US20070263881A1 - Method and apparatus for locating a talker - Google Patents

Method and apparatus for locating a talker Download PDF

Info

Publication number
US20070263881A1
US20070263881A1 US11/828,118 US82811807A US2007263881A1 US 20070263881 A1 US20070263881 A1 US 20070263881A1 US 82811807 A US82811807 A US 82811807A US 2007263881 A1 US2007263881 A1 US 2007263881A1
Authority
US
United States
Prior art keywords
localization
audio signals
talker
estimates
speech activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/828,118
Inventor
Amiri Maziar
Dieter Schulz
Michael Tetelbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitel Networks Corp
Original Assignee
Mitel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitel Corp filed Critical Mitel Corp
Priority to US11/828,118 priority Critical patent/US20070263881A1/en
Assigned to MITEL CORPORATION reassignment MITEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMIRI, MAZIAR, SCHULZ, DIETER, TETELBAUM, MICHAEL
Publication of US20070263881A1 publication Critical patent/US20070263881A1/en
Assigned to MITEL NETWORKS CORPORATION reassignment MITEL NETWORKS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITEL KNOWLEDGE CORPORATION
Assigned to MITEL KNOWLEDGE CORPORATION reassignment MITEL KNOWLEDGE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITEL CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/801Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/805Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristics of a transducer or transducer system to give a desired condition of signal derived from that transducer or transducer system, e.g. to give a maximum or minimum signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • G10L2025/783Detection of presence or absence of voice signals based on threshold decision
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers

Definitions

  • the present invention relates generally to audio systems and in particular to a method and apparatus for locating a talker in a noisy or reverberant environment.
  • Localization of sources is required in many applications, such as teleconferencing, where the source position is used to steer a high quality microphone beam toward the talker.
  • the source position may additionally be used to focus a camera on the talker.
  • Localization of acoustic sources is fraught with practical difficulties. Firstly, reflecting walls (or other objects) generate virtual acoustic images of the source, which can be misidentified as real sources by the location estimator algorithm. Secondly, most of the known locator estimator algorithms are unable to distinguish between noise sources and talkers, especially in the presence of correlated noise and during speech pauses. Voice activity detectors have been used to freeze the localization during speech pauses, thereby minimizing the occurrence of incorrect talker localization as a result of echoes or noise.
  • spectral conditioning is used to enhance the performance of the estimator algorithm by restricting operation of the estimator to a narrow frequency band chosen to optimize localization rather than acoustic audibility, in contrast with the prior art.
  • An activity detector is also used, as known from the prior art, to identify voiced segments.
  • a decision logic state machine is implemented for receiving information from the activity detector and spectrally conditioned estimator and in response verifying localization estimates during periods of voice activation.
  • the method and apparatus of the present invention result in much faster talker localization than prior art approaches (typically less than 40 milliseconds), and require much less computational power.
  • the use of spectral conditioning results in increased resolution (i.e. how close two talkers are allowed to be while ensuring accurate localization).
  • the method and apparatus of the present invention are characterized by high operational stability in the presence of noise.
  • FIG. 1 is a block diagram of a talker localization system according to the present invention
  • FIGS. 2 a, 2 b and 2 c are beampatterns for a five element circular array which is unfiltered ( FIG. 2 a ), filtered to a low frequency band ( FIG. 2 b ), and filtered to a high frequency band ( FIG. 2 c );
  • FIG. 3 is a block diagram of a decision logic state machine according to the preferred embodiment of the present invention.
  • FIG. 4 is a flowchart showing operation of the state machine in FIG. 3 ;
  • FIG. 5 shows the results of a comparison of actual and estimated talker localization using the system of the present invention.
  • a talker localization system including an array 100 of microphones, a spectral conditioner 110 , an activity detector 120 , an estimator 130 , decision logic 140 and a steered device 150 . It is believed that while some components of the illustrated embodiment are known in the art (e.g. the estimator 130 and activity detector 120 ), the overall combination of elements is new, as are the addition of spectral conditioner 110 to the estimator 130 , and the specific design of the decision logic 140 , as described in greater detail below.
  • the array 100 includes a number of well-known circular microphone arrays, with the microphones covering hundreds of segments of a 360.degree. array. It is common to use five or six microphones per array, although the number of microphones may vary.
  • the signals from microphone array 100 are fed to activity detector 120 , spectral conditioner 110 and steered device 150 .
  • Activity detector 120 is a module that determines voiced time segments, as discussed in greater detail below. This information is needed in order to freeze the localization during speech pauses. Any kind of voice activity detection or silence detection algorithm may be used (e.g. an adaptive silence detection algorithm).
  • Spectral conditioner 110 filters the input to the estimator 130 . Each array channel is filtered separately. The purpose of the filtering is to restrict the estimation procedure to a narrow frequency band, chosen for best performance of the estimator 130 as well as to suppress noise sources. Consequently, the beamformer output is optimized for localization of talkers.
  • Estimator 130 generates a first order position estimation, by segment number, as is known from the prior art. However, as discussed above, the output of estimator 130 can become corrupted by reflecting objects, and noise sources. Activity detector 120 and decision logic 140 operate to reduce the impact of such sources, as discussed in greater detail below.
  • Decision logic 140 filters the position estimates provided by the estimator 130 .
  • the position estimates calculated during speech pauses, are disregarded.
  • the remainder of the position estimates are subjected to a verification process.
  • the output of the decision logic 140 is a verified final position estimate, which is then used by the steered device 150 .
  • Steered Device 150 can be a beamformer, an image tracking algorithm, or other system.
  • spectral conditioner 110 it is important to recognize that every array 100 is characterized by a predetermined resolution, which depends on the array size, array geometry, the number of sensors (microphones) used, the sampling frequency, and the frequency band of the source. Except for the frequency band of the source, all of these variables are constants for the purpose of the position estimation algorithm of estimator 130 . Having regard to the resolution, the algorithm can be restricted to look for the source in a finite number of positions/areas (i.e. segments of a circle).
  • a beamformer instance is “pointed” at each of the positions (i.e. different attenuation weightings are applied to the various microphone output signals).
  • the position having the highest beamformer output is declared to be the source.
  • the beamformer instances are used only for energy calculations.
  • the quality of the beamformer output signal is not particularly important. Therefore, the simplest beamforming algorithm (delay & sum beamformer) can be used.
  • high quality beamformers e.g. filter & sum beamformer
  • Using a simpler beamformer results in fewer computations, fewer instructions, and cheaper DSP chips.
  • the resolution also depends on the frequency band of the source.
  • the frequency band of speech is between 0 and 20 kHz.
  • the frequency response of a beamformer tends to vary over this frequency range.
  • FIG. 2 a shows the beampattern of a 5-element circular array 100 .
  • the shape of the beam results from the array configuration and the distance between the microphones.
  • the array does not obtain a minimum phase difference of .pi., which is needed for signal cancellation, thereby broadening the beam.
  • the beampattern is shown for a low frequency band signal (200-500 Hz).
  • the beampattern is much wider, with poor attenuation in the back.
  • the array obtains phase differences of several .pi., resulting in positive interference in the beamforming calculations, and side lobes in the beampattern.
  • the beampattern is shown for a high frequency band signal (1200-1500 Hz). In this case, the beampattern is narrow, but with significant side lobes.
  • bandpass filtering is provided by spectral conditioner 110 for narrowing the beampattern over certain frequency bands (a narrower beam means a better resolution), and suppressing all noise sources which do not radiate in the chosen frequency band. This restricts the influence of noise sources (e.g. electric motors which radiate mainly between 50 and 600 Hz.)
  • the frequency band where the estimator 130 provides the best results has to be computed empirically.
  • the choice of best frequency band is a tradeoff between:
  • the bandpass filtering provided by spectral conditioner 110 was centered at 1150 Hz with a bandwidth of 300 Hz. Those of skill in the art will however appreciate that other frequency bands can be used.
  • decision logic 140 is a state machine which combines the results of activity detector 120 and estimator 130 .
  • the decision logic 140 performs two major tasks. Firstly, the decision logic 140 disregards the estimates of source-position provided by estimator 130 during speech pauses (steps 300 and 320 ). Secondly, the decision logic 140 performs a verification operation on position estimates provided by estimator 130 . Specifically, decision logic 140 waits for the localization algorithm to repeat its estimation a predetermined number of times, n, including up to m ⁇ n mistakes.
  • a FIFO stack memory 330 stores past estimates. The size of the stack memory and the minimum number n of correct estimates needed for verification are chosen based on the performance of the activity detector 120 and estimator 130 . Every new estimate which has been declared as voiced by activity detector 120 is pushed into the top of FIFO stack memory 330 .
  • a counter 340 counts how many times the latest position estimate has occurred in the past, within the size restriction M of the FIFO stack memory 330 . If the current estimate has occurred more than n times (a constant threshold), the current position estimate is verified (step 350 ) and the estimation output is updated (step 360 ) and stored in a buffer (step 380 ). If the occurrence counter output is less than n (the threshold), the output remains as it was before (step 370 ).
  • step 300 During speech pauses no verification is performed (step 300 ), and a value of OxFFFFF(xx) is pushed into the FIFO stack primary 330 instead of the estimate. The output is not changed.
  • decision logic 140 is set forth in flowchart format with reference to FIG. 4 .
  • n Since the number of correct estimates, n, must be smaller than the size of FIFO stack memory 330 , M, the plot has a diagonal shape.
  • a stack size of 32 estimates and a threshold of at least 12 correct estimates in the FIFO stack memory 330 provide optimum performance.
  • the stack memory size and threshold of correct estimates can, however, be reduced slightly without significant loss of accuracy. Of course, the stack memory size and threshold can be further reduced with a decrease in accuracy.
  • the principles of the invention may be applied to any beamforming application, where a beam needs to be steered, including teleconferencing, hearing aid devices, microphone arrays for speech pick up in cars or other noisy environments, video conferencing, etc. Localization algorithms in the field of image processing can benefit from using this acoustic localization algorithm of this invention.
  • the position estimate provided by the present invention may be used to focus a camera on the talker.
  • the talker localization system is described as including the spectral conditioner and the decision logic, those of skill in the art will appreciate that the spectral conditioner 110 and decision logic 140 may be used with other components.
  • the spectral conditioner 110 may be used in conjunction with a Kalman filter instead of the decision logic. All such embodiments, modifications and applications are believed to be within the sphere and scope of the invention as defined by the claims appended hereto.

Abstract

An apparatus for locating a talker, comprising a microphone array for receiving multiple audio signals, wherein the microphone array is characterized by a predetermined beampattern, a spectral conditioner for filtering the audio signals to optimize the beampattern for talker localization, a localization estimator for calculating a localization estimate based on the filtered audio signals, an activity detector for detecting periods of speech activity, and decision logic for verifying the localization estimate during the periods of speech activity.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 09/894,539, filed on Jun. 28, 2001, now pending, which claims priority under 35 U.S.C. §119 to United Kingdom Patent No. 0016142.2, filed on Jun. 30, 2000, the contents of which are herein incorporated by reference in their entirety for all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates generally to audio systems and in particular to a method and apparatus for locating a talker in a noisy or reverberant environment.
  • BACKGROUND OF THE INVENTION
  • Localization of sources is required in many applications, such as teleconferencing, where the source position is used to steer a high quality microphone beam toward the talker. In video conferencing systems, the source position may additionally be used to focus a camera on the talker.
  • It is known in the art to use electronically steerable arrays of sensors in combination with location estimator algorithms to pinpoint the location of a talker in a room. In this regard, high quality and complex beamformers have been used to measure the power at different positions. Estimator algorithms locate the dominant audio source using power information received from the beamformers. Attempts have been made at improving the performance of prior art beamformers by enhancing acoustical audibility using filtering, etc. The foregoing prior art methodologies are described in Speaker localization using a steered Filter and sum Beamformer, N. Strobel, T. Meier, R. Rabenstein, presented at the Erlangen work shop 99, vision, modeling and visualization, Nov. 17-19, 1999, Erlangen, Germany.
  • Localization of acoustic sources is fraught with practical difficulties. Firstly, reflecting walls (or other objects) generate virtual acoustic images of the source, which can be misidentified as real sources by the location estimator algorithm. Secondly, most of the known locator estimator algorithms are unable to distinguish between noise sources and talkers, especially in the presence of correlated noise and during speech pauses. Voice activity detectors have been used to freeze the localization during speech pauses, thereby minimizing the occurrence of incorrect talker localization as a result of echoes or noise.
  • SUMMARY OF THE INVENTION
  • According to the present invention, spectral conditioning is used to enhance the performance of the estimator algorithm by restricting operation of the estimator to a narrow frequency band chosen to optimize localization rather than acoustic audibility, in contrast with the prior art. An activity detector is also used, as known from the prior art, to identify voiced segments. However, according to an important aspect of the invention, a decision logic state machine is implemented for receiving information from the activity detector and spectrally conditioned estimator and in response verifying localization estimates during periods of voice activation.
  • The method and apparatus of the present invention result in much faster talker localization than prior art approaches (typically less than 40 milliseconds), and require much less computational power. The use of spectral conditioning results in increased resolution (i.e. how close two talkers are allowed to be while ensuring accurate localization). Furthermore, the method and apparatus of the present invention are characterized by high operational stability in the presence of noise.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A preferred embodiment of the present invention will now be described more fully with reference to the accompanying drawings in which:
  • FIG. 1 is a block diagram of a talker localization system according to the present invention;
  • FIGS. 2 a, 2 b and 2 c are beampatterns for a five element circular array which is unfiltered (FIG. 2 a), filtered to a low frequency band (FIG. 2 b), and filtered to a high frequency band (FIG. 2 c);
  • FIG. 3 is a block diagram of a decision logic state machine according to the preferred embodiment of the present invention;
  • FIG. 4 is a flowchart showing operation of the state machine in FIG. 3; and
  • FIG. 5 shows the results of a comparison of actual and estimated talker localization using the system of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • With reference to FIG. 1, a talker localization system is provided in accordance with the present invention, including an array 100 of microphones, a spectral conditioner 110, an activity detector 120, an estimator 130, decision logic 140 and a steered device 150. It is believed that while some components of the illustrated embodiment are known in the art (e.g. the estimator 130 and activity detector 120), the overall combination of elements is new, as are the addition of spectral conditioner 110 to the estimator 130, and the specific design of the decision logic 140, as described in greater detail below.
  • The array 100 includes a number of well-known circular microphone arrays, with the microphones covering hundreds of segments of a 360.degree. array. It is common to use five or six microphones per array, although the number of microphones may vary. The signals from microphone array 100 are fed to activity detector 120, spectral conditioner 110 and steered device 150.
  • Activity detector 120 is a module that determines voiced time segments, as discussed in greater detail below. This information is needed in order to freeze the localization during speech pauses. Any kind of voice activity detection or silence detection algorithm may be used (e.g. an adaptive silence detection algorithm).
  • Spectral conditioner 110 filters the input to the estimator 130. Each array channel is filtered separately. The purpose of the filtering is to restrict the estimation procedure to a narrow frequency band, chosen for best performance of the estimator 130 as well as to suppress noise sources. Consequently, the beamformer output is optimized for localization of talkers.
  • Estimator 130 generates a first order position estimation, by segment number, as is known from the prior art. However, as discussed above, the output of estimator 130 can become corrupted by reflecting objects, and noise sources. Activity detector 120 and decision logic 140 operate to reduce the impact of such sources, as discussed in greater detail below.
  • Decision logic 140 filters the position estimates provided by the estimator 130. The position estimates calculated during speech pauses, are disregarded. The remainder of the position estimates are subjected to a verification process. The output of the decision logic 140 is a verified final position estimate, which is then used by the steered device 150.
  • Steered Device 150 can be a beamformer, an image tracking algorithm, or other system. Before discussing the operation of spectral conditioner 110, it is important to recognize that every array 100 is characterized by a predetermined resolution, which depends on the array size, array geometry, the number of sensors (microphones) used, the sampling frequency, and the frequency band of the source. Except for the frequency band of the source, all of these variables are constants for the purpose of the position estimation algorithm of estimator 130. Having regard to the resolution, the algorithm can be restricted to look for the source in a finite number of positions/areas (i.e. segments of a circle).
  • During operation of the estimator 130, a beamformer instance is “pointed” at each of the positions (i.e. different attenuation weightings are applied to the various microphone output signals). The position having the highest beamformer output is declared to be the source. It should be noted that, in this application, the beamformer instances are used only for energy calculations. The quality of the beamformer output signal is not particularly important. Therefore, the simplest beamforming algorithm (delay & sum beamformer) can be used. In most of the teleconferencing implementations, high quality beamformers (e.g. filter & sum beamformer) are used for measuring the power at each position. Using a simpler beamformer results in fewer computations, fewer instructions, and cheaper DSP chips.
  • As indicated above, the resolution also depends on the frequency band of the source. The frequency band of speech is between 0 and 20 kHz. The frequency response of a beamformer tends to vary over this frequency range.
  • FIG. 2 a shows the beampattern of a 5-element circular array 100. The shape of the beam results from the array configuration and the distance between the microphones. For frequencies with a wavelength greater than double the intermicrophone distance (i.e. .lambda.>2 (mic.sub.x−mic.sub.y)), the array does not obtain a minimum phase difference of .pi., which is needed for signal cancellation, thereby broadening the beam. In FIG. 2 b, the beampattern is shown for a low frequency band signal (200-500 Hz). In contrast with FIG. 2 a, the beampattern is much wider, with poor attenuation in the back. For frequencies resulting in wavelengths .lambda.<2 (mic.sub.x−mic.sub.y), the array obtains phase differences of several .pi., resulting in positive interference in the beamforming calculations, and side lobes in the beampattern. In FIG. 2 c, the beampattern is shown for a high frequency band signal (1200-1500 Hz). In this case, the beampattern is narrow, but with significant side lobes.
  • In order to improve the performance of the estimator 130, bandpass filtering is provided by spectral conditioner 110 for narrowing the beampattern over certain frequency bands (a narrower beam means a better resolution), and suppressing all noise sources which do not radiate in the chosen frequency band. This restricts the influence of noise sources (e.g. electric motors which radiate mainly between 50 and 600 Hz.)
  • The frequency band where the estimator 130 provides the best results has to be computed empirically. The choice of best frequency band is a tradeoff between:
  • 1. The frequency band where the array provides best beampattern.
  • 2. The frequency band where speech provides most of the audio energy.
  • 3. The frequency band with the least noise source energy.
  • In a preferred embodiment of the present invention, the bandpass filtering provided by spectral conditioner 110 was centered at 1150 Hz with a bandwidth of 300 Hz. Those of skill in the art will however appreciate that other frequency bands can be used.
  • As shown in FIG. 3, decision logic 140 is a state machine which combines the results of activity detector 120 and estimator 130. The decision logic 140 performs two major tasks. Firstly, the decision logic 140 disregards the estimates of source-position provided by estimator 130 during speech pauses (steps 300 and 320). Secondly, the decision logic 140 performs a verification operation on position estimates provided by estimator 130. Specifically, decision logic 140 waits for the localization algorithm to repeat its estimation a predetermined number of times, n, including up to m<n mistakes.
  • A FIFO stack memory 330 stores past estimates. The size of the stack memory and the minimum number n of correct estimates needed for verification are chosen based on the performance of the activity detector 120 and estimator 130. Every new estimate which has been declared as voiced by activity detector 120 is pushed into the top of FIFO stack memory 330. A counter 340 counts how many times the latest position estimate has occurred in the past, within the size restriction M of the FIFO stack memory 330. If the current estimate has occurred more than n times (a constant threshold), the current position estimate is verified (step 350) and the estimation output is updated (step 360) and stored in a buffer (step 380). If the occurrence counter output is less than n (the threshold), the output remains as it was before (step 370).
  • During speech pauses no verification is performed (step 300), and a value of OxFFFFF(xx) is pushed into the FIFO stack primary 330 instead of the estimate. The output is not changed.
  • The operation of decision logic 140 is set forth in flowchart format with reference to FIG. 4.
  • In order to determine the optimum values of n and M, the output of the system for different combination of these parameters, was compared with ideal behavior. The results of this comparison are shown in FIG. 5. Shaded area A represents the poorest performance, while areas B, C and D represent progressively better performance.
  • Since the number of correct estimates, n, must be smaller than the size of FIFO stack memory 330, M, the plot has a diagonal shape.
  • It has been determined that, for a given array 100, activity detector 120 algorithm, spectral condition 110 and estimator 130, a stack size of 32 estimates and a threshold of at least 12 correct estimates in the FIFO stack memory 330 provide optimum performance. The stack memory size and threshold of correct estimates can, however, be reduced slightly without significant loss of accuracy. Of course, the stack memory size and threshold can be further reduced with a decrease in accuracy.
  • Alternatives and variations of the invention are possible. Furthermore, the principles of the invention may be applied to any beamforming application, where a beam needs to be steered, including teleconferencing, hearing aid devices, microphone arrays for speech pick up in cars or other noisy environments, video conferencing, etc. Localization algorithms in the field of image processing can benefit from using this acoustic localization algorithm of this invention. In video conferencing, the position estimate provided by the present invention may be used to focus a camera on the talker. Although the talker localization system is described as including the spectral conditioner and the decision logic, those of skill in the art will appreciate that the spectral conditioner 110 and decision logic 140 may be used with other components. For example, the spectral conditioner 110 may be used in conjunction with a Kalman filter instead of the decision logic. All such embodiments, modifications and applications are believed to be within the sphere and scope of the invention as defined by the claims appended hereto.
  • Having described preferred embodiments of the invention, it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made to the particular embodiments of the invention disclosed that are nevertheless still within the scope and the spirit of the invention as defined by the appended claims.

Claims (11)

1. A method of locating a talker, comprising the steps of:
receiving multiple audio signals from a microphone array characterized by a predetermined beampattern;
filtering said audio signals to optimize said predetermined beampattern for talker location;
detecting periods of speech activity;
calculating a localization estimate based on the filtered audio signals;
discarding said localization estimate if calculated during a period where there is no speech activity; and
verifying said localization estimate during said periods of speech activity.
2. The method of claim 1, wherein said step of filtering comprises subjecting said audio signals to bandpass filtering at a center frequency of 1150 Hz and a bandwidth of 300 Hz.
3. The method of claim 1, wherein said step of verifying further includes storing a succession of localization estimates, counting occurrences of said localization estimates during said periods of speech activity and within a predetermined sample window and selecting any one of said occurrences which is repeated more than a predetermined threshold number of times within said window.
4. The method of claim 3, wherein said predetermined threshold number is 12 and said predetermined sample window is 32 estimates.
5. An apparatus for locating a talker, comprising;
a microphone array for receiving multiple audio signals, said a microphone array being characterized by a predetermined beampattern;
a spectral conditioner for filtering said audio signals to optimize said predetermined beampattern for talker localization;
a localization estimator for calculating a localization estimate based on the filtered audio signals;
an activity detector for detecting periods of speech activity; and
decision logic for discarding each localization estimate if calculated during periods where there is no speech activity and for verifying said localization estimate during said periods of speech activity.
6. The apparatus of claim 5, wherein said spectral conditioner comprises a bandpass filter for filtering said audio signals at a center frequency of 1150 Hz and a bandwidth of 300 Hz.
7. The apparatus of claim 5, wherein said decision logic further includes a memory stack for storing up to a predetermined number of localization estimates, a counter for counting occurrences of said localization estimates during said periods of speech activity and selecting any one of said occurrences which is repeated more than a predetermined threshold number of times within said memory stack.
8. The apparatus of claim 7, wherein said predetermined threshold number is 12 and said predetermined number of localization estimates within said stack is 32.
9. A bandpass filter when used in a system for locating a talker, the system comprising a talker localization estimator which receives multiple audio signals from a microphone array characterized by a predetermined beam pattern and in response generates a location estimate of a talker relative to said array from localization estimates calculated during periods of speech activity, wherein estimates generated during periods where there is no speech activity are discarded, said bandpass filter filtering said audio signals to optimize said predetermined beam pattern for talker localization.
10. The bandpass filter of claim 9, characterized by a center frequency of 1150 Hz and a bandwidth of 300 Hz.
11. A method of generating talker location estimates comprising the steps of:
bandpass filtering audio signals to enhance the beam pattern thereof for talker localization prior to conveying the audio signals to a location estimator; and
generating a first order position estimates in response to the filtered audio signals;
detecting periods of speech activity; and
discarding estimates generated during periods where there is no speech activity.
US11/828,118 2000-06-30 2007-07-25 Method and apparatus for locating a talker Abandoned US20070263881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/828,118 US20070263881A1 (en) 2000-06-30 2007-07-25 Method and apparatus for locating a talker

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0016142.2 2000-06-30
GB0016142A GB2364121B (en) 2000-06-30 2000-06-30 Method and apparatus for locating a talker
US09/894,539 US7251336B2 (en) 2000-06-30 2001-06-28 Acoustic talker localization
US11/828,118 US20070263881A1 (en) 2000-06-30 2007-07-25 Method and apparatus for locating a talker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/894,539 Division US7251336B2 (en) 2000-06-30 2001-06-28 Acoustic talker localization

Publications (1)

Publication Number Publication Date
US20070263881A1 true US20070263881A1 (en) 2007-11-15

Family

ID=9894804

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/894,539 Expired - Lifetime US7251336B2 (en) 2000-06-30 2001-06-28 Acoustic talker localization
US11/828,118 Abandoned US20070263881A1 (en) 2000-06-30 2007-07-25 Method and apparatus for locating a talker

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/894,539 Expired - Lifetime US7251336B2 (en) 2000-06-30 2001-06-28 Acoustic talker localization

Country Status (3)

Country Link
US (2) US7251336B2 (en)
CA (1) CA2352017C (en)
GB (1) GB2364121B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080154613A1 (en) * 2006-08-04 2008-06-26 Harman Becker Automotive Systems Gmbh Voice command processing system in a vehicle environment
US20120294118A1 (en) * 2007-04-17 2012-11-22 Nuance Communications, Inc. Acoustic Localization of a Speaker
US9560441B1 (en) * 2014-12-24 2017-01-31 Amazon Technologies, Inc. Determining speaker direction using a spherical microphone array
US10586538B2 (en) 2018-04-25 2020-03-10 Comcast Cable Comminications, LLC Microphone array beamforming control

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2379148A (en) * 2001-08-21 2003-02-26 Mitel Knowledge Corp Voice activity detection
GB2388001A (en) * 2002-04-26 2003-10-29 Mitel Knowledge Corp Compensating for beamformer steering delay during handsfree speech recognition
JP3910898B2 (en) * 2002-09-17 2007-04-25 株式会社東芝 Directivity setting device, directivity setting method, and directivity setting program
EP2254350A3 (en) * 2003-03-03 2014-07-23 Phonak AG Method for manufacturing acoustical devices and for reducing wind disturbances
GB0324536D0 (en) 2003-10-21 2003-11-26 Mitel Networks Corp Detecting acoustic echoes using microphone arrays
US7826624B2 (en) * 2004-10-15 2010-11-02 Lifesize Communications, Inc. Speakerphone self calibration and beam forming
US7970151B2 (en) * 2004-10-15 2011-06-28 Lifesize Communications, Inc. Hybrid beamforming
WO2007013525A1 (en) * 2005-07-26 2007-02-01 Honda Motor Co., Ltd. Sound source characteristic estimation device
US7689248B2 (en) * 2005-09-27 2010-03-30 Nokia Corporation Listening assistance function in phone terminals
EP1962547B1 (en) * 2005-11-02 2012-06-13 Yamaha Corporation Teleconference device
WO2009145192A1 (en) * 2008-05-28 2009-12-03 日本電気株式会社 Voice detection device, voice detection method, voice detection program, and recording medium
EP2670165B1 (en) 2008-08-29 2016-10-05 Biamp Systems Corporation A microphone array system and method for sound acquistion
US8204198B2 (en) * 2009-06-19 2012-06-19 Magor Communications Corporation Method and apparatus for selecting an audio stream
JP5622744B2 (en) * 2009-11-06 2014-11-12 株式会社東芝 Voice recognition device
AR084091A1 (en) 2010-12-03 2013-04-17 Fraunhofer Ges Forschung ACQUISITION OF SOUND THROUGH THE EXTRACTION OF GEOMETRIC INFORMATION OF ARRIVAL MANAGEMENT ESTIMATES
US10678602B2 (en) * 2011-02-09 2020-06-09 Cisco Technology, Inc. Apparatus, systems and methods for dynamic adaptive metrics based application deployment on distributed infrastructures
GB2519569B (en) * 2013-10-25 2017-01-11 Canon Kk A method of localizing audio sources in a reverberant environment
DE102015203600B4 (en) * 2014-08-22 2021-10-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. FIR filter coefficient calculation for beamforming filters
CN105355210B (en) * 2015-10-30 2020-06-23 百度在线网络技术(北京)有限公司 Preprocessing method and device for far-field speech recognition
CN106199505B (en) * 2016-06-28 2018-07-31 哈尔滨工程大学 A kind of acoustic vector circle steady direction estimation method in battle array mode domain
US10507137B2 (en) 2017-01-17 2019-12-17 Karl Allen Dierenbach Tactile interface system
US11259139B1 (en) 2021-01-25 2022-02-22 Iyo Inc. Ear-mountable listening device having a ring-shaped microphone array for beamforming
US11636842B2 (en) 2021-01-29 2023-04-25 Iyo Inc. Ear-mountable listening device having a microphone array disposed around a circuit board
US11617044B2 (en) 2021-03-04 2023-03-28 Iyo Inc. Ear-mount able listening device with voice direction discovery for rotational correction of microphone array outputs
US11388513B1 (en) 2021-03-24 2022-07-12 Iyo Inc. Ear-mountable listening device with orientation discovery for rotational correction of microphone array outputs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581758A (en) * 1983-11-04 1986-04-08 At&T Bell Laboratories Acoustic direction identification system
US4653102A (en) * 1985-11-05 1987-03-24 Position Orientation Systems Directional microphone system
US5465302A (en) * 1992-10-23 1995-11-07 Istituto Trentino Di Cultura Method for the location of a speaker and the acquisition of a voice message, and related system
US5500903A (en) * 1992-12-30 1996-03-19 Sextant Avionique Method for vectorial noise-reduction in speech, and implementation device
US5737431A (en) * 1995-03-07 1998-04-07 Brown University Research Foundation Methods and apparatus for source location estimation from microphone-array time-delay estimates
US6449593B1 (en) * 2000-01-13 2002-09-10 Nokia Mobile Phones Ltd. Method and system for tracking human speakers
US6707910B1 (en) * 1997-09-04 2004-03-16 Nokia Mobile Phones Ltd. Detection of the speech activity of a source
US7440891B1 (en) * 1997-03-06 2008-10-21 Asahi Kasei Kabushiki Kaisha Speech processing method and apparatus for improving speech quality and speech recognition performance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB161422A (en) 1920-03-11 1921-04-14 Reginald Ignatius Atherton An improved construction of portable cinematograph projector
US4400903A (en) 1981-04-17 1983-08-30 J. T. Baker Chemical Company Method and apparatus for trapping flying insects exhibiting phototropic behavior, particularly gypsy moths
JP3541339B2 (en) * 1997-06-26 2004-07-07 富士通株式会社 Microphone array device
US6243322B1 (en) 1999-11-05 2001-06-05 Wavemakers Research, Inc. Method for estimating the distance of an acoustic signal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581758A (en) * 1983-11-04 1986-04-08 At&T Bell Laboratories Acoustic direction identification system
US4653102A (en) * 1985-11-05 1987-03-24 Position Orientation Systems Directional microphone system
US5465302A (en) * 1992-10-23 1995-11-07 Istituto Trentino Di Cultura Method for the location of a speaker and the acquisition of a voice message, and related system
US5500903A (en) * 1992-12-30 1996-03-19 Sextant Avionique Method for vectorial noise-reduction in speech, and implementation device
US5737431A (en) * 1995-03-07 1998-04-07 Brown University Research Foundation Methods and apparatus for source location estimation from microphone-array time-delay estimates
US7440891B1 (en) * 1997-03-06 2008-10-21 Asahi Kasei Kabushiki Kaisha Speech processing method and apparatus for improving speech quality and speech recognition performance
US6707910B1 (en) * 1997-09-04 2004-03-16 Nokia Mobile Phones Ltd. Detection of the speech activity of a source
US6449593B1 (en) * 2000-01-13 2002-09-10 Nokia Mobile Phones Ltd. Method and system for tracking human speakers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080154613A1 (en) * 2006-08-04 2008-06-26 Harman Becker Automotive Systems Gmbh Voice command processing system in a vehicle environment
US20120294118A1 (en) * 2007-04-17 2012-11-22 Nuance Communications, Inc. Acoustic Localization of a Speaker
US9338549B2 (en) * 2007-04-17 2016-05-10 Nuance Communications, Inc. Acoustic localization of a speaker
US9560441B1 (en) * 2014-12-24 2017-01-31 Amazon Technologies, Inc. Determining speaker direction using a spherical microphone array
US10586538B2 (en) 2018-04-25 2020-03-10 Comcast Cable Comminications, LLC Microphone array beamforming control
US11437033B2 (en) 2018-04-25 2022-09-06 Comcast Cable Communications, Llc Microphone array beamforming control

Also Published As

Publication number Publication date
GB2364121A (en) 2002-01-16
US20020001389A1 (en) 2002-01-03
CA2352017A1 (en) 2001-12-30
GB0016142D0 (en) 2000-08-23
CA2352017C (en) 2007-04-03
US7251336B2 (en) 2007-07-31
GB2364121B (en) 2004-11-24

Similar Documents

Publication Publication Date Title
US20070263881A1 (en) Method and apparatus for locating a talker
EP1286328B1 (en) Method for improving near-end voice activity detection in talker localization system utilizing beamforming technology
US10979805B2 (en) Microphone array auto-directive adaptive wideband beamforming using orientation information from MEMS sensors
CA2394429C (en) Robust talker localization in reverberant environment
US7327852B2 (en) Method and device for separating acoustic signals
EP1743323B1 (en) Adaptive beamformer, sidelobe canceller, handsfree speech communication device
EP1116961B1 (en) Method and system for tracking human speakers
US8891785B2 (en) Processing signals
EP1131892B1 (en) Signal processing apparatus and method
US8112272B2 (en) Sound source separation device, speech recognition device, mobile telephone, sound source separation method, and program
KR101449433B1 (en) Noise cancelling method and apparatus from the sound signal through the microphone
US20040193411A1 (en) System and apparatus for speech communication and speech recognition
US20080247274A1 (en) Sensor array post-filter for tracking spatial distributions of signals and noise
US20020069054A1 (en) Noise suppression in beam-steered microphone array
US8014230B2 (en) Adaptive array control device, method and program, and adaptive array processing device, method and program using the same
KR20010021720A (en) Methods and apparatus for measuring signal level and delay at multiple sensors
WO2010002676A2 (en) Multi-microphone voice activity detector
US10674284B2 (en) Method of operating a hearing device and a hearing device
CN111078185A (en) Method and equipment for recording sound
US20120027219A1 (en) Formant aided noise cancellation using multiple microphones
Zohourian et al. GSC-based binaural speaker separation preserving spatial cues
JP2001045592A (en) Noise canceling microphone array
Van Compernolle et al. Beamforming with microphone arrays
Azarpour et al. Fast noise PSD estimation based on blind channel identification

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITEL CORPORATION, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AMIRI, MAZIAR;TETELBAUM, MICHAEL;SCHULZ, DIETER;REEL/FRAME:019609/0772

Effective date: 20000803

AS Assignment

Owner name: MITEL NETWORKS CORPORATION, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITEL KNOWLEDGE CORPORATION;REEL/FRAME:020130/0969

Effective date: 20021101

Owner name: MITEL KNOWLEDGE CORPORATION, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITEL CORPORATION;REEL/FRAME:020130/0965

Effective date: 20010215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION