural strength so that line apposition of the filter body, to the vessel wall is achieved. It is expected that other geometries of stiffening means will achieve a similar result.
  • the tubular intermediate portion 215 is also important in maintaining the stability of the filter body in situ to retain captured emboli and to ensure that flow around the filter is minimised.
  • the ratio of the axial length of the intermediate portion 215 of the filter body to the diameter of the intermediate portion 215 is preferably at least 0.5 and ideally greater than 1.0.
  • the outlet holes 119 are provided in the distal portion 213 which allow blood to pass and retain embolic material in the filter body.
  • the purpose of the filter is to remove larger particulate debris from the bloodstream during procedures such as angioplasty.
  • the filter is used to prevent ingress of embolic material to the smaller blood vessels distal to a newly-deployed carotid stent.
  • a known property of the filter is that it will present a resistance to the blood flow.
  • the maximum blood pressure in the arterial system is determined by the muscular action of the heart.
  • the cardiovascular system is a multiple-redundant network designed to supply oxygenated blood to the tissues of the body. The path from the heart through the site of deployment of the filter and back to the heart can be traced through the system. In the absence of the filter this system has a resistance, and the flow through any part of it is determined by the distribution of resistance and by the pressure generated by the heart.
  • the introduction of the filter adds a resistance on one of the paths in the network, and therefore there Will be a reduced blood flow through this part of the circuit. It is reasonable to assume that the flow along the restricted carotid will be inversely proportional to the resistance of this branch of the circuit. For laminar flow in a tube the resistance is independent of the flow rate.
  • vascular filters and particularly vascular filters for smaller blood vessels is determined by the relationship between the filter and the media being filtered.
  • Blood is a complex suspension of different cell types that react differently to different stimuli.
  • the defining geometric attributes of the filter structure will establish the filter's resistance to flow in any blood vessel. Ideally, all flow will be through the filter and will be exposed to minimal damage.
  • Red cells have an ability to deform under the influence of shear stresses. At low stresses (physiological) this deformation is recoverable. Additionally, a percentage of the red cell population is fragile and will fragment at low shear stress even in patients with “healthy” cell populations. While the body can deal with the rupture and fragmentation of small numbers of red blood cells, gross red blood cell damage are likely to be problematic clinically. Consideration must be given to the effects of the shear stresses, both the intensity and duration, on the constituent blood particles and the haemostatic mechanisms. It is the effects on the red blood cells and platelets that are of primary importance.
  • thrombus it is also possible for the thrombus to become detached, particularly on removal of the device, and float freely away downstream to become an embolus. Should the embolus be large enough to become trapped in a narrow arterial vessel further along the system, flow in that vessel would be compromised and this could lead directly to stroke. Platelet aggregation occurs most effectively in stagnant and recirculating flow regions.
  • activated platelets can coat foreign bodies in the blood, such as intravasculature catheters.
  • the foreign material surface then becomes sticky and therefore a site for further aggregation. This in turn could affect the local geometry of the device and the local flow characteristics.
  • FIG. 18 we show the relationship under specific flow conditions in a stated diameter of vessel. This plot assumes a Newtonian fluid, equal flow rate through each hole, a flow rate of 270 ml/min and a 4 mm blood vessel.
  • shear is a good general representation however, local conditions at the filter pores can have significant impact on the shear with flow irregularities generating the possibility of shear levels increasing by an order of magnitude.
  • the location of the maximum shear stress is at the edges of the filter holes at their downstream side.
  • the filter element of the invention has local radii and the filter entrance and exit holes to minimise the shear stress levels. Holes may be drilled using mechanical drilling or laser cutting. However, these processes can produce dimensionally repeatable holes but will impart surface conditions that are not suitable for small vessel filtration. Any fraying of edges due to mechanical cutting will certainly cause flow disruptions and form sites for platelet aggregation. Similarly laser cutting due to its local intense heating and vaporisation of the substrate will lead to pitting, surface inclusions, rough edges and surface imperfections.
  • the holes are post processed to modify the surfaces and to radius the edges.
  • a preferred embodiment of the filter element is manufactured using a medial grade polyurethane such as ChronoflexTM supplied by Cardiotech Inc.
  • the filter holes are post-processed by solvent polishing using acetone or other suitable solvent.
  • FIG. 17 ( a ) there is illustrated a section of a polymeric filter body with a number of machined outlet holes 119 . After solvent polishing the hoes are surface treated providing radiused lead-in and lead-out portions.
  • Solvent polishing of the membrane is achieved by softening the material in the surface layers of the membrane such that a local reflow process is facilitated. This reflow is achieved using one of two classes of solvent.
  • the process for the first class of solvents involves exposing the membrane to a limited amount of the solvent. This is achieved by dipping the membrane in the solvent for a short time or exposing the membrane to concentrated vapours of the solvent for a time.
  • the solvent is absorbed into the surface layers and they become solubilised.
  • the solubilised surface layers act like a viscous liquid and they adopt configurations of lowest surface energy.
  • the lowest energy configuration for a liquid is a sphere.
  • the sharp edges and corners become rounded by the solubilisation of the surface.
  • the solvent is dried to reveal a smooth solvent polished surface.
  • Swelling solvents act slightly differently in that they cannot dissolve the material. However their ability to swell the material allows similar reflow processes to occur. The key difference is that the membrane is immersed in the solvent for a longer period of time, preferably in excess of 30 minutes.
  • the solvent swelling process is most effective when the membrane material is a two phase polymer such as a polyuerthane or a PEBAX, as the solvent can be selected to match either phase.
  • Solvents will dissolve polymers when their solubility parameters are similar. Solvents will swell a polymer when their solubility parameters are slightly different. Preferably the swelling solvent swells the material by less than 30%. Above this level the solvent should be considered dissolving solvent.
  • filter is one where the polished polymeric surface is combined with a coating on the substrate.
  • the swelling of the polymer matrix reduces residual stresses that may have developed during the coated core drying or lasering processes.
  • the material in the immediate proximity of the lasered holes will have been exposed to heat. This heat will disrupt hard segment crystallites and they will reform to lower order meta-stable structures or be completely dissolved in the soft phase.
  • the heat will also induce the soft segments to contract, however, the re-arrangement of the hard segments imposes new restrictions on the recovery of the soft segments to an equilibrium (relaxed) state.
  • the morphology of the block coploymer will have changed, in the sense that the new configurations of the hard segments and soft segments will have been frozen in.
  • the holes After lasering, the holes have sharp and well-defined geometries.
  • the solvent After exposing the coated material to the solvent, the solvent uncoils the soft segment chains and disassociates low ordered hard segment that are dissolved in the soft segment phase, so on removal of the solvent, the polymer matrix dries in a more relaxed state. In so doing, the sharp, well-defined walls of the lasered holes are transformed to a more contoured relaxed state.
  • Such applicable solvents for this application are 2-propanone, methyl ethyl ketone or trichloroethylene.
  • the optimum average diameter of the outlet holes in the polymeric membrane is from 100 to 200 microns, ideally approximately 150 microns.
  • the number of holes in the distal portion 213 is from 200 to 500, ideally about 300. This hole size and number of holes minimises shear levels by reducing localised flow rates. Thus, we have found that shear can be maintained below 800, preferably below 500 and ideally below 200 Pa at a blood flow rate of up to 270 ml/min in a 4 mm blood vessel. Ideally the holes are circular holes.
  • the filter provides appropriate haemodynamics to minimise turbulence and inappropriate shear stress on native arteries and veins. Damage to flowing blood such as haemolysis which involves the destruction of red blood cells by rupture of the cell envelope and release of contained haemoglobin is avoided.
  • the outlet hole size and number of holes is optimised in order to capture embolic material, to allow the embolic material to be entrapped in the filter body and to be withdrawn through a delivery device such as a delivery catheter on collapsing of the filter body.
  • Shearing of red blood and damage to platelets during filtration is a problem easily solved in extra-corporeal circuits by providing large filter areas with consequent low flow rates through individual pores controlled to flow rates such that the shear is maintained in ranges that are below known threshold levels with clinical relevance.
  • the porosity of the distal end of the filter membrane and the arrangement of outlet holes is important in optimising capture of embolic material without adversely effecting blood shear characteristics and the material properties of the filter body which allow it to be collapsed for delivery, expanded for deployment and collapsed for retrieval.
  • the overall porosity of the filter element is preferably between 5% and 40% and ideally between 8% and 21%.
  • the transverse cross sectional areas of the filter body at longitudinally spaced-apart locations of the distal portion are substantially the same.
  • the porosity of the distal portion of the filter body should decrease towards the distal end.
  • Arrangements of distal holes 119 for different filter diameters are shown in FIGS. 14 ( a ) to 14 ( e ).
  • FIG. 14 ( a ) shows an arrangement for a 6 mm filter
  • FIG. 14 ( c ) for a 4.5 mm filter
  • FIG. 14 ( d ) for a 5 mm filter
  • FIG. 14 ( e ) for a 5.5 mm filter.
  • the number of outlet holes 119 also increases towards an outer edge of the distal portion of the filter body.
  • the distal portion of the filter element includes a blind section 130 adjacent the distal end of the filter element.
  • the blind portion 130 extends longitudinally for at least 5% and preferably less than 30% of the length of the distal portion.
  • the thickness of the filter membrane In order to reduce the profile of the filter body we have significantly reduced the thickness of the filter membrane to typically in the order of 25 microns. This reduction in thickness however means that the membrane used must have a relatively high stiffness to achieve a comparable strength. However, we have found that such an increase in stiffness results in poor memory performance and is therefore undesirable.
  • hydrophilic coatings and hydrogels are highly suitable coatings as they have a similar surface to the endothelial lining of a blood vessel and are not perceived by the body's immune system as foreign. This results in at least reduction and in some cases substantial elimination of platelet adhesion and fibrin build up which could otherwise occlude the filter and/or create a harmful thrombus.
  • the coating also provide a relatively low friction surface between the filter body and the delicate endothelial lining of a vessel wall and therefore minimise the trauma and injury to a vessel wall caused by deployment of the filter body in the vasculature.
  • a hydrogel will absorb water swelling its volume. The swelling of the hydrogel will exert an expansion force on the membrane helping to pull it into its recovered or deployed shape.
  • a coating, that expands on contact with blood will exert an expansion force on the membrane helping to pull it into its recovered or deployed shape.
  • a coating that expands when subjected to body temperature will exert an expansion force on the membrane helping to pull it into its recovered or deployed shape.
  • Hydrophilic coatings can be classified by their molecular structure:
  • Hydrophilic coatings may be also synthetic or natural.
  • Synthetic hydrophilic polymers include the following:
  • Natural hydrophylics include:
  • hydrophylic coatings suitable for coating filter membrane include, but are not limited to the following:
  • Hydrogels as stated are cross-linked hydrophilic molecules.
  • the molecular mobility of hydrogels is constant and extensive, giving ceaseless molecular motion. which contributes to the property of biocompatibility by inhibiting protein absorption.
  • a typical hydrogel will absorb up to 20% of their dry weight of water.
  • Superabsorbant hydrogels will absorb up to 2000% of their dry weight of water.
  • Hydrogel strength is directly related to cross link density ( ⁇ ) and molecular weight between cross-links (Mc).
  • Hydrophilic coatings may be typically applied by dipping, spraying and/or brushing.
  • the coatings may also be applied by solution or by colloidal dispersion.
  • the membrane surface to be coated may be prepared by cleaning with a solvent and/or ultrasonic cleaning. Plasma or corona discharge may also be used to increase the surface energy and thus provide for better adhesion.
  • Hydrophilics include low friction fluoropolymer, i.e. PTFE & FEP coatings that are chemically inert and have low coefficients of friction, which also helps prevent adhesion of platelets.
  • Both diamond like carbon & tetracarbon also provide very thin hard surface layers, which help reduce the dynamic coefficient of friction for elastomers.
  • the coating may be typically applied by dipping, spraying and/or brushing.
  • the coatings may also be applied by solution or colloidal dispersion.
  • a polymeric filter membrane is first produced by machining a core of a desired shape from an inert material such as perspex.
  • the perspex core is then dipped in a solution of a polymeric material as described above.
  • the membrane is formed by blow moulding. Holes are then laser machined in the dipped core.
  • the perspex core is removed by dissolving in acetone. Residual acetone is washed out with water.
  • a filter frame of gold plated Nitinol is mounted on a filter carrier in the form of a polyimide tube.
  • the filter membrane is then slid over the filter support frame to provide an uncoated filter assembly.
  • the filter assembly is dipped in a solvent such as propan 2-ol to clean the assembly.
  • the cleaned assembly is then dipped in a solution of a coating material.
  • a vacuum is applied to remove excess coating material prior to drying in an oven.
  • the coating material is typically of Aquamer in a water/ethanol solution.
  • the thickness of the coating is typically 2 to 10 microns.
  • the filter body contains regions of varying stiffness and durometer hardness.
  • the change in filter stiffness along its geometry can be achieved by varying the material properties or by modifications to the thickness or geometry of the membrane.
  • the change in material hardness is achieved by varying the material properties.
  • the polymer material may be one of the following: polyamides, polyurethanes, polyesters, a polyether block amide (PEBAX), olefinic elastomer, styrenic elastomer.
  • the filter body has a durometer of between 60D and 70A Shore hardness.
  • the filter body 2 has a proximal section 3 and a distal section 4 interconnected by an intermediate section 5 .
  • Both the proximal section 3 and the distal section 4 are made from a relatively stiff grade of polyurethane material which enables a low wall thickness to be achieved, thus advantageously minimising the bulk of the filter when it is in a collapsed position so that it has a low crossing profile while at the same time providing adequate strength.
  • the intermediate section 5 is made from a soft elastic grade of polyurethane having good shape memory characteristics which will help the filter maintain the desired expanded shape during use of the filter. This soft portion also allows one filter size to accommodate a range of vessel sizes conforming closely to the vessel wall to prevent blood and embolic material bypassing the filter.
  • the body is of generally uniform thickness in cross section.
  • the thickness may be variable such as in the filter body 10 illustrated in FIG. 20 .
  • any required structural properties may also be provided by a filter body, which is at least partially of a laminate construction.
  • the layers of the laminate may be of the same or different materials.
  • the distal section 4 and part of the intermediate section 5 are of a two layer 21 , 22 construction.
  • the layers 21 , 22 may be of the same or different materials.
  • the layers 21 , 22 are keyed together by mechanical or chemical means, the holes in the distal section 4 are then formed by boring through the two layers 21 , 22 .
  • the entire filter body 30 is of a three layer 31 , 32 , 33 construction.
  • Layer 31 is a structural layer made from a material such as polyether block amide (PEBAX), polyester, polyethylene, polyurethane, terephthalate (PET), or nylon.
  • Layers 32 , 33 are coating layers made from a material such as a hydrophilic, hydrogel, non-thrombogenic, or non-stick material. Layers 32 , 33 may be of the same or different materials.
  • the holes at the distal end 4 are also lined with the coating layers 32 , 33 .
  • coating layers 32 , 33 are of different materials, they are applied to structural layer 31 as follows. A temporary protective film is first sealed to the outer most surface of layer 31 . Then coating layer 33 is applied to the inner most surface of layer 31 by immersing the body formed by layer 31 in a coating solution. Excess coating solution is sucked out and the protective film is removed from the outer most surface of layer 31 . Another temporary protective film is then sealed to the inner most surface of layer 33 . The body formed by layers 31 , 33 is completely immersed in a coating solution. Excess coating solution is drawn out and the protective film is removed from the innermost surface of layer 33 .
  • both layers 32 , 33 may be applied to the structural layer 31 in one step without the use of protective films.
  • the entire filter body 45 is of a three layer 46 , 47 , 48 construction.
  • Layers 46 , 47 , 48 are structural layers and layers 47 , 48 are of the same material.
  • the holes at the distal end 4 are also lined with the structural layers 47 , 48 .
  • the entire filter body 50 is of a three layer 51 , 52 , 53 construction.
  • Layers 51 , 52 , 53 are structural layers, and in this embodiment layers 52 , 53 are of different materials.
  • the entire filter body 55 is of a four layer 56 57 , 58 , 59 construction.
  • Layers 56 , 57 are structural layers and may be of the same or different materials.
  • Layers 58 , 59 are coating layers and may be of the same or different materials.
  • the holes at the distal end 4 are also lined with the coating layers 58 , 59 .
  • FIG. 26 there is illustrated another filter element 60 according to the invention, which is similar to part of the distal section 4 of filter element 2 of FIG. 19 . But having no proximal webbing members thus maximising the size of the inlet opening.
  • FIG. 27 illustrates a filter element 61 , which is similar to the distal section 4 and part of the intermediate section 5 of filter element 20 of FIG. 21 , having the advantages of the laminate structure previously described, combined with the large inlet opening of FIG. 26 and the variable distal geometry of FIG. 19 (enabling the filter to accommodate a range of vessel sizes).
  • FIG. 28 illustrates a further filter element 65 , which includes a support ring 66 to maintain the intermediate section 5 open to advancing blood flow.
  • Support ring 66 may be arranged perpendicular to the direction of the blood flow or inclined at an angle, as illustrated in FIG. 28 .
  • the support ring 66 may be of an elastic, super elastic or shape memory material, and may be either actuated remotely to appose the vessel wall in a perpendicular or close to perpendicular position, or fixed in circumference so that its inclination and shape are controlled by the diameter of the vessel.
  • a different layer structure may be provided at any desired location of the filter body to achieve required properties.
  • the filter element 70 has a filter body 72 of generally similar construction to the filter element described previously the body having a proximal section 73 and a distal section 74 interconnected by an intermediate section 75 .
  • the distal section 74 is of a relatively hard polyurethane material whilst the proximal section 73 and intermediate section 75 are of a softer grade polyurethane material.
  • a number of longitudinal ribs 76 are provided around a circumference of the proximal section 73 .
  • this construction facilitates close engagement of an outer circumference of the proximal section 73 against a vessel wall to minimise the risk of embolic material bypassing the filter element 70 .
  • An internal support frame urges the proximal section 73 outwardly so that it expands against and closely conforms with the wall of the blood vessel in which the filter element 70 is mounted in use.
  • the corrugations or ribs 76 allow the proximal section 73 of the filter element 70 to accommodate a wider range of vessel sizes whilst maintaining good contact between the outer circumference of the proximal section 73 and the vessel wall and providing improved filter body integrity.
  • FIG. 30 there is illustrated another filter element 80 according to the invention.
  • corrugations 81 are provided for improved filter body integrity.
  • FIG. 31 there is illustrated another filter element 82 according to the invention.
  • the cross section of the filter element 82 is of a flower petal shape with a plurality of longitudinally extending ribs 83 for improved apposition.
  • the “petal shaped” cross section (as for corrugations) increase the circumference of the filter body, thus enabling the body to be apposed closely against the vessel wall by a supporting structure in a wide range of vessel sizes.
  • FIG. 32 there is illustrated another filter element 85 according to the invention.
  • slits 86 are provided in the place of the corrugations or “petal shapes” shown above.
  • the slits 86 enable the body of the filter to conform to a range of vessel diameters by overlapping and preventing creasing in small diameter vessels, or allowing the body to expand with the aid of a supporting structure in larger diameter vessels. In both instances close engagement of the outer circumference with the vessel wall is facilitated, thus minimizing the risk of embolic material bypassing the filter.
  • FIG. 33 there is illustrated another filter element 88 according to the invention.
  • ribs 89 are provided to prevent creases forming along the filter element 88 in the longitudinal direction, and also to allow expansion of the filter element 88 .
  • FIG. 34 there is illustrated a further filter element 90 according to the invention, which is of a concertina-like shape with two circumferentially extending grooves 91 , 92 .
  • This circumferential grooves or ribs have several advantages. They add to the integrity of the filter body, assisting it in maintaining its shape in the vessel after deployment. They inhibit the propagation of creases between the varying diameter body segments, so that one filter can be designed for a range of vessel sizes. They enable the filter to extend in length to greatly increase its effective volume without adding to the length of the deployed device in use. This provides the benefit of safe retrieval of large embolic loads as explained with reference to stretchable membranes below.
  • FIGS. 35 ( a ) to 35 ( d ) there is illustrated another embolic protection system according to the invention incorporating a filter element 94 according to the invention which is similar to those described above.
  • the protection system includes a guidewire 95 and a retrieval catheter 96 which is advanced over the guidewire to retrieve the filter containing trapped embolic material 97 .
  • the filter body includes an intermediate 98 and distal 99 membrane, one or both of which are stretchable to facilitate the retrieval of the captured embolic material 97 .
  • the stretching of the membrane during the retrieval process is illustrated in FIGS. 35 ( b ) to 35 ( d ).
  • stretchable filter membrane allows larger volumes of captured embolic material to be retrieved than would be possible with a stiffer membrane. This is possible because if a filter is to be retrieved by withdrawing it into or through a catheter of a given internal diameter, the maximum volume of material that can be retrieved is directly proportional to the length of the filter and the internal diameter of the catheter.
  • the stretchable membrane allows the filter to increase in length upon retrieval, thus increasing the space available for retention of captured embolic material. This is particularly significant in the case of large volumes of captured embolic material, which will be more difficult to safely retrieve with a non-stretchable device.
  • the stretchable section may include some or all of the filter body, and may not necessarily include the distal cone.
  • the distal cone containing the outlet pores may be formed from a non stretch material, while the inter mediate filter body is stretchable.
  • This provides the advantage of filter extension during retrieval while preventing the problem of release of captured material through expanding distal pores.
  • stretchable section Another advantage of the stretchable section is that the crossing profile can be reduced as the filter can be loaded into a delivery pod in a stretched, rather than bunched or folded configuration. This reduces the volume of filter material contained in any given cross section of the loaded delivery pod.
  • a stretchable filter material in the intermediate section can also be advantageous by providing a section of the filter body which can be circumferentially expanded by a support frame to appose the wall of a wide range of vessel sizes.

Abstract

A collapsible filter element (105) for a transcatheter embolic protection device (100) comprises a collapsible filter body (30) which is movable between a collapsed stored position for movement through a vascular system and an expanded position for extension across a blood vessel such that blood passing through the blood vessel is delivered through the filter element (105). A proximal inlet portion of the filter body (30) has one or more inlet openings (117) sized to allow blood and embolic material enter the filter body (30) and a distal outlet portion of the filter body (30) has a plurality of outlet openings (119) sized to allow through-passage of blood, but to retain embolic material within the filter body (30). The filter body (30) is at least partially of laminate construction comprising a membrane (31) coated with a coating (32, 33) which is biocompatible, the thickness of the coating (32, 33) being from 4% to 40% of the thickness of the membrane (31). The coating (32, 33) man be of hydrophilic material. To facilitate retrieval of captured embolic material the distal portion and/or an intermediate portion of the filter membrane (31) may be stretchable. The filter body (30) may have regions of varying hardness or stiffness.

Description

  • This application is a continuation of pending prior application Ser. No. 09/985,820 filed Nov. 6, 2001, which is a Continuation Application of PCT Application No. PCT/IE00/00053, filed May 8, 2000, which claims benefit of priority from PCT/IE99/00033 and PCT/IE99/00036, both filed May 7, 1999. The entire disclosure of the prior application. U.S. application Ser. No. 09/985,820, as well as prior filed PCT Application No. PCT/IE00/00053, filed May 8, 2000, priority of which is claimed under 35 U.S.C. §120, and prior filed Application Nos. PCT/IE99/00033 and PCT/IE99/00036 both filed May 7, 1999, priority of which is claimed under 35 U.S.C. §119, are considered part of the disclosure of the present continuation application and are incorporated herein by reference.
  • This invention relates to a filter element for a transcatheter embolic protection device.
  • INTRODUCTION
  • The invention is particularly concerned with filter elements for transcatheter embolic protection devices of the type described in our WO-A-9923976. One type of such embolic filter essentially comprises a filter body mounted on an associated collapsible support frame which can be collapsed against the guide wire by means of a catheter for deployment of the filter through a patient's vascular system. Upon retraction of the catheter the support frame and filter body expand outwardly from the guidewire across a blood vessel within which the filter is positioned to filter blood flowing through the blood vessel.
  • A practical problem that arises with filter elements of such embolic protection devices is that they should be able to accommodate blood vessels of different diameter as it would be impractical to manufacture a large range of filters each of different size to accommodate all possible diameters of blood vessel. To provide flexibility and accommodate a range of vessel sizes with a given size of filter a relatively soft and elastic filter body material can be used. It is however important that the filter when deployed maintains its shape during use and to prevent distortion or collapsing of the filter body in use. Because of this and also the need for adequate strength in the body material, the walls of the filter body tend to be relatively thick. This presents a problem in that the filter then has a relatively large crossing profile when in the collapsed deployment position, which is undesirable.
  • The present invention is directed towards overcoming these and other problems.
  • STATEMENTS OF INVENTION
  • According to the invention there is provided a collapsible filter element for a transcatheter embolic protection device, the filter element comprising:
      • a collapsible filter body which is movable between a collapsed stored position for movement through a vascular system and an expanded position for extension across a blood vessel such that blood passing through the blood vessel is delivered through the filter element;
      • a proximal inlet portion of the filter body having one or more inlet openings sized to allow blood and embolic material enter the filter body;
      • a distal outlet portion of the filter body having a plurality of outlet openings sized to allow through-passage of blood but to retain embolic material within the filter body;
      • the filter body being at least partially of laminate construction comprising a membrane coated with a coating which is biocompatible, the thickness of the coating being from 4% to 40% of the thickness of the membrane to enhance the mechanical characteristics of the filter body.
  • In a preferred embodiment the thickness of the coating is from 4% to 30% of the thickness of the membrane, ideally the thickness of the coating is approximately 20% of the thickness of the membrane.
  • The membrane may be of a material selected from one or more of polyester block amide (PEBAX), polyester, polyethylene, polyurethane, terephthalate, nylon or, as appropriate. copolymers thereof.
  • In a preferred embodiment the coating is at least partially of a material selected from a non thrombogenic material and a fluoropolymer material.
  • The coating is most preferably of a hydrophilic material. In one embodiment the coating is of a hydrogen material. In one embodiment the coating includes a physiologically acceptable additive. The additive may be a therapeutic additive. The additive is preferably an antithrombogenic additive such as heparin.
  • In a preferred embodiment the filter body is surface treated prior to application of the coating.
  • Preferably the filter body comprises a proximal body section, a distal body section and an intermediate body section interconnecting the proximal and distal body sections, one or more of the body sections being of laminate construction. The body sections may be of the same laminate construction. At least two of the body sections may be of different laminate construction.
  • In one embodiment of the invention the filter body has regions of varying hardness or stiffness. Preferable the filter body has a durometer of between 60D and 70A Shore hardness.
  • In one arrangement the filter body has a first relatively stiff portion and a second relatively soft portion. One portion or section of the filter body may have a larger wall thickness than the wall thickness of another section or portion.
  • The filter body may comprise a proximal body section and a distal body section, one of which forms a stiff first portion and the other of which forms a soft second portion. In one embodiment a proximal body section forms the soft second portion.
  • In one embodiment the filter body comprises a proximal body section and a distal body section interconnected by an intermediate body section, one or both of the proximal body section and the intermediate body section forming the soft second portion, the distal body section forming the stiff first portion.
  • In an embodiment of the invention the proximal body section has a ribbed outer surface. A plurality of spaced-apart longitudinal ribs may be provided on the proximal section.
  • In another embodiment the proximal body section includes corrugations.
  • In a particularly preferred embodiment of the invention the filter body has expansion means to facilitate retrieval of the captured embolic material.
  • Ideally at least the distal portion of the filter body is of a membrane material that is stretchable. Preferably at least the membrane is stretchable in the longitudinal direction to facilitate retrieval from the vasculature.
  • In one embodiment the filter body includes an intermediate portion extending proximally of the distal portion, the intermediate portion being of a membrane material that is stretchable.
  • The filter body is preferably of a membrane of a memory material, especially a polymeric material.
  • The invention also provides a collapsible filter element for a transcatheter embolic protection device, the filter element comprising:
      • a collapsible filter body which is movable between a collapsed stored position for movement through a vascular system and an expanded position for extension across a blood vessel such that blood passing through the blood vessel is delivered through the filter element;
      • a proximal inlet portion of the filter body having one or more inlet openings sized to allow blood and embolic material enter the filter body;
      • a distal outlet portion of the filter body having a plurality of outlet openings sized to allow through-passage of blood but to retain embolic material within the filter body; the filter body having regions of varying hardness or stiffness.
  • The invention further provides a collapsible filter element for a transcatheter embolic protection device, the filter element comprising:
      • a collapsible filter body which is movable between a collapsed stored position for movement through a vascular system and an expanded position for extension across a blood vessel such that blood passing through the blood vessel is delivered through the filter element;
      • a proximal inlet portion of the filter body having one or more inlet openings sized to allow blood and embolic material enter the filter body;
      • a distal outlet portion of the filter body having a plurality of outlet openings sized to allow through-passage of blood, but to retain embolic material within the filter body;
      • wherein of the filter body has expansion means to facilitate retrieval of captured embolic material.
  • In a further aspect the invention provides a transcatheter embolic protection device including:
      • a delivery system comprising:
      • a tubular member having a longitudinal axis, distal and proximal portions, said distal portion of the tubular member being removably advanceable into the vasculature of a patient:
      • a medical guidewire longitudinally axially movable in said tubular member and having distal and proximal portions:
      • and a filter element of any aspect of the invention the filter body having;
      • a first collapsed, insertion and withdrawal configuration and a second expanded, deployed configuration;
      • a proximal inlet section and a distal outlet section, said proximal inlet section including inlet openings which are operable to admit body fluid when the filter body is in the second expanded configuration;
      • a plurality of outlet openings disposed on at least a portion of the filter element adjacent to the distal outlet section;
      • wherein said filter body is moved between said first and second configurations by displacement of said delivery system.
  • The frame preferably comprises a plurality of support arms having proximal and distal ends. The arms may be formed of an elastic, a superelastic and/or a shape memory material. In one embodiment said frame is constructed such that filter body is biased toward said second deployed configuration.
  • Preferably said inlet openings are defined at least partially by said arms, proximal portions of said arms preferably extend generally outwardly and distally from said guidewire when said filter body is in said second, deployed configuration. Distal portions of said arms may extend generally outwardly and proximally from said guidewire when said filter body is in said second, deployed configuration.
  • In one embodiment the distal portion of the tubular member further includes a pod for receiving therein the filter body when in said first, collapsed configuration.
  • Preferably said filter body is urged into said first, collapsed configuration by said pod when the guidewire is moved proximally.
  • In one arrangement said guidewire is solid.
  • In one embodiment said filter body comprises a sleeve slidably disposed on said guidewire. Ideally the device comprises stops for limiting the range of longitudinal movement of the sleeve on said guidewire. The sleeve may further comprise a guidewire member distal to the filter body tapering distally.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be more clearly understood from the following description thereof given by way of example only with reference to the accompanying drawings in which:
  • FIG. 1 is partially sectioned elevational view of an embolic protection device according to the invention;
  • FIG. 2 is a schematic sectional elevational view of the embolic protection device of FIG. 1;
  • FIG. 3 is a sectional view of the distal end of the device of FIG. 1 shown in its loaded condition within its delivery catheter:
  • FIG. 4 is a longitudinal cross sectional view of the device of FIG. 1;
  • FIG. 5 is a cross sectional view of a distal end of the device of FIG. 1;
  • FIG. 6 is a view on the line A-A in FIG. 4;
  • FIG. 7 is a perspective view of a filter body of the device of FIGS. 1 to 6;
  • FIG. 8 is a side elevational view of the filter body of FIG. 7;
  • FIG. 9 is a view on a proximal end of the filter body;
  • FIG. 10 is a perspective view of a support frame;
  • FIG. 11 is a side elevational view of the support frame;
  • FIG. 12 is a perspective view illustrating the manufacture of the support frame;
  • FIG. 13 is a view of the support frame and filter body assembly;
  • FIGS. 14A to 14E are developed views of the distal end of a filter body illustrating different arrangements of outlet holes for filter sizes 6 mm, 4 mm, 4.5 mm, 5 mm, and 5.5 mm respectively;
  • FIG. 15 is a side elevational view of another filter body of the invention;
  • FIG. 16 is a developed view of the distal end of the filter body of FIG. 15 illustrating an arrangement of outlet holes;
  • FIGS. 17(a) and 17(b) are perspective partially cut-away cross sectional views of a filter body before and after solvent polishing respectively;
  • FIG. 18 is a graph of shear stress with outlet hole size and hole number;
  • FIG. 19 is a longitudinal cross sectional view of a filter body according to the invention;
  • FIGS. 20 to 25 are longitudinal cross sectional views of different embodiments of the filter body according to the invention;
  • FIGS. 26 to 28 are longitudinal cross sectional views of further embodiments of the filter body according to the invention;
  • FIG. 29 is a schematic perspective view of a filter element according to another aspect of the invention;
  • FIGS. 30 to 33 are schematic perspective views of different embodiments of the filter element according to the invention:
  • FIG. 34 is a schematic perspective view of a filter element according to a further aspect of the invention; and
  • FIGS. 35(a) to 35(d) are longitudinal side views of another filter according to the invention in different configurations of use.
  • DETAILED DESCRIPTION
  • Referring, to FIGS. 1 to 13 there is illustrated an embolic protection device as described in our WO-A-9923976 indicated generally by the reference number 100. The device 100 has a guidewire 101 with a proximal end 102 and a distal end 103. A tubular sleeve 104 is slidably mounted on the guidewire 101. A collapsible filter 105 is mounted on the sleeve 104 the filter 105 being movable between a collapsed stored position against the sleeve 104 and an expanded position as shown in the drawings extended outwardly of the sleeve 104 for deployment in a blood vessel.
  • The sleeve 104 is slidable on the guidewire 101 between a pair of spaced-apart end stops namely an inner stop 106 and an outer stop which in this case is formed by a spring tip 107 at the distal end 103 of the guidewire 101.
  • The filter 105 comprises a filter body 110 mounted over a collapsible support frame 111. The filter body 110 is mounted to the sleeve 104 at each end, the body 110 being rigidly attached to a proximal end 112 of the sleeve 104 and the body 110 being attached to a collar 115 which is slidable along a distal end 114 of the sleeve 104. Thus the distal end of the body 110 is longitudinally slidable along the sleeve 104. The support frame 111 is also fixed at the proximal end 112 of the sleeve 104. A distal end 116 of the support frame 111 is not attached to the sleeve 104 and is thus also free to move longitudinally along the sleeve 104 to facilitate collapsing the support frame 111 against the sleeve 104. The support frame 111 is such that it is naturally expanded as shown in the drawings and can be collapsed inwardly against the sleeve 104 for loading in a catheter 118 or the like.
  • The filter body 110 has large proximal inlet openings 117 and small distal outlet openings 119. The proximal inlet openings 117 allow blood and embolic material to enter the filter body 110 however, the distal outlet openings 119 allow through passage of blood but retain undesired embolic material within the filter body 110.
  • An olive guide 120 is mounted at a distal end of the sleeve 104 and has a cylindrical central portion 121 with tapered ends 122, 123. The distal end 122 may be an arrowhead configuration for smooth transition between the catheter and olive surfaces. The support frame 111 is shaped to provide a circumferential groove 125 in the filter body 110. If the filter 105 is too large for a vessel, the body 110 may crease and this groove 125 ensures any crease does not propagate along the filter 105.
  • Enlarged openings are provided at a proximal end of the filter body 110 to allow ingress of blood and embolic material into an interior of the body 110.
  • Referring in particular to FIGS. 10 to 13 the collapsible support frame 111 has four foldable arms 290 which are collapsed for deployment and upon release extend outwardly to expand the filter body 110.
  • The support frame 111 can be manufactured from a range of metallic or polymeric components such as a shape memory alloy like nitinol or a shape memory polymer or a shaped stainless steel or metal with similar properties that will recover from the deformation sufficiently to cause the filter body 110 to open.
  • The support frame 111 may be formed as illustrated in FIG. 12 by machining slots in a tube 291 of shape memory alloy such as nitinol. On machining, the unslotted distal end of the tube 291 forms a distal collar 293 and the unslotted proximal end of the tube 291 forms a proximal collar 294. In use, as described above, the distal collar 293 is slidably movable along the tubular sleeve 104 which in turn is slidably mounted on the guidewire 101 for deployment and retrieval. The proximal collar 294 is fixed relative to the tubular sleeve 104.
  • To load the filter 105 the sub assembly of the support frame 111 and filter body 110 is pulled back into the catheter 118 to engage the distal stop 107. The support arms 290 are hinged inwardly and the distal collar 293 moves forward along the tubular sleeve 104. As the support arms 290 enter the catheter 118 the filter body 110 stretches as the filter body collar 115 slides along the tubular sleeve 104 proximal to the olive 120. On deployment, the catheter 118 is retracted proximally along the guidewire 101 initially bringing the collapsed filter assembly with it until it engages the proximal stop 106. The catheter sleeve then begins to pull off the filter 105 freeing the support arms 290 to expand and the filter body 110 apposes the vessel wall.
  • For retrieval, a retrieval catheter is introduced by sliding it over the guidewire 101 until it is positioned at the proximal end of the filter body 110 and support frame 111. Pulling the guidewire 101 will initially engage the distal stop 107 with the filter element and begin to pull it into the retrieval catheter. The initial travel into the retrieval catheter acts to close the proximal openings 117 of the filter element, thus entrapping the embolic load. As the filter 105 continues to be pulled back the filter body 110 and the support frame 111 are enveloped in the retrieval catheter. The collapsed filter 105 may then be removed from the patient.
  • Conveniently the tip of the catheter which forms a housing or pod for reception of the filter is of an elastic material which can radially expand to accommodate the filter with the captured embolic material. By correct choice of material, the same catheter or pod can be used to deploy and retrieve the filter. For deployment, the elastic material holds the filter in a tightly collapsed position to minimise the size of the catheter tip or pod. Then, when retrieving the filter, the catheter tip or pod is sufficiently elastic to accommodate the extra bulk of the filter due to the embolic material.
  • Also, the filter is not fast on the guidewire and thus accidental movement of the guidewire is accommodated without unintentionally moving the filter, for example, during exchange of medical devices or when changing catheters.
  • It will also be noted that the filter according to the invention does not have a sharp outer edge as with many umbrella type filters. Rather, the generally tubular filter shape is more accommodating of the interior walls of blood vessels.
  • Conveniently also when the filter has been deployed in a blood vessel, the catheter can be removed leaving a bare guidewire proximal to the filter for use with known devices such as balloon catheter and stent devices upstream of the filter.
  • The outer filter body 110 is preferably of a resilient biocompatible elastomeric material. The material may be a polyurethane based material. There are a series of commercially available polyurethane materials that may be suitable. These are typically based on polycarbonate or polycarbonate or silicone macroglycols together with diisocyanate and a diol or diamine or alkanolamine or water chain extender. Examples of these are described in EP-A-461,375 and U.S. Pat. No. 5,621,065. In addition, polyurethane elastomers manufactured from polycarbonate polyols as described in U.S. Pat. No. 5,254,622 (Szycher) are also suitable.
  • The filter material may also be a biostable polycarbonate urethane article an example of which may be prepared by reaction of an isocyanate, a chain extender and a polycarbonate copolymer polyol of alkyl carbonates. This material is described in our WO 9924084.
  • The filter body may be manufactured from a block and cut into a desired shape. The filter may be preferably formed by dipping a rod of desired geometry into a solution of the material which coats the rod. The rod is then dissolved. The final geometry of the filter may be determined in the dipping step or the final geometry may be achieved in a finishing operation. Typically the finishing operations involve processes such as mechanical machining operations, laser machining or chemical machining.
  • The filter body is of hollow construction and may be formed as described above by dipping a rod in a solution of polymeric material to coat the rod. The rod is then dissolved, leaving a hollow body polymeric material. The rod may be of an acrylic material which is dissolved by a suitable solvent such as acetone.
  • The polymeric body thus formed is machined to the shape illustrated in FIGS. 1 to 13. The final machined filter body comprises an inlet or proximal portion 210 with a proximal neck 212, and outlet or distal portion 213 with a distal neck 214, and an intermediate portion 215 between the proximal and distal portions.
  • Alternatively the filter body may be formed by a blow moulding process using a suitably shaped mould. This results in a filter body which has thin walls.
  • The inlet holes 117 are provided in the proximal portion 210 which allow the blood and embolic material to flow into the filter body. In this case the proximal portion 210 is of generally conical shape to maximise the hole size.
  • The intermediate portion 215 is also hollow and in this case is of generally cylindrical construction. This is important in ensuring more than simple point contact with the surrounding blood vessel. The cylindrical structure allows the filter body to come into soft contact with the blood vessel to avoid damaging the vessel wall.
  • The intermediate portion 215 is provided with a radial stiffening means, in this case in the form of a radial strengthening ring or rim 220. The ring 220 provides localised stiffening of the filter body without stiffening the material in contact with the vessel. Such an arrangement provides appropriate structural strength so that line apposition of the filter body, to the vessel wall is achieved. It is expected that other geometries of stiffening means will achieve a similar result.
  • The tubular intermediate portion 215 is also important in maintaining the stability of the filter body in situ to retain captured emboli and to ensure that flow around the filter is minimised. For optimum stability we have found that the ratio of the axial length of the intermediate portion 215 of the filter body to the diameter of the intermediate portion 215 is preferably at least 0.5 and ideally greater than 1.0.
  • The outlet holes 119 are provided in the distal portion 213 which allow blood to pass and retain embolic material in the filter body.
  • The purpose of the filter is to remove larger particulate debris from the bloodstream during procedures such as angioplasty. In one case the filter is used to prevent ingress of embolic material to the smaller blood vessels distal to a newly-deployed carotid stent. A known property of the filter is that it will present a resistance to the blood flow. The maximum blood pressure in the arterial system is determined by the muscular action of the heart. The cardiovascular system is a multiple-redundant network designed to supply oxygenated blood to the tissues of the body. The path from the heart through the site of deployment of the filter and back to the heart can be traced through the system. In the absence of the filter this system has a resistance, and the flow through any part of it is determined by the distribution of resistance and by the pressure generated by the heart.
  • The introduction of the filter adds a resistance on one of the paths in the network, and therefore there Will be a reduced blood flow through this part of the circuit. It is reasonable to assume that the flow along the restricted carotid will be inversely proportional to the resistance of this branch of the circuit. For laminar flow in a tube the resistance is independent of the flow rate.
  • The performance of vascular filters and particularly vascular filters for smaller blood vessels is determined by the relationship between the filter and the media being filtered. Blood is a complex suspension of different cell types that react differently to different stimuli. The defining geometric attributes of the filter structure will establish the filter's resistance to flow in any blood vessel. Ideally, all flow will be through the filter and will be exposed to minimal damage.
  • All filters that do not have a sealing mechanism to divert flow only through it and will have some element of flow around it. We have configured the filter geometry such that flow through the filter is maximised and flow around the filter is minimised. Pressure drop across the face of the filter when related to the pressure drop through the alternate pathway will determine the filter efficiency.
  • Related to the pressure drop, is the shear stress experienced by the blood elements. Red cells have an ability to deform under the influence of shear stresses. At low stresses (physiological) this deformation is recoverable. Additionally, a percentage of the red cell population is fragile and will fragment at low shear stress even in patients with “healthy” cell populations. While the body can deal with the rupture and fragmentation of small numbers of red blood cells, gross red blood cell damage are likely to be problematic clinically. Consideration must be given to the effects of the shear stresses, both the intensity and duration, on the constituent blood particles and the haemostatic mechanisms. It is the effects on the red blood cells and platelets that are of primary importance.
  • Shear stresses can cause red cell destruction which is more pronounced in patients with red cell disorders, such as sickle cell disease. Haemolysis can lead to amaenia, which can impede oxygen transportation around the body, and in extreme cases causes damage to the kidneys, but this would be unlikely given the relatively short duration of deployment of vascular filters.
  • More importantly though, shear stress also causes damage to the platelets themselves. Platelets play a key role in haemostasis and help orchestrate the complex cascade of events that lead to blood clot formation. The damage to the platelets causes communication chemicals to be released, and these “activate” other platelets in the vicinity. Once activated, the platelets swell and their surfaces become sticky, and this causes them to aggregate together and on available surfaces to form a “clump”. The released chemicals attract and activate other platelets in the area such that the clump grows in size. Fibrous proteins are also created and together a blood clot (thrombus) is formed. Depending on its size and position, the thrombus may occlude some of the holes in a vascular filter. It is also possible for the thrombus to become detached, particularly on removal of the device, and float freely away downstream to become an embolus. Should the embolus be large enough to become trapped in a narrow arterial vessel further along the system, flow in that vessel would be compromised and this could lead directly to stroke. Platelet aggregation occurs most effectively in stagnant and recirculating flow regions.
  • It is also known that activated platelets can coat foreign bodies in the blood, such as intravasculature catheters. The foreign material surface then becomes sticky and therefore a site for further aggregation. This in turn could affect the local geometry of the device and the local flow characteristics.
  • Shear may be expressed as follows:
    Wall shear stress: τ=4μQ/πR 3
      • Where
        • μ is the blood viscosity
        • Q is the mass flow rate
        • R is the vessel radius
  • In FIG. 18 we show the relationship under specific flow conditions in a stated diameter of vessel. This plot assumes a Newtonian fluid, equal flow rate through each hole, a flow rate of 270 ml/min and a 4 mm blood vessel.
  • The relationship shows that as hole size decreases, then the required number of holes increases significantly.
  • This representation of shear is a good general representation however, local conditions at the filter pores can have significant impact on the shear with flow irregularities generating the possibility of shear levels increasing by an order of magnitude. The location of the maximum shear stress is at the edges of the filter holes at their downstream side. The filter element of the invention has local radii and the filter entrance and exit holes to minimise the shear stress levels. Holes may be drilled using mechanical drilling or laser cutting. However, these processes can produce dimensionally repeatable holes but will impart surface conditions that are not suitable for small vessel filtration. Any fraying of edges due to mechanical cutting will certainly cause flow disruptions and form sites for platelet aggregation. Similarly laser cutting due to its local intense heating and vaporisation of the substrate will lead to pitting, surface inclusions, rough edges and surface imperfections.
  • In the invention the holes are post processed to modify the surfaces and to radius the edges. A preferred embodiment of the filter element is manufactured using a medial grade polyurethane such as Chronoflex™ supplied by Cardiotech Inc. The filter holes are post-processed by solvent polishing using acetone or other suitable solvent.
  • Referring, in particular to FIG. 17(a) there is illustrated a section of a polymeric filter body with a number of machined outlet holes 119. After solvent polishing the hoes are surface treated providing radiused lead-in and lead-out portions.
  • Solvent polishing of the membrane is achieved by softening the material in the surface layers of the membrane such that a local reflow process is facilitated. This reflow is achieved using one of two classes of solvent.
      • Solvents that have an ability to dissolve the polymer.
      • Solvents that have an ability to swell the polymer.
  • The process for the first class of solvents involves exposing the membrane to a limited amount of the solvent. This is achieved by dipping the membrane in the solvent for a short time or exposing the membrane to concentrated vapours of the solvent for a time. The solvent is absorbed into the surface layers and they become solubilised. The solubilised surface layers act like a viscous liquid and they adopt configurations of lowest surface energy. The lowest energy configuration for a liquid is a sphere. The sharp edges and corners become rounded by the solubilisation of the surface. The solvent is dried to reveal a smooth solvent polished surface.
  • Swelling solvents act slightly differently in that they cannot dissolve the material. However their ability to swell the material allows similar reflow processes to occur. The key difference is that the membrane is immersed in the solvent for a longer period of time, preferably in excess of 30 minutes. The solvent swelling process is most effective when the membrane material is a two phase polymer such as a polyuerthane or a PEBAX, as the solvent can be selected to match either phase.
  • Solvents will dissolve polymers when their solubility parameters are similar. Solvents will swell a polymer when their solubility parameters are slightly different. Preferably the swelling solvent swells the material by less than 30%. Above this level the solvent should be considered dissolving solvent.
  • Having reduced the local shear stresses as described above, it is then desirable to minimise the propensity for the activated platelets to adhere to the filter substrate. The more preferred embodiment of filter is one where the polished polymeric surface is combined with a coating on the substrate.
  • The swelling of the polymer matrix reduces residual stresses that may have developed during the coated core drying or lasering processes. During the lasering process the material in the immediate proximity of the lasered holes will have been exposed to heat. This heat will disrupt hard segment crystallites and they will reform to lower order meta-stable structures or be completely dissolved in the soft phase. The heat will also induce the soft segments to contract, however, the re-arrangement of the hard segments imposes new restrictions on the recovery of the soft segments to an equilibrium (relaxed) state. Thus, on removal of the heat source (laser), the morphology of the block coploymer will have changed, in the sense that the new configurations of the hard segments and soft segments will have been frozen in. After lasering, the holes have sharp and well-defined geometries. After exposing the coated material to the solvent, the solvent uncoils the soft segment chains and disassociates low ordered hard segment that are dissolved in the soft segment phase, so on removal of the solvent, the polymer matrix dries in a more relaxed state. In so doing, the sharp, well-defined walls of the lasered holes are transformed to a more contoured relaxed state.
  • Such applicable solvents for this application, but not limited to, are 2-propanone, methyl ethyl ketone or trichloroethylene.
  • The solvent characteristics are described as follows at room temperature:
      • The solvent is organic, colourless and in a liquid state.
      • The overall solubility parameter of the solvent is quoted between 16 to 26 Mpa0.5.
      • The solvent is polar and is also capable of hydrogen bond interactions.
      • On partitioning the overall solubility parameter of the solvent into dispersion. polar and hydrogen bonding components, the hydrogen bonding value (in its own solution) is quoted between 3 Mpa0.5 to 8.5 Mpa0.5.
      • The solvent is infinitely misible in water.
      • The solvent is aprotic (proton acceptor) towards the formation of hydrogen bonding between it and the polymer.
  • We have found that the optimum average diameter of the outlet holes in the polymeric membrane is from 100 to 200 microns, ideally approximately 150 microns. The number of holes in the distal portion 213 is from 200 to 500, ideally about 300. This hole size and number of holes minimises shear levels by reducing localised flow rates. Thus, we have found that shear can be maintained below 800, preferably below 500 and ideally below 200 Pa at a blood flow rate of up to 270 ml/min in a 4 mm blood vessel. Ideally the holes are circular holes.
  • We have found that by maintaining blood shear below 800, preferably below 500 and ideally below 200 Pa, the filter provides appropriate haemodynamics to minimise turbulence and inappropriate shear stress on native arteries and veins. Damage to flowing blood such as haemolysis which involves the destruction of red blood cells by rupture of the cell envelope and release of contained haemoglobin is avoided. The outlet hole size and number of holes is optimised in order to capture embolic material, to allow the embolic material to be entrapped in the filter body and to be withdrawn through a delivery device such as a delivery catheter on collapsing of the filter body.
  • Shearing of red blood and damage to platelets during filtration is a problem easily solved in extra-corporeal circuits by providing large filter areas with consequent low flow rates through individual pores controlled to flow rates such that the shear is maintained in ranges that are below known threshold levels with clinical relevance.
  • However, as shear stress increases in inverse proportion to the cube of the radius, small blood vessels do not provide space in which to control shear levels by reducing localised flow rates. At flow rates up to 270 ml/min in a 4 mm blood vessel we have found that we can maintain shear at levels below 200 Pa with 150 micron holes.
  • We have also found that the porosity of the distal end of the filter membrane and the arrangement of outlet holes is important in optimising capture of embolic material without adversely effecting blood shear characteristics and the material properties of the filter body which allow it to be collapsed for delivery, expanded for deployment and collapsed for retrieval.
  • Referring in particular to FIGS. 7, 8 and especially 14(a) to 14(e) we have found that the overall porosity of the filter element is preferably between 5% and 40% and ideally between 8% and 21%. The transverse cross sectional areas of the filter body at longitudinally spaced-apart locations of the distal portion are substantially the same. Most importantly we have found that the porosity of the distal portion of the filter body should decrease towards the distal end. Arrangements of distal holes 119 for different filter diameters are shown in FIGS. 14(a) to 14(e). FIG. 14(a) shows an arrangement for a 6 mm filter, 14(b) for a 4 mm filter, FIG. 14(c) for a 4.5 mm filter, FIG. 14(d) for a 5 mm filter and FIG. 14(e) for a 5.5 mm filter. The number of outlet holes 119 also increases towards an outer edge of the distal portion of the filter body.
  • In addition we have found that for optimum capture of embolic material while facilitating retrieval of the filter with entrapped embolic material into a retrieval catheter the distal portion of the filter element includes a blind section 130 adjacent the distal end of the filter element. Ideally the blind portion 130 extends longitudinally for at least 5% and preferably less than 30% of the length of the distal portion.
  • In order to reduce the profile of the filter body we have significantly reduced the thickness of the filter membrane to typically in the order of 25 microns. This reduction in thickness however means that the membrane used must have a relatively high stiffness to achieve a comparable strength. However, we have found that such an increase in stiffness results in poor memory performance and is therefore undesirable.
  • We have surprisingly found that by providing a filter body of laminate construction in which a membrane is coated with a coating to a thickness of from 5% to 40% of the thickness of the membrane we have been able to provide a filter body which has a low profile but which has good memory characteristics.
  • In particular, we have found that hydrophilic coatings and hydrogels are highly suitable coatings as they have a similar surface to the endothelial lining of a blood vessel and are not perceived by the body's immune system as foreign. This results in at least reduction and in some cases substantial elimination of platelet adhesion and fibrin build up which could otherwise occlude the filter and/or create a harmful thrombus. The coating also provide a relatively low friction surface between the filter body and the delicate endothelial lining of a vessel wall and therefore minimise the trauma and injury to a vessel wall caused by deployment of the filter body in the vasculature.
  • A hydrogel will absorb water swelling its volume. The swelling of the hydrogel will exert an expansion force on the membrane helping to pull it into its recovered or deployed shape.
  • A coating, that expands on contact with blood will exert an expansion force on the membrane helping to pull it into its recovered or deployed shape.
  • A coating that expands when subjected to body temperature will exert an expansion force on the membrane helping to pull it into its recovered or deployed shape.
  • Hydrophilic coatings can be classified by their molecular structure:
      • Linear Hydrophilic polymers can dissolve or be dispersed in water
      • Cross-linked hydrophilic polymers, which include hydogels, can swell and retain water.
  • Hydrophilic coatings may be also synthetic or natural. Synthetic hydrophilic polymers include the following:
      • Poly(2-hydroxy ethyl methacrylate)—(PHEMA)
      • Poly (vinyl alcohol)—(PVA)
      • Poly (ethylene oxide)—(PEO)
      • (carboxylic acids) including:
      • Poly (acrylic acid)—(PAA)
      • Poly (methacrylic acid)—(PMAA)
      • Poly (N-vinyl-2-pyrollidone)—(PNVP)
      • (sulfonic acids), poly (acrylonitrile), poly (acrylamides)
  • Natural hydrophylics include:
      • Cellulose ethers
      • Collagen
      • Carrageenan
  • Commercially available hydrophylic coatings suitable for coating filter membrane include, but are not limited to the following:
      • Aquamer (Sky Polymers Inc.)
      • Phosphoryicholine (PC) (Biocompatibiles Ltd)
      • Surmodics (Surmodics Inc. BSI)
      • Hydak (Biocoat Inc)
      • Hydomer (Hydormer Inc)
  • Hydrogels as stated are cross-linked hydrophilic molecules. The molecular mobility of hydrogels is constant and extensive, giving ceaseless molecular motion. which contributes to the property of biocompatibility by inhibiting protein absorption.
  • The extent to which a hydrogel imparts properties of biocompatibility wettability and lubricity is directly related to the amount of water it absorbs into its molecular matrix, which is referred to as the “degree of swelling”.
    W=[(Wsw−Wo)/Wsw]×100
  • Where Wsw=Weight of swollen gel
      • Wo=Weight of dry gel
        Water uptake=U=[(Wsw−Wo)/Wsw]×100
  • A typical hydrogel will absorb up to 20% of their dry weight of water. Superabsorbant hydrogels will absorb up to 2000% of their dry weight of water.
  • Hydrogel strength is directly related to cross link density (μ) and molecular weight between cross-links (Mc).
  • Hydrophilic coatings may be typically applied by dipping, spraying and/or brushing. The coatings may also be applied by solution or by colloidal dispersion.
  • The membrane surface to be coated may be prepared by cleaning with a solvent and/or ultrasonic cleaning. Plasma or corona discharge may also be used to increase the surface energy and thus provide for better adhesion.
  • Alternatives to Hydrophilics include low friction fluoropolymer, i.e. PTFE & FEP coatings that are chemically inert and have low coefficients of friction, which also helps prevent adhesion of platelets.
  • Other coatings that rely on being chemically inert include.
      • Poly-para-xylylene (Paralene N, C & D) made by Novatron Limited.
      • Diamond like carbon.
      • TetraCarbon (Medisyn Technologies Ltd.).
  • Both diamond like carbon & tetracarbon also provide very thin hard surface layers, which help reduce the dynamic coefficient of friction for elastomers.
  • The coating may be typically applied by dipping, spraying and/or brushing. The coatings may also be applied by solution or colloidal dispersion.
  • Typically to produce a filter according to the invention a polymeric filter membrane is first produced by machining a core of a desired shape from an inert material such as perspex. The perspex core is then dipped in a solution of a polymeric material as described above. Alternatively the membrane is formed by blow moulding. Holes are then laser machined in the dipped core. The perspex core is removed by dissolving in acetone. Residual acetone is washed out with water.
  • A filter frame of gold plated Nitinol is mounted on a filter carrier in the form of a polyimide tube. The filter membrane is then slid over the filter support frame to provide an uncoated filter assembly.
  • The filter assembly is dipped in a solvent such as propan 2-ol to clean the assembly. The cleaned assembly is then dipped in a solution of a coating material. A vacuum is applied to remove excess coating material prior to drying in an oven. The coating material is typically of Aquamer in a water/ethanol solution. The thickness of the coating is typically 2 to 10 microns.
  • Preferably the filter body contains regions of varying stiffness and durometer hardness. The change in filter stiffness along its geometry can be achieved by varying the material properties or by modifications to the thickness or geometry of the membrane. The change in material hardness is achieved by varying the material properties. The polymer material may be one of the following: polyamides, polyurethanes, polyesters, a polyether block amide (PEBAX), olefinic elastomer, styrenic elastomer. Ideally the filter body has a durometer of between 60D and 70A Shore hardness.
  • Referring to FIG. 19 there is illustrated a filter element comprising a filter body 2 according to the invention. In this case, the filter body 2 has a proximal section 3 and a distal section 4 interconnected by an intermediate section 5. Both the proximal section 3 and the distal section 4 are made from a relatively stiff grade of polyurethane material which enables a low wall thickness to be achieved, thus advantageously minimising the bulk of the filter when it is in a collapsed position so that it has a low crossing profile while at the same time providing adequate strength. The intermediate section 5 is made from a soft elastic grade of polyurethane having good shape memory characteristics which will help the filter maintain the desired expanded shape during use of the filter. This soft portion also allows one filter size to accommodate a range of vessel sizes conforming closely to the vessel wall to prevent blood and embolic material bypassing the filter.
  • In the filter body 2 illustrated in FIG. 19 the body is of generally uniform thickness in cross section. However, to achieve any desired variation in the properties of the filter body the thickness may be variable such as in the filter body 10 illustrated in FIG. 20.
  • Referring to FIGS. 21 to 25, any required structural properties may also be provided by a filter body, which is at least partially of a laminate construction. The layers of the laminate may be of the same or different materials. In the illustration of FIG. 21 the distal section 4 and part of the intermediate section 5 are of a two layer 21, 22 construction. The layers 21, 22 may be of the same or different materials.
  • The layers 21, 22 are keyed together by mechanical or chemical means, the holes in the distal section 4 are then formed by boring through the two layers 21, 22.
  • In the illustration of FIG. 22 the entire filter body 30 is of a three layer 31, 32, 33 construction. Layer 31 is a structural layer made from a material such as polyether block amide (PEBAX), polyester, polyethylene, polyurethane, terephthalate (PET), or nylon. Layers 32, 33 are coating layers made from a material such as a hydrophilic, hydrogel, non-thrombogenic, or non-stick material. Layers 32, 33 may be of the same or different materials. The holes at the distal end 4 are also lined with the coating layers 32, 33.
  • When coating layers 32, 33 are of different materials, they are applied to structural layer 31 as follows. A temporary protective film is first sealed to the outer most surface of layer 31. Then coating layer 33 is applied to the inner most surface of layer 31 by immersing the body formed by layer 31 in a coating solution. Excess coating solution is sucked out and the protective film is removed from the outer most surface of layer 31. Another temporary protective film is then sealed to the inner most surface of layer 33. The body formed by layers 31, 33 is completely immersed in a coating solution. Excess coating solution is drawn out and the protective film is removed from the innermost surface of layer 33.
  • If the coating layers 32, 33 are of the same material, both layers 32, 33 may be applied to the structural layer 31 in one step without the use of protective films.
  • In the illustration of FIG. 23 the entire filter body 45 is of a three layer 46, 47, 48 construction. Layers 46, 47, 48 are structural layers and layers 47, 48 are of the same material. The holes at the distal end 4 are also lined with the structural layers 47, 48.
  • In the illustration of FIG. 24 the entire filter body 50 is of a three layer 51, 52, 53 construction. Layers 51, 52, 53 are structural layers, and in this embodiment layers 52, 53 are of different materials.
  • In the illustration of FIG. 25 the entire filter body 55 is of a four layer 56 57, 58, 59 construction. Layers 56, 57 are structural layers and may be of the same or different materials. Layers 58, 59 are coating layers and may be of the same or different materials. The holes at the distal end 4 are also lined with the coating layers 58, 59.
  • Referring to FIG. 26 there is illustrated another filter element 60 according to the invention, which is similar to part of the distal section 4 of filter element 2 of FIG. 19. But having no proximal webbing members thus maximising the size of the inlet opening.
  • FIG. 27 illustrates a filter element 61, which is similar to the distal section 4 and part of the intermediate section 5 of filter element 20 of FIG. 21, having the advantages of the laminate structure previously described, combined with the large inlet opening of FIG. 26 and the variable distal geometry of FIG. 19 (enabling the filter to accommodate a range of vessel sizes).
  • FIG. 28 illustrates a further filter element 65, which includes a support ring 66 to maintain the intermediate section 5 open to advancing blood flow. Support ring 66 may be arranged perpendicular to the direction of the blood flow or inclined at an angle, as illustrated in FIG. 28. The support ring 66 may be of an elastic, super elastic or shape memory material, and may be either actuated remotely to appose the vessel wall in a perpendicular or close to perpendicular position, or fixed in circumference so that its inclination and shape are controlled by the diameter of the vessel.
  • A different layer structure may be provided at any desired location of the filter body to achieve required properties.
  • Referring now to FIG. 29 there is shown another filter element according to the invention, indicated generally by the reference 70. The filter element 70 has a filter body 72 of generally similar construction to the filter element described previously the body having a proximal section 73 and a distal section 74 interconnected by an intermediate section 75. In this case, the distal section 74 is of a relatively hard polyurethane material whilst the proximal section 73 and intermediate section 75 are of a softer grade polyurethane material. A number of longitudinal ribs 76 are provided around a circumference of the proximal section 73. Advantageously, this construction facilitates close engagement of an outer circumference of the proximal section 73 against a vessel wall to minimise the risk of embolic material bypassing the filter element 70. An internal support frame, as described above, urges the proximal section 73 outwardly so that it expands against and closely conforms with the wall of the blood vessel in which the filter element 70 is mounted in use.
  • Conveniently, the corrugations or ribs 76 allow the proximal section 73 of the filter element 70 to accommodate a wider range of vessel sizes whilst maintaining good contact between the outer circumference of the proximal section 73 and the vessel wall and providing improved filter body integrity.
  • Referring to FIG. 30 there is illustrated another filter element 80 according to the invention. In this case corrugations 81 are provided for improved filter body integrity.
  • Referring to FIG. 31 there is illustrated another filter element 82 according to the invention. In this case the cross section of the filter element 82 is of a flower petal shape with a plurality of longitudinally extending ribs 83 for improved apposition. As explained in reference to FIG. 29, the “petal shaped” cross section (as for corrugations) increase the circumference of the filter body, thus enabling the body to be apposed closely against the vessel wall by a supporting structure in a wide range of vessel sizes.
  • Referring to FIG. 32 there is illustrated another filter element 85 according to the invention. In this case slits 86 are provided in the place of the corrugations or “petal shapes” shown above. The slits 86 enable the body of the filter to conform to a range of vessel diameters by overlapping and preventing creasing in small diameter vessels, or allowing the body to expand with the aid of a supporting structure in larger diameter vessels. In both instances close engagement of the outer circumference with the vessel wall is facilitated, thus minimizing the risk of embolic material bypassing the filter.
  • Referring to FIG. 33 there is illustrated another filter element 88 according to the invention. In this case ribs 89 are provided to prevent creases forming along the filter element 88 in the longitudinal direction, and also to allow expansion of the filter element 88.
  • Referring to FIG. 34 there is illustrated a further filter element 90 according to the invention, which is of a concertina-like shape with two circumferentially extending grooves 91, 92. This circumferential grooves or ribs have several advantages. They add to the integrity of the filter body, assisting it in maintaining its shape in the vessel after deployment. They inhibit the propagation of creases between the varying diameter body segments, so that one filter can be designed for a range of vessel sizes. They enable the filter to extend in length to greatly increase its effective volume without adding to the length of the deployed device in use. This provides the benefit of safe retrieval of large embolic loads as explained with reference to stretchable membranes below.
  • Referring to FIGS. 35(a) to 35(d) there is illustrated another embolic protection system according to the invention incorporating a filter element 94 according to the invention which is similar to those described above. The protection system includes a guidewire 95 and a retrieval catheter 96 which is advanced over the guidewire to retrieve the filter containing trapped embolic material 97. In this case the filter body includes an intermediate 98 and distal 99 membrane, one or both of which are stretchable to facilitate the retrieval of the captured embolic material 97. The stretching of the membrane during the retrieval process is illustrated in FIGS. 35(b) to 35(d).
  • The use of such a stretchable filter membrane allows larger volumes of captured embolic material to be retrieved than would be possible with a stiffer membrane. This is possible because if a filter is to be retrieved by withdrawing it into or through a catheter of a given internal diameter, the maximum volume of material that can be retrieved is directly proportional to the length of the filter and the internal diameter of the catheter. The stretchable membrane allows the filter to increase in length upon retrieval, thus increasing the space available for retention of captured embolic material. This is particularly significant in the case of large volumes of captured embolic material, which will be more difficult to safely retrieve with a non-stretchable device.
  • The stretchable section may include some or all of the filter body, and may not necessarily include the distal cone. The distal cone containing the outlet pores may be formed from a non stretch material, while the inter mediate filter body is stretchable.
  • This provides the advantage of filter extension during retrieval while preventing the problem of release of captured material through expanding distal pores.
  • Another advantage of the stretchable section is that the crossing profile can be reduced as the filter can be loaded into a delivery pod in a stretched, rather than bunched or folded configuration. This reduces the volume of filter material contained in any given cross section of the loaded delivery pod.
  • In addition the use of a stretchable filter material in the intermediate section can also be advantageous by providing a section of the filter body which can be circumferentially expanded by a support frame to appose the wall of a wide range of vessel sizes.
  • This invention is not limited to the embodiments hereinbefore described which may be varied in both construction and detail.

Claims (73)

1. A collapsible filter element for a transcatheter embolic protection device, the filter element comprising:
a collapsible filter body which is movable between a collapsed stored position for movement through a vascular system, an expanded position for extension across a blood vessel such that blood passing through the blood vessel is delivered through the filter element, and a withdrawal position for assisting in removing the filter body from a patient;
a proximal inlet portion of the filter body having one or more inlet openings sized to allow blood and embolic material enter the filter body; and
a distal outlet portion of the filter body having a plurality of outlet openings sized to allow through-passage of blood, but to retain embolic material within the filter body;
the filter body being at least partially of laminate construction comprising a membrane coated with a coating which is biocompatible, the thickness of the coating being from 4% to 40% of the thickness of the membrane to enhance the mechanical characteristics of the filter body.
2. A filter element as claimed in claim 1, wherein the thickness of the coating is from 4% to 30, of the thickness of the membrane.
3. A filter element as claimed in claim 1, wherein the thickness of the coating is approximately 20% of the thickness of the membrane.
4. A filter as claimed in claim 1, wherein the membrane is of a material selected from one or more of polyether block amide (PEBAX), polyester, polyethylene, polyurethane, terephthalate, nylon or, as appropriate, copolymers thereof.
5. A filter element as claimed in claim 1, wherein the coating is at least partially of a material selected from a non thrombogenic material and a fluropolymer material.
6. A filter element as claimed in claim 1, wherein the coating is of a hydrophilic material.
7. A filter element as claimed in claim 1, wherein the coating is of a hydrogel material.
8. A filter element as claimed in claim 1, wherein the coating includes a physiologically acceptable additive.
9. A filter element as claimed in claim 8, wherein the additive is a therapeutic additive.
10. A filter element as claimed in claim 8, wherein the additive is an antithrombogenic additive.
11. A filter element as claimed in claim 10, wherein the antithrombogenic additive is heparin.
12. A filter element as claimed claim 1, wherein the filter body is surface treated prior to application of the coating.
13. A filter element as claimed in claim 1, wherein the filter body comprises a proximal body section, a distal body section and an intermediate body section interconnecting the proximal and distal body sections, one or more of the body sections being of laminate construction.
14. A filter element as claimed in claim 13, wherein the body sections are of the same laminate construction.
15. A filter element as claimed in claim 14, wherein at least two of the body sections are of different laminate construction.
16. A filter element as claimed in claim 1, wherein the filter body has regions of at least one of varying hardness and stiffness.
17. A filter element as claimed in claim 1, wherein the filter body has a durometer of between 60D and 70A Shore hardness.
18. A filter element as claimed in claim 1, wherein the filter body has a first relatively stiff portion and a second relatively soft portion.
19. A filter element as claimed in claim 1, wherein one portion of the filter body has a larger wall thickness than a wall thickness of another section or portion.
20. A filter element as claimed in claim 1, wherein the filter body comprises a proximal body section and a distal body section, one of which forms a stiff first portion and the other of which forms a soft second portion.
21. A filter element as claimed in claim 20, wherein a proximal body section forms the soft second portion.
22. A filter element as claimed in claim 18, wherein the filter body comprises a proximal body section and a distal body section interconnected by an intermediate body section, one or both of the proximal body section and the intermediate body section forming the soft second portion, the distal body section forming the stiff first portion.
23. A filter element as claimed in claim 1, wherein the proximal body section has a ribbed outer surface.
24. A filter element as claimed in claim 1, wherein a plurality of spaced-apart longitudinal ribs are provided on the proximal section.
25. A filter element as claimed in claim 1, wherein the proximal body section includes corrugations.
26. A filter element as claimed in claim 1, wherein the filter body has expansion means to facilitate retrieval of the captured embolic material.
27. A filter element as claimed in claim 26, wherein at least the distal portion of the filter body is of a membrane material that is stretchable.
28. A filter element as claimed in claim 27, wherein at least the membrane is stretchable in a longitudinal direction to facilitate retrieval from the vasculature system.
29. A filter element as claimed in claim 1, wherein the filter body includes an intermediate portion extending proximally of the distal portion, the intermediate portion being of a membrane material that is stretchable.
30. A filter element as claimed in claim 1, wherein the filter body is a membrane of a memory material.
31. A filter element as claimed in claim 30, wherein the membrane is of polymeric material.
32. A collapsible filter element for a transcatheter embolic protection device, the filter element comprising:
a collapsible filter body which is movable between a collapsed stored position for movement through a vascular system and an expanded position for extension across a blood vessel such that blood passing through the blood vessel is delivered through the filter element;
a proximal inlet portion of the filter body having one or more inlet openings sized to allow blood and embolic material enter the filter body;
a distal outlet portion of the filter body having a plurality of outlet openings sized to allow through-passage of blood, but to retain embolic material within the filter body;
wherein of the filter body includes a hydrophilic coating.
33. A filter element as claimed in claim 32, wherein at least the distal portion of the filter body is of a membrane material that is stretchable.
34. A filter element as claimed in claim 33, wherein at least the membrane is stretchable in the longitudinal direction for retrieval from the vasculature.
35. A filter element as claimed in claim 32, wherein the filter body includes an intermediate portion extending from the distal portion, the intermediate portion being of a membrane material that is stretchable.
36. A filter element as claimed in claim 33, wherein the membrane is of a memory material.
37. A filter element as claimed in claim 36, wherein the membrane is of polymeric material.
38. A transcatheter embolic protection device including:
a delivery system comprising:
a tubular member having a longitudinal axis, distal and proximal portions, said distal portion of the tubular member being removable advanceable into the vasculature of a patient;
a medical guidewire longitudinally axially movable in said tubular member and having distal and proximal portions;
and a filter element as claimed in claim 1, the filter body having;
a first collapsed, insertion and withdrawal configuration and a second expanded, deployed configuration;
a proximal inlet section and distal outlet section, said proximal inlet section including inlet openings which are operable to admit body fluid when the filter body is in the second expanded configuration;
a plurality of outlet openings disposed on at least a portion of the filter element adjacent to the distal outlet section;
wherein said filter body is moved between said first and second configurations by displacement of said delivery system.
39. A device as claimed in claim 38, wherein the filter body has collapsible filter frame operably coupled thereto.
40. A device as claimed in claim 39, wherein said frame comprises a plurality of support arms having proximal and distal ends.
41. A device as claimed in claim 40, wherein the arms are formed of at least one of an elastic a superelastic and a shape memory material.
42. A device as claimed in claim 39, wherein said frame is constructed such that filter body is biased toward said second, deployed configuration.
43. A device as claimed in claim 40, wherein said inlet openings are defined at least partially by said arms.
44. A device as claimed in claim 40, wherein proximal portions of said arms extend generally outwardly and distally from said guidewire when said filter body is in said second, deployed configuration.
45. A device as claimed in claim 40, wherein distal portions of said arms extend generally outwardly and proximally from said guidewire when said filter body is in said second, deployed configuration.
46. A device as claimed in claim 38, wherein the distal portion of the tubular member further includes a pod for receiving therein the filter body when in said first, collapsed configuration.
47. A device as claimed in claim 46, wherein said filter body is urged into said first, collapsed configuration by said pod when the guidewire is moved proximally.
48. A device as claimed in claim 38, wherein said guidewire is solid.
49. A device as claimed in claim 38, wherein said filter body comprises a sleeve slidably disposed on said guidewire.
50. A device as claimed in claim 49, further comprising stops for limiting the range of longitudinal movement of the sleeve on said guidewire.
51. A device as claimed in claim 50, wherein the sleeve further comprises a guidewire member distal to the filter body tapering distally.
52. A filter element as claimed in claim 1, including a filter diameter between 4 mm and 6 mm.
53. A filter element as claimed in claim 32, including a filter diameter between 4 mm and 6 mm.
54. A collapsible filter for a medical procedure, comprising:
a collapsible filter frame, the filter frame movable between a first collapsed position and a second uncollected position; and
a filtering element at least partially disposed over a portion of the filter frame, the filtering element being formed of at least two layers.
55. The collapsible filter according to claim 54, wherein the filtering element is formed of three layers.
56. The collapsible filter according to claim 54, wherein at least one of the layers is constructed of a biocompatible elastomeric material.
57. The collapsible filter according to claim 56, wherein the other layer is constructed of a coating, the coating chosen from the group comprising, Poly(2-hydroxy ethyl methacrylate)—(PHEMA), Poly(vinyl alcohol)—(PVA), Poly (ethylene oxide)—(PEO), Poly (carboxylic acids), Poly (acrylic acid)—(PAA), Poly (methacrylic acid)—(PMAA), Poly (N-vinyl-2-pyrollidone)—(PNVP), Poly (sulfonic acids), poly (acrylonitrile), Poly (acrylamides), Cellulose ethers, Collagen, Carrageenan, Aquamer (Sky Polymers Inc.), Phosphoryicholine (PC) (Biocompatibiles Ltd), Surmodics (Surmodics Inc. BSI), Hydak (Biocoat Inc),Hydomer (Hydormer Inc).
58. The collapsible filter according to claim 54, wherein one of the layers is a coating applied to another layer thereby forming the two layers, wherein the coating has a thickness of about 5% to about 40% of a total thickness of the two layers.
59. The collapsible filter according to claim 56 wherein the biocompatible elastomeric material has variable stiffness along a length thereof.
60. The collapsible filter according to claim 59, wherein a portion of the biocompatible elastomeric material has a durometer different than other portions.
61. The collapsible filter according to claim 56, wherein the biocompatible elastomeric material is composed of at least two sections.
62. The collapsible filter according to claim 61, wherein at least one of the sections has a stiffness different than other sections.
63. The collapsible filter according to claim 61, wherein one of the sections has a lesser wall thickness than another section.
64. The collapsible filter according to claim 56, wherein the biocompatible elastomeric material is composed of three sections, a proximal section an intermediate section and a distal section.
65. The collapsible filter according to claim 64, wherein the proximal section and the distal section have a stiffness greater than the intermediate portion.
66. The collapsible filter according to claim 65, wherein the proximal and distal sections have a thickness less than that of the intermediate section.
67. The collapsible filter according to claim 65, wherein the intermediate section is constructed of a soft elastic polyurethane.
68. A collapsible filter for a medical procedure, comprising:
a collapsible filter frame, the filter frame movable between a first collapsed position and a second uncollected position; and
a filtering element at least partially disposed over a portion of the filter frame, the filtering element having a proximal section an intermediate section and a distal section, wherein at least one of the sections has a stiffness different than the others.
69. The collapsible filter according to claim 68, wherein the proximal section and the distal section have a stiffness greater than the intermediate portion.
70. The collapsible filter according to claim 68, wherein the intermediate section is constructed of a soft elastic polyurethane.
71. The collapsible filter according to claim 68, further including a coating disposed on at least one surface of the filtering element.
72. The collapsible filter according to claim 71, wherein the coating chosen from the group comprising: Poly(2-hydroxy ethyl methacrylate)—(PHEMA), Poly(vinyl alcohol)—(PVA). Poly (ethylene oxide)—(PEO), Poly (carboxylic acids), Poly (acrylic acid)—(PAA), Poly (methacrylic acid)—(PMAA), Poly (N-vinyl-2-pyrollidone)—(PNVP), Poly (sulfonic acids), poly (acrylonitrile), poly (acrylamides), Cellulose ethers, Collagen, Carrageenan, Aquamer (Sky Polymers Inc.), Phosphoryicholine (PC) (Biocompatibiles Ltd), Surmodics (Surmodics Inc. BSI), Hydak (Biocoat Inc),Hydomer (Hydormer Inc).
73. A collapsible filter for a medical procedure, comprising:
a collapsible filter frame, the filter frame movable between a first collapsed position and a second uncollected position;
a filtering element at least partially disposed over a portion of the filter frame, the filtering element having a proximal section an intermediate section and a distal section, wherein at least one of the sections has a stiffness different than the others: and
a coating applied to a surface of the filtering element, the coating chosen from the group comprising: Poly(2-hydroxy ethyl methacrylate)—(PHEMA), Poly(vinyl alcohol)—(PVA), Poly (ethylene oxide)—(PEO), Poly (carboxylic acids), Poly (acrylic acid)—(PAA), Poly (methacrylic acid)—(PMAA), Poly (N-vinyl-2-pyrollidone)—(PNVP), Poly (sulfonic acids), poly (acrylonitrile), poly (acrylamides), Cellulose ethers, Collagen, Carrageenan, Aquamer (Sky polymers Inc.), Phosphoryicholine (PC) (Biocompatibiles Ltd), Surmodics (Surmodics Inc. BSI), Hydak (Biocoat Inc),Hydomer (Hydormer Inc).
US11/562,616 1999-05-07 2006-11-22 Filter element for embolic protection device Abandoned US20070282368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/562,616 US20070282368A1 (en) 1999-05-07 2006-11-22 Filter element for embolic protection device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
PCT/IE1999/000036 WO2000067666A1 (en) 1999-05-07 1999-05-07 Improved filter element for embolic protection device
PCT/IE1999/000033 WO2000067664A1 (en) 1999-05-07 1999-05-07 An embolic protection device
IEPCT/IE99/00033 1999-05-07
IEPCT/IE99/00036 1999-05-07
PCT/IE2000/000053 WO2000067668A1 (en) 1999-05-07 2000-05-08 Improved filter element for embolic protection device
US09/985,820 US7491215B2 (en) 1999-05-07 2001-11-06 Filter element for embolic protection device
US11/562,616 US20070282368A1 (en) 1999-05-07 2006-11-22 Filter element for embolic protection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/985,820 Continuation US7491215B2 (en) 1999-05-07 2001-11-06 Filter element for embolic protection device

Publications (1)

Publication Number Publication Date
US20070282368A1 true US20070282368A1 (en) 2007-12-06

Family

ID=11042518

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/985,820 Expired - Fee Related US7491215B2 (en) 1999-05-07 2001-11-06 Filter element for embolic protection device
US11/562,616 Abandoned US20070282368A1 (en) 1999-05-07 2006-11-22 Filter element for embolic protection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/985,820 Expired - Fee Related US7491215B2 (en) 1999-05-07 2001-11-06 Filter element for embolic protection device

Country Status (6)

Country Link
US (2) US7491215B2 (en)
AT (1) ATE286686T1 (en)
AU (1) AU3844499A (en)
DE (1) DE60017382T2 (en)
WO (1) WO2000067666A1 (en)
ZA (1) ZA200108442B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060149313A1 (en) * 2004-12-30 2006-07-06 Edward Arguello Distal protection apparatus with improved wall apposition
US20070005097A1 (en) * 2005-06-20 2007-01-04 Renati Richard J Intravascular filter
EP2241284A1 (en) 2009-04-15 2010-10-20 National University of Ireland, Galway Intravasculature devices and balloons for use therewith

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69838952T2 (en) 1997-11-07 2009-01-02 Salviac Ltd. EMBOLISM PROTECTION DEVICE
US7491216B2 (en) 1997-11-07 2009-02-17 Salviac Limited Filter element with retractable guidewire tip
US6171327B1 (en) 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6918921B2 (en) 1999-05-07 2005-07-19 Salviac Limited Support frame for an embolic protection device
US6964672B2 (en) 1999-05-07 2005-11-15 Salviac Limited Support frame for an embolic protection device
WO2000067666A1 (en) * 1999-05-07 2000-11-16 Salviac Limited Improved filter element for embolic protection device
WO2000067665A1 (en) * 1999-05-07 2000-11-16 Salviac Limited Support frame for embolic protection device
US6544279B1 (en) 2000-08-09 2003-04-08 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US6217589B1 (en) 1999-10-27 2001-04-17 Scimed Life Systems, Inc. Retrieval device made of precursor alloy cable and method of manufacturing
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
US6660021B1 (en) 1999-12-23 2003-12-09 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US6575997B1 (en) 1999-12-23 2003-06-10 Endovascular Technologies, Inc. Embolic basket
US6695813B1 (en) 1999-12-30 2004-02-24 Advanced Cardiovascular Systems, Inc. Embolic protection devices
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
GB2369575A (en) 2000-04-20 2002-06-05 Salviac Ltd An embolic protection system
US6565591B2 (en) * 2000-06-23 2003-05-20 Salviac Limited Medical device
AU2001266279A1 (en) 2000-06-23 2002-01-02 Salviac Limited Filter element for embolic protection device
US6964670B1 (en) 2000-07-13 2005-11-15 Advanced Cardiovascular Systems, Inc. Embolic protection guide wire
US6506203B1 (en) 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US6974468B2 (en) 2001-02-28 2005-12-13 Scimed Life Systems, Inc. Filter retrieval catheter
US7678128B2 (en) * 2001-06-29 2010-03-16 Advanced Cardiovascular Systems, Inc. Delivery and recovery sheaths for medical devices
US7338510B2 (en) 2001-06-29 2008-03-04 Advanced Cardiovascular Systems, Inc. Variable thickness embolic filtering devices and method of manufacturing the same
US6599307B1 (en) 2001-06-29 2003-07-29 Advanced Cardiovascular Systems, Inc. Filter device for embolic protection systems
CN100409818C (en) * 2001-07-06 2008-08-13 周星 Reusable temporary thrombus filter
US6638294B1 (en) 2001-08-30 2003-10-28 Advanced Cardiovascular Systems, Inc. Self furling umbrella frame for carotid filter
US6592606B2 (en) 2001-08-31 2003-07-15 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US20030078614A1 (en) * 2001-10-18 2003-04-24 Amr Salahieh Vascular embolic filter devices and methods of use therefor
US6887257B2 (en) 2001-10-19 2005-05-03 Incept Llc Vascular embolic filter exchange devices and methods of use thereof
US7241304B2 (en) 2001-12-21 2007-07-10 Advanced Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
WO2003055412A2 (en) 2001-12-21 2003-07-10 Salviac Limited A support frame for an embolic protection device
US8070769B2 (en) * 2002-05-06 2011-12-06 Boston Scientific Scimed, Inc. Inverted embolic protection filter
US20040006365A1 (en) 2002-05-13 2004-01-08 Salviac Limited Embolic protection system
US7166120B2 (en) * 2002-07-12 2007-01-23 Ev3 Inc. Catheter with occluding cuff
US7331973B2 (en) 2002-09-30 2008-02-19 Avdanced Cardiovascular Systems, Inc. Guide wire with embolic filtering attachment
US7252675B2 (en) 2002-09-30 2007-08-07 Advanced Cardiovascular, Inc. Embolic filtering devices
US20040088000A1 (en) 2002-10-31 2004-05-06 Muller Paul F. Single-wire expandable cages for embolic filtering devices
US7323001B2 (en) 2003-01-30 2008-01-29 Ev3 Inc. Embolic filters with controlled pore size
US20040153119A1 (en) 2003-01-30 2004-08-05 Kusleika Richard S. Embolic filters with a distal loop or no loop
US7220271B2 (en) 2003-01-30 2007-05-22 Ev3 Inc. Embolic filters having multiple layers and controlled pore size
US6878291B2 (en) 2003-02-24 2005-04-12 Scimed Life Systems, Inc. Flexible tube for cartridge filter
US7740644B2 (en) 2003-02-24 2010-06-22 Boston Scientific Scimed, Inc. Embolic protection filtering device that can be adapted to be advanced over a guidewire
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US20040236309A1 (en) * 2003-05-19 2004-11-25 Benson Yang Mesh ventricular catheter with antithrombogenic coating
US9301829B2 (en) 2003-07-30 2016-04-05 Boston Scientific Scimed, Inc. Embolic protection aspirator
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
ATE521302T1 (en) * 2004-09-17 2011-09-15 Nitinol Dev Corp SHAPE MEMORY THIN FILM EMBOLIC PROTECTION DEVICE
WO2006042114A1 (en) 2004-10-06 2006-04-20 Cook, Inc. Emboli capturing device having a coil and method for capturing emboli
US7892592B1 (en) * 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US20080147111A1 (en) * 2005-01-03 2008-06-19 Eric Johnson Endoluminal Filter With Fixation
US20060241677A1 (en) * 2005-01-03 2006-10-26 Eric Johnson Methods for maintaining a filtering device within a lumen
ATE539789T1 (en) 2005-02-18 2012-01-15 Tyco Healthcare QUICKLY REPLACEABLE CATHETER
US8945169B2 (en) 2005-03-15 2015-02-03 Cook Medical Technologies Llc Embolic protection device
US8221446B2 (en) 2005-03-15 2012-07-17 Cook Medical Technologies Embolic protection device
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
US7850708B2 (en) 2005-06-20 2010-12-14 Cook Incorporated Embolic protection device having a reticulated body with staggered struts
US8109962B2 (en) 2005-06-20 2012-02-07 Cook Medical Technologies Llc Retrievable device having a reticulation portion with staggered struts
US7771452B2 (en) 2005-07-12 2010-08-10 Cook Incorporated Embolic protection device with a filter bag that disengages from a basket
US7766934B2 (en) 2005-07-12 2010-08-03 Cook Incorporated Embolic protection device with an integral basket and bag
US8187298B2 (en) 2005-08-04 2012-05-29 Cook Medical Technologies Llc Embolic protection device having inflatable frame
US8377092B2 (en) 2005-09-16 2013-02-19 Cook Medical Technologies Llc Embolic protection device
US8632562B2 (en) 2005-10-03 2014-01-21 Cook Medical Technologies Llc Embolic protection device
US8182508B2 (en) 2005-10-04 2012-05-22 Cook Medical Technologies Llc Embolic protection device
US8252017B2 (en) 2005-10-18 2012-08-28 Cook Medical Technologies Llc Invertible filter for embolic protection
US8216269B2 (en) 2005-11-02 2012-07-10 Cook Medical Technologies Llc Embolic protection device having reduced profile
US8152831B2 (en) 2005-11-17 2012-04-10 Cook Medical Technologies Llc Foam embolic protection device
US20080071307A1 (en) 2006-09-19 2008-03-20 Cook Incorporated Apparatus and methods for in situ embolic protection
US20080167679A1 (en) * 2007-01-06 2008-07-10 Papp John E Cage and Sleeve Assembly for a Filtering Device
US9901434B2 (en) 2007-02-27 2018-02-27 Cook Medical Technologies Llc Embolic protection device including a Z-stent waist band
US9364586B2 (en) 2007-05-31 2016-06-14 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US9144509B2 (en) 2007-05-31 2015-09-29 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US9149610B2 (en) 2007-05-31 2015-10-06 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
US8252018B2 (en) 2007-09-14 2012-08-28 Cook Medical Technologies Llc Helical embolic protection device
US8419748B2 (en) 2007-09-14 2013-04-16 Cook Medical Technologies Llc Helical thrombus removal device
US9138307B2 (en) 2007-09-14 2015-09-22 Cook Medical Technologies Llc Expandable device for treatment of a stricture in a body vessel
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US8388644B2 (en) 2008-12-29 2013-03-05 Cook Medical Technologies Llc Embolic protection device and method of use
US9820726B2 (en) * 2009-08-24 2017-11-21 St. Jude Medical Puerto Rico Llc Polymer membrane locator with built-in stress relief structure
US20110054504A1 (en) * 2009-08-31 2011-03-03 Boston Scientific Scimed, Inc. Recanalization device with expandable cage
EP2629684B1 (en) 2010-10-22 2018-07-25 Neuravi Limited Clot engagement and removal system
US20200000483A1 (en) * 2014-03-05 2020-01-02 Neuravi Limited Systems and methods to restore perfusion to a vessel
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
US9301769B2 (en) 2011-03-09 2016-04-05 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10548706B2 (en) 2012-01-13 2020-02-04 Volcano Corporation Retrieval snare device and method
US10426501B2 (en) 2012-01-13 2019-10-01 Crux Biomedical, Inc. Retrieval snare device and method
US10213288B2 (en) 2012-03-06 2019-02-26 Crux Biomedical, Inc. Distal protection filter
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
ES2960917T3 (en) 2013-03-14 2024-03-07 Neuravi Ltd Clot retrieval device to remove occlusive clots from a blood vessel
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
US9533262B2 (en) 2013-03-14 2017-01-03 Dow Global Technologies Llc Composite polyamide membrane including dissolvable polymer coating
WO2014140092A2 (en) 2013-03-14 2014-09-18 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10010398B2 (en) 2013-10-01 2018-07-03 Cook Medical Technologies Llc Filter device, system, and method
US10350098B2 (en) 2013-12-20 2019-07-16 Volcano Corporation Devices and methods for controlled endoluminal filter deployment
US10285720B2 (en) 2014-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US10441301B2 (en) 2014-06-13 2019-10-15 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
EP3223723B1 (en) 2014-11-26 2020-01-08 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
AU2017312421A1 (en) 2016-08-17 2019-03-07 Neuravi Limited A clot retrieval system for removing occlusive clot from a blood vessel
MX2019002565A (en) 2016-09-06 2019-09-18 Neuravi Ltd A clot retrieval device for removing occlusive clot from a blood vessel.
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
JP2020142074A (en) 2019-03-04 2020-09-10 ニューラヴィ・リミテッド Actuated clot retrieval catheter
EP3791815A1 (en) 2019-09-11 2021-03-17 Neuravi Limited Expandable mouth catheter
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
US11944327B2 (en) 2020-03-05 2024-04-02 Neuravi Limited Expandable mouth aspirating clot retrieval catheter
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11937836B2 (en) 2020-06-22 2024-03-26 Neuravi Limited Clot retrieval system with expandable clot engaging framework
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
US11937837B2 (en) 2020-12-29 2024-03-26 Neuravi Limited Fibrin rich / soft clot mechanical thrombectomy device
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam
US11937839B2 (en) 2021-09-28 2024-03-26 Neuravi Limited Catheter with electrically actuated expandable mouth

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5800525A (en) * 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US5814064A (en) * 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US6171327B1 (en) * 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6315794B1 (en) * 1997-11-13 2001-11-13 Medinol Ltd. Multilayered metal stent
US6391044B1 (en) * 1997-02-03 2002-05-21 Angioguard, Inc. Vascular filter system
US7491215B2 (en) * 1999-05-07 2009-02-17 Salviac Limited Filter element for embolic protection device

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2943626A (en) 1957-01-31 1960-07-05 Dormia Enrico Instruments for the extraction of foreign bodies
US2854983A (en) 1957-10-31 1958-10-07 Arnold M Baskin Inflatable catheter
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
GB1149979A (en) * 1966-04-30 1969-04-23 Teves Gmbh Alfred Improvements in or relating to brake discs
US3435824A (en) 1966-10-27 1969-04-01 Herminio Gamponia Surgical apparatus and related process
US3540431A (en) 1968-04-04 1970-11-17 Kazi Mobin Uddin Collapsible filter for fluid flowing in closed passageway
US3692029A (en) 1971-05-03 1972-09-19 Edwin Lloyd Adair Retention catheter and suprapubic shunt
US3730185A (en) 1971-10-29 1973-05-01 Cook Inc Endarterectomy apparatus
US3952747A (en) 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
US4295464A (en) 1980-03-21 1981-10-20 Shihata Alfred A Ureteric stone extractor with two ballooned catheters
US4404971A (en) 1981-04-03 1983-09-20 Leveen Harry H Dual balloon catheter
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
DE3235974A1 (en) 1981-11-24 1983-06-01 Volkmar Dipl.-Ing. Merkel (FH), 8520 Erlangen DEVICE FOR REMOVAL OR FOR THE EXPANSION OF CONSTRAINTS IN BODY LIQUID LEADING VESSELS
US4425909A (en) 1982-01-04 1984-01-17 Rieser Michael J Laryngoscope
US4423725A (en) 1982-03-31 1984-01-03 Baran Ostap E Multiple surgical cuff
US4445892A (en) 1982-05-06 1984-05-01 Laserscope, Inc. Dual balloon catheter device
US4493711A (en) 1982-06-25 1985-01-15 Thomas J. Fogarty Tubular extrusion catheter
US4512762A (en) 1982-11-23 1985-04-23 The Beth Israel Hospital Association Method of treatment of atherosclerosis and a balloon catheter for same
DE3419962A1 (en) 1983-05-30 1984-12-06 Olympus Optical Co., Ltd., Tokio/Tokyo HIGH FREQUENCY INCISION AND EXCISION INSTRUMENT
US4585000A (en) 1983-09-28 1986-04-29 Cordis Corporation Expandable device for treating intravascular stenosis
US4586919A (en) 1984-04-06 1986-05-06 Taheri Syde A External shunt and method for procuring and preserving the endothelium of a vein used in arterial bypass
US4611594A (en) 1984-04-11 1986-09-16 Northwestern University Medical instrument for containment and removal of calculi
DK151404C (en) 1984-05-23 1988-07-18 Cook Europ Aps William FULLY FILTER FOR IMPLANTATION IN A PATIENT'S BLOOD
US4926858A (en) 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US4807626A (en) 1985-02-14 1989-02-28 Mcgirr Douglas B Stone extractor and method
US4650466A (en) 1985-11-01 1987-03-17 Angiobrade Partners Angioplasty device
US4790812A (en) 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
US4723549A (en) 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4712551A (en) 1986-10-14 1987-12-15 Rayhanabad Simon B Vascular shunt
FR2606641B1 (en) 1986-11-17 1991-07-12 Promed FILTERING DEVICE FOR BLOOD CLOTS
US4817600A (en) 1987-05-22 1989-04-04 Medi-Tech, Inc. Implantable filter
US4794928A (en) 1987-06-10 1989-01-03 Kletschka Harold D Angioplasty device and method of using the same
US4867156A (en) 1987-06-25 1989-09-19 Stack Richard S Percutaneous axial atheroectomy catheter assembly and method of using the same
US4873978A (en) 1987-12-04 1989-10-17 Robert Ginsburg Device and method for emboli retrieval
FR2632864B2 (en) 1987-12-31 1990-10-19 Biomat Sarl ANTI-EMBOLIC ELASTIC FILTERING SYSTEM FOR CELLAR VEIN AND ASSEMBLY OF MEANS FOR ITS PLACEMENT
FR2632848A1 (en) 1988-06-21 1989-12-22 Lefebvre Jean Marie FILTER FOR MEDICAL USE
US4832055A (en) 1988-07-08 1989-05-23 Palestrant Aubrey M Mechanically locking blood clot filter
US5011488A (en) 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
US5254622A (en) 1988-12-09 1993-10-19 Asahi Kasei Kogyo Kabushiki Kaisha ABS resin compositions and molded articles thereof having improved coating performances
US4927426A (en) 1989-01-03 1990-05-22 Dretler Stephen P Catheter device
US5152777A (en) 1989-01-25 1992-10-06 Uresil Corporation Device and method for providing protection from emboli and preventing occulsion of blood vessels
US4969891A (en) 1989-03-06 1990-11-13 Gewertz Bruce L Removable vascular filter
DE9010130U1 (en) 1989-07-13 1990-09-13 American Medical Systems, Inc., Minnetonka, Minn., Us
US5092839A (en) 1989-09-29 1992-03-03 Kipperman Robert M Coronary thrombectomy
GB2238485B (en) 1989-11-28 1993-07-14 Cook William Europ A collapsible filter for introduction in a blood vessel of a patient
US5421832A (en) 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5122125A (en) 1990-04-25 1992-06-16 Ashridge A.G. Catheter for angioplasty with soft centering tip
US5171233A (en) 1990-04-25 1992-12-15 Microvena Corporation Snare-type probe
CA2038605C (en) 1990-06-15 2000-06-27 Leonard Pinchuk Crack-resistant polycarbonate urethane polymer prostheses and the like
CA2048307C (en) 1990-08-14 1998-08-18 Rolf Gunther Method and apparatus for filtering blood in a blood vessel of a patient
US5108419A (en) 1990-08-16 1992-04-28 Evi Corporation Endovascular filter and method for use thereof
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5178158A (en) 1990-10-29 1993-01-12 Boston Scientific Corporation Convertible guidewire-catheter with soft tip
WO1992008510A1 (en) 1990-11-09 1992-05-29 Boston Scientific Corporation Guidewire for crossing occlusions in blood vessels
US5053008A (en) 1990-11-21 1991-10-01 Sandeep Bajaj Intracardiac catheter
FR2671283B1 (en) 1991-01-08 1995-05-12 Alain Durand INTRAVASCULAR MULTI-LIGHT CATHETER, LIKELY TO BE IMPLANTED WITH TUNNELLING.
US5454788A (en) 1991-04-24 1995-10-03 Baxter International Inc. Exchangeable integrated-wire balloon catheter
US5626605A (en) 1991-12-30 1997-05-06 Scimed Life Systems, Inc. Thrombosis filter
US5192284A (en) 1992-01-10 1993-03-09 Pleatman Mark A Surgical collector and extractor
FR2689388B1 (en) 1992-04-07 1999-07-16 Celsa Lg PERFECTIONALLY RESORBABLE BLOOD FILTER.
US5324304A (en) 1992-06-18 1994-06-28 William Cook Europe A/S Introduction catheter set for a collapsible self-expandable implant
EP0661949A4 (en) 1992-09-23 1995-09-20 Target Therapeutics Inc Medical retrieval device.
US5540707A (en) 1992-11-13 1996-07-30 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
FR2699809B1 (en) 1992-12-28 1995-02-17 Celsa Lg Device which can selectively constitute a temporary blood filter.
US5354310A (en) 1993-03-22 1994-10-11 Cordis Corporation Expandable temporary graft
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
US5897567A (en) 1993-04-29 1999-04-27 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
CA2118886C (en) 1993-05-07 1998-12-08 Dennis Vigil Method and apparatus for dilatation of a stenotic vessel
WO1995009567A1 (en) 1993-10-01 1995-04-13 Boston Scientific Corporation Improved vena cava filter
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
DE9409484U1 (en) 1994-06-11 1994-08-04 Naderlinger Eduard Vena cava thrombus filter
US5658296A (en) 1994-11-21 1997-08-19 Boston Scientific Corporation Method for making surgical retrieval baskets
US5709704A (en) 1994-11-30 1998-01-20 Boston Scientific Corporation Blood clot filtering
US6013093A (en) * 1995-11-28 2000-01-11 Boston Scientific Corporation Blood clot filtering
US5549626A (en) 1994-12-23 1996-08-27 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Vena caval filter
US5593394A (en) 1995-01-24 1997-01-14 Kanesaka; Nozomu Shaft for a catheter system
US6348056B1 (en) * 1999-08-06 2002-02-19 Scimed Life Systems, Inc. Medical retrieval device with releasable retrieval basket
DE19513164A1 (en) 1995-04-07 1996-10-10 Bayer Ag Hydroxy-terminated polycarbonates based on high mol. cyclic dimer diols with and use in prodn. of polyurethanes stable against hydrolysis and oxidn.
US5795322A (en) 1995-04-10 1998-08-18 Cordis Corporation Catheter with filter and thrombus-discharge device
US5707354A (en) 1995-04-17 1998-01-13 Cardiovascular Imaging Systems, Inc. Compliant catheter lumen and methods
US5766203A (en) 1995-07-20 1998-06-16 Intelliwire, Inc. Sheath with expandable distal extremity and balloon catheters and stents for use therewith and method
US5779716A (en) 1995-10-06 1998-07-14 Metamorphic Surgical Devices, Inc. Device for removing solid objects from body canals, cavities and organs
US6168604B1 (en) * 1995-10-06 2001-01-02 Metamorphic Surgical Devices, Llc Guide wire device for removing solid objects from body canals
US5769816A (en) 1995-11-07 1998-06-23 Embol-X, Inc. Cannula with associated filter
US5769871A (en) 1995-11-17 1998-06-23 Louisville Laboratories, Inc. Embolectomy catheter
US5695519A (en) 1995-11-30 1997-12-09 American Biomed, Inc. Percutaneous filter for carotid angioplasty
US5895398A (en) 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
NL1002423C2 (en) 1996-02-22 1997-08-25 Cordis Europ Temporary filter catheter.
US5834449A (en) * 1996-06-13 1998-11-10 The Research Foundation Of State University Of New York Treatment of aortic and vascular aneurysms with tetracycline compounds
US5723549A (en) * 1996-06-14 1998-03-03 Ferro Corporation Process for the preparation of brominated polystyrene having improved color characteristics
US5669933A (en) 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US5662671A (en) * 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5725519A (en) 1996-09-30 1998-03-10 Medtronic Instent Israel Ltd. Stent loading device for a balloon catheter
US6027509A (en) * 1996-10-03 2000-02-22 Scimed Life Systems, Inc. Stent retrieval device
US5876367A (en) 1996-12-05 1999-03-02 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US5800457A (en) 1997-03-05 1998-09-01 Gelbfish; Gary A. Intravascular filter and associated methodology
US5827324A (en) 1997-03-06 1998-10-27 Scimed Life Systems, Inc. Distal protection device
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US5846260A (en) 1997-05-08 1998-12-08 Embol-X, Inc. Cannula with a modular filter for filtering embolic material
US5911734A (en) * 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
ES2277388T3 (en) * 1997-05-16 2007-07-01 Jonathan Gertler GAME CATHETER-FILTER THAT HAS AN ADAPTABLE SEAL.
US5848964A (en) 1997-06-06 1998-12-15 Samuels; Shaun Lawrence Wilkie Temporary inflatable filter device and method of use
US5911725A (en) 1997-08-22 1999-06-15 Boury; Harb N. Intraluminal retrieval catheter
US5895410A (en) 1997-09-12 1999-04-20 B. Braun Medical, Inc. Introducer for an expandable vascular occlusion device
US6361545B1 (en) * 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
CN1122214C (en) 1997-10-21 2003-09-24 艾利森公司 System to associate control with applications using drag and drop interface
US7491216B2 (en) * 1997-11-07 2009-02-17 Salviac Limited Filter element with retractable guidewire tip
DE69838952T2 (en) * 1997-11-07 2009-01-02 Salviac Ltd. EMBOLISM PROTECTION DEVICE
US6206868B1 (en) * 1998-03-13 2001-03-27 Arteria Medical Science, Inc. Protective device and method against embolization during treatment of carotid artery disease
US6007557A (en) * 1998-04-29 1999-12-28 Embol-X, Inc. Adjustable blood filtration system
US6511492B1 (en) * 1998-05-01 2003-01-28 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
WO1999062432A1 (en) * 1998-06-04 1999-12-09 New York University Endovascular thin film devices and methods for treating and preventing stroke
US7018401B1 (en) * 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US20020138094A1 (en) * 1999-02-12 2002-09-26 Thomas Borillo Vascular filter system
US6355051B1 (en) * 1999-03-04 2002-03-12 Bioguide Consulting, Inc. Guidewire filter device
US6537296B2 (en) * 1999-04-01 2003-03-25 Scion Cardio-Vascular, Inc. Locking frame, filter and deployment system
US6267776B1 (en) * 1999-05-03 2001-07-31 O'connell Paul T. Vena cava filter and method for treating pulmonary embolism
US6176849B1 (en) * 1999-05-21 2001-01-23 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat
US6179859B1 (en) * 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US20020022858A1 (en) * 1999-07-30 2002-02-21 Demond Jackson F. Vascular device for emboli removal having suspension strut and methods of use
US6179861B1 (en) * 1999-07-30 2001-01-30 Incept Llc Vascular device having one or more articulation regions and methods of use
US6203561B1 (en) * 1999-07-30 2001-03-20 Incept Llc Integrated vascular device having thrombectomy element and vascular filter and methods of use
US20020026211A1 (en) * 1999-12-23 2002-02-28 Farhad Khosravi Vascular device having emboli and thrombus removal element and methods of use
US6530939B1 (en) * 1999-07-30 2003-03-11 Incept, Llc Vascular device having articulation region and methods of use
US6346116B1 (en) * 1999-08-03 2002-02-12 Medtronic Ave, Inc. Distal protection device
US6168579B1 (en) * 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
DE29916162U1 (en) * 1999-09-14 2000-01-13 Cormedics Gmbh Vascular filter system
US6325815B1 (en) * 1999-09-21 2001-12-04 Microvena Corporation Temporary vascular filter
US6340364B2 (en) * 1999-10-22 2002-01-22 Nozomu Kanesaka Vascular filtering device
US6264672B1 (en) * 1999-10-25 2001-07-24 Biopsy Sciences, Llc Emboli capturing device
US6171328B1 (en) * 1999-11-09 2001-01-09 Embol-X, Inc. Intravascular catheter filter with interlocking petal design and methods of use
US6511503B1 (en) * 1999-12-30 2003-01-28 Advanced Cardiovascular Systems, Inc. Catheter apparatus for treating occluded vessels and filtering embolic debris and method of use
US6361546B1 (en) * 2000-01-13 2002-03-26 Endotex Interventional Systems, Inc. Deployable recoverable vascular filter and methods for use
US6517550B1 (en) * 2000-02-02 2003-02-11 Board Of Regents, The University Of Texas System Foreign body retrieval device
US6514273B1 (en) * 2000-03-22 2003-02-04 Endovascular Technologies, Inc. Device for removal of thrombus through physiological adhesion
US6520978B1 (en) * 2000-05-15 2003-02-18 Intratherapeutics, Inc. Emboli filter
AU2001285078A1 (en) * 2000-08-18 2002-03-04 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
US6511496B1 (en) * 2000-09-12 2003-01-28 Advanced Cardiovascular Systems, Inc. Embolic protection device for use in interventional procedures
US6537294B1 (en) * 2000-10-17 2003-03-25 Advanced Cardiovascular Systems, Inc. Delivery systems for embolic filter devices
US6506203B1 (en) * 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US6482261B2 (en) * 2000-12-29 2002-11-19 Ebara Solar, Inc. Magnetic field furnace
US6506205B2 (en) * 2001-02-20 2003-01-14 Mark Goldberg Blood clot filtering system
US6537295B2 (en) * 2001-03-06 2003-03-25 Scimed Life Systems, Inc. Wire and lock mechanism
WO2002071977A2 (en) * 2001-03-08 2002-09-19 Atritech, Inc. Atrial filter implants
US7678128B2 (en) * 2001-06-29 2010-03-16 Advanced Cardiovascular Systems, Inc. Delivery and recovery sheaths for medical devices
US7338510B2 (en) * 2001-06-29 2008-03-04 Advanced Cardiovascular Systems, Inc. Variable thickness embolic filtering devices and method of manufacturing the same
US6997939B2 (en) * 2001-07-02 2006-02-14 Rubicon Medical, Inc. Methods, systems, and devices for deploying an embolic protection filter
US6878153B2 (en) * 2001-07-02 2005-04-12 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection and removing embolic material
US6951570B2 (en) * 2001-07-02 2005-10-04 Rubicon Medical, Inc. Methods, systems, and devices for deploying a filter from a filter device
US6962598B2 (en) * 2001-07-02 2005-11-08 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection
DE60212006T2 (en) * 2001-07-13 2007-04-19 B. Braun Medical Sas Vascular protection system and angioplasty device
US6656203B2 (en) * 2001-07-18 2003-12-02 Cordis Corporation Integral vascular filter system
US6533800B1 (en) * 2001-07-25 2003-03-18 Coaxia, Inc. Devices and methods for preventing distal embolization using flow reversal in arteries having collateral blood flow
US20030032941A1 (en) * 2001-08-13 2003-02-13 Boyle William J. Convertible delivery systems for medical devices
US7097651B2 (en) * 2001-09-06 2006-08-29 Advanced Cardiovascular Systems, Inc. Embolic protection basket
US20030060843A1 (en) * 2001-09-27 2003-03-27 Don Boucher Vascular filter system with encapsulated filter
US6923829B2 (en) * 2002-11-25 2005-08-02 Advanced Bio Prosthetic Surfaces, Ltd. Implantable expandable medical devices having regions of differential mechanical properties and methods of making same
EP1605865B1 (en) * 2003-03-17 2008-12-10 ev3 Endovascular, Inc. Stent with thin film composite laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US6391044B1 (en) * 1997-02-03 2002-05-21 Angioguard, Inc. Vascular filter system
US5814064A (en) * 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US5800525A (en) * 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US6315794B1 (en) * 1997-11-13 2001-11-13 Medinol Ltd. Multilayered metal stent
US6171327B1 (en) * 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US7491215B2 (en) * 1999-05-07 2009-02-17 Salviac Limited Filter element for embolic protection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060149313A1 (en) * 2004-12-30 2006-07-06 Edward Arguello Distal protection apparatus with improved wall apposition
US20070005097A1 (en) * 2005-06-20 2007-01-04 Renati Richard J Intravascular filter
EP2241284A1 (en) 2009-04-15 2010-10-20 National University of Ireland, Galway Intravasculature devices and balloons for use therewith
WO2010119110A1 (en) 2009-04-15 2010-10-21 National University Of Ireland, Galway Intravasculature devices and balloons for use therewith

Also Published As

Publication number Publication date
US7491215B2 (en) 2009-02-17
AU3844499A (en) 2000-11-21
DE60017382D1 (en) 2005-02-17
WO2000067666A1 (en) 2000-11-16
DE60017382T2 (en) 2006-03-02
ZA200108442B (en) 2002-08-28
ATE286686T1 (en) 2005-01-15
US20020107541A1 (en) 2002-08-08

Similar Documents

Publication Publication Date Title
US7491215B2 (en) Filter element for embolic protection device
EP1176924B1 (en) Improved filter element for embolic protection device
US6616682B2 (en) Methods and apparatus for distal protection during a medical procedure
US8236024B2 (en) Low profile emboli capture device
US5980555A (en) Method of using cannula with associated filter during cardiac surgery
US6511496B1 (en) Embolic protection device for use in interventional procedures
US20070100372A1 (en) Embolic protection device having a filter
WO2010126875A1 (en) Embolic protection device with maximized flow-through
US8216269B2 (en) Embolic protection device having reduced profile
WO2000067664A1 (en) An embolic protection device
IE20000341A1 (en) A Filter Element
IE20000343A1 (en) A Filter Element

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION