Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070123981 A1
Publication typeApplication
Application numberUS 11/656,136
Publication date31 May 2007
Filing date20 Jan 2007
Priority date20 Apr 2005
Also published asEP1948083A2, US8663235, US20050187623, WO2007012978A2, WO2007012978A3
Publication number11656136, 656136, US 2007/0123981 A1, US 2007/123981 A1, US 20070123981 A1, US 20070123981A1, US 2007123981 A1, US 2007123981A1, US-A1-20070123981, US-A1-2007123981, US2007/0123981A1, US2007/123981A1, US20070123981 A1, US20070123981A1, US2007123981 A1, US2007123981A1
InventorsMarie-Jose Tassignon
Original AssigneeTassignon Marie-Jose B
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Bag-in-the-lens intraocular lens with removable optic and capsular accommodation ring
US 20070123981 A1
Abstract
This invention describes an intraocular lens (IOL) design with a removable optic, which can be inserted in and removed from a haptic device. In this haptic the anterior and posterior capsules are sealed in order to have a perfect control over the lens epithelial cell proliferation which is thereby restricted to the peripheral part of the capsular bag. Additionally, a ring caliper is described as new surgical device to allow a precise sizing and centration of the anterior capsulorhexis. The removable optic allows repeatable correction of the eye focusing over time in case the optical parameters of the eye have changed due to a variety of factors. By separating the optic part from the haptic part, the optic part can easily be manufactured in any shape matching the optical errors of the eye, including the optical aberrations. The optic part can be manufactured out of any biomaterial restoring ocular accommodation. The optic part may include prismatic, astigmatic or magnification correction to improve visual performance. The optic part may consist of or include an electronic device for the purpose of artificial vision. In order to further assist the accommodative capabilities of the implant a capsular accommodation ring of specific biomechanical properties is inserted in the capsular equator.
Images(6)
Previous page
Next page
Claims(15)
1. An intraocular lens for bag-in-the-lens implantation in the eye to replace the natural crystalline lens, comprising of:
A. a haptic part further comprising (a) two external haptic flanges to delineate an external groove, and (b) two internal haptic flanges to delineate an internal groove;
B. an optic part;
whereby said external groove will accommodate matched anterior and posterior capsules of the lens bag after anterior and posterior capsulorhexis and said internal groove will accommodate said optic part allowing a removal or replacement of said optic part.
2. An intraocular lens according to claim 1 wherein said haptic part and said optic part are made of deformable biomaterials so as to allow insertion of the intraocular lens in a folded condition.
3. An intraocular lens according to claim 1 wherein said haptic part is sufficiently opaque so as to reduce optical edge effects and glare.
4. An intraocular lens according to claim 1 wherein said external flanges of said haptic part are posteriorly angulated with respect to said internal flanges of said haptic part.
5. An intraocular lens according to claim 1 further comprising a transparent barrier, said transparent barrier continuous with the posterior flange of said two internal haptic flanges so as to eliminate the chance of posterior luxation into the vitreous of said optic part.
6. An intraocular lens according to claim 1 wherein said optic part is made of a combination of biomaterials, said combination permitting a better correction of the various optical aberrations of the human eye and magnification for enhanced vision.
7. An intraocular lens according to claim 1 wherein said optic part is made of a combination of optical components, said combination permitting a better correction of the various optical aberrations of the eye and magnification for enhanced vision.
8. An intraocular lens according to claim 1 wherein said optic part contains electro-optic means for the purpose of artificial and enhanced vision.
9. An intraocular lens according to claim 1 wherein said optic part contains at least one doped biomaterial, so as to give said optic part a graded index of refraction or medical properties.
10. A calibrating ring for assisting in intraocular lens implantation, said calibrating ring made of flexible biomaterial of sufficient memory so as to permit unfolding of said ring to its original shape after introduction into the eye.
11. A capsular accommodation ring to be inserted at the capsular equator and made of a biomaterial having the same biomechanical properties than the said capsular bag so that accommodation can be optimally restored after cataract surgery and insertion of the said bag-in-the-lens intraocular lens or intraocular lens according to claim 1.
12. The capsular accommodation ring according to claim 11 can only be implanted in combination with the bag-in-the-lens intraocular lens or with the intraocular lens according to claim 1 since said intraocular lenses do not exert any pressure by haptics or any lens adds at the level of the capsular equator.
13. The capsular accommodation ring according to claim 11 aims at restoring the physiological curvature of the capsular equator after cataract extraction from which it is understood that the angle of said ring may vary depending on the optical parameters of the eye.
14. The capsular accommodation ring according to claim 11 is a U-shaped ring of which the diameter may vary based on the physiological diameter of the natural crystalline lens.
15. The capsular accommodation ring according to claim 11 may be open in order to facilitate its insertion and positioning into the capsular bag.
Description
    RELATED US PATENTS AND APPLICATIONS
  • [0001]
    This application is a continuation in part of U.S. application Ser. No. 11/110,463 filed on Apr. 20, 2005. The background of the invention is in the general field of intra-ocular lenses, in particular lenses with accommodative properties.
  • BACKGROUND OF THE INVENTION
  • [0002]
    In our U.S. Pat. No. 6,027,531 a description is made of a new concept of intraocular lens, implantable in the eye to replace the natural crystalline lens. This IOL is inserted in a calibrated, circular and continuous anterior and posterior capsulorhexis, of which the diameters are slightly smaller than the optical diameter of the lens in order to fit tightly in the groove defined at the periphery of the optical part by two flanges (one flange is the continuation of the anterior part of the optic and the other flange is the continuation of the posterior part of the optic). The perpendicularly oriented axes of the flanges facilitate the insertion of both anterior and posterior capsule into the groove by the surgeon and stabilize and avoid tilting of the IOL.
  • [0003]
    The IOL as described in U.S. Pat. No. 6,027,531 is being manufactured by the company Morcher, Germany. The intraocular lens has been implanted in children (7 months of age to 15 years), in young adults (16 to 21 years) and in about 200 adult eyes at this moment with a follow-up period of at least 5 years. The results of the clinical work and experience have been published and those publications are herewith incorporated by reference:
      • Tassignon M. J., De Groot V., Vrensen G. F. J. M. (2002). Bag-in-the-lens implantation of intraocular lenses. J. Cataract Refract. Surg. 28 (7), 1182-1188
      • De Groot V., Tassignon M. J., Vrensen G. F. J. M. (2005). Effect of bag-in-the-lens implantation on posterior capsule opacification in human donor eyes and rabbit eyes. J. Cataract Refract. Surg. 31 (2), 398-405
  • [0006]
    These publications corroborate our hypothesis as stated in the U.S. Pat. No. 6,027,531 that secondary cataract is avoided in 100% of the cases. Secondary cataract is the most frequent complication corresponding to posterior capsule opacification (PCO) in eyes operated with the traditional lens-in-the-bag implantation technique.
  • [0007]
    Besides the long-lasting excellent optical results of 100% transparency and besides the excellent stability of the lens within the eye, the bag-in-the-lens presents the additional option to be positioned electively within the eye by the surgeon. The idea of elective positioning or centration according to a visual axis of the eye of an intraocular lens has not yet been described.
  • [0008]
    Since the publication of the U.S. Pat. No. 6,027,531, other authors have used the idea to fixate the IOL using the posterior capsule (Okada Kiyashi, U.S. Pat. No. 6,881,225), but the design is very complicated an the implantation is based on the lens-in-the-bag technique having the permanent risk that lens epithelial cells will encapsulate the IOL with proliferative tissue.
  • [0009]
    Furthermore, a large number of proposals have been made to correct the eye optics for far and for near at the time of cataract surgery. A binocular lens system was proposed by Robert Steinert (U.S. Pat. No. 6,537,317) and Lang Alan (U.S. Pat. No. 6,576,012), aiming at allowing far and near vision simultaneously. However, these IOLs are composed of two optic portions that still have the risk of cellular deposits and proliferation between the parts.
  • [0010]
    Additionally, in order to correct the optical aberrations of the eye, Theodore Weblin (U.S. Pat. No. 6,413,276) proposed a three-part IOL of which at least one part can be removed and adapted according to the ocular aberrations and repositioned in a second surgical step. This elaborated IOL also has the risk of cellular deposits at the level of the interfaces causing visual impairment with over time.
  • OBJECTS AND ADVANTAGES OF THE INVENTION
  • [0011]
    This invention concerns an improvement of the U.S. Pat. No. 6,027,531 in two major aspects: a new device is proposed to perform easily a calibrated, circular and continuous anterior capsulorhexis, and an intraocular lens is proposed with a removable optic. Some additional minor improvements in embodiments and surgical technique are also described.
  • I. Device for Anterior and Posterior Capsulorhexis Size Calibration and Positioning
  • [0012]
    To do so, a ring of 0.25 mm diameter, made of PMMA, or of any other biomaterial with memory, has been designed (FIG. 1). This ring can be inserted within the eye through a very small corneal or limbal incision (3 mm or less). Because of its memory, the ring will unfold within the eye as soon as inserted in the anterior chamber. It then will be gently applied on top of the anterior lens capsule and fixed with viscoelastics. The capsulorhexis can subsequently be initiated and the surgeon will take care to follow the internal border of the ring caliper. This ring caliper has two functions: (1) to determine a precise diameter of the anterior capsulorhexis. This can be achieved by manufacturing a ring with a precise internal diameter. (2) The ring is also to be used in order to centre the position of the anterior capsulorhexis according to the pupillary area, or to the limbus or to any other reference used to optimize centration of the anterior capsulorhexis along an optical axis of the eye (line of sight, visual axis or other axis). The optical axis can be determined according to well-established techniques described in clinical psychophysics handbooks.
  • II. Intraocular Lens with a Removable Optic
  • [0013]
    Starting from the initial concept of a one piece IOL (FIG. 1 A, B and C of the Prior Art), the haptic device can be separated from the optic part (FIG. 2 A, B and C). This removable and replaceable optic can be versatile in design construction and incorporate spherical, astigmatic or prismatic powers as well as customized adaptive optics correction. In addition electro-optical constructions for artificial vision or low vision purposed can be incorporated. In general such optic part can be made to resemble more the natural lens of the eye, including its GRIN properties and furthermore such design is easier for the manufacturer to produce.
  • [0014]
    Additional advantages of such removable optic include (1) intraocular correction of ametropia repeatable over time in case the axial length or corneal optical parameters have changed due to disease, age or trauma or miscalculated previous IOL power, (2) to introduce new biomaterials in the future with additional characteristics, (3) easy access for the retinal surgeon in case of complex repeat posterior segment surgeries.
  • [0015]
    The haptic device can be constructed from an opaque material to minimize intraocular scattering and glare.
  • III. Capsular Accommodation Ring
  • [0016]
    This invention describes a capsular accommodation ring to be used in combination with either the bag-in-the-lens (BIL) intraocular lens (IOL) of which the IOL and surgical procedure has been described in U.S. Pat. No. 6,027,531, or with the BIL-IOL with removable optic as described in this application. Both concepts will be further referred to as BIL-IOL.
  • [0017]
    The capsular accommodation ring is meant to be inserted into the capsular bag once the crystalline lens has been removed. This accommodation ring should be positioned at the level of the capsular equator. The shape of the accommodation ring is an open, U-shaped flexible ring, which is made of a biomaterial presenting similar mechanical properties compare to the human lens capsule. The mechanical properties of the lens capsule have been studied in length by Susanne Krag et al.:
      • Krag S., Andreassen T. T. (2003). Mechanical properties of the human posterior lens capsule. Invest. Ophthalmol. Vis. Sci. 44, 691-696
      • Krag S., Andreassen T. T. (2003). Mechanical properties of the human lens capsule. Prog. Retin. Eye Res. 22 (6), 749-767
  • [0020]
    It is not the intention to exert any tension on the equator of the capsular bag by this accommodation ring but to restore its natural curvature. The anterior and posterior lips of this accommodation ring will support that part of the capsular equator where the anterior and posterior zonular fibres have their insertion. As a result, the physiological relationship and impact of the zonular fibres on the equatorial part of the capsular bag will be re-established. The antero-posterior movement of the BIL-IOL/capsular bag will again be possible and optimized during accommodation or relaxation of the ciliary's muscle. It should be understood that during accommodation the zonular fibres will release all tension on the equatorial capsular bag, allowing the capsular accommodation ring to take its original shape, designed to mimic the physiological curvature of the equatorial part of the capsular bag of a young adult lens during accommodation. The BIL-IOL will move forward and correct the eye for a certain degree of accommodation. In case of relaxation of the ciliary's muscle, the zonular fibres will be stretched and exert tension on the equatorial part of the capsular bag. The accommodation ring will follow this movement and the BIL-IOL will move backward, allowing optimal correction of the eye for distance. Because the mechanical properties of the accommodation ring are similar to that of the capsular bag, it is expected that the changes in physiological curvatures of the capsular equator, at the accommodation or relaxation position, will be released in comparable speed as in physiological conditions.
  • DESCRIPTION OF THE DRAWINGS
  • [0021]
    FIG. 1 A, B, C correspond to the prior art as described in U.S. Pat. No. 6,027,531. These figures illustrate the bag-in-the-lens in one piece comprising the optical part 14, the haptic parts 18 and 20 and the groove 16 to accommodate both the anterior and posterior capsule.
  • [0022]
    FIG. 2 illustrates the ring caliper device.
  • [0023]
    FIG. 3 A, B, C illustrates the removable optic and the haptic device as two separate parts of the new IOL. The haptic device still consists of the outer flanges (18 and 20) defining the external lens groove (16) to accommodate the anterior and posterior capsule, but in addition presents internal flanges (24 and 26) defining an internal groove (28) in order to accommodate the removable optic part of the lens (14). This modification of the original lens will allow the removal of the optic part of the lens without removing the haptic device. The external outer flanges (18-20) can be angulated posteriorly (30) compared to the straight insertion of the internal flanges of the haptic device (24-26). The posterior internal flanges (26) can extend further to create an additional closed transparent and thin barrier (32) between the removable optic and the vitreous in case posterior dislocation of the removable optic is feared.
  • [0024]
    FIG. 4 A, B and C show an alternative to the embodiment of the intraocular lens with removable optic as illustrated on FIG. 3 A, B and C. This second version differs with the previous one in the fixation of the optic part 14 into the haptic part (16-18-20). Instead of having internal haptics (24-26) defining the internal groove 28 in which the optic 14 will take place, the external haptics (18-20) define a sharp arc at the internal side 34 in which the groove 36, positioned at the equator of the optic 14, will take place. This second embodiment may be easier to manufacture and will avoid the possible posterior dislocation of the optic 14 as described in the previous embodiment.
  • [0025]
    FIG. 5 A illustrates the U-shape accommodation ring 42 of which the anterior lip 38 may be slightly shorter than the posterior lip 40. The curvature of the ring correspond to the physiological curvature of a young adult crystalline lens
  • [0026]
    FIG. 5 B and C illustrate the accommodation ring 42 positioned at the equatorial part of the capsular bag. The relationship with the anterior zonular fibre 44, the equatorial zonular fibre 46 and the posterior zonular fibre 46 is schematized. In case the ciliary's muscle is relaxed, as illustrated in FIG. 5 B, the zonular fibres 44-46 and 48 are stretched as well as the anterior 50 and posterior 52 capsules. In this situation, both lips 38 and 40 of the accommodation ring 42, define a sharp angle. The capsular bag together with the BIL-IOL 14 in which it is inserted at the level of the lens groove 16, will move backward. In case the ciliary's muscle is contracted, as illustrated in FIG. 5 C, the zonular fibres 44-46 and 48 will become loose as will relax the anterior 50 and posterior capsule 52, allowing the lips 38 and 40 of the accommodation ring 42 to take their original angle. The capsular bag and the BIL-IOL will move forward
  • REFERENCE NUMERALS IN DRAWINGS
  • [0027]
    14 removable optic part of the intraocular lens. This part is joined with the haptic device in one piece in FIG. 1 A, B, C; and it is a separate part, removable and replaceable in FIG. 3 A, B, C
  • [0028]
    16 external groove in the haptic device to accommodate both capsules
  • [0029]
    18 anterior flange of the external part of the haptic device
  • [0030]
    20 posterior flange of the external part of the haptic device
  • [0031]
    22 perforation within the anterior flange for purpose of rotation during surgery
  • [0032]
    24 anterior flange of the internal part of the haptic device
  • [0033]
    26 posterior flange of the internal part of the haptic device
  • [0034]
    28 internal groove in the haptic device to accommodate the optic
  • [0035]
    30 angulation of the external flanges of the haptic device
  • [0036]
    32 extension of the posterior internal flange of the internal haptic device, create a membrane like barrier between vitreous and removable optic part
  • [0037]
    34 internal arc of the lens groove
  • [0038]
    36 equatorial groove of the lens optic
  • [0039]
    38 anterior lip of accommodation ring
  • [0040]
    40 posterior lip of accommodation ring
  • [0041]
    42 accommodation ring with specific angle
  • [0042]
    44 anterior zonular fibres
  • [0043]
    46 equatorial zonular fibres
  • [0044]
    48 posterior zonular fibres
  • [0045]
    50 anterior lens capsule
  • [0046]
    52 posterior lens capsule
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0047]
    FIG. 1 A, B, C shows the preferred embodiment of the prior art. This preferred embodiment could be slightly adapted by introducing a posterior angulation 30 of the external flanges of the haptic device. This is done in order to prevent capture of the iris into the groove immediately postoperatively. The posterior angulation will optimally vary from 5 degrees to 10 degrees. Other angulations are possible.
  • [0048]
    FIG. 2 shows the preferred embodiment of the ring caliper that permits a precise sizing and centration of the anterior capsulorhexis. This ring caliper may be constructed of any biomaterial allowing its insertion within the eye in a folded condition after which it will unfold in the eye to its original shape because of its material memory. The diameter of the cross section of this ring is optimally 0.25 mm but can be made thinner or thicker depending on the biomaterial used. It can be transparent or coloured to enhance visibility once put in place in the eye. When used in relation with an IOL of 5 mm diameter optic part size, as described in the U.S. Pat. No. 6,027,531 or in current application, a diameter of 5 mm is optimal (FIG. 2). Though this ring can also be used when implanting of the more traditionally lens-in-the-bag IOLs is intended.
  • [0049]
    FIG. 3 A, B and C show the preferred embodiment of the new intraocular lens design consisting of two separate parts: a haptic device and a removable and replaceable optic part. The haptic device is preferably made of one piece and can be made of rigid or deformable biomaterials such as silicone polymeric materials, acrylic polymeric materials, hydrogel forming polymeric materials and mixture of these materials or the like. This hatpic device can be made opaque by coloration or using mechanical techniques. The aim of making the haptic part partially or totally opaque is avoiding stray light effects and glare.
  • [0050]
    The haptic device consists of an external anterior flange 18 and an external posterior flange 20, defining an external groove 16 in between. Both external flanges are made oval in shape to promote a good insertion and fixation of the intraocular lens, but can have any shape that may improve IOL fixation or insertion. Both flanges can have a variety of functional extensions or perforations 22 to promote the stability of the lens or to prevent any type of luxation or inadvertent capture of the iris.
  • [0051]
    On the internal side, the haptic device has an anterior internal flange 24 and a posterior internal flange 26 defining an internal groove 28 to accommodate the removable optic part. The diameter of the internal groove can be variable but should not be less than 5 mm for reasons of optical quality and for ease of centration. The internal flanges are preferably transparent but can also be made opaque. In case a posterior luxation of the optic part into the vitreous would be an issue, the posterior internal flanges can be made continuous 32, defining a membrane like transparent barrier between the optic part and the vitreous. The distance between the internal groove and the external groove will determine the thickness and therefore the stability and rigidity of the haptic device. This parameter can vary depending on the biomaterials used in constructing the haptic device.
  • [0052]
    The preferred embodiment of the optic part 14 is circular but of variable shape depending on the intended optical errors to be corrected, including the ocular aberrations, in particular spherical aberration or chromatic aberration. It can be made of the same biomaterial as the haptic device as specified above or can be made of another biomaterial. It can be made of one biomaterial, can use a combination of different layered biomaterials, or be made of a GRIN substance. Each construction has specific optical and mechanical properties in order to correct the spherical, the cylindrical or the toric refractive errors of the eye, and to permit accommodation (mechanically or optically mediated accommodation). Prismatic effects could be of use in relocating the preferential retinal locus of fixation in magnification of the image on the retina for low vision purposes. These additions can be fitted on the anterior surface of the optic part, within the optic part or on the posterior surface of the optic part. The final result is a customized optic part of one piece, containing all optical adaptations needed to correct the optical errors of the eye as measured preoperatively. This one piece optic part 14 may have the same diameter as the diameter of the internal groove 28 or it can be slightly larger or it can be slightly smaller. For the purpose of stability, a slightly larger diameter of the optic part 14 could be beneficial, though a slightly smaller diameter of the optic part 14 might increase an accommodative effect in the eye.
  • [0053]
    An alternative for the fixation of the removable optic part 14 is to add an equatorial groove 36 to the optic part 14 of which size matches the internal arc 34 defined by both the external haptic parts 18 and 20. The capsular accommodation ring is preferentially manufactured of a biocompatible biomaterial which has similar biomechanical properties than the capsular bag. The biomechanical properties of the capsular bag have been studied in the literature and are well known.
  • [0054]
    The most appropriate shape for the accommodation ring is U-shaped. The width of the angle of the U-shape ring is variable, depending on the physiological angle of eyes presenting the same optical properties e.g.: corneal curvature, white to white measurements, sulcus to sulcus measurements and axial length.
  • [0055]
    The diameter of the accommodation ring is also variable, depending on the physiological diameter of the natural crystalline lenses of young adult eyes of which their optical parameters have been measured as mentioned earlier.
  • [0056]
    The variation in physiological parameters of the diameter and equatorial angle of young adult lenses is expected to be important. It is therefore mandatory to match the parameters of the accommodation ring to these measurements.
  • [0057]
    The accommodation ring may be open in order to facilitate its insertion and positioning into the capsular bag.
  • [0058]
    The anterior lip of the accommodation ring may be slightly shorter than the posterior lip. The length of the lips is defined by the anatomical insertion of the anterior and posterior zonular fibres on the anterior and posterior capsules respectively. This can be measured in post mortem donor eyes. A longer posterior lip will also promote a better support of the posterior capsule which is slightly larger than the anterior capsule (the natural crystalline lens in non equiconvex).
  • Description of a Preferred Surgical Procedure
  • [0059]
    The surgical procedure consists of a number of steps that are currently used in conventional extracapsular cataract extraction, some of which have to be modified, and some new steps are necessary to insert the new intraocular lens in the most optimal fashion.
  • [0060]
    The opening of the anterior chamber and the filling of the anterior chamber with viscoelastics are well known steps in the prior art. The anterior curvilinear continuous capsulorhexis must be calibrated in such way that its diameter is slightly smaller (about 1 mm) than the diameter of the optic part 14.
  • [0061]
    For this purpose, the ring caliper is inserted, either by means of two forceps or by means of a lens manipulator. After insertion the ring is gently pushed on top of the anterior capsule by means of additional viscoelastics. A small opening is made in the centre of the anterior capsule, which serves as the starting point for the capsulorhexis. The surgeon will take care to follow the internal border of the ring caliper.
  • [0062]
    The centration of the capsulorhexis with respect to such landmarks as the pupil edge or the limbal edge can be done using well-known techniques for documenting the optic, visual axis or line of sight. To reference the centre of positioning of the ring during surgery, a standard fiduciary reticule can be used with the operating microscope.
  • [0063]
    After the anterior capsulorhexis is performed, the lens consisting of nucleus and cortical material is removed in the usual manner for an extracapsular cataract extraction technique. The capsular accommodation ring can then be positioned at the level of the capsular equator. The posterior curvilinear continuous capsulorhexis must then be executed in such way that its diameter is the same as the diameter of the anterior capsulorhexis. The openings of both anterior and posterior capsulorhexis should match each other as close as possible in size, location and centration. The technique of making the posterior capsulorhexis is the same as the one that is currently used in conventional extracapsular cataract extraction. A puncture is made in the centre of the posterior capsule. The posterior capsule is then separated from the anterior hyaloid of the vitreous by injecting viscoelastic material through the puncture in the space of Berger. After this step a calibrated posterior curvilinear continuous capsulorhexis is performed by following the edge of the anterior capsulorhexis resulting in a posterior capsulorhexis of the same size than the diameter of the anterior capsulorhexis.
  • [0064]
    The insertion of the foldable haptic device of the intraocular lens using the bag-in-the-lens technique can then be applied. It is different from the conventional lens-in-the-bag insertion technique. First, the haptic is introduced into the anterior chamber of the eye. Then the posterior flange 20 of the haptic device is placed behind the rim of the opening of the posterior capsule in the space of Berger and the anterior flange 18 of the haptic device of the intraocular lens is placed before the rim of the opening of the anterior capsulorhexis.
  • [0065]
    Because the diameters of both the anterior and posterior capsulorhexis are identical but slightly smaller than the diameter of the lens groove 16, the capsular openings will be stretched when inserting the lens, thus providing a tight junction around the intraocular lens and a closed space or environment that contains the remaining proliferating epithelial cells of the lens bag.
  • [0066]
    Once the haptic device is put in place, the removable optic part which has been chosen preoperatively in such way that it will correct the optics of the eye in the most optimal way (spherical correction, astigmatism, aberrations, accommodation) can be inserted in the anterior chamber in a foldable condition and once unfolded in the eye, put in place in the empty central space of the haptic device. The viscoelastic is then removed from the anterior chamber and the anterior chamber is then closed water tight. In case the short-term postoperative refractive or optical results are not satisfactory for the patient or in case the optical properties of the eye have changed as a function of time, the optic part can be removed from the haptic and changed by an optic part matching better the optical needs of the eye. In case the visual acuity of the patient would drop dramatically over time because of irreversible retinal or optic nerve problems, the optic can be removed from the haptic and replaced by a new optic containing or consisting of magnification elements or opto-electronic elements for the purpose of magnification or artificial vision.
  • SUMMARY AND SCOPE
  • [0067]
    The clinical results obtained after implantation of the intraocular lens as described in the U.S. Pat. No. 6,027,531, are excellent, and even exceptional because of an incidence of zero percent Nd-Yag laser treatments after five years of implantation. The current continuing application describes new developments as a result of our experience gained over this period.
  • [0068]
    Firstly, a ring caliper is positioned in order to facilitate the surgical procedure by improving the precision of the size and centration of the anterior and posterior capsulorhexis.
  • [0069]
    Secondly, we implemented the following modifications to the bag-in-the-lens design:
      • Posterior angulations of the external haptic flanges
      • Converting the intraocular lens to a two component system comprising a haptic device and an optic part, which is removable and replaceable over time
      • The haptic device can be rendered partially or totally opaque
      • The optic part can be customized to correct various optical aberrations, permit artificial vision or low vision rehabilitation
      • The curvature of the capsular equatorial zone is restored by inserting a U-shaped ring which has the same biomechanical properties than the capsular bag in order to optimize the relationship between the zonular fibres and the capsular bag and to enhance the backward or forward movement of the BIL-IOL depending whether the ciliary's muscle is in relaxation or accommodation mode.
  • [0075]
    Although the above description contains many specifications, these should not be considered as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Other embodiments on the invention, including additions, subtractions, deletions or modifications of the disclosed embodiment will be obvious to those skilled in the art and are within the scope of the following claims. As such, the scope of the invention should be determined by the appended claims and their legal equivalents.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US6319282 *1 Jun 199820 Nov 2001Morcher GmbhCapsular equatorial ring
US20040064182 *26 Sep 20021 Apr 2004Kelman Charles DavidHigh-myopia anterior chamber lens of one-piece, foldable construction
US20040117013 *12 Dec 200217 Jun 2004Ira SchacharDevice and method for treating macular degeneration
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US82731235 Mar 200825 Sep 2012Nulens Ltd.Unitary accommodating intraocular lenses (AIOLs) and discrete base members for use therewith
US838283124 Jun 201126 Feb 2013Nulens Ltd.Method and apparatus for anchoring an intraocular lens assembly
US839870926 Jul 200919 Mar 2013Nulens Ltd.Accommodating intraocular lens (AIOL) capsules
US857997112 Aug 200812 Nov 2013Garth T. WebbInflatable intra ocular lens/lens retainer
US865220611 Apr 201118 Feb 2014Samuel MasketAnti-dysphotopic intraocular lens and method
US88345655 Sep 201216 Sep 2014Nulens Ltd.Foldable accommodating intraocular lens
US895640918 Oct 201017 Feb 2015Nulens Ltd.Accommodating intraocular lens assemblies and accommodation measurement implant
US909542423 Jan 20134 Aug 2015Clarvista Medical, Inc.Modular intraocular lens designs and methods
US91257369 Jul 20138 Sep 2015Clarvista Medical, Inc.Modular intraocular lens designs and methods
US922059010 Jun 201129 Dec 2015Z Lens, LlcAccommodative intraocular lens and method of improving accommodation
US928928716 Aug 201322 Mar 2016Clarvista Medical, Inc.Modular intraocular lens designs and methods
US936431617 Aug 201514 Jun 2016Clarvista Medical, Inc.Modular intraocular lens designs, tools and methods
US936431813 Mar 201314 Jun 2016Z Lens, LlcAccommodative-disaccommodative intraocular lens
US938706924 Jul 201512 Jul 2016ClarViata Medical, Inc.Modular intraocular lens designs and methods
US94210889 May 201623 Aug 2016Clarvista Medical, Inc.Modular intraocular lens designs, tools and methods
US943349817 Feb 20146 Sep 2016Samuel MasketAnti-dysphotopic intraocular lens and method
US9439754 *29 Jan 201513 Sep 2016Omega Opthalmics LLCProsthetic capsular bag and method of inserting the same
US950455817 May 201629 Nov 2016Omega Ophthalmics LlcAttachable optic prosthetic capsular devices
US951712726 Apr 201613 Dec 2016Omega Ophthalmics LlcProsthetic capsular devices, systems, and methods
US952205917 May 201620 Dec 2016Omega Ophthalmics LlcInsulated prosthetic capsular devices
US952206017 May 201620 Dec 2016Omega Ophthalmics LlcAttachment structure prosthetic capsular devices
US955489017 May 201631 Jan 2017Omega Ophthalmics LlcMedicament delivery devices
US959717617 May 201621 Mar 2017Omega Ophthalmics LlcOverlapping side prosthetic capsular devices
US96426993 Aug 20169 May 2017Omega Ophthalmics LlcProsthetic capsular devices, systems, and methods
US968194626 Feb 201620 Jun 2017Clarvista Medical, Inc.Modular intraocular lens designs and methods
US976377125 Jan 201719 Sep 2017Omega Ophthalmics, LLCProsthetic capsular devices, systems, and methods
US981456815 Sep 201414 Nov 2017Forsight Vision6, Inc.Accommodating intraocular lens having dual shape memory optical elements
US20100121444 *5 Mar 200813 May 2010Nulens Ltd.Unitary Accommodating Intraocular Lenses (AIOLs) and Discrete Base Members For Use Therewith
US20110035002 *18 Oct 201010 Feb 2011Nulens Ltd.Accommodating intraocular lens assemblies and accommodation measurement implant
US20110098812 *4 Jan 201128 Apr 2011Nulens Ltd.Attachment plate for accommodating intraocular lens (aiol)
US20110112636 *26 Jul 200912 May 2011Joshua Ben NunAccommodating Intraocular Lens (AIOL) Capsules
US20110224788 *12 Aug 200815 Sep 2011Webb Garth TInflatable intra ocular lens/lens retainer
US20150142106 *29 Jan 201521 May 2015Omega Ophthalmics LlcProsthetic capsular bag and method of inserting the same
USD70234624 Aug 20108 Apr 2014Nulens Ltd.Haptic end plate for use in an intraocular assembly
WO2014039869A1 *6 Sep 201313 Mar 2014Optimedica CorporationMethods and systems for performing a posterior capsulotomy and for laser eye surgery with a penetrated cornea
WO2014134302A127 Feb 20144 Sep 2014Richard HonigsbaumTensioning rings for anterior capsules and accommodative intraocular lenses for use therewith
Classifications
U.S. Classification623/6.12, 623/6.37
International ClassificationA61F2/00, A61F2/16
Cooperative ClassificationA61F2/1694, A61F2002/1681, A61F2/1613, A61F2210/0019, A61F2002/009, A61F2002/1699, A61F2/1648
European ClassificationA61F2/16S, A61F2/16B