US20070177382A1 - Solid state light source - Google Patents

Solid state light source Download PDF

Info

Publication number
US20070177382A1
US20070177382A1 US11/461,537 US46153706A US2007177382A1 US 20070177382 A1 US20070177382 A1 US 20070177382A1 US 46153706 A US46153706 A US 46153706A US 2007177382 A1 US2007177382 A1 US 2007177382A1
Authority
US
United States
Prior art keywords
end cap
light
light source
led
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/461,537
Inventor
Donald Pritchard
William Magiske
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LED Pipe Inc
Original Assignee
LED Pipe Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/263,922 external-priority patent/US6957905B1/en
Application filed by LED Pipe Inc filed Critical LED Pipe Inc
Priority to US11/461,537 priority Critical patent/US20070177382A1/en
Publication of US20070177382A1 publication Critical patent/US20070177382A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V15/00Protecting lighting devices from damage
    • F21V15/01Housings, e.g. material or assembling of housing parts
    • F21V15/015Devices for covering joints between adjacent lighting devices; End coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J6/00Arrangement of optical signalling or lighting devices on cycles; Mounting or supporting thereof; Circuits therefor
    • B62J6/02Headlights
    • B62J6/028Headlights specially adapted for rider-propelled cycles with or without additional source of power
    • B62J6/029Headlights specially adapted for rider-propelled cycles with or without additional source of power characterised by the structure, e.g. casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L14/00Electric lighting devices without a self-contained power source, e.g. for mains connection
    • F21L14/02Electric lighting devices without a self-contained power source, e.g. for mains connection capable of hand-held use, e.g. inspection lamps
    • F21L14/023Electric lighting devices without a self-contained power source, e.g. for mains connection capable of hand-held use, e.g. inspection lamps having two or more, or different light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • F21L4/02Electric lighting devices with self-contained electric batteries or cells characterised by the provision of two or more light sources
    • F21L4/022Pocket lamps
    • F21L4/027Pocket lamps the light sources being a LED
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/06Bases for movable standing lamps; Fixing standards to the bases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/08Devices for easy attachment to any desired place, e.g. clip, clamp, magnet
    • F21V21/0824Ground spikes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/08Devices for easy attachment to any desired place, e.g. clip, clamp, magnet
    • F21V21/088Clips; Clamps
    • F21V21/0885Clips; Clamps for portable lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V2200/00Use of light guides, e.g. fibre optic devices, in lighting devices or systems
    • F21V2200/10Use of light guides, e.g. fibre optic devices, in lighting devices or systems of light guides of the optical fibres type
    • F21V2200/17Use of light guides, e.g. fibre optic devices, in lighting devices or systems of light guides of the optical fibres type characterised by the admission of light into the guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a solid state light source, and more particularly, to a modular light source using at least one light emitting diode element(s) (LED elements) arranged in a tubular sealed housing.
  • LED elements light emitting diode element(s)
  • LED elements are also commonly used for information display such as LED element display panels, “power on” indicators and the like.
  • a light source is a lighting device used for illumination.
  • An LED element used for the purpose of information display, also called signalling, will typically be on the order of less than one hundred ( ⁇ 100) milli-candela whereas an LED element used for illumination will typically be on the order of at least one thousand (>1000) milli-candela. Consequently, there is a large distinction in the industry between LED based light sources and LED based signalling or display devices.
  • Northeast Robotics, Fostec, Illumination Technologies, & Dolan Jenner are representative of the companies in the machine vision illumination industry.
  • Northeast Robotics is the assignee of U.S. Pat. Nos. 6,177,954; 6,135,350; 6,059,421; 6,003,992; 5,949,584; 5,920,643; 5,877,899; 5,842,060; 5,764,874; 5,761,540; 5,713,661; 5,684,530; 5,604,550; 5,461,417; and 5,187,611.
  • Fostec is the assignee of U.S. Pat. Nos. 5,887,102 and 5,187,765.
  • Illumination Technologies is the assignee of U.S. Pat. Nos.
  • a durable, low cost, low power, light source providing effective lighting to the desired location would also be well-suited for other specific lighting areas such as outdoor lighting, back up or emergency lighting, interior vehicle lighting and numerous other applications.
  • LED light sources have been proposed in a number of areas, but have not yet adequately addressed all of the lighting criteria. See for example U.S. Pat. Nos.
  • a modular light source includes a generally tubular housing, at least one LED element mounted in the housing, and an optional controller mounted in the housing and coupled to the LED element.
  • the controller if provided, may sequentially, intermittently pulse the LED element(s).
  • the controller may over-drive the LED element(s) with a current in excess of several times the continuous forward rating for the individual LED element(s).
  • the housing may be a substantially closed, waterproof tubular metal member and may include a power source in the housing.
  • the light source may form a portable light source, such as a flashlight, bicycle light, helmet light or the like.
  • the light source may include at least one battery forming the power source in the housing and the housing may be formed as a substantially closed, waterproof, tubular member forming the portable light source.
  • the light source may be of the type used in the machine vision area and include a fiber optic bundle coupling attached to the housing.
  • the light source may include a collimating optic such as fresnel lens in the housing between the LED element(s) and the fiber optic bundle coupling.
  • the light source may further include a collector or reflective mirror between the optic and the fiber optic bundle coupling.
  • the housing may have a power source coupling.
  • the light source may further include an intensity adjustment mechanism in the housing for adjusting the intensity of the LED element(s).
  • the light source according to the present invention may include a plurality of colors of LED elements in an LED array.
  • the light source may have the LED array divided into channels of LED element pairs operated simultaneously.
  • the light source may use 5 mm LED elements in the LED array, although other sizes and styles of LED elements, such as surfaces mounted chips, may be utilized depending on the desired application.
  • the light source may provide the controller to evaluate the power source and control the LED array accordingly, thereby accepting a variety of input voltages.
  • the controller may accept external strobe signals.
  • FIG. 1 is a sectional side view of a light source according to one embodiment of the present invention
  • FIG. 2 is a plan view of an LED array of the light source shown in FIG. 1 ;
  • FIG. 3 is a sectional side view of a light source according to a second embodiment of the present invention.
  • FIG. 4 a plan view of an LED array of the light source shown in FIG. 1 ;
  • FIG. 5 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 6 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 7 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 8 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 9 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 10 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 11 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 12 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 13 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 14 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 15 is a sectional side view of a fiber optic coupling end cap for a light source according to the various embodiments of the present invention.
  • FIGS. 16A, 16B and 16 C are front, side and bottom views of a coupling clamp for a light source according to the various embodiments of the present invention.
  • FIG. 17 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 18 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 19 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 20 is a sectional side view of a signalling device according to another embodiment of the present invention.
  • FIG. 21 is a sectional side view of a signalling device according to another embodiment of the present invention.
  • FIG. 22 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 23 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 24 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 25 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 26 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 27 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 28 is a sectional side view of a signalling device according to another embodiment of the present invention.
  • FIG. 29 is a sectional side view of a signalling device according to another embodiment of the present invention.
  • FIG. 30 is a sectional side view of a signalling device according to another embodiment of the present invention.
  • FIG. 31 is a sectional side view of a signalling device according to another embodiment of the present invention.
  • FIG. 32 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 33 is a sectional side view of a light source according to another embodiment of the present invention.
  • FIG. 34 is a sectional side view of a battery pack for the light source of FIGS. 32 and 33 according to the present invention.
  • FIG. 35 is a sectional side view of a battery pack for the light source of FIGS. 32 and 33 according to the present invention.
  • FIG. 36 is a sectional side view of modular housing and end cap components for forming many of the light sources disclosed in the earlier Figures according to the present invention.
  • the present invention is a modular light source 10 for illuminating a fiber optic bundle (not shown) such as used in machine vision illumination.
  • the light source 10 includes a rigid, substantially closed tubular housing 12 formed of an anodized aluminium tube with threaded end caps 13 closing the threaded ends of the housing 12 .
  • Other materials, such as plastic or steel, may also be used to form the housing 12 .
  • One end cap 13 attached to the tubular housing 12 includes a conventional fiber optic bundle coupling 14 for receipt of an end of a fiber optic bundle in a conventional manner.
  • the housing 12 can easily accommodate different couplings 14 simply by replacing the end cap 13 and coupling 14 with an end cap 13 having a different sized coupling 14 , or threading a different sized coupler 14 into the end cap 13 such as may be possible with couplers 14 having a smaller inner diameter.
  • This construction allows the light source 10 to be used with a variety of fiber optical bundles.
  • the light source 10 includes an LED array 16 formed of a plurality of individual LED elements 18 as shown in FIG. 2 .
  • the LED elements 18 maybe formed in a variety of colors.
  • the LED elements 18 may be 5 mm elements, since these effectively balance the light emitted or brightness with the population density, size and cost.
  • any size or style LED element 18 may be used based upon the desired use of the light source 10 .
  • chip style surface mount elements may also be utilized in certain applications.
  • the LED elements 18 may be grouped into pairs on the LED array 16 . LED elements 18 are available in many sizes and colors.
  • the 5 mm LED elements 18 (and other sized LED elements 18 ) are available in many emitting wavelengths. This is important because the LED array 16 may be populated with LED elements 18 of any color or wavelength.
  • a single LED array 16 may, in fact, be populated with LED elements 18 emitting different wavelengths for the purpose of switching or mixing colors to achieve a desired result.
  • Typical colors and their associated wavelengths include Red (635 nm), Amber (620 nm), Yellow (590 nm), Green (525 nm), Blue (470 nm), White (420-700 nm) and Infrared (880 nm).
  • Red 635 nm
  • Amber 620 nm
  • Yellow 590 nm
  • Green 525 nm
  • Blue 470 nm
  • White 420-700 nm
  • Infrared 880 nm
  • a collimating optic 20 such as a fresnel lens, is positioned adjacent the LED array 16 to assist in focusing the light from the LED array 16 onto the fiber optic bundle in the coupling 14 .
  • a reflective optic 22 such as a chrome plated brass mirror, is positioned between the optic 20 and the coupling 14 to further assist in the transmission of the maximum amount of uniform light to the fiber optic bundle in the coupling 14 .
  • Optical components positioned in front of the LED array 16 i.e. optics 20 and 22 ) are used to enhance the luminous efficiency of the light source 10 by gathering and directing light emitted from the LED array 16 to the end of the optical fiber bundle.
  • the fresnel lens of optic 20 is used to focus the parallel rays onto the bundle.
  • the end of the bundle is positioned inside the focal point of the optic 20 since a sharp focus is not desirable.
  • a soft focus bathes the entire bundle in a circle of light.
  • the elliptical mirror of reflective optic 22 is employed to gather oblique rays and direct them to the fiber bundle.
  • a controller 24 shown schematically in FIG. 1 , is positioned in the housing 12 and coupled to the LED array 16 for controlling the individual LED elements 18 . It is preferred if the controller 24 operates the LED array 16 such that each pair of LED elements 18 is pulsed in a sequence similar to the firing order of an internal combustion engine. Rapid pulsing of the LED elements 18 will further maximize light output by driving the LED elements 18 with current several times in excess of the manufacturer's continuous forward rating. The LED elements 18 are allowed to cool during the rest portion of the cycle to prevent damage. The net effect is a brighter light with lower energy consumption than if the LED array 16 was powered in a continuous current mode.
  • the specific amount of the over driving of the individual LED elements can be determined based upon the given application; however, at least three (3) times the continuous forward rating is expected and six (6) to eight (8) times the given rating (or even more) is contemplated.
  • the construction of the control board or controller is only shown schematically and is believed to be known to those in the art. Any number of specific control circuit boards may be designed to accomplish the desired functionality, including the pulsing and over driving discussed above, strobing of the LED array 16 , color mixing or other control functions.
  • the controller 24 located behind the LED array 16 serves multiple roles. First, it regulates the power to the LED array 16 . Power is normally provided by an external 5 VDC wall mount supply. However, the control board or controller 24 is capable of accepting a wide range of input voltages.
  • the controller 24 will evaluate the power source supplied and control the LED array 16 accordingly to provide a constant light output with a range of voltage power inputs. This permits, within a reasonable range, the use of whatever power is available.
  • the light source 10 can even be battery powered if necessary.
  • Another part of its circuitry controls the pulsing function of the LED array 16 and accepts an external strobe signal.
  • the controller 24 or control board, also controls the intensity of the LED array 16 .
  • a multi-turn potentiometer 26 is coupled to the controller 24 and is accessible through the rear end cap 13 and allows manual adjustment of LED array 16 brightness. The design of the specific controller 24 , as with the LED array 16 , will depend on the specific application of the light source 10 .
  • One end cap 13 attached to the housing 12 includes a power coupling 28 for connection to an external power source (not shown) through a power cord (not shown).
  • the light source 10 may be used with a battery source as well, with the battery source coupled to the housing 12 through the power coupling 28 .
  • the battery source may, alternatively, be positioned within the housing 12 .
  • the present invention generally relates to the generation of light (e.g., illumination) whereby the emitting LED elements 18 , control circuitry in the controller 24 , and associated optical components are housed within a modular rugged, sealed tube forming the housing 12 .
  • This embodiment of the invention is basically summarized as a “light in a pipe”.
  • the structural shape of the housing 12 permits the easy alignment of key components along an optical axis while simultaneously providing the protective, sealed housing 12 necessary for the survival of those components in a hostile or adverse environment. It has been designed to provide illumination in situations that require a compact, lightweight source; extreme durability; long, reliable emitting life; low power consumption; minimal heat generation; and special illumination controls (e.g., intensity, color mixing, strobing).
  • the light source 10 As machine vision engineers, the inventors, Mr. Donald V. Pritchard and Mr. William J. Magiske, have developed a new modular light source 10 that combines LED technology with the benefits of fiber to provide superior illumination in a very rugged, compact package.
  • the light source 10 generates light from the LED array 16 .
  • the light is then collected and focused onto the end of a fiber bundle. All components are housed in a small tube forming the housing 12 that can be mounted in any orientation. Low power consumption of the LED array 16 means that no cooling is required.
  • the housing 12 is sealed and water-resistant.
  • the use of LED elements 18 makes the light source 10 shock resistant because there are no filaments or moving parts that can fail. In fact, the LED array 16 has a rated life of 100,000 hours.
  • the LED elements 18 are available in a variety of wavelengths including infrared.
  • the light source 10 can accommodate a fiber bundle from any manufacturer by changing the coupling 14 on the front of the housing 12 .
  • Another benefit of the light source 10 is that it can be strobed, eliminating the need for expensive strobing units that will degrade over time.
  • the effort has been to develop a rugged light source 10 that combines the functionality of both traditional halogens and gas discharge strobes for the illumination of fiber without the associated drawbacks.
  • the light source 10 uses rigid tubing as its housing 12 as discussed above. This simple structural shape was chosen for several reasons. Housing 12 is produced with minimal machining and at very little cost. The tube itself is rugged. A tube permits the easy alignment of key components along an optical axis while simultaneously providing a protective housing 12 . Assembly is quick and easy because all electrical and optical components are slipped into the tube. Proper internal component separation may be easily maintained with spacer tubes 38 . Screw on end caps 13 seal the housing 12 . Power is provided through a waterproof connector or power coupling 28 on the rear end cap 13 . An external strobe trigger signal can also be applied through this coupling 28 . The light source 10 accommodates fiber optic bundles from different manufacturers by attaching the appropriate coupler 14 to the front end cap 13 of the housing 12 .
  • the light source 10 functions as both. No other product fulfils these dual roles.
  • the light source 10 has been designed to be versatile, rugged, and energy efficient.
  • the light source 10 uses the LED array 16 to illuminate optical fiber. No existing product on the market known to the inventors does this. Other LED products are used in lieu of optical fiber and can produce uneven illumination patterns as a result.
  • the light source 10 can illuminate optical fiber in either continuous or strobed modes. Typically, a halogen source is purchased for continuous illumination of fiber or a gas discharge strobe for pulsed illumination. No known existing product on the market does both.
  • the light source 10 can be provided with an LED array 16 which emits light in a variety of colors including infrared and ultraviolet. Other light sources must employ a filter to absorb unwanted colors.
  • the light source 10 produces a cool light. It consumes only 4 watts of power. In contrast, halogen sources generate a tremendous amount of heat while consuming 150 watts.
  • the LED elements 18 used in the LED array 16 have a rated life of 100,000 hours. In contrast, halogen bulbs typically last for 1000 hours. Gas discharge flash tubes have a life of 6 million cycles. The light output of the LED array 16 is constant throughout is rated life. The output from halogens and flash tubes degrades over the life of the bulb.
  • the light source 10 uses the fresnel lens of optic 20 and elliptic mirror of optic 22 in tandem to focus and direct light from the array 16 to the fiber bundle. Other products do not employ similar components.
  • the light source 10 is compact, rugged, and highly water-resistant. The typical halogen or strobe source must be housed in bulky, expensive enclosures to survive in rigorous factory environments.
  • the light source 10 will operate on a wide range of input voltages. Other sources typically require a very specific input voltage such as 120 VAC or 24 VDC.
  • the ramifications of the present technology extend beyond the machine vision market.
  • the overall design concept lends itself to performance enhancements in products for outdoor, safety, emergency, and portable illumination applications. These include flashlights, headlamps, lanterns, etc.
  • these products typically employ tungsten, krypton, xenon, and halogen bulbs.
  • the glowing filaments in these bulbs consume a significant amount of power and also generate considerable heat. Battery life with these products is measured in hours.
  • filaments are somewhat fragile and will break with sufficient shock.
  • the present invention lends itself very nicely to illumination issues within a number of very diverse markets. Where one or more of the aforementioned parameters is of paramount importance, the invention is an appropriate and preferred solution.
  • the concept and overall design have application for portable, safety, marine, emergency, and outdoor lighting. Variations of the invention for these applications include flashlights for emergency and military personnel as well as general purpose use; headlamps for miners, construction workers, spelunkers, and cyclists; bicycle lighting for mountain bikers and cycle mounted police; lanterns for campers, boaters, and homeowners; cockpit lighting for boats and pleasure craft; and solar powered safety and decorative outdoor lighting.
  • the following description in connection with the illustrated embodiments, demonstrates the wide range of applicability of the present invention.
  • FIGS. 3-4 illustrate the formation of a light source 100 according to another embodiment of the present invention, specifically in the form of a portable flashlight.
  • the light source 100 of FIGS. 3-4 is similar to the light source 10 of FIGS. 1-2 including a housing 12 and an LED array 16 of LED elements 18 with controller 24 in the housing 12 .
  • a window 30 in front end cap 13 replaces the collimating optic 20 to seal the housing 12 .
  • the housing 12 of the light source 100 of FIGS. 3-4 differs from the housing 12 of the light source 10 of FIGS. 1-2 by providing for the receipt of one or more batteries therein as the power source.
  • the front end cap 13 is internally threaded onto the tubular housing 12 through external threads on the tubular housing 12 .
  • the front end cap 13 may include a sealing member 32 , such as an O-ring, to seal the light source 100 .
  • the rear end cap 13 may include a sealing member 32 and a biasing contact 34 as known in the flashlight art. Appropriate switching (not shown) will be provided in the housing 12 as is known in the flashlight art.
  • the flashlight light source 100 of FIGS. 3-4 provides several advantages over existing flashlights.
  • the light source 100 uses the LED array 16 to generate a substantial amount of light, particularly through the pulsing and over driving of the LED elements 18 .
  • most existing flashlights use tungsten or krypton bulbs.
  • Existing LED flashlights are available, but do not pulse or over drive the LED elements to provide acceptable light emission.
  • the LED array 16 generates very even illumination patterns with no special optical components.
  • Traditional flashlights use a parabolic reflector to collect and direct the light. Reflectors can create interference patterns of concentric rings of light that can be very annoying to the users. Even premium flashlights from manufacturers, such as Mag Instruments, suffer this problem.
  • the use of the LED elements 18 consumes far less power than traditional flashlight bulbs of similar output.
  • the light source 10 may pulse the LED array 16 to maximize light output while extending battery life.
  • the light source 10 with a twelve LED element array 16 as shown in FIG. 4 , can generate useful light non-stop for two weeks on 3 D-cell batteries.
  • No existing commercial flashlight on the market can match this performance.
  • the LED array 16 is comprised of several pulsed channels, it can be provided in dual or even multiple colors. This has ramifications for military applications. The soldier in the field uses screw on filters to get the color he needs in conventional flashlights.
  • the light source 100 can obviate this through colored LED elements 18 . No known flashlight on the market currently provides this feature.
  • the light source 100 is designed to operate over a wide range of voltages.
  • FIGS. 5-31 will further evidence the advantages of the present invention regarding flashlight type lighting sources.
  • the present invention is also particularly well-suited for use as headlamps or helmet lights.
  • the headlamp can be formed similar to light source 100 .
  • the remote power source may be a battery, or battery pack, clipped to the user, such as to the user's belt.
  • Headlamps which use an LED array 16 , or single element 18 , according to the invention will generate a substantial amount of light with relatively low power consumption.
  • manufacturers of headlamps for the mining and construction industries use high intensity incandescent bulbs that consume a significant amount of power. Headlamps using LED arrays 16 or a single LED element 18 consume far less power than traditional units and will extend battery life over traditional units. Headlamps according to the present invention will operate for days on a single charge.
  • FIGS. 32-33 will further evidence the advantages of the present invention as a user mounted headlamp.
  • the present invention is also particularly well-suited for the formation of lanterns, which can be viewed as a sub-set of flashlights in general, for all of the reasons discussed above.
  • These LED lanterns would be designed for camping, backyard, and marine activities. Further, it has been noticed that the cool light from the LED array does not attract bugs. Finally, the bluish white light from the LED array 16 tends to fluoresce fishing line making it easier for night time fishermen to thread their lures. It also provides the right amount of light in the boat cockpit without harming night vision. Further lantern specific applications will be discussed below.
  • Another application of the present invention is in bicycle lights. That will also incorporate the aforementioned characteristics of superior illumination, long battery life, and ruggedness. Further, the light from the LED array 16 will cast fewer shadows, especially in wooded areas, giving the rider better three dimensional recognition capabilities. The light weight of both the light source 10 and 100 and batteries are beneficial to weight conscious cyclists. Finally, police cyclists can also rely on the light's ability to change colors and strobe, giving the cyclist headlight, safety, and warning light capability from one unit.
  • the present invention is not limited to high intensity white LED elements 18 that are driven with special circuitry in conjunction with optical components to gather and direct the emitted light into a fiber bundle.
  • the proposed outdoor, safety, and portable illumination product designs are subsets of the original solid state fiber optic light source 10 . They may retain the same circular LED arrays 16 (or single high output LED element 18 as illustrated below), drive circuitry in the controller 24 , and rigid housing 12 .
  • the optical components 20 and 22 used in the fiber optic light source 10 are traded for sealed windows 30 in the flashlight light source 100 .
  • the various embodiments of the present invention share the same cylindrical housing shape, use LED arrays, share the same electronic circuitry to pulse the array (if desired), and accept a wide range of input voltages.
  • the present invention is not limited to use of LED arrays 16 as will be evident below.
  • the design of the present invention is a solid state light source including a tubular aluminium housing 12 enclosing an LED light source.
  • the emitting end of the light source includes an end cap 13 designed for the light source function, where the LED light source member may be coupled to the end cap 13 .
  • An appropriate power source such as an electrical plug or a battery pack in the housing 12 is also provided.
  • the modular LED light source system of the invention provides a large variety of distinct light sources that are formed by common elements. As detailed below, a number of distinct light sources are provided with distinct end caps 13 selectively attached to a common housing 12 .
  • the LED element 18 , or array 16 itself may be coupled or attached to the end cap 13 to be positioned in and removed from the housing 12 with the specific end cap 13 .
  • FIG. 5 illustrates a light source 200 essentially the same fiber optic light source 10 of FIG. 1 .
  • the light source 200 uses the same elements as the light source 10 without the optic 22 .
  • the removal of the reflective optic 22 i.e. mirror, can be easily accomplished through the disconnecting of the front end cap 13 , removing the optic 22 and replacing the front end cap 13 .
  • the light source 200 also shows an access port 36 in the rear end cap to access the adjustment 26 .
  • the coupling 14 is also shown with a sealing member 32 to assist in fiber optic bundle coupling.
  • FIG. 5 also better illustrates spacer tubes 38 used to locate the elements within the housing 12 .
  • FIG. 6 illustrates a light source 300 similar to the fiber optic light source 200 of FIG. 5 .
  • the light source 300 uses the same housing 12 , end cap 13 , coupling 14 , power connection 28 as the light sources 10 and 200 .
  • the light source 300 uses a single high output LED element 18 H, wherein “high output” is at least a 1 Watt element within the meaning of this application.
  • a conical collimating optic 20 C is adjacent the LED element 18 H. Suitable high output LED elements 18 H are available from Lumiled Corporation.
  • a spacer tube 38 spaces and holds a mounting plate 40 of the LED element 18 H and the optic 20 C from the front end cap 13 .
  • a power supply mount 39 is within the housing 12 to hold a power supply module 42 through which power is directed through the power coupling 28 , e.g. a cord connector, mounted in the rear end cap 13 .
  • FIG. 7 illustrates a 3 D-cell fixed lens flashlight 400 according to the present invention.
  • the flashlight 400 uses housing 12 and high output LED element 18 H with optic 20 C.
  • the LED element 18 H is in an end cap 13 with an optic mount 44 securing the optic 20 C to the mounting plate 40 .
  • the front end cap 13 includes sealing members 32 and has a clear window 30 .
  • the window 30 may optionally be a lens, filter or the like.
  • a spacer tube 38 spaces the mounting plate 40 of the LED element 18 H appropriately.
  • Rear end cap 13 includes a spring biasing contact 34 for D-cell sized batteries 46 in a conventional fashion.
  • the rear end cap 13 may further include a mounting loop or support 48 for supporting of the light source or flashlight 400 (e.g. hanging from a users work-belt).
  • the flashlight 400 will make the electrical connection through any conventional mechanism, including twisting of the end cap front end cap 13 .
  • FIG. 8 illustrates a 5 D-cell fixed lens flashlight 500 according to the present invention.
  • the flashlight 500 uses housing 12 which is long enough to accommodate 5 D-cell sized batteries 46 .
  • the flashlight 500 is the same as flashlight 400 discussed above.
  • FIG. 9 illustrates a 3 AA-cell sized fixed lens flashlight 600 according to the present invention.
  • the flashlight 600 uses housing 12 that is long enough to accommodate a battery holding tube 50 which houses 3 AA sized batteries 46 AA in an annular array (i.e. the individual batteries are positioned 120 degrees apart in the battery holding tube 50 ).
  • the flashlight 600 is the same as flashlights 400 and 500 discussed above.
  • FIG. 10 illustrates a 3 AA-cell sized fixed tri-lens flashlight 700 according to the present invention.
  • the flashlight 700 uses housing 12 with battery holding tube 50 housing 3 AA sized batteries 46 AA in an annular array as discussed above in connection with FIG. 9 .
  • the flashlight 700 includes an end cap 13 having a window 30 , spacer tube 38 , LED array 16 and an array of three, preferably high output LED elements 18 H with associated collimating optics 20 C with mounting 44 .
  • FIG. 11 illustrates a 3D cell sized fixed tri-lens flashlight 800 according to the present invention.
  • the flashlight 800 is similar to the flashlight 400 with the end cap 13 thereof replaced with the end cap 13 used in flashlight 700 .
  • the flashlight 400 can be converted to the flashlight 800 with replacement of the appropriate end cap 13 .
  • FIG. 12 illustrates a 5D cell sized fixed tri-lens flashlight 900 according to the present invention.
  • the flashlight 900 is similar to the flashlight 500 with the end cap 13 thereof replaced with the end cap of flashlight 700 or 800 discussed above. In other words the flashlight 500 can be converted to the flashlight 900 with replacement of the appropriate end cap 13 .
  • FIG. 13 illustrates a 5D cell sized zoom lens flashlight 1000 according to the present invention.
  • the flashlight 1000 is similar to the flashlights 500 and 900 with the respective end cap 13 thereof replaced with an end cap 13 having a manually moveable slide mount 52 for adjusting the position of an optic 20 relative to the optic 20 C on the LED element 18 H.
  • This end cap 13 with the slide mount 52 provides a zoom lens, light focusing mechanism for the operator.
  • the zoom available end cap 13 can be used on the 3D cell and the 3AA sized flashlights discussed above. Again the changing between light source types involves removing and replacing end caps 13 .
  • FIG. 14 illustrates a 5D cell sized fixed lens flashlight 1100 according to the present invention.
  • the flashlight 1100 is similar to the flashlight 500 with the rear end cap 13 having a push button mechanism 54 for activating the flashlight 1100 .
  • the electrical connection for activation of the flashlight 1100 does not require the further tightening of the front end cap 13 , but can be incorporated into the pushbutton mechanism 54 .
  • the push button rear end cap 13 can be used on the 3D cell and the 3AA sized flashlights discussed above. Again the changing between light source types generally involves removing and replacing end caps 13 (and associated elements).
  • FIG. 15 illustrates an end cap 13 for the flashlight light sources discussed above that includes a fiber optic bundle coupling adapter at the one end thereof.
  • the end cap 13 of FIG. 15 can be used with the flashlights discussed above to provide a portable fiber optic light source.
  • this end cap 13 or adaptor, essentially allows the flashlights above to serve as portable boroscope light source.
  • FIGS. 16 A-C illustrates a clamp 56 for attachment of the cylindrical housing 12 of the light sources described above.
  • the clamp 56 has a portion clamped around the housing 12 and a separate attachment element for securing the structure to a base.
  • the base may be a bicycle handle bar, or the leg of an assembly line conveyor.
  • the clamp 56 may take many known shapes and is representative of a wide variety of attachment or securing systems that can be used.
  • the cylindrical housing 12 allows a hose clamp design to be used in certain applications.
  • FIG. 17 illustrates a 3D cell sized lantern 1200 according to the present invention.
  • the lantern 1200 is similar to the flashlight 400 in that the same housing 12 is used.
  • the rear end cap 13 has three pivoting, locking legs 58 to support the lantern 1200 when the legs are deployed.
  • the legs 58 are pivoted about a pin connection on the end cap 13 from a stored position, shown in phantom, adjacent the housing.
  • a deployed position which is generally perpendicular to the housing 12
  • the rearward end of the leg 58 can be pushed into a receiving hole (shown in phantom) in the end cap 13 to lock the leg 58 in the deployed position.
  • the leg 58 has a slot receiving the pin of the end cap 13 to allow for the pivoting then rectilinear motion. Only one leg 58 is shown in the figure, but the remaining two are identical and are evenly spaced about the end cap 13 .
  • the end cap 13 could have more than three legs 56 , but three is believed to be the minimum needed to form a stable base for the lantern 1200 when the legs 58 are deployed.
  • the lighting end of the lantern 1200 of FIG. 17 includes an end cap 13 with a pair of opposed elements 18 H with the light being emitted through a radial or tubular window 30 R.
  • the term “lantern” within the meaning of the present invention is radial light emission for illumination.
  • the “lantern” will be a sub set of the “flashlights” of this application which can be axial light emission or radial light emission or right angle light emissions.
  • the window may be clear or may include a diffuser as desired for the lantern effect.
  • the end cap 13 at the front end of the lantern 1200 includes support 48 to allow the lantern to be hung in a desired location. As with the above lights sources, the lantern 1200 can be formed through essentially replacement of the end caps 13 from earlier embodiments.
  • FIG. 18 illustrates a 5D cell sized lantern 1300 according to the present invention.
  • the lantern 1300 is similar to the lantern 1200 discussed above in connection with FIG. 17 , except that the housing 12 is sized to receive 5 D-cell batteries 46 .
  • the lantern 1300 can be formed from a 5 D-cell flashlight described above through merely replacing of the end caps 13 . It should also be apparent that the lantern 1300 can be formed from the lantern 1200 discussed above by merely replacing of the 3 D-cell length housing 12 with a 5 D-cell length housing 12 .
  • the modularity of the present invention is intended to provide either or both the end user and the manufacturer with great advantages.
  • the end user may be provided with a number of distinct lighting sources with merely a few end caps 13 .
  • the manufacturer can manufacture a number of distinct products using a consistent base of materials or elements.
  • FIG. 19 illustrates a 3AA cell sized lantern 1400 according to the present invention.
  • the lantern 1400 is similar to the lanterns 1200 and 1300 discussed above in connection with FIGS. 17 and 18 , except that the housing 12 is sized to receive the battery pack mount 50 and the associated batteries 46 AA.
  • FIG. 20 illustrates a 2AA cell sized search-rescue strobe 1500 according to the present invention.
  • the strobe 1500 is similar to the lantern 1400 discussed above in connection with FIG. 19 .
  • the purpose of this device is to signal, as opposed to illuminate as with the other light sources of the present invention.
  • the signalling function allows the LED element 18 H to be a red or yellow LED element.
  • This wavelength LED can be operated with 2 AA sized batteries 46 AA. Consequently the battery pack 50 can be designed to hold only 2 batteries 46 AA, or the same battery pack 50 with three batteries slots could be used with one slot holding a connecting rod the same length as a battery 46 AA.
  • a controller 24 may provide intermitted flashing of the LED element 18 , the provision of which can be accommodated through a slight increase in the length of the housing 12 (however it is also contemplated that the battery biasing spring could be used to accommodate the space for the controller through further compression thereof).
  • the end cap 13 further would include a radial window 30 R and an axial window 30 for complete signalling possibilities. The modular aspects of the present invention should still be apparent.
  • a user can quickly convert from the lantern 1400 to the search-rescue strobe 1500 by (1) unscrewing the front end cap 13 and removing the mounting plate 40 and the battery pack 50 , (2) inserting a connecting rod in place of one battery 46 AA and re-inserting the battery pack 50 together with the controller 24 and element 18 H of the search-rescue strobe 1500 , and (3) threading on the end cap 13 of the search-rescue strobe 1500 .
  • the entire conversion would take less than half of one minute.
  • FIG. 21 illustrates a 2 D-cell sized search and rescue strobe 1600 .
  • the search and rescue strobe 1600 is similar to the search and rescue strobe 1500 discussed above in connection with FIG. 20 , except that the housing 12 is sized for two D-cell batteries 46 .
  • the two D-cell batteries are sufficient power source for a red or red-orange LED element 18 H that would typically be used for signalling.
  • FIG. 22 illustrates a 3AA cell sized trouble light 1700 according to the present invention.
  • the term “trouble light” within the meaning of the present invention is right angle light emission for illumination. The light is directed in a given direction perpendicular to the axis of the housing 12 , as opposed to a complete 360 degree radial dispersion as found in the lanterns.
  • the “trouble lights” will be a sub-set of the “flashlights” of this application. Again the “flashlights” can be axial light emission or radial light emission or right angle light emissions.
  • the trouble light 1700 is similar to the 3AA cell sized lantern 1400 discussed above in connection with FIG. 19 .
  • the main difference is in the mounting of the LED element 18 H on a mounting plate 40 at a position generally perpendicular to the axis of the housing 12 .
  • An optic 20 C and a mount are also provided for this “right angle” light.
  • the rear end cap 13 with legs 58 allows the trouble light to be easily independently supported for directing the light onto a working surface, such as under a sink, or within a car wheel.
  • the support 48 also allows the trouble light to be placed in a hanging location where desired, such as hanging from a car hood.
  • FIG. 23 illustrates a 3 D-cell sized trouble light 1800 according to the present invention.
  • the trouble light 1800 also called a utility light, is similar to the trouble light 1700 discussed above in connection with FIG. 22 , except that the housing 12 is sized to receive the 3 D-cell batteries 46 , in the same manner as the other 3 D-cell lighting sources discussed above.
  • FIG. 24 illustrates a 5 D-cell sized trouble light 1900 according to the present invention.
  • the trouble light 1900 is similar to the trouble lights 1700 and 1800 discussed above in connection with FIGS. 22 and 23 , except that the housing 12 is sized to receive the 5 D-cell batteries 46 , in the same manner as the other 5 D-cell lighting sources discussed above.
  • the length of the housing of the trouble light 1900 due to the five batteries 46 , may make an advantageous self standing trouble or utility light.
  • FIG. 25 illustrates a 3 AA-cell sized trouble light 2000 according to the present invention.
  • the trouble light 2000 is similar to the trouble light 1700 discussed above in connection with FIG. 22 , except that the front end cap 13 has a pair of LED elements 18 H each with optics 20 C and mounts 44 attached to the support plate 40 .
  • the window 30 R is increased in length accordingly.
  • FIG. 26 illustrates a 3 AA-cell sized trouble light 2100 according to the present invention.
  • the trouble light 2100 is similar to the trouble lights 1700 and 2000 discussed above in connection with FIG. 22 and FIG. 25 , except that the front end cap 13 has three LED elements 18 H each with optics 20 C and mounts 44 attached to the support plate 40 .
  • the window 30 R is increased in length accordingly.
  • FIG. 27 illustrates a 3 D-cell sized trouble light 2200 according to the present invention.
  • the trouble light 2200 is similar to the trouble light 2100 discussed above in connection with FIG. 26 , except that the housing 12 is sized to receive the 3 D-cell batteries 46 , in the same manner as the other 3 D-cell lighting sources discussed above.
  • the two and three LED element 18 H version of the trouble lights of the present invention are not limited to AA sized batteries as shown here.
  • FIG. 28 illustrates a 2 D-cell sized flashing flare 2300 according to the present invention.
  • the flashing flare 2300 is similar to the strobe 1600 discussed above in connection with FIG. 20 .
  • This is a signalling device, as opposed to illuminating device as with the other light sources of the present invention.
  • the signalling function allows the LED element 18 H to be a red or yellow LED element.
  • This wavelength LED can be operated with 2 D-cell sized batteries 46 , as opposed to three.
  • a controller 24 may provide intermitted flashing of the LED element 18 .
  • the end cap 13 further would include a radial window 30 R and a support 48 to allow for hanging up of the flashing flare 2300 .
  • the rear end cap 13 has legs 58 to provide a self supporting device. It should be apparent that the main difference between the flare 2300 and the strobe 1600 is the provision of only radial emission.
  • FIG. 29 illustrates a 2 AA-cell sized flashing flare 2400 .
  • the flare 2400 is similar to the search and rescue strobe 1500 discussed above in connection with FIG. 20 , except that the front end cap 13 is the same as with the flare 2300 (radial emission through window 30 R only).
  • the two AA-cell batteries are sufficient power source for a red or red-orange LED element 18 H that would typically be used for signalling.
  • FIG. 30 illustrates a 2 AA-cell sized constant flare 2500 .
  • the flare 2500 is similar to the flashing flare 2400 discussed above in connection with FIG. 29 , except that the controller 24 is omitted since the flare is not flashing.
  • the two AA-cell batteries are sufficient power source for a red or red-orange LED element 18 H that would typically be used for signalling.
  • FIG. 31 illustrates a 2 D-cell sized constant flare 2600 .
  • the flare 2600 is similar to the flashing flare 2300 discussed above in connection with FIG. 28 , except that the controller 24 is omitted since the flare is not flashing.
  • FIG. 32 illustrates a remote powered user mounted light source 2700 .
  • the light source 2700 uses the same modular concepts incorporated into the light sources discussed above including a pair of end caps 13 secured to opposite ends of a tubular housing 12 .
  • the power is supplied through an electrical cord extending through the rear end cap 13 and through the tubular housing 12 .
  • the front end cap 13 includes a mounting plate 40 , LED element 18 H, Optic 20 C, optic mount 44 , spacer 38 and window 30 , similar to the flashlight light sources disclosed above.
  • the rear end cap 13 includes an end cap base 60 pivotably mounted thereto. The base 60 can be attached to the user, such as to a miner's helmet or the like.
  • FIG. 33 illustrates a remote powered user mounted light source 2800 similar to the light source 2700 discussed above.
  • the front end cap 13 includes an array of LED elements 18 H (e.g. 3), each with an optic 20 C, on the mounting plate 40 .
  • the rear end cap 13 includes an end cap base 60 rotationally mounted thereto.
  • the base 60 can be attached to the user, such as to a miner's helmet or the like.
  • FIG. 34 illustrates a remote battery pack 62 for powering a user mounted light source such as 2700 or 2800 .
  • the battery pack 62 uses the same modular concepts incorporated into the light sources discussed above including a pair of end caps 13 secured to opposite ends of a tubular housing 12 .
  • the front end cap 13 includes a power cord extending from the power coupling 28 secured to a mounting plate 64 , with the electrical cord extending through the rear end cap 13 and through the tubular housing 12 of the light source 2700 or 2800 which is being powered by the battery pack 62 .
  • the battery pack 62 carries three D-cell sized batteries 46 for powering the light source 2700 or 2800 that can be attached to the user, such as to a miner's helmet or the like. The battery pack will typically be secured to the user's belt or the like.
  • FIG. 35 illustrates a remote battery pack 62 for powering a user mounted light source such as 2700 or 2800 .
  • the battery pack 62 of FIG. 35 is essentially the same as the pack 62 shown in FIG. 34 but is sized to hold three AA sized batteries 46 AA in a mount 50 .
  • FIG. 36 is a sectional side view of modular housings 12 and end caps 13 for forming many of the light sources disclosed in the earlier figures. As evidenced in the earlier figures, this small number of components can be combined into a wide variety of lighting sources which are shown in earlier figures and described above.

Abstract

A modular light source system forms a plurality of distinct light sources with a common tubular metal housing, an LED based lighting element for each light source, and a pair of end caps on opposed ends of the metal housing for each light source. Each distinct lighting source is comprised of one of the LED based lighting elements and a given pair of the end caps, whereby distinct light sources can be formed through replacement of the LED based lighting elements and the end caps.

Description

    RELATED APPLICATION
  • This application is a divisional of and claims the benefit of U.S. patent application Ser. No. 10/759,516 entitled “Solid State Light Source” filed Jan. 16, 2004, now U.S. Pat. No. 7,083,298, and which published as U.S. Patent Application Publication number 2004-00170014 on Sep. 2, 2004. U.S. patent application Ser. No. 10/759,516 is a continuation-in-part of and claims the benefit of U.S. patent application Ser. No. 10/263,922 entitled “Solid State Light Source” filed Oct. 3, 2002, now U.S. Pat. No. 6,957,905, U.S. patent application Ser. No. 10/263,922 claims the benefit of U.S. patent application Ser. No. 60/326,802 entitled “Solid State Light Source” Filed Oct. 3, 2001. The above identified patents and published patent application are incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a solid state light source, and more particularly, to a modular light source using at least one light emitting diode element(s) (LED elements) arranged in a tubular sealed housing.
  • 2. Brief Description of the Prior Art
  • Specialized light sources have been developed in numerous industries. For example, light sources utilizing fiber optic bundles have been used by machine vision engineers for years to put light just where it is needed. Fiber enables the engineer to generate the precise lighting geometries required to perform difficult inspections. Halogen sources have been a mainstay to illuminate these fiber optic bundles. However, the typical halogen source suffers several shortcomings and was not designed for use on the factory floor. The light from a fresh halogen lamp is brilliant; but, output declines steadily over the lamp's relatively short (typically) 1000 hour life. In addition, a typical halogen lamp consumes 150 watts of power and generates a tremendous amount of heat. Consequently, the typical halogen lamp light source is not a sealed, shock resistant unit because ventilation is required. Due to these design considerations, present product offerings are housed in heavy, bulky enclosures.
  • In addition to use as a light source for the purpose of illumination, LED elements are also commonly used for information display such as LED element display panels, “power on” indicators and the like. Within the meaning of this application, a light source is a lighting device used for illumination. An LED element used for the purpose of information display, also called signalling, will typically be on the order of less than one hundred (<100) milli-candela whereas an LED element used for illumination will typically be on the order of at least one thousand (>1000) milli-candela. Consequently, there is a large distinction in the industry between LED based light sources and LED based signalling or display devices.
  • Advances in LED technology have prompted a number of well-known manufacturers in the machine inspection industry to introduce products to eliminate not only the halogen source but the fiber optic bundle as well. Lines, rings, and panels which were once strictly the domain of fiber optics are now being populated with LED elements. Other specialty units such as on-axis and cloudy day illuminators are also available in LED form. At first glance, this appears to be a technically sound, cost-effective illumination alternative. While not as bright, LED technology offers features and capabilities unavailable with halogens. However, the illumination patterns generated from these products are generally poor and uneven because the individual LED elements produce hot spots that randomized fiber optic would have eliminated.
  • Northeast Robotics, Fostec, Illumination Technologies, & Dolan Jenner are representative of the companies in the machine vision illumination industry. Northeast Robotics is the assignee of U.S. Pat. Nos. 6,177,954; 6,135,350; 6,059,421; 6,003,992; 5,949,584; 5,920,643; 5,877,899; 5,842,060; 5,764,874; 5,761,540; 5,713,661; 5,684,530; 5,604,550; 5,461,417; and 5,187,611. Fostec is the assignee of U.S. Pat. Nos. 5,887,102 and 5,187,765. Illumination Technologies is the assignee of U.S. Pat. Nos. 5,752,767; 5,661,838; 5,591,972; 5,550,946. Dolan Jenner is the assignee of U.S. Pat. Nos. 5,997,164; 5,820,250; 5,790,734; 5,579,177; 5,276,504; RE34,345; 5,229,842; 5,102,227; 4,772,128; and 4,280,122.
  • There still remains a need in the machine vision industry for a durable, low cost, low power, light source providing effective lighting to the desired location. This need is not limited to the machine vision industry. Durable, low cost, low power, light source providing effective lighting to the desired location would also be particularly well-suited for portable light sources such as flashlights, bicycle lights, helmet lights; hand-held lanterns and the like. Regarding flashlights and the like, Mag Instruments is the assignee of U.S. Pat. Nos. D336,535; D335,718; 5,193,898; 5,184,884; and 5,062,026. The Brinkmann Corp. is the assignee of U.S. Pat. Nos. D445,926; D436,200; D414,887; and D413,401. Ledtronics is the assignee of U.S. Pat. Nos. D434,510; D405,201; D404,506; and D402,772.
  • In a similar fashion, a durable, low cost, low power, light source providing effective lighting to the desired location would also be well-suited for other specific lighting areas such as outdoor lighting, back up or emergency lighting, interior vehicle lighting and numerous other applications. LED light sources have been proposed in a number of areas, but have not yet adequately addressed all of the lighting criteria. See for example U.S. Pat. Nos. 6,290,382 (LED vision system); 6,283,613 (LED traffic light); 6,276,822 (LED headlight); 6,268,702 (LED warning light); 6,234,645 (LED white light); 6,220,722 (LED white light for airplane cabin); 6,220,719 (LED flashlight); 6,168,288 (LED flashlight); 6,095,661 (LED flashlight); 6,639,716 (LED light); 6,028,694 (LED light); 5,897,195 (LED light); 5,850,126 (LED light); 5,634,711 (LED light); 4,234,911 (LED flashlight); 4,211,955 (LED light).
  • It is an object of the present invention to provide a durable, low cost, low power, modular light source providing effective lighting to the desired location for a variety of specific applications. It is another object of the present invention to provide such durable, low cost, low power, light source providing effective lighting to the desired location effective for the machine vision illumination and usable as a fiber optic bundle lighting source. It is another object of the present invention to provide a light source that is economically manufactured and easily usable with a variety of applications.
  • SUMMARY OF THE INVENTION
  • The above objects are achieved with a light source according to the present invention. A modular light source includes a generally tubular housing, at least one LED element mounted in the housing, and an optional controller mounted in the housing and coupled to the LED element. The controller, if provided, may sequentially, intermittently pulse the LED element(s). The controller may over-drive the LED element(s) with a current in excess of several times the continuous forward rating for the individual LED element(s). The housing may be a substantially closed, waterproof tubular metal member and may include a power source in the housing.
  • In one embodiment of the present invention, the light source may form a portable light source, such as a flashlight, bicycle light, helmet light or the like. The light source may include at least one battery forming the power source in the housing and the housing may be formed as a substantially closed, waterproof, tubular member forming the portable light source.
  • In another embodiment of the present invention the light source may be of the type used in the machine vision area and include a fiber optic bundle coupling attached to the housing. The light source may include a collimating optic such as fresnel lens in the housing between the LED element(s) and the fiber optic bundle coupling. The light source may further include a collector or reflective mirror between the optic and the fiber optic bundle coupling. The housing may have a power source coupling. The light source may further include an intensity adjustment mechanism in the housing for adjusting the intensity of the LED element(s).
  • The light source according to the present invention may include a plurality of colors of LED elements in an LED array. The light source may have the LED array divided into channels of LED element pairs operated simultaneously. The light source may use 5mm LED elements in the LED array, although other sizes and styles of LED elements, such as surfaces mounted chips, may be utilized depending on the desired application. The light source may provide the controller to evaluate the power source and control the LED array accordingly, thereby accepting a variety of input voltages. The controller may accept external strobe signals.
  • These and other advantages of the present invention will be clarified in the description of the preferred embodiments taken together with the attached drawings in which like reference numerals represent similar or related elements throughout.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional side view of a light source according to one embodiment of the present invention;
  • FIG. 2 is a plan view of an LED array of the light source shown in FIG. 1;
  • FIG. 3 is a sectional side view of a light source according to a second embodiment of the present invention;
  • FIG. 4 a plan view of an LED array of the light source shown in FIG. 1;
  • FIG. 5 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 6 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 7 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 8 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 9 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 10 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 11 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 12 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 13 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 14 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 15 is a sectional side view of a fiber optic coupling end cap for a light source according to the various embodiments of the present invention;
  • FIGS. 16A, 16B and 16C are front, side and bottom views of a coupling clamp for a light source according to the various embodiments of the present invention;
  • FIG. 17 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 18 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 19 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 20 is a sectional side view of a signalling device according to another embodiment of the present invention;
  • FIG. 21 is a sectional side view of a signalling device according to another embodiment of the present invention;
  • FIG. 22 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 23 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 24 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 25 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 26 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 27 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 28 is a sectional side view of a signalling device according to another embodiment of the present invention;
  • FIG. 29 is a sectional side view of a signalling device according to another embodiment of the present invention;
  • FIG. 30 is a sectional side view of a signalling device according to another embodiment of the present invention;
  • FIG. 31 is a sectional side view of a signalling device according to another embodiment of the present invention;
  • FIG. 32 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 33 is a sectional side view of a light source according to another embodiment of the present invention;
  • FIG. 34 is a sectional side view of a battery pack for the light source of FIGS. 32 and 33 according to the present invention;
  • FIG. 35 is a sectional side view of a battery pack for the light source of FIGS. 32 and 33 according to the present invention; and
  • FIG. 36 is a sectional side view of modular housing and end cap components for forming many of the light sources disclosed in the earlier Figures according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • One embodiment of the present invention is shown in FIGS. 1-2. As shown in FIG. 1, the present invention is a modular light source 10 for illuminating a fiber optic bundle (not shown) such as used in machine vision illumination. The light source 10 includes a rigid, substantially closed tubular housing 12 formed of an anodized aluminium tube with threaded end caps 13 closing the threaded ends of the housing 12. Other materials, such as plastic or steel, may also be used to form the housing 12. One end cap 13 attached to the tubular housing 12 includes a conventional fiber optic bundle coupling 14 for receipt of an end of a fiber optic bundle in a conventional manner. The housing 12 can easily accommodate different couplings 14 simply by replacing the end cap 13 and coupling 14 with an end cap 13 having a different sized coupling 14, or threading a different sized coupler 14 into the end cap 13 such as may be possible with couplers 14 having a smaller inner diameter. This construction allows the light source 10 to be used with a variety of fiber optical bundles.
  • The light source 10 includes an LED array 16 formed of a plurality of individual LED elements 18 as shown in FIG. 2. The LED elements 18 maybe formed in a variety of colors. The LED elements 18 may be 5 mm elements, since these effectively balance the light emitted or brightness with the population density, size and cost. However, any size or style LED element 18 may be used based upon the desired use of the light source 10. For example, chip style surface mount elements may also be utilized in certain applications. The LED elements 18 may be grouped into pairs on the LED array 16. LED elements 18 are available in many sizes and colors. In addition, the 5 mm LED elements 18 (and other sized LED elements 18) are available in many emitting wavelengths. This is important because the LED array 16 may be populated with LED elements 18 of any color or wavelength. A single LED array 16 may, in fact, be populated with LED elements 18 emitting different wavelengths for the purpose of switching or mixing colors to achieve a desired result. Typical colors and their associated wavelengths include Red (635 nm), Amber (620 nm), Yellow (590 nm), Green (525 nm), Blue (470 nm), White (420-700 nm) and Infrared (880 nm). The actual construction of the LED array 16 is believed to be known to those in the art.
  • A collimating optic 20, such as a fresnel lens, is positioned adjacent the LED array 16 to assist in focusing the light from the LED array 16 onto the fiber optic bundle in the coupling 14. A reflective optic 22, such as a chrome plated brass mirror, is positioned between the optic 20 and the coupling 14 to further assist in the transmission of the maximum amount of uniform light to the fiber optic bundle in the coupling 14. Optical components positioned in front of the LED array 16 (i.e. optics 20 and 22) are used to enhance the luminous efficiency of the light source 10 by gathering and directing light emitted from the LED array 16 to the end of the optical fiber bundle. Specifically, the fresnel lens of optic 20 is used to focus the parallel rays onto the bundle. The end of the bundle is positioned inside the focal point of the optic 20 since a sharp focus is not desirable. A soft focus bathes the entire bundle in a circle of light. In addition, the elliptical mirror of reflective optic 22 is employed to gather oblique rays and direct them to the fiber bundle.
  • A controller 24, shown schematically in FIG. 1, is positioned in the housing 12 and coupled to the LED array 16 for controlling the individual LED elements 18. It is preferred if the controller 24 operates the LED array 16 such that each pair of LED elements 18 is pulsed in a sequence similar to the firing order of an internal combustion engine. Rapid pulsing of the LED elements 18 will further maximize light output by driving the LED elements 18 with current several times in excess of the manufacturer's continuous forward rating. The LED elements 18 are allowed to cool during the rest portion of the cycle to prevent damage. The net effect is a brighter light with lower energy consumption than if the LED array 16 was powered in a continuous current mode. The specific amount of the over driving of the individual LED elements can be determined based upon the given application; however, at least three (3) times the continuous forward rating is expected and six (6) to eight (8) times the given rating (or even more) is contemplated. The construction of the control board or controller is only shown schematically and is believed to be known to those in the art. Any number of specific control circuit boards may be designed to accomplish the desired functionality, including the pulsing and over driving discussed above, strobing of the LED array 16, color mixing or other control functions. The controller 24 located behind the LED array 16 serves multiple roles. First, it regulates the power to the LED array 16. Power is normally provided by an external 5 VDC wall mount supply. However, the control board or controller 24 is capable of accepting a wide range of input voltages. The controller 24 will evaluate the power source supplied and control the LED array 16 accordingly to provide a constant light output with a range of voltage power inputs. This permits, within a reasonable range, the use of whatever power is available. The light source 10 can even be battery powered if necessary. Another part of its circuitry controls the pulsing function of the LED array 16 and accepts an external strobe signal. The controller 24, or control board, also controls the intensity of the LED array 16. A multi-turn potentiometer 26 is coupled to the controller 24 and is accessible through the rear end cap 13 and allows manual adjustment of LED array 16 brightness. The design of the specific controller 24, as with the LED array 16, will depend on the specific application of the light source 10.
  • One end cap 13 attached to the housing 12 includes a power coupling 28 for connection to an external power source (not shown) through a power cord (not shown). As discussed above, the light source 10 may be used with a battery source as well, with the battery source coupled to the housing 12 through the power coupling 28. The battery source may, alternatively, be positioned within the housing 12.
  • The present invention generally relates to the generation of light (e.g., illumination) whereby the emitting LED elements 18, control circuitry in the controller 24, and associated optical components are housed within a modular rugged, sealed tube forming the housing 12. This embodiment of the invention is basically summarized as a “light in a pipe”. The structural shape of the housing 12 permits the easy alignment of key components along an optical axis while simultaneously providing the protective, sealed housing 12 necessary for the survival of those components in a hostile or adverse environment. It has been designed to provide illumination in situations that require a compact, lightweight source; extreme durability; long, reliable emitting life; low power consumption; minimal heat generation; and special illumination controls (e.g., intensity, color mixing, strobing).
  • As machine vision engineers, the inventors, Mr. Donald V. Pritchard and Mr. William J. Magiske, have developed a new modular light source 10 that combines LED technology with the benefits of fiber to provide superior illumination in a very rugged, compact package. The light source 10 generates light from the LED array 16. The light is then collected and focused onto the end of a fiber bundle. All components are housed in a small tube forming the housing 12 that can be mounted in any orientation. Low power consumption of the LED array 16 means that no cooling is required. The housing 12 is sealed and water-resistant. The use of LED elements 18 makes the light source 10 shock resistant because there are no filaments or moving parts that can fail. In fact, the LED array 16 has a rated life of 100,000 hours. The LED elements 18 are available in a variety of wavelengths including infrared. The light source 10 can accommodate a fiber bundle from any manufacturer by changing the coupling 14 on the front of the housing 12. Another benefit of the light source 10 is that it can be strobed, eliminating the need for expensive strobing units that will degrade over time. In summary, the effort has been to develop a rugged light source 10 that combines the functionality of both traditional halogens and gas discharge strobes for the illumination of fiber without the associated drawbacks.
  • The light source 10 uses rigid tubing as its housing 12 as discussed above. This simple structural shape was chosen for several reasons. Housing 12 is produced with minimal machining and at very little cost. The tube itself is rugged. A tube permits the easy alignment of key components along an optical axis while simultaneously providing a protective housing 12. Assembly is quick and easy because all electrical and optical components are slipped into the tube. Proper internal component separation may be easily maintained with spacer tubes 38. Screw on end caps 13 seal the housing 12. Power is provided through a waterproof connector or power coupling 28 on the rear end cap 13. An external strobe trigger signal can also be applied through this coupling 28. The light source 10 accommodates fiber optic bundles from different manufacturers by attaching the appropriate coupler 14 to the front end cap 13 of the housing 12.
  • Engineers have always been forced to choose between a continuous light source such as a halogen or a gas discharge strobe to illuminate the optical fiber used in machine vision inspection systems. The light source 10 functions as both. No other product fulfils these dual roles. The light source 10 has been designed to be versatile, rugged, and energy efficient. The light source 10 uses the LED array 16 to illuminate optical fiber. No existing product on the market known to the inventors does this. Other LED products are used in lieu of optical fiber and can produce uneven illumination patterns as a result. The light source 10 can illuminate optical fiber in either continuous or strobed modes. Typically, a halogen source is purchased for continuous illumination of fiber or a gas discharge strobe for pulsed illumination. No known existing product on the market does both. The light source 10 can be provided with an LED array 16 which emits light in a variety of colors including infrared and ultraviolet. Other light sources must employ a filter to absorb unwanted colors. The light source 10 produces a cool light. It consumes only 4 watts of power. In contrast, halogen sources generate a tremendous amount of heat while consuming 150 watts. The LED elements 18 used in the LED array 16 have a rated life of 100,000 hours. In contrast, halogen bulbs typically last for 1000 hours. Gas discharge flash tubes have a life of 6 million cycles. The light output of the LED array 16 is constant throughout is rated life. The output from halogens and flash tubes degrades over the life of the bulb. The light source 10 uses the fresnel lens of optic 20 and elliptic mirror of optic 22 in tandem to focus and direct light from the array 16 to the fiber bundle. Other products do not employ similar components. The light source 10 is compact, rugged, and highly water-resistant. The typical halogen or strobe source must be housed in bulky, expensive enclosures to survive in rigorous factory environments. The light source 10 will operate on a wide range of input voltages. Other sources typically require a very specific input voltage such as 120 VAC or 24 VDC.
  • The ramifications of the present technology extend beyond the machine vision market. Specifically, the overall design concept lends itself to performance enhancements in products for outdoor, safety, emergency, and portable illumination applications. These include flashlights, headlamps, lanterns, etc. At present, these products typically employ tungsten, krypton, xenon, and halogen bulbs. The glowing filaments in these bulbs consume a significant amount of power and also generate considerable heat. Battery life with these products is measured in hours. In addition, filaments are somewhat fragile and will break with sufficient shock.
  • While originally developed as an illumination source for the optical fiber used in industrial machine vision systems, the present invention lends itself very nicely to illumination issues within a number of very diverse markets. Where one or more of the aforementioned parameters is of paramount importance, the invention is an appropriate and preferred solution. The concept and overall design have application for portable, safety, marine, emergency, and outdoor lighting. Variations of the invention for these applications include flashlights for emergency and military personnel as well as general purpose use; headlamps for miners, construction workers, spelunkers, and cyclists; bicycle lighting for mountain bikers and cycle mounted police; lanterns for campers, boaters, and homeowners; cockpit lighting for boats and pleasure craft; and solar powered safety and decorative outdoor lighting. The following description, in connection with the illustrated embodiments, demonstrates the wide range of applicability of the present invention.
  • FIGS. 3-4 illustrate the formation of a light source 100 according to another embodiment of the present invention, specifically in the form of a portable flashlight. The light source 100 of FIGS. 3-4 is similar to the light source 10 of FIGS. 1-2 including a housing 12 and an LED array 16 of LED elements 18 with controller 24 in the housing 12. A window 30 in front end cap 13 replaces the collimating optic 20 to seal the housing 12. The housing 12 of the light source 100 of FIGS. 3-4 differs from the housing 12 of the light source 10 of FIGS. 1-2 by providing for the receipt of one or more batteries therein as the power source. The front end cap 13 is internally threaded onto the tubular housing 12 through external threads on the tubular housing 12. The front end cap 13 may include a sealing member 32, such as an O-ring, to seal the light source 100. The rear end cap 13 may include a sealing member 32 and a biasing contact 34 as known in the flashlight art. Appropriate switching (not shown) will be provided in the housing 12 as is known in the flashlight art.
  • The flashlight light source 100 of FIGS. 3-4 provides several advantages over existing flashlights. The light source 100 uses the LED array 16 to generate a substantial amount of light, particularly through the pulsing and over driving of the LED elements 18. In contrast, most existing flashlights use tungsten or krypton bulbs. Existing LED flashlights are available, but do not pulse or over drive the LED elements to provide acceptable light emission. The LED array 16 generates very even illumination patterns with no special optical components. Traditional flashlights use a parabolic reflector to collect and direct the light. Reflectors can create interference patterns of concentric rings of light that can be very annoying to the users. Even premium flashlights from manufacturers, such as Mag Instruments, suffer this problem. The use of the LED elements 18 consumes far less power than traditional flashlight bulbs of similar output. This translates into exceptional battery life. The light source 10 may pulse the LED array 16 to maximize light output while extending battery life. For example the light source 10 with a twelve LED element array 16, as shown in FIG. 4, can generate useful light non-stop for two weeks on 3 D-cell batteries. No existing commercial flashlight on the market can match this performance. Since the LED array 16 is comprised of several pulsed channels, it can be provided in dual or even multiple colors. This has ramifications for military applications. The soldier in the field uses screw on filters to get the color he needs in conventional flashlights. The light source 100 can obviate this through colored LED elements 18. No known flashlight on the market currently provides this feature. The light source 100 is designed to operate over a wide range of voltages. This allows the user to utilize whatever batteries are available. No commercial flashlight on the market is believed to have this capability. The typical LED element 18 has a rated life of 100,000 hours and is extremely shock-resistant. In contrast, the typical flashlight bulb has a life of a few hours and is easily damaged. The embodiments of FIGS. 5-31 will further evidence the advantages of the present invention regarding flashlight type lighting sources.
  • The present invention is also particularly well-suited for use as headlamps or helmet lights. The headlamp can be formed similar to light source 100. The remote power source may be a battery, or battery pack, clipped to the user, such as to the user's belt. Headlamps which use an LED array 16, or single element 18, according to the invention will generate a substantial amount of light with relatively low power consumption. In contrast, manufacturers of headlamps for the mining and construction industries use high intensity incandescent bulbs that consume a significant amount of power. Headlamps using LED arrays 16 or a single LED element 18 consume far less power than traditional units and will extend battery life over traditional units. Headlamps according to the present invention will operate for days on a single charge. Traditional units have a 10 to 14 hour run time and must be recharged daily. No headlamps on the market can match the performance of the present invention. Further, low power consumption also translates into smaller, lighter battery packs. The typical existing miner's headlamp weighs about 4 pounds. The battery pack for existing miner's headlamp weighs an additional 4 to 5 pounds and hangs from the belt like a large brick. Headlamps according to the present invention operate with small, light weight batteries minimizing these issues. The LED arrays 16 generate very even illumination patterns with no significant optical components. Traditional headlamps use a parabolic reflector to collect and direct the light. As discussed above, the light source of the present invention is designed to operate over a wide range of voltages. This permits the use of whatever batteries are available. No headlamp on the market does this. Further, the typical LED element 18 has a rated life of 100,000 hours and is extremely shock-resistant. In contrast, the typical headlamp bulb has a life of a few hundred hours and is easily damaged. The embodiments of FIGS. 32-33 will further evidence the advantages of the present invention as a user mounted headlamp.
  • The present invention is also particularly well-suited for the formation of lanterns, which can be viewed as a sub-set of flashlights in general, for all of the reasons discussed above. These LED lanterns would be designed for camping, backyard, and marine activities. Further, it has been noticed that the cool light from the LED array does not attract bugs. Finally, the bluish white light from the LED array 16 tends to fluoresce fishing line making it easier for night time fishermen to thread their lures. It also provides the right amount of light in the boat cockpit without harming night vision. Further lantern specific applications will be discussed below.
  • Another application of the present invention is in bicycle lights. That will also incorporate the aforementioned characteristics of superior illumination, long battery life, and ruggedness. Further, the light from the LED array 16 will cast fewer shadows, especially in wooded areas, giving the rider better three dimensional recognition capabilities. The light weight of both the light source 10 and 100 and batteries are beneficial to weight conscious cyclists. Finally, police cyclists can also rely on the light's ability to change colors and strobe, giving the cyclist headlight, safety, and warning light capability from one unit.
  • The present invention is not limited to high intensity white LED elements 18 that are driven with special circuitry in conjunction with optical components to gather and direct the emitted light into a fiber bundle. The proposed outdoor, safety, and portable illumination product designs (flashlights, headlamps, and lanterns) are subsets of the original solid state fiber optic light source 10. They may retain the same circular LED arrays 16 (or single high output LED element 18 as illustrated below), drive circuitry in the controller 24, and rigid housing 12. The optical components 20 and 22 used in the fiber optic light source 10 are traded for sealed windows 30 in the flashlight light source 100. The various embodiments of the present invention share the same cylindrical housing shape, use LED arrays, share the same electronic circuitry to pulse the array (if desired), and accept a wide range of input voltages. The present invention is not limited to use of LED arrays 16 as will be evident below.
  • In review, the design of the present invention, is a solid state light source including a tubular aluminium housing 12 enclosing an LED light source. The emitting end of the light source includes an end cap 13 designed for the light source function, where the LED light source member may be coupled to the end cap 13. An appropriate power source, such as an electrical plug or a battery pack in the housing 12 is also provided. The modular LED light source system of the invention provides a large variety of distinct light sources that are formed by common elements. As detailed below, a number of distinct light sources are provided with distinct end caps 13 selectively attached to a common housing 12. The LED element 18, or array 16, itself may be coupled or attached to the end cap 13 to be positioned in and removed from the housing 12 with the specific end cap 13.
  • FIG. 5 illustrates a light source 200 essentially the same fiber optic light source 10 of FIG. 1. The light source 200 uses the same elements as the light source 10 without the optic 22. The removal of the reflective optic 22, i.e. mirror, can be easily accomplished through the disconnecting of the front end cap 13, removing the optic 22 and replacing the front end cap 13. The light source 200 also shows an access port 36 in the rear end cap to access the adjustment 26. The coupling 14 is also shown with a sealing member 32 to assist in fiber optic bundle coupling. FIG. 5 also better illustrates spacer tubes 38 used to locate the elements within the housing 12.
  • FIG. 6 illustrates a light source 300 similar to the fiber optic light source 200 of FIG. 5. The light source 300 uses the same housing 12, end cap 13, coupling 14, power connection 28 as the light sources 10 and 200. The light source 300 uses a single high output LED element 18H, wherein “high output” is at least a 1 Watt element within the meaning of this application. A conical collimating optic 20C is adjacent the LED element 18H. Suitable high output LED elements 18H are available from Lumiled Corporation. A spacer tube 38 spaces and holds a mounting plate 40 of the LED element 18H and the optic 20C from the front end cap 13. A power supply mount 39 is within the housing 12 to hold a power supply module 42 through which power is directed through the power coupling 28, e.g. a cord connector, mounted in the rear end cap 13.
  • FIG. 7 illustrates a 3 D-cell fixed lens flashlight 400 according to the present invention. The flashlight 400 uses housing 12 and high output LED element 18H with optic 20C. The LED element 18H is in an end cap 13 with an optic mount 44 securing the optic 20C to the mounting plate 40. The front end cap 13 includes sealing members 32 and has a clear window 30. The window 30 may optionally be a lens, filter or the like. A spacer tube 38 spaces the mounting plate 40 of the LED element 18H appropriately. Rear end cap 13 includes a spring biasing contact 34 for D-cell sized batteries 46 in a conventional fashion. The rear end cap 13 may further include a mounting loop or support 48 for supporting of the light source or flashlight 400 (e.g. hanging from a users work-belt). The flashlight 400 will make the electrical connection through any conventional mechanism, including twisting of the end cap front end cap 13.
  • FIG. 8 illustrates a 5 D-cell fixed lens flashlight 500 according to the present invention. The flashlight 500 uses housing 12 which is long enough to accommodate 5 D-cell sized batteries 46. Other than the length of the housing 12 and the number of batteries 46, the flashlight 500 is the same as flashlight 400 discussed above.
  • FIG. 9 illustrates a 3 AA-cell sized fixed lens flashlight 600 according to the present invention. The flashlight 600 uses housing 12 that is long enough to accommodate a battery holding tube 50 which houses 3 AA sized batteries 46AA in an annular array (i.e. the individual batteries are positioned 120 degrees apart in the battery holding tube 50). Other than the length of the housing 12, the battery holding tube 50 and the batteries 46AA, the flashlight 600 is the same as flashlights 400 and 500 discussed above.
  • FIG. 10 illustrates a 3 AA-cell sized fixed tri-lens flashlight 700 according to the present invention. The flashlight 700 uses housing 12 with battery holding tube 50 housing 3 AA sized batteries 46AA in an annular array as discussed above in connection with FIG. 9. The flashlight 700 includes an end cap 13 having a window 30, spacer tube 38, LED array 16 and an array of three, preferably high output LED elements 18H with associated collimating optics 20C with mounting 44.
  • FIG. 11 illustrates a 3D cell sized fixed tri-lens flashlight 800 according to the present invention. The flashlight 800 is similar to the flashlight 400 with the end cap 13 thereof replaced with the end cap 13 used in flashlight 700. In other words the flashlight 400 can be converted to the flashlight 800 with replacement of the appropriate end cap 13.
  • FIG. 12 illustrates a 5D cell sized fixed tri-lens flashlight 900 according to the present invention. The flashlight 900 is similar to the flashlight 500 with the end cap 13 thereof replaced with the end cap of flashlight 700 or 800 discussed above. In other words the flashlight 500 can be converted to the flashlight 900 with replacement of the appropriate end cap 13.
  • FIG. 13 illustrates a 5D cell sized zoom lens flashlight 1000 according to the present invention. The flashlight 1000 is similar to the flashlights 500 and 900 with the respective end cap 13 thereof replaced with an end cap 13 having a manually moveable slide mount 52 for adjusting the position of an optic 20 relative to the optic 20C on the LED element 18H. This end cap 13 with the slide mount 52 provides a zoom lens, light focusing mechanism for the operator. The zoom available end cap 13 can be used on the 3D cell and the 3AA sized flashlights discussed above. Again the changing between light source types involves removing and replacing end caps 13.
  • FIG. 14 illustrates a 5D cell sized fixed lens flashlight 1100 according to the present invention. The flashlight 1100 is similar to the flashlight 500 with the rear end cap 13 having a push button mechanism 54 for activating the flashlight 1100. The electrical connection for activation of the flashlight 1100 does not require the further tightening of the front end cap 13, but can be incorporated into the pushbutton mechanism 54. Of course, with the push button 54 in the on position, tightening or loosening of the end caps will also turn the flashlight 1100 on and off as will be understood to those of ordinary skill in the art. The push button rear end cap 13 can be used on the 3D cell and the 3AA sized flashlights discussed above. Again the changing between light source types generally involves removing and replacing end caps 13 (and associated elements).
  • FIG. 15 illustrates an end cap 13 for the flashlight light sources discussed above that includes a fiber optic bundle coupling adapter at the one end thereof. The end cap 13 of FIG. 15 can be used with the flashlights discussed above to provide a portable fiber optic light source. For example, this end cap 13, or adaptor, essentially allows the flashlights above to serve as portable boroscope light source.
  • FIGS. 16A-C illustrates a clamp 56 for attachment of the cylindrical housing 12 of the light sources described above. The clamp 56 has a portion clamped around the housing 12 and a separate attachment element for securing the structure to a base. The base may be a bicycle handle bar, or the leg of an assembly line conveyor. The clamp 56 may take many known shapes and is representative of a wide variety of attachment or securing systems that can be used. For example, the cylindrical housing 12 allows a hose clamp design to be used in certain applications.
  • FIG. 17 illustrates a 3D cell sized lantern 1200 according to the present invention. The lantern 1200 is similar to the flashlight 400 in that the same housing 12 is used. The rear end cap 13 has three pivoting, locking legs 58 to support the lantern 1200 when the legs are deployed. The legs 58 are pivoted about a pin connection on the end cap 13 from a stored position, shown in phantom, adjacent the housing. When each leg 58 has reached a deployed position, which is generally perpendicular to the housing 12, the rearward end of the leg 58 can be pushed into a receiving hole (shown in phantom) in the end cap 13 to lock the leg 58 in the deployed position. The leg 58 has a slot receiving the pin of the end cap 13 to allow for the pivoting then rectilinear motion. Only one leg 58 is shown in the figure, but the remaining two are identical and are evenly spaced about the end cap 13. The end cap 13 could have more than three legs 56, but three is believed to be the minimum needed to form a stable base for the lantern 1200 when the legs 58 are deployed.
  • The lighting end of the lantern 1200 of FIG. 17 includes an end cap 13 with a pair of opposed elements 18H with the light being emitted through a radial or tubular window 30R. The term “lantern” within the meaning of the present invention is radial light emission for illumination. The “lantern” will be a sub set of the “flashlights” of this application which can be axial light emission or radial light emission or right angle light emissions. The window may be clear or may include a diffuser as desired for the lantern effect. The end cap 13 at the front end of the lantern 1200 includes support 48 to allow the lantern to be hung in a desired location. As with the above lights sources, the lantern 1200 can be formed through essentially replacement of the end caps 13 from earlier embodiments.
  • FIG. 18 illustrates a 5D cell sized lantern 1300 according to the present invention. The lantern 1300 is similar to the lantern 1200 discussed above in connection with FIG. 17, except that the housing 12 is sized to receive 5 D-cell batteries 46. The lantern 1300 can be formed from a 5 D-cell flashlight described above through merely replacing of the end caps 13. It should also be apparent that the lantern 1300 can be formed from the lantern 1200 discussed above by merely replacing of the 3 D-cell length housing 12 with a 5 D-cell length housing 12. The modularity of the present invention is intended to provide either or both the end user and the manufacturer with great advantages. The end user may be provided with a number of distinct lighting sources with merely a few end caps 13. The manufacturer can manufacture a number of distinct products using a consistent base of materials or elements.
  • FIG. 19 illustrates a 3AA cell sized lantern 1400 according to the present invention. The lantern 1400 is similar to the lanterns 1200 and 1300 discussed above in connection with FIGS. 17 and 18, except that the housing 12 is sized to receive the battery pack mount 50 and the associated batteries 46AA.
  • FIG. 20 illustrates a 2AA cell sized search-rescue strobe 1500 according to the present invention. The strobe 1500 is similar to the lantern 1400 discussed above in connection with FIG. 19. The purpose of this device is to signal, as opposed to illuminate as with the other light sources of the present invention. The signalling function allows the LED element 18H to be a red or yellow LED element. This wavelength LED can be operated with 2 AA sized batteries 46AA. Consequently the battery pack 50 can be designed to hold only 2 batteries 46AA, or the same battery pack 50 with three batteries slots could be used with one slot holding a connecting rod the same length as a battery 46AA. A controller 24 may provide intermitted flashing of the LED element 18, the provision of which can be accommodated through a slight increase in the length of the housing 12 (however it is also contemplated that the battery biasing spring could be used to accommodate the space for the controller through further compression thereof). The end cap 13 further would include a radial window 30R and an axial window 30 for complete signalling possibilities. The modular aspects of the present invention should still be apparent. A user can quickly convert from the lantern 1400 to the search-rescue strobe 1500 by (1) unscrewing the front end cap 13 and removing the mounting plate 40 and the battery pack 50, (2) inserting a connecting rod in place of one battery 46AA and re-inserting the battery pack 50 together with the controller 24 and element 18H of the search-rescue strobe 1500, and (3) threading on the end cap 13 of the search-rescue strobe 1500. The entire conversion would take less than half of one minute.
  • FIG. 21 illustrates a 2 D-cell sized search and rescue strobe 1600. The search and rescue strobe 1600 is similar to the search and rescue strobe 1500 discussed above in connection with FIG. 20, except that the housing 12 is sized for two D-cell batteries 46. The two D-cell batteries are sufficient power source for a red or red-orange LED element 18H that would typically be used for signalling.
  • FIG. 22 illustrates a 3AA cell sized trouble light 1700 according to the present invention. The term “trouble light” within the meaning of the present invention is right angle light emission for illumination. The light is directed in a given direction perpendicular to the axis of the housing 12, as opposed to a complete 360 degree radial dispersion as found in the lanterns. The “trouble lights” will be a sub-set of the “flashlights” of this application. Again the “flashlights” can be axial light emission or radial light emission or right angle light emissions. The trouble light 1700 is similar to the 3AA cell sized lantern 1400 discussed above in connection with FIG. 19. The main difference is in the mounting of the LED element 18H on a mounting plate 40 at a position generally perpendicular to the axis of the housing 12. An optic 20C and a mount are also provided for this “right angle” light. The rear end cap 13 with legs 58 allows the trouble light to be easily independently supported for directing the light onto a working surface, such as under a sink, or within a car wheel. The support 48 also allows the trouble light to be placed in a hanging location where desired, such as hanging from a car hood.
  • FIG. 23 illustrates a 3 D-cell sized trouble light 1800 according to the present invention. The trouble light 1800, also called a utility light, is similar to the trouble light 1700 discussed above in connection with FIG. 22, except that the housing 12 is sized to receive the 3 D-cell batteries 46, in the same manner as the other 3 D-cell lighting sources discussed above.
  • FIG. 24 illustrates a 5 D-cell sized trouble light 1900 according to the present invention. The trouble light 1900 is similar to the trouble lights 1700 and 1800 discussed above in connection with FIGS. 22 and 23, except that the housing 12 is sized to receive the 5 D-cell batteries 46, in the same manner as the other 5 D-cell lighting sources discussed above. The length of the housing of the trouble light 1900, due to the five batteries 46, may make an advantageous self standing trouble or utility light.
  • FIG. 25 illustrates a 3 AA-cell sized trouble light 2000 according to the present invention. The trouble light 2000 is similar to the trouble light 1700 discussed above in connection with FIG. 22, except that the front end cap 13 has a pair of LED elements 18H each with optics 20C and mounts 44 attached to the support plate 40. The window 30R is increased in length accordingly.
  • FIG. 26 illustrates a 3 AA-cell sized trouble light 2100 according to the present invention. The trouble light 2100 is similar to the trouble lights 1700 and 2000 discussed above in connection with FIG. 22 and FIG. 25, except that the front end cap 13 has three LED elements 18H each with optics 20C and mounts 44 attached to the support plate 40. The window 30R is increased in length accordingly.
  • FIG. 27 illustrates a 3 D-cell sized trouble light 2200 according to the present invention. The trouble light 2200 is similar to the trouble light 2100 discussed above in connection with FIG. 26, except that the housing 12 is sized to receive the 3 D-cell batteries 46, in the same manner as the other 3 D-cell lighting sources discussed above. The two and three LED element 18H version of the trouble lights of the present invention are not limited to AA sized batteries as shown here.
  • FIG. 28 illustrates a 2 D-cell sized flashing flare 2300 according to the present invention. The flashing flare 2300 is similar to the strobe 1600 discussed above in connection with FIG. 20. This is a signalling device, as opposed to illuminating device as with the other light sources of the present invention. The signalling function allows the LED element 18H to be a red or yellow LED element. This wavelength LED can be operated with 2 D-cell sized batteries 46, as opposed to three. A controller 24 may provide intermitted flashing of the LED element 18. The end cap 13 further would include a radial window 30R and a support 48 to allow for hanging up of the flashing flare 2300. The rear end cap 13 has legs 58 to provide a self supporting device. It should be apparent that the main difference between the flare 2300 and the strobe 1600 is the provision of only radial emission.
  • FIG. 29 illustrates a 2 AA-cell sized flashing flare 2400. The flare 2400 is similar to the search and rescue strobe 1500 discussed above in connection with FIG. 20, except that the front end cap 13 is the same as with the flare 2300 (radial emission through window 30R only). The two AA-cell batteries are sufficient power source for a red or red-orange LED element 18H that would typically be used for signalling.
  • FIG. 30 illustrates a 2 AA-cell sized constant flare 2500. The flare 2500 is similar to the flashing flare 2400 discussed above in connection with FIG. 29, except that the controller 24 is omitted since the flare is not flashing. The two AA-cell batteries are sufficient power source for a red or red-orange LED element 18H that would typically be used for signalling.
  • FIG. 31 illustrates a 2 D-cell sized constant flare 2600. The flare 2600 is similar to the flashing flare 2300 discussed above in connection with FIG. 28, except that the controller 24 is omitted since the flare is not flashing.
  • FIG. 32 illustrates a remote powered user mounted light source 2700. The light source 2700 uses the same modular concepts incorporated into the light sources discussed above including a pair of end caps 13 secured to opposite ends of a tubular housing 12. In the remote powered user mounted applications the power is supplied through an electrical cord extending through the rear end cap 13 and through the tubular housing 12. The front end cap 13 includes a mounting plate 40, LED element 18H, Optic 20C, optic mount 44, spacer 38 and window 30, similar to the flashlight light sources disclosed above. The rear end cap 13 includes an end cap base 60 pivotably mounted thereto. The base 60 can be attached to the user, such as to a miner's helmet or the like.
  • FIG. 33 illustrates a remote powered user mounted light source 2800 similar to the light source 2700 discussed above. The front end cap 13 includes an array of LED elements 18H (e.g. 3), each with an optic 20C, on the mounting plate 40. The rear end cap 13 includes an end cap base 60 rotationally mounted thereto. The base 60 can be attached to the user, such as to a miner's helmet or the like.
  • FIG. 34 illustrates a remote battery pack 62 for powering a user mounted light source such as 2700 or 2800. The battery pack 62 uses the same modular concepts incorporated into the light sources discussed above including a pair of end caps 13 secured to opposite ends of a tubular housing 12. The front end cap 13 includes a power cord extending from the power coupling 28 secured to a mounting plate 64, with the electrical cord extending through the rear end cap 13 and through the tubular housing 12 of the light source 2700 or 2800 which is being powered by the battery pack 62. The battery pack 62 carries three D-cell sized batteries 46 for powering the light source 2700 or 2800 that can be attached to the user, such as to a miner's helmet or the like. The battery pack will typically be secured to the user's belt or the like.
  • FIG. 35 illustrates a remote battery pack 62 for powering a user mounted light source such as 2700 or 2800. The battery pack 62 of FIG. 35 is essentially the same as the pack 62 shown in FIG. 34 but is sized to hold three AA sized batteries 46AA in a mount 50.
  • FIG. 36 is a sectional side view of modular housings 12 and end caps 13 for forming many of the light sources disclosed in the earlier figures. As evidenced in the earlier figures, this small number of components can be combined into a wide variety of lighting sources which are shown in earlier figures and described above.
  • It will be apparent to those of ordinary skill in the art that various modifications may be made to the present invention without departing from the spirit and scope thereof. The scope of the present invention is defined by the appended claims and equivalents thereto.

Claims (22)

1.-68. (canceled)
69. A light comprising:
a tubular housing;
at least one high output LED element mounted in the tubular housing; and
a pair of end caps selectively threaded to the opposed ends of the tubular housing, wherein one end cap has a radial window.
70. The light of claim 69 wherein one end cap has three pivoting, locking legs to support the signal light when the legs are deployed.
71. The light of claim 70 wherein each leg is pivoted about a pin connection on the end cap and moveable from a stored position adjacent the tubular housing, wherein each leg is generally perpendicular to the housing in the deployed position, and wherein a rearward end of the leg can be pushed into a receiving hole in the end cap to lock the leg in the deployed position.
72. The light of claim 69 wherein at least one end cap includes a support that allows the signal light to be hung in a desired location.
73. The light of claim 69 wherein the end cap having the radial window further includes an axial window.
74. The light of claim 69 further including a controller for flashing the at least one LED element.
75. The light of claim 69 wherein each end cap is threaded to an anodized aluminium housing.
76. The light of claim 69 further including at least one a battery holding tube received in the tubular housing.
77. A lantern comprising:
a tubular housing;
an LED based lighting member comprising at least one LED element and selectively mounted in the tubular housing, wherein each LED element is at least 1 watt; and
a pair of end caps selectively attached to the opposed ends of the tubular housing, wherein one end cap has a radial window.
78. The lantern of claim 77 wherein each said end cap is threaded for attachment to an anodized aluminium tubular housing.
79. The flashlight of claim 77 wherein at least one end cap is threaded to the housing and includes a power coupling for connection to an external power source through a power cord.
80. The lantern of claim 77 wherein the LED lighting member includes at least two LED elements with each LED element being at least one watt.
81. The lantern of claim 77 further including at least one a battery holding tube received in the tubular housing and which houses batteries in an annular array.
82. The lantern of claim 77 wherein at least one end cap has three pivoting, locking legs to support the lantern when the legs are deployed.
83. The lantern of claim 82 wherein each leg is pivoted about a pin connection on the end cap and moveable from a stored position adjacent the tubular housing, wherein each leg is generally perpendicular to the housing in the deployed position, and wherein a rearward end of the leg can be pushed into a receiving hole in the end cap to lock the leg in the deployed position.
84. The lantern of claim 83 wherein at least one end cap includes a support that allows the lantern be hung in a desired location.
85.-100. (canceled)
101. The light of claim 69 wherein one end cap includes an axial window having an axial window diameter greater than an outer diameter of the tubular housing.
102. The lantern of claim 77 wherein one end cap includes an axial window having an axial window diameter greater than an outer diameter of the tubular housing.
103. A light comprising:
a tubular housing;
an LED based lighting member comprising at least one LED element and selectively mounted in the tubular housing, wherein each LED element is at least 1 watt; and
a pair of end caps selectively attached to the opposed ends of the tubular housing, wherein one end cap has an axial window having an axial window diameter greater than an outer diameter of the tubular housing.
104. The light of claim 103 wherein the end cap having the axial window further includes a radial window.
US11/461,537 2001-10-03 2006-08-01 Solid state light source Abandoned US20070177382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/461,537 US20070177382A1 (en) 2001-10-03 2006-08-01 Solid state light source

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US32680201P 2001-10-03 2001-10-03
US10/263,922 US6957905B1 (en) 2001-10-03 2002-10-03 Solid state light source
US10/759,516 US7083298B2 (en) 2001-10-03 2004-01-16 Solid state light source
US11/461,537 US20070177382A1 (en) 2001-10-03 2006-08-01 Solid state light source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/759,516 Division US7083298B2 (en) 2001-10-03 2004-01-16 Solid state light source

Publications (1)

Publication Number Publication Date
US20070177382A1 true US20070177382A1 (en) 2007-08-02

Family

ID=38321908

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/759,516 Expired - Fee Related US7083298B2 (en) 2001-10-03 2004-01-16 Solid state light source
US11/461,537 Abandoned US20070177382A1 (en) 2001-10-03 2006-08-01 Solid state light source

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/759,516 Expired - Fee Related US7083298B2 (en) 2001-10-03 2004-01-16 Solid state light source

Country Status (1)

Country Link
US (2) US7083298B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128497A1 (en) * 2004-07-06 2010-05-27 Tseng-Lu Chien Interchange universal kits for led light device
US7926975B2 (en) 2007-12-21 2011-04-19 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8421366B2 (en) 2009-06-23 2013-04-16 Ilumisys, Inc. Illumination device including LEDs and a switching power control system
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8540401B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
US11624484B2 (en) 2021-01-05 2023-04-11 Milwaukee Electric Tool Corporation Flashlight having a removable light head

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077525B2 (en) * 2001-02-06 2006-07-18 Optics 1, Inc Led-based flashlight
US7461944B2 (en) * 2002-06-20 2008-12-09 Eveready Battery Company, Inc. LED lighting device
US7217022B2 (en) * 2004-08-31 2007-05-15 Opto Technology, Inc. Optic fiber LED light source
DE102004043295B4 (en) * 2004-09-08 2007-04-26 Helling Gmbh Hand lamp, in particular for use in non-destructive materials testing
US20060050527A1 (en) * 2004-09-09 2006-03-09 Clm Innovative Technologies, Inc. Light engine mounting
US20060072309A1 (en) * 2004-10-06 2006-04-06 Hsiao-Chung Yang Combination of a lantern handle and an electrical torch
DE102004054306A1 (en) * 2004-11-09 2006-05-11 Becher Textil- Und Stahlbau Gmbh Lighting device for standing screen, has power supply device completely integrated in lamp body, and fastening device for fastening and holding lamp at screen, where lamp includes LEDs and power supply device include power unit with battery
TWM286482U (en) * 2005-05-20 2006-01-21 Andy Kaoh Inserting device used in a key management system
US7422344B2 (en) * 2006-02-01 2008-09-09 Anteya Technology Corporation Full color flashlight with high power LED
US7530706B2 (en) * 2006-08-25 2009-05-12 Chieh Ouyang LED lighting apparatus with fast changing focus
US20090059590A1 (en) * 2007-08-29 2009-03-05 Quattrini Jr Richard J Portable surface skimming illumination device for locating small items on a planar surface
DE102008019313A1 (en) * 2008-04-16 2009-10-29 Geuder Ag Light source for coupling light into a medical hand-held device
TWI527986B (en) * 2009-05-20 2016-04-01 歐陽傑 One kind of led focal variation projection illumination method
US8201979B2 (en) * 2009-11-20 2012-06-19 Pelican Products, Inc. Collapsible light
US20110182062A1 (en) * 2010-01-28 2011-07-28 Wilson D Anthony Tactical Modular Light Adapter
JP2013536563A (en) 2010-08-23 2013-09-19 エナジー フォーカス インコーポレイテッド An elongated LED lamp that can be used in place of a fluorescent lamp
JP5666882B2 (en) * 2010-11-18 2015-02-12 株式会社小糸製作所 High beam lamp unit
WO2013027152A1 (en) * 2011-08-24 2013-02-28 Koninklijke Philips Electronics N.V. Plug-in lamp, in particular for a bike
US20140160735A1 (en) * 2012-05-14 2014-06-12 Central Garden & Pet Company Light emitting diode array for enhancing appearance of fish
CN103292178B (en) * 2013-05-16 2017-08-08 常州市亮泰照明电器有限公司 Replaceable illuminator
CA2947996A1 (en) 2014-05-08 2015-11-12 George R. Bailey Led lighting systems and methods of installation
LT6385B (en) * 2015-05-08 2017-04-25 Vilniaus Universitetas A compact lamp
USD809169S1 (en) 2016-05-10 2018-01-30 Promier Products, Inc. Pen light with knurled segments
USD878650S1 (en) 2016-06-21 2020-03-17 Promier Products Inc. Flashlight
US10240758B2 (en) * 2017-03-07 2019-03-26 Mag Instrument, Inc. Apparatus for creating a storage compartment in a flashlight and method of its use
EP3718183B1 (en) 2017-11-29 2023-02-15 Vixar, Inc. Power monitoring approach for vcsels and vcsel arrays
CN111868487A (en) * 2018-03-20 2020-10-30 维克萨股份有限公司 Eye-safe optical module
US20210259819A1 (en) * 2018-06-14 2021-08-26 Benjamin Saltsman Vehicle light with 3-dimensional appearance
US11059418B2 (en) * 2019-03-25 2021-07-13 Goodrich Lighting Systems, Inc. Multi-mode NVIS-compatible lighting system
US11466833B2 (en) 2019-10-22 2022-10-11 AVID Labs, LLC Lighting system
CN114966988B (en) * 2022-06-17 2023-07-07 燕山大学 Oval core photon lantern supporting eight modes in S+C+L wave band

Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582638A (en) * 1968-04-22 1971-06-01 Kurz Kasch Inc Spot lighting device
US4211955A (en) * 1978-03-02 1980-07-08 Ray Stephen W Solid state lamp
US4234911A (en) * 1979-03-13 1980-11-18 Faith Donald L Optical firing adaptor
US4250446A (en) * 1979-01-04 1981-02-10 Raymon Ponte Combination flashlight and circuit tester
US4260122A (en) * 1978-02-17 1981-04-07 Johann Fiala Clamping wall plug for elongated bodies
US4346329A (en) * 1979-08-27 1982-08-24 Schmidt Robert C H Aiming post light
US4358708A (en) * 1980-04-15 1982-11-09 North American Philips Corporation Light emitting diode assembly
US4772128A (en) * 1986-03-25 1988-09-20 Dolan-Jenner Industries, Inc. Fiber optic imaging system for on-line monitoring
US4819141A (en) * 1984-09-06 1989-04-04 Mag Instrument, Inc. Flashlight
US5062026A (en) * 1988-12-16 1991-10-29 Mag Instruments Flashlight holder clamp assembly
US5102227A (en) * 1989-12-01 1992-04-07 Dolan-Jenner Lighting and detection system
US5103364A (en) * 1990-01-11 1992-04-07 A. B. Chance Company Recloser apparatus
US5184884A (en) * 1988-12-16 1993-02-09 Mag Instruments, Inc. Flashlight holder clamp assembly
US5187611A (en) * 1991-08-27 1993-02-16 Northeast Robotics, Inc. Diffuse on-axis light source
US5187765A (en) * 1991-07-23 1993-02-16 Fostec, Inc. Backlighted panel
US5193898A (en) * 1984-09-06 1993-03-16 Mag Instruments Rechargeable miniature flashlight
USD334718S (en) * 1991-05-31 1993-04-13 Wayne Basden Liquid storage tank gauge
USD336535S (en) * 1992-08-27 1993-06-15 Mag Instruments, Inc. Flashlight holder clamp assembly
US5229642A (en) * 1980-09-01 1993-07-20 Hitachi, Ltd. Resin molded type semiconductor device having a conductor film
USRE34345E (en) * 1982-02-26 1993-08-17 Dolan-Jenner Industries, Inc. Fiber optic imaging system for on-line monitoring
US5461417A (en) * 1993-02-16 1995-10-24 Northeast Robotics, Inc. Continuous diffuse illumination method and apparatus
US5550946A (en) * 1995-08-25 1996-08-27 Illumination Technologies, Inc. Modular fiber optic light line unit
US5579177A (en) * 1993-11-01 1996-11-26 Dolan-Jenner Industries, Inc. Optical dispersion apparatus and method
US5580147A (en) * 1994-08-08 1996-12-03 Salerno; Albert Fiber-lighted stylet
US5604550A (en) * 1994-10-31 1997-02-18 Northeast Robotics, Inc. Illumination device for indirectly illuminating an object with continuous diffuse light
US5634711A (en) * 1993-09-13 1997-06-03 Kennedy; John Portable light emitting apparatus with a semiconductor emitter array
US5746495A (en) * 1997-02-05 1998-05-05 Klamm; Thomas L. Portable work light with optical fiber adapter
US5761540A (en) * 1994-10-31 1998-06-02 Northeast Robotics, Inc. Illumination device with microlouver for illuminating an object with continuous diffuse light
US5764874A (en) * 1994-10-31 1998-06-09 Northeast Robotics, Inc. Imaging system utilizing both diffuse and specular reflection characteristics
US5820230A (en) * 1997-06-27 1998-10-13 Freeman; Ernie Yieldable debris cutter
US5842060A (en) * 1994-10-31 1998-11-24 Northeast Robotics Llc Illumination device with curved beam splitter for illumination an object with continuous diffuse light
USD402772S (en) * 1997-12-01 1998-12-15 Ledtronics, Inc. Illuminator
US5850126A (en) * 1997-04-11 1998-12-15 Kanbar; Maurice S. Screw-in led lamp
USD404506S (en) * 1998-04-07 1999-01-19 Ledtronics, Inc. Bulb
USD405201S (en) * 1998-03-30 1999-02-02 Ledtronics, Inc. Bulb
US5877699A (en) * 1992-06-05 1999-03-02 U.S. Philips Corporation Displaying data transmitted by radio
US5887102A (en) * 1996-11-20 1999-03-23 Fostec, Inc. Fiber optic lightline device having randomized input and output for reducing sensitivity to input variations and method of making the same
US5897196A (en) * 1996-03-29 1999-04-27 Osram Sylvania Inc. Motor vehicle headlamp
US5920643A (en) * 1997-05-16 1999-07-06 Northeast Robotics Llc Flexible lighting element circuit and method of manufacturing the same
USD413401S (en) * 1998-06-26 1999-08-31 The Brinkmann Corporation Flashlight
US5949584A (en) * 1997-05-13 1999-09-07 Northeast Robotics Llc Wafer
US5957566A (en) * 1997-09-26 1999-09-28 Chiu; Si Fu Flashlight
USD414887S (en) * 1998-06-26 1999-10-05 The Brinkmann Corporation Flashlight
US5997164A (en) * 1995-10-24 1999-12-07 Dolan-Jenner Industries, Inc. Dark field illuminator ringlight adaptor
US6028694A (en) * 1997-05-22 2000-02-22 Schmidt; Gregory W. Illumination device using pulse width modulation of a LED
US6059992A (en) * 1995-10-10 2000-05-09 Veldman; Ray R. Gas treating solution corrosion inhibitor
US6095661A (en) * 1998-03-19 2000-08-01 Ppt Vision, Inc. Method and apparatus for an L.E.D. flashlight
US6135350A (en) * 1997-02-05 2000-10-24 Northeast Robotics Llc Surface marking system and method of viewing marking indicia
US6168288B1 (en) * 1999-08-05 2001-01-02 Tektite Industries West Llc Flashlight with light emitting diodes
US6177954B1 (en) * 1998-05-29 2001-01-23 Northeast Robotics Llc Miniature inspection system
US6200134B1 (en) * 1998-01-20 2001-03-13 Kerr Corporation Apparatus and method for curing materials with radiation
US6220722B1 (en) * 1998-09-17 2001-04-24 U.S. Philips Corporation Led lamp
US6220719B1 (en) * 1998-02-11 2001-04-24 Applied Innovative Technologies, Inc. Renewable energy flashlight
US6231207B1 (en) * 1999-04-26 2001-05-15 Douglas B. Kennedy Light emitting diode flashlight lamp
US6267492B1 (en) * 1999-04-15 2001-07-31 3M Innovative Properties Company Illumination device with side emitting light guide
USD445826S1 (en) * 2000-11-10 2001-07-31 Berol Corporation Writing implement
US6268702B1 (en) * 1996-11-12 2001-07-31 L.F.D. Limited Lamp for an external warning light
US6276822B1 (en) * 1998-02-20 2001-08-21 Yerchanik Bedrosian Method of replacing a conventional vehicle light bulb with a light-emitting diode array
US6283613B1 (en) * 1999-07-29 2001-09-04 Cooper Technologies Company LED traffic light with individual LED reflectors
US6290382B1 (en) * 1998-08-17 2001-09-18 Ppt Vision, Inc. Fiber bundle combiner and led illumination system and method
US6331062B1 (en) * 1998-04-08 2001-12-18 Iain Sinclair LED flashlight
US6366028B1 (en) * 2000-01-28 2002-04-02 Cmg Equipment, Llc Battery powered light
US20020067608A1 (en) * 2000-12-05 2002-06-06 Kruse Andrew John Externally powered LED flashlight
US6402347B1 (en) * 1998-12-17 2002-06-11 Koninklijke Philips Electronics N.V. Light generator for introducing light into a bundle of optical fibers
US6402340B1 (en) * 2000-02-25 2002-06-11 Streamlight, Inc. Stylus flashlight and method for making same
US20020149930A1 (en) * 2001-04-11 2002-10-17 Pelican Products, Inc. Multi-cell LED flashlight
US6485160B1 (en) * 2001-06-25 2002-11-26 Gelcore Llc Led flashlight with lens
US6502954B1 (en) * 2000-02-10 2003-01-07 Michael J. Demkowski Lamp attachment for flashlight
US6511203B1 (en) * 2001-07-26 2003-01-28 John Winther Beacon light
US6511214B1 (en) * 1999-01-06 2003-01-28 Armament Systems And Procedures, Inc. Miniature LED flashlight
US6591972B1 (en) * 2002-01-02 2003-07-15 Glen Forrest Grain leveling apparatus for uniformly filling a grain wagon
US6639716B1 (en) * 1999-02-08 2003-10-28 Fujitsu Limited Wavelength division multiplexing optical communication system and optical amplifying device
US6661838B2 (en) * 1995-05-26 2003-12-09 Canon Kabushiki Kaisha Image processing apparatus for detecting changes of an image signal and image processing method therefor
US6752767B2 (en) * 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280122A (en) 1980-06-30 1981-07-21 Dolan-Jenner Industries, Inc. Optical fibers
US5103384A (en) * 1990-10-16 1992-04-07 Drohan William M Flashlight holder
US5229842A (en) 1991-04-12 1993-07-20 Dolan-Jenner Industries, Inc. Method and apparatus for controlling fluorescent lamp mercury vapor pressure
US5561838A (en) * 1994-07-01 1996-10-01 Motorola, Inc. Method and apparatus for satellite handoff parameters prediction in an orbiting communications system
US5591972A (en) * 1995-08-03 1997-01-07 Illumination Technologies, Inc. Apparatus for reading optical information
US5661838A (en) 1995-08-25 1997-08-26 Illumination Technologies, Inc. Multiple fiber optic light line unit
US5713661A (en) * 1995-10-23 1998-02-03 Northeast Robotics, Inc. Hockey puck shaped continuous diffuse illumination apparatus and method
US5752767A (en) * 1995-10-26 1998-05-19 Illumination Technologies Inc. Diffuse ring illuminator
US6059421A (en) * 1996-10-22 2000-05-09 Northeast Robotics Llc Hockey puck shaped continuous diffuse illumination apparatus and method
US5877899A (en) * 1997-05-13 1999-03-02 Northeast Robotics Llc Imaging system and method for imaging indicia on wafer
US5897195A (en) * 1997-12-09 1999-04-27 Optical Gaging, Products, Inc. Oblique led illuminator device
US6003992A (en) * 1998-06-02 1999-12-21 Northeast Robotics Llc Back lighting illumination system
TW417842U (en) * 1998-09-28 2001-01-01 Koninkl Philips Electronics Nv Lighting system
USD436200S1 (en) 1999-06-03 2001-01-09 The Brinkmann Corporation Spotlight
USD445926S1 (en) 2000-07-25 2001-07-31 The Brinkmann Corporation Flashlight
US6398383B1 (en) 2000-10-30 2002-06-04 Yu-Hwei Huang Flashlight carriable on one's person

Patent Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582638A (en) * 1968-04-22 1971-06-01 Kurz Kasch Inc Spot lighting device
US4260122A (en) * 1978-02-17 1981-04-07 Johann Fiala Clamping wall plug for elongated bodies
US4211955A (en) * 1978-03-02 1980-07-08 Ray Stephen W Solid state lamp
US4250446A (en) * 1979-01-04 1981-02-10 Raymon Ponte Combination flashlight and circuit tester
US4234911A (en) * 1979-03-13 1980-11-18 Faith Donald L Optical firing adaptor
US4346329A (en) * 1979-08-27 1982-08-24 Schmidt Robert C H Aiming post light
US4358708A (en) * 1980-04-15 1982-11-09 North American Philips Corporation Light emitting diode assembly
US5229642A (en) * 1980-09-01 1993-07-20 Hitachi, Ltd. Resin molded type semiconductor device having a conductor film
USRE34345E (en) * 1982-02-26 1993-08-17 Dolan-Jenner Industries, Inc. Fiber optic imaging system for on-line monitoring
US5193898A (en) * 1984-09-06 1993-03-16 Mag Instruments Rechargeable miniature flashlight
US4819141A (en) * 1984-09-06 1989-04-04 Mag Instrument, Inc. Flashlight
US4772128A (en) * 1986-03-25 1988-09-20 Dolan-Jenner Industries, Inc. Fiber optic imaging system for on-line monitoring
US5062026A (en) * 1988-12-16 1991-10-29 Mag Instruments Flashlight holder clamp assembly
US5184884A (en) * 1988-12-16 1993-02-09 Mag Instruments, Inc. Flashlight holder clamp assembly
US5102227A (en) * 1989-12-01 1992-04-07 Dolan-Jenner Lighting and detection system
US5276504A (en) * 1989-12-01 1994-01-04 Dolan-Jenner Industries, Inc. Linear backlighting system and method
US5103364A (en) * 1990-01-11 1992-04-07 A. B. Chance Company Recloser apparatus
USD334718S (en) * 1991-05-31 1993-04-13 Wayne Basden Liquid storage tank gauge
US5187765A (en) * 1991-07-23 1993-02-16 Fostec, Inc. Backlighted panel
US5187611A (en) * 1991-08-27 1993-02-16 Northeast Robotics, Inc. Diffuse on-axis light source
US5877699A (en) * 1992-06-05 1999-03-02 U.S. Philips Corporation Displaying data transmitted by radio
USD336535S (en) * 1992-08-27 1993-06-15 Mag Instruments, Inc. Flashlight holder clamp assembly
US5461417A (en) * 1993-02-16 1995-10-24 Northeast Robotics, Inc. Continuous diffuse illumination method and apparatus
US5684530A (en) * 1993-02-16 1997-11-04 Northeast Robotics, Inc. Continuous diffuse illumination method and apparatus
US5634711A (en) * 1993-09-13 1997-06-03 Kennedy; John Portable light emitting apparatus with a semiconductor emitter array
US5790734A (en) * 1993-11-01 1998-08-04 Dolan-Jenner Industries, Inc. Optical dispersion apparatus and method
US5579177A (en) * 1993-11-01 1996-11-26 Dolan-Jenner Industries, Inc. Optical dispersion apparatus and method
US5580147A (en) * 1994-08-08 1996-12-03 Salerno; Albert Fiber-lighted stylet
US5604550A (en) * 1994-10-31 1997-02-18 Northeast Robotics, Inc. Illumination device for indirectly illuminating an object with continuous diffuse light
US5761540A (en) * 1994-10-31 1998-06-02 Northeast Robotics, Inc. Illumination device with microlouver for illuminating an object with continuous diffuse light
US5764874A (en) * 1994-10-31 1998-06-09 Northeast Robotics, Inc. Imaging system utilizing both diffuse and specular reflection characteristics
US5842060A (en) * 1994-10-31 1998-11-24 Northeast Robotics Llc Illumination device with curved beam splitter for illumination an object with continuous diffuse light
US6661838B2 (en) * 1995-05-26 2003-12-09 Canon Kabushiki Kaisha Image processing apparatus for detecting changes of an image signal and image processing method therefor
US5550946A (en) * 1995-08-25 1996-08-27 Illumination Technologies, Inc. Modular fiber optic light line unit
US6059992A (en) * 1995-10-10 2000-05-09 Veldman; Ray R. Gas treating solution corrosion inhibitor
US5997164A (en) * 1995-10-24 1999-12-07 Dolan-Jenner Industries, Inc. Dark field illuminator ringlight adaptor
US5897196A (en) * 1996-03-29 1999-04-27 Osram Sylvania Inc. Motor vehicle headlamp
US6268702B1 (en) * 1996-11-12 2001-07-31 L.F.D. Limited Lamp for an external warning light
US5887102A (en) * 1996-11-20 1999-03-23 Fostec, Inc. Fiber optic lightline device having randomized input and output for reducing sensitivity to input variations and method of making the same
US5746495A (en) * 1997-02-05 1998-05-05 Klamm; Thomas L. Portable work light with optical fiber adapter
US6135350A (en) * 1997-02-05 2000-10-24 Northeast Robotics Llc Surface marking system and method of viewing marking indicia
US5850126A (en) * 1997-04-11 1998-12-15 Kanbar; Maurice S. Screw-in led lamp
US5949584A (en) * 1997-05-13 1999-09-07 Northeast Robotics Llc Wafer
US5920643A (en) * 1997-05-16 1999-07-06 Northeast Robotics Llc Flexible lighting element circuit and method of manufacturing the same
US6028694A (en) * 1997-05-22 2000-02-22 Schmidt; Gregory W. Illumination device using pulse width modulation of a LED
US5820230A (en) * 1997-06-27 1998-10-13 Freeman; Ernie Yieldable debris cutter
US5957566A (en) * 1997-09-26 1999-09-28 Chiu; Si Fu Flashlight
USD402772S (en) * 1997-12-01 1998-12-15 Ledtronics, Inc. Illuminator
US6200134B1 (en) * 1998-01-20 2001-03-13 Kerr Corporation Apparatus and method for curing materials with radiation
US6220719B1 (en) * 1998-02-11 2001-04-24 Applied Innovative Technologies, Inc. Renewable energy flashlight
US6276822B1 (en) * 1998-02-20 2001-08-21 Yerchanik Bedrosian Method of replacing a conventional vehicle light bulb with a light-emitting diode array
US6095661A (en) * 1998-03-19 2000-08-01 Ppt Vision, Inc. Method and apparatus for an L.E.D. flashlight
USD405201S (en) * 1998-03-30 1999-02-02 Ledtronics, Inc. Bulb
USD404506S (en) * 1998-04-07 1999-01-19 Ledtronics, Inc. Bulb
US6331062B1 (en) * 1998-04-08 2001-12-18 Iain Sinclair LED flashlight
US6177954B1 (en) * 1998-05-29 2001-01-23 Northeast Robotics Llc Miniature inspection system
USD413401S (en) * 1998-06-26 1999-08-31 The Brinkmann Corporation Flashlight
USD414887S (en) * 1998-06-26 1999-10-05 The Brinkmann Corporation Flashlight
US6290382B1 (en) * 1998-08-17 2001-09-18 Ppt Vision, Inc. Fiber bundle combiner and led illumination system and method
US6220722B1 (en) * 1998-09-17 2001-04-24 U.S. Philips Corporation Led lamp
US6402347B1 (en) * 1998-12-17 2002-06-11 Koninklijke Philips Electronics N.V. Light generator for introducing light into a bundle of optical fibers
US6511214B1 (en) * 1999-01-06 2003-01-28 Armament Systems And Procedures, Inc. Miniature LED flashlight
US6639716B1 (en) * 1999-02-08 2003-10-28 Fujitsu Limited Wavelength division multiplexing optical communication system and optical amplifying device
US6267492B1 (en) * 1999-04-15 2001-07-31 3M Innovative Properties Company Illumination device with side emitting light guide
US6231207B1 (en) * 1999-04-26 2001-05-15 Douglas B. Kennedy Light emitting diode flashlight lamp
US6283613B1 (en) * 1999-07-29 2001-09-04 Cooper Technologies Company LED traffic light with individual LED reflectors
US6168288B1 (en) * 1999-08-05 2001-01-02 Tektite Industries West Llc Flashlight with light emitting diodes
US6366028B1 (en) * 2000-01-28 2002-04-02 Cmg Equipment, Llc Battery powered light
US6502954B1 (en) * 2000-02-10 2003-01-07 Michael J. Demkowski Lamp attachment for flashlight
US6402340B1 (en) * 2000-02-25 2002-06-11 Streamlight, Inc. Stylus flashlight and method for making same
US6491409B1 (en) * 2000-02-25 2002-12-10 Streamlight, Inc. Flashlight pushbutton switch
USD445826S1 (en) * 2000-11-10 2001-07-31 Berol Corporation Writing implement
US20020067608A1 (en) * 2000-12-05 2002-06-06 Kruse Andrew John Externally powered LED flashlight
US20020149930A1 (en) * 2001-04-11 2002-10-17 Pelican Products, Inc. Multi-cell LED flashlight
US6536912B2 (en) * 2001-04-11 2003-03-25 Pelican Products, Inc. Multi-cell LED flashlight
US6485160B1 (en) * 2001-06-25 2002-11-26 Gelcore Llc Led flashlight with lens
US20020196620A1 (en) * 2001-06-25 2002-12-26 Sommers Mathew L. Led flashlight with lens
US6511203B1 (en) * 2001-07-26 2003-01-28 John Winther Beacon light
US6591972B1 (en) * 2002-01-02 2003-07-15 Glen Forrest Grain leveling apparatus for uniformly filling a grain wagon
US6752767B2 (en) * 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128497A1 (en) * 2004-07-06 2010-05-27 Tseng-Lu Chien Interchange universal kits for led light device
US8434927B2 (en) * 2004-07-06 2013-05-07 Tseng-Lu Chien Interchange universal kits for LED light device
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US8928025B2 (en) 2007-12-20 2015-01-06 Ilumisys, Inc. LED lighting apparatus with swivel connection
US7926975B2 (en) 2007-12-21 2011-04-19 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US8807785B2 (en) 2008-05-23 2014-08-19 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
US10932339B2 (en) 2008-10-24 2021-02-23 Ilumisys, Inc. Light and light sensor
US8251544B2 (en) 2008-10-24 2012-08-28 Ilumisys, Inc. Lighting including integral communication apparatus
US9398661B2 (en) 2008-10-24 2016-07-19 Ilumisys, Inc. Light and light sensor
US9585216B2 (en) 2008-10-24 2017-02-28 Ilumisys, Inc. Integration of LED lighting with building controls
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
US11333308B2 (en) 2008-10-24 2022-05-17 Ilumisys, Inc. Light and light sensor
US11073275B2 (en) 2008-10-24 2021-07-27 Ilumisys, Inc. Lighting including integral communication apparatus
US10973094B2 (en) 2008-10-24 2021-04-06 Ilumisys, Inc. Integration of LED lighting with building controls
US9353939B2 (en) 2008-10-24 2016-05-31 iLumisys, Inc Lighting including integral communication apparatus
US9635727B2 (en) 2008-10-24 2017-04-25 Ilumisys, Inc. Light and light sensor
US10713915B2 (en) 2008-10-24 2020-07-14 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US10036549B2 (en) 2008-10-24 2018-07-31 Ilumisys, Inc. Lighting including integral communication apparatus
US9101026B2 (en) 2008-10-24 2015-08-04 Ilumisys, Inc. Integration of LED lighting with building controls
US10176689B2 (en) 2008-10-24 2019-01-08 Ilumisys, Inc. Integration of led lighting control with emergency notification systems
US10571115B2 (en) 2008-10-24 2020-02-25 Ilumisys, Inc. Lighting including integral communication apparatus
US10560992B2 (en) 2008-10-24 2020-02-11 Ilumisys, Inc. Light and light sensor
US10342086B2 (en) 2008-10-24 2019-07-02 Ilumisys, Inc. Integration of LED lighting with building controls
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US8946996B2 (en) 2008-10-24 2015-02-03 Ilumisys, Inc. Light and light sensor
US10182480B2 (en) 2008-10-24 2019-01-15 Ilumisys, Inc. Light and light sensor
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8421366B2 (en) 2009-06-23 2013-04-16 Ilumisys, Inc. Illumination device including LEDs and a switching power control system
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US9013119B2 (en) 2010-03-26 2015-04-21 Ilumisys, Inc. LED light with thermoelectric generator
US9395075B2 (en) 2010-03-26 2016-07-19 Ilumisys, Inc. LED bulb for incandescent bulb replacement with internal heat dissipating structures
US8540401B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US8840282B2 (en) 2010-03-26 2014-09-23 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8894430B2 (en) 2010-10-29 2014-11-25 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9807842B2 (en) 2012-07-09 2017-10-31 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US10966295B2 (en) 2012-07-09 2021-03-30 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US10260686B2 (en) 2014-01-22 2019-04-16 Ilumisys, Inc. LED-based light with addressed LEDs
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US10690296B2 (en) 2015-06-01 2020-06-23 Ilumisys, Inc. LED-based light with canted outer walls
US11028972B2 (en) 2015-06-01 2021-06-08 Ilumisys, Inc. LED-based light with canted outer walls
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
US11428370B2 (en) 2015-06-01 2022-08-30 Ilumisys, Inc. LED-based light with canted outer walls
US11624484B2 (en) 2021-01-05 2023-04-11 Milwaukee Electric Tool Corporation Flashlight having a removable light head

Also Published As

Publication number Publication date
US7083298B2 (en) 2006-08-01
US20040170014A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US7083298B2 (en) Solid state light source
US6957905B1 (en) Solid state light source
KR101344381B1 (en) Colored headlamp
US7798667B2 (en) LED spotlight
US10794549B2 (en) Multi-directional light assembly
US6893140B2 (en) Flashlight
US7481551B2 (en) Flashlight having back light elements
US6979104B2 (en) LED inspection lamp
US7387402B1 (en) Multiple light LED flashlight
CA2530570C (en) Colored headlamp
US20030193802A1 (en) Variable beam LED light source system
US20070030672A1 (en) Led light
US20060221613A1 (en) Virtual point light source
US20040027837A1 (en) Optical fiber light
US11930567B2 (en) Lighting apparatus
WO2006130387A2 (en) Cassegrain optical configuration to expand high intensity led flashlight to larger diameter lower intensity beam
KR200457938Y1 (en) Portable led lamp
US5347438A (en) Combined illumination and safety lamp
CN210717042U (en) Cross-country running lamp
US20060176690A1 (en) Multi-function emergency ready light
GB2356448A (en) Flashlight with improved reflector
RU2672258C1 (en) Signal and illumination lamp
KR20090006194U (en) A portable spot-light which adopt xenon lamp
RU2194212C2 (en) Multi-purpose light-emitting diode lantern
RU2187039C1 (en) Individual miner&#39;s lamp

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE