US20070151185A1 - Method and device for resilient seal system - Google Patents

Method and device for resilient seal system Download PDF

Info

Publication number
US20070151185A1
US20070151185A1 US11/320,882 US32088205A US2007151185A1 US 20070151185 A1 US20070151185 A1 US 20070151185A1 US 32088205 A US32088205 A US 32088205A US 2007151185 A1 US2007151185 A1 US 2007151185A1
Authority
US
United States
Prior art keywords
seal
construction panel
sealant
edge
resilient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/320,882
Inventor
Steven Robinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/320,882 priority Critical patent/US20070151185A1/en
Priority to PCT/US2006/060096 priority patent/WO2007079273A2/en
Publication of US20070151185A1 publication Critical patent/US20070151185A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6801Fillings therefor
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/02Arrangement or construction of joints; Methods of making joints; Packing for joints
    • E01C11/04Arrangement or construction of joints; Methods of making joints; Packing for joints for cement concrete paving
    • E01C11/10Packing of plastic or elastic materials, e.g. wood, resin

Definitions

  • the present invention relates generally to systems and methods for creating a seal system between adjacent panels subject to temperature expansion and contraction. More particularly, the present invention is directed to providing seals in construction joints that are resilient, and ideally waterproof, over relatively long periods of time.
  • Construction panels come in many different sizes and shapes and may be used for various purposes, including roadways, sideways, and pre-cast structures. In many situations it is necessary to form a lateral gap or joint in the structure to allow for independent movement of the adjacent sections. Such movement is caused by many factors including expansion and contraction of the adjacent sections due to changes in temperature.
  • Another method is to combine the sealant and the pre-compressed foam tape; however such a method may require additional time because each joint must be coated with the sealant along its entire length, which may be five to seven feet, allowed to cure, then be compressed into the “precompressed” state for installation.
  • the seal system is intended to deter water and other contaminants from entering the gap or joint. It is important that the seal be effective over relatively long periods of time and that it function properly even when exposed to extreme weather conditions.
  • Major problems with seals include water penetration and contaminant penetration. Water penetration may result in exposure of unsealed surfaces or in freezing expansion. In the case of a seal where at least one panel contains wood, water penetration of the seal may result in rotting, particularly as the water may become trapped within the seal or gap. In the case of a seal where at least one panel contains masonry, the water may penetrate into the masonry and expand when cooled below its freezing point, creating internal stresses on the masonry and potentially fracturing the masonry. In all instances, penetration of water may result in further destruction of the seal should the water cool below its freezing point. Contaminant penetration may also have detrimental effects on the gap or seal. As the gap or seal is intended to permit expansion of the panels into the gap or seal, the presence of non-flexible contaminants may prevent such expansion and contribute to the increase of stresses and strains within the panels
  • Another difficulty in applying such sealants is to ensure that the sealant completely fills the gap or joint as it then exists and adequately attaches to the adjacent panels. This may be accomplished by increasing the nozzle size, by slowing the rate at which the applicator is moved while increasing the rate of application, or by hand tooling. Increasing the nozzle size creates problems as the optimum nozzle size is the approximate width of the distance between adjacent panels at the lowermost portion of the gap or joint, which becomes difficult to reach with a full width nozzle. Slowing the rate of application, while effective, slows the construction process, increases manpower requirements, and may require additional time for staging and scaffolding use, all of which are undesirable.
  • a further difficulty in apply such seals is that time necessary to apply multiple seal layers.
  • the second seal cannot be applied before the first seal has sufficiently cured as to prevent the seals from becoming intertwined or not allowing air required to cure and therefore transferring destructive forces between themselves.
  • conventional seals require each seal to be applied and worked by hand to ensure adherence to the adjacent panels and sufficient penetration into the gap or joint. Such conventional seals may require skilled labor, further consuming additional time.
  • a seal system and method are provided for slowing deterioration at joints or gaps and for providing a second seal having physical properties different from the first seal.
  • the method for creating a resilient interface to deter water and contaminants from entering the joint or gap adjacent construction panels in accordance with the present invention includes introducing a foaming liquid expansive elastic closed-cell liquid-impermeable sealant between the two adjacent panels with sufficient volume to fill the distance between the two panels and adhere to each.
  • a seal is then introduced above the foamed liquid expansive elastic closed-cell liquid-impermeable sealant with sufficient volume to also fill the distance between the two panels and adhere to each.
  • the seal may be by application of one or more gunnable sealants, which are well known in the art, typically being sold in a tube form for use with a caulking gun.
  • the seal may comprise an extruded resilient member affixed in gap with adhesive sealant on each side.
  • the extruded resilient member may be one or more from the group of neoprene, santoprene, silicone, and urethane.
  • a backer rod may be inserted in the seal between the layering of sealant and the seal to control sealant application depth and to contour the first sealant.
  • the resulting structure of the seal system provides a resilient interface intermediate a first construction panel and a second construction panel including a first seal composed of a foaming, expansive elastic closed-cell liquid-impermeable sealant, potentially a backer rod, and finally a second seal.
  • the objects of my invention are to provide, inter alia, a seal system that:
  • FIG. 1 is a cross sectional view of the seal without the backer rod.
  • FIG. 2 is a cross-sectional view of the seal with the backer rod.
  • the seal system 10 comprises of a foaming sealant 20 and a seal 40 applied between adjacent first panel 110 and second panel 120 .
  • Foaming sealant 20 is a sprayed-in-place, elastic closed cell hydrophilic/phobic sealant that expands when exposed to air, is impermeable to water and cures rapidly. Because the foaming sealant 20 expands and fills the joint when dispensed, seal 40 may be applied almost immediately thereafter.
  • foaming sealant 20 may be a polyurethane-based sealant. No hand working of foaming sealant 20 by the applicator is necessary once applied.
  • Foaming sealant 20 expands upon contact with air/moisture and is applied in sufficient volume to expand to completely cover the distance between first panel 110 and second panel 120 and to adhere to first panel surface 111 and to second panel surface 121 , forming a first resilient seal.
  • Foaming sealant 20 is elastic, therefore not detaching from first panel surface 111 or from second panel surface 121 during expansive cycling. Moreover the elastic property of foaming sealant 20 permits foaming sealant 20 not to internally shear or fail between first panel surface 111 and to second panel surface 121 during expansive cycling.
  • Seal 40 is seal of any material known in the art.
  • seal 40 is a standard gunnable sealant, including acrylic-latex-based caulk, polysulfide-based caulk, urethane-based caulk, poly-urea-based caulk, and silicone-based caulk.
  • seal 40 is not foaming or expansive, but is instead applied with a compressing “gun,” such as a caulking gun, as a highly viscous liquid, which may be worked in place, including by increasing the nozzle size, by slowing the rate at which the applicator is moved while increasing the rate of application, or by hand tooling. Such adjustments may be necessary to ensure seal 40 adheres to both first panel surface 111 and second panel surface 121 .
  • seal 40 may comprise an extruded resilient member affixed about gap 50 with adhesive sealant.
  • the extruded resilient member may be one or more from the group of neoprene, santoprene, silicone, and urethane.
  • foaming sealant 20 is applied to gap 50 in sufficient volume to expand to adhere to both first panel surface 111 and second panel surface 121 .
  • seal 40 is applied into gap 50 above foaming sealant 20 in sufficient volume to contact or be worked into contact with panel surface 111 and second panel surface 121 .
  • a backer rod 30 may be located between foaming sealant 20 and seal 40 .
  • Backer rod 30 is constructed of a foam or other material, which is cut to length on site and which is intended as a spacing member.
  • Backer rod 30 provides additional support for the forces exerted on foaming sealant 20 and on seal 40 from contact with panel surface 111 and/or second panel surface 121 .
  • backer rod 30 serves to prevent contaminants that may pass seal 40 from reaching foaming sealant 20 .
  • backer rod 30 may be inserted immediately after application of foaming sealant 20 , including at times prior to the sufficient curing of foaming sealant 20 for outer surface 21 to become semi-rigid. Seal 40 may therefore be applied nearly immediately after application of foaming sealant 20 .
  • foaming sealant 20 is applied to gap 50 in sufficient volume to expand to adhere to both first panel surface 111 and second panel surface 121 .
  • Backer road 30 is inserted into gap 50 atop foaming sealant 20 .
  • Seal 40 is then applied into gap 50 above backer rod 30 in sufficient volume to contact or be worked into contact with panel surface 111 and second panel surface 121 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)
  • Sealing Material Composition (AREA)
  • Gasket Seals (AREA)

Abstract

A method and structure for providing a resilient seal system in the gap or joint between adjacent construction panels utilizing a foaming expansive elastic closed-cell liquid-impermeable sealant, a backer rod and a seal. The foaming expansive elastic closed-cell liquid-impermeable sealant is first introduced to the gap or joint between the adjacent construction panels. A seal is introduced into or over the gap after the foaming expansive elastic closed-cell liquid-impermeable sealant has sufficiently cured. In alternative embodiment a backer rod is located intermediate the sealant and seal as a spacing member.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not Applicable.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to systems and methods for creating a seal system between adjacent panels subject to temperature expansion and contraction. More particularly, the present invention is directed to providing seals in construction joints that are resilient, and ideally waterproof, over relatively long periods of time.
  • 2. Description of the Related Art
  • Construction panels come in many different sizes and shapes and may be used for various purposes, including roadways, sideways, and pre-cast structures. In many situations it is necessary to form a lateral gap or joint in the structure to allow for independent movement of the adjacent sections. Such movement is caused by many factors including expansion and contraction of the adjacent sections due to changes in temperature.
  • Various seal systems and configurations have been used to seal such gaps or joints. One popular technique involves pressing a flexible rod or tube into the gap or joint. The rods or tubes are typically made from some type of foam material and are commonly referred to as “backer rods”. The remainder of the gap or joint above the tube is then filled in with a sealant. The backer rod does not add any waterproofing value, as it is only used to control the depth of the sealant. Another method is to use pre-compressed saturated, foam tapes. Pre-compressed foam tapes can require additional time to be sized to the particular distance between any two panels, which may vary slightly or significantly. Such variations also require a variety of sizings to be readily accessible for the particulars of any single gap. Such pre-compressed tapes are expensive. Another method is to combine the sealant and the pre-compressed foam tape; however such a method may require additional time because each joint must be coated with the sealant along its entire length, which may be five to seven feet, allowed to cure, then be compressed into the “precompressed” state for installation.
  • The seal system is intended to deter water and other contaminants from entering the gap or joint. It is important that the seal be effective over relatively long periods of time and that it function properly even when exposed to extreme weather conditions. Major problems with seals include water penetration and contaminant penetration. Water penetration may result in exposure of unsealed surfaces or in freezing expansion. In the case of a seal where at least one panel contains wood, water penetration of the seal may result in rotting, particularly as the water may become trapped within the seal or gap. In the case of a seal where at least one panel contains masonry, the water may penetrate into the masonry and expand when cooled below its freezing point, creating internal stresses on the masonry and potentially fracturing the masonry. In all instances, penetration of water may result in further destruction of the seal should the water cool below its freezing point. Contaminant penetration may also have detrimental effects on the gap or seal. As the gap or seal is intended to permit expansion of the panels into the gap or seal, the presence of non-flexible contaminants may prevent such expansion and contribute to the increase of stresses and strains within the panels.
  • It is known that such flexing and conditions may have a detrimental effect on the seal between the panels. Flexing may fatigue the sealant, which has limited flexibility and elasticity. Weather conditions may alter the flexibility and elasticity of the sealant so as to result in cracking. It is known to introduce the sealant into the space between the adjacent construction panels in two applications, forming two seals, so that if one seal fails, the other may remain waterproof. However the conditions which cause failure of the first seal layer may also cause the second substantially identical seal layer to fail.
  • Another difficulty in applying such sealants is to ensure that the sealant completely fills the gap or joint as it then exists and adequately attaches to the adjacent panels. This may be accomplished by increasing the nozzle size, by slowing the rate at which the applicator is moved while increasing the rate of application, or by hand tooling. Increasing the nozzle size creates problems as the optimum nozzle size is the approximate width of the distance between adjacent panels at the lowermost portion of the gap or joint, which becomes difficult to reach with a full width nozzle. Slowing the rate of application, while effective, slows the construction process, increases manpower requirements, and may require additional time for staging and scaffolding use, all of which are undesirable.
  • A further difficulty in apply such seals is that time necessary to apply multiple seal layers. The second seal cannot be applied before the first seal has sufficiently cured as to prevent the seals from becoming intertwined or not allowing air required to cure and therefore transferring destructive forces between themselves. Moreover conventional seals require each seal to be applied and worked by hand to ensure adherence to the adjacent panels and sufficient penetration into the gap or joint. Such conventional seals may require skilled labor, further consuming additional time.
  • It would be an improvement to the art to have a seal system, and a method for application of such seal system, which would provide a seal having a longer duration of use, which would better seal adjacent panels regardless of distance and which could be rapidly applied without the need multiple sized backer rods. It would be a further improvement to increase the speed of application, and to reduce costs, labor requirements, and material needs. It would be a further improvement to have a second seal which would not fail due to the same conditions as a first seal.
  • BRIEF SUMMARY OF THE INVENTION
  • In accordance with the present invention, a seal system and method are provided for slowing deterioration at joints or gaps and for providing a second seal having physical properties different from the first seal.
  • The method for creating a resilient interface to deter water and contaminants from entering the joint or gap adjacent construction panels in accordance with the present invention includes introducing a foaming liquid expansive elastic closed-cell liquid-impermeable sealant between the two adjacent panels with sufficient volume to fill the distance between the two panels and adhere to each. A seal is then introduced above the foamed liquid expansive elastic closed-cell liquid-impermeable sealant with sufficient volume to also fill the distance between the two panels and adhere to each. The seal may be by application of one or more gunnable sealants, which are well known in the art, typically being sold in a tube form for use with a caulking gun. Alternatively, the seal may comprise an extruded resilient member affixed in gap with adhesive sealant on each side. The extruded resilient member may be one or more from the group of neoprene, santoprene, silicone, and urethane. A backer rod may be inserted in the seal between the layering of sealant and the seal to control sealant application depth and to contour the first sealant.
  • The resulting structure of the seal system provides a resilient interface intermediate a first construction panel and a second construction panel including a first seal composed of a foaming, expansive elastic closed-cell liquid-impermeable sealant, potentially a backer rod, and finally a second seal.
  • The above described and many other features and attendant advantages of the present invention will become better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings.
  • Accordingly, the objects of my invention are to provide, inter alia, a seal system that:
      • extends the lifespan of the seal;
      • extends the lifespan of the adjacent panels;
      • utilizes at least two different seals to increase longevity;
      • can include a backer rod to absorb some of the load and to provide further impediments to external articles invading the lower seal.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of the seal without the backer rod.
  • FIG. 2 is a cross-sectional view of the seal with the backer rod.
  • DESCRIPTION OF THE INVENTION
  • As shown in FIG. 1, the seal system 10 comprises of a foaming sealant 20 and a seal 40 applied between adjacent first panel 110 and second panel 120.
  • Foaming sealant 20 is a sprayed-in-place, elastic closed cell hydrophilic/phobic sealant that expands when exposed to air, is impermeable to water and cures rapidly. Because the foaming sealant 20 expands and fills the joint when dispensed, seal 40 may be applied almost immediately thereafter. In one embodiment foaming sealant 20 may be a polyurethane-based sealant. No hand working of foaming sealant 20 by the applicator is necessary once applied. Foaming sealant 20 expands upon contact with air/moisture and is applied in sufficient volume to expand to completely cover the distance between first panel 110 and second panel 120 and to adhere to first panel surface 111 and to second panel surface 121, forming a first resilient seal. Foaming sealant 20 is elastic, therefore not detaching from first panel surface 111 or from second panel surface 121 during expansive cycling. Moreover the elastic property of foaming sealant 20 permits foaming sealant 20 not to internally shear or fail between first panel surface 111 and to second panel surface 121 during expansive cycling.
  • Seal 40 is seal of any material known in the art. In the preferred embodiment, seal 40 is a standard gunnable sealant, including acrylic-latex-based caulk, polysulfide-based caulk, urethane-based caulk, poly-urea-based caulk, and silicone-based caulk. As is known in the art seal 40 is not foaming or expansive, but is instead applied with a compressing “gun,” such as a caulking gun, as a highly viscous liquid, which may be worked in place, including by increasing the nozzle size, by slowing the rate at which the applicator is moved while increasing the rate of application, or by hand tooling. Such adjustments may be necessary to ensure seal 40 adheres to both first panel surface 111 and second panel surface 121. In an alternative embodiment (not shown), seal 40 may comprise an extruded resilient member affixed about gap 50 with adhesive sealant. The extruded resilient member may be one or more from the group of neoprene, santoprene, silicone, and urethane.
  • In operation, foaming sealant 20 is applied to gap 50 in sufficient volume to expand to adhere to both first panel surface 111 and second panel surface 121. After time for outer surface 21 of foaming sealant to cure sufficiently to become semi-rigid, seal 40 is applied into gap 50 above foaming sealant 20 in sufficient volume to contact or be worked into contact with panel surface 111 and second panel surface 121.
  • In the alternative embodiment depicted in FIG. 2, a backer rod 30 may be located between foaming sealant 20 and seal 40. Backer rod 30 is constructed of a foam or other material, which is cut to length on site and which is intended as a spacing member. Backer rod 30 provides additional support for the forces exerted on foaming sealant 20 and on seal 40 from contact with panel surface 111 and/or second panel surface 121. Moreover backer rod 30 serves to prevent contaminants that may pass seal 40 from reaching foaming sealant 20. Finally, backer rod 30 may be inserted immediately after application of foaming sealant 20, including at times prior to the sufficient curing of foaming sealant 20 for outer surface 21 to become semi-rigid. Seal 40 may therefore be applied nearly immediately after application of foaming sealant 20.
  • In operation for the alternative embodiment depicted in FIG. 2, foaming sealant 20 is applied to gap 50 in sufficient volume to expand to adhere to both first panel surface 111 and second panel surface 121. Backer road 30 is inserted into gap 50 atop foaming sealant 20. Seal 40 is then applied into gap 50 above backer rod 30 in sufficient volume to contact or be worked into contact with panel surface 111 and second panel surface 121.
  • The foregoing disclosure and description of the invention is illustrative and explanatory thereof. Various changes in the details of the illustrated construction may be made within the scope of the appended claims without departing from the spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.

Claims (10)

1. A method of providing a resilient barrier between a first construction panel and a second construction panel, said first construction panel being adjacent said second construction panel, said first construction panel having a first edge, said second construction panel having a first edge, said first construction panel having thickness, said second construction panel having thickness, said first edge of said first construction panel being distant said first edge of said second construction panel, comprising:
a. introducing a foaming expansive elastic closed-cell liquid-impermeable sealant adjacent said first edge of said first construction panel and adjacent said first edge of said second construction panel;
b. introducing a seal above said expansive elastic closed-cell liquid-impermeable sealant and adjacent said first construction panel and adjacent said second construction panel.
2. The method of providing a resilient barrier of claim 1, wherein said seal is an application of one or more from the group of acrylic-latex-based caulk, polysulfide-based caulk, urethane-based caulk, poly-urea-based caulk, and silicone-based caulk.
3. The method of providing a resilient barrier of claim 2, further comprising
a. introducing a spacing member intermediate said expansive elastic closed-cell liquid-impermeable sealant and said seal.
4. The method of providing a resilient barrier of claim 1 wherein said seal comprises an resilient member adhered in place, said resilient member is one or more from the group of neoprene, santoprene, silicone, and urethane.
5. The method of providing a resilient barrier of claim 4, further comprising
a. introducing a spacing member intermediate said expansive elastic closed-cell liquid-impermeable sealant and said seal.
6. A resilient interface intermediate a first construction panel and a second construction panel, said first construction panel having a first edge, said second construction panel having a first edge, said first construction panel having thickness, said second construction panel having thickness, said first edge of said first construction panel being distant said first edge of said second construction panel comprising:
a. a first sealant, said first sealant being a foaming expansive elastic closed-cell liquid-impermeable sealant, said first sealant being adjacent said first edge of said first construction panel and adjacent said first edge of said second construction panel;
b. a seal, said seal being above said expansive elastic closed-cell liquid-impermeable sealant and adjacent said first construction panel and adjacent said second construction panel
7. The resilient interface of claim 6, wherein said seal is an application of one or more from the group of acrylic-latex-based caulk, polysulfide-based caulk, urethane-based caulk, poly-urea-based caulk, and silicone-based caulk.
8. The resilient interface of claim 7, further comprising
a. a spacing member intermediate said expansive elastic closed-cell liquid-impermeable sealant and said seal.
9. The resilient interface of claim 6 wherein said seal comprises an resilient member adhered in place, said resilient member is one or more from the group of neoprene, santoprene, silicone, and urethane.
10. The resilient interface of claim 9, further comprising
a. a spacing member intermediate said expansive elastic closed-cell liquid-impermeable sealant and said seal.
US11/320,882 2005-12-29 2005-12-29 Method and device for resilient seal system Abandoned US20070151185A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/320,882 US20070151185A1 (en) 2005-12-29 2005-12-29 Method and device for resilient seal system
PCT/US2006/060096 WO2007079273A2 (en) 2005-12-29 2006-10-20 Method and device for resilient seal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/320,882 US20070151185A1 (en) 2005-12-29 2005-12-29 Method and device for resilient seal system

Publications (1)

Publication Number Publication Date
US20070151185A1 true US20070151185A1 (en) 2007-07-05

Family

ID=38222893

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/320,882 Abandoned US20070151185A1 (en) 2005-12-29 2005-12-29 Method and device for resilient seal system

Country Status (2)

Country Link
US (1) US20070151185A1 (en)
WO (1) WO2007079273A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070022686A1 (en) * 2005-06-28 2007-02-01 Smith Rodney I System and method for a secondary water drainage system with street level leak detection
US20110123801A1 (en) * 2009-11-24 2011-05-26 Valenciano Philip F Intumescent rod
US20120023846A1 (en) * 2010-08-02 2012-02-02 Mattox Timothy M Intumescent backer rod
US8499515B1 (en) * 2012-01-13 2013-08-06 The Boeing Company Systems, methods, and components for the construction and disassembly of raised panel assemblies
US20140196831A1 (en) * 2012-01-13 2014-07-17 The Boeing Company Systems, methods, and components for the construction and disassembly of raised panel assemblies
CN104251251A (en) * 2013-06-28 2014-12-31 波音公司 Systems, methods, and components for the construction and disassembly of raised panel assemblies
US20150052841A1 (en) * 2013-02-05 2015-02-26 Tindall Corporation Structure including non-structural joint
JP2015200137A (en) * 2014-04-09 2015-11-12 旭化工株式会社 Non-flammable, heat-insulating, elastic and expandable protective material
JP2016006265A (en) * 2014-06-20 2016-01-14 株式会社大林組 Panel structure and method of manufacturing the same
US20170088248A1 (en) * 2015-09-30 2017-03-30 Airbus Operations Gmbh Profile for connecting a floor structure and sealing system for a floor structure
US10024306B2 (en) 2013-08-22 2018-07-17 Tindall Corporation Structure including non-structural joint
US20180371746A1 (en) * 2008-12-11 2018-12-27 Emseal Joint Systems, Ltd. Method of making a water resistant expansion joint system
US10422127B2 (en) 2008-12-11 2019-09-24 Emseal Joint Systems, Ltd. Precompressed foam expansion joint system transition
US11371237B2 (en) * 2016-12-09 2022-06-28 Jd Russell Company Methods of making and installing a concrete expansion joint insert including a sealant on one edge
WO2023163841A1 (en) * 2022-02-28 2023-08-31 Schul International Co., Llc Interface transition and environmental barrier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402160A (en) * 2011-12-28 2012-04-04 珠海天威飞马打印耗材有限公司 Sealing structure of powder box

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334557A (en) * 1965-04-29 1967-08-08 Phelan Faust Paint Mfg Company Polyurethane concrete slab sealer
US3449879A (en) * 1965-09-27 1969-06-17 Ici Ltd Building panel with foam layer and methods of connecting and attaching the panel
US3492250A (en) * 1963-05-21 1970-01-27 Du Pont Closed cell foam
US3827204A (en) * 1972-03-14 1974-08-06 Thiokol Chemical Corp Sealed joint for sectionalized flooring and method of making the same
US4058947A (en) * 1975-09-17 1977-11-22 Johns-Manville Corporation Fire resistant joint system for concrete structures
US4922676A (en) * 1989-01-23 1990-05-08 Spronken John R Closure and seal for prefabricated building panels
US5007765A (en) * 1988-09-16 1991-04-16 Dow Corning Corporation Sealing method for joints
US5445466A (en) * 1991-10-30 1995-08-29 Kabushiki Kaisha Sakura Kurepasu Liquid applicator with screw lock
US5935695A (en) * 1989-04-19 1999-08-10 Emseal Corporation Joint filler
US6418688B1 (en) * 1999-04-05 2002-07-16 Louis T Jones, Jr. Joint forming systems
US6666618B1 (en) * 2002-11-25 2003-12-23 Richard James Anaya System and method for sealing roadway joints
US20040045075A1 (en) * 2002-09-09 2004-03-11 Yan Suen Ching Velcro adjustable strap
US20040093815A1 (en) * 2002-11-15 2004-05-20 3M Innovative Properties Company Method and apparatus for firestopping a through-penetration
US20060053710A1 (en) * 2004-08-24 2006-03-16 3M Innovative Properties Company Method and apparatus for firestopping a through-penetration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335466A (en) * 1992-12-01 1994-08-09 Langohr Donald R Wide vertical joint seal
US6993874B2 (en) * 2002-08-23 2006-02-07 John T. Trout Joint materials and configurations

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492250A (en) * 1963-05-21 1970-01-27 Du Pont Closed cell foam
US3334557A (en) * 1965-04-29 1967-08-08 Phelan Faust Paint Mfg Company Polyurethane concrete slab sealer
US3449879A (en) * 1965-09-27 1969-06-17 Ici Ltd Building panel with foam layer and methods of connecting and attaching the panel
US3827204A (en) * 1972-03-14 1974-08-06 Thiokol Chemical Corp Sealed joint for sectionalized flooring and method of making the same
US4058947A (en) * 1975-09-17 1977-11-22 Johns-Manville Corporation Fire resistant joint system for concrete structures
US5007765A (en) * 1988-09-16 1991-04-16 Dow Corning Corporation Sealing method for joints
US4922676A (en) * 1989-01-23 1990-05-08 Spronken John R Closure and seal for prefabricated building panels
US5935695A (en) * 1989-04-19 1999-08-10 Emseal Corporation Joint filler
US5445466A (en) * 1991-10-30 1995-08-29 Kabushiki Kaisha Sakura Kurepasu Liquid applicator with screw lock
US6418688B1 (en) * 1999-04-05 2002-07-16 Louis T Jones, Jr. Joint forming systems
US20040045075A1 (en) * 2002-09-09 2004-03-11 Yan Suen Ching Velcro adjustable strap
US20040093815A1 (en) * 2002-11-15 2004-05-20 3M Innovative Properties Company Method and apparatus for firestopping a through-penetration
US6928777B2 (en) * 2002-11-15 2005-08-16 3M Innovative Properties Company Method and apparatus for firestopping a through-penetration
US6666618B1 (en) * 2002-11-25 2003-12-23 Richard James Anaya System and method for sealing roadway joints
US20060053710A1 (en) * 2004-08-24 2006-03-16 3M Innovative Properties Company Method and apparatus for firestopping a through-penetration

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7661232B2 (en) * 2005-06-28 2010-02-16 Easi-Set Industries, Inc. System and method for a secondary water drainage system with street level leak detection
US20070022686A1 (en) * 2005-06-28 2007-02-01 Smith Rodney I System and method for a secondary water drainage system with street level leak detection
US20180371746A1 (en) * 2008-12-11 2018-12-27 Emseal Joint Systems, Ltd. Method of making a water resistant expansion joint system
US10570611B2 (en) * 2008-12-11 2020-02-25 Emseal Joint Systems Ltd. Method of making a water resistant expansion joint system
US10422127B2 (en) 2008-12-11 2019-09-24 Emseal Joint Systems, Ltd. Precompressed foam expansion joint system transition
US20110123801A1 (en) * 2009-11-24 2011-05-26 Valenciano Philip F Intumescent rod
US8318304B2 (en) 2009-11-24 2012-11-27 Alva-Tech, Inc. Intumescent rod
US20120023846A1 (en) * 2010-08-02 2012-02-02 Mattox Timothy M Intumescent backer rod
US8578672B2 (en) 2010-08-02 2013-11-12 Tremco Incorporated Intumescent backer rod
US8499515B1 (en) * 2012-01-13 2013-08-06 The Boeing Company Systems, methods, and components for the construction and disassembly of raised panel assemblies
US8959872B2 (en) * 2012-01-13 2015-02-24 The Boeing Company Systems, methods, and components for the construction and disassembly of raised panel assemblies
US20140196831A1 (en) * 2012-01-13 2014-07-17 The Boeing Company Systems, methods, and components for the construction and disassembly of raised panel assemblies
US20150052841A1 (en) * 2013-02-05 2015-02-26 Tindall Corporation Structure including non-structural joint
CN104251251A (en) * 2013-06-28 2014-12-31 波音公司 Systems, methods, and components for the construction and disassembly of raised panel assemblies
US10024306B2 (en) 2013-08-22 2018-07-17 Tindall Corporation Structure including non-structural joint
JP2015200137A (en) * 2014-04-09 2015-11-12 旭化工株式会社 Non-flammable, heat-insulating, elastic and expandable protective material
JP2016006265A (en) * 2014-06-20 2016-01-14 株式会社大林組 Panel structure and method of manufacturing the same
US20170088248A1 (en) * 2015-09-30 2017-03-30 Airbus Operations Gmbh Profile for connecting a floor structure and sealing system for a floor structure
US11371237B2 (en) * 2016-12-09 2022-06-28 Jd Russell Company Methods of making and installing a concrete expansion joint insert including a sealant on one edge
WO2023163841A1 (en) * 2022-02-28 2023-08-31 Schul International Co., Llc Interface transition and environmental barrier
US11821200B2 (en) 2022-02-28 2023-11-21 Schul International Co., Llc Interface transition and environmental barrier

Also Published As

Publication number Publication date
WO2007079273A3 (en) 2007-12-27
WO2007079273A2 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US20070151185A1 (en) Method and device for resilient seal system
EP3067482B1 (en) Expansion joint seal system
US9739049B1 (en) Expansion joint for longitudinal load transfer
US11142904B2 (en) Continuous wall assemblies and methods
US9982428B2 (en) Expansion joint seal with surface load transfer, intumescent, and internal sensor
CA3070161C (en) Below grade, blind side, dual waterproofing membrane assembly incorporating a sheet membrane with adhesive to fully bond to concrete/shotcrete, and a method of making, and using same
US20140151968A1 (en) Coiled precompressed, precoated joint seal and method of making
CN111980181B (en) Underground windowless dual waterproofing membrane assembly and methods of making and using same
KR101566591B1 (en) Reinforcing method for reinforcing the gap between window frame and wall and reinforcing sheet for crack repair of building
US20220049504A1 (en) Systems and methods for providing seals between adjacent building panels
KR101497228B1 (en) Sealant preferred filling waterproofing method of prefabricated structure joint
KR101884202B1 (en) complex water proofing method having joint reinforcement structure
KR101443011B1 (en) Composite Waterproofing System applied in Rubber magnet Joint Waterproofing
JP3343504B2 (en) Joint sealing method and device
KR102084886B1 (en) Adiabatic waterproof construction method using insulating board
KR100712129B1 (en) Waterproof structure of connecting part of concrete structure and the method of constructing thereof
AU2002100047A4 (en) Spray-on joint seal protection
JP2017031756A (en) Joint filler material and installation method thereof for exterior finishing boards of structure with ventilation layer
JP2011231596A (en) Joint repair structure and joint repair method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION