US20070225857A1 - Specimen carrier transfer apparatus - Google Patents

Specimen carrier transfer apparatus Download PDF

Info

Publication number
US20070225857A1
US20070225857A1 US11/304,108 US30410806A US2007225857A1 US 20070225857 A1 US20070225857 A1 US 20070225857A1 US 30410806 A US30410806 A US 30410806A US 2007225857 A1 US2007225857 A1 US 2007225857A1
Authority
US
United States
Prior art keywords
shuttle
conveyor
conveyors
carrier
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/304,108
Inventor
Douglas Barry
Thomas Bybee
Adrian Chan
John Fuller
Ray Puseman
Greg Rothman
Don Simms
Michael Turner
Jay Woods
Inna Zevakina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/304,108 priority Critical patent/US20070225857A1/en
Publication of US20070225857A1 publication Critical patent/US20070225857A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G21/00Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors
    • B65G21/20Means incorporated in, or attached to, framework or housings for guiding load-carriers, traction elements or loads supported on moving surfaces
    • B65G21/22Rails or the like engaging sliding elements or rollers attached to load-carriers or traction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/02Belt- or chain-engaging elements
    • B65G23/04Drums, rollers, or wheels
    • B65G23/08Drums, rollers, or wheels with self-contained driving mechanisms, e.g. motors and associated gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/24Gearing between driving motor and belt- or chain-engaging elements
    • B65G23/30Variable-speed gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G37/00Combinations of mechanical conveyors of the same kind, or of different kinds, of interest apart from their application in particular machines or use in particular manufacturing processes
    • B65G37/005Combinations of mechanical conveyors of the same kind, or of different kinds, of interest apart from their application in particular machines or use in particular manufacturing processes comprising two or more co-operating conveying elements with parallel longitudinal axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G37/00Combinations of mechanical conveyors of the same kind, or of different kinds, of interest apart from their application in particular machines or use in particular manufacturing processes
    • B65G37/02Flow-sheets for conveyor combinations in warehouses, magazines or workshops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/52Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/76Fixed or adjustable ploughs or transverse scrapers
    • B65G47/763Fixed ploughs or transverse scrapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/902Devices for picking-up and depositing articles or materials provided with drive systems incorporating rotary and rectilinear movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/91Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
    • B65G47/914Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers provided with drive systems incorporating rotary and rectilinear movements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0235Containers
    • B65G2201/0261Puck as article support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0406Individual bottles or tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0462Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0465Loading or unloading the conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0467Switching points ("aiguillages")
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0467Switching points ("aiguillages")
    • G01N2035/047Switching points ("aiguillages") diverging, e.g. sending carriers to different analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0482Transmission
    • G01N2035/0484Belt or chain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack

Definitions

  • the present invention relates generally to track utilized in an automated clinical laboratory conveyor system, and more particularly to an improved specimen carrier transfer apparatus for transferring specimen carriers from one track loop to another in a dual track system.
  • Clinical laboratory testing has changed and improved remarkably over the past 80 years. Initially, tests or assays were performed manually and generally utilized large quantities of serum, blood or other materials and/or body fluids. As mechanical technology developed in the industrial work place, similar technology was introduced into the clinical laboratory. With the introduction of new technology, methodologies were also improved in an effort to improve the quality of the results produced by the individual instruments, and to minimize the amount of physical specimen required to perform a particular test.
  • Instruments have been developed to increase the efficiency of testing procedures by reducing turnaround time and decreasing the volumes necessary to perform various assays.
  • Robotic engineering has evolved to such a degree that various types of robots have been applied in the clinical laboratory setting.
  • Track devices form the physical interface between the specimen samples in carriers being directed throughout the system, while the Laboratory Automation System (LAS) database provides direction for the system through its command and control features.
  • the LAS and the various track devices work in combination to direct, manage and track all specimens throughout the system.
  • the dual-lane conveyors used in the present invention utilize table top chain to transport specimen carriers about a closed loop among various stations.
  • the inside lane of the dual lane conveyor acts as a highway to rapidly transport specimens to their proper destination.
  • the outside lane accepts specimens diverted to it from the inside lane, and queues them for processing at one of the automation system modules or laboratory instruments.
  • the continuous loop dual lane design means that specimens will quickly circulate back to any module or instrument on the system without operator intervention. Rules based processing guidelines determine all specimen actions, including routing changes for additional testing or modified processing.
  • the transfer apparatus of the present invention includes a shuttle depending from an overhead support with a pair of arms for receiving and shifting a specimen carrier from one conveyor to a second conveyor of a dual-conveyor track.
  • the shuttle is operable to retain a specimen carrier along either the first or second conveyor and to release a specimen carrier along either the first or second conveyor.
  • Sensors are located to detect the presence of a specimen carrier at each of the retention locations, and to confirm the release of a specimen carrier from the shuttle along each of the conveyors.
  • a drive motor for moving the shuttle between the retention and release positions is electrically connected to a command module with a processor, for receiving instructions as to the position of the shuttle.
  • the sensors are also connected to the processor to transmit detection data to the processor.
  • a queue is positioned upstream of the shuttle and is electrically connected to the processor.
  • the queue includes retractable shafts, sensors and scanners for selectively retaining, detecting and scanning identification data from a specimen carrier on either of the conveyors, upstream of the shuttle, and transmitting the information to the processor.
  • FIG. 1 is a perspective view of a transfer apparatus of the present invention installed along a dual lane conveyor track;
  • FIG. 2 is a top plan view of the transfer apparatus module, showing various possible positions of a specimen carrier as the transfer apparatus operates;
  • FIG. 3 is a front elevational view of the transfer apparatus
  • FIG. 4 is a side elevational view of the transfer apparatus
  • FIG. 5 is a bottom view of the drive assembly of the transfer apparatus
  • FIG. 6 is a front elevational view of the transfer apparatus showing the shuttle in a first position
  • FIG. 7 is a front elevational view of the transfer apparatus showing the shuttle in a second position
  • FIG. 8 is a front elevational view of the transfer apparatus showing the shuttle in a third position.
  • Transfer apparatus 10 includes three general components: a queue 20 , a lane changer 22 and a command module 24 .
  • Queue 20 serves to stop each specimen carrier 18 that travels by the queue, identify the carrier 18 and then release the carrier at a time determined by the command module 24 .
  • Lane changer 22 is operated by the command module 24 to receive and shift a specimen carrier 18 from one of conveyors 12 or 14 , to the other.
  • the command module 24 serves as the “brain” of the transfer apparatus 10 and interacts with the Laboratory Automation System (LAS) to identify, track and direct specimen carriers 18 through the transfer apparatus 10 .
  • LAS Laboratory Automation System
  • each table top chain includes a plurality of plates 26 , each having a flat upper surface or “table top” for moving carriers 18 .
  • Plates 26 are interconnected by links, which permit plates 26 to pivot about the links within a horizontal plane.
  • the links are engaged by a drive mechanism to pull the chain along track 16 and thereby move carriers 18 supported on the track.
  • the upper surfaces of plates 26 form a flat planar surface identified throughout this specification as a drive plane.
  • a pair of elongated guide rails 28 and 30 are disposed along the lengths of each conveyor 12 and 14 on opposing sides of plates 26 to guide specimen carriers 18 therebetween.
  • specimen carriers 18 One embodiment of specimen carriers 18 is disclosed throughout this specification, but it should be understood that many other sizes and shapes of carriers for specimens could be utilized with the present invention.
  • Each specimen carrier 18 includes a generally rectangular body with a forward wall and a top surface. A plurality of openings are formed in the top surface and extend into the interior of the body for receiving and supporting a specimen tube, slide, or other specimen container in an upright position.
  • Conveyors 12 and 14 operate in the same direction, designated generally by arrow 32 , although they may be operated at different speeds.
  • Queue 20 includes a housing 34 positioned between conveyors 12 and 14 and located upstream of lane changer 22 .
  • a pair of forward and rearward retractable shafts 36 and 38 extend transversely outwardly from a first side 20 a of queue 20 , and project over conveyor 12 to restrain a specimen carrier 18 from passing by shaft 36 or 38 .
  • Forward and rearward sensors 40 and 42 are positioned adjacent each shaft 36 and 38 , respectively, to detect the presence of a specimen carrier 18 at the associated shaft.
  • a second pair of forward and rearward retractable shafts 44 and 46 extend transversely outwardly from the opposing second side 20 b of queue 20 , and project over conveyor 14 to restrain a specimen carrier 18 from passing by shaft 44 or 46 .
  • Forward and rearward sensors 48 and 50 are positioned adjacent each shaft 44 and 46 , respectively, to detect the presence of a specimen carrier 18 at the associated shaft.
  • forward shafts 36 and 44 are the projecting ends of a single shaft. In this way, only one carrier 18 is permitted to continue downstream at a time, since the retraction of one end of the shaft would cause the other end to project farther over the opposing track.
  • rearward shafts 38 and 46 are preferably the projecting ends of a second single shaft. Again, only one carrier is permitted to advance downstream from queue 20 along the conveyors 12 and 14 .
  • the inward guide rails 30 of conveyors 12 and 14 are removed from between the downstream end of queue 20 and lane changer 22 , and a platform 52 is installed with its top surface coplanar with the drive plane of conveyors 12 and 14 .
  • carriers 18 may be moved off of one conveyor and onto the other by sliding the carrier across platform 52 .
  • lane changer 22 includes a lower housing 54 mounted between conveyors 12 and 14 and depending below the drive plane “P”.
  • a rigid upright back 56 is connected at its lower end to housing 54 and projects upwardly between conveyors 12 and 14 .
  • a support plate 58 projects forwardly and transversely outwardly from the top of back 56 , and serves as the frame for supporting the shuttle 60 , the shuttle drive assembly 62 and sensors 64 and 66 , all of which are described in more detail hereinbelow.
  • Shuttle 60 serves to receive a specimen carrier 18 between a pair of arms 68 and 70 and transversely move carrier 18 between conveyors 12 and 14 , and includes a base plate 72 connecting the upper ends of arms 68 and 70 to form an inverted U-shaped structure.
  • Base plate 72 is mounted to the bottom of a slide 74 which in turn is slidably connected to a linear rail 76 on the bottom of support plate 58 .
  • linear rail 76 extends transversely over both conveyors 12 and 14 , thereby permitting movement of shuttle 60 over both conveyors.
  • An encoder-monitored DC stepper motor 78 selectively drives a drive belt 80 connected to slide 74 to precisely position shuttle 60 where desired along rail 76 .
  • the lower ends of arms 68 and 70 on shuttle 60 each have a guide blade 82 and 84 , respectively, mounted thereon. Blades 82 and 84 diverge outwardly as they project forwardly from the arms 68 and 70 , to thereby shift a specimen carrier 18 transversely into alignment between the arms 68 and 70 . Blades 82 and 84 are preferably formed of a resilient and flexible material so that shuttle 60 can shift fully against the outside guide rails 28 (see FIG. 2 ) to release a carrier 18 onto either conveyor 12 or 14 .
  • a presence sensor 86 is positioned adjacent each outward extent of shuttle 60 to detect the presence of a carrier 18 within shuttle 60 on either conveyor 12 or 14 .
  • An exit sensor 88 is positioned downstream of shuttle 60 along each conveyor 12 and 14 , to detect the presence of a carrier that has exited the shuttle along either conveyor.
  • a pair of carrier stop arms 90 and 92 project transversely outwardly from back 56 and extend partially over conveyors 12 and 14 , respectively. However, stop arms 90 and 92 do not project far enough to prevent a carrier 18 from passing between the stop arm and the associated outside guide rail 28 , if aligned with the opening therebetween by carrier shuttle 60 .
  • transfer apparatus 10 the operation of transfer apparatus 10 is as follows. While specimen carriers 18 travel along both conveyors 12 and 14 during operation the description of the operation of the transfer apparatus will assume that a carrier 18 first reaches queue 20 along conveyor 12 . The rest position of all four shafts 36 , 38 , 44 and 46 of queue 20 are in an extended position, so that a carrier 18 is prevented from advancing beyond the associated shaft until the particular shaft is retracted. Thus, carrier 18 , on conveyor 12 will first contact extended shaft 36 and stop in position “A”. Sensor 40 detects the presence of carrier 18 , and retracts shaft 36 to permit the carrier to proceed downstream. Carrier 18 is then stopped by extended shaft 38 .
  • a barcode scanner 94 is turned on to scan the barcode label on the side of carrier 18 . This data is then transmitted to the command module 24 , which will determine the appropriate action to take, based upon priority rules and guidelines set up by the LAS.
  • shaft 42 is retracted, and carrier 18 proceeds to a “hold” position “C” on conveyor 12 .
  • the “hold” position locates shuttle 60 slightly inwardly from the lane of conveyor 12 , so that blade 82 directs the carrier between arms 68 and 70 , and into contact with stop 90 .
  • command module 24 will instruct lane changer 22 to move shuttle 60 across platform 52 , as shown in FIG. 7 , to the “release” position “D” on conveyor 14 .
  • the release position “D” locates carrier 18 on conveyor 14 so that it bypasses stop 92 , to permit the carrier to proceed downstream, as shown in FIG. 8 .
  • As the carrier leaves lane changer 22 it will pass exit sensor 88 at position “E”, which will confirm that the desired action has occurred.
  • shuttle 60 will be instructed to move outwardly from the “hold” position to the “release” position. This movement will cause carrier 18 to be moved outwardly beyond the end of stop 90 , permitting the carrier to proceed downstream on conveyor 12 . As the carrier leaves lane changer 22 , it will pass exit sensor 88 at position “F”, which will confirm that the desired action has been taken.
  • This same sequence of actions occurs with a carrier 18 that approaches queue 20 along conveyor 14 , with the same options of releasing the carrier on the same conveyor, or diverting the carrier to conveyor 12 .

Abstract

A transfer apparatus includes a shuttle depending from an overhead support with a pair of arms for receiving and shifting a specimen carrier from one conveyor to a second conveyor of a dual-conveyor track. The shuttle is operable to retain a specimen carrier along either the first or second conveyor and to release a specimen carrier along either the first or second conveyor. Sensors are located to detect the presence of a specimen carrier at each of the retention locations, and to confirm the release of a specimen carrier from the shuttle along each of the conveyors. A drive motor for moving the shuttle between the retention and release positions is electrically connected to a command module with a processor, for receiving instructions as to the position of the shuttle. The sensors are also connected to the processor to transmit detection data to the processor. A queue is positioned upstream of the shuttle and is electrically connected to the processor. The queue includes retractable shafts, sensors and scanners for selectively retaining, detecting and scanning identification data from a specimen carrier on either conveyor upstream of the shuttle, and transmitting the information to the processor.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This is a Continuation of Ser. No. 10/626,466, filed Jul. 24, 2003, which claims the benefit of U.S. Provisional Application Ser. No. 60/398,893, filed Jul. 26, 2002.
  • STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
  • (Not applicable)
  • INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC
  • (Not applicable)
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to track utilized in an automated clinical laboratory conveyor system, and more particularly to an improved specimen carrier transfer apparatus for transferring specimen carriers from one track loop to another in a dual track system.
  • 2. Description of Related Art Including Information Disclosed under 37 CFR 1.97, 1.98
  • Clinical laboratory testing has changed and improved remarkably over the past 80 years. Initially, tests or assays were performed manually and generally utilized large quantities of serum, blood or other materials and/or body fluids. As mechanical technology developed in the industrial work place, similar technology was introduced into the clinical laboratory. With the introduction of new technology, methodologies were also improved in an effort to improve the quality of the results produced by the individual instruments, and to minimize the amount of physical specimen required to perform a particular test.
  • Instruments have been developed to increase the efficiency of testing procedures by reducing turnaround time and decreasing the volumes necessary to perform various assays. Robotic engineering has evolved to such a degree that various types of robots have been applied in the clinical laboratory setting.
  • The main focus of prior art laboratory automation relied on the implementation of conveyor systems to connect areas of a clinical laboratory. Known conveyor systems in the laboratory setting utilize separate conveyor segments to move specimens from a processing station to a specific laboratory work station. In order to obtain cost savings, one typical scenario called for specimens to be sorted manually and grouped together in a carrier rack to be conveyed to a specific location. In this way, a carrier would move a group of 5-20 specimens from the processing location to the specific work station for the performance of a single test on each of the specimens within the carrier rack.
  • With the development of new and improved automatic conveyor systems for laboratories and other environments, it is possible to select, track, and convey individual specimens throughout a laboratory for a variety of different testing, while maintaining a priority system for certain types of testing or special urgent requests for a time-specific response. These new automated conveyor systems are of various types and design, but the inventors herein have found that a dual conveyor system, using a pair of parallel conveyor tracks circulating throughout a laboratory, provides the greatest flexibility and versatility. The integration of various track devices with software directing the operation of the conveyor system and the various automated testing stations, has improved both the speed and capability of automated conveyor systems in recent years.
  • Track devices form the physical interface between the specimen samples in carriers being directed throughout the system, while the Laboratory Automation System (LAS) database provides direction for the system through its command and control features. The LAS and the various track devices work in combination to direct, manage and track all specimens throughout the system.
  • The dual-lane conveyors used in the present invention utilize table top chain to transport specimen carriers about a closed loop among various stations. Typically, the inside lane of the dual lane conveyor acts as a highway to rapidly transport specimens to their proper destination. The outside lane accepts specimens diverted to it from the inside lane, and queues them for processing at one of the automation system modules or laboratory instruments. The continuous loop dual lane design means that specimens will quickly circulate back to any module or instrument on the system without operator intervention. Rules based processing guidelines determine all specimen actions, including routing changes for additional testing or modified processing.
  • In order to effectively manage, track and route specimens throughout a clinical laboratory, it is necessary to maintain constant “awareness” of the location of every specimen throughout the system, and be able to direct each specimen to the appropriate location at the most appropriate time for storage, testing or other processing. This in turn is accomplished, in part, by one or more transfer apparatus for selectively shifting a specimen carrier between the inside and outside lanes of the dual lane conveyor.
  • BRIEF SUMMARY OF THE INVENTION
  • It is therefore a general object of the present invention to provide an improved transfer apparatus for selectively moving specimen carriers between the lanes of a dual lane, closed loop conveyor in an automated conveyor system.
  • These and other objects will be apparent to those skilled in the art.
  • The transfer apparatus of the present invention includes a shuttle depending from an overhead support with a pair of arms for receiving and shifting a specimen carrier from one conveyor to a second conveyor of a dual-conveyor track. The shuttle is operable to retain a specimen carrier along either the first or second conveyor and to release a specimen carrier along either the first or second conveyor. Sensors are located to detect the presence of a specimen carrier at each of the retention locations, and to confirm the release of a specimen carrier from the shuttle along each of the conveyors. A drive motor for moving the shuttle between the retention and release positions is electrically connected to a command module with a processor, for receiving instructions as to the position of the shuttle. The sensors are also connected to the processor to transmit detection data to the processor. A queue is positioned upstream of the shuttle and is electrically connected to the processor. The queue includes retractable shafts, sensors and scanners for selectively retaining, detecting and scanning identification data from a specimen carrier on either of the conveyors, upstream of the shuttle, and transmitting the information to the processor.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • The preferred embodiment of the invention is illustrated in the accompanying drawings, in which similar or corresponding parts are identified with the same reference numeral throughout the several views, and in which:
  • FIG. 1 is a perspective view of a transfer apparatus of the present invention installed along a dual lane conveyor track;
  • FIG. 2 is a top plan view of the transfer apparatus module, showing various possible positions of a specimen carrier as the transfer apparatus operates;
  • FIG. 3 is a front elevational view of the transfer apparatus;
  • FIG. 4 is a side elevational view of the transfer apparatus;
  • FIG. 5 is a bottom view of the drive assembly of the transfer apparatus;
  • FIG. 6 is a front elevational view of the transfer apparatus showing the shuttle in a first position;
  • FIG. 7 is a front elevational view of the transfer apparatus showing the shuttle in a second position; and
  • FIG. 8 is a front elevational view of the transfer apparatus showing the shuttle in a third position.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings, in which similar or corresponding parts are identified with the same reference numeral, and more particularly to FIG. 1, the transfer apparatus of the present invention is designated generally at 10, and is shown installed between two conveyors 12 and 14 of a dual lane automated conveyor transport track 16, to selectively transfer a specimen carrier 18 between conveyors 12 and 14. Transfer apparatus 10 includes three general components: a queue 20, a lane changer 22 and a command module 24. Queue 20 serves to stop each specimen carrier 18 that travels by the queue, identify the carrier 18 and then release the carrier at a time determined by the command module 24. Lane changer 22 is operated by the command module 24 to receive and shift a specimen carrier 18 from one of conveyors 12 or 14, to the other. The command module 24 serves as the “brain” of the transfer apparatus 10 and interacts with the Laboratory Automation System (LAS) to identify, track and direct specimen carriers 18 through the transfer apparatus 10.
  • Referring now to FIG. 2, conveyors 12 and 14 use a table top chain known in the art to transport specimen carriers 18. Each table top chain includes a plurality of plates 26, each having a flat upper surface or “table top” for moving carriers 18. Plates 26 are interconnected by links, which permit plates 26 to pivot about the links within a horizontal plane. The links are engaged by a drive mechanism to pull the chain along track 16 and thereby move carriers 18 supported on the track. The upper surfaces of plates 26 form a flat planar surface identified throughout this specification as a drive plane.
  • A pair of elongated guide rails 28 and 30 are disposed along the lengths of each conveyor 12 and 14 on opposing sides of plates 26 to guide specimen carriers 18 therebetween. One embodiment of specimen carriers 18 is disclosed throughout this specification, but it should be understood that many other sizes and shapes of carriers for specimens could be utilized with the present invention. Each specimen carrier 18 includes a generally rectangular body with a forward wall and a top surface. A plurality of openings are formed in the top surface and extend into the interior of the body for receiving and supporting a specimen tube, slide, or other specimen container in an upright position.
  • Conveyors 12 and 14 operate in the same direction, designated generally by arrow 32, although they may be operated at different speeds. Queue 20 includes a housing 34 positioned between conveyors 12 and 14 and located upstream of lane changer 22. A pair of forward and rearward retractable shafts 36 and 38 extend transversely outwardly from a first side 20 a of queue 20, and project over conveyor 12 to restrain a specimen carrier 18 from passing by shaft 36 or 38. Forward and rearward sensors 40 and 42 are positioned adjacent each shaft 36 and 38, respectively, to detect the presence of a specimen carrier 18 at the associated shaft.
  • A second pair of forward and rearward retractable shafts 44 and 46 extend transversely outwardly from the opposing second side 20 b of queue 20, and project over conveyor 14 to restrain a specimen carrier 18 from passing by shaft 44 or 46. Forward and rearward sensors 48 and 50 are positioned adjacent each shaft 44 and 46, respectively, to detect the presence of a specimen carrier 18 at the associated shaft.
  • In the preferred embodiment of the invention, forward shafts 36 and 44 are the projecting ends of a single shaft. In this way, only one carrier 18 is permitted to continue downstream at a time, since the retraction of one end of the shaft would cause the other end to project farther over the opposing track. Similarly, rearward shafts 38 and 46 are preferably the projecting ends of a second single shaft. Again, only one carrier is permitted to advance downstream from queue 20 along the conveyors 12 and 14.
  • The inward guide rails 30 of conveyors 12 and 14 are removed from between the downstream end of queue 20 and lane changer 22, and a platform 52 is installed with its top surface coplanar with the drive plane of conveyors 12 and 14. Thus, carriers 18 may be moved off of one conveyor and onto the other by sliding the carrier across platform 52.
  • As shown in FIGS. 3 and 4, lane changer 22 includes a lower housing 54 mounted between conveyors 12 and 14 and depending below the drive plane “P”. A rigid upright back 56 is connected at its lower end to housing 54 and projects upwardly between conveyors 12 and 14. A support plate 58 projects forwardly and transversely outwardly from the top of back 56, and serves as the frame for supporting the shuttle 60, the shuttle drive assembly 62 and sensors 64 and 66, all of which are described in more detail hereinbelow.
  • Shuttle 60 serves to receive a specimen carrier 18 between a pair of arms 68 and 70 and transversely move carrier 18 between conveyors 12 and 14, and includes a base plate 72 connecting the upper ends of arms 68 and 70 to form an inverted U-shaped structure. Base plate 72 is mounted to the bottom of a slide 74 which in turn is slidably connected to a linear rail 76 on the bottom of support plate 58. As shown in FIG. 3, linear rail 76 extends transversely over both conveyors 12 and 14, thereby permitting movement of shuttle 60 over both conveyors. An encoder-monitored DC stepper motor 78 selectively drives a drive belt 80 connected to slide 74 to precisely position shuttle 60 where desired along rail 76.
  • The lower ends of arms 68 and 70 on shuttle 60 each have a guide blade 82 and 84, respectively, mounted thereon. Blades 82 and 84 diverge outwardly as they project forwardly from the arms 68 and 70, to thereby shift a specimen carrier 18 transversely into alignment between the arms 68 and 70. Blades 82 and 84 are preferably formed of a resilient and flexible material so that shuttle 60 can shift fully against the outside guide rails 28 (see FIG. 2) to release a carrier 18 onto either conveyor 12 or 14.
  • A presence sensor 86 is positioned adjacent each outward extent of shuttle 60 to detect the presence of a carrier 18 within shuttle 60 on either conveyor 12 or 14. An exit sensor 88 is positioned downstream of shuttle 60 along each conveyor 12 and 14, to detect the presence of a carrier that has exited the shuttle along either conveyor.
  • A pair of carrier stop arms 90 and 92 project transversely outwardly from back 56 and extend partially over conveyors 12 and 14, respectively. However, stop arms 90 and 92 do not project far enough to prevent a carrier 18 from passing between the stop arm and the associated outside guide rail 28, if aligned with the opening therebetween by carrier shuttle 60.
  • Referring once again to FIG. 2, the operation of transfer apparatus 10 is as follows. While specimen carriers 18 travel along both conveyors 12 and 14 during operation the description of the operation of the transfer apparatus will assume that a carrier 18 first reaches queue 20 along conveyor 12. The rest position of all four shafts 36, 38, 44 and 46 of queue 20 are in an extended position, so that a carrier 18 is prevented from advancing beyond the associated shaft until the particular shaft is retracted. Thus, carrier 18, on conveyor 12 will first contact extended shaft 36 and stop in position “A”. Sensor 40 detects the presence of carrier 18, and retracts shaft 36 to permit the carrier to proceed downstream. Carrier 18 is then stopped by extended shaft 38. When rearward sensor 42 detects the presence of carrier 18 at position “B”, a barcode scanner 94 is turned on to scan the barcode label on the side of carrier 18. This data is then transmitted to the command module 24, which will determine the appropriate action to take, based upon priority rules and guidelines set up by the LAS.
  • Once the command module has determined the action to be taken, shaft 42 is retracted, and carrier 18 proceeds to a “hold” position “C” on conveyor 12. As shown in FIG. 6, the “hold” position locates shuttle 60 slightly inwardly from the lane of conveyor 12, so that blade 82 directs the carrier between arms 68 and 70, and into contact with stop 90. If carrier 18 is to be diverted to conveyor 14, then command module 24 will instruct lane changer 22 to move shuttle 60 across platform 52, as shown in FIG. 7, to the “release” position “D” on conveyor 14. The release position “D” locates carrier 18 on conveyor 14 so that it bypasses stop 92, to permit the carrier to proceed downstream, as shown in FIG. 8. As the carrier leaves lane changer 22 it will pass exit sensor 88 at position “E”, which will confirm that the desired action has occurred.
  • In the alternative, if carrier 18 is to be released along conveyor 12 rather than diverted to conveyor 14, then shuttle 60 will be instructed to move outwardly from the “hold” position to the “release” position. This movement will cause carrier 18 to be moved outwardly beyond the end of stop 90, permitting the carrier to proceed downstream on conveyor 12. As the carrier leaves lane changer 22, it will pass exit sensor 88 at position “F”, which will confirm that the desired action has been taken.
  • This same sequence of actions occurs with a carrier 18 that approaches queue 20 along conveyor 14, with the same options of releasing the carrier on the same conveyor, or diverting the carrier to conveyor 12.
  • Whereas the invention has been shown and described in connection with the preferred embodiment thereof, many modifications, substitutions and additions may be made which are within the intended broad scope of the appended claims.

Claims (3)

1. In combination:
a dual conveyor track having first and second parallel, spaced apart conveyors with upper surfaces within a single plane, the conveyors operable in the same longitudinal direction;
a plurality of specimen carriers carried on said first and second conveyors of said track; and
a transfer apparatus located between the first and second conveyors, with downstream portions extending past the transfer apparatus to carry specimen carriers to separate, predetermined locations, the transfer apparatus comprising:
a frame connected to the track for supporting an operable shuttle;
a shuttle operably connected to the frame for transverse movement between the conveyors generally perpendicular to the movement the specimen carriers on the conveyors;
a first stop member on said frame, projecting partially over the first conveyor;
a second stop member on said frame, projecting partially over the second conveyor;
said shuttle having a pair of parallel arms spaced apart a distance to receive a specimen carrier therebetween;
said shuttle operable to a first “hold” position with the shuttle arms located such that a specimen carrier therebetween is in contact with the first stop member, to thereby prevent downstream movement of a carrier on the first conveyor;
said shuttle operable to a first “release” position with the shuttle arms located such that a specimen carrier therebetween bypasses the first stop member and moves downstream through the shuttle arms on the first conveyor;
said shuttle operable to a second “release” position with the shuttle arms located such that a specimen carrier therebetween bypasses the second stop member and moves downstream through the shuttle arms on the second conveyor; and
a drive assembly on the frame for selectively moving the shuttle among the first “hold” position, the first “release” position and the second “release” position.
2. The combination of claim 1, wherein said shuttle is operable to a second “hold” position with the shuttle arms located such that a specimen carrier located therebetween contacts the second stop member to thereby prevent downstream movement the carrier on the second conveyor, and wherein said drive assembly additionally selectively moves the shuttle to the second “hold” position.
3. The combination of claim 1, wherein said frame further includes a platform thereon extending between the conveyors, the platform coplanar with the conveyors such that movement of the shuttle between the conveyors moves a specimen carrier located within the arms of the shuttle across the platform to the opposing conveyor.
US11/304,108 2002-07-26 2006-12-15 Specimen carrier transfer apparatus Abandoned US20070225857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/304,108 US20070225857A1 (en) 2002-07-26 2006-12-15 Specimen carrier transfer apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US39889302P 2002-07-26 2002-07-26
US10/626,466 US6999847B2 (en) 2002-07-26 2003-07-24 Specimen carrier transfer apparatus for a conveyor track
US11/304,108 US20070225857A1 (en) 2002-07-26 2006-12-15 Specimen carrier transfer apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/626,466 Continuation US6999847B2 (en) 2002-07-26 2003-07-24 Specimen carrier transfer apparatus for a conveyor track

Publications (1)

Publication Number Publication Date
US20070225857A1 true US20070225857A1 (en) 2007-09-27

Family

ID=31495731

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/626,466 Expired - Lifetime US6999847B2 (en) 2002-07-26 2003-07-24 Specimen carrier transfer apparatus for a conveyor track
US10/626,463 Expired - Fee Related US7380654B2 (en) 2002-07-26 2003-07-24 Conveyor track drive
US10/627,341 Expired - Lifetime US6896120B2 (en) 2002-07-26 2003-07-25 Passive transfer guide for conveyor track
US10/627,342 Active 2025-10-07 US7233838B2 (en) 2002-07-26 2003-07-25 Transfer and positioning apparatus for automated conveyor system
US10/627,415 Expired - Lifetime US6843357B2 (en) 2002-07-26 2003-07-25 Two-axis robot for specimen transfer
US11/304,108 Abandoned US20070225857A1 (en) 2002-07-26 2006-12-15 Specimen carrier transfer apparatus

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US10/626,466 Expired - Lifetime US6999847B2 (en) 2002-07-26 2003-07-24 Specimen carrier transfer apparatus for a conveyor track
US10/626,463 Expired - Fee Related US7380654B2 (en) 2002-07-26 2003-07-24 Conveyor track drive
US10/627,341 Expired - Lifetime US6896120B2 (en) 2002-07-26 2003-07-25 Passive transfer guide for conveyor track
US10/627,342 Active 2025-10-07 US7233838B2 (en) 2002-07-26 2003-07-25 Transfer and positioning apparatus for automated conveyor system
US10/627,415 Expired - Lifetime US6843357B2 (en) 2002-07-26 2003-07-25 Two-axis robot for specimen transfer

Country Status (8)

Country Link
US (6) US6999847B2 (en)
EP (5) EP1546680B1 (en)
AT (3) ATE386698T1 (en)
AU (5) AU2003255861A1 (en)
CA (6) CA2497397A1 (en)
DE (3) DE60319243T2 (en)
ES (3) ES2549304T3 (en)
WO (5) WO2004013640A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013116654A1 (en) * 2012-02-03 2013-08-08 Siemens Healthcare Diagnostice, Inc. Encoding scheme embedded into an automation track surface
US20150273691A1 (en) * 2012-10-11 2015-10-01 Siemens Healthcare Diagnostics Inc. Automation maintenance carrier
US9513303B2 (en) 2013-03-15 2016-12-06 Abbott Laboratories Light-blocking system for a diagnostic analyzer
US9632103B2 (en) 2013-03-15 2017-04-25 Abbott Laboraties Linear track diagnostic analyzer
US9993820B2 (en) 2013-03-15 2018-06-12 Abbott Laboratories Automated reagent manager of a diagnostic analyzer system
CN110371633A (en) * 2019-07-22 2019-10-25 深圳市航瑞物流自动化有限公司 A kind of automatic Material Handling System

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8489176B1 (en) 2000-08-21 2013-07-16 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8909325B2 (en) * 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8565860B2 (en) * 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
US6999847B2 (en) * 2002-07-26 2006-02-14 Unelab Llc Specimen carrier transfer apparatus for a conveyor track
DE10247731B4 (en) * 2002-10-12 2007-04-12 Eppendorf Ag Gripping tool, dosing tool and tool holder for a laboratory automat
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
WO2008010227A2 (en) * 2006-07-19 2008-01-24 Spectrum Dynamics Llc Imaging protocols
US8586932B2 (en) 2004-11-09 2013-11-19 Spectrum Dynamics Llc System and method for radioactive emission measurement
US8571881B2 (en) * 2004-11-09 2013-10-29 Spectrum Dynamics, Llc Radiopharmaceutical dispensing, administration, and imaging
US9470801B2 (en) * 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
WO2005067383A2 (en) * 2004-01-13 2005-07-28 Spectrum Dynamics Llc Multi-dimensional image reconstruction
US20050169733A1 (en) * 2004-01-29 2005-08-04 Drynkin Alexander V. Automated tube handler system
US7810629B2 (en) * 2004-02-02 2010-10-12 Krones Ag Device for dynamic storage of objects
US20050255953A1 (en) * 2004-05-12 2005-11-17 Timothy Puckett Band Drive System for Telescopes, LIDAR and Other Instruments
EP1778957A4 (en) 2004-06-01 2015-12-23 Biosensors Int Group Ltd Radioactive-emission-measurement optimization to specific body structures
GB2419578B (en) * 2004-09-09 2007-11-28 Quin Systems Ltd Product handling
DE202004016069U1 (en) 2004-10-16 2005-12-01 Krones Ag Device for buffering objects
US8615405B2 (en) * 2004-11-09 2013-12-24 Biosensors International Group, Ltd. Imaging system customization using data from radiopharmaceutical-associated data carrier
US8423125B2 (en) 2004-11-09 2013-04-16 Spectrum Dynamics Llc Radioimaging
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
EP1827505A4 (en) 2004-11-09 2017-07-12 Biosensors International Group, Ltd. Radioimaging
US7628954B2 (en) * 2005-05-04 2009-12-08 Abbott Laboratories, Inc. Reagent and sample handling device for automatic testing system
ITRA20050024A1 (en) * 2005-06-23 2006-12-24 Jbc S R L SHELF FOR THE STORAGE OF GOODS
US8644910B2 (en) * 2005-07-19 2014-02-04 Biosensors International Group, Ltd. Imaging protocols
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
DE202005013552U1 (en) 2005-08-27 2005-11-03 Krones Ag Dynamic storage for buffering and transporting empty bottle, has lower deflection pulleys rotating in essentially horizontal planes and connected with vertical loops by curved guides for conveyor chain
DE102006008123A1 (en) * 2006-02-20 2007-08-23 Krones Ag Dynamic conveyor holding zone, for items being carried, has two conveyor paths moving in opposite directions with a transfer unit to move them from one to the other and a control unit linked to sensors
DE102006012148A1 (en) * 2006-03-16 2007-09-20 Krones Ag funding
US20070225858A1 (en) * 2006-03-24 2007-09-27 Lauyans & Company Control system for a pallet load transport system
US8894974B2 (en) * 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US7601966B2 (en) * 2006-06-28 2009-10-13 Spectrum Dynamics Llc Imaging techniques for reducing blind spots
DE102006035109A1 (en) * 2006-07-29 2008-01-31 Krones Ag Conveyor device for use in bottle handling device, has conveyors separated from each other and connected with buffer over transferring points, where intermediate conveyor bypasses buffer
DE102006049208A1 (en) * 2006-10-18 2008-04-24 Polysius Ag Labor system for processing and analyzing samples of e.g. cement production, has application device provided for applying samples within area of conditioning mechanisms, and movable between conditioning mechanisms
US8610075B2 (en) 2006-11-13 2013-12-17 Biosensors International Group Ltd. Radioimaging applications of and novel formulations of teboroxime
WO2008075362A2 (en) 2006-12-20 2008-06-26 Spectrum Dynamics Llc A method, a system, and an apparatus for using and processing multidimensional data
US8357538B2 (en) * 2007-04-06 2013-01-22 Qiagen Gaithersburg, Inc. Automated assay and system
EP2156196B1 (en) * 2007-04-06 2020-12-23 Becton, Dickinson and Company Sample preparation system for processing of clinical specimens
US7985375B2 (en) * 2007-04-06 2011-07-26 Qiagen Gaithersburg, Inc. Sample preparation system and method for processing clinical specimens
US8703492B2 (en) * 2007-04-06 2014-04-22 Qiagen Gaithersburg, Inc. Open platform hybrid manual-automated sample processing system
US7681466B2 (en) * 2007-05-01 2010-03-23 Siemens Healthcare Diagnostics Inc. Programmable random access sample handler for use within and automated laboratory system
JP2009087138A (en) * 2007-10-01 2009-04-23 Elpida Memory Inc Transport system, transport vehicle management device, and transport control method
US8521253B2 (en) * 2007-10-29 2013-08-27 Spectrum Dynamics Llc Prostate imaging
US8086341B2 (en) * 2008-05-09 2011-12-27 Caterpillar Inc. Control system and method for a modular manufacturing chain
DE102008030330B4 (en) * 2008-06-30 2011-12-08 Andreas Hettich Gmbh & Co. Kg Device for feeding sample containers with an analysis sample to be treated to a treatment device
IT1390858B1 (en) * 2008-08-05 2011-10-19 Dachi S R L "LOADING AND UNLOADING OF BIOLOGICAL MATERIAL CONTAINERS IN AN AUTOMATION SYSTEM"
JP5339853B2 (en) 2008-10-30 2013-11-13 シスメックス株式会社 Sample processing system
US9103782B2 (en) 2008-12-02 2015-08-11 Malvern Instruments Incorporated Automatic isothermal titration microcalorimeter apparatus and method of use
US20100291618A1 (en) 2009-05-15 2010-11-18 Biomerieux, Inc. Methods for rapid identification and/or characterization of a microbial agent in a sample
WO2010132780A2 (en) * 2009-05-15 2010-11-18 Biomerieux. Inc. System and method for agitation of multiple specimen containers
US8338788B2 (en) 2009-07-29 2012-12-25 Spectrum Dynamics Llc Method and system of optimized volumetric imaging
WO2011063139A1 (en) 2009-11-18 2011-05-26 Qiagen Laboratory central control unit method and system
CN104345165B (en) 2010-07-23 2016-09-14 贝克曼考尔特公司 Comprise the system and method for analytic unit
US20120191240A1 (en) * 2011-01-25 2012-07-26 Smart Motion Robotics, Inc. Methods and apparatus for removing an item from a conveyor system
DE102011003682A1 (en) * 2011-02-07 2012-08-09 Robert Bosch Gmbh Transport device with recognition function
JP5454491B2 (en) * 2011-02-25 2014-03-26 株式会社安川電機 Work system
US9248982B2 (en) 2011-05-13 2016-02-02 Beckman Coulter, Inc. System and method including laboratory product transport element
ES2687448T3 (en) 2011-05-13 2018-10-25 Beckman Coulter, Inc. Laboratory product transport element and path arrangement
CN103827655B (en) * 2011-07-22 2018-08-14 罗氏血液诊断股份有限公司 Sample delivery system and method
EP2753914B1 (en) 2011-09-09 2021-03-24 Gen-Probe Incorporated Automated sample handling instrumentation, systems, processes, and methods
US9574261B1 (en) 2011-09-09 2017-02-21 Thermion Inc. System and method for wire arc spray thermal spraying
US9075031B2 (en) 2011-10-11 2015-07-07 Ortho-Clinical Diagnostics, Inc. Apparatus for gripping and holding diagnostic cassettes
WO2013070748A1 (en) 2011-11-07 2013-05-16 Beckman Coulter, Inc. Magnetic damping for specimen transport system
ES2778054T3 (en) 2011-11-07 2020-08-07 Beckman Coulter Inc System and method for transporting sample containers
KR20140092377A (en) 2011-11-07 2014-07-23 베크만 컬터, 인코포레이티드 Aliquotter system and workflow
CN104105969B (en) 2011-11-07 2016-10-12 贝克曼考尔特公司 Centrifuge system and workflow
JP6062449B2 (en) 2011-11-07 2017-01-18 ベックマン コールター, インコーポレイテッド Specimen container detection
KR102040996B1 (en) 2011-11-07 2019-11-05 베크만 컬터, 인코포레이티드 Robotic arm
WO2013068986A1 (en) 2011-11-11 2013-05-16 Schleuniger Holding Ag Cable-gathering device (wire stacker)
JP6073911B2 (en) * 2011-11-11 2017-02-01 シュロニガー ホールディング アーゲー Conductor conveyor
CN104025209B (en) 2011-11-11 2017-05-10 施洛伊尼格控股有限公司 Twisting device and method for twisting electric wires or optical wires in twisting device
CN102514870A (en) * 2011-12-31 2012-06-27 北京华康诚信医疗科技有限公司 Adjustable balanced track mechanism formed at one step by aid of laser
KR20150009982A (en) * 2012-05-03 2015-01-27 쇼오트 아게 Method and device for treating containers and substances stored therein for medical, pharmaceutical or cosmetic applications
US9665688B2 (en) * 2012-05-15 2017-05-30 Tension International Inc. Product dispensing system and method with redundant container induction
CN104704374B (en) 2012-09-14 2016-10-12 贝克曼考尔特公司 There is the analysis system of capillary tube connecting gear
US9150119B2 (en) 2013-03-15 2015-10-06 Aesynt Incorporated Apparatuses, systems, and methods for anticipating and delivering medications from a central pharmacy to a patient using a track based transport system
US9511945B2 (en) 2012-10-12 2016-12-06 Aesynt Incorporated Apparatuses, systems, and methods for transporting medications from a central pharmacy to a patient in a healthcare facility
CN103048157B (en) * 2012-11-30 2015-06-24 刘小欣 Automatic pathological paraffin specimen recognition machine, detection trolley adopting same and control method for same
PT2801984T (en) 2013-05-08 2019-01-23 Schleuniger Holding Ag Gripper, twisting head and twisting head device
CN104176493B (en) * 2013-05-27 2017-02-22 珠海格力电器股份有限公司 Board moving device and PCB (printed circuit board) production line comprising same
DE102013012941A1 (en) * 2013-07-31 2015-02-05 Johannes Kindt Long-range multi-axis scanner in microscope objective format
KR101478480B1 (en) * 2014-01-17 2014-12-31 두산중공업 주식회사 Multi-articulated manipulator
EP3120156B1 (en) 2014-03-17 2021-11-17 Inpeco Holding Ltd Apparatus for moving and testing biological samples
CN104386471B (en) * 2014-10-11 2017-02-01 中国第一汽车股份有限公司 Assembly robot system for realizing multi-station overturning of cylinder block
CN104355113A (en) * 2014-10-31 2015-02-18 无锡中地地质装备有限公司 Material shifting device of drill rod straightness detection device
KR20160064524A (en) * 2014-11-28 2016-06-08 삼성전자주식회사 Conveyor apparatus
EP3312614A4 (en) * 2015-06-22 2019-06-05 Shenzhen Mindray Bio-Medical Electronics Sample analyzer
CN108027379B (en) 2015-06-26 2021-07-23 雅培实验室 Reaction vessel exchange device for diagnostic analysis apparatus
JP6465775B2 (en) * 2015-08-25 2019-02-06 株式会社日立ハイテクノロジーズ Sample processing system
EP3136108B1 (en) 2015-08-26 2020-12-23 F. Hoffmann-La Roche AG Device for loading an automated analysis system
US10456925B2 (en) 2015-10-30 2019-10-29 Thermo Fisher Scientific Oy Gripper finger and gripper
WO2017093775A1 (en) * 2015-11-30 2017-06-08 Gebo Cermex Canada Inc. Distribution conveying device
FR3047082B1 (en) 2016-01-25 2018-02-16 Arteion SUPPLY CONVEYING SYSTEM FOR CONTAINERS OF BIOLOGICAL LIQUID SAMPLES, AND AUTOMATIC ANALYSIS SYSTEM COMPRISING SUCH A CONVEYING SYSTEM
JP6487373B2 (en) * 2016-05-25 2019-03-20 ファナック株式会社 Work fixing device
CN106197509B (en) * 2016-07-06 2019-05-21 中车青岛四方机车车辆股份有限公司 A kind of fixation device of multisensor
CN106185225B (en) * 2016-08-30 2018-09-28 杭州景业智能科技有限公司 For nuclear facilities equipment conveying docking facilities
CN106219137B (en) * 2016-08-30 2018-12-21 北京轩宇智能科技有限公司 A kind of removable transition devices and methods therefor in nuclear equipment transfer device
WO2018093703A1 (en) * 2016-11-21 2018-05-24 Wal-Mart Stores, Inc. Robotic user interface puck support apparatus and method of use
WO2018148255A1 (en) * 2017-02-07 2018-08-16 Fedex Corporation Multi-drive conveyor systems and methods of using same
TWI611885B (en) * 2017-04-07 2018-01-21 上銀科技股份有限公司 Clamp capable of raising the workpiece vertically
CN108201837B (en) * 2018-03-19 2021-01-29 青岛大学附属医院 Automatic mixing device of medical test tube
US20190291101A1 (en) * 2018-03-23 2019-09-26 Gourgen AMBARTSOUMIAN Pcr tube holder
US11284603B2 (en) 2018-03-26 2022-03-29 United Animal Health, Inc. System and method for delivering nutrients to recently hatched chicks
CN110303218B (en) * 2018-03-27 2021-03-02 英业达科技有限公司 System and method for monitoring disc
CN108408352B (en) * 2018-05-10 2023-05-12 杭州景业智能科技股份有限公司 Nuclear industry transportation and maintenance device
US10689202B2 (en) 2018-05-29 2020-06-23 The Procter And Gamble Company Apparatus for controlled transport of articles along a path
US10696488B2 (en) * 2018-05-29 2020-06-30 The Procter And Gamble Company Apparatus that controls motion of proximate independent movers along a path
US10919705B2 (en) * 2018-05-29 2021-02-16 The Procter And Gamble Company Apparatus that controls motion of independent movers along a path
US10717606B2 (en) 2018-05-29 2020-07-21 The Procter And Gamble Company Method of independently controlling motion of movers along a path
CN108971819A (en) * 2018-09-25 2018-12-11 三峡昌耀管廊建设有限公司 A kind of continuous automatic gang welding machine of steel mesh
CN109279349B (en) * 2018-10-17 2023-09-01 浙江金鹰食品机械有限公司 Method and device for sucking and feeding thin plate
CN109484845A (en) * 2018-11-09 2019-03-19 深圳市均佑达自动化科技有限公司 A kind of splicing manipulator based on overturning blanking technology
CN109387647B (en) * 2018-12-08 2024-02-20 安图实验仪器(郑州)有限公司 Sample management system with emergency call function
CN210347441U (en) * 2019-06-13 2020-04-17 株式会社岛津制作所 Automatic sample injector
CN110498217B (en) * 2019-07-16 2021-05-28 苏州翌恒生物科技有限公司 Clamping jaw crane formula heparin tube preparation facilities
CN110803471B (en) * 2019-11-08 2023-12-26 烟台艾德康生物科技有限公司 Full-automatic sample inspection assembly line and scheduling method
CN110884885B (en) * 2019-11-11 2021-08-10 安徽晶宫绿建集团有限公司 Concrete prefabricated part conveying device
CN113135427B (en) * 2020-01-19 2023-08-18 广州市番禺致丰微电器有限公司 Automatic material taking and discharging system of SMT material disc
CN111189820B (en) * 2020-01-20 2022-02-15 通标标准技术服务有限公司 Robot automatic operation platform suitable for colorimetric detection
CN112027659A (en) * 2020-08-28 2020-12-04 苏州天准科技股份有限公司 Blanking equipment and electronic product part detection system
CN112110186A (en) * 2020-09-19 2020-12-22 日信电气股份有限公司 Material taking and placing mechanism for heat-insulating piston pin of air compressor
TWI790519B (en) * 2020-12-28 2023-01-21 鈺皓實業有限公司 Intelligent carrier system
CN113003139A (en) * 2021-02-09 2021-06-22 无锡永凯达齿轮有限公司 Automatic lifting drum formula assembly line
CN113602739B (en) * 2021-08-12 2022-11-18 深圳市金锦山科技有限公司 Transmission device for electronic product detection
US11897697B2 (en) * 2021-10-01 2024-02-13 Intelligrated Headquarters, Llc Integrated motorized conveyor rollers
CN114291563B (en) * 2021-12-31 2023-07-25 南京国科精准医学科技有限公司 Sample buffer memory device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1726657A (en) * 1928-02-27 1929-09-03 Economic Machinery Co Bottle-feed mechanism
US2151104A (en) * 1937-10-08 1939-03-21 Charles H Heitman Beverage dispensing device
US3160259A (en) * 1959-06-24 1964-12-08 Cesco Container Mfg Corp Method of and apparatus for transferring articles between conveyors
US4325476A (en) * 1980-02-07 1982-04-20 Phillips Petroleum Company Apparatus for merging articles from two conveyor lines into one conveyor line
US4741429A (en) * 1985-03-29 1988-05-03 Ngk Insulators, Ltd. Centering apparatus for ceramic articles and the like
US4809839A (en) * 1986-05-16 1989-03-07 Western Digital Corporation Component handling machine
US5228551A (en) * 1991-08-17 1993-07-20 Trutzschler Gmbh & Co. Kg Method and apparatus for transferring coiler cans to and from a can transporting carriage
US6328153B1 (en) * 1998-04-21 2001-12-11 Zecchetti S.R.L. Device for feeding layers of objects to a palletizing plant
US6435336B1 (en) * 1999-04-29 2002-08-20 Schuler Pressen Gmbh & Co. Kg Parts transfer system

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1733409A (en) * 1929-10-29 Conveyer mechanism
US1762129A (en) * 1928-09-13 1930-06-03 Zastrow Machine Company Inc Exhauster for canned goods
DE551229C (en) * 1929-12-28 1932-05-28 Karl Eisenmenger Endless belt with several drive stations
US2078236A (en) * 1935-08-26 1937-04-27 Frank D Chapman Can transporting device
US2168191A (en) * 1938-10-29 1939-08-01 Charles M Clarke Container conveyer and distributor
US2346583A (en) * 1941-09-11 1944-04-11 Owens Illinois Glass Co Article sorting apparatus
US2363920A (en) * 1943-10-02 1944-11-28 Morgan Construction Co Conveyer mechanism
US2451104A (en) * 1945-11-10 1948-10-12 Riviera Packing Company Distributing apparatus
US2465690A (en) * 1947-03-14 1949-03-29 Package Machinery Co Divider switch for bottle conveyer belts
GB888059A (en) * 1957-06-19 1962-01-24 Coal Industry Patents Ltd Improvements in and relating to conveyors
US2986261A (en) * 1959-12-21 1961-05-30 Western Electric Co Apparatus for transferring articles from an article-feeding device to an article-receiving device
US3635394A (en) * 1969-07-30 1972-01-18 Rohe Scientific Corp Automated clinical laboratory
US3721331A (en) * 1970-10-23 1973-03-20 Brown Int Corp Side discharge belt conveyor assembly
US3701407A (en) * 1971-02-02 1972-10-31 Emhart Corp Glassware transfer mechanism
US3788455A (en) * 1971-05-10 1974-01-29 Food Equipment Corp Curved-path slat belt conveyor
US3960266A (en) * 1973-04-03 1976-06-01 Hermann Heye Apparatus for simultaneously transferring a plurality of articles from one conveyor to another
US4084684A (en) * 1975-10-24 1978-04-18 Whirlpool Corporation Conveyor transfer method and apparatus
US4086855A (en) * 1976-04-05 1978-05-02 Si Handling Systems, Inc. Shallow conveyor system
US4413724A (en) * 1981-05-18 1983-11-08 Mapatent, N.V. Horizontal accumulator
US4411576A (en) * 1981-08-26 1983-10-25 William I. Smith Pick and place mechanism
US4690266A (en) * 1981-10-26 1987-09-01 Amp Incorporated Belt conveyor having article sorting and orienting features
FR2524436B1 (en) * 1982-04-02 1985-09-27 Nantaise Biscuiterie REGULATING DEVICE FOR TRANSFERRING IDENTICAL SOLID PRODUCTS BETWEEN UPSTREAM AND DOWNSTREAM MACHINES OF DIFFERENT SPEEDS
JPS6050617U (en) * 1983-09-16 1985-04-09 村田機械株式会社 Conveyance device for multiple types of goods
JPH0338704Y2 (en) * 1986-04-30 1991-08-15
US4835711A (en) * 1986-05-30 1989-05-30 Zymark Corporation Quickly reconfigurable robotic system
NL8800265A (en) * 1988-02-04 1989-09-01 Johannes Gerhardus Christianus TRANSPORT SYSTEM, TRANSPORT C.Q. BUFFER AND DISTRIBUTION SYSTEM, AND METHOD FOR TRANSFORMING A GOODS FLOW.
US4927545A (en) 1988-10-06 1990-05-22 Medical Automation Specialties, Inc. Method and apparatus for automatic processing and analyzing of blood serum
FR2648119B1 (en) * 1989-06-09 1991-09-27 Girondine Sa DEVICE FOR TRANSPORTING CONTAINERS, SUCH AS BOTTLES
US5002177A (en) * 1989-07-31 1991-03-26 Figgie International, Inc. Case drive conveyor
US5075079A (en) 1990-05-21 1991-12-24 Technicon Instruments Corporation Slide analysis system
US5525298A (en) * 1991-04-19 1996-06-11 Olympus Optical Co., Ltd. Apparatus for taking liquid content for use in analysis out of container
JPH05264558A (en) * 1992-03-19 1993-10-12 Nittec Co Ltd Transfer apparatus for container
US5203447A (en) * 1992-04-09 1993-04-20 Dorner Mfg. Corp. Drive mechanism for a conveyor
US5634550A (en) * 1993-03-12 1997-06-03 Rexnord Corporation Direction changing mechanism for transferring articles between transverse conveyors
US5417922A (en) * 1993-05-14 1995-05-23 Board Of Regents - University Of Nebraska Specimen carrier
US5427743A (en) * 1993-05-14 1995-06-27 Board Of Regents - Univ. Of Nebraska Specimen carrier
US5363951A (en) * 1993-05-17 1994-11-15 Jervis B. Webb Company Over and under belt conveyor system
US5351801A (en) * 1993-06-07 1994-10-04 Board Of Regents - Univ. Of Nebraska Automated laboratory conveyor system
FR2730315B1 (en) 1995-02-07 1997-03-21 Abx Sa DEVICE FOR STIRRING AND TAKING SAMPLES OF BLOOD PRODUCTS FROM TUBES GROUPED INTO CASSETTES
US5589137A (en) * 1995-04-07 1996-12-31 Lab-Interlink, Inc. Specimen carrier
CH690646A5 (en) * 1995-05-09 2000-11-30 Ferag Ag An apparatus for conveying objects.
US5551551A (en) * 1995-07-25 1996-09-03 Simplimatic Engineering Company Article combiner with multiple conveying surfaces and moving guides
JP3188836B2 (en) * 1995-08-02 2001-07-16 三機工業株式会社 Belt conveyor drive
JP3031237B2 (en) * 1996-04-10 2000-04-10 株式会社日立製作所 Method of transporting sample rack and automatic analyzer for transporting sample rack
JP3032159B2 (en) * 1996-09-24 2000-04-10 株式会社日立製作所 Analysis system
JP3336894B2 (en) * 1997-01-29 2002-10-21 株式会社日立製作所 Automatic analyzer
JP3428426B2 (en) * 1997-03-26 2003-07-22 株式会社日立製作所 Sample analysis system
US6261521B1 (en) * 1997-04-09 2001-07-17 Hitachi, Ltd. Sample analysis system and a method for operating the same
EP0871034B1 (en) * 1997-04-10 2007-03-07 Hitachi, Ltd. Automatic analyzer and support system therefor
US6374989B1 (en) * 1997-11-14 2002-04-23 Bayer Corporation Conveyor system for clinical test apparatus
JP3930977B2 (en) * 1998-07-31 2007-06-13 株式会社日立製作所 Sample processing system
CH698240B1 (en) 1998-11-17 2009-06-30 Tecan Trading Ag A method for weighing sample tubes, feeding and workstation.
US6177050B1 (en) 1998-11-18 2001-01-23 Lab-Interlink, Inc. Container positioning device
US6240335B1 (en) * 1998-12-14 2001-05-29 Palo Alto Technologies, Inc. Distributed control system architecture and method for a material transport system
US6241074B1 (en) * 1999-07-30 2001-06-05 Hartness International, Inc. Guide device for transferring articles between conveyors
US6574528B1 (en) * 1999-08-20 2003-06-03 Tdk Corporation Card assembly apparatus, card inspecting apparatus and card magazine used therefor
US6334525B1 (en) * 2000-04-12 2002-01-01 Lakso Transfer conveyor system
JP2002048802A (en) * 2000-08-07 2002-02-15 Hitachi Ltd Automatic analysis system
DE10045739A1 (en) * 2000-09-15 2002-03-28 Bosch Gmbh Robert Drive unit for an endless conveyor of a transfer system
DE10046404A1 (en) * 2000-09-18 2002-04-04 Flexlink Systems Gmbh System for transferring workpieces from main stream on first conveyor to second conveyor at right angles to it comprises transfer section with belts initially parallel to first conveyor which curve until they are parallel to second
US6478144B1 (en) * 2000-09-21 2002-11-12 Fki Industries, Inc.'s, Fki Logistex Automation Division Sliding shoe sorter and methods of using sliding shoe sorter
US6481567B2 (en) * 2001-01-06 2002-11-19 Span Tech Llc Conveyor system with intermediate drive and related method
US6999847B2 (en) * 2002-07-26 2006-02-14 Unelab Llc Specimen carrier transfer apparatus for a conveyor track
US6893120B2 (en) * 2002-11-19 2005-05-17 Lexmark International, Inc. Multi-color ink reservoirs for ink jet printers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1726657A (en) * 1928-02-27 1929-09-03 Economic Machinery Co Bottle-feed mechanism
US2151104A (en) * 1937-10-08 1939-03-21 Charles H Heitman Beverage dispensing device
US3160259A (en) * 1959-06-24 1964-12-08 Cesco Container Mfg Corp Method of and apparatus for transferring articles between conveyors
US4325476A (en) * 1980-02-07 1982-04-20 Phillips Petroleum Company Apparatus for merging articles from two conveyor lines into one conveyor line
US4741429A (en) * 1985-03-29 1988-05-03 Ngk Insulators, Ltd. Centering apparatus for ceramic articles and the like
US4809839A (en) * 1986-05-16 1989-03-07 Western Digital Corporation Component handling machine
US5228551A (en) * 1991-08-17 1993-07-20 Trutzschler Gmbh & Co. Kg Method and apparatus for transferring coiler cans to and from a can transporting carriage
US6328153B1 (en) * 1998-04-21 2001-12-11 Zecchetti S.R.L. Device for feeding layers of objects to a palletizing plant
US6435336B1 (en) * 1999-04-29 2002-08-20 Schuler Pressen Gmbh & Co. Kg Parts transfer system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013116654A1 (en) * 2012-02-03 2013-08-08 Siemens Healthcare Diagnostice, Inc. Encoding scheme embedded into an automation track surface
US9726686B2 (en) 2012-02-03 2017-08-08 Siemens Healthcare Diagnostics Inc. Encoding scheme embedded into an automation track surface
US20150273691A1 (en) * 2012-10-11 2015-10-01 Siemens Healthcare Diagnostics Inc. Automation maintenance carrier
US10668622B2 (en) * 2012-10-11 2020-06-02 Siemens Healthcare Diagnostics Inc. Automation maintenance carrier
US9513303B2 (en) 2013-03-15 2016-12-06 Abbott Laboratories Light-blocking system for a diagnostic analyzer
US9632103B2 (en) 2013-03-15 2017-04-25 Abbott Laboraties Linear track diagnostic analyzer
US9993820B2 (en) 2013-03-15 2018-06-12 Abbott Laboratories Automated reagent manager of a diagnostic analyzer system
US10330691B2 (en) 2013-03-15 2019-06-25 Abbott Laboratories Light-blocking system for a diagnostic analyzer
CN110371633A (en) * 2019-07-22 2019-10-25 深圳市航瑞物流自动化有限公司 A kind of automatic Material Handling System

Also Published As

Publication number Publication date
WO2004013709A2 (en) 2004-02-12
EP1546736B1 (en) 2011-03-02
EP1546680A4 (en) 2009-11-11
AU2003255857A1 (en) 2004-02-23
WO2004013709A3 (en) 2004-08-19
WO2004013710A3 (en) 2004-08-19
DE60336241D1 (en) 2011-04-14
AU2003267680A1 (en) 2004-02-23
DE60319243T2 (en) 2009-03-26
EP1546737A4 (en) 2010-04-28
ES2549304T3 (en) 2015-10-26
EP1546737A1 (en) 2005-06-29
AU2003255859A1 (en) 2004-02-23
DE60319243D1 (en) 2008-04-03
ATE500497T1 (en) 2011-03-15
EP1546009A2 (en) 2005-06-29
WO2004013640A1 (en) 2004-02-12
US20050258018A1 (en) 2005-11-24
ES2375116T3 (en) 2012-02-24
US6896120B2 (en) 2005-05-24
CA2497407C (en) 2013-01-08
US7380654B2 (en) 2008-06-03
WO2004013710A2 (en) 2004-02-12
EP1546736A1 (en) 2005-06-29
US20040094385A1 (en) 2004-05-20
DE60336242D1 (en) 2011-04-14
EP1546737B1 (en) 2015-07-08
EP1546821A4 (en) 2008-11-26
EP1546680B1 (en) 2011-03-02
CA2497431C (en) 2013-11-12
AU2003255857A8 (en) 2004-02-23
EP1546009A4 (en) 2005-10-26
ES2301813T3 (en) 2008-07-01
CA2497416A1 (en) 2004-02-12
CA2497397A1 (en) 2004-02-12
CA2497431A1 (en) 2004-02-12
CA2502656A1 (en) 2004-02-12
CA2497407A1 (en) 2004-02-12
WO2004013639A1 (en) 2004-02-12
EP1546009B1 (en) 2008-02-20
US20040096362A1 (en) 2004-05-20
US20050023109A1 (en) 2005-02-03
WO2004013615A1 (en) 2004-02-12
US6999847B2 (en) 2006-02-14
ATE386698T1 (en) 2008-03-15
US7233838B2 (en) 2007-06-19
CA2693321A1 (en) 2004-02-12
ATE500514T1 (en) 2011-03-15
EP1546736A4 (en) 2009-12-09
EP1546680A1 (en) 2005-06-29
US6843357B2 (en) 2005-01-18
AU2003255858A1 (en) 2004-02-23
AU2003267680A8 (en) 2004-02-23
AU2003255861A1 (en) 2004-02-23
EP1546821A2 (en) 2005-06-29
CA2497416C (en) 2012-05-29
US20040163931A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US6999847B2 (en) Specimen carrier transfer apparatus for a conveyor track
US5351801A (en) Automated laboratory conveyor system
US6520313B1 (en) Arrangement and method for handling test tubes in a laboratory
US7510683B2 (en) Sample-conveying system having mobile unit
CZ262097A3 (en) Automated apparatus
WO2020148735A1 (en) Specimen carrier
WO2015033023A2 (en) Method and arrangement for handling test tubes
JP6668123B2 (en) Sample transport system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION