US20070138597A1 - Angled implant to improve high current operation of bipolar transistors - Google Patents

Angled implant to improve high current operation of bipolar transistors Download PDF

Info

Publication number
US20070138597A1
US20070138597A1 US11/676,450 US67645007A US2007138597A1 US 20070138597 A1 US20070138597 A1 US 20070138597A1 US 67645007 A US67645007 A US 67645007A US 2007138597 A1 US2007138597 A1 US 2007138597A1
Authority
US
United States
Prior art keywords
region
base
transistor
collector
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/676,450
Inventor
Michael Violette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/519,817 external-priority patent/US5719082A/en
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US11/676,450 priority Critical patent/US20070138597A1/en
Publication of US20070138597A1 publication Critical patent/US20070138597A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor

Definitions

  • the present invention relates to semiconductor circuitry and in particular to improving the high current operation of a semiconductor circuit by implanting impurities at an angle to create a local implant with increased area.
  • bipolar transistors Semiconductor junctions are often limited in their high current region of operation by leakage currents.
  • election and hole injection increases the base depth into the lightly doped collector region, thus reducing the gain of the transistor. Similar effects are observed in metal oxide semiconductor transistors.
  • One method for improving the high current operation of bipolar transistors include increasing the collector doping concentration throughout its junction with the base via a perpendicular implant of appropriate doping through the base opening as shown in prior art FIG. 1 .
  • the peak current at which transistor gain starts to drop off due to high current effects increases, but since the entire collector region vertically adjacent the base is more heavily doped, the base-collector capacitance is significantly increased.
  • a second method shown in prior art FIG. 2 reduces the base-collector capacitance of the first method, which improves the high frequency response, by using a local implant through the emitter to increase the collector doping below the emitter opening only, here the carrier injection into the base mostly occurs at high currents.
  • the highest emitter current density occurs at the emitter edges, scattered carriers bypass the implant around its perimeter, again causing transistor gain loss at high currents.
  • FIG. 1 is a cross section of a prior art semiconductor transistor showing an increased collector doping.
  • FIG. 2 is a cross section of a further prior art semiconductor transistor showing increased collector doping.
  • FIGS. 3-13 are cross sections of a semiconductor substrate at various stages, progressing from the initial substrate though the formation of a transistor having a collector implant in accordance with the present invention.
  • FIGS. 3 through 13 provide an overview of the steps involved in the formation of a typical npn bipolar transistor having an angled collector implant in accordance with the present invention.
  • a p-type substrate of silicon 310 has a pad oxide 312 formed on its surface by standard deposition techniques.
  • a p-well 314 is implanted via ion implant.
  • a silicon wafer will have many such substrates contained on it, with circuitry being formed therein through multiple process steps as described below.
  • a photo resist layer 412 is applied and portions removed to allow the implant of an n-well layer 414 forming the basis for the collector. The remaining photo resist is removed, and, in FIG. 5 , a new resist layer 512 is applied and selectively removed to permit the implant of a collector implant tap at 514 .
  • photo resist 612 is applied and selectively removed and a n+ plug 614 and N-well 616 are formed by implantation.
  • a pad oxide 712 and nitride 714 are deposited and covered by a photo resist 716 which is selectively removed to allow formation of a thick oxide layer where not covered by photo resist 716 , and retain covered layers of nitride 714 .
  • the thick oxide layer is formed via field oxidation as indicated at 812 in FIG. 8 .
  • Photo resist 716 is then removed. Photo resist is again applied at 916 and a base 918 is implanted through the photo resist in FIG. 9 .
  • FIG. 10 another photo resist layer 1012 is applied and selectively removed to expose an emitter opening 1014 and a collector opening 1016 .
  • An n-type impurity, such as phosphorous is implanted through such openings via ion implantation to form a collector implant 1020 at the collector-base horizontal junction which is wider than the emitter opening 1014 and the eventual emitter.
  • This has the benefit of preventing excess carriers generated at high current from travelling from the emitter to the collector, bypassing the base.
  • the n+ collector implant 1020 does not cover the entire surface area of the base where it is horizontally adjacent to the collector, the capacitance between the two layers is not greatly increased as in some prior art approaches. When referring to surface areas, it is defined as planes essentially parallel to the top surface of the wafer.
  • the effective surface area of the collector implant is greater than the surface area of the emitter opening, but less than the area of the base which is horizontally adjacent said collector.
  • the beam of ions is angled as shown at 1018 , with an implantation angle from an imaginary line which is perpendicular to the surface of the substrate.
  • the impurities are accelerated from the ion source, and a mass spectrometer is used to separate undesired impurities.
  • a high energy, fairly narrow ion beam is focussed and raster scanned across the emitter opening at an implantation angle of about 20 to 30 degrees at the edges of the emitter, resulting in a wider implant 1020 , which injected carriers have a harder time circumventing.
  • the energy level of the beam will be dependent on the depth required to form the implant at the collector-base junction, and is easily determined by one skilled in the art. It is typically in the 50 to 150 keV range for most common processes.
  • a p-source of impurities is used, such as boron.
  • the angling of the beam is accomplished by use of wafer tilting features which are common on many ion implantation devices.
  • the beam itself is usually rastered across the surface of a wafer containing at least one, and likely many thousands of transistors being formed.
  • the wafer is continuously tilted and then turned in one embodiment to form the implant.
  • the angle is varied to produce reduced doping levels at the edges of the implant to obtain optimal transistor high current operation.
  • the implantation angle is in the range of 20 to 30 degrees from the perpendicular. In other embodiments, actual angles will depend on the desired size and depth of the implant and may vary from greater than zero, to angles that produce implants approaching the size of the base opening.
  • Implantation horizontal surface areas greater than that normally available through the emitter opening using vertical implantation starts to provide the benefits of maintaining appropriate gains at high merits. Once the surface area of the implant approaches the surface area of the base opening, capacitive effects become too great, limiting the high frequency response of the transistor being formed. Shadows caused by opposite sides of the emitter opening may limit the angle that can be used, especially for deep collector-base junction implants. This is another case where the angle may be changed during the implant to obtain the total desired area of implantation.
  • a second collector implant is formed at 1022 at about the same level of penetration as the increased collector doping under the emitter opening 1014 .
  • n+polysilicon implant 1114 is done to form the emitter. It also provides for a good connection to the collector plug 614 .
  • photoresist 1212 is applied and selectively removed to allow removal of unwanted areas of n+polysilicon 1112 , leaving a pair of n+ polysilicon electrical contacts comprising n+ contact 1216 to the emitter 1114 and n+ contact 1218 to the collector plug 614 .
  • a p+ implant 1214 provides good contact to the base of the transistor which is now essentially formed. In FIG.
  • final oxide layer 1312 is deposited, and photo resist applied and selectively removed to form a mask for first etching the oxide and then performing a metal deposition of electrical contacts comprising an emitter contact 1314 , base contact 1316 and collector contact 1318 which extend through oxide 1312 to contact the emitter, base and collector.
  • a local collector implant of impurities is created in a bipolar transistor by angling the implant through an emitter opening.
  • the localized implant covers an area larger than the emitter opening, thereby minimizing carrier injection around the perimeter of the implant at high currents.
  • high frequency operation is also improved over previous methods of increasing the entire collector doping concentration where it contacts the base or performing a conventional local collector implant through the emitter opening. Only one additional implant is required over normal bipolar transistor formation processes, and no additional masking is required.
  • a standard ion beam source using phosphorus as the impurity for a npn transistor is used to perform the angled implant.
  • a p source of impurities is used, such as boron.
  • the impurities are accelerated from the ion source, and a mass spectrometer is used to separate undesired impurities.
  • a high energy, fairly narrow ion beam is focussed and scanned across the emitter opening at an angle to a line perpendicular to the surface of the emitter, resulting in a wider implant at the collector-base junction, which injected carriers have a harder time circumventing.
  • the angling of the beam is accomplished by tilting the silicon wafer on which the transistor is being formed with respect to the source of ions.

Abstract

Method and apparatus for improving the high current operation of bipolar transistors while minimizing adverse affects on high frequency response are disclosed. A local implant to increase the doping of the collector at the collector to base interface is achieved by the use of an angled ion implant of collector impurities through the emitter opening. The resulting area of increased collector doping is larger than the emitter opening, which minimizes carrier injection from the emitter to the collector, but is smaller than the area of the base.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 09/921,948, filed Aug. 3, 2001, which is a division of U.S. patent application Ser. No. 09/436,306, filed on Nov. 8, 1999, now U.S. Pat. No. 6,440,812, which is a division of U.S. patent application Ser. No. 09/024,287, filed Feb. 17, 1998, now U.S. Pat. No. 5,982,022, which is a division of U.S. patent application Ser. No. 08/519,817, filed Aug. 25, 1995, now U.S. Pat. No. 5,719,082, the specifications of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to semiconductor circuitry and in particular to improving the high current operation of a semiconductor circuit by implanting impurities at an angle to create a local implant with increased area.
  • BACKGROUND OF THE INVENTION
  • Semiconductor junctions are often limited in their high current region of operation by leakage currents. In the case of bipolar transistors, as the collector current increases, election and hole injection increases the base depth into the lightly doped collector region, thus reducing the gain of the transistor. Similar effects are observed in metal oxide semiconductor transistors. One method for improving the high current operation of bipolar transistors include increasing the collector doping concentration throughout its junction with the base via a perpendicular implant of appropriate doping through the base opening as shown in prior art FIG. 1. The peak current at which transistor gain starts to drop off due to high current effects increases, but since the entire collector region vertically adjacent the base is more heavily doped, the base-collector capacitance is significantly increased. Ideally, high current operation should be maximized and base-collector capacitance should be minimized for optimum performance. Similar effects are obtained by increasing the doping of the entire collector region. Since speed is of premium importance in such transistors, there is a need for a solution which does not degrade performance at high frequencies.
  • A second method shown in prior art FIG. 2 reduces the base-collector capacitance of the first method, which improves the high frequency response, by using a local implant through the emitter to increase the collector doping below the emitter opening only, here the carrier injection into the base mostly occurs at high currents. However, since the highest emitter current density occurs at the emitter edges, scattered carriers bypass the implant around its perimeter, again causing transistor gain loss at high currents. There is a need for both improving the high frequency operation and the high current operation of bipolar transistors without adding many additional processing steps.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross section of a prior art semiconductor transistor showing an increased collector doping.
  • FIG. 2 is a cross section of a further prior art semiconductor transistor showing increased collector doping.
  • FIGS. 3-13 are cross sections of a semiconductor substrate at various stages, progressing from the initial substrate though the formation of a transistor having a collector implant in accordance with the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present inventions is defined only by the appended claims.
  • Numbering in the Figures is usually done with the hundreds and thousands digits corresponding to the figure number, with the exception that the same components may appear in multiple figures. Signals and connections may be referred to by the same number or label, and the actual meaning should be clear from the context of use.
  • FIGS. 3 through 13 provide an overview of the steps involved in the formation of a typical npn bipolar transistor having an angled collector implant in accordance with the present invention. In FIG. 3, a p-type substrate of silicon 310 has a pad oxide 312 formed on its surface by standard deposition techniques. A p-well 314 is implanted via ion implant. A silicon wafer will have many such substrates contained on it, with circuitry being formed therein through multiple process steps as described below.
  • In FIG. 4, a photo resist layer 412 is applied and portions removed to allow the implant of an n-well layer 414 forming the basis for the collector. The remaining photo resist is removed, and, in FIG. 5, a new resist layer 512 is applied and selectively removed to permit the implant of a collector implant tap at 514. In FIG. 6, photo resist 612 is applied and selectively removed and a n+ plug 614 and N-well 616 are formed by implantation.
  • In FIG. 7, a pad oxide 712 and nitride 714 are deposited and covered by a photo resist 716 which is selectively removed to allow formation of a thick oxide layer where not covered by photo resist 716, and retain covered layers of nitride 714. The thick oxide layer is formed via field oxidation as indicated at 812 in FIG. 8. Photo resist 716 is then removed. Photo resist is again applied at 916 and a base 918 is implanted through the photo resist in FIG. 9.
  • In FIG. 10, another photo resist layer 1012 is applied and selectively removed to expose an emitter opening 1014 and a collector opening 1016. An n-type impurity, such as phosphorous is implanted through such openings via ion implantation to form a collector implant 1020 at the collector-base horizontal junction which is wider than the emitter opening 1014 and the eventual emitter. This has the benefit of preventing excess carriers generated at high current from travelling from the emitter to the collector, bypassing the base. Since the n+ collector implant 1020 does not cover the entire surface area of the base where it is horizontally adjacent to the collector, the capacitance between the two layers is not greatly increased as in some prior art approaches. When referring to surface areas, it is defined as planes essentially parallel to the top surface of the wafer. The effective surface area of the collector implant is greater than the surface area of the emitter opening, but less than the area of the base which is horizontally adjacent said collector.
  • As opposed to a standard perpendicular implantation, the beam of ions is angled as shown at 1018, with an implantation angle from an imaginary line which is perpendicular to the surface of the substrate. The impurities are accelerated from the ion source, and a mass spectrometer is used to separate undesired impurities. A high energy, fairly narrow ion beam is focussed and raster scanned across the emitter opening at an implantation angle of about 20 to 30 degrees at the edges of the emitter, resulting in a wider implant 1020, which injected carriers have a harder time circumventing. The energy level of the beam will be dependent on the depth required to form the implant at the collector-base junction, and is easily determined by one skilled in the art. It is typically in the 50 to 150 keV range for most common processes. For a pnp transistor, a p-source of impurities is used, such as boron.
  • The angling of the beam is accomplished by use of wafer tilting features which are common on many ion implantation devices. The beam itself is usually rastered across the surface of a wafer containing at least one, and likely many thousands of transistors being formed. The wafer is continuously tilted and then turned in one embodiment to form the implant. In a further embodiment, the angle is varied to produce reduced doping levels at the edges of the implant to obtain optimal transistor high current operation. The implantation angle is in the range of 20 to 30 degrees from the perpendicular. In other embodiments, actual angles will depend on the desired size and depth of the implant and may vary from greater than zero, to angles that produce implants approaching the size of the base opening. Implantation horizontal surface areas greater than that normally available through the emitter opening using vertical implantation starts to provide the benefits of maintaining appropriate gains at high merits. Once the surface area of the implant approaches the surface area of the base opening, capacitive effects become too great, limiting the high frequency response of the transistor being formed. Shadows caused by opposite sides of the emitter opening may limit the angle that can be used, especially for deep collector-base junction implants. This is another case where the angle may be changed during the implant to obtain the total desired area of implantation.
  • Since the collector tap is also exposed to the ion beam, a second collector implant is formed at 1022 at about the same level of penetration as the increased collector doping under the emitter opening 1014.
  • To finish the transistor and form contacts to the active areas, a thick n+ polysilicon layer is applied at 1112 in FIG. 11, and a n+polysilicon implant 1114 is done to form the emitter. It also provides for a good connection to the collector plug 614. In FIG. 12, photoresist 1212 is applied and selectively removed to allow removal of unwanted areas of n+polysilicon 1112, leaving a pair of n+ polysilicon electrical contacts comprising n+ contact 1216 to the emitter 1114 and n+ contact 1218 to the collector plug 614. A p+ implant 1214 provides good contact to the base of the transistor which is now essentially formed. In FIG. 13, final oxide layer 1312 is deposited, and photo resist applied and selectively removed to form a mask for first etching the oxide and then performing a metal deposition of electrical contacts comprising an emitter contact 1314, base contact 1316 and collector contact 1318 which extend through oxide 1312 to contact the emitter, base and collector.
  • In an embodiment, a local collector implant of impurities is created in a bipolar transistor by angling the implant through an emitter opening. The localized implant covers an area larger than the emitter opening, thereby minimizing carrier injection around the perimeter of the implant at high currents. In addition to improved high current operation, high frequency operation is also improved over previous methods of increasing the entire collector doping concentration where it contacts the base or performing a conventional local collector implant through the emitter opening. Only one additional implant is required over normal bipolar transistor formation processes, and no additional masking is required.
  • In an embodiment, a standard ion beam source using phosphorus as the impurity for a npn transistor is used to perform the angled implant. For a pnp transistor, a p source of impurities is used, such as boron. The impurities are accelerated from the ion source, and a mass spectrometer is used to separate undesired impurities. A high energy, fairly narrow ion beam is focussed and scanned across the emitter opening at an angle to a line perpendicular to the surface of the emitter, resulting in a wider implant at the collector-base junction, which injected carriers have a harder time circumventing. The angling of the beam is accomplished by tilting the silicon wafer on which the transistor is being formed with respect to the source of ions.
  • It is to be understood that the above description is intended to be illustrative, and not restrictive. In many cases, the doping of semiconductor structures may be reversed on a wholesale basis to obtain similar functions. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (35)

1. A transistor formed in a semiconductor substrate, the substrate having a first impurity level of a first conductivity type and a surface, the transistor comprising:
a collector region having a first impurity therein which promotes one of either holes or electrons as a majority carrier, the collector region extending downward from the surface of the substrate, wherein the first conductivity type of the substrate promotes the other majority carrier;
a base region having a second impurity level of the first conductivity type having a base surface area and extending downward from the surface of the substrate into contact with a portion of the collector region;
an emitter on top of the base region and having an emitter surface area smaller than the base surface area; and
an implant area of the collector region vertically adjacent to the base region having an increased collector doping of an implanted impurity, the implant area having an effective surface area greater than the surface area of the emitter and less than the surface area of the base region.
2. The transistor of claim 1, wherein the base region having at least a first, second and third region with the first and third base regions comprising base contact regions having a larger impurity level of the other type of carrier than the impurity level of the other type of carrier of the second base region disposed therebetween.
3. The transistor of claim 2, wherein the emitter is in contact with the second base region.
4. The transistor of claim 2, wherein the implant area of the collector is vertically adjacent to substantially the entirety of the second base region.
5. The transistor of claim 2, wherein the implant area of the collector is contained between a first edge and a second opposite edge of an oxide isolation region surrounding the transistor.
6. The transistor of claim 2, wherein the implant area of the collector is displaced a predetermined distance away from the first and third base regions.
7. The transistor of claim 1, wherein the transistor is an NPN transistor and the implant impurity in the implant area of the collector region is phosphorous.
8. The transistor of claim 1, wherein the transistor is a PNP transistor and the implant impurity in the implant area of the collector is boron.
9. The transistor of claim 2, wherein the emitter is disposed vertically to be surrounded on all lateral sides by both the base area and the implant area of the collector region, and the first and third base regions are disposed vertically to not overlap the implant area of the collector.
10. A transistor formed in a semiconductor substrate, the substrate having a first conductivity type and a surface, the transistor comprising:
a collector region having an impurity therein which promotes one of either holes or electrons as a majority carrier, the collector region extending downward from the surface of the substrate, wherein the first conductivity type of the substrate promotes the other of either holes or electrons as a majority carrier;
a base region having an impurity therein which promotes the other type of carrier, the base region having a surface area and extending downward from the surface of the substrate into contact with a portion of the collector region, the base region having at least a first, second and third region with the first and third base regions comprising base contact regions having a larger impurity level of the other type of carrier than the impurity level of the other type of carrier of the second base region disposed therebetween;
an emitter on top of the second base region and having a surface area, which is in contact with the second base region, smaller than the surface area of the base region; and
an implant area of the collector region vertically adjacent to the second base region having an increased collector doping of an implanted impurity, the implant area having an effective surface area, which is in contact with the second base region, greater than the surface area of the emitter and less than the surface area of the base region between a first edge and a second opposite edge of an oxide isolation region surrounding the transistor, and displaced from the first and third base regions.
11. The transistor of claim 10, wherein the transistor is an NPN transistor and the implant impurity in the implant area of the collector region is phosphorous.
12. The transistor of claim 10, wherein the transistor is a PNP transistor and the implant impurity in the implant area of the collector is boron.
13. A transistor formed in a semiconductor substrate, the substrate including a surface and a region doped with an impurity which promotes one of either holes or electrons as a first majority carrier, the transistor comprising:
a collector region having an impurity therein which promotes the other of holes or electrons as a second majority carrier, the collector region extending from the surface of the substrate;
a base region having an impurity therein which promotes the first majority carrier, the base region extending from the surface of the substrate into contact with a portion of the collector region;
an emitter region on the intrinsic base region, the emitter region having a surface area that is in contact with the base region and is smaller than a surface area of the base region; and
an implant region interposed between the collector region and the base region, the implant region having an increased doping of an implant impurity and having an effective surface area greater than the surface area of the emitter region and less than the area of the base region contiguous to the collector region.
14. The transistor of claim 13, wherein the transistor is an NPN transistor and the implant impurity in the implant region is phosphorous.
15. The transistor of claim 13, wherein the transistor is a PNP transistor and the implant impurity in the implant region is boron.
16. The transistor of claim 13, wherein the effective surface area of the implant region minimizes carrier injection from the emitter region to the collector region outside of the implant region at high current operation of the transistor.
17. The transistor of claim 13, wherein the base region is divided into at least one intrinsic base region and at least one extrinsic base region.
18. The transistor of claim 17, wherein the emitter is only in contact with the intrinsic base region.
19. The transistor of claim 17, wherein the wherein the effective surface area is in contact with the intrinsic base region, and spaced apart from the extrinsic base region.
20. A transistor, comprising:
an emitter having an emitter surface area;
a base having a base surface area;
a collector in contact with the base; and
an implant region intermediate the base and the collector and having a surface area, the implant surface area being greater than the emitter surface area and less than the base surface area.
21. The transistor of claim 20, wherein the base is separated into an intrinsic base and an extrinsic base.
22. The transistor of claim 20, wherein the emitter surface area is in contact with the intrinsic base, and spaced from the extrinsic base.
23. The transistor of claim 22, further the implant region having an implant surface area in contact with the intrinsic base and not in contact with the extrinsic base.
24. The transistor of claim 22, wherein the implant area is less than an area of the base between the surface edges of the extrinsic base surrounding the intrinsic base.
25. The transistor of claim 20 wherein the collector has a collector surface area, and the implant region surface area is less than the collector surface area.
26. The transistor of claim 25, wherein the base surface area is less than the collector surface area.
27. The transistor of claim 25, wherein the base surface area and the implant region surface area where both contact the collector have a combined area greater than the emitter surface area.
28. The transistor of claim 25, wherein the base directly contacts both the collector and the implant region.
29. The transistor of claim 21, wherein the emitter is spaced apart from the extrinsic base, and the implant region is horizontally spaced apart from the extrinsic base.
30. A transistor device formed in a semiconductor substrate comprising:
a diffused n well collector region having an impurity of a first conductivity type, the collector region extending downwardly from a surface of the substrate, the substrate being generally doped with an impurity of a second conductivity type;
a base region having an impurity of the second conductivity type doped at a generally constant doping level across a surface thereof, the base region extending downwardly from the surface of the substrate into contact with a portion of the collector region;
an emitter having an impurity of the first conductivity type on top of the base region and having a surface area smaller than a surface area of the base region; and
a top area of the collector region vertically adjacent the base region having an increased collector doping of the first conductivity type, the top area of the collector region having an effective surface area in contact with the base region that is greater than the surface area of the emitter.
31. The transistor device of claim 30, wherein the impurity of the first conductivity device is phosphorous.
32. The transistor device according to claim 30, wherein the effective top area surface area of the collector region is less than less than a non-increased doped area of the portion of the collector region in contact with the base region.
33. A transistor formed in a substrate, the substrate having a first conductivity type and a surface, the transistor comprising:
a collector region having a first impurity means for promoting one of either holes or electrons as a majority carrier, the collector region extending downward from the surface of the substrate, wherein the first conductivity type of the substrate promotes the other of either holes or electrons as a majority carrier;
a base region having a second impurity means for promoting the other type of carrier with a first portion of the base region having a first impurity level and a second portion of the base region having a second higher impurity level, the base region having a surface area and extending downward from the surface of the substrate into contact with a portion of the collector region;
an emitter region on top of the first portion of the base region and having a surface area smaller than the surface area of the first portion of the base region; and
an implant area of the collector region vertically adjacent to the first portion of the base region having an increased collector doping of an implanted impurity, the implant area having an effective surface area that is in contact with the base region, greater than the surface area of the emitter region and less than the surface area of the first portion of the base region.
34. A transistor, comprising:
an emitter having a periphery;
a base in contact with the emitter;
a collector in contact with the base; and
means for minimizing carrier injection from the periphery of the emitter region to the collector region at high current operation of the transistor;
wherein means for minimizing carrier injection includes an implant region intermediate the base and the collector, the implant region having an implant surface area greater than a surface area of the emitter and less than a surface area of the base.
35. A transistor, comprising:
an emitter;
a base in contact with the emitter;
a collector in contact with the base; and
means for minimizing base-collector capacitance and maximizing high current operation;
wherein means for minimizing base-collector capacitance and maximizing high current operation includes an implant region intermediate the base and the collector, the implant region having an implant surface area greater than a surface area of the emitter and less than a surface area of the base.
US11/676,450 1995-08-25 2007-02-19 Angled implant to improve high current operation of bipolar transistors Abandoned US20070138597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/676,450 US20070138597A1 (en) 1995-08-25 2007-02-19 Angled implant to improve high current operation of bipolar transistors

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/519,817 US5719082A (en) 1995-08-25 1995-08-25 Angled implant to improve high current operation of bipolar transistors
US09/024,287 US5982022A (en) 1995-08-25 1998-02-17 Angled implant to improve high current operation of transistors
US09/436,306 US6440812B2 (en) 1995-08-25 1999-11-08 Angled implant to improve high current operation of bipolar transistors
US09/921,948 US7199447B2 (en) 1995-08-25 2001-08-03 Angled implant to improve high current operation of bipolar transistors
US11/676,450 US20070138597A1 (en) 1995-08-25 2007-02-19 Angled implant to improve high current operation of bipolar transistors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/921,948 Continuation US7199447B2 (en) 1995-08-25 2001-08-03 Angled implant to improve high current operation of bipolar transistors

Publications (1)

Publication Number Publication Date
US20070138597A1 true US20070138597A1 (en) 2007-06-21

Family

ID=26698278

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/921,948 Expired - Fee Related US7199447B2 (en) 1995-08-25 2001-08-03 Angled implant to improve high current operation of bipolar transistors
US11/676,450 Abandoned US20070138597A1 (en) 1995-08-25 2007-02-19 Angled implant to improve high current operation of bipolar transistors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/921,948 Expired - Fee Related US7199447B2 (en) 1995-08-25 2001-08-03 Angled implant to improve high current operation of bipolar transistors

Country Status (1)

Country Link
US (2) US7199447B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051512A1 (en) * 2009-08-25 2011-03-03 Micron Technology, Inc. 3d memory devices decoding and routing systems and methods
US20120299114A1 (en) * 2011-05-24 2012-11-29 Semiconductor Components Industrires, LLC Semiconductor device and method of manufacturing the same
US9054149B2 (en) * 2012-09-06 2015-06-09 Freescale Semiconductor, Inc. Semiconductor device with diagonal conduction path
CN108198755A (en) * 2017-12-29 2018-06-22 深圳市金誉半导体有限公司 The production method of high-frequency triode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900091B2 (en) * 2002-08-14 2005-05-31 Advanced Analogic Technologies, Inc. Isolated complementary MOS devices in epi-less substrate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994881A (en) * 1988-02-16 1991-02-19 Sony Corporation Bipolar transistor
US5183768A (en) * 1989-04-04 1993-02-02 Matsushita Electric Industrial Co., Ltd. Method of fabricating semiconductor device by forming doped regions that limit width of the base
US5321301A (en) * 1992-04-08 1994-06-14 Nec Corporation Semiconductor device
US5336926A (en) * 1992-02-25 1994-08-09 Microunity Systems Engineering, Inc. Bipolar junction exhibiting suppressed kirk effect
US5344787A (en) * 1993-09-24 1994-09-06 Vlsi Technology, Inc. Latid implants for increasing the effective width of transistor elements in a semiconductor device
US5378922A (en) * 1992-09-30 1995-01-03 Rockwell International Corporation HBT with semiconductor ballasting
US5471082A (en) * 1993-12-27 1995-11-28 Sharp Kabushiki Kaisha Semiconductor device and a method for manufacturing the same
US5581115A (en) * 1994-10-07 1996-12-03 National Semiconductor Corporation Bipolar transistors using isolated selective doping to improve performance characteristics
US5605849A (en) * 1994-10-07 1997-02-25 National Semiconductor Corporation Use of oblique implantation in forming base of bipolar transistor
US5637901A (en) * 1993-12-14 1997-06-10 Analog Devices, Inc. Integrated circuit with diode-connected transistor for reducing ESD damage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274621A (en) 1986-05-22 1987-11-28 Mitsubishi Electric Corp Ion implantation
JPH0348427A (en) 1989-04-04 1991-03-01 Matsushita Electric Ind Co Ltd Bipolar semiconductor device and manufacture thereof
JP3138715B2 (en) * 1992-03-17 2001-02-26 日本プレシジョン・サーキッツ株式会社 Method of forming collector plug

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994881A (en) * 1988-02-16 1991-02-19 Sony Corporation Bipolar transistor
US5183768A (en) * 1989-04-04 1993-02-02 Matsushita Electric Industrial Co., Ltd. Method of fabricating semiconductor device by forming doped regions that limit width of the base
US5336926A (en) * 1992-02-25 1994-08-09 Microunity Systems Engineering, Inc. Bipolar junction exhibiting suppressed kirk effect
US5321301A (en) * 1992-04-08 1994-06-14 Nec Corporation Semiconductor device
US5378922A (en) * 1992-09-30 1995-01-03 Rockwell International Corporation HBT with semiconductor ballasting
US5344787A (en) * 1993-09-24 1994-09-06 Vlsi Technology, Inc. Latid implants for increasing the effective width of transistor elements in a semiconductor device
US5637901A (en) * 1993-12-14 1997-06-10 Analog Devices, Inc. Integrated circuit with diode-connected transistor for reducing ESD damage
US5471082A (en) * 1993-12-27 1995-11-28 Sharp Kabushiki Kaisha Semiconductor device and a method for manufacturing the same
US5581115A (en) * 1994-10-07 1996-12-03 National Semiconductor Corporation Bipolar transistors using isolated selective doping to improve performance characteristics
US5605849A (en) * 1994-10-07 1997-02-25 National Semiconductor Corporation Use of oblique implantation in forming base of bipolar transistor
US5698459A (en) * 1994-10-07 1997-12-16 National Semiconductor Corporation Fabrication of bipolar transistors using selective doping to improve performance characteristics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051512A1 (en) * 2009-08-25 2011-03-03 Micron Technology, Inc. 3d memory devices decoding and routing systems and methods
US8320181B2 (en) 2009-08-25 2012-11-27 Micron Technology, Inc. 3D memory devices decoding and routing systems and methods
US20120299114A1 (en) * 2011-05-24 2012-11-29 Semiconductor Components Industrires, LLC Semiconductor device and method of manufacturing the same
US9054149B2 (en) * 2012-09-06 2015-06-09 Freescale Semiconductor, Inc. Semiconductor device with diagonal conduction path
CN108198755A (en) * 2017-12-29 2018-06-22 深圳市金誉半导体有限公司 The production method of high-frequency triode

Also Published As

Publication number Publication date
US20010046732A1 (en) 2001-11-29
US7199447B2 (en) 2007-04-03

Similar Documents

Publication Publication Date Title
US5982022A (en) Angled implant to improve high current operation of transistors
US4707456A (en) Method of making a planar structure containing MOS and bipolar transistors
US4261763A (en) Fabrication of integrated circuits employing only ion implantation for all dopant layers
US4510676A (en) Method of fabricating a lateral PNP transistor
EP0797840B1 (en) Use of oblique implantation in forming base of bipolar transistor
US5677209A (en) Method for fabricating a vertical bipolar transistor
EP0628215A1 (en) Bipolar junction transistor exhibiting suppressed kirk effect
EP0036319A1 (en) Semiconductor device
US20070138597A1 (en) Angled implant to improve high current operation of bipolar transistors
US4966858A (en) Method of fabricating a lateral semiconductor structure including field plates for self-alignment
US4804634A (en) Integrated circuit lateral transistor structure
EP0341461B1 (en) Process for making a bipolar integrated circuit
US5726069A (en) Use of oblique implantation in forming emitter of bipolar transistor
US5218227A (en) Semiconductor device and method of manufacturing same
JPS63500627A (en) Manufacturing of semiconductor devices with buried oxide
EP0645821B1 (en) Low noise bipolar transistor
EP0600596B1 (en) Improved bipolar transistor
US4819049A (en) Method of fabricating high voltage and low voltage transistors using an epitaxial layer of uniform thickness
EP0216435A2 (en) Bipolar integrated circuit having an improved isolation and substrate connection, and method of preparing the same
US5880000A (en) Method for fabricating an NPN transistor of minimum surface
US5760459A (en) High performance, high voltage non-epibipolar transistor
US20030062598A1 (en) Method for manufacturing and structure of semiconductor device with sinker contact region
KR0152680B1 (en) Semiconductor device and process of manufacturing the same
EP0385906B1 (en) Method of forming a lateral PNP transistor
US5045911A (en) Lateral PNP transistor and method for forming same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION