US20070120980A1 - Preservation/degradation of video/audio aspects of a data stream - Google Patents

Preservation/degradation of video/audio aspects of a data stream Download PDF

Info

Publication number
US20070120980A1
US20070120980A1 US11/541,382 US54138206A US2007120980A1 US 20070120980 A1 US20070120980 A1 US 20070120980A1 US 54138206 A US54138206 A US 54138206A US 2007120980 A1 US2007120980 A1 US 2007120980A1
Authority
US
United States
Prior art keywords
video
data stream
audio data
resolution
instructions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/541,382
Inventor
Edward Jung
Royce Levien
Robert Lord
Mark Malamud
John Rinaldo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invention Science Fund I LLC
Original Assignee
Searete LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/263,587 external-priority patent/US7872675B2/en
Priority claimed from US11/264,701 external-priority patent/US9191611B2/en
Priority claimed from US11/364,496 external-priority patent/US9076208B2/en
Priority claimed from US11/376,627 external-priority patent/US20070216779A1/en
Priority claimed from US11/396,279 external-priority patent/US20070203595A1/en
Priority claimed from US11/413,271 external-priority patent/US20070100621A1/en
Priority claimed from US11/434,568 external-priority patent/US20070098348A1/en
Priority claimed from US11/441,785 external-priority patent/US8233042B2/en
Priority to US11/541,382 priority Critical patent/US20070120980A1/en
Application filed by Searete LLC filed Critical Searete LLC
Assigned to SEARETE LLC reassignment SEARETE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RINALDO, JR., JOHN D., LORD, ROBERT W., MALAMUD, MARK A., JUNG, EDWARD K.Y., LEVIEN, ROYCE A.
Publication of US20070120980A1 publication Critical patent/US20070120980A1/en
Priority to US13/134,744 priority patent/US8804033B2/en
Assigned to THE INVENTION SCIENCE FUND I LLC reassignment THE INVENTION SCIENCE FUND I LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEARETE LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19665Details related to the storage of video surveillance data
    • G08B13/19667Details realated to data compression, encryption or encoding, e.g. resolution modes for reducing data volume to lower transmission bandwidth or memory requirements
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19665Details related to the storage of video surveillance data
    • G08B13/19671Addition of non-video data, i.e. metadata, to video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00132Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture in a digital photofinishing system, i.e. a system where digital photographic images undergo typical photofinishing processing, e.g. printing ordering
    • H04N1/00137Transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00132Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture in a digital photofinishing system, i.e. a system where digital photographic images undergo typical photofinishing processing, e.g. printing ordering
    • H04N1/00148Storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00912Arrangements for controlling a still picture apparatus or components thereof not otherwise provided for
    • H04N1/00954Scheduling operations or managing resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/422Input-only peripherals, i.e. input devices connected to specially adapted client devices, e.g. global positioning system [GPS]
    • H04N21/4223Cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/433Content storage operation, e.g. storage operation in response to a pause request, caching operations
    • H04N21/4334Recording operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/433Content storage operation, e.g. storage operation in response to a pause request, caching operations
    • H04N21/4335Housekeeping operations, e.g. prioritizing content for deletion because of storage space restrictions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/485End-user interface for client configuration
    • H04N21/4854End-user interface for client configuration for modifying image parameters, e.g. image brightness, contrast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/637Control signals issued by the client directed to the server or network components
    • H04N21/6377Control signals issued by the client directed to the server or network components directed to server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/162Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing
    • H04N7/163Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing by receiver means only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7921Processing of colour television signals in connection with recording for more than one processing mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0084Digital still camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0087Image storage device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/21Intermediate information storage
    • H04N2201/212Selecting different recording or reproducing modes, e.g. high or low resolution, field or frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/21Intermediate information storage
    • H04N2201/214Checking or indicating the storage space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3225Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3274Storage or retrieval of prestored additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/333Mode signalling or mode changing; Handshaking therefor
    • H04N2201/33307Mode signalling or mode changing; Handshaking therefor of a particular mode
    • H04N2201/33314Mode signalling or mode changing; Handshaking therefor of a particular mode of reading or reproducing mode
    • H04N2201/33328Resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/333Mode signalling or mode changing; Handshaking therefor
    • H04N2201/33307Mode signalling or mode changing; Handshaking therefor of a particular mode
    • H04N2201/33342Mode signalling or mode changing; Handshaking therefor of a particular mode of transmission mode
    • H04N2201/33357Compression mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/333Mode signalling or mode changing; Handshaking therefor
    • H04N2201/33307Mode signalling or mode changing; Handshaking therefor of a particular mode
    • H04N2201/33378Type or format of data, e.g. colour or B/W, halftone or binary, computer image file or facsimile data

Definitions

  • Applicant entity understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, applicant entity understands that the USPTO's computer programs have certain data entry requirements, and hence applicant entity is designating the present application as a continuation-in-part of its parent applications as set forth above, but expressly points out that such designations are not to be construed in any way as any type of commentary and/or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s).
  • the present application relates, in general, to data management.
  • a method related to data management includes but is not limited to accepting input for designating a video/audio aspect of a video/audio data stream; and accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution.
  • a system related to data management includes but is not limited to circuitry for accepting input for designating a video/audio aspect of a video/audio data stream; and circuitry for accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution.
  • related systems include but are not limited to circuitry and/or programming and/or electromechanical devices and/or optical devices for effecting the herein-referenced method aspects; the circuitry and/or programming and/or electromechanical devices and/or optical devices can be virtually any combination of hardware, software, and/or firmware configured to effect the herein-referenced method aspects depending upon the design choices of the system designer skilled in the art.
  • a program product related to data management includes but is not limited to a signal bearing medium bearing one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream; and one or more instructions for accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution.
  • FIG. 1 depicts two exemplary environments in which the methods and systems described herein may be represented
  • FIG. 2 depicts a high-level logic flowchart of an operational process
  • FIG. 3 depicts several alternative implementations of the high-level flowchart of FIG. 2 ;
  • FIG. 4 illustrates a high-level logic flowchart of an operation process
  • FIG. 5 depicts several alternative implementations of the high-level flowchart of FIG. 4 ;
  • FIG. 6 depicts several alternative implementations of the high-level flowchart of FIG. 4 .
  • FIG. 1 depicts two exemplary environments in which the methods and systems described herein may be represented.
  • a digital video camera 102 operated by one or more users represented by user 104 , where the digital video camera 102 may have a capability to record audio input
  • a digital video camera 106 used in conjunction with a digital still camera 108 , where the digital video camera 106 and/or digital still camera 108 may either or both have a capability to record audio input, both operated by one or more users represented by user 110
  • a sensor suite 112 comprising more than one sensor represented by sensor 114 and sensor 116 (wherein the sensors 114 and 116 may be but need not be physically co-located, and may be but need not be of the same type, e.g., sensor 114 may be an infrared device and sensor 116 may be a radar device, or, e.g.
  • each of the sensors 114 and 116 are exemplary of single independent sensors, and further, either of the sensors 114 or 116 may be audio sensors.
  • the exemplary sensors may represent a variety of devices for the detection and/or the recording and/or the transmission of imagery aspects, e.g., images, and/or audio aspects, e.g., instances of particular voices and/or instances of particular sounds, including but not limited to microphones, digital video cameras, digital still cameras, digital sensor (e.g. CCD or CMOS) arrays, and radar sets.
  • the exemplary users 104 , 110 , and/or 118 may, for example, operate the exemplary sensors manually or may supervise and/or monitor their automatic operation.
  • the exemplary users 104 , 110 , and/or 118 may operate the exemplary sensors in physical proximity to the sensors or remotely.
  • the exemplary sensors may also operate autonomously without exemplary users 104 , 110 , and/or 118 .
  • video/audio aspect and “video/imagery/audio aspect” include a video aspect and/or an imagery aspect and/or an audio aspect, where “video aspect” and “imagery aspect” include data representing one or more moving or still images of one or more persons and/or objects and “,audio aspect” includes audio data representing one or more instances of one or more human voices and/or one or more sounds.
  • video/audio data” and “video/imagery/audio data” include video data and/or imagery data and/or audio data, where “video data” and “imagery data” include data representing moving or still visual representations of objects and/or people and “audio data” includes data representing voices and/or sounds.
  • video/audio data stream and “video/imagery/audio data stream” include a data stream including video data and/or imagery data and/or audio data
  • video/audio input and “video/imagery/audio input” include input that includes video data and/or imagery data and/or audio data.
  • the exemplary sensors may be used to detect and/or record and/or transmit images and/or sounds and/or other data related to a wide variety of objects, represented in FIG. 1 by exemplary objects, a sphere 120 and a cube 122 .
  • the sphere 120 and/or the cube 122 may be reflectors and/or emitters of electromagnetic radiation such as visible light and/or microwaves, reflectors and/or emitters of particulate radiation such as electrons and/or neutrons, and/or reflectors and/or emitters of sonic energy.
  • the sphere 120 and the cube 122 are representative of any object(s) or groups of objects, images and/or emitting and/or reflecting sources of sounds and/or other related data which may be detectable and/or recordable and/or transmissible by the exemplary sensors, including but not limited to persons, animals, buildings, roads, automobiles, trucks, aircraft, ships, spacecraft, landscape and/or seascape features, vegetation, and/or celestial objects.
  • the exemplary sphere 120 and the exemplary cube 122 generally represent two distinct objects which may or may not be of the same or of a similar type, except where otherwise required by the context, e.g., a sphere 120 and a cube 122 used together in an example may represent a first particular object and a second particular object, e.g., a particular person and a particular building, or a particular first aircraft and a particular second aircraft, respectively.
  • the designated exemplary object e.g., the sphere 120 or the cube 122
  • the designated exemplary object generally represents the same object, except where otherwise required by the context, e.g., a sphere 120 used alone in an example generally represents a single object, e.g., a single building, and a cube 122 used alone generally represents a single object, e.g., a particular person.
  • Each of the exemplary sensors may detect and/or record and/or transmit images and/or sounds and/or other related data of the exemplary objects in a variety of combinations and sequences.
  • the digital video camera 102 may detect and/or record and/or transmit an image and/or sound and/or other related data of the sphere 120 and then an image and/or sound and/or other related data of the cube 122 sequentially, in either order; and/or, the digital video camera 106 may detect and/or record and/or transmit a single image and/or sound and/or other related data of the sphere 120 and the cube 122 together.
  • the digital video camera 106 may detect and/or record and/or transmit an image and/or sound and/or other related data of the sphere 120 and of the cube 122 sequentially, in either order, and/or of the sphere 120 and the cube 122 together, before, after, partially simultaneously with, or simultaneously with an operation of the digital still camera 108 .
  • the digital still camera 108 may detect and/or record and/or transmit an image and/or sound and/or other related data of the sphere 120 and of the cube 122 sequentially, in either order, and/or of the sphere 120 and the cube 122 together, before, after, partially simultaneously with, or simultaneously with an operation of the digital video camera 106 .
  • the sensor 114 and the sensor 116 of the sensor suite 112 may detect and/or record and/or transmit an image and/or sound and/or other related data of the sphere 120 and of the cube 122 sequentially, in either order, and/or of the sphere 120 and the cube 122 together, before, after, partially simultaneously with, or simultaneously with respect to each other.
  • Such images and/or sounds and/or related data may be recorded and/or transmitted via a computer or computers represented by the network 124 and/or directly to a processor 126 and/or processing logic 128 , which accept data representing imagery aspects and/or sounds and/or related data pertaining to the exemplary objects.
  • the processor 126 represents one or more processors that may be, for example, one or more computers, including but not limited to one or more laptop computers, desktop computers, and/or other types of computers.
  • the processing logic 128 may be hardware/software/firmware (e.g., hardware and/or software and/or firmware) associated with the processor 126 and capable of accepting and/or processing data representing imagery and/or sounds and/or other related data aspects of the exemplary objects from the exemplary sensors and from memory in the case of data stored in memory.
  • hardware/software/firmware e.g., hardware and/or software and/or firmware
  • Such processing may include but is not limited to comparing at least a portion of the data from one sensor with at least a portion of the data from the other sensor, and/or applying a mathematical process and/or heuristic process to at least a portion of the data from one sensor with at least a portion of the data from the other sensor, and/or accepting input related to the analysis, manipulation, and/or retention of data from the sensors, including but not limited to live, substantially live, and/or retained data, e.g., stored in memory.
  • Such processing may also include, but is not limited to, deriving third data from combining at least a portion of the data from one sensor with at least a portion of the data from another sensor.
  • the digital video camera 102 , the digital video camera 106 , the sensor 114 and/or the sensor 116 may be capable of detecting and/or recording and/or transmitting information representing video/audio input and accepting input representing information for the manipulation and/or retention of such video/audio information, including but not limited to accepting input for a designation of a reference designator in a video/audio data stream (e.g., a data stream including video and/or audio information) originating from one of the exemplary sensors via detection and/or transmission and/or playback; accepting input for a designation of a temporal beginning designator and/or a beginning demarcation designator in such a video/audio data stream; accepting input for a designation of a temporal ending designator and/or an ending demarcation designator in such a video/audio data stream; and accepting input for retaining at a high resolution a portion of such a video/audio data stream beginning substantially at the temporal beginning designator and/or the beginning dem
  • Such input may include confirmation of previous input.
  • the processor 126 and/or the processing logic 128 may be capable of receiving such a video/audio data stream from the exemplary sensors and/or from other computing resources and/or capable of playback of such a video/audio data stream that has been previously retained within the processor 126 and/or the processing logic 128 and/or elsewhere.
  • processor 126 and/or the processing logic 128 may be capable of accepting input representing information for the manipulation and/or retention of such audio information, including the input described herein in connection with the exemplary sensors.
  • an embodiment may accept input initiated in a variety of ways, including but not limited to initiation by one or more human users such as the users 104 , 110 , 118 . and/or 130 ; by the action of one or more processors and/or processing logic integral with, associated with, and/or operably coupled to a device such as the digital video camera 102 ; by the action of a one or more processors such as the processor 126 and/or by processing logic such as the processing logic 128 ; and/or by a combination of human and processor/processing logic interaction, such as a user 130 interacting with the digital still camera 108 and/or the processor 126 and/or the processing logic 128 .
  • Accepting input from one or more human users may include but is not limited to accepting input initiated by interaction with various interface devices such as computer mouse devices, keyboards, and graphical user interfaces; with interface devices that detect sound, such as microphones; with interface devices that detect electromagnetic radiation, such as visible and/or infrared light sensors and cameras; and with interface devices that present visual interface features such as graphical user interfaces.
  • various interface devices such as computer mouse devices, keyboards, and graphical user interfaces
  • interface devices that detect sound such as microphones
  • interface devices that detect electromagnetic radiation such as visible and/or infrared light sensors and cameras
  • interface devices that present visual interface features such as graphical user interfaces.
  • Accepting input initiated by the action of one or more processors and/or processing logic, such as the processor 126 and/or the processing logic 128 may include but is not limited to accepting input initiated by a processor and/or processor logic analysis of a data stream including detection of video/imagery/audio data that satisfies certain conditions and/or parameters that require or indicate the usefulness of designation of those aspects or of reference points indicating the presence and/or limits of those aspects.
  • the processor 126 and/or the processing logic 128 may, in an analysis of a video/imagery/audio data stream, whether the stream be live, substantially live, or retained data, detect the beginning of voice of a particular person of interest whose vocal characteristics are available to the processor 126 and the processing logic 128 and which are used to define detection/recognition parameters, and the processor 126 and/or the processing logic 128 may, upon detection of the voice using those parameters, initiate input to designate a portion of the data stream including the voice for retention.
  • Accepting input initiated by a combination of human and processor/processing logic interaction may include but is not limited to a user such as user 110 interacting with the digital video camera 106 , the processor 126 , and the processing logic 128 to review a video/imagery/audio data stream, detect video/imagery/audio aspects of interest such as images and voices of particular people and to designate for retention, command retention of, and retain those aspects of interest.
  • such input may represent an indication from an exemplary user 104 , 110 , 118 , and/or 130 , or from the processor 126 and/or the processing logic 128 , of a video/imagery aspect and/or an audio aspect, e.g., video/imagery/audio information of interest, such as a particular human voice or a particular mechanical sound, e.g., an auto engine, or the relative absence of sound, such as a relative silence between two human speakers or two musical phrases, and/or an image of a particular person of interest.
  • video/imagery/audio information of interest such as a particular human voice or a particular mechanical sound, e.g., an auto engine
  • the relative absence of sound such as a relative silence between two human speakers or two musical phrases
  • a video/imagery aspect and/or an audio aspect may be characterized at least in part by a temporal beginning, a temporal ending, an intensity and/or range of intensities and/or distribution of intensities, a frequency and/or range of frequencies and/or distribution of frequencies.
  • such input may represent an indication from an exemplary user 104 , 110 , 118 , and/or 130 , or from the processor 126 and/or the processing logic 128 , of video/imagery/audio information of interest, such as a particular human voice or a particular mechanical sound, e.g., an auto engine, or the relative absence of sound, such as a relative silence between the speeches of two human speakers or two musical phrases, or an image of a particular object of interest.
  • the reference designator may be designated in the video/audio data stream such that it falls within and/or references a place within the portion of the video/audio data stream comprising the particular video/imagery/audio aspect of interest.
  • the reference designator may be designated via initiating input in a variety of ways, including but not limited to pressing a button on a computer interface device, manipulating features of a graphical interface such as pull-down menus or radio buttons, speaking into a microphone, and/or using the processor 126 and/or the processing logic 128 to initiate automatically such input when the data in a video/audio data stream satisfies some criteria for video/imagery/audio data of interest.
  • such input may represent an indication from an exemplary user 104 , 110 , 118 , and/or 130 , or from the processor 126 and/or the processing logic 128 , of a point in the video/audio data stream at which a portion of interest of the video/audio data stream begins, such as (but not limited to) the end of a relative silence (e.g., silence except for background and/or artifact noise) occurring last before a designated reference designator, the beginning of the sound of interest or of one or more of the sounds accompanying a sound of interest, or the end of a sound occurring last before a designated reference designator, or the beginning of a video image of a particular person of interest.
  • a relative silence e.g., silence except for background and/or artifact noise
  • the temporal beginning designator and/or the beginning demarcation designator may be designated in the video/audio data stream such that it falls within and/or references a place at or near the beginning of the portion of the video/audio data stream comprising the particular sound of interest.
  • the temporal beginning designator and/or the beginning demarcation designator may be designated via initiating input in a variety of ways, including but not limited to pressing a button on a computer interface device, manipulating features of a graphical interface such as pull-down menus or radio buttons, speaking into a microphone, and/or using the processor 126 and/or the processing logic 128 to initiate automatically such input when the data in a video/audio data stream satisfies some criteria for demarcation of video/imagery/audio data of interest;
  • such input may represent an indication from an exemplary user 104 , 110 , 118 , and/or 130 , or from the processor 126 and/or the processing logic 128 , of a point in the video/audio data stream at which a portion of interest of the video/audio data stream ends.
  • the temporal ending designator and/or the ending demarcation designator may represent the point in the video/audio data stream falling at the end of a portion of interest, such as (but not limited to) the end of the presence of an image of a vehicle of interest, the end of a relative silence (e.g., silence except for background and/or artifact noise) occurring just after the end of the sound of interest or of one or more of the sounds accompanying a sound of interest, or the end of a sound occurring just after a designated reference designator.
  • the temporal ending designator and/or the ending demarcation designator may be designated in the video/audio data stream such that it falls within and/or references a place at or near the end of the portion of the video/audio data stream comprising the particular sound of interest.
  • the temporal ending designator and/or the ending demarcation designator may be designated via initiating input in a variety of ways, including but not limited to pressing a button on a computer interface device, manipulating features of a graphical interface such as pull-down menus or radio buttons, speaking into a microphone, and/or using the processor 126 and/or the processing logic 128 to initiate automatically such input when the data in a video/audio data stream satisfies some criteria for video/imagery/audio data of interest.
  • such high resolution retention includes but is not limited to storage of a relatively large amount of data, compared to storage of portions of the data stream not selected for high resolution retention, as described herein.
  • Such input may include but is not limited to designation of a high resolution value, e.g., 0.5 MB/second, and/or frequency spectrum characteristics, e.g., lower and upper frequency cut-offs.
  • the user 130 may provide input to the processor 126 and/or the processing logic 128 to identify a portion of a video/audio data stream for retention at high resolution, e.g., input designating an audio aspect of a video/audio data stream and/or input designating a video/imagery aspect of a video/audio data stream.
  • the processor 126 and/or the processing logic 128 may accept the input, enabling the identified portion (e.g., a designated audio aspect) to be stored with high fidelity relative to the source video/audio and with a relatively small proportion of data (if any) discarded, while the portion or portions not selected for high resolution retention, e.g., a residue, may be stored at a relatively lower resolution, e.g., with a relatively higher proportion of data discarded, e.g., to save storage resources.
  • the identified portion e.g., a designated audio aspect
  • a residue e.g., a relatively lower resolution
  • Retention of a portion, e.g., a video/imagery/audio aspect, of a video/audio data stream at a relatively high resolution and retention of portions of the video/audio data stream not included in the portion designated for retention at the high resolution, e.g., a residue, may result in storage of the portion not included in the portion to be retained at the high resolution at one or more resolutions that do not use all of the data available, such that the portion not to be retained at the high resolution is degraded in storage.
  • Degradation of a portion not included in the portion retained or designated for retention at high resolution may be achieved by retaining the not-included portion at one or more lower resolutions, where the one or more lower resolutions may be a function of the distance in the video/audio data stream between the portion to be retained at a high resolution and the portion to be retained at one or more lower resolutions, including but not limited to degrading blocks of data not included in the high resolution portion according to their distance from the high resolution portion (e.g., degrading to one lower resolution a portion between 0 and 60 seconds from the high resolution portion, and degrading to another, even lower resolution a portion between 60 and 120 seconds from the high resolution portion, and so on).
  • One or more inputs may be accepted to set one or more rules by which a portion of a video/audio data stream not included in a portion designated for high resolution retention is degraded and/or retained at one or more lower resolutions.
  • One or more inputs for degradation may be accepted to specify parameters including but not limited to one or more specific resolution values (e.g., 12 kB/sec and/or 20 kB/sec), one or more frequency range characteristics, and/or one or more frequency distribution characteristics.
  • Degradation to one or more lower resolutions may be correlated to one or more specified frequency ranges and/or one or more specified frequency distribution characteristics, such as specific lower resolutions for all sounds above 100 Hz, and/or between 2 kHz and 20 kHz, and/or below 5 kHz, and/or one or more specific lower resolutions for all sounds conforming to a specific frequency distribution characteristic of a particular human voice or musical instrument, and/or, with regard to video/imagery, specific lower resolution for parts of a video/audio data stream that do not include video/imagery of a particular color range.
  • specified frequency ranges and/or one or more specified frequency distribution characteristics such as specific lower resolutions for all sounds above 100 Hz, and/or between 2 kHz and 20 kHz, and/or below 5 kHz, and/or one or more specific lower resolutions for all sounds conforming to a specific frequency distribution characteristic of a particular human voice or musical instrument, and/or, with regard to video/imagery, specific lower resolution for parts of a video/audio data stream that do
  • Degradation to one or more lower resolutions may be correlated to the time frame in which a portion of a video/audio data stream has been detected and/or recorded and/or transmitted and/or stored, e.g., video/audio data detected and/or recorded and/or transmitted and/or stored within a week may be retained at the resolution at which it was detected and/or recorded and/or transmitted and/or stored, while data detected and/or recorded and/or transmitted and/or stored between one and two weeks ago may be degraded to 80% of the resolution at which it was detected and/or recorded and/or transmitted and/or stored, and data detected and/or recorded and/or transmitted and/or stored between two and four weeks ago may be degraded to 60% of the resolution at which it was detected and/or recorded and/or transmitted and/or stored, and so on.
  • One or more inputs may be accepted to confirm previous inputs or default values related to degrading data and/or retaining such data at a relatively lower resolution value.
  • One or more inputs may be accepted for degrading a portion of a video/audio data stream not included in a portion designated for retention at high resolution.
  • Inputs may include but not be limited to tactile, sonic, and/or visual inputs.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , or 130 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., audio processing software such as the processor 126 and/or the processing logic 128 , or it may be initiated by some combination of human and automated action.
  • some hardware/software/firmware e.g., audio processing software such as the processor 126 and/or the processing logic 128 , or it may be initiated by some combination of human and automated action.
  • degrading and/or retaining at a lower resolution a portion of a video/audio data stream not included in a portion designated for retention at high resolution may also be performed.
  • Retention at one or more lower resolutions may be performed, e.g., by using one or more memory locations associated with and/or operably coupled to the digital video camera 102 and/or the digital video camera 106 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 .
  • Degradation may be performed by methods including but not limited to data compression and/or data redaction.
  • input for the identification of a particular portion for retention at a relatively higher resolution does not preclude input for the storage of a distinct and/or an overlapping portion of the data stream at a distinct higher resolution compared to the retention resolution of one or more portions not identified for retention at a higher resolution, e.g., one or more portions of a data stream may be identified for retention at one or more relatively high resolutions.
  • input for the identification of a particular portion for retention at a relatively lower resolution does not preclude input for the storage of a distinct and/or an overlapping portion of the data stream at a distinct lower resolution compared to the retention resolution of one or more portions identified for retention at a higher resolution, e.g., one or more portions of a data stream may be identified for retention at one or more relatively lower resolutions.
  • a video/imagery aspect may be designated for retention or retained at a particular resolution on the basis of a presence or absence of some audio aspect of a video/audio stream
  • an audio aspect may be designated for retention or retained at a particular resolution on the basis of a presence or absence of some video/imagery aspect of a video/audio stream.
  • the presence of an image of a particular person of interest in a video/audio data stream may serve as the basis for a designation of an audio aspect of the video/audio data stream for retention at high resolution, and vice versa.
  • a particular portion identified for retention at a high or a low resolution may include more than one data set that may generally be considered to constitute a “frame” in a video/audio data stream.
  • digital video cameras 102 and/or 106 are representative of any sensor or sensor suite capable of detecting and/or recording and/or transmitting video/audio input as one or more data streams representing the video/audio information.
  • Such input may be initiated in a variety of ways, including but not limited to pressing a button on a computer interface device, manipulating features of a graphical interface such as pull-down menus or radio buttons, speaking into a microphone, and/or using the processor 126 and/or the processing logic 128 to initiate automatically such input when the data in a video/audio data stream satisfies some criteria for video/imagery/audio data of interest.
  • such retention may include storage in computer memory, such as memory associated with and/or operably coupled to the processor 126 and/or the processing logic 128 .
  • the exemplary sensors may be capable of detecting and/or recording and/or transmitting one or more imagery and/or sound and/or other related data aspects of the exemplary objects, the one or more imagery aspects and/or sound and/or other related data aspects being defined in part, but not exclusively, by exemplary parameters such as focal length, aperture (f-stop being one parameter for denoting aperture), t-stop, shutter speed, sensor sensitivity (such as film sensitivity (e.g., film speed) and/or digital sensor sensitivity), exposure (which may be varied by varying, e.g., shutter speed and/or aperture), frequency and/or wavelength, focus, depth of field, white balance (and/or white point, color temperature, and/or micro reciprocal degree or “mired”), signal/noise ratio, an identified voice of a person or machine, and/or flash (sound aspects are described elsewhere herein).
  • exemplary parameters such as focal length, aperture (f-stop being one parameter for denoting aperture), t-stop, shutter speed, sensor sensitivity (such as film
  • a frequency and/or wavelength parameter may be associated with one or more bandwidth parameters; and a flash parameter may be associated with one or more parameters for, e.g., duration, intensity, and/or special distribution.
  • a frequency and/or wavelength parameter may be associated with one or more bandwidth parameters; and a flash parameter may be associated with one or more parameters for, e.g., duration, intensity, and/or special distribution.
  • bracketing and/or imagery aspects and/or exemplary parameters in the context of more or less “still” images for sake of clarity, techniques described herein are also applicable to streams of images, such as would typically be produced by digital video cameras 102 / 106 and thus the use of such, and other, exemplary terms herein are meant to encompass both still and video bracketing/aspects/parameters/etc. unless context dictates otherwise.
  • the bracketing might include bracketing over, say, 20 frames of video.
  • Each of the exemplary sensors may detect and/or record and/or transmit one or more imagery aspects and/or sound aspects and/or other related data aspects of an exemplary object at more than one setting of each of the available parameters, thereby bracketing the exemplary object.
  • “bracketing” includes the imagery technique of making several images of the same object or objects using different settings, typically with a single imagery device such as digital video camera 106 .
  • the digital video camera 106 may detect and/or record and/or transmit a series of imagery aspects of the cube 122 at a number of different f-stops; before, after, partially simultaneously with, and/or simultaneously with that series of imagery aspects, another digital video camera 106 and/or another type of sensor, such as sensor 114 may detect and/or record and/or transmit a series of imagery aspects of the sphere 120 and of the cube 122 at a number of different white balances.
  • the processor 126 and/or the processing logic 128 may then accept, via the network 124 or directly, data representing the imagery aspects detected and/or recorded and/or transmitted by the digital video cameras 102 and 106 or by the digital video camera 106 and the sensor 114 .
  • the processor 126 and/or the processing logic 128 may then combine at least a portion of the data from one of the sensors with at least a portion of the data from another sensor, e.g., comparing the data from the two sensors, for example, deriving an identity of color and orientation from the bracketing imagery aspect data of two cubes 122 from digital video camera 106 and sensor 114 .
  • Exemplary digital video cameras 102 and/or 106 may also be capable of detecting and/or recording and/or transmitting video/audio input as one or more data streams representing the video/audio information.
  • Exemplary users 104 and/or 110 and/or another person and/or entity such as user 130 may provide input to the digital video camera 102 and/or the processor 126 and/or the processing logic 128 to select at least a portion of a data stream representing the video/audio information for retention at high resolution (where retention at high resolution is as described herein), e.g., imagery such as an image of a particular object and/or an audio aspect such as an instance of a particular voice and/or an instance of a particular sound.
  • digital video cameras 102 and/or 106 are representative of any sensor or sensor suite capable of detecting and/or recording and/or transmitting video/audio input as one or more data streams representing the video/audio information.
  • the exemplary sensors e.g., the digital video camera 102 , the digital video camera 106 , the digital still camera 108 , and the sensor suite 112 including sensor 114 and sensor 116
  • the exemplary users e.g., users 104 , 110 , and 118
  • the exemplary objects e.g., the sphere 120 and the cube 122
  • the network 124 e.g., the exemplary processor 126 , and the exemplary processing logic 128
  • users 130 , 132 , 134 , and 136 may be participants in a teleconference conducted using voice-over-internet-protocol (“VoIP”) technology, such as that provided by such commercial concerns as Vonage® and SkypeTM.
  • VoIP voice-over-internet-protocol
  • User 132 uses device 138 , which may include a computer, a telephone equipped for VoIP communication such as an analog telephone adaptor, an IP phone, or some other item of VoIP-enabling hardware/software/firmware, to conduct a conversation by audio means with users 134 and 136 using device 140 , which also may include a computer, a telephone equipped for VoIP communication such as an analog telephone adaptor, an IP phone, or some other item of VoIP-enabling hardware/software/firmware.
  • the devices 138 and 140 are representative of any number of such devices that may be used to conduct a VoIP teleconference including any number of participating parties. Because VoIP uses packet switching, packets conveying audio data travel between the device 138 and the device 140 by different routes over the network 124 to be assembled in the proper order at their destinations. During a conversation in this exemplary environment, an audio data stream may be formed as packets are created and/or transmitted at a source device, either the device 138 or the device 140 , and this audio data stream is reassembled at the destination device. Audio data streams may be formed and reassembled at the devices 138 and 140 simultaneously. Multiple audio data streams representing different speakers or other distinct audio information sources may be generated and reassembled by the devices 138 and/or 140 during a VoIP teleconference.
  • VoIP technology is being used in conjunction with users using standard telephone equipment connected to the Public Switched Telephone Network (“PSTN”)
  • PSTN Public Switched Telephone Network
  • packets created by VoIP equipment such as the device 138 and/or 140 are conveyed over the network 124 , reassembled by a device analogous to the devices 138 and/or 140 , and transmitted to the standard telephone user over the PSTN.
  • An exemplary embodiment may include accepting input designating an audio aspect of an audio data stream created at the device 138 and/or the device 140 , where the designation may be for the purpose or purposes of, e.g., retention at high resolution, interactive review of the portion of the audio data stream of interest, or analysis of the portion of interest.
  • An exemplary embodiment may include accepting input for a designation of a reference designator in an audio data stream created at the device 138 and/or the device 140 , accepting input for a designation of a beginning demarcation designator an audio data stream created at the device 138 and/or the device 140 , accepting input for a designation of an ending demarcation designator an audio data stream created at the device 138 and/or the device 140 , accepting input for retaining at high resolution, e.g., storing at high resolution in computer memory, audio data from the audio data stream beginning substantially at the beginning demarcation designator and ending substantially at the ending demarcation designator, and retaining at a high resolution such audio data.
  • high resolution e.g., storing at high resolution in computer memory, audio data from the audio data stream beginning substantially at the beginning demarcation designator and ending substantially at the ending demarcation designator, and retaining at a high resolution such audio data.
  • These operations may be performed by, for example the processor 126 and/or the processing logic 128 , which may be incorporated with the device 138 and/or 140 , partially incorporated with the device 138 and/or 140 , or separated but operably coupled to the device 138 and/or 140 .
  • Each of these operations may be initiated by human action, e.g., the user 130 and/or 132 and/or 134 and/or 136 pressing a button, speaking into a microphone, and/or interacting with graphical user interface features, or they may be initiated by operation of some hardware/software/firmware, e.g., audio processing software such as the processor 126 and/or the processing logic 128 , or they may be initiated by some combination of human and automated action.
  • Each of these operations may be performed as an audio data stream is being created at the device 138 and/or 140 , and/or as an audio data stream is being reassembled at the device 138 and/or 140 , and/or as an audio data stream stored from a VoIP teleconference is played back or analyzed.
  • a reference designator may include information such as an identifier that identifies the particular audio data stream of interest and a place in the audio data stream at which the information of interest is present, e.g., a place in the stream at which a particular speaker is speaking, and/or may fall within the audio data stream at such a place.
  • a beginning demarcation designator may include an identifier that identifies the particular audio data stream of interest and an identifier of the first packet of a sequence of packets of interest and/or may fall within the audio data stream.
  • An ending demarcation designator may include an identifier that identifies the particular audio data stream of interest and an identifier of the last packet of a sequence of packets of interest and/or may fall within the audio data stream.
  • Accepting input for retaining at high resolution a designated aspect of an audio data stream may be performed, e.g., by using the devices 138 and/or 140 in addition to the devices for accepting input described in connection with FIG. 1 .
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., audio processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • some hardware/software/firmware e.g., audio processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • Retaining at a high resolution a portion of an audio data stream designated for retention at a high resolution may be performed, e.g., using memory resources associated with and/or operably coupled to the devices 138 and/or 140 in addition to the devices for data retention described in connection with FIG. 1 .
  • Accepting input for degradation and/or retaining at a lower resolution a portion of an audio data stream not included in a portion of the audio data stream designated for retention at a high resolution may be performed, e.g., by using the devices 138 and/or 140 in addition to the devices for accepting input described in connection with FIG. 1 .
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Degradation and/or retaining at a lower resolution a portion of an audio data stream not included in a portion of the audio data stream designated for retention at a high resolution may be performed, e.g., using memory resources associated with and/or operably coupled to the devices 138 and/or 140 in addition to the devices for data retention described in connection with FIG. 1 .
  • the exemplary sensors (the digital video camera 102 , the digital video camera 106 , the digital still camera 108 , and the sensor suite 112 including sensor 114 and sensor 116 ), the exemplary devices ( 138 and 140 ) the exemplary users (users 104 , 110 , 118 , 130 , 132 , 134 , and 136 ), the exemplary objects (the sphere 120 and the cube 122 ), the network 124 , the exemplary processor 126 , and the exemplary processing logic 128 constitute only a few of the aspects illustrated by FIG. 1 .
  • FIG. 2 depicts a high-level logic flowchart of an operational process.
  • the illustrated process may include operation 200 and/or operation 202 .
  • Operation 200 shows accepting input for designating a video/audio aspect of a video/audio data stream.
  • Operation 200 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating one or more instances of a particular voice and/or mechanical noise such as an automobile engine in a video/audio data stream, by means of, e.g., a reference designator, specification of beginning and/or ending time indices, and/or specification of video and/or audio characteristics.
  • the video/audio data stream may be, for example, a live or substantially live data stream from a sensor or sensors or an apparatus or an apparatus set such as that associated with a VoIP teleconference, such as devices 138 and/or 140 , or a stored set of data that is being reviewed in playback or analyzed, either by one or more human users, one or more automated systems, or some combination of the two.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 202 depicts accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution.
  • Operation 202 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for retaining, at a relatively high resolution, of the video/audio aspect of the video/audio data stream designated by the input accepted in operation 200 , in one or more memory locations associated with and/or operably coupled to the digital video camera 102 and/or the digital video camera 106 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 .
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • FIG. 3 depicts several alternative implementations of the high-level flowchart of FIG. 2 .
  • Operation 200 accepting input for designating a video/audio aspect of a video/audio data stream—may include one or more of the following operations: 300 , 302 , 304 , 306 , 308 , 310 , 312 , and/or 314 .
  • Operation 300 shows accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the designating the video/audio aspect of the video/audio data stream includes a designating of at least one instance of a distinct human voice and/or at least one instance of a distinct sound and/or at least one instance of an image of a distinct object.
  • Operation 300 may include, for 30 example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating for inclusion in the video/audio data stream one or more instances of a distinct human voice, e.g., a sequence of utterances by a single speaker or a set of speakers in a live or a recorded conversation, such as a conversation conducted using VoIP, where the voice or voices may be temporally isolated or may be temporally overlapped by other voices and/or sounds but separable by discernment of distinct characteristics such as tonal quality or frequency, by, for instance, a human listener and/or by an automated voice recognition system.
  • a distinct human voice e.g., a sequence of utterances by a single speaker or a set of speakers in a live or a recorded
  • Operation 300 may also include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating for inclusion in the video/audio data stream one or more instances of a distinct sound or a set of distinct sounds, e.g., the sounds emitted from a particular musical instrument or a group of instruments, a distinct and particular automobile engine's sonic emissions or a group of such engines' sonic emissions, or some disparate suite of sounds such as one or more machine noises and one or more animal noises, where the sound or sounds of interest may be temporally isolated or may be temporally overlapped by other sounds but separable by use of distinct characteristics such as tonal quality or frequency, by, for example, one or more human listeners and/or one or more automated sound analysis system.
  • Operation 300 may further include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating for inclusion in the video/audio data stream one or more instances of a distinct image or a set of distinct images, e.g., images of people or objects of interest, represented for example by the sphere 120 and/or the cube 122 , where the image or images of interest may be partially overlapped by other images but are separable by use of distinct characteristics such as color or shape, by, for example, one or more human users and/or one or more automated image analysis systems.
  • a distinct image or a set of distinct images e.g., images of people or objects of interest, represented for example by the sphere 120 and/or the cube 122 , where the image or images of interest may be partially overlapped by other
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 302 illustrates accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes at least one instance of a distinct human voice and/or at least one instance of a distinct sound and/or at least one instance of an image of a distinct object.
  • Operation 302 may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating a video/audio data stream that includes one or more instances of a distinct human voice, e.g., a contribution to a conversation, such as a VoIP teleconference, where the voice or voices may be temporally isolated or may be temporally overlapped by other voices and/or sounds but separable by discernment of distinct characteristics such as tonal quality or frequency, by, for instance, a human listener and/or by an automated voice recognition system.
  • a distinct human voice e.g., a contribution to a conversation, such as a VoIP teleconference
  • the voice or voices may be temporally isolated or may be temporally overlapped by other voices and/or sounds but separable by discernment of distinct
  • Operation 302 may also include, for instance, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating for inclusion in the video/audio data stream one or more instances of a distinct sound or set of sounds, such as the sonic emissions of a group of distinct and particular machines or of a group of distinct and particular animal calls, e.g., where the sound or sounds of interest may be temporally isolated or may be temporally overlapped by other sounds but separable by use of distinct characteristics such as tonal quality or frequency, by, for example, one or more human listeners and/or one or more automated sound analysis system.
  • a distinct sound or set of sounds such as the sonic emissions of a group of distinct and particular machines or of a group of distinct and particular animal calls, e.g., where the sound
  • Operation 302 may also include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating for inclusion in the video/audio data stream one or more instances of a distinct image or set of distinct images, such as images of particular people or objects of interest, where the image or images of interest may be partially overlapped by other images but are separable by use of distinct characteristics such as color or shape, by, for example, one or more human users and/or one or more automated image analysis systems.
  • a distinct image or set of distinct images such as images of particular people or objects of interest, where the image or images of interest may be partially overlapped by other images but are separable by use of distinct characteristics such as color or shape, by, for example, one or more human users and/or one or more automated image analysis systems.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 13 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 304 depicts accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes a portion of video/audio data included in a temporal segment of the video/audio data stream.
  • Operation 304 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating a video/audio aspect of the video/audio data stream that includes video and/or audio data from a single segment of the stream with no, or substantially no, time-wise breaks or gaps.
  • Such a temporal segment might run, for instance, from one point in time in the stream to another point in time in the stream.
  • Such a temporal segment might include, for instance, the video and/or audio of a bank customer's interaction with a teller as recorded by a security surveillance system, from the time the customer steps up to the counter to the time he leaves the system's visual field of view.
  • Such a temporal segment might exclude sounds and/or voices other than those desired by a human user or selected by an automated processing system through the use of filtering to retain only a voice (or voices) and/or a sound (or sounds) of interest, such as retaining the voices of the customer and the teller in the example of the bank customer's interaction with the teller.
  • a portion of video/audio data included in a temporal segment of the video/audio data stream may encompass part or all of such video data in the temporal segment.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • Operation 306 depicts accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes a portion of video/audio data included in a plurality of non-contiguous temporal segments of the video/audio data stream.
  • Operation 306 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating a video/audio aspect of the video/audio data stream that includes two or more segments of the stream, each of which has no, or substantially no, time-wise breaks or gaps, but which are separated from each other by time-wise breaks or gaps.
  • Such a plurality of temporal segments might include, for example, three instances of a particular human voice in a conversation involving two people, such that the video/audio aspect includes each instance of one of the two voices but excludes the other voice.
  • a plurality of temporal segments may be such that the video/audio aspect might include a disconnected series of clips of a video of a person in which she appears in camera range, excluding clips in which she does not appear, and possibly excluding other video images in the frames in which she appears.
  • Such a plurality of temporal segments might include, for example, a combination of video and audio data, such as a set of video/audio clips, separated from each other in time, of one person in a conversation, each of which shows her speaking and contains the audio of her speech, but omits those periods in which she is silent.
  • Such a plurality of temporal segments might exclude, from any or all of the temporal segments, sounds and/or voices and/or images other than those desired by a human user or selected by an automated processing system through the use of filtering and/or masking and/or image discrimination to retain only a voice (or voices) and/or a sound (or sounds) and/or an image (or images) of interest.
  • a video/audio aspect might include the video data representing a single person in a set of video/audio clips, each separated in time from the others, of a crowded room, as determined by a human user and/or by an automated object discrimination system.
  • Another video/audio aspect might include the audio data of one particular person among many in a multiple-person conversation, and still another video/audio aspect might include video of such a person only when he is in camera range and audio data consisting of his contributions to the conversation while omitting audio data of others' speech.
  • Such a video/audio aspect might exclude sounds and/or voices and/or images other than those desired by a human user and/or selected by an automated processing system through the use of filtering and/or masking and/or image discrimination to retain only a voice (or voices) and/or a sound (or sounds) and/or an image (or images) of interest. It will be appreciated by those skilled in the art that a portion of video/audio data included in a plurality of temporal segments of the video/audio data stream may encompass part or all of such video data in one or more of the temporal segments of the plurality of such segments.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 308 shows accepting input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio data stream is a live and/or a substantially live video/audio data stream.
  • Operation 308 may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating a video/audio aspect of a video/audio data stream originating from the digital video camera 106 , where the video/audio data stream is originating from the digital video camera 106 as, or substantially as (e.g., with a minimal delay), the data is being detected and/or recorded and/or transmitted.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 310 shows accepting input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio data stream is a retained video/audio data stream.
  • Operation 310 may include, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating a video/audio aspect of a video/audio data stream from the digital video camera 106 , where the video/audio aspect is being played backed from data storage or is being recalled from storage for analysis.
  • Such an input may be initiated by an action by auser 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 312 illustrates accepting input for designating a first resolution value.
  • Operation 312 may include, for instance, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for designating a particular high resolution value for audio data, such as 96 kB/sec (as compared to a relatively lower resolution value such as 12 kB/sec), and/or for designating a particular high resolution value for video data of a video/audio aspect of a video/audio data stream, such as 1 MB/sec (as compared to a relatively lower value of 0.1 MB/sec).
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 314 depicts accepting a tactile input and/or a sonic input and/or a visual input.
  • Operation 314 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , where the input may be initiated by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 mechanically manipulating an interface device and/or feature, such as a mouse input device, and/or interacting with a drop-down menu of a graphical user interface.
  • an interface device and/or feature such as a mouse input device
  • Operation 314 may further include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , where the input may be initiated by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 speaking and/or generating some sonic signal such as a click or a whistle into an interface device such as a microphone, or where the input may be initiated by an automated operation of the processor 126 and/or the processing logic 128 playing back a recording of such a sonic signal.
  • Operation 314 may also include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , where the input may be initiated by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 interacting with a video input device such as a camera and/or a light/infrared sensor and/or a visual component of a graphical user interface, or where the input may be initiated by an automated operation of the processor 126 and/or the processing logic 128 playing back a recording of a visual signal or of an interaction with a graphical user interface.
  • a video input device such as a camera and/or a light/infrared sensor and/or a visual component of a graphical user interface
  • visual input is not limited to the visual spectrum of a human, but also may include virtually any portion of the electromagnetic spectrum that a machine and/or an apparatus is capable of detecting.
  • examples of visual input may include but are not limited to gestural input, e.g., a hand sign, detection of captured electromagnetic spectrum data indicative of a motion of a capturing device (e.g., such as might be detected if a camera were moved in a predefined way).
  • a sign may include but is not limited to a static sign (e.g., holding up a victory sign with two fingers and/or holding up a printed sign that says “now”), and/or a dynamic sign (e.g., something like clapping or waving).
  • FIG. 4 illustrates a high-level logic flowchart of an operation process.
  • the illustrated process may include the following operations: 200 (described elsewhere herein), 202 (described elsewhere herein), 400 , 402 , and/or 404 .
  • Operation 400 illustrates retaining the video/audio aspect of the video/audio data stream at the first resolution.
  • Operation 400 may include, for example, retaining a video/audio aspect of a video/audio data stream, where the video/audio aspect is designated by an input and such retention is in response to an input to retain the video/audio aspect, at a relatively high resolution in one or more memory locations associated with and/or operably coupled to the digital video camera 102 and/or the digital video camera 106 and/or and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 .
  • Operation 402 shows accepting input for degrading a residue of the video/audio data stream to a second resolution, wherein the residue is excluded from the video/audio aspect, and wherein the second resolution is less than the first resolution, if a condition is met.
  • Operation 402 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading a residue of the video/audio data stream that is not included in a video/audio aspect designated for retention at a relatively high resolution, via, e.g., data redaction and/or data compression, to one or more relatively low resolutions, such as video/audio data included in a temporal segment of the video/audio data stream that is not designated for retention at high resolution and/or temporal segments that are not designated for retention at high resolution.
  • Such a lower resolution may include a resolution of zero (e.g., deletion or non-storage of the residue).
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 404 depicts degrading the residue of the video/audio data stream to the second resolution, if the condition is met.
  • Operation 404 may include, for example, degrading a residue of a video/audio data stream relative to retention of another portion of the video/audio data stream designated for retention at a relatively high resolution, via a processor 126 and/or a processing logic 128 and/or a digital video camera 102 and/or a digital video camera 106 and/or a sensor 114 and/or a sensor 116 and/or a device 138 and/or device 140 , to a low resolution, such as 12 kB/second compared to 96 kB/second.
  • Such a degrading may be performed via hardware/software/firmware constituting computational resources and via one or more memory locations, where the computational resources and memory locations are associated with and/or operably coupled to the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 .
  • FIG. 5 depicts several alternative implementations of the high-level flowchart of FIG. 4 .
  • Operation 402 accepting input for degrading a residue of the video/audio data stream to a second resolution, wherein the residue is excluded from the video/audio aspect, and wherein the second resolution is less than the first resolution, if a condition is met—may include the following operations: 500 , 502 , 504 , 506 , 508 , 510 , 512 , 514 , 516 , and/or 518 .
  • Operation 500 shows accepting input for degrading the residue to the second resolution, wherein the second resolution is determined as a function of a distance in the video/audio data stream between at least a part of the video/audio aspect and at least a part of the residue.
  • Operation 500 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading, via, e.g., data redaction and/or data compression, a residue of a video/audio data stream according to the distance between a part of the residue to be degraded and a part of a video/audio aspect designated for retention at high resolution, e.g., degradation to 75% of the video/audio data available in a residue from between 0 and 30 seconds before the video/audio aspect designated for retention at high resolution, degradation to
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 502 illustrates accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a preselected time has elapsed after a specified previous degrading of the residue.
  • Operation 502 may include, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading a residue of a video/audio data stream to a relatively low resolution one week after that residue was stored for the first time by a particular user, e.g., user 104 .
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 504 depicts accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a time value is framed by a preselected time window.
  • Operation 504 may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading a residue of a video/audio data stream to a relatively low resolution when the time between an initial review of the portion by a user, e.g.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 506 shows accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if at least one of an available storage space is less than a preselected amount, a condition established by a user is met, and/or a criterion corresponding to a storage management algorithm is met.
  • Operation 506 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading a residue of a video/audio data stream to a relatively low resolution, if one or more available storage spaces provide less than a preselected amount of storage space, e.g., less than 50 MB, such that more storage space is made available for a designated video/audio aspect of a video/audio data stream to be retained at a relatively high resolution; and/or a condition established by user 104 , such as the passage of one month from a previous access of a video/audio aspect and/or a residue; and/or a storage management algorithm criterion, such as no increase in a combined available storage space of across five storage devices in a month, are met.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 508 illustrates accepting input for degrading the residue to the second resolution if a condition responsive to an examination of at least one other retained set of video/audio data is met.
  • Operation 508 may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading a residue of a video/audio data stream to a relatively low resolution if, upon examination, it is found that another retained set of video/audio data contains information that decreases the usefulness of a high-resolution retention of the residue under consideration for retention at low resolution, such as a finding that a first surveillance record of a location does not include any video/audio record of a particular person in a second surveillance record that includes that person, so that there is no interest in retaining the second surveillance record at high resolution, indicating that the second record, the
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 510 shows accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if the condition is met, wherein the condition is related to one or more of a set of events and/or conditions excluding a specified previous degrading of the residue.
  • Operation 510 may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading to a relatively low resolution a residue of a video/audio data stream if that residue is being considered for such a degrading immediately after being received from and/or recorded by a sensor, e.g., digital still camera 108 .
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 512 depicts accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a condition responsive to data received from a device other than a device used for a specified previous degrading of the residue is met.
  • Operation 512 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading residue of a video/audio data stream to a relatively low resolution if a storage medium device that was not used for a specified previous retention of the residue provides an indication that it has less than a particular amount of available storage capacity.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 514 illustrates accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a condition responsive to data received from a device other than a device to be used for the degrading is met.
  • Operation 514 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading a residue of a video/audio data stream to a relatively low resolution if a storage medium that is not to be used for retention of the residue at the low resolution provides an indication that information stored on it does not specify a requirement that the residue be retained at a high resolution, such as an indication from a storage medium not to be used for retention of the residue at a low resolution that a particular vehicle is of interest to a user, e.g., user 118
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 516 shows accepting input for degrading the residue to the second resolution, wherein the method includes a method implemented in a first device, and wherein the degrading is to be performed if a condition responsive to data received from a second device is met.
  • Operation 516 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , for degrading a residue of a video/audio data stream to a relatively low resolution, where the method related to data management is implemented in the processor 126 and/or the processing logic 128 , if the processor 126 and/or the processing logic 128 receive from a back-up storage unit an indication that the storage capacity available in the back-up storage unit is less than a specified capacity.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • Operation 518 shows accepting an input for a designation of a second resolution value.
  • Operation 518 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140 , from a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 for designation of a particular resolution value to which to degrade a residue of a video/audio data stream, such as 6 kB/second.
  • Such an input may be initiated by an action by a user 104 , 110 , 118 , 130 , 132 , 134 , and/or 136 , e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140 , or it may be initiated by some combination of human and automated action.
  • processing software such as the processor 126 and/or the processing logic 128 and/or devices 138 , 140
  • FIG. 6 depicts several alternative implementations of the high-level flowchart of FIG. 4 .
  • Operation 404 degrading the residue of the video/audio data stream to the second resolution, if the condition is met—may include the following operations: 600 and/or 602 .
  • Operation 600 depicts degrading the residue to the second resolution using a compression algorithm.
  • Operation 600 may include, for example, degrading, via a processor 126 and/or a processing logic 128 and/or a digital video camera 102 and/or a digital video camera 106 and/or a sensor 114 and/or a sensor 116 and/or a device 138 and/or device 140 , a residue of a video/audio data stream to a low resolution relative to retention of a video/audio aspect at a high resolution, such as 12 kB/second compared to 96 kB/second, where the low resolution is obtained using a compression algorithm, e.g., a lossy compression algorithm, on the residue.
  • a compression algorithm e.g., a lossy compression algorithm
  • the compression algorithm may be stored and/or run using the processor 126 and/or the processing logic 128 and/or the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the device 138 and/or device 140 and/or some computational unit operably coupled to one or more of those devices.
  • Operation 602 illustrates degrading the residue to the second resolution using data redaction.
  • Operation 602 may include, for example, degrading, via a processor 126 and/or a processing logic 128 and/or a digital video camera 102 and/or a digital video camera 106 and/or a sensor 114 and/or a sensor 116 and/or a device 138 and/or device 140 , a residue of a video/audio aspect to a low resolution relative to retention of a video/audio aspect of the video/audio data stream, such as 12 kB/second compared to 96 kB/second, where the low resolution is obtained using data redaction on the residue, by redacting data representing, e.g., the higher and lower frequencies of audio data in such a residue, and/or the extraneous parts of video data in such a residue, aside from video data of interest in the residue.
  • a program for data redaction may be stored and/or run using the processor 126 and/or the processing logic 128 and/or the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the device 138 and/or device 140 and/or some computational unit operably coupled to one or more of those devices.
  • an implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.
  • any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary.
  • Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and or firmware.
  • Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
  • electrical circuitry includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
  • a computer program e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein
  • electrical circuitry forming a memory device
  • a typical image processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, and applications programs, one or more interaction devices, such as a touch pad or screen, control systems including feedback loops and control motors (e.g., feedback for sensing lens position and/or velocity; control motors for moving/distorting lenses to give desired focuses.
  • a typical image processing system may be implemented utilizing any suitable commercially available components, such as those typically found in digital still systems and/or digital motion systems.
  • a typical data processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities).
  • a typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
  • any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable”, to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.

Abstract

In one aspect, a method related to data management. In addition, other method, system, and program product aspects are described in the claims, drawings, and/or text forming a part of the present application.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is related to and claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Related Applications”) (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC § 119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Related Application(s)).
  • RELATED APPLICATIONS
      • For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/263,587, entitled Saved Image Management, naming Royce A. Levien, Robert W. Lord, and Mark A. Malamud, as inventors, filed Oct. 31, 2005, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
      • For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/264,701, entitled Conditional Alteration of a Saved Image, naming Royce A. Levien, Robert W. Lord, and Mark A. Malamud, as inventors, filed Nov. 1, 2005, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
      • For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/364,496, entitled Imagery Processing, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, and John D. Rinaldo, Jr., as inventors, filed Feb. 28, 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
      • For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/376,627, entitled Data Management of a Data Stream, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, and John D. Rinaldo, Jr., as inventors, filed Mar. 15, 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
      • For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/396,279, entitled Data Management of an Audio Data Stream, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, and John D. Rinaldo, Jr., as inventors, filed Mar. 31, 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
      • For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/413,271, entitled Data Management of Audio Aspects of a Data Stream, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, and John D. Rinaldo, Jr., as inventors, filed Apr. 28, 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
      • For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/434,568, entitled Degradation/Preservation Management of Captured Data, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, and John D. Rinaldo, Jr., as inventors, filed May 15, 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
      • For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/441,785, entitled Preservation and/or Degradation of a Video/Audio Data Stream, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, and John D. Rinaldo, Jr., as inventors, filed May 26, 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
  • The United States Patent Office (USPTO) has published a notice to the effect that the USPTO's computer programs require that patent applicants reference both a serial number and indicate whether an application is a continuation or continuation-in-part. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO Official Gazette Mar. 18, 2003, available at http://www.uspto.gov/web/offices/com/sol/og/2003/week11/patbene.htm. The present applicant entity has provided above a specific reference to the application(s) from which priority is being claimed as recited by statute. Applicant entity understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, applicant entity understands that the USPTO's computer programs have certain data entry requirements, and hence applicant entity is designating the present application as a continuation-in-part of its parent applications as set forth above, but expressly points out that such designations are not to be construed in any way as any type of commentary and/or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s).
  • All subject matter of the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Related Applications is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
  • TECHNICAL FIELD
  • The present application relates, in general, to data management.
  • SUMMARY
  • In one aspect, a method related to data management includes but is not limited to accepting input for designating a video/audio aspect of a video/audio data stream; and accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
  • In one aspect, a system related to data management includes but is not limited to circuitry for accepting input for designating a video/audio aspect of a video/audio data stream; and circuitry for accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution. In addition to the foregoing, other system aspects are described in the claims, drawings, and text forming a part of the present application.
  • In one or more various aspects, related systems include but are not limited to circuitry and/or programming and/or electromechanical devices and/or optical devices for effecting the herein-referenced method aspects; the circuitry and/or programming and/or electromechanical devices and/or optical devices can be virtually any combination of hardware, software, and/or firmware configured to effect the herein-referenced method aspects depending upon the design choices of the system designer skilled in the art.
  • In one aspect, a program product related to data management includes but is not limited to a signal bearing medium bearing one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream; and one or more instructions for accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution. In addition to the foregoing, other program product aspects are described in the claims, drawings, and text forming a part of the present application.
  • In addition to the foregoing, various other method, system, and/or program product aspects are set forth and described in the teachings such as the text (e.g., claims and/or detailed description) and/or drawings of the present application.
  • The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent in the teachings set forth herein.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 depicts two exemplary environments in which the methods and systems described herein may be represented;
  • FIG. 2 depicts a high-level logic flowchart of an operational process;
  • FIG. 3 depicts several alternative implementations of the high-level flowchart of FIG. 2;
  • FIG. 4 illustrates a high-level logic flowchart of an operation process;
  • FIG. 5 depicts several alternative implementations of the high-level flowchart of FIG. 4; and
  • FIG. 6 depicts several alternative implementations of the high-level flowchart of FIG. 4.
  • The use of the same symbols in different drawings typically indicates similar or identical items.
  • DETAILED DESCRIPTION
  • In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
  • FIG. 1 depicts two exemplary environments in which the methods and systems described herein may be represented. In the depicted exemplary environment 100, illustrated are a variety of exemplary sensors: a digital video camera 102 operated by one or more users represented by user 104, where the digital video camera 102 may have a capability to record audio input; a digital video camera 106 used in conjunction with a digital still camera 108, where the digital video camera 106 and/or digital still camera 108 may either or both have a capability to record audio input, both operated by one or more users represented by user 110; and a sensor suite 112 comprising more than one sensor represented by sensor 114 and sensor 116 (wherein the sensors 114 and 116 may be but need not be physically co-located, and may be but need not be of the same type, e.g., sensor 114 may be an infrared device and sensor 116 may be a radar device, or, e.g. sensor 114 may be a microphone and the sensor 116 may be an infrared/visible light device), the sensor suite being operated by one or more users represented by user 118. Taken by themselves, each of the sensors 114 and 116 are exemplary of single independent sensors, and further, either of the sensors 114 or 116 may be audio sensors. The exemplary sensors may represent a variety of devices for the detection and/or the recording and/or the transmission of imagery aspects, e.g., images, and/or audio aspects, e.g., instances of particular voices and/or instances of particular sounds, including but not limited to microphones, digital video cameras, digital still cameras, digital sensor (e.g. CCD or CMOS) arrays, and radar sets. The exemplary users 104, 110, and/or 118 may, for example, operate the exemplary sensors manually or may supervise and/or monitor their automatic operation. The exemplary users 104, 110, and/or 118 may operate the exemplary sensors in physical proximity to the sensors or remotely. The exemplary sensors may also operate autonomously without exemplary users 104, 110, and/or 118. As used herein, “video/audio aspect” and “video/imagery/audio aspect” include a video aspect and/or an imagery aspect and/or an audio aspect, where “video aspect” and “imagery aspect” include data representing one or more moving or still images of one or more persons and/or objects and “,audio aspect” includes audio data representing one or more instances of one or more human voices and/or one or more sounds. Similarly, “video/audio data” and “video/imagery/audio data” include video data and/or imagery data and/or audio data, where “video data” and “imagery data” include data representing moving or still visual representations of objects and/or people and “audio data” includes data representing voices and/or sounds. Further, “video/audio data stream” and “video/imagery/audio data stream” include a data stream including video data and/or imagery data and/or audio data; and “video/audio input” and “video/imagery/audio input” include input that includes video data and/or imagery data and/or audio data.
  • The exemplary sensors may be used to detect and/or record and/or transmit images and/or sounds and/or other data related to a wide variety of objects, represented in FIG. 1 by exemplary objects, a sphere 120 and a cube 122. The sphere 120 and/or the cube 122 may be reflectors and/or emitters of electromagnetic radiation such as visible light and/or microwaves, reflectors and/or emitters of particulate radiation such as electrons and/or neutrons, and/or reflectors and/or emitters of sonic energy. The sphere 120 and the cube 122 are representative of any object(s) or groups of objects, images and/or emitting and/or reflecting sources of sounds and/or other related data which may be detectable and/or recordable and/or transmissible by the exemplary sensors, including but not limited to persons, animals, buildings, roads, automobiles, trucks, aircraft, ships, spacecraft, landscape and/or seascape features, vegetation, and/or celestial objects. When used together in any given example herein, the exemplary sphere 120 and the exemplary cube 122 generally represent two distinct objects which may or may not be of the same or of a similar type, except where otherwise required by the context, e.g., a sphere 120 and a cube 122 used together in an example may represent a first particular object and a second particular object, e.g., a particular person and a particular building, or a particular first aircraft and a particular second aircraft, respectively. When used alone in any given example herein, the designated exemplary object, e.g., the sphere 120 or the cube 122, generally represents the same object, except where otherwise required by the context, e.g., a sphere 120 used alone in an example generally represents a single object, e.g., a single building, and a cube 122 used alone generally represents a single object, e.g., a particular person.
  • Each of the exemplary sensors may detect and/or record and/or transmit images and/or sounds and/or other related data of the exemplary objects in a variety of combinations and sequences. For instance, the digital video camera 102 may detect and/or record and/or transmit an image and/or sound and/or other related data of the sphere 120 and then an image and/or sound and/or other related data of the cube 122 sequentially, in either order; and/or, the digital video camera 106 may detect and/or record and/or transmit a single image and/or sound and/or other related data of the sphere 120 and the cube 122 together.
  • Similarly, the digital video camera 106 may detect and/or record and/or transmit an image and/or sound and/or other related data of the sphere 120 and of the cube 122 sequentially, in either order, and/or of the sphere 120 and the cube 122 together, before, after, partially simultaneously with, or simultaneously with an operation of the digital still camera 108. The digital still camera 108 may detect and/or record and/or transmit an image and/or sound and/or other related data of the sphere 120 and of the cube 122 sequentially, in either order, and/or of the sphere 120 and the cube 122 together, before, after, partially simultaneously with, or simultaneously with an operation of the digital video camera 106.
  • Similarly, the sensor 114 and the sensor 116 of the sensor suite 112 may detect and/or record and/or transmit an image and/or sound and/or other related data of the sphere 120 and of the cube 122 sequentially, in either order, and/or of the sphere 120 and the cube 122 together, before, after, partially simultaneously with, or simultaneously with respect to each other.
  • Such images and/or sounds and/or related data may be recorded and/or transmitted via a computer or computers represented by the network 124 and/or directly to a processor 126 and/or processing logic 128, which accept data representing imagery aspects and/or sounds and/or related data pertaining to the exemplary objects. The processor 126 represents one or more processors that may be, for example, one or more computers, including but not limited to one or more laptop computers, desktop computers, and/or other types of computers. The processing logic 128 may be hardware/software/firmware (e.g., hardware and/or software and/or firmware) associated with the processor 126 and capable of accepting and/or processing data representing imagery and/or sounds and/or other related data aspects of the exemplary objects from the exemplary sensors and from memory in the case of data stored in memory. Such processing may include but is not limited to comparing at least a portion of the data from one sensor with at least a portion of the data from the other sensor, and/or applying a mathematical process and/or heuristic process to at least a portion of the data from one sensor with at least a portion of the data from the other sensor, and/or accepting input related to the analysis, manipulation, and/or retention of data from the sensors, including but not limited to live, substantially live, and/or retained data, e.g., stored in memory. Such processing may also include, but is not limited to, deriving third data from combining at least a portion of the data from one sensor with at least a portion of the data from another sensor.
  • The digital video camera 102, the digital video camera 106, the sensor 114 and/or the sensor 116 (operating as components of sensor suite 112 or separately as single independent sensors) may be capable of detecting and/or recording and/or transmitting information representing video/audio input and accepting input representing information for the manipulation and/or retention of such video/audio information, including but not limited to accepting input for a designation of a reference designator in a video/audio data stream (e.g., a data stream including video and/or audio information) originating from one of the exemplary sensors via detection and/or transmission and/or playback; accepting input for a designation of a temporal beginning designator and/or a beginning demarcation designator in such a video/audio data stream; accepting input for a designation of a temporal ending designator and/or an ending demarcation designator in such a video/audio data stream; and accepting input for retaining at a high resolution a portion of such a video/audio data stream beginning substantially at the temporal beginning designator and/or the beginning demarcation designator and ending substantially at the temporal ending designator and/or the ending demarcation designator. Such input may include confirmation of previous input. Further, the processor 126 and/or the processing logic 128 may be capable of receiving such a video/audio data stream from the exemplary sensors and/or from other computing resources and/or capable of playback of such a video/audio data stream that has been previously retained within the processor 126 and/or the processing logic 128 and/or elsewhere. In addition, processor 126 and/or the processing logic 128 may be capable of accepting input representing information for the manipulation and/or retention of such audio information, including the input described herein in connection with the exemplary sensors.
  • In accepting input, an embodiment may accept input initiated in a variety of ways, including but not limited to initiation by one or more human users such as the users 104, 110, 118. and/or 130; by the action of one or more processors and/or processing logic integral with, associated with, and/or operably coupled to a device such as the digital video camera 102; by the action of a one or more processors such as the processor 126 and/or by processing logic such as the processing logic 128; and/or by a combination of human and processor/processing logic interaction, such as a user 130 interacting with the digital still camera 108 and/or the processor 126 and/or the processing logic 128.
  • Accepting input from one or more human users such as the users 104, 110, 118. and/or 130 may include but is not limited to accepting input initiated by interaction with various interface devices such as computer mouse devices, keyboards, and graphical user interfaces; with interface devices that detect sound, such as microphones; with interface devices that detect electromagnetic radiation, such as visible and/or infrared light sensors and cameras; and with interface devices that present visual interface features such as graphical user interfaces.
  • Accepting input initiated by the action of one or more processors and/or processing logic, such as the processor 126 and/or the processing logic 128 may include but is not limited to accepting input initiated by a processor and/or processor logic analysis of a data stream including detection of video/imagery/audio data that satisfies certain conditions and/or parameters that require or indicate the usefulness of designation of those aspects or of reference points indicating the presence and/or limits of those aspects. For example, the processor 126 and/or the processing logic 128 may, in an analysis of a video/imagery/audio data stream, whether the stream be live, substantially live, or retained data, detect the beginning of voice of a particular person of interest whose vocal characteristics are available to the processor 126 and the processing logic 128 and which are used to define detection/recognition parameters, and the processor 126 and/or the processing logic 128 may, upon detection of the voice using those parameters, initiate input to designate a portion of the data stream including the voice for retention.
  • Accepting input initiated by a combination of human and processor/processing logic interaction, such as a user 130 interacting with the digital still camera 108 and/or the processor 126 and/or the processing logic 128, may include but is not limited to a user such as user 110 interacting with the digital video camera 106, the processor 126, and the processing logic 128 to review a video/imagery/audio data stream, detect video/imagery/audio aspects of interest such as images and voices of particular people and to designate for retention, command retention of, and retain those aspects of interest.
  • With regard to accepting input designating a video/imagery aspect and/or an audio aspect of a video/audio data stream, such input may represent an indication from an exemplary user 104, 110, 118, and/or 130, or from the processor 126 and/or the processing logic 128, of a video/imagery aspect and/or an audio aspect, e.g., video/imagery/audio information of interest, such as a particular human voice or a particular mechanical sound, e.g., an auto engine, or the relative absence of sound, such as a relative silence between two human speakers or two musical phrases, and/or an image of a particular person of interest. Such designation may be for the purpose or purposes of, e.g., retention at high resolution, interactive review of the portion of the video/audio data stream of interest, or analysis of the portion of interest. A video/imagery aspect and/or an audio aspect may be characterized at least in part by a temporal beginning, a temporal ending, an intensity and/or range of intensities and/or distribution of intensities, a frequency and/or range of frequencies and/or distribution of frequencies.
  • With regard to input for a designation of a reference designator in a video/audio data stream, such input may represent an indication from an exemplary user 104, 110, 118, and/or 130, or from the processor 126 and/or the processing logic 128, of video/imagery/audio information of interest, such as a particular human voice or a particular mechanical sound, e.g., an auto engine, or the relative absence of sound, such as a relative silence between the speeches of two human speakers or two musical phrases, or an image of a particular object of interest. The reference designator may be designated in the video/audio data stream such that it falls within and/or references a place within the portion of the video/audio data stream comprising the particular video/imagery/audio aspect of interest. The reference designator may be designated via initiating input in a variety of ways, including but not limited to pressing a button on a computer interface device, manipulating features of a graphical interface such as pull-down menus or radio buttons, speaking into a microphone, and/or using the processor 126 and/or the processing logic 128 to initiate automatically such input when the data in a video/audio data stream satisfies some criteria for video/imagery/audio data of interest.
  • With regard to input for designation of a temporal beginning designator and/or a beginning demarcation designator in a video/audio data stream, such input may represent an indication from an exemplary user 104, 110, 118, and/or 130, or from the processor 126 and/or the processing logic 128, of a point in the video/audio data stream at which a portion of interest of the video/audio data stream begins, such as (but not limited to) the end of a relative silence (e.g., silence except for background and/or artifact noise) occurring last before a designated reference designator, the beginning of the sound of interest or of one or more of the sounds accompanying a sound of interest, or the end of a sound occurring last before a designated reference designator, or the beginning of a video image of a particular person of interest. The temporal beginning designator and/or the beginning demarcation designator may be designated in the video/audio data stream such that it falls within and/or references a place at or near the beginning of the portion of the video/audio data stream comprising the particular sound of interest. The temporal beginning designator and/or the beginning demarcation designator may be designated via initiating input in a variety of ways, including but not limited to pressing a button on a computer interface device, manipulating features of a graphical interface such as pull-down menus or radio buttons, speaking into a microphone, and/or using the processor 126 and/or the processing logic 128 to initiate automatically such input when the data in a video/audio data stream satisfies some criteria for demarcation of video/imagery/audio data of interest;
  • With regard to input for designation of a temporal ending designator and/or an ending demarcation designator in a video/audio data stream, such input may represent an indication from an exemplary user 104, 110, 118, and/or 130, or from the processor 126 and/or the processing logic 128, of a point in the video/audio data stream at which a portion of interest of the video/audio data stream ends. The temporal ending designator and/or the ending demarcation designator may represent the point in the video/audio data stream falling at the end of a portion of interest, such as (but not limited to) the end of the presence of an image of a vehicle of interest, the end of a relative silence (e.g., silence except for background and/or artifact noise) occurring just after the end of the sound of interest or of one or more of the sounds accompanying a sound of interest, or the end of a sound occurring just after a designated reference designator. The temporal ending designator and/or the ending demarcation designator may be designated in the video/audio data stream such that it falls within and/or references a place at or near the end of the portion of the video/audio data stream comprising the particular sound of interest. The temporal ending designator and/or the ending demarcation designator may be designated via initiating input in a variety of ways, including but not limited to pressing a button on a computer interface device, manipulating features of a graphical interface such as pull-down menus or radio buttons, speaking into a microphone, and/or using the processor 126 and/or the processing logic 128 to initiate automatically such input when the data in a video/audio data stream satisfies some criteria for video/imagery/audio data of interest.
  • With regard to input for retaining at a high resolution a portion of a video/audio data stream, including but not limited to a video/imagery/audio aspect of a video/audio data stream, such high resolution retention includes but is not limited to storage of a relatively large amount of data, compared to storage of portions of the data stream not selected for high resolution retention, as described herein. Such input may include but is not limited to designation of a high resolution value, e.g., 0.5 MB/second, and/or frequency spectrum characteristics, e.g., lower and upper frequency cut-offs. For example, the user 130 may provide input to the processor 126 and/or the processing logic 128 to identify a portion of a video/audio data stream for retention at high resolution, e.g., input designating an audio aspect of a video/audio data stream and/or input designating a video/imagery aspect of a video/audio data stream. The processor 126 and/or the processing logic 128 may accept the input, enabling the identified portion (e.g., a designated audio aspect) to be stored with high fidelity relative to the source video/audio and with a relatively small proportion of data (if any) discarded, while the portion or portions not selected for high resolution retention, e.g., a residue, may be stored at a relatively lower resolution, e.g., with a relatively higher proportion of data discarded, e.g., to save storage resources.
  • Retention of a portion, e.g., a video/imagery/audio aspect, of a video/audio data stream at a relatively high resolution and retention of portions of the video/audio data stream not included in the portion designated for retention at the high resolution, e.g., a residue, may result in storage of the portion not included in the portion to be retained at the high resolution at one or more resolutions that do not use all of the data available, such that the portion not to be retained at the high resolution is degraded in storage. Degradation of a portion not included in the portion retained or designated for retention at high resolution may be achieved by retaining the not-included portion at one or more lower resolutions, where the one or more lower resolutions may be a function of the distance in the video/audio data stream between the portion to be retained at a high resolution and the portion to be retained at one or more lower resolutions, including but not limited to degrading blocks of data not included in the high resolution portion according to their distance from the high resolution portion (e.g., degrading to one lower resolution a portion between 0 and 60 seconds from the high resolution portion, and degrading to another, even lower resolution a portion between 60 and 120 seconds from the high resolution portion, and so on). One or more inputs may be accepted to set one or more rules by which a portion of a video/audio data stream not included in a portion designated for high resolution retention is degraded and/or retained at one or more lower resolutions. One or more inputs for degradation may be accepted to specify parameters including but not limited to one or more specific resolution values (e.g., 12 kB/sec and/or 20 kB/sec), one or more frequency range characteristics, and/or one or more frequency distribution characteristics. Degradation to one or more lower resolutions may be correlated to one or more specified frequency ranges and/or one or more specified frequency distribution characteristics, such as specific lower resolutions for all sounds above 100 Hz, and/or between 2 kHz and 20 kHz, and/or below 5 kHz, and/or one or more specific lower resolutions for all sounds conforming to a specific frequency distribution characteristic of a particular human voice or musical instrument, and/or, with regard to video/imagery, specific lower resolution for parts of a video/audio data stream that do not include video/imagery of a particular color range. Degradation to one or more lower resolutions may be correlated to the time frame in which a portion of a video/audio data stream has been detected and/or recorded and/or transmitted and/or stored, e.g., video/audio data detected and/or recorded and/or transmitted and/or stored within a week may be retained at the resolution at which it was detected and/or recorded and/or transmitted and/or stored, while data detected and/or recorded and/or transmitted and/or stored between one and two weeks ago may be degraded to 80% of the resolution at which it was detected and/or recorded and/or transmitted and/or stored, and data detected and/or recorded and/or transmitted and/or stored between two and four weeks ago may be degraded to 60% of the resolution at which it was detected and/or recorded and/or transmitted and/or stored, and so on. One or more inputs may be accepted to confirm previous inputs or default values related to degrading data and/or retaining such data at a relatively lower resolution value. One or more inputs may be accepted for degrading a portion of a video/audio data stream not included in a portion designated for retention at high resolution. Inputs may include but not be limited to tactile, sonic, and/or visual inputs. Such an input may be initiated by an action by a user 104, 110, 118, or 130, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., audio processing software such as the processor 126 and/or the processing logic 128, or it may be initiated by some combination of human and automated action.
  • In addition to accepting inputs for degrading to at least one lower resolution a portion of a video/audio data stream not included in a portion designated for retention at high resolution, degrading and/or retaining at a lower resolution a portion of a video/audio data stream not included in a portion designated for retention at high resolution may also be performed. Retention at one or more lower resolutions may be performed, e.g., by using one or more memory locations associated with and/or operably coupled to the digital video camera 102 and/or the digital video camera 106 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128. Degradation may be performed by methods including but not limited to data compression and/or data redaction.
  • With respect to this example, input for the identification of a particular portion for retention at a relatively higher resolution does not preclude input for the storage of a distinct and/or an overlapping portion of the data stream at a distinct higher resolution compared to the retention resolution of one or more portions not identified for retention at a higher resolution, e.g., one or more portions of a data stream may be identified for retention at one or more relatively high resolutions. Similarly, input for the identification of a particular portion for retention at a relatively lower resolution does not preclude input for the storage of a distinct and/or an overlapping portion of the data stream at a distinct lower resolution compared to the retention resolution of one or more portions identified for retention at a higher resolution, e.g., one or more portions of a data stream may be identified for retention at one or more relatively lower resolutions.
  • Further, a video/imagery aspect may be designated for retention or retained at a particular resolution on the basis of a presence or absence of some audio aspect of a video/audio stream, and an audio aspect may be designated for retention or retained at a particular resolution on the basis of a presence or absence of some video/imagery aspect of a video/audio stream. For instance, the presence of an image of a particular person of interest in a video/audio data stream may serve as the basis for a designation of an audio aspect of the video/audio data stream for retention at high resolution, and vice versa.
  • A particular portion identified for retention at a high or a low resolution may include more than one data set that may generally be considered to constitute a “frame” in a video/audio data stream. With respect to this example, digital video cameras 102 and/or 106 are representative of any sensor or sensor suite capable of detecting and/or recording and/or transmitting video/audio input as one or more data streams representing the video/audio information. Such input may be initiated in a variety of ways, including but not limited to pressing a button on a computer interface device, manipulating features of a graphical interface such as pull-down menus or radio buttons, speaking into a microphone, and/or using the processor 126 and/or the processing logic 128 to initiate automatically such input when the data in a video/audio data stream satisfies some criteria for video/imagery/audio data of interest.
  • With regard to retaining at a high resolution a portion of a video/audio data stream, e.g., a video/imagery/audio aspect of the video/audio data stream, such retention may include storage in computer memory, such as memory associated with and/or operably coupled to the processor 126 and/or the processing logic 128.
  • The exemplary sensors may be capable of detecting and/or recording and/or transmitting one or more imagery and/or sound and/or other related data aspects of the exemplary objects, the one or more imagery aspects and/or sound and/or other related data aspects being defined in part, but not exclusively, by exemplary parameters such as focal length, aperture (f-stop being one parameter for denoting aperture), t-stop, shutter speed, sensor sensitivity (such as film sensitivity (e.g., film speed) and/or digital sensor sensitivity), exposure (which may be varied by varying, e.g., shutter speed and/or aperture), frequency and/or wavelength, focus, depth of field, white balance (and/or white point, color temperature, and/or micro reciprocal degree or “mired”), signal/noise ratio, an identified voice of a person or machine, and/or flash (sound aspects are described elsewhere herein). Some or all of the parameters that may define at least in part imagery and/or sounds and/or other related data aspects may have further defining parameters. For example, a frequency and/or wavelength parameter may be associated with one or more bandwidth parameters; and a flash parameter may be associated with one or more parameters for, e.g., duration, intensity, and/or special distribution. Note that although certain examples herein discuss bracketing and/or imagery aspects and/or exemplary parameters in the context of more or less “still” images for sake of clarity, techniques described herein are also applicable to streams of images, such as would typically be produced by digital video cameras 102/106 and thus the use of such, and other, exemplary terms herein are meant to encompass both still and video bracketing/aspects/parameters/etc. unless context dictates otherwise. For instance, the bracketing might include bracketing over, say, 20 frames of video.
  • Each of the exemplary sensors may detect and/or record and/or transmit one or more imagery aspects and/or sound aspects and/or other related data aspects of an exemplary object at more than one setting of each of the available parameters, thereby bracketing the exemplary object. Generally, “bracketing” includes the imagery technique of making several images of the same object or objects using different settings, typically with a single imagery device such as digital video camera 106. For example, the digital video camera 106 may detect and/or record and/or transmit a series of imagery aspects of the cube 122 at a number of different f-stops; before, after, partially simultaneously with, and/or simultaneously with that series of imagery aspects, another digital video camera 106 and/or another type of sensor, such as sensor 114 may detect and/or record and/or transmit a series of imagery aspects of the sphere 120 and of the cube 122 at a number of different white balances. The processor 126 and/or the processing logic 128 may then accept, via the network 124 or directly, data representing the imagery aspects detected and/or recorded and/or transmitted by the digital video cameras 102 and 106 or by the digital video camera 106 and the sensor 114. The processor 126 and/or the processing logic 128 may then combine at least a portion of the data from one of the sensors with at least a portion of the data from another sensor, e.g., comparing the data from the two sensors, for example, deriving an identity of color and orientation from the bracketing imagery aspect data of two cubes 122 from digital video camera 106 and sensor 114.
  • Exemplary digital video cameras 102 and/or 106 may also be capable of detecting and/or recording and/or transmitting video/audio input as one or more data streams representing the video/audio information. Exemplary users 104 and/or 110 and/or another person and/or entity such as user 130 may provide input to the digital video camera 102 and/or the processor 126 and/or the processing logic 128 to select at least a portion of a data stream representing the video/audio information for retention at high resolution (where retention at high resolution is as described herein), e.g., imagery such as an image of a particular object and/or an audio aspect such as an instance of a particular voice and/or an instance of a particular sound. With respect to this example, digital video cameras 102 and/or 106 are representative of any sensor or sensor suite capable of detecting and/or recording and/or transmitting video/audio input as one or more data streams representing the video/audio information.
  • Those skilled in the art will appreciate that the explicitly described examples involving the exemplary sensors (e.g., the digital video camera 102, the digital video camera 106, the digital still camera 108, and the sensor suite 112 including sensor 114 and sensor 116), the exemplary users (e.g., users 104, 110, and 118), the exemplary objects (e.g., the sphere 120 and the cube 122), the network 124, the exemplary processor 126, and the exemplary processing logic 128 constitute only a few of the aspects illustrated by FIG. 1A.
  • In the exemplary environment 131, users 130, 132, 134, and 136 may be participants in a teleconference conducted using voice-over-internet-protocol (“VoIP”) technology, such as that provided by such commercial concerns as Vonage® and Skype™. User 132 uses device 138, which may include a computer, a telephone equipped for VoIP communication such as an analog telephone adaptor, an IP phone, or some other item of VoIP-enabling hardware/software/firmware, to conduct a conversation by audio means with users 134 and 136 using device 140, which also may include a computer, a telephone equipped for VoIP communication such as an analog telephone adaptor, an IP phone, or some other item of VoIP-enabling hardware/software/firmware. The devices 138 and 140 are representative of any number of such devices that may be used to conduct a VoIP teleconference including any number of participating parties. Because VoIP uses packet switching, packets conveying audio data travel between the device 138 and the device 140 by different routes over the network 124 to be assembled in the proper order at their destinations. During a conversation in this exemplary environment, an audio data stream may be formed as packets are created and/or transmitted at a source device, either the device 138 or the device 140, and this audio data stream is reassembled at the destination device. Audio data streams may be formed and reassembled at the devices 138 and 140 simultaneously. Multiple audio data streams representing different speakers or other distinct audio information sources may be generated and reassembled by the devices 138 and/or 140 during a VoIP teleconference.
  • Where VoIP technology is being used in conjunction with users using standard telephone equipment connected to the Public Switched Telephone Network (“PSTN”), packets created by VoIP equipment such as the device 138 and/or 140 are conveyed over the network 124, reassembled by a device analogous to the devices 138 and/or 140, and transmitted to the standard telephone user over the PSTN.
  • An exemplary embodiment may include accepting input designating an audio aspect of an audio data stream created at the device 138 and/or the device 140, where the designation may be for the purpose or purposes of, e.g., retention at high resolution, interactive review of the portion of the audio data stream of interest, or analysis of the portion of interest. An exemplary embodiment may include accepting input for a designation of a reference designator in an audio data stream created at the device 138 and/or the device 140, accepting input for a designation of a beginning demarcation designator an audio data stream created at the device 138 and/or the device 140, accepting input for a designation of an ending demarcation designator an audio data stream created at the device 138 and/or the device 140, accepting input for retaining at high resolution, e.g., storing at high resolution in computer memory, audio data from the audio data stream beginning substantially at the beginning demarcation designator and ending substantially at the ending demarcation designator, and retaining at a high resolution such audio data. These operations may be performed by, for example the processor 126 and/or the processing logic 128, which may be incorporated with the device 138 and/or 140, partially incorporated with the device 138 and/or 140, or separated but operably coupled to the device 138 and/or 140. Each of these operations may be initiated by human action, e.g., the user 130 and/or 132 and/or 134 and/or 136 pressing a button, speaking into a microphone, and/or interacting with graphical user interface features, or they may be initiated by operation of some hardware/software/firmware, e.g., audio processing software such as the processor 126 and/or the processing logic 128, or they may be initiated by some combination of human and automated action. Each of these operations may be performed as an audio data stream is being created at the device 138 and/or 140, and/or as an audio data stream is being reassembled at the device 138 and/or 140, and/or as an audio data stream stored from a VoIP teleconference is played back or analyzed.
  • A reference designator may include information such as an identifier that identifies the particular audio data stream of interest and a place in the audio data stream at which the information of interest is present, e.g., a place in the stream at which a particular speaker is speaking, and/or may fall within the audio data stream at such a place. A beginning demarcation designator may include an identifier that identifies the particular audio data stream of interest and an identifier of the first packet of a sequence of packets of interest and/or may fall within the audio data stream. An ending demarcation designator may include an identifier that identifies the particular audio data stream of interest and an identifier of the last packet of a sequence of packets of interest and/or may fall within the audio data stream.
  • Accepting input for retaining at high resolution a designated aspect of an audio data stream, as described elsewhere herein, may be performed, e.g., by using the devices 138 and/or 140 in addition to the devices for accepting input described in connection with FIG. 1. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., audio processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action. Retaining at a high resolution a portion of an audio data stream designated for retention at a high resolution, as described elsewhere herein, may be performed, e.g., using memory resources associated with and/or operably coupled to the devices 138 and/or 140 in addition to the devices for data retention described in connection with FIG. 1.
  • Accepting input for degradation and/or retaining at a lower resolution a portion of an audio data stream not included in a portion of the audio data stream designated for retention at a high resolution, as described elsewhere herein, may be performed, e.g., by using the devices 138 and/or 140 in addition to the devices for accepting input described in connection with FIG. 1. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action. Degradation and/or retaining at a lower resolution a portion of an audio data stream not included in a portion of the audio data stream designated for retention at a high resolution, as described elsewhere herein, may be performed, e.g., using memory resources associated with and/or operably coupled to the devices 138 and/or 140 in addition to the devices for data retention described in connection with FIG. 1.
  • Those skilled in the art will appreciate that the explicitly described examples involving the exemplary sensors (the digital video camera 102, the digital video camera 106, the digital still camera 108, and the sensor suite 112 including sensor 114 and sensor 116), the exemplary devices (138 and 140) the exemplary users (users 104, 110, 118, 130, 132, 134, and 136), the exemplary objects (the sphere 120 and the cube 122), the network 124, the exemplary processor 126, and the exemplary processing logic 128 constitute only a few of the aspects illustrated by FIG. 1.
  • Following are a series of flowcharts depicting implementations of processes. For ease of understanding, the flowcharts are organized such that the initial flowcharts present implementations via an overall “big picture” viewpoint and thereafter the following flowcharts present alternate implementations and/or expansions of the “big picture” flowcharts as either sub-steps or additional steps building on one or more earlier-presented flowcharts. Those having skill in the art will appreciate that the style of presentation utilized herein (e.g., beginning with a presentation of a flowchart(s) presenting an overall view and thereafter providing additions to and/or further details in subsequent flowcharts) generally allows for a rapid and easy understanding of the various process implementations. In addition, those skilled in the art will further appreciate that the style of presentation used herein also lends itself well to modular and/or object-oriented program design paradigms.
  • FIG. 2 depicts a high-level logic flowchart of an operational process. The illustrated process may include operation 200 and/or operation 202. Operation 200 shows accepting input for designating a video/audio aspect of a video/audio data stream. Operation 200 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating one or more instances of a particular voice and/or mechanical noise such as an automobile engine in a video/audio data stream, by means of, e.g., a reference designator, specification of beginning and/or ending time indices, and/or specification of video and/or audio characteristics. The video/audio data stream may be, for example, a live or substantially live data stream from a sensor or sensors or an apparatus or an apparatus set such as that associated with a VoIP teleconference, such as devices 138 and/or 140, or a stored set of data that is being reviewed in playback or analyzed, either by one or more human users, one or more automated systems, or some combination of the two. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 202 depicts accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution. Operation 202 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for retaining, at a relatively high resolution, of the video/audio aspect of the video/audio data stream designated by the input accepted in operation 200, in one or more memory locations associated with and/or operably coupled to the digital video camera 102 and/or the digital video camera 106 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • FIG. 3 depicts several alternative implementations of the high-level flowchart of FIG. 2. Operation 200—accepting input for designating a video/audio aspect of a video/audio data stream—may include one or more of the following operations: 300, 302,304,306,308,310, 312, and/or 314.
  • Operation 300 shows accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the designating the video/audio aspect of the video/audio data stream includes a designating of at least one instance of a distinct human voice and/or at least one instance of a distinct sound and/or at least one instance of an image of a distinct object. Operation 300 may include, for 30 example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating for inclusion in the video/audio data stream one or more instances of a distinct human voice, e.g., a sequence of utterances by a single speaker or a set of speakers in a live or a recorded conversation, such as a conversation conducted using VoIP, where the voice or voices may be temporally isolated or may be temporally overlapped by other voices and/or sounds but separable by discernment of distinct characteristics such as tonal quality or frequency, by, for instance, a human listener and/or by an automated voice recognition system.
  • Operation 300 may also include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating for inclusion in the video/audio data stream one or more instances of a distinct sound or a set of distinct sounds, e.g., the sounds emitted from a particular musical instrument or a group of instruments, a distinct and particular automobile engine's sonic emissions or a group of such engines' sonic emissions, or some disparate suite of sounds such as one or more machine noises and one or more animal noises, where the sound or sounds of interest may be temporally isolated or may be temporally overlapped by other sounds but separable by use of distinct characteristics such as tonal quality or frequency, by, for example, one or more human listeners and/or one or more automated sound analysis system.
  • Operation 300 may further include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating for inclusion in the video/audio data stream one or more instances of a distinct image or a set of distinct images, e.g., images of people or objects of interest, represented for example by the sphere 120 and/or the cube 122, where the image or images of interest may be partially overlapped by other images but are separable by use of distinct characteristics such as color or shape, by, for example, one or more human users and/or one or more automated image analysis systems.
  • Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 302 illustrates accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes at least one instance of a distinct human voice and/or at least one instance of a distinct sound and/or at least one instance of an image of a distinct object. Operation 302, for example, may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating a video/audio data stream that includes one or more instances of a distinct human voice, e.g., a contribution to a conversation, such as a VoIP teleconference, where the voice or voices may be temporally isolated or may be temporally overlapped by other voices and/or sounds but separable by discernment of distinct characteristics such as tonal quality or frequency, by, for instance, a human listener and/or by an automated voice recognition system.
  • Operation 302 may also include, for instance, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating for inclusion in the video/audio data stream one or more instances of a distinct sound or set of sounds, such as the sonic emissions of a group of distinct and particular machines or of a group of distinct and particular animal calls, e.g., where the sound or sounds of interest may be temporally isolated or may be temporally overlapped by other sounds but separable by use of distinct characteristics such as tonal quality or frequency, by, for example, one or more human listeners and/or one or more automated sound analysis system.
  • Operation 302 may also include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating for inclusion in the video/audio data stream one or more instances of a distinct image or set of distinct images, such as images of particular people or objects of interest, where the image or images of interest may be partially overlapped by other images but are separable by use of distinct characteristics such as color or shape, by, for example, one or more human users and/or one or more automated image analysis systems.
  • Such an input may be initiated by an action by a user 104, 110, 118, 130, 13 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 304 depicts accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes a portion of video/audio data included in a temporal segment of the video/audio data stream. Operation 304 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating a video/audio aspect of the video/audio data stream that includes video and/or audio data from a single segment of the stream with no, or substantially no, time-wise breaks or gaps. Such a temporal segment might run, for instance, from one point in time in the stream to another point in time in the stream. Such a temporal segment might include, for instance, the video and/or audio of a bank customer's interaction with a teller as recorded by a security surveillance system, from the time the customer steps up to the counter to the time he leaves the system's visual field of view. Further, such a temporal segment might exclude sounds and/or voices other than those desired by a human user or selected by an automated processing system through the use of filtering to retain only a voice (or voices) and/or a sound (or sounds) of interest, such as retaining the voices of the customer and the teller in the example of the bank customer's interaction with the teller. It will be appreciated by those skilled in the art that a portion of video/audio data included in a temporal segment of the video/audio data stream may encompass part or all of such video data in the temporal segment. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 306 depicts accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes a portion of video/audio data included in a plurality of non-contiguous temporal segments of the video/audio data stream. Operation 306 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating a video/audio aspect of the video/audio data stream that includes two or more segments of the stream, each of which has no, or substantially no, time-wise breaks or gaps, but which are separated from each other by time-wise breaks or gaps. Such a plurality of temporal segments might include, for example, three instances of a particular human voice in a conversation involving two people, such that the video/audio aspect includes each instance of one of the two voices but excludes the other voice. Similarly, a plurality of temporal segments may be such that the video/audio aspect might include a disconnected series of clips of a video of a person in which she appears in camera range, excluding clips in which she does not appear, and possibly excluding other video images in the frames in which she appears. Further, such a plurality of temporal segments might include, for example, a combination of video and audio data, such as a set of video/audio clips, separated from each other in time, of one person in a conversation, each of which shows her speaking and contains the audio of her speech, but omits those periods in which she is silent. Such a plurality of temporal segments might exclude, from any or all of the temporal segments, sounds and/or voices and/or images other than those desired by a human user or selected by an automated processing system through the use of filtering and/or masking and/or image discrimination to retain only a voice (or voices) and/or a sound (or sounds) and/or an image (or images) of interest. To take another example, a video/audio aspect might include the video data representing a single person in a set of video/audio clips, each separated in time from the others, of a crowded room, as determined by a human user and/or by an automated object discrimination system. Another video/audio aspect might include the audio data of one particular person among many in a multiple-person conversation, and still another video/audio aspect might include video of such a person only when he is in camera range and audio data consisting of his contributions to the conversation while omitting audio data of others' speech. Such a video/audio aspect might exclude sounds and/or voices and/or images other than those desired by a human user and/or selected by an automated processing system through the use of filtering and/or masking and/or image discrimination to retain only a voice (or voices) and/or a sound (or sounds) and/or an image (or images) of interest. It will be appreciated by those skilled in the art that a portion of video/audio data included in a plurality of temporal segments of the video/audio data stream may encompass part or all of such video data in one or more of the temporal segments of the plurality of such segments. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 308 shows accepting input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio data stream is a live and/or a substantially live video/audio data stream. Operation 308, for example, may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating a video/audio aspect of a video/audio data stream originating from the digital video camera 106, where the video/audio data stream is originating from the digital video camera 106 as, or substantially as (e.g., with a minimal delay), the data is being detected and/or recorded and/or transmitted. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 310 shows accepting input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio data stream is a retained video/audio data stream. Operation 310, for example, may include, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating a video/audio aspect of a video/audio data stream from the digital video camera 106, where the video/audio aspect is being played backed from data storage or is being recalled from storage for analysis. Such an input may be initiated by an action by auser 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 312 illustrates accepting input for designating a first resolution value. Operation 312 may include, for instance, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for designating a particular high resolution value for audio data, such as 96 kB/sec (as compared to a relatively lower resolution value such as 12 kB/sec), and/or for designating a particular high resolution value for video data of a video/audio aspect of a video/audio data stream, such as 1 MB/sec (as compared to a relatively lower value of 0.1 MB/sec). Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 314 depicts accepting a tactile input and/or a sonic input and/or a visual input. Operation 314 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, where the input may be initiated by a user 104, 110, 118, 130, 132, 134, and/or 136 mechanically manipulating an interface device and/or feature, such as a mouse input device, and/or interacting with a drop-down menu of a graphical user interface.
  • Operation 314 may further include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, where the input may be initiated by a user 104, 110, 118, 130, 132, 134, and/or 136 speaking and/or generating some sonic signal such as a click or a whistle into an interface device such as a microphone, or where the input may be initiated by an automated operation of the processor 126 and/or the processing logic 128 playing back a recording of such a sonic signal.
  • Operation 314 may also include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, where the input may be initiated by a user 104, 110, 118, 130, 132, 134, and/or 136 interacting with a video input device such as a camera and/or a light/infrared sensor and/or a visual component of a graphical user interface, or where the input may be initiated by an automated operation of the processor 126 and/or the processing logic 128 playing back a recording of a visual signal or of an interaction with a graphical user interface. It should be understood that visual input is not limited to the visual spectrum of a human, but also may include virtually any portion of the electromagnetic spectrum that a machine and/or an apparatus is capable of detecting. It should also be understood that examples of visual input may include but are not limited to gestural input, e.g., a hand sign, detection of captured electromagnetic spectrum data indicative of a motion of a capturing device (e.g., such as might be detected if a camera were moved in a predefined way). It should also be understood that a sign may include but is not limited to a static sign (e.g., holding up a victory sign with two fingers and/or holding up a printed sign that says “now”), and/or a dynamic sign (e.g., something like clapping or waving).
  • FIG. 4 illustrates a high-level logic flowchart of an operation process. The illustrated process may include the following operations: 200 (described elsewhere herein), 202 (described elsewhere herein), 400, 402, and/or 404.
  • Operation 400 illustrates retaining the video/audio aspect of the video/audio data stream at the first resolution. Operation 400 may include, for example, retaining a video/audio aspect of a video/audio data stream, where the video/audio aspect is designated by an input and such retention is in response to an input to retain the video/audio aspect, at a relatively high resolution in one or more memory locations associated with and/or operably coupled to the digital video camera 102 and/or the digital video camera 106 and/or and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140.
  • Operation 402 shows accepting input for degrading a residue of the video/audio data stream to a second resolution, wherein the residue is excluded from the video/audio aspect, and wherein the second resolution is less than the first resolution, if a condition is met. Operation 402 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading a residue of the video/audio data stream that is not included in a video/audio aspect designated for retention at a relatively high resolution, via, e.g., data redaction and/or data compression, to one or more relatively low resolutions, such as video/audio data included in a temporal segment of the video/audio data stream that is not designated for retention at high resolution and/or temporal segments that are not designated for retention at high resolution. Such a lower resolution may include a resolution of zero (e.g., deletion or non-storage of the residue). Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 404 depicts degrading the residue of the video/audio data stream to the second resolution, if the condition is met. Operation 404 may include, for example, degrading a residue of a video/audio data stream relative to retention of another portion of the video/audio data stream designated for retention at a relatively high resolution, via a processor 126 and/or a processing logic 128 and/or a digital video camera 102 and/or a digital video camera 106 and/or a sensor 114 and/or a sensor 116 and/or a device 138 and/or device 140, to a low resolution, such as 12 kB/second compared to 96 kB/second. Such a degrading may be performed via hardware/software/firmware constituting computational resources and via one or more memory locations, where the computational resources and memory locations are associated with and/or operably coupled to the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140.
  • FIG. 5 depicts several alternative implementations of the high-level flowchart of FIG. 4. Operation 402—accepting input for degrading a residue of the video/audio data stream to a second resolution, wherein the residue is excluded from the video/audio aspect, and wherein the second resolution is less than the first resolution, if a condition is met—may include the following operations: 500, 502, 504, 506, 508, 510, 512, 514, 516, and/or 518.
  • Operation 500 shows accepting input for degrading the residue to the second resolution, wherein the second resolution is determined as a function of a distance in the video/audio data stream between at least a part of the video/audio aspect and at least a part of the residue. Operation 500 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading, via, e.g., data redaction and/or data compression, a residue of a video/audio data stream according to the distance between a part of the residue to be degraded and a part of a video/audio aspect designated for retention at high resolution, e.g., degradation to 75% of the video/audio data available in a residue from between 0 and 30 seconds before the video/audio aspect designated for retention at high resolution, degradation to 50% of the video/audio data available in a residue from between 30 and 60 seconds before the video/audio aspect designated for retention at high resolution, and degradation to 25% of the video/audio aspect available in a residue from between 60 and 90 seconds before the video/audio aspect designated for retention at high resolution. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132,134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 502 illustrates accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a preselected time has elapsed after a specified previous degrading of the residue. Operation 502 for example, may include, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading a residue of a video/audio data stream to a relatively low resolution one week after that residue was stored for the first time by a particular user, e.g., user 104. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 504 depicts accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a time value is framed by a preselected time window. Operation 504, for example, may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading a residue of a video/audio data stream to a relatively low resolution when the time between an initial review of the portion by a user, e.g. user 110, and the present time is framed by, e.g., included within, a preselected time window of one month to six months prior to the present time. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 506 shows accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if at least one of an available storage space is less than a preselected amount, a condition established by a user is met, and/or a criterion corresponding to a storage management algorithm is met. Operation 506 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading a residue of a video/audio data stream to a relatively low resolution, if one or more available storage spaces provide less than a preselected amount of storage space, e.g., less than 50 MB, such that more storage space is made available for a designated video/audio aspect of a video/audio data stream to be retained at a relatively high resolution; and/or a condition established by user 104, such as the passage of one month from a previous access of a video/audio aspect and/or a residue; and/or a storage management algorithm criterion, such as no increase in a combined available storage space of across five storage devices in a month, are met. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 508 illustrates accepting input for degrading the residue to the second resolution if a condition responsive to an examination of at least one other retained set of video/audio data is met. Operation 508, for example, may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading a residue of a video/audio data stream to a relatively low resolution if, upon examination, it is found that another retained set of video/audio data contains information that decreases the usefulness of a high-resolution retention of the residue under consideration for retention at low resolution, such as a finding that a first surveillance record of a location does not include any video/audio record of a particular person in a second surveillance record that includes that person, so that there is no interest in retaining the second surveillance record at high resolution, indicating that the second record, the residue under consideration, may be retained at a relatively low resolution. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 510 shows accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if the condition is met, wherein the condition is related to one or more of a set of events and/or conditions excluding a specified previous degrading of the residue. Operation 510, for example, may include accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading to a relatively low resolution a residue of a video/audio data stream if that residue is being considered for such a degrading immediately after being received from and/or recorded by a sensor, e.g., digital still camera 108. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 512 depicts accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a condition responsive to data received from a device other than a device used for a specified previous degrading of the residue is met. Operation 512 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading residue of a video/audio data stream to a relatively low resolution if a storage medium device that was not used for a specified previous retention of the residue provides an indication that it has less than a particular amount of available storage capacity. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 514 illustrates accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a condition responsive to data received from a device other than a device to be used for the degrading is met. Operation 514 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading a residue of a video/audio data stream to a relatively low resolution if a storage medium that is not to be used for retention of the residue at the low resolution provides an indication that information stored on it does not specify a requirement that the residue be retained at a high resolution, such as an indication from a storage medium not to be used for retention of the residue at a low resolution that a particular vehicle is of interest to a user, e.g., user 118, when video/audio data regarding that vehicle is not included in the residue. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 516 shows accepting input for degrading the residue to the second resolution, wherein the method includes a method implemented in a first device, and wherein the degrading is to be performed if a condition responsive to data received from a second device is met. Operation 516 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, for degrading a residue of a video/audio data stream to a relatively low resolution, where the method related to data management is implemented in the processor 126 and/or the processing logic 128, if the processor 126 and/or the processing logic 128 receive from a back-up storage unit an indication that the storage capacity available in the back-up storage unit is less than a specified capacity.
  • Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • Operation 518 shows accepting an input for a designation of a second resolution value. Operation 518 may include, for example, accepting input, via the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the processor 126 and/or the processing logic 128 and/or the device 138 and/or the device 140, from a user 104, 110, 118, 130, 132, 134, and/or 136 for designation of a particular resolution value to which to degrade a residue of a video/audio data stream, such as 6 kB/second. Such an input may be initiated by an action by a user 104, 110, 118, 130, 132, 134, and/or 136, e.g., pressing a mouse button and/or speaking into a microphone, or the input may be initiated by operation of some hardware/software/firmware, e.g., processing software such as the processor 126 and/or the processing logic 128 and/or devices 138, 140, or it may be initiated by some combination of human and automated action.
  • FIG. 6 depicts several alternative implementations of the high-level flowchart of FIG. 4. Operation 404—degrading the residue of the video/audio data stream to the second resolution, if the condition is met—may include the following operations: 600 and/or 602.
  • Operation 600 depicts degrading the residue to the second resolution using a compression algorithm. Operation 600 may include, for example, degrading, via a processor 126 and/or a processing logic 128 and/or a digital video camera 102 and/or a digital video camera 106 and/or a sensor 114 and/or a sensor 116 and/or a device 138 and/or device 140, a residue of a video/audio data stream to a low resolution relative to retention of a video/audio aspect at a high resolution, such as 12 kB/second compared to 96 kB/second, where the low resolution is obtained using a compression algorithm, e.g., a lossy compression algorithm, on the residue. In this example, the compression algorithm may be stored and/or run using the processor 126 and/or the processing logic 128 and/or the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the device 138 and/or device 140 and/or some computational unit operably coupled to one or more of those devices.
  • Operation 602 illustrates degrading the residue to the second resolution using data redaction. Operation 602 may include, for example, degrading, via a processor 126 and/or a processing logic 128 and/or a digital video camera 102 and/or a digital video camera 106 and/or a sensor 114 and/or a sensor 116 and/or a device 138 and/or device 140, a residue of a video/audio aspect to a low resolution relative to retention of a video/audio aspect of the video/audio data stream, such as 12 kB/second compared to 96 kB/second, where the low resolution is obtained using data redaction on the residue, by redacting data representing, e.g., the higher and lower frequencies of audio data in such a residue, and/or the extraneous parts of video data in such a residue, aside from video data of interest in the residue. In this example, a program for data redaction may be stored and/or run using the processor 126 and/or the processing logic 128 and/or the digital video camera 102 and/or the digital video camera 106 and/or the digital still camera 108 and/or the sensor 114 and/or the sensor 116 and/or the device 138 and/or device 140 and/or some computational unit operably coupled to one or more of those devices.
  • Those having skill in the art will recognize that the state of the art has progressed to the point where there is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. Those having skill in the art will appreciate that there are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and or firmware.
  • The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or wvriting the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
  • In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
  • Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into image processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into an image processing system via a reasonable amount of experimentation. Those having skill in the art will recognize that a typical image processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, and applications programs, one or more interaction devices, such as a touch pad or screen, control systems including feedback loops and control motors (e.g., feedback for sensing lens position and/or velocity; control motors for moving/distorting lenses to give desired focuses. A typical image processing system may be implemented utilizing any suitable commercially available components, such as those typically found in digital still systems and/or digital motion systems.
  • Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation. Those having skill in the art will recognize that a typical data processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
  • All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in any Application Data Sheet, are incorporated herein by reference, in their entireties.
  • The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable”, to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
  • While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this subject matter described herein. Furthermore, it is to be understood that the invention is defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B. and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).
  • While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (59)

1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. A system related to data management, the system comprising:
circuitry for accepting input for designating a video/audio aspect of a video/audio data stream; and
circuitry for accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution.
26. The system of claim 25, further comprising:
circuitry for retaining the video/audio aspect of the video/audio data stream at the first resolution.
27. The system of claim 25, further comprising:
circuitry for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met.
28. The system of claim 25, further comprising:
circuitry for degrading a residue of the video/audio data stream to a second resolution, if a condition is met.
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. A system having a program product related to data management, the program product comprising:
a signal bearing medium bearing
one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream; and
one or more instructions for accepting input for retaining the video/audio aspect of the video/audio data stream at a first resolution.
34. (canceled)
35. (canceled)
36. The program product of claim 33, wherein the one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream further comprise:
one or more instructions for accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the designating the video/audio aspect of the video/audio data stream includes a designating of at least one instance of a distinct human voice and/or at least one instance of a distinct sound and/or at least one instance of an image of a distinct object.
37. The program product of claim 33, wherein the one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream further comprise:
one or more instructions for accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes at least one instance of a distinct human voice and/or at least one instance of a distinct sound and/or at least one instance of an image of a distinct object.
38. The program product of claim 33, wherein the one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream further comprise:
one or more instructions for accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes a portion of video/audio data included in a temporal segment of the video/audio data stream.
39. The program product of claim 33, wherein the one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream further comprise:
one or more instructions for accepting the input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio aspect of the video/audio data stream includes a portion of video/audio data included in a plurality of non-contiguous temporal segments of the video/audio data stream.
40. The program product of claim 33, wherein the one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream further comprise:
one or more instructions for accepting input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio data stream is a live and/or a substantially live video/audio data stream.
41. The program product of claim 33, wherein the one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream further comprise:
one or more instructions for accepting input for designating the video/audio aspect of the video/audio data stream, wherein the video/audio data stream is a retained video/audio data stream.
42. The program product of claim 33, wherein the one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream further comprise:
one or more instructions for accepting input for designating a first resolution value.
43. The program product of claim 33, wherein the one or more instructions for accepting input for designating a video/audio aspect of a video/audio data stream further comprise:
one or more instructions for accepting a tactile input and/or a sonic input and/or a visual input.
44. The program product of claim 33, further comprising:
a signal-bearing medium bearing
one or more instructions for retaining the video/audio aspect of the video/audio data stream at the first resolution.
45. The program product of claim 33, further comprising:
a signal-bearing medium bearing
one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution, less than the first resolution, if a condition is met.
46. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution, wherein the second resolution is determined as a function of a distance in the video/audio data stream between at least a part of the video/audio aspect and at least a part of the residue.
47. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a preselected time has elapsed after a specified previous degrading of the residue.
48. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a time value is framed by a preselected time window.
49. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if at least one of an available storage space is less than a preselected amount, a condition established by a user is met, and/or a criterion corresponding to a storage management algorithm is met.
50. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution if a condition responsive to an examination of at least one other retained set of video/audio data is met.
51. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if the condition is met, wherein the condition is related to one or more of a set of events and/or conditions excluding a specified previous degrading of the residue.
52. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a condition responsive to data received from a device other than a device used for a specified previous degrading of the residue is met.
53. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution, wherein the degrading is to be performed if a condition responsive to data received from a device other than a device to be used for the degrading is met.
54. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting input for degrading the residue to the second resolution, wherein the program product includes a program product implemented in a first device, and wherein the degrading is to be performed if a condition responsive to data received from a second device is met.
55. The program product of claim 45, wherein the one or more instructions for accepting input for degrading a residue of the video/audio data stream to a second resolution less than the first resolution, if a condition is met, further comprise:
one or more instructions for accepting an input for a designation of a second resolution value.
56. The program product of claim 45, further comprising:
the signal-bearing medium bearing:
one or more instructions for degrading the residue of the video/audio data stream to the second resolution, if the condition is met.
57. The program product of claim 56, wherein the one or more instructions for degrading the residue of the video/audio data stream to the second resolution, if the condition is met further comprise:
one or more instructions for degrading the residue to the second resolution using a compression algorithm.
58. The program product of claim 56, wherein the one or more instructions for degrading the residue of the video/audio data stream to the second resolution, if the condition is met further comprise:
one or more instructions for degrading the residue to the second resolution using data redaction.
59. A system related to data management, the system comprising:
circuitry for retaining a designated portion of a video/audio aspect of a video/audio data stream at a first resolution; and
circuitry for managing at least one memory relative to the first resolution.
US11/541,382 2005-10-31 2006-09-27 Preservation/degradation of video/audio aspects of a data stream Abandoned US20070120980A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/541,382 US20070120980A1 (en) 2005-10-31 2006-09-27 Preservation/degradation of video/audio aspects of a data stream
US13/134,744 US8804033B2 (en) 2005-10-31 2011-06-15 Preservation/degradation of video/audio aspects of a data stream

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US11/263,587 US7872675B2 (en) 2005-06-02 2005-10-31 Saved-image management
US11/264,701 US9191611B2 (en) 2005-06-02 2005-11-01 Conditional alteration of a saved image
US11/364,496 US9076208B2 (en) 2006-02-28 2006-02-28 Imagery processing
US11/376,627 US20070216779A1 (en) 2006-03-15 2006-03-15 Data mangement of a data stream
US11/396,279 US20070203595A1 (en) 2006-02-28 2006-03-31 Data management of an audio data stream
US11/413,271 US20070100621A1 (en) 2005-10-31 2006-04-28 Data management of audio aspects of a data stream
US11/434,568 US20070098348A1 (en) 2005-10-31 2006-05-15 Degradation/preservation management of captured data
US11/441,785 US8233042B2 (en) 2005-10-31 2006-05-26 Preservation and/or degradation of a video/audio data stream
US11/541,382 US20070120980A1 (en) 2005-10-31 2006-09-27 Preservation/degradation of video/audio aspects of a data stream

Related Parent Applications (8)

Application Number Title Priority Date Filing Date
US11/263,587 Continuation-In-Part US7872675B2 (en) 2005-04-26 2005-10-31 Saved-image management
US11/264,701 Continuation-In-Part US9191611B2 (en) 2005-04-26 2005-11-01 Conditional alteration of a saved image
US11/364,496 Continuation-In-Part US9076208B2 (en) 2005-04-26 2006-02-28 Imagery processing
US11/376,627 Continuation-In-Part US20070216779A1 (en) 2005-06-02 2006-03-15 Data mangement of a data stream
US11/396,279 Continuation-In-Part US20070203595A1 (en) 2005-10-31 2006-03-31 Data management of an audio data stream
US11/413,271 Continuation-In-Part US20070100621A1 (en) 2005-10-31 2006-04-28 Data management of audio aspects of a data stream
US11/434,568 Continuation-In-Part US20070098348A1 (en) 2005-04-26 2006-05-15 Degradation/preservation management of captured data
US11/441,785 Continuation-In-Part US8233042B2 (en) 2005-04-26 2006-05-26 Preservation and/or degradation of a video/audio data stream

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/134,744 Continuation US8804033B2 (en) 2005-04-26 2011-06-15 Preservation/degradation of video/audio aspects of a data stream

Publications (1)

Publication Number Publication Date
US20070120980A1 true US20070120980A1 (en) 2007-05-31

Family

ID=46326161

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/541,382 Abandoned US20070120980A1 (en) 2005-10-31 2006-09-27 Preservation/degradation of video/audio aspects of a data stream
US13/134,744 Expired - Fee Related US8804033B2 (en) 2005-04-26 2011-06-15 Preservation/degradation of video/audio aspects of a data stream

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/134,744 Expired - Fee Related US8804033B2 (en) 2005-04-26 2011-06-15 Preservation/degradation of video/audio aspects of a data stream

Country Status (1)

Country Link
US (2) US20070120980A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097214A1 (en) * 2005-10-31 2007-05-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Preservation/degradation of video/audio aspects of a data stream
US20070200934A1 (en) * 2006-02-28 2007-08-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Imagery processing
US20070274563A1 (en) * 2005-06-02 2007-11-29 Searete Llc, A Limited Liability Corporation Of State Of Delaware Capturing selected image objects
US20100235466A1 (en) * 2005-01-31 2010-09-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Audio sharing
US20110110608A1 (en) * 2005-03-30 2011-05-12 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Image transformation estimator of an imaging device
US20110222832A1 (en) * 2010-03-15 2011-09-15 Omron Corporation Image processing device, image processing method, image processing system, control program, and recording medium
US20120105716A1 (en) * 2005-10-31 2012-05-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Preservation/degradation of video/audio aspects of a data stream
US20120127328A1 (en) * 2009-12-23 2012-05-24 Winbush Iii Amos Camera user content synchronization with central web-based records and information sharing system
US8681225B2 (en) 2005-06-02 2014-03-25 Royce A. Levien Storage access technique for captured data
US8902320B2 (en) 2005-01-31 2014-12-02 The Invention Science Fund I, Llc Shared image device synchronization or designation
US8964054B2 (en) 2006-08-18 2015-02-24 The Invention Science Fund I, Llc Capturing selected image objects
US8988537B2 (en) 2005-01-31 2015-03-24 The Invention Science Fund I, Llc Shared image devices
US9001215B2 (en) 2005-06-02 2015-04-07 The Invention Science Fund I, Llc Estimating shared image device operational capabilities or resources
US9041826B2 (en) 2005-06-02 2015-05-26 The Invention Science Fund I, Llc Capturing selected image objects
US9082456B2 (en) 2005-01-31 2015-07-14 The Invention Science Fund I Llc Shared image device designation
US9093121B2 (en) 2006-02-28 2015-07-28 The Invention Science Fund I, Llc Data management of an audio data stream
US9124729B2 (en) 2005-01-31 2015-09-01 The Invention Science Fund I, Llc Shared image device synchronization or designation
US9191611B2 (en) 2005-06-02 2015-11-17 Invention Science Fund I, Llc Conditional alteration of a saved image
US9325781B2 (en) 2005-01-31 2016-04-26 Invention Science Fund I, Llc Audio sharing
US9451200B2 (en) 2005-06-02 2016-09-20 Invention Science Fund I, Llc Storage access technique for captured data
US9489717B2 (en) 2005-01-31 2016-11-08 Invention Science Fund I, Llc Shared image device
US9819490B2 (en) 2005-05-04 2017-11-14 Invention Science Fund I, Llc Regional proximity for shared image device(s)
US9910341B2 (en) 2005-01-31 2018-03-06 The Invention Science Fund I, Llc Shared image device designation
US9942511B2 (en) 2005-10-31 2018-04-10 Invention Science Fund I, Llc Preservation/degradation of video/audio aspects of a data stream
US10003762B2 (en) 2005-04-26 2018-06-19 Invention Science Fund I, Llc Shared image devices
US10097756B2 (en) 2005-06-02 2018-10-09 Invention Science Fund I, Llc Enhanced video/still image correlation
US20180302625A1 (en) * 2017-04-18 2018-10-18 Qualcomm Incorporated System and method for intelligent data/frame compression in a system on a chip
US10152959B2 (en) * 2016-11-30 2018-12-11 Plantronics, Inc. Locality based noise masking
US10609418B2 (en) 2017-04-18 2020-03-31 Qualcomm Incorporated System and method for intelligent data/frame compression in a system on a chip

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249218A (en) * 1978-11-01 1981-02-03 Minnesota Mining And Manufacturing Company Method and apparatus for editing digitally recorded audio signals
US5388197A (en) * 1991-08-02 1995-02-07 The Grass Valley Group, Inc. Video editing system operator inter-face for visualization and interactive control of video material
US5546145A (en) * 1994-08-30 1996-08-13 Eastman Kodak Company Camera on-board voice recognition
US5629778A (en) * 1995-05-15 1997-05-13 Polaroid Corporation Method and apparatus for reduction of image data compression noise
US5659662A (en) * 1994-04-12 1997-08-19 Xerox Corporation Unsupervised speaker clustering for automatic speaker indexing of recorded audio data
US5738522A (en) * 1995-05-08 1998-04-14 N.C.C. Network Communications And Computer Systems Apparatus and methods for accurately sensing locations on a surface
US5764800A (en) * 1995-06-01 1998-06-09 Asahi Kogaku Kogyo Kabushiki Kaisha Image data re-compression device
US5892509A (en) * 1986-10-03 1999-04-06 L G Semicon Co., Ltd. Image processing apparatus having common and personal memory and capable of viewing and editing an image commonly with a remote image processing apparatus over a network
US5917958A (en) * 1996-10-31 1999-06-29 Sensormatic Electronics Corporation Distributed video data base with remote searching for image data features
US5926605A (en) * 1996-04-24 1999-07-20 Fuji Xerox Co., Ltd. Data storage device and data storage/playback device
US5956081A (en) * 1996-10-23 1999-09-21 Katz; Barry Surveillance system having graphic video integration controller and full motion video switcher
US6107918A (en) * 1997-11-25 2000-08-22 Micron Electronics, Inc. Method for personal computer-based home surveillance
US6177958B1 (en) * 1998-03-11 2001-01-23 Flashpoint Technology, Inc. System and method for the automatic capture of salient still images
US6198526B1 (en) * 1997-09-11 2001-03-06 Fuji Photo Film Co., Ltd. Method and apparatus for recording order information
US6229850B1 (en) * 1997-07-22 2001-05-08 C-Cube Semiconductor Ii, Inc. Multiple resolution video compression
US6275260B1 (en) * 1997-09-17 2001-08-14 Flashpoint Technology, Inc. Positioning stamps in images captured with an image capture unit
US20020030749A1 (en) * 2000-09-12 2002-03-14 Hideo Nakamura Image capturing apparatus
US6384862B1 (en) * 1997-03-12 2002-05-07 Telefoaktiebolaget L M Ericsson Imaging system and method for interactive control of image quality
US20020054232A1 (en) * 2000-03-31 2002-05-09 Atsushi Inagaki Information display control in image sensing apparatus
US20020058026A1 (en) * 2000-11-13 2002-05-16 Milton Hammerly HMG CoA reductase inhibitor medications combined wih CoEnzyme Q-10
US20030007078A1 (en) * 2001-07-03 2003-01-09 Feldis John J. Image tagging for post processing
US20030018802A1 (en) * 2001-07-23 2003-01-23 Romanik Philip B. Image transfer and archival system
US6512541B2 (en) * 1997-12-08 2003-01-28 Intel Corporation Increasing image field of view and frame rate in an imaging apparatus
US20030021455A1 (en) * 2001-01-31 2003-01-30 General Electric Company Imaging system including detector framing node
US20030020814A1 (en) * 2001-07-25 2003-01-30 Fuji Photo Film Co., Ltd. Image capturing apparatus
US6516154B1 (en) * 2001-07-17 2003-02-04 Eastman Kodak Company Image revising camera and method
US20030026596A1 (en) * 2001-06-21 2003-02-06 Stmicroelectronics S.R.I. Data-file storage, particularly for MPEG format files
US6519612B1 (en) * 1996-11-27 2003-02-11 1Vision Software, Inc. Internet storage manipulation and navigation system
US6522418B2 (en) * 1997-05-12 2003-02-18 Canon Kabushiki Kaisha Method of and system for editing images
US6539169B1 (en) * 1997-12-25 2003-03-25 Fuji Photo Film Co., Ltd. Method and apparatus for recording and re-recording image data in a device having limited memory capacity
US6542183B1 (en) * 1995-06-28 2003-04-01 Lynx Systems Developers, Inc. Event recording apparatus
US6546189B1 (en) * 1996-11-15 2003-04-08 Hitachi, Ltd. Method and apparatus for editing compressed moving pictures and storage medium
US20030069898A1 (en) * 2001-07-31 2003-04-10 Athena Christodoulou Data processing system
US20030072491A1 (en) * 2001-10-17 2003-04-17 Sudheer Sirivara Identifying image content
US20030080878A1 (en) * 2001-10-30 2003-05-01 Kirmuss Charles Bruno Event-based vehicle image capture
US20030081140A1 (en) * 2001-10-30 2003-05-01 Nobuyuki Furukawa Setting control of bracketing image sensing operation in image sensing apparatus
US6567122B1 (en) * 1998-03-18 2003-05-20 Ipac Acquisition Subsidiary I Method and system for hosting an internet web site on a digital camera
US6573927B2 (en) * 1997-02-20 2003-06-03 Eastman Kodak Company Electronic still camera for capturing digital image and creating a print order
US20030103144A1 (en) * 2001-12-04 2003-06-05 Robert Sesek Digital camera having image transfer method and system
US6577336B2 (en) * 1998-05-29 2003-06-10 Agilent Technologies, Inc. Authentication stamping in a digital camera
US20030113014A1 (en) * 2000-10-31 2003-06-19 Naoya Katoh Color reproduction corrector for image input device and color reproduction correction method
US20030112354A1 (en) * 2001-12-13 2003-06-19 Ortiz Luis M. Wireless transmission of in-play camera views to hand held devices
US20030117642A1 (en) * 2001-12-20 2003-06-26 Toshiba Tec Kabushiki Kaisha Image processing service system
US20030131002A1 (en) * 2002-01-08 2003-07-10 Gennetten K. Douglas Method and apparatus for identifying a digital image and for accessing the digital image over a network
US20030152263A1 (en) * 2002-02-13 2003-08-14 Pentax Corporation Digital camera for taking a stereoscopic pair of images
US20030160870A1 (en) * 2002-02-22 2003-08-28 Ziemkowski Theodore B. Share link between image capturing devices
US6678413B1 (en) * 2000-11-24 2004-01-13 Yiqing Liang System and method for object identification and behavior characterization using video analysis
US20040017333A1 (en) * 2002-07-24 2004-01-29 Cooper Alan Neal Universal serial bus display unit
US6698021B1 (en) * 1999-10-12 2004-02-24 Vigilos, Inc. System and method for remote control of surveillance devices
US20040042679A1 (en) * 1999-01-14 2004-03-04 Fuji Photo Film Co., Ltd. Method of and system for image processing and recording medium for carrying out the method
US6701845B2 (en) * 2000-03-17 2004-03-09 Nikon Corporation & Nikon Technologies Inc. Print system and handy phone
US6710809B1 (en) * 1999-02-26 2004-03-23 Minolta Co., Ltd. Battery-driven electric equipment
US6714192B1 (en) * 1999-02-16 2004-03-30 Antonio Agustin Checa Torres Combined still camera and video camera device utilizing optics to simultaneously provide the same view to both cameras
US20040066968A1 (en) * 2002-10-07 2004-04-08 Infocus Corporation Data compression and decompression system and method
US20040070678A1 (en) * 2001-10-09 2004-04-15 Kentaro Toyama System and method for exchanging images
US20040075750A1 (en) * 2002-10-16 2004-04-22 Logitech Europe S.A. Flexible memory management for video and still image data in a digital camera
US20040085456A1 (en) * 2002-11-06 2004-05-06 Chung-Seon Kwag Camera with viewfinder for image communication
US6735253B1 (en) * 1997-05-16 2004-05-11 The Trustees Of Columbia University In The City Of New York Methods and architecture for indexing and editing compressed video over the world wide web
US6738155B1 (en) * 1999-07-30 2004-05-18 Banta Corporation System and method of providing publishing and printing services via a communications network
US20040095474A1 (en) * 2002-11-11 2004-05-20 Isao Matsufune Imaging apparatus using imaging template
US20040120562A1 (en) * 1995-11-30 2004-06-24 Presley Hays Automated method for image analysis of residual protein
US20040123131A1 (en) * 2002-12-20 2004-06-24 Eastman Kodak Company Image metadata processing system and method
US6757008B1 (en) * 1999-09-29 2004-06-29 Spectrum San Diego, Inc. Video surveillance system
US20040131282A1 (en) * 2002-09-06 2004-07-08 Sony Corporation Information processing apparatus, information processing method, information processing system and program thereof
US6762791B1 (en) * 1999-02-16 2004-07-13 Robert W. Schuetzle Method for processing digital images
US20050013602A1 (en) * 2003-07-18 2005-01-20 Pentax Corporation Digital camera having red-eye reduction bracket photographing mode
US20050018053A1 (en) * 1993-11-11 2005-01-27 Canon Kabushiki Kaisha Video system
US20050036033A1 (en) * 2003-05-16 2005-02-17 Toshie Imai Brightness correction for image
US6885395B1 (en) * 2000-05-26 2005-04-26 Eastman Kodak Company Selectively adjusting the resolution levels or the quality levels of digital images stored in a digital camera memory
US20050103863A1 (en) * 2003-11-13 2005-05-19 Metrologic Instruments, Inc. Method of and system for determining the lower limit of decoding resolution in an imaging-based bar code symbol reader
US6898173B2 (en) * 1997-05-05 2005-05-24 Warner Music Group, Inc. Recording and playback of multi-channel digital audio having different resolutions for different channels
US20050158015A1 (en) * 1996-10-03 2005-07-21 Nikon Corporation Information processing apparatus, information processing method and recording medium for electronic equipment including an electronic camera
US20050187901A1 (en) * 2001-12-07 2005-08-25 Maritzen L. M. Consumer-centric context-aware switching model
US6987528B1 (en) * 1999-05-27 2006-01-17 Mitsubishi Denki Kabushiki Kaisha Image collection apparatus and method
US20060023066A1 (en) * 2004-07-27 2006-02-02 Microsoft Corporation System and Method for Client Services for Interactive Multi-View Video
US6999626B2 (en) * 2000-03-13 2006-02-14 Canon Kabushiki Kaisha Memory management of compressed image data
US20060044444A1 (en) * 2004-08-30 2006-03-02 Pentax Corporation Digital camera
US20060044416A1 (en) * 2004-08-31 2006-03-02 Canon Kabushiki Kaisha Image file management apparatus and method, program, and storage medium
US20060044398A1 (en) * 2004-08-31 2006-03-02 Foong Annie P Digital image classification system
US7015954B1 (en) * 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
US20060092291A1 (en) * 2004-10-28 2006-05-04 Bodie Jeffrey C Digital imaging system
US20060098112A1 (en) * 2004-11-05 2006-05-11 Kelly Douglas J Digital camera having system for digital image composition and related method
US7046292B2 (en) * 2002-01-16 2006-05-16 Hewlett-Packard Development Company, L.P. System for near-simultaneous capture of multiple camera images
US20060109349A1 (en) * 2003-06-27 2006-05-25 Toru Takashima Slave device and communication setting method
US20060125922A1 (en) * 2004-12-10 2006-06-15 Microsoft Corporation System and method for processing raw image files
US7068316B1 (en) * 2000-09-29 2006-06-27 Ess Technology, Inc. Selectable resolution image capture system
US20060143665A1 (en) * 2004-12-27 2006-06-29 Bellsouth Intellectual Property Corporation Features of VCR-type controls for interactive media
US7075567B2 (en) * 2001-07-31 2006-07-11 Hewlett-Packard Development Company, L.P. Method and apparatus for controlling a plurality of image capture devices in a surveillance system
US7079176B1 (en) * 1991-11-25 2006-07-18 Actv, Inc. Digital interactive system for providing full interactivity with live programming events
US7227569B2 (en) * 2002-05-07 2007-06-05 Matsushita Electric Industrial Co., Ltd. Surveillance system and a surveillance camera
US7236690B2 (en) * 2001-08-29 2007-06-26 Matsushita Electric Industrial Co., Ltd. Event management system
US7257317B2 (en) * 2001-06-26 2007-08-14 Canon Kabushiki Kaisha Recording apparatus and reproducing apparatus
US20080023232A1 (en) * 2002-08-29 2008-01-31 N-Trig Ltd. Transparent digitiser
US7333134B2 (en) * 2002-11-11 2008-02-19 Fujifilm Corporation Web camera and method for sending moving image
US7340766B2 (en) * 2001-08-23 2008-03-04 Ricoh Company, Ltd. System and method for controlling a digital camera provided with a WWW server function
US7362968B2 (en) * 2004-03-10 2008-04-22 Samsung Electronics Co., Ltd. Combination camera and DSC lens control method using the same
US7366979B2 (en) * 2001-03-09 2008-04-29 Copernicus Investments, Llc Method and apparatus for annotating a document
US7535491B1 (en) * 1999-05-20 2009-05-19 Canon Kabushiki Kaisha Detecting and using mode/setting information
US7576770B2 (en) * 2003-02-11 2009-08-18 Raymond Metzger System for a plurality of video cameras disposed on a common network

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164831A (en) 1990-03-15 1992-11-17 Eastman Kodak Company Electronic still camera providing multi-format storage of full and reduced resolution images
US7448063B2 (en) 1991-11-25 2008-11-04 Actv, Inc. Digital interactive system for providing full interactivity with live programming events
DE69330513D1 (en) * 1992-03-20 2001-09-06 Commw Scient Ind Res Org OBJECT MONITORING SYSTEM
GB2280778B (en) 1992-04-10 1996-12-04 Avid Technology Inc Digital audio workstation providing digital storage and display of video information
US5614952A (en) * 1994-10-11 1997-03-25 Hitachi America, Ltd. Digital video decoder for decoding digital high definition and/or digital standard definition television signals
US5485553A (en) 1993-10-29 1996-01-16 Hewlett-Packard Company Method and apparatus for managing and initiating video capture and printing
US5485554A (en) 1993-10-29 1996-01-16 Hewlett-Packard Company Method and apparatus for processing an image in a video printing apparatus
US5506691A (en) 1994-03-23 1996-04-09 International Business Machines Corporation Method and apparatus for image processing at remote sites
GB2297450B (en) 1995-01-18 1999-03-10 Sony Uk Ltd Video processing method and apparatus
CA2683230C (en) 1995-02-13 2013-08-27 Intertrust Technologies Corporation Systems and methods for secure transaction management and electronic rights protection
US5689442A (en) 1995-03-22 1997-11-18 Witness Systems, Inc. Event surveillance system
US6167350A (en) 1996-04-12 2000-12-26 Sony Corporation Method and apparatus for selecting information signal range and editing apparatus for information signal
US7260306B2 (en) 1996-06-04 2007-08-21 Hitachi Kokusai Electric, Inc. Editing method for recorded information
US6021403A (en) 1996-07-19 2000-02-01 Microsoft Corporation Intelligent user assistance facility
JP3563889B2 (en) 1996-10-15 2004-09-08 キヤノン株式会社 Camera control system and camera control system control method
US6157935A (en) 1996-12-17 2000-12-05 Tran; Bao Q. Remote data access and management system
US6046762A (en) 1997-04-01 2000-04-04 Cosmocom, Inc. Multimedia telecommunication automatic call distribution system
US6122003A (en) 1997-08-22 2000-09-19 Flashpoint Technology, Inc. Method and apparatus for changing operating modes of an image capture device
US6657667B1 (en) 1997-11-25 2003-12-02 Flashpoint Technology, Inc. Method and apparatus for capturing a multidimensional array of overlapping images for composite image generation
US6493028B1 (en) 1997-11-26 2002-12-10 Flashpoint Technology, Inc. Method and system for extending the available image file formats in an image capture device
US5956026A (en) 1997-12-19 1999-09-21 Sharp Laboratories Of America, Inc. Method for hierarchical summarization and browsing of digital video
US6535243B1 (en) 1998-01-06 2003-03-18 Hewlett- Packard Company Wireless hand-held digital camera
JPH11261879A (en) 1998-03-12 1999-09-24 Nikon Corp Electronic camera having consecutive photographing function
US7023469B1 (en) 1998-04-30 2006-04-04 Texas Instruments Incorporated Automatic video monitoring system which selectively saves information
US6167469A (en) 1998-05-18 2000-12-26 Agilent Technologies, Inc. Digital camera having display device for displaying graphical representation of user input and method for transporting the selected digital images thereof
US5977867A (en) * 1998-05-29 1999-11-02 Nortel Networks Corporation Touch pad panel with tactile feedback
US6446095B1 (en) 1998-06-09 2002-09-03 Matsushita Electric Industrial Co., Ltd. Document processor for processing a document in accordance with a detected degree of importance corresponding to a data link within the document
US6788345B1 (en) 1998-07-22 2004-09-07 Canon Kabushiki Kaisha Image pickup apparatus
US6230111B1 (en) 1998-08-06 2001-05-08 Yamaha Hatsudoki Kabushiki Kaisha Control system for controlling object using pseudo-emotions and pseudo-personality generated in the object
US6134345A (en) 1998-08-28 2000-10-17 Ultimatte Corporation Comprehensive method for removing from an image the background surrounding a selected subject
US6317039B1 (en) 1998-10-19 2001-11-13 John A. Thomason Wireless video audio data remote system
US6222465B1 (en) 1998-12-09 2001-04-24 Lucent Technologies Inc. Gesture-based computer interface
US6734911B1 (en) * 1999-09-30 2004-05-11 Koninklijke Philips Electronics N.V. Tracking camera using a lens that generates both wide-angle and narrow-angle views
JP2001150745A (en) 1999-11-30 2001-06-05 Canon Inc Image processing apparatus and method thereof
US6864913B2 (en) * 1999-12-23 2005-03-08 Harry L. Tarnoff Method and apparatus for a reconfigurable digital processor for film conversion
JP2001189886A (en) 1999-12-28 2001-07-10 Canon Inc Image pickup device, information processor, system and method for processing image and storage medium
US6822635B2 (en) 2000-01-19 2004-11-23 Immersion Corporation Haptic interface for laptop computers and other portable devices
US7327387B2 (en) 2000-02-21 2008-02-05 Fujifilm Corporation Image pick-up information transmitting system and remote control method for an information transmitting system
US7120910B2 (en) 2000-03-29 2006-10-10 Canon Kabushiki Kaisha Control method for image processing apparatus connectable to computer network
JP4390967B2 (en) 2000-04-21 2009-12-24 富士フイルム株式会社 Electronic camera
US6411742B1 (en) 2000-05-16 2002-06-25 Adobe Systems Incorporated Merging images to form a panoramic image
US7619657B2 (en) 2000-10-04 2009-11-17 Fujifilm Corp. Recording apparatus, communications apparatus, recording system, communications system, and methods therefor for setting the recording function of the recording apparatus in a restricted state
US7287088B1 (en) 2000-10-06 2007-10-23 Fotomedia Technologies, Llc Transmission bandwidth and memory requirements reduction in a portable image capture device by eliminating duplicate image transmissions
US7868912B2 (en) 2000-10-24 2011-01-11 Objectvideo, Inc. Video surveillance system employing video primitives
US6978047B2 (en) 2000-11-29 2005-12-20 Etreppid Technologies Llc Method and apparatus for storing digital video content provided from a plurality of cameras
US20030222998A1 (en) 2000-12-20 2003-12-04 Satoru Yamauchi Digital still camera system and method
US8026944B1 (en) * 2001-04-12 2011-09-27 Sony Corporation Method and apparatus for hosting a network camera with image degradation
US7015949B1 (en) * 2001-04-12 2006-03-21 Ipix Corporation Method and apparatus for hosting a network camera with refresh degradation
JP4127982B2 (en) 2001-05-28 2008-07-30 富士フイルム株式会社 Portable electronic devices
US6995789B2 (en) 2001-06-26 2006-02-07 Eastman Kodak Company Method for managing images over a communication network
US6999111B2 (en) 2001-06-26 2006-02-14 Eastman Kodak Company Electronic camera and system for transmitting digital over a communication network
US6930718B2 (en) 2001-07-17 2005-08-16 Eastman Kodak Company Revised recapture camera and method
US6816071B2 (en) 2001-09-12 2004-11-09 Intel Corporation Information display status indicator
WO2003032256A1 (en) 2001-09-20 2003-04-17 Naltec Inc. Method of preparing bit map
US7120293B2 (en) 2001-11-30 2006-10-10 Microsoft Corporation Interactive images
WO2003083773A2 (en) 2002-03-27 2003-10-09 The Trustees Of Columbia University In The City Of New York Imaging method and system
GB2388242A (en) 2002-04-30 2003-11-05 Hewlett Packard Co Associating audio data and image data
JP2003348462A (en) * 2002-05-27 2003-12-05 Olympus Optical Co Ltd Camera and imaging element unit
US7461392B2 (en) 2002-07-01 2008-12-02 Microsoft Corporation System and method for identifying and segmenting repeating media objects embedded in a stream
US20030236674A1 (en) 2002-06-19 2003-12-25 Henry Raymond C. Methods and systems for compression of stored audio
JP2004032459A (en) 2002-06-27 2004-01-29 Hitachi Ltd Monitoring system, and controller and monitoring terminal used both therefor
JP4500485B2 (en) 2002-08-28 2010-07-14 株式会社日立製作所 Display device with touch panel
US7331868B2 (en) 2002-09-13 2008-02-19 Igt Wagering gaming device providing physical stimulation responses to various components of the gaming device
US6990230B2 (en) 2002-11-15 2006-01-24 Warner Bros. Entertainment Inc. Reverse-rendering method for digital modeling
US7551223B2 (en) 2002-12-26 2009-06-23 Sony Corporation Apparatus, method, and computer program for imaging and automatic focusing
US8189059B2 (en) 2003-01-29 2012-05-29 Nikon Corporation Digital camera and digital camera system
US20040179121A1 (en) 2003-03-12 2004-09-16 Silverstein D. Amnon System and method for displaying captured images according to imaging device position
US7218792B2 (en) 2003-03-19 2007-05-15 Mitsubishi Electric Research Laboratories, Inc. Stylized imaging using variable controlled illumination
US20040183903A1 (en) 2003-03-21 2004-09-23 Pedersen Christen Kent Method and system for managing data in a system
US20040216173A1 (en) 2003-04-11 2004-10-28 Peter Horoszowski Video archiving and processing method and apparatus
US7349010B2 (en) 2003-04-11 2008-03-25 Eastman Kodak Company Digital camera including an on-line sales mode
US6879731B2 (en) 2003-04-29 2005-04-12 Microsoft Corporation System and process for generating high dynamic range video
US7149961B2 (en) 2003-04-30 2006-12-12 Hewlett-Packard Development Company, L.P. Automatic generation of presentations from “path-enhanced” multimedia
US8301436B2 (en) 2003-05-29 2012-10-30 Microsoft Corporation Semantic object synchronous understanding for highly interactive interface
US7986339B2 (en) 2003-06-12 2011-07-26 Redflex Traffic Systems Pty Ltd Automated traffic violation monitoring and reporting system with combined video and still-image data
US20040257462A1 (en) 2003-06-17 2004-12-23 Goris Andrew C. Digital camera and method for slowing, delay and/or suspending advanced processing during low battery conditions to conserve battery charge
US20040263658A1 (en) 2003-06-26 2004-12-30 Cozier Robert P Display system and method having a customizable menu using levels of abstraction
GB2403309B (en) 2003-06-27 2006-11-22 Hewlett Packard Development Co Apparatus for and method of evaluating security within a data processing or transactional environment
US7840892B2 (en) 2003-08-29 2010-11-23 Nokia Corporation Organization and maintenance of images using metadata
US7924324B2 (en) 2003-11-05 2011-04-12 Sanyo Electric Co., Ltd. Sound-controlled electronic apparatus
US7822233B2 (en) 2003-11-14 2010-10-26 Fujifilm Corporation Method and apparatus for organizing digital media based on face recognition
JP4262082B2 (en) * 2003-12-24 2009-05-13 キヤノン株式会社 Image processing apparatus, control method therefor, program, and storage medium
JP2007521588A (en) 2004-02-06 2007-08-02 セコイア メディア グループ、エルシー Automatic multimedia object model
US9148585B2 (en) 2004-02-26 2015-09-29 International Business Machines Corporation Method and apparatus for cooperative recording
US7697026B2 (en) 2004-03-16 2010-04-13 3Vr Security, Inc. Pipeline architecture for analyzing multiple video streams
US20050212950A1 (en) 2004-03-26 2005-09-29 Chinon Kabushiki Kaisha Focal length detecting method, focusing device, image capturing method and image capturing apparatus
US7522549B2 (en) 2004-04-16 2009-04-21 Broadcom Corporation Registering access device multimedia content via a broadband access gateway
US20050243176A1 (en) 2004-04-30 2005-11-03 James Wu Method of HDR image processing and manipulation
US8108429B2 (en) 2004-05-07 2012-01-31 Quest Software, Inc. System for moving real-time data events across a plurality of devices in a network for simultaneous data protection, replication, and access services
US20060104483A1 (en) 2004-11-12 2006-05-18 Eastman Kodak Company Wireless digital image capture device with biometric readers
US20060170956A1 (en) 2005-01-31 2006-08-03 Jung Edward K Shared image devices
US7876357B2 (en) 2005-01-31 2011-01-25 The Invention Science Fund I, Llc Estimating shared image device operational capabilities or resources
US20060221197A1 (en) 2005-03-30 2006-10-05 Jung Edward K Image transformation estimator of an imaging device
US20060187230A1 (en) 2005-01-31 2006-08-24 Searete Llc Peripheral shared image device sharing
US9489717B2 (en) 2005-01-31 2016-11-08 Invention Science Fund I, Llc Shared image device
US9082456B2 (en) 2005-01-31 2015-07-14 The Invention Science Fund I Llc Shared image device designation
US20060174203A1 (en) 2005-01-31 2006-08-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Viewfinder for shared image device
US7239805B2 (en) 2005-02-01 2007-07-03 Microsoft Corporation Method and system for combining multiple exposure images having scene and camera motion
US7612804B1 (en) 2005-02-15 2009-11-03 Apple Inc. Methods and apparatuses for image processing
JP4333599B2 (en) 2005-02-15 2009-09-16 ソニー株式会社 Information processing apparatus and information processing method
US7626614B1 (en) 2005-02-15 2009-12-01 Apple Inc. Transfer function and high dynamic range images
US20060195322A1 (en) 2005-02-17 2006-08-31 Broussard Scott J System and method for detecting and storing important information
US7196317B1 (en) 2005-03-25 2007-03-27 Virginia Tech Intellectual Properties, Inc. System, device, and method for detecting perturbations
US20060226298A1 (en) 2005-03-30 2006-10-12 Lionel L.L.C. Graphical method and system for model vehicle and accessory control
US9451200B2 (en) 2005-06-02 2016-09-20 Invention Science Fund I, Llc Storage access technique for captured data
US9191611B2 (en) * 2005-06-02 2015-11-17 Invention Science Fund I, Llc Conditional alteration of a saved image
US20070008326A1 (en) 2005-06-02 2007-01-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Dual mode image capture technique
US8681225B2 (en) 2005-06-02 2014-03-25 Royce A. Levien Storage access technique for captured data
US9167195B2 (en) * 2005-10-31 2015-10-20 Invention Science Fund I, Llc Preservation/degradation of video/audio aspects of a data stream
US7782365B2 (en) 2005-06-02 2010-08-24 Searete Llc Enhanced video/still image correlation
US20070109411A1 (en) 2005-06-02 2007-05-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Composite image selectivity
US9967424B2 (en) 2005-06-02 2018-05-08 Invention Science Fund I, Llc Data storage usage protocol
US8253821B2 (en) 2005-10-31 2012-08-28 The Invention Science Fund I, Llc Degradation/preservation management of captured data
US8072501B2 (en) * 2005-10-31 2011-12-06 The Invention Science Fund I, Llc Preservation and/or degradation of a video/audio data stream
US20070222865A1 (en) 2006-03-15 2007-09-27 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Enhanced video/still image correlation
US7860319B2 (en) * 2005-05-11 2010-12-28 Hewlett-Packard Development Company, L.P. Image management
US20060274153A1 (en) 2005-06-02 2006-12-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Third party storage of captured data
US8805929B2 (en) 2005-06-20 2014-08-12 Ricoh Company, Ltd. Event-driven annotation techniques
US20070120980A1 (en) * 2005-10-31 2007-05-31 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Preservation/degradation of video/audio aspects of a data stream
US20070100621A1 (en) * 2005-10-31 2007-05-03 Jung Edward K Data management of audio aspects of a data stream
US8473298B2 (en) 2005-11-01 2013-06-25 Apple Inc. Pre-resampling to achieve continuously variable analysis time/frequency resolution
US20070217761A1 (en) 2006-03-07 2007-09-20 Coban Research And Technologies, Inc. Method for video/audio recording using unrestricted pre-event/post-event buffering with multiple bit and frame rates buffer files
EP2092420B1 (en) * 2006-10-18 2018-08-01 Google LLC Generic online ranking system and method suitable for syndication
US7817914B2 (en) 2007-05-30 2010-10-19 Eastman Kodak Company Camera configurable for autonomous operation
US8145521B2 (en) * 2008-07-15 2012-03-27 Google Inc. Geographic and keyword context in embedded applications

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249218A (en) * 1978-11-01 1981-02-03 Minnesota Mining And Manufacturing Company Method and apparatus for editing digitally recorded audio signals
US5892509A (en) * 1986-10-03 1999-04-06 L G Semicon Co., Ltd. Image processing apparatus having common and personal memory and capable of viewing and editing an image commonly with a remote image processing apparatus over a network
US5388197A (en) * 1991-08-02 1995-02-07 The Grass Valley Group, Inc. Video editing system operator inter-face for visualization and interactive control of video material
US7079176B1 (en) * 1991-11-25 2006-07-18 Actv, Inc. Digital interactive system for providing full interactivity with live programming events
US20050018053A1 (en) * 1993-11-11 2005-01-27 Canon Kabushiki Kaisha Video system
US5659662A (en) * 1994-04-12 1997-08-19 Xerox Corporation Unsupervised speaker clustering for automatic speaker indexing of recorded audio data
US5546145A (en) * 1994-08-30 1996-08-13 Eastman Kodak Company Camera on-board voice recognition
US5738522A (en) * 1995-05-08 1998-04-14 N.C.C. Network Communications And Computer Systems Apparatus and methods for accurately sensing locations on a surface
US5629778A (en) * 1995-05-15 1997-05-13 Polaroid Corporation Method and apparatus for reduction of image data compression noise
US5764800A (en) * 1995-06-01 1998-06-09 Asahi Kogaku Kogyo Kabushiki Kaisha Image data re-compression device
US6542183B1 (en) * 1995-06-28 2003-04-01 Lynx Systems Developers, Inc. Event recording apparatus
US20040120562A1 (en) * 1995-11-30 2004-06-24 Presley Hays Automated method for image analysis of residual protein
US5926605A (en) * 1996-04-24 1999-07-20 Fuji Xerox Co., Ltd. Data storage device and data storage/playback device
US20050158015A1 (en) * 1996-10-03 2005-07-21 Nikon Corporation Information processing apparatus, information processing method and recording medium for electronic equipment including an electronic camera
US5956081A (en) * 1996-10-23 1999-09-21 Katz; Barry Surveillance system having graphic video integration controller and full motion video switcher
US5917958A (en) * 1996-10-31 1999-06-29 Sensormatic Electronics Corporation Distributed video data base with remote searching for image data features
US6546189B1 (en) * 1996-11-15 2003-04-08 Hitachi, Ltd. Method and apparatus for editing compressed moving pictures and storage medium
US6519612B1 (en) * 1996-11-27 2003-02-11 1Vision Software, Inc. Internet storage manipulation and navigation system
US6573927B2 (en) * 1997-02-20 2003-06-03 Eastman Kodak Company Electronic still camera for capturing digital image and creating a print order
US6384862B1 (en) * 1997-03-12 2002-05-07 Telefoaktiebolaget L M Ericsson Imaging system and method for interactive control of image quality
US6898173B2 (en) * 1997-05-05 2005-05-24 Warner Music Group, Inc. Recording and playback of multi-channel digital audio having different resolutions for different channels
US6522418B2 (en) * 1997-05-12 2003-02-18 Canon Kabushiki Kaisha Method of and system for editing images
US6735253B1 (en) * 1997-05-16 2004-05-11 The Trustees Of Columbia University In The City Of New York Methods and architecture for indexing and editing compressed video over the world wide web
US6229850B1 (en) * 1997-07-22 2001-05-08 C-Cube Semiconductor Ii, Inc. Multiple resolution video compression
US6198526B1 (en) * 1997-09-11 2001-03-06 Fuji Photo Film Co., Ltd. Method and apparatus for recording order information
US6275260B1 (en) * 1997-09-17 2001-08-14 Flashpoint Technology, Inc. Positioning stamps in images captured with an image capture unit
US6107918A (en) * 1997-11-25 2000-08-22 Micron Electronics, Inc. Method for personal computer-based home surveillance
US6512541B2 (en) * 1997-12-08 2003-01-28 Intel Corporation Increasing image field of view and frame rate in an imaging apparatus
US6539169B1 (en) * 1997-12-25 2003-03-25 Fuji Photo Film Co., Ltd. Method and apparatus for recording and re-recording image data in a device having limited memory capacity
US6177958B1 (en) * 1998-03-11 2001-01-23 Flashpoint Technology, Inc. System and method for the automatic capture of salient still images
US6567122B1 (en) * 1998-03-18 2003-05-20 Ipac Acquisition Subsidiary I Method and system for hosting an internet web site on a digital camera
US6577336B2 (en) * 1998-05-29 2003-06-10 Agilent Technologies, Inc. Authentication stamping in a digital camera
US20040042679A1 (en) * 1999-01-14 2004-03-04 Fuji Photo Film Co., Ltd. Method of and system for image processing and recording medium for carrying out the method
US6762791B1 (en) * 1999-02-16 2004-07-13 Robert W. Schuetzle Method for processing digital images
US6714192B1 (en) * 1999-02-16 2004-03-30 Antonio Agustin Checa Torres Combined still camera and video camera device utilizing optics to simultaneously provide the same view to both cameras
US6710809B1 (en) * 1999-02-26 2004-03-23 Minolta Co., Ltd. Battery-driven electric equipment
US7535491B1 (en) * 1999-05-20 2009-05-19 Canon Kabushiki Kaisha Detecting and using mode/setting information
US6987528B1 (en) * 1999-05-27 2006-01-17 Mitsubishi Denki Kabushiki Kaisha Image collection apparatus and method
US6738155B1 (en) * 1999-07-30 2004-05-18 Banta Corporation System and method of providing publishing and printing services via a communications network
US7015954B1 (en) * 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
US6757008B1 (en) * 1999-09-29 2004-06-29 Spectrum San Diego, Inc. Video surveillance system
US6698021B1 (en) * 1999-10-12 2004-02-24 Vigilos, Inc. System and method for remote control of surveillance devices
US6999626B2 (en) * 2000-03-13 2006-02-14 Canon Kabushiki Kaisha Memory management of compressed image data
US6701845B2 (en) * 2000-03-17 2004-03-09 Nikon Corporation & Nikon Technologies Inc. Print system and handy phone
US20020054232A1 (en) * 2000-03-31 2002-05-09 Atsushi Inagaki Information display control in image sensing apparatus
US6885395B1 (en) * 2000-05-26 2005-04-26 Eastman Kodak Company Selectively adjusting the resolution levels or the quality levels of digital images stored in a digital camera memory
US20020030749A1 (en) * 2000-09-12 2002-03-14 Hideo Nakamura Image capturing apparatus
US7068316B1 (en) * 2000-09-29 2006-06-27 Ess Technology, Inc. Selectable resolution image capture system
US20030113014A1 (en) * 2000-10-31 2003-06-19 Naoya Katoh Color reproduction corrector for image input device and color reproduction correction method
US20020058026A1 (en) * 2000-11-13 2002-05-16 Milton Hammerly HMG CoA reductase inhibitor medications combined wih CoEnzyme Q-10
US6678413B1 (en) * 2000-11-24 2004-01-13 Yiqing Liang System and method for object identification and behavior characterization using video analysis
US20030021455A1 (en) * 2001-01-31 2003-01-30 General Electric Company Imaging system including detector framing node
US7366979B2 (en) * 2001-03-09 2008-04-29 Copernicus Investments, Llc Method and apparatus for annotating a document
US20030026596A1 (en) * 2001-06-21 2003-02-06 Stmicroelectronics S.R.I. Data-file storage, particularly for MPEG format files
US7257317B2 (en) * 2001-06-26 2007-08-14 Canon Kabushiki Kaisha Recording apparatus and reproducing apparatus
US20030007078A1 (en) * 2001-07-03 2003-01-09 Feldis John J. Image tagging for post processing
US6516154B1 (en) * 2001-07-17 2003-02-04 Eastman Kodak Company Image revising camera and method
US20030018802A1 (en) * 2001-07-23 2003-01-23 Romanik Philip B. Image transfer and archival system
US20030020814A1 (en) * 2001-07-25 2003-01-30 Fuji Photo Film Co., Ltd. Image capturing apparatus
US7075567B2 (en) * 2001-07-31 2006-07-11 Hewlett-Packard Development Company, L.P. Method and apparatus for controlling a plurality of image capture devices in a surveillance system
US20030069898A1 (en) * 2001-07-31 2003-04-10 Athena Christodoulou Data processing system
US7340766B2 (en) * 2001-08-23 2008-03-04 Ricoh Company, Ltd. System and method for controlling a digital camera provided with a WWW server function
US7236690B2 (en) * 2001-08-29 2007-06-26 Matsushita Electric Industrial Co., Ltd. Event management system
US20040070678A1 (en) * 2001-10-09 2004-04-15 Kentaro Toyama System and method for exchanging images
US20030072491A1 (en) * 2001-10-17 2003-04-17 Sudheer Sirivara Identifying image content
US20030081140A1 (en) * 2001-10-30 2003-05-01 Nobuyuki Furukawa Setting control of bracketing image sensing operation in image sensing apparatus
US20030080878A1 (en) * 2001-10-30 2003-05-01 Kirmuss Charles Bruno Event-based vehicle image capture
US20030103144A1 (en) * 2001-12-04 2003-06-05 Robert Sesek Digital camera having image transfer method and system
US20050187901A1 (en) * 2001-12-07 2005-08-25 Maritzen L. M. Consumer-centric context-aware switching model
US20030112354A1 (en) * 2001-12-13 2003-06-19 Ortiz Luis M. Wireless transmission of in-play camera views to hand held devices
US20030117642A1 (en) * 2001-12-20 2003-06-26 Toshiba Tec Kabushiki Kaisha Image processing service system
US20030131002A1 (en) * 2002-01-08 2003-07-10 Gennetten K. Douglas Method and apparatus for identifying a digital image and for accessing the digital image over a network
US7046292B2 (en) * 2002-01-16 2006-05-16 Hewlett-Packard Development Company, L.P. System for near-simultaneous capture of multiple camera images
US20030152263A1 (en) * 2002-02-13 2003-08-14 Pentax Corporation Digital camera for taking a stereoscopic pair of images
US20030160870A1 (en) * 2002-02-22 2003-08-28 Ziemkowski Theodore B. Share link between image capturing devices
US7227569B2 (en) * 2002-05-07 2007-06-05 Matsushita Electric Industrial Co., Ltd. Surveillance system and a surveillance camera
US20040017333A1 (en) * 2002-07-24 2004-01-29 Cooper Alan Neal Universal serial bus display unit
US20080023232A1 (en) * 2002-08-29 2008-01-31 N-Trig Ltd. Transparent digitiser
US20040131282A1 (en) * 2002-09-06 2004-07-08 Sony Corporation Information processing apparatus, information processing method, information processing system and program thereof
US20040066968A1 (en) * 2002-10-07 2004-04-08 Infocus Corporation Data compression and decompression system and method
US20040075750A1 (en) * 2002-10-16 2004-04-22 Logitech Europe S.A. Flexible memory management for video and still image data in a digital camera
US20040085456A1 (en) * 2002-11-06 2004-05-06 Chung-Seon Kwag Camera with viewfinder for image communication
US20040095474A1 (en) * 2002-11-11 2004-05-20 Isao Matsufune Imaging apparatus using imaging template
US7333134B2 (en) * 2002-11-11 2008-02-19 Fujifilm Corporation Web camera and method for sending moving image
US20040123131A1 (en) * 2002-12-20 2004-06-24 Eastman Kodak Company Image metadata processing system and method
US7576770B2 (en) * 2003-02-11 2009-08-18 Raymond Metzger System for a plurality of video cameras disposed on a common network
US20050036033A1 (en) * 2003-05-16 2005-02-17 Toshie Imai Brightness correction for image
US20060109349A1 (en) * 2003-06-27 2006-05-25 Toru Takashima Slave device and communication setting method
US20050013602A1 (en) * 2003-07-18 2005-01-20 Pentax Corporation Digital camera having red-eye reduction bracket photographing mode
US20050103863A1 (en) * 2003-11-13 2005-05-19 Metrologic Instruments, Inc. Method of and system for determining the lower limit of decoding resolution in an imaging-based bar code symbol reader
US7362968B2 (en) * 2004-03-10 2008-04-22 Samsung Electronics Co., Ltd. Combination camera and DSC lens control method using the same
US20060023066A1 (en) * 2004-07-27 2006-02-02 Microsoft Corporation System and Method for Client Services for Interactive Multi-View Video
US20060044444A1 (en) * 2004-08-30 2006-03-02 Pentax Corporation Digital camera
US20060044416A1 (en) * 2004-08-31 2006-03-02 Canon Kabushiki Kaisha Image file management apparatus and method, program, and storage medium
US20060044398A1 (en) * 2004-08-31 2006-03-02 Foong Annie P Digital image classification system
US20060092291A1 (en) * 2004-10-28 2006-05-04 Bodie Jeffrey C Digital imaging system
US20060098112A1 (en) * 2004-11-05 2006-05-11 Kelly Douglas J Digital camera having system for digital image composition and related method
US20060125922A1 (en) * 2004-12-10 2006-06-15 Microsoft Corporation System and method for processing raw image files
US20060143665A1 (en) * 2004-12-27 2006-06-29 Bellsouth Intellectual Property Corporation Features of VCR-type controls for interactive media

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9489717B2 (en) 2005-01-31 2016-11-08 Invention Science Fund I, Llc Shared image device
US9082456B2 (en) 2005-01-31 2015-07-14 The Invention Science Fund I Llc Shared image device designation
US9910341B2 (en) 2005-01-31 2018-03-06 The Invention Science Fund I, Llc Shared image device designation
US20100235466A1 (en) * 2005-01-31 2010-09-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Audio sharing
US9325781B2 (en) 2005-01-31 2016-04-26 Invention Science Fund I, Llc Audio sharing
US9124729B2 (en) 2005-01-31 2015-09-01 The Invention Science Fund I, Llc Shared image device synchronization or designation
US8606383B2 (en) 2005-01-31 2013-12-10 The Invention Science Fund I, Llc Audio sharing
US9019383B2 (en) 2005-01-31 2015-04-28 The Invention Science Fund I, Llc Shared image devices
US8988537B2 (en) 2005-01-31 2015-03-24 The Invention Science Fund I, Llc Shared image devices
US8902320B2 (en) 2005-01-31 2014-12-02 The Invention Science Fund I, Llc Shared image device synchronization or designation
US20110110608A1 (en) * 2005-03-30 2011-05-12 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Image transformation estimator of an imaging device
US10003762B2 (en) 2005-04-26 2018-06-19 Invention Science Fund I, Llc Shared image devices
US9819490B2 (en) 2005-05-04 2017-11-14 Invention Science Fund I, Llc Regional proximity for shared image device(s)
US8681225B2 (en) 2005-06-02 2014-03-25 Royce A. Levien Storage access technique for captured data
US9967424B2 (en) 2005-06-02 2018-05-08 Invention Science Fund I, Llc Data storage usage protocol
US9041826B2 (en) 2005-06-02 2015-05-26 The Invention Science Fund I, Llc Capturing selected image objects
US9001215B2 (en) 2005-06-02 2015-04-07 The Invention Science Fund I, Llc Estimating shared image device operational capabilities or resources
US10097756B2 (en) 2005-06-02 2018-10-09 Invention Science Fund I, Llc Enhanced video/still image correlation
US20070274563A1 (en) * 2005-06-02 2007-11-29 Searete Llc, A Limited Liability Corporation Of State Of Delaware Capturing selected image objects
US9621749B2 (en) 2005-06-02 2017-04-11 Invention Science Fund I, Llc Capturing selected image objects
US9451200B2 (en) 2005-06-02 2016-09-20 Invention Science Fund I, Llc Storage access technique for captured data
US9191611B2 (en) 2005-06-02 2015-11-17 Invention Science Fund I, Llc Conditional alteration of a saved image
US9942511B2 (en) 2005-10-31 2018-04-10 Invention Science Fund I, Llc Preservation/degradation of video/audio aspects of a data stream
US9167195B2 (en) 2005-10-31 2015-10-20 Invention Science Fund I, Llc Preservation/degradation of video/audio aspects of a data stream
US8804033B2 (en) * 2005-10-31 2014-08-12 The Invention Science Fund I, Llc Preservation/degradation of video/audio aspects of a data stream
US20120105716A1 (en) * 2005-10-31 2012-05-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Preservation/degradation of video/audio aspects of a data stream
US20070097214A1 (en) * 2005-10-31 2007-05-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Preservation/degradation of video/audio aspects of a data stream
US9093121B2 (en) 2006-02-28 2015-07-28 The Invention Science Fund I, Llc Data management of an audio data stream
US20070200934A1 (en) * 2006-02-28 2007-08-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Imagery processing
US9076208B2 (en) 2006-02-28 2015-07-07 The Invention Science Fund I, Llc Imagery processing
US8964054B2 (en) 2006-08-18 2015-02-24 The Invention Science Fund I, Llc Capturing selected image objects
US8976253B2 (en) * 2009-12-23 2015-03-10 Amos Winbush, III Camera user content synchronization with central web-based records and information sharing system
US20120127328A1 (en) * 2009-12-23 2012-05-24 Winbush Iii Amos Camera user content synchronization with central web-based records and information sharing system
US20110222832A1 (en) * 2010-03-15 2011-09-15 Omron Corporation Image processing device, image processing method, image processing system, control program, and recording medium
CN102194493A (en) * 2010-03-15 2011-09-21 欧姆龙株式会社 Image processing device, image processing method and image processing system
US10152959B2 (en) * 2016-11-30 2018-12-11 Plantronics, Inc. Locality based noise masking
US10484685B2 (en) * 2017-04-18 2019-11-19 Qualcomm Incorporated System and method for intelligent data/frame compression in a system on a chip
US20180302625A1 (en) * 2017-04-18 2018-10-18 Qualcomm Incorporated System and method for intelligent data/frame compression in a system on a chip
US10609418B2 (en) 2017-04-18 2020-03-31 Qualcomm Incorporated System and method for intelligent data/frame compression in a system on a chip

Also Published As

Publication number Publication date
US8804033B2 (en) 2014-08-12
US20120105716A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
US8804033B2 (en) Preservation/degradation of video/audio aspects of a data stream
US9167195B2 (en) Preservation/degradation of video/audio aspects of a data stream
US8072501B2 (en) Preservation and/or degradation of a video/audio data stream
US8233042B2 (en) Preservation and/or degradation of a video/audio data stream
US9942511B2 (en) Preservation/degradation of video/audio aspects of a data stream
US20070100621A1 (en) Data management of audio aspects of a data stream
US8253821B2 (en) Degradation/preservation management of captured data
CN112400325B (en) Data driven audio enhancement
US10848889B2 (en) Intelligent audio rendering for video recording
CA2521670C (en) Automatic face extraction for use in recorded meetings timelines
US20080180519A1 (en) Presentation control system
JP6739041B2 (en) Voice monitoring system and voice monitoring method
CN103688531A (en) Control device, control method and program
JP4414708B2 (en) Movie display personal computer, data display system, movie display method, movie display program, and recording medium
CN110121106A (en) Video broadcasting method and device
WO2017107491A1 (en) Method and device for playing audio
US20120242860A1 (en) Arrangement and method relating to audio recognition
US20070098348A1 (en) Degradation/preservation management of captured data
US20070203595A1 (en) Data management of an audio data stream
US9093121B2 (en) Data management of an audio data stream
JP2009260718A (en) Image reproduction system and image reproduction processing program
JP2009060220A (en) Communication system and communication program
JP2007266661A (en) Imaging apparatus, information processor, and imaging display system
US20070216779A1 (en) Data mangement of a data stream
US10102880B2 (en) Information processing device, shooting apparatus and information processing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEARETE LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, EDWARD K.Y.;LEVIEN, ROYCE A.;LORD, ROBERT W.;AND OTHERS;REEL/FRAME:018770/0911;SIGNING DATES FROM 20061016 TO 20061031

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: THE INVENTION SCIENCE FUND I LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEARETE LLC;REEL/FRAME:044289/0169

Effective date: 20171204