US20070102663A1 - Magnetic composites and methods of making and using - Google Patents

Magnetic composites and methods of making and using Download PDF

Info

Publication number
US20070102663A1
US20070102663A1 US11/432,086 US43208606A US2007102663A1 US 20070102663 A1 US20070102663 A1 US 20070102663A1 US 43208606 A US43208606 A US 43208606A US 2007102663 A1 US2007102663 A1 US 2007102663A1
Authority
US
United States
Prior art keywords
magnetic
nanoparticle
paste
equal
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/432,086
Other versions
US8377576B2 (en
Inventor
T. Xiao
Xinqing Ma
Heng Zhang
Junfeng Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inframat Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/432,086 priority Critical patent/US8377576B2/en
Assigned to INFRAMAT CORPORATION reassignment INFRAMAT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHOU, JUNFENG, MA, XINQING, XIAO, T. DANNY, ZHANG, HENG
Publication of US20070102663A1 publication Critical patent/US20070102663A1/en
Application granted granted Critical
Publication of US8377576B2 publication Critical patent/US8377576B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0027Thick magnetic films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Definitions

  • the present disclosure generally relates to magnetic composites and more specifically to magnetic pastes for use in high frequency applications.
  • Thick film screen-printing allows for the deposition of a magnetic material in paste form onto a ceramic substrate.
  • the paste material generally consists of ceramic or metallic particles suspended in a polymer paste.
  • the permeabilities of these pastes are very low (e.g., less than about 3), resulting in large eddy current losses.
  • the paste undergoes a heat treatment that ultimately burns off the polymer and densifies, or sinters, the ceramic or metallic material.
  • the result is a dense pattern formed from the ceramic or metallic material.
  • a conducting coil can be printed onto a layer of ferrite, and then covered with another layer of ferrite to form an inductive coil. Successive layers can be printed to increase the inductance of the device.
  • the heat treatments result in increased permeabilities, but are accompanied by increased eddy current losses at higher frequencies.
  • the high temperature (about 700 to about 900 degrees Celsius) of the heat treatment makes these pastes incompatible with low temperature printed wiring board (PWB) or printed circuit board (PCB) processing procedures.
  • PWB printed wiring board
  • PCB printed circuit board
  • a magnetic paste includes a magnetic component and a liquid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • a magnetic device includes a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • a power converter includes a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and a film disposed on the substrate of the power converter, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • a transformer includes a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and a film disposed on the substrate of the transformer, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • An inductor includes a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and a film disposed on the substrate of the inductor, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • a method for making a magnetic paste includes combining a magnetic component and a liquid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • a method for making a magnetic device includes combining a magnetic component and a liquid organic component to form a paste, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both; disposing the paste onto a substrate; and solidifying the paste.
  • FIG. 1 is a schematic representation of a composite assembly
  • FIG. 2 is a schematic representation of a microscale particle assembly
  • FIG. 3 is a schematic representation of a magnetic paste with a multi-modal magnetic component
  • FIG. 4 is a high resolution transmission electron microscope (TEM) image of a plurality of (Ni 0.5 Zn 0.5 )Fe 2 O 4 grains prior to agglomeration;
  • TEM transmission electron microscope
  • FIG. 5 is a scanning electron microscope (SEM) image showing a plurality substantially spherical, spray dried (Ni 0.5 Zn 0.5 )Fe 2 O 4 agglomerates;
  • FIG. 6 depicts a representative cross-sectional image of a multi-modal paste after hardening
  • FIG. 7 is a graphical representation of the tapping density of pastes having different ratios of 10 and 35 micrometer (Ni 0.5 Zn 0.5 )Fe 2 O 4 agglomerates;
  • FIG. 8 is a graphical representation of the tapping density of pastes having one, two, and three groups of agglomerates
  • FIG. 9 is a representative optical microscope image of an inductor formed using a multimodal paste
  • FIG. 10 is a graphical representation of the permeability as a function of frequency for four samples having different (Ni 0.5 Zn 0.5 )Fe 2 O 4 loading levels;
  • FIG. 11 is a graphical representation of the inductance as a function of frequency for a bare copper coil and for an inductor
  • FIG. 12 is a graphical representation of the inductance as a function of film thickness for (Ni 0.5 Zn 0.5 )Fe 2 O 4 coated copper coils;
  • FIG. 13 is a graphical representation of the inductance as a function of diameter for 1 millimeter and 1.5 millimeter thick (Ni 0.5 Zn 0.5 )Fe 2 O 4 films deposited on copper coils;
  • FIG. 14 is a TEM image of discrete 10 nanometer cobalt particles (dark field) dispersed in benzocyclobutane (bright field);
  • FIG. 15 is a representative optical microscope image of an inductor formed using a discrete nanoparticle paste.
  • FIG. 16 is a graphical representation of the permeability as a function of frequency for an inductor made using a paste having about 90 weight percent cobalt nanoparticles.
  • Magnetic nanocomposite pastes, methods of making and using the pastes, and devices comprising the magnetic nanocomposite pastes are described.
  • the pastes, methods, and devices disclosed herein make use of discrete nanoparticles and/or assemblies of nanoparticles to form the paste.
  • the use of a high temperature heat treatment to remove the organic component and to sinter (i.e., densify) the paste after it has been deposited onto a substrate is not necessary, and therefore the paste is compatible with, or may be used in, a printed wiring board (PWB)/printed circuit board (PCB) process.
  • PWB printed wiring board
  • PCB printed circuit board
  • nanoparticle refers to a particle having a grain dimension of less than about 250 nanometers (nm).
  • the term “paste” as used herein refers to non-solid compositions having a range of viscosities, and includes thick, viscous compositions as well as free-flowing compositions.
  • the terms “first”, “second”, and the like do not denote any order or importance, but rather are used to distinguish one element from another, and the terms “the”, “a”, and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. Furthermore, all ranges directed to the same quantity of a given component or measurement are inclusive of the endpoints and independently combinable.
  • the magnetic paste generally comprises a liquid organic component and a magnetic component comprising a plurality of discrete nanoparticles and/or nanoparticle-containing assemblies.
  • the liquid organic component may be an organic resin composition that is compatible with (i.e., does not substantially adversely affect the manufacture or processing of the compositions and articles described herein) both the magnetic component and the substrate onto which the paste will be disposed.
  • the liquid organic component also has a viscosity that is sufficiently low to enable dispersal of the magnetic component, dispensing by the desired means, and flow (if desired) when disposed onto the substrate.
  • Suitable liquid organic component compositions may accordingly comprise thermoplastic resins, thermosetting resins, or combinations thereof. In general, thermosetting compositions are useful because they are flowable prior to cure and solid after cure.
  • Suitable resin compositions include thermoplastics such as polystyrenes, polyamides, polycarbonates, polyphenylene oxides, polysulfones, polyimides, and the like; and thermosets such as epoxies, polyurethanes, alkyds, diallyl phthalates, melamines, phenolics, polyesters, and silicones ethyl cellulose, benzocyclobutene (BCB), and the like. Combinations of different thermoplastic and/or thermosetting compositions may also be used.
  • the liquid organic component may further comprise catalysts, initiators, promoters, crosslinkers, stabilizers, surfactants, dispersants, viscosity modifiers, and other additives or combinations of additives.
  • the nanoparticles generally comprise a magnetic metal (e.g., Fe, Ni, Cu, Mo, Co, Mn, Cr, Zn, alloys comprising at least one of the foregoing metals, and the like).
  • a magnetic metal e.g., Fe, Ni, Cu, Mo, Co, Mn, Cr, Zn, alloys comprising at least one of the foregoing metals, and the like.
  • the nanoparticles may comprise the metal itself.
  • Oxides, nitrides, or other multinary magnetic metal containing combinations may be used, for example iron oxide based compositions (e.g., ferrite), nitride based compositions (e.g., Fe 3 N, Fe 4 N, Fe 16 N 2 , and the like), or combinations comprising at least one of the foregoing (e.g., Ni-ferrite, Co-ferrite, Zn-ferrite, Ni—Zn-ferrite, Mn—Zn-ferrite, YIG-ferrite, and the like).
  • the magnetic metal containing nanoparticles can individually be coated with an insulator, which may or may not have the same composition as the liquid organic component.
  • nanoparticles When discrete nanoparticles are used, they may be of any geometry. Desirably, they are spherical or substantially spherical to facilitate attaining high packing densities of the magnetic component within the paste. In an exemplary embodiment, the nanoparticle-nanoparticle separation within the paste is about 1 nm to about 100 nm.
  • the assemblies When assemblies of nanoparticles are used, the assemblies also may be of any geometry; however they too are desirably spherical or substantially spherical to facilitate attaining high packing densities of the magnetic component within the paste.
  • the average longest dimension of the assemblies may be about 0.5 to about 150 micrometers ( ⁇ m).
  • the assembly is itself a solid composite comprising a plurality of separate magnetic nanoparticles dispersed in an insulating matrix.
  • An exemplary assembly 10 of this type is shown in FIG. 1 and fully described in commonly assigned U.S. Pat. No. 6,720,074, which is incorporated herein in its entirety.
  • the individual nanoparticles 12 are dispersed such that the particle-particle separation is about 1 to about 100 nm. While inter-grain interactions between the immediate neighboring individual metallic nanoparticles 12 provide the desired magnetic properties, the insulating matrix 14 material provides high resistivity, which significantly reduces any eddy current loss.
  • the particle size of these composite assemblies 10 is about 10 to about 50 micrometers ( ⁇ m). Specifically, an average particle size for the composite assembles is about 30 ⁇ m.
  • Suitable insulating matrix 14 materials for the composite assembly 10 include high dielectric materials (i.e., dielectric constant greater than or equal to about 3) including amorphous or crystalline ceramics such as alumina, silica, zirconia, and the like, and high dielectric polymers and polymer composites.
  • the insulating matrix material can be either a nonmagnetic or magnetic (such as a highly resistive ferrite) material. It is important to note that the insulating matrix material of this type of assembly 10 may have the same composition as the liquid organic component of the paste, except that it will already have been polymerized into a solid prior to disposal of the composite assembly 10 into the liquid organic component to form the paste. Examples of these composite assemblies 10 include Co/SiO 2 , Fe—Ni/SiO 2 , Fe/SiO 2 , Co/polymer, and Fe/NiFe 2 O 4 .
  • At least a portion of the magnetic nanoparticles are coated with an insulating composition (not shown) prior to being dispersed into the insulating matrix 14 .
  • the composition of the insulating coat may be different from the composition of the insulating matrix 14 .
  • a method to manufacture the composite assembly 10 comprises fabricating a precomposite from a precursor composition; forming magnetic nanostructured particles surrounded by, or coated with, a matrix layer from the precomposite; and passivating the surface of the surrounded nanostructured particles.
  • the assembly is a microscale particle comprising a plurality of agglomerated nanoparticles.
  • a plurality of nanoparticles can be sintered to form a microscale particle.
  • An exemplary microscale particle assembly 15 is shown in FIG. 2 .
  • the nanoparticles 12 used to form the microscale particle assembly 15 can be highly resistive magnetic materials or highly conductive magnetic materials.
  • the nanoparticles 12 can be of the same or different compositions.
  • the particle size of the microscale particle assembly 15 is about 0.5 to about 150 micrometers ( ⁇ m).
  • the microscale particle assemblies 15 are formed by mixing magnetic nanoparticles and/or nanocomposites with a polymeric binder in solution, ball milling the solution mixture to form a uniform slurry, agglomerating the nanoparticles from the slurry to form microscale particles, and plasma densifying the microscale particles.
  • the process may further comprise separating the microscale particles by their size prior to the plasma densification.
  • Making the paste comprises mixing the densified microscale particles with the liquid organic component.
  • Suitable organic binders for mixing the starting materials include commercially available polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), carboxymethyl cellulose (CMC), or other water soluble polymeric binders.
  • PVA polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • CMC carboxymethyl cellulose
  • the binder comprises about 0.5 to about 10 weight percent (wt %) of the total solution. More specifically, the binder comprises about 1 to about 5 wt % of the total solution.
  • the balance of the solution is desirably deionized distilled water (DD water).
  • the mixture is then ball milled, for example in a high-energy attrition mill, to “de-agglomerate” the particles and form a uniform slurry.
  • the parameters that may be optimized during ball milling include the ball milling energy, time, and loading ratio of balls to powder to lubricant. These parameters may be readily determined by those skilled in the art in view of this disclosure without undue experimentation.
  • a surfactant may also be added to the solution during ball milling to homogenize the dispersed nanoparticles in the slurry.
  • the parameters to consider for optimization with respect to the surfactant include the solid ratio, solvent loading, and rheology of the slurry. Similarly, these parameters may be readily determined by those skilled in the art in view of this disclosure without undue experimentation.
  • the next step is the agglomeration or reconstitution of the individual nanoparticles into microscale particles wherein each microscale particle is an assembly of individual nanoparticles that are adhered by the organic binder.
  • This may be accomplished using a spray drying process.
  • the parameters to consider for optimization of the agglomeration process include slurry concentration, slurry delivery rate, drying temperature, and atomizing speed. These parameters also may be readily determined by those skilled in the art in view of this disclosure without undue experimentation.
  • agglomerated powders of different may be isolated by size range. In one embodiment, this is accomplished by using chamber and cyclone collectors.
  • the chamber collects particles larger than about 15 micrometers through gravitational fall out.
  • the cyclone collects fine particles (e.g., smaller than about 15 micrometers), which are carried by the hot gas that dries the slurry.
  • the reconstituted microscale powder is then densified by a flash sintering process.
  • the flash sintering process burns-off the organic binder, sinters and/or melts the microscale particles to form dense bodies, and quenches the sintered and/or molten droplets for powder collection, all very rapidly.
  • the densification should permit a rapid sintering followed by rapid quenching so as not to allow any particle growth.
  • the flash sintering process can be accomplished using any localized high energy heating source, such as a plasma torch (air plasma, microwave plasma, inductive plasma), or high velocity oxygen fuel (HVOF) torch.
  • a plasma torch air plasma, microwave plasma, inductive plasma
  • HVOF high velocity oxygen fuel
  • the agglomerated particles larger than about 1 ⁇ m collected by the cyclone or chamber collectors may be directly fed into an industrial plasma or HVOF feeder. However, particles smaller than about 1 ⁇ m require an additional feeding technique.
  • agglomerated particles of about 0.5 to about 1 ⁇ m are dispersed into DD water to form another slurry, which may then be fed into a plasma or HVOF torch directly via a liquid feeder.
  • the particle size of the microscale particles are about 0.5 to about 150 ⁇ m.
  • the microscale particle assemblies 15 are formed by fabricating a precursor composition, forming a spherical hydroxide from the precursor composition, converting the spherical hydroxide into a magnetic nanoparticle, and sintering a plurality of nanoparticles into densely packed microscale particles.
  • Making the paste subsequently comprises mixing the densified microscale particles with the liquid organic component. This process is described in commonly assigned U.S. Pat. No. 6,162,530, which is incorporated herein in its entirety.
  • fabricating the precursor composition comprises dissolving desired stoichiometric ratios of starting materials (e.g., metal salts) in DD water.
  • Forming the spherical hydroxide comprises atomizing the precursor composition and a solution of a dilute hydroxide (e.g., NH 4 OH). Adding a controlled amount of solid seed material will result in the formation of nucleation centers for spherical particle growth at elevated temperatures. This is followed by the sintering step to form the desired final microscale product. These densely packed hydroxide microscale particles are then washed and filtered to obtain dry powders. Depending on the gaseous environment used in the heat treatment, particles of either metallic, metal/insulator nanocomposite, or ferrite can be formed.
  • the parameters to consider for optimization are heating rate, dwell time, and cooling time. These parameters may be readily determined by those skilled in the art in view of this disclosure without undue experimentation.
  • the paste may formed.
  • formation of the paste comprises dispersal of the magnetic component (i.e., the plurality of discrete nanoparticles and/or the plurality of nanoparticle assemblies) into the liquid organic component followed by mixing for a sufficient period of time to form a uniform composite.
  • Isolated individual nanoparticles possess undesirable magnetic properties, owing to the high magnetic anisotropy of the individual particles.
  • reducing the separation between neighboring nanoparticles down to the nanoscale leads to novel magnetic coupling phenomena resulting in higher permeability and lower magnetic anisotropy.
  • this enhancement in permeability is due to the inter-particle exchange coupling effect.
  • the exchange interaction which leads to magnetic ordering within a grain or assembly, extends out to neighboring environments (through either a spin polarization or super-exchange interaction mechanism) within a characteristic distance.
  • the exchange interaction in the assembly also leads to a cancellation of magnetic anisotropy of the individual particles and a demagnetizing effect, leading to significantly superior magnetic properties.
  • the pastes disclosed herein comprise greater than or equal to 40 volume percent (vol %) of the magnetic component. Specifically, the pastes comprise about 40 to about 92 vol % magnetic component and about 8 to about 60 vol % liquid organic component. Furthermore, the each assembly of the magnetic component may have a packing density greater than or equal to about 90% of the theoretical density.
  • the magnetic component is multi-modal (i.e., the magnetic component can comprise two or more different sized groups of agglomerates or discrete nanoparticles).
  • An exemplary magnetic paste 20 with a multi-modal magnetic component 22 in the liquid organic component 24 is shown in FIG. 3 .
  • the magnetic component comprises microscale assemblies of three different sizes 26 , 28 , and 30 . The arrangement of these three particle size groups will be in such a way that the first group 26 comprising the largest particles will form the main body of the magnetic component.
  • the second group 28 will fill the voids or interstices that are left vacant by the close packing of the particles of the first group 26 .
  • the third group 30 will fill the voids or interstices that are left vacant by the close packing of the particles of the first group 26 and the second group 28 .
  • the ratio of the size of the particles of the third group 30 to the size of the particles of the second group 28 is about 0.1:1 to about 0.8:1.
  • the ratio of the size of the particles of the second group 28 to the size of the particles of the first group 26 is about 0.1:1 to about 0.8:1. In this manner, a considerably greater volume percent and/or packing density of the magnetic component may be achieved than for pastes comprising uniformly sized assemblies 10 .
  • the paste can readily be deposited onto a substrate using known deposition or lithography techniques.
  • the paste is screen printed onto the substrate.
  • the paste is inkjetted onto the substrate as tiny droplets.
  • the liquid organic component of the paste may be cured, for example crosslinked, to form a magnetic device.
  • the cure can be accomplished using methods suitable for the chosen resin, for example, in the presence of a catalyst, heat or radiation, for example infrared, ultraviolet or e-beam radiation. Combinations of cure mechanisms may also be used. If heat is used, it is particularly desirable for the temperature not to exceed a temperature at which the substrate is substantially adversely affected (e.g., melts, decomposes, pyrolyzes, and the like).
  • the pastes may be employed in numerous applications that require a magnetic device.
  • the pastes may be deposited on PWBs/PCBs, silicon wafers, ceramic substrate materials, or the like. Suitable applications include antennae, power converters or switching power supplies (e.g., DC-DC converters), inductors, magnetic filters or noise filters, radiofrequency (RF) components (e.g., radiofrequency identification tags or transponders), microwave and millimeter wave circulators, broadband devices, electronic sensors, cellular phones, cable televisions (CATV), radar devices, sensors, telemetry devices, implantable medical devices, and the like.
  • the cured or hardened pastes can replace the bulky donut-shaped and/or E-shaped inductors used in existing high-frequency applications.
  • the devices formed from the magnetic pastes disclosed herein have permeabilities greater than or equal to about 3, and even greater than or equal to 10, at frequencies greater than or equal to about 1 megaHertz.
  • the devices formed from the magnetic pastes also have permitivities greater than or equal to about 3, and even greater than or equal to 10, and/or inductances greater than or equal to about 0.4 microHenry ( ⁇ -Henry), and even greater than or equal to about 1 ⁇ -Henry, at frequencies greater than or equal to about 1 megaHertz.
  • the devices formed from the magnetic pastes also have inductances that are at least two times, and even up to at least five times, higher than a device without the magnetic component such as a bare inductor (e.g., bare copper coil).
  • the formed slurry was then spray dried to form agglomerated substantially spherical particles.
  • Spray drying parameters included a feeding rate of 600 g/min, an inlet temperature of 475 degrees Fahrenheit (° F.), and outlet temperature of 125 degrees Celsius (° C.). Powders were collected using chamber and cyclone ports. The total powder collected at the chamber was about 6.5 lbs with about 2.5 lbs collected at the cyclone.
  • these powders were fed into a plasma torch (Metco 9 MB thermal spray device) for sintering into the densified assemblies.
  • the plasma spray process parameters included using Argon as the primary plasma working gas flowing at about 80-120 standard cubic feet per hour (SCFH), a plasma power of 25-45 KW and a powder feeding rate of about 2-5 lbs/hr).
  • SCFH standard cubic feet per hour
  • a plasma power 25-45 KW
  • a powder feeding rate of about 2-5 lbs/hr.
  • powders were fed into a plasma torch via a powder injection port, subsequently heated to remove any organic binders, followed by rapid melting/sintering/quenching of these liquid droplets from over 2000° C. to room temperature in a few milliseconds.
  • pastes having higher ferrite loadings were associated with higher tapping densities of the powders and also resulted in higher inductance values for fabricated films as will be further illustrated below.
  • Cat 105 is used to initiate the hardening of the epoxy resin (ETC 30-3019R CLR) under thermal heating during film fabrication, by mixing approximately 16 parts by weight of paste formed in Cat 105 with 100 parts by weight of the paste formed with ETC 30-3019R CLR.
  • FIG. 4 is a high resolution transmission electron microscope (TEM) image of the original nickel-zinc ferrite before agglomeration. As indicated in the micrograph, the average grain size is less than about 10 nm. For illustrative purposes, the arrow points to a grain boundary of two adjacent grains. Spray drying a slurry of the (Ni 0.5 Zn 0.5 )Fe 2 O 4 produced substantially spherical agglomerates, as illustrated in the scanning electron microscope (SEM) image shown in FIG. 5 .
  • SEM scanning electron microscope
  • Agglomerates each formed of a plurality of individual (Ni 0.5 Zn 0.5 )Fe 2 O 4 grains, of various sizes were combined with an epoxy resin as described above to form densely packed pastes.
  • An epoxy resin as described above to form densely packed pastes.
  • a representative cross-sectional image of a multi-modal paste after curing of the epoxy is shown in the SEM image of FIG. 6 .
  • the quality and/or the magnetic performance of the paste could be tailored by varying the loading of the magnetic particles. For example, tapping densities of about 2 g/cc to about 4 g/cc were observed by using different mixtures of agglomerates.
  • FIG. 7 highlights the variance in tapping density for so-called “bimodal” pastes made from different ratios of 35 micrometer and 2 micrometer sized agglomerates. As seen in the graph, the highest tapping densities were obtained for samples having about 40 wt % to about 60 wt %, and more specifically about 50 wt %, of the 35 ⁇ m agglomerates.
  • FIG. 8 illustrates the observed change in tapping density for unimodal, bimodal, and trimodal pastes. As indicated in the graph, a tapping density of about 4 g/cc, which represents about 80% of the theoretical density, was achieved for the trimodal paste.
  • FIG. 9 is a representative optical microscope image of an inductor, and illustrates the positional relationship between the substrate, thick film of (Ni 0.5 Zn 0.5 )Fe 2 O 4 , and the copper coil.
  • the bonding between the film and the patterned structure was excellent, and no delamination of the film from the substrate was observed.
  • each inductor was measured from about 10 kHz to about 13 MHz.
  • FIG. 10 illustrates the permeabilities of four samples made from pastes having from about 87 wt % to about 90 wt % ferrite. A permeability of about 19 was obtained. It should be emphasized that for each sample, the eddy current losses were quite small, and the Q factor was greater than about 70 throughout the entire frequency range.
  • the inductance of each sample was also measured.
  • the uncoated (i.e., before screen printing and hardening of the (Ni 0.5 Zn 0.5 )Fe 2 O 4 magnetic paste) patterned copper coil had an inductance of 0.183 ⁇ -Henry for a 5 mm diameter, 100 micrometer thick coil at the measured frequency. After an approximately 1 mm thick magnetic paste was screened and hardened onto the copper coil, the inductance increased to greater than 1 ⁇ -Henry.
  • FIG. 11 illustrates the inductance as a function of frequency for about 0.9 mm thick (Ni 0.5 Zn 0.5 )Fe 2 O 4 film deposited on the coil. As illustrated in the graph, a fourfold increase, from about 200 nanoHenry to about 800-1000 nanoHenry, was observed upon deposition of the ferrite coating.
  • FIG. 12 illustrates the inductance as a function of film thickness for a given coil. As seen in the graph, the inductance increases dramatically with film thickness up to about 1 mm.
  • FIG. 13 illustrates the inductance as a function of overall inductor diameter for both 1 mm and 1.5 mm thick films.
  • the required inductance is about 1 microHenry at 5 MHz.
  • a film thickness of about 1 mm using the pastes disclosed herein would be sufficient to achieve the desired inductance.
  • FIG. 14 is a TEM image of the paste after curing of the BCB at 250° C. for 1 hour using a heating rate of 1° C./min under nitrogen.
  • FIG. 15 is a representative optical microscope image of an inductor, and illustrates the positional relationship between the substrate, thick film of Co, and the copper coil. Among the inductors that were fabricated, the bonding between the film and the patterned structure was excellent, and no delamination of the film from the substrate was observed.
  • the permeability of the inductors were measured from about 1 MHz to about 600 MHz.
  • the inductors exhibited increased permeability of as a function of cobalt loading. With up to 90% cobalt loading, a permeability of about 6 was observed at about 600 MHz, as shown in FIG. 16 .
  • the top line in the graph represents ⁇ ′, or the real component of the complex permeability, and is indicative of the softness of the magnetization process in an alternating magnetic field.
  • the bottom line in the graph represents ⁇ ′′, or the imaginary component of the complex permeability, and is indicative of the loss of the energy in the magnetization process. It should be emphasized that for each sample, the eddy current losses were quite small, and the Q factor (which is represented by the quotient of ⁇ ′ divided by ⁇ ′′) was greater than about 50 throughout the entire frequency range.

Abstract

Disclosed herein is a magnetic paste that generally includes a magnetic component and a liquid organic component. The magnetic component includes a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, or both. Magnetic devices can be formed from the magnetic paste. Methods of making and using the magnetic paste are also described.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/679,859 filed May 11, 2005, which is incorporated herein by reference in its entirety.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • The United States Government has certain rights in this invention pursuant to National Science Foundation Grant Number DMI-0512262.
  • BACKGROUND
  • The present disclosure generally relates to magnetic composites and more specifically to magnetic pastes for use in high frequency applications.
  • The integration of magnetic components into electronic circuits has become a significant barrier to reducing the size of electronic devices. Current micrometer sized magnetic materials can only be used at low frequencies. For example, high permeability bulk ferrites can only be used at frequencies less than 1 megahertz (MHz) and bulk Ni-ferrites, which may be used up to about 100 MHz, have non-optimal initial permeabilities. Accordingly, existing commercial converters are designed to operate at frequencies less than about 2 MHz.
  • One method for integrating higher frequency magnetic devices into a circuit is through thick film screen-printing. Thick film screen-printing allows for the deposition of a magnetic material in paste form onto a ceramic substrate. The paste material generally consists of ceramic or metallic particles suspended in a polymer paste. Unfortunately, the permeabilities of these pastes are very low (e.g., less than about 3), resulting in large eddy current losses.
  • After printing, the paste undergoes a heat treatment that ultimately burns off the polymer and densifies, or sinters, the ceramic or metallic material. The result is a dense pattern formed from the ceramic or metallic material. Using this technique, for example, a conducting coil can be printed onto a layer of ferrite, and then covered with another layer of ferrite to form an inductive coil. Successive layers can be printed to increase the inductance of the device. The heat treatments, result in increased permeabilities, but are accompanied by increased eddy current losses at higher frequencies. Furthermore, the high temperature (about 700 to about 900 degrees Celsius) of the heat treatment makes these pastes incompatible with low temperature printed wiring board (PWB) or printed circuit board (PCB) processing procedures.
  • Accordingly, there remains a need in the art for new and improved magnetic pastes that have a desirable combination of properties, such as inductance, permeability, and/or permittivity at the desired frequency, and that may be used in devices that are processed at low temperatures.
  • BRIEF SUMMARY
  • A magnetic paste includes a magnetic component and a liquid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • A magnetic device includes a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • A power converter includes a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and a film disposed on the substrate of the power converter, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • A transformer includes a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and a film disposed on the substrate of the transformer, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • An inductor includes a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and a film disposed on the substrate of the inductor, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • A method for making a magnetic paste includes combining a magnetic component and a liquid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
  • A method for making a magnetic device includes combining a magnetic component and a liquid organic component to form a paste, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both; disposing the paste onto a substrate; and solidifying the paste.
  • The above described and other features are exemplified by the following figures and detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Referring now to the figures, which are exemplary embodiments and wherein like elements are numbered alike:
  • FIG. 1 is a schematic representation of a composite assembly;
  • FIG. 2 is a schematic representation of a microscale particle assembly;
  • FIG. 3 is a schematic representation of a magnetic paste with a multi-modal magnetic component;
  • FIG. 4 is a high resolution transmission electron microscope (TEM) image of a plurality of (Ni0.5Zn0.5)Fe2O4 grains prior to agglomeration;
  • FIG. 5 is a scanning electron microscope (SEM) image showing a plurality substantially spherical, spray dried (Ni0.5Zn0.5)Fe2O4 agglomerates;
  • FIG. 6 depicts a representative cross-sectional image of a multi-modal paste after hardening;
  • FIG. 7 is a graphical representation of the tapping density of pastes having different ratios of 10 and 35 micrometer (Ni0.5Zn0.5)Fe2O4 agglomerates;
  • FIG. 8 is a graphical representation of the tapping density of pastes having one, two, and three groups of agglomerates;
  • FIG. 9 is a representative optical microscope image of an inductor formed using a multimodal paste;
  • FIG. 10 is a graphical representation of the permeability as a function of frequency for four samples having different (Ni0.5Zn0.5)Fe2O4 loading levels;
  • FIG. 11 is a graphical representation of the inductance as a function of frequency for a bare copper coil and for an inductor;
  • FIG. 12 is a graphical representation of the inductance as a function of film thickness for (Ni0.5Zn0.5)Fe2O4 coated copper coils;
  • FIG. 13 is a graphical representation of the inductance as a function of diameter for 1 millimeter and 1.5 millimeter thick (Ni0.5Zn0.5)Fe2O4 films deposited on copper coils;
  • FIG. 14 is a TEM image of discrete 10 nanometer cobalt particles (dark field) dispersed in benzocyclobutane (bright field);
  • FIG. 15 is a representative optical microscope image of an inductor formed using a discrete nanoparticle paste; and
  • FIG. 16 is a graphical representation of the permeability as a function of frequency for an inductor made using a paste having about 90 weight percent cobalt nanoparticles.
  • DETAILED DESCRIPTION
  • Magnetic nanocomposite pastes, methods of making and using the pastes, and devices comprising the magnetic nanocomposite pastes are described. In contrast to the prior art, the pastes, methods, and devices disclosed herein make use of discrete nanoparticles and/or assemblies of nanoparticles to form the paste. Advantageously, the use of a high temperature heat treatment to remove the organic component and to sinter (i.e., densify) the paste after it has been deposited onto a substrate is not necessary, and therefore the paste is compatible with, or may be used in, a printed wiring board (PWB)/printed circuit board (PCB) process. The term “nanoparticle”, as used herein, refers to a particle having a grain dimension of less than about 250 nanometers (nm). The term “paste” as used herein, refers to non-solid compositions having a range of viscosities, and includes thick, viscous compositions as well as free-flowing compositions.
  • Also, as used herein, the terms “first”, “second”, and the like do not denote any order or importance, but rather are used to distinguish one element from another, and the terms “the”, “a”, and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. Furthermore, all ranges directed to the same quantity of a given component or measurement are inclusive of the endpoints and independently combinable.
  • The magnetic paste generally comprises a liquid organic component and a magnetic component comprising a plurality of discrete nanoparticles and/or nanoparticle-containing assemblies. The liquid organic component may be an organic resin composition that is compatible with (i.e., does not substantially adversely affect the manufacture or processing of the compositions and articles described herein) both the magnetic component and the substrate onto which the paste will be disposed. The liquid organic component also has a viscosity that is sufficiently low to enable dispersal of the magnetic component, dispensing by the desired means, and flow (if desired) when disposed onto the substrate. Suitable liquid organic component compositions may accordingly comprise thermoplastic resins, thermosetting resins, or combinations thereof. In general, thermosetting compositions are useful because they are flowable prior to cure and solid after cure. Suitable resin compositions include thermoplastics such as polystyrenes, polyamides, polycarbonates, polyphenylene oxides, polysulfones, polyimides, and the like; and thermosets such as epoxies, polyurethanes, alkyds, diallyl phthalates, melamines, phenolics, polyesters, and silicones ethyl cellulose, benzocyclobutene (BCB), and the like. Combinations of different thermoplastic and/or thermosetting compositions may also be used. The liquid organic component may further comprise catalysts, initiators, promoters, crosslinkers, stabilizers, surfactants, dispersants, viscosity modifiers, and other additives or combinations of additives.
  • The nanoparticles generally comprise a magnetic metal (e.g., Fe, Ni, Cu, Mo, Co, Mn, Cr, Zn, alloys comprising at least one of the foregoing metals, and the like). For example, the nanoparticles may comprise the metal itself. Oxides, nitrides, or other multinary magnetic metal containing combinations may be used, for example iron oxide based compositions (e.g., ferrite), nitride based compositions (e.g., Fe3N, Fe4N, Fe16N2, and the like), or combinations comprising at least one of the foregoing (e.g., Ni-ferrite, Co-ferrite, Zn-ferrite, Ni—Zn-ferrite, Mn—Zn-ferrite, YIG-ferrite, and the like). Alternatively, the magnetic metal containing nanoparticles can individually be coated with an insulator, which may or may not have the same composition as the liquid organic component.
  • When discrete nanoparticles are used, they may be of any geometry. Desirably, they are spherical or substantially spherical to facilitate attaining high packing densities of the magnetic component within the paste. In an exemplary embodiment, the nanoparticle-nanoparticle separation within the paste is about 1 nm to about 100 nm.
  • When assemblies of nanoparticles are used, the assemblies also may be of any geometry; however they too are desirably spherical or substantially spherical to facilitate attaining high packing densities of the magnetic component within the paste. The average longest dimension of the assemblies may be about 0.5 to about 150 micrometers (μm).
  • In one embodiment, the assembly is itself a solid composite comprising a plurality of separate magnetic nanoparticles dispersed in an insulating matrix. An exemplary assembly 10 of this type is shown in FIG. 1 and fully described in commonly assigned U.S. Pat. No. 6,720,074, which is incorporated herein in its entirety. The individual nanoparticles 12 are dispersed such that the particle-particle separation is about 1 to about 100 nm. While inter-grain interactions between the immediate neighboring individual metallic nanoparticles 12 provide the desired magnetic properties, the insulating matrix 14 material provides high resistivity, which significantly reduces any eddy current loss. The particle size of these composite assemblies 10 is about 10 to about 50 micrometers (μm). Specifically, an average particle size for the composite assembles is about 30 μm.
  • Suitable insulating matrix 14 materials for the composite assembly 10 include high dielectric materials (i.e., dielectric constant greater than or equal to about 3) including amorphous or crystalline ceramics such as alumina, silica, zirconia, and the like, and high dielectric polymers and polymer composites. The insulating matrix material can be either a nonmagnetic or magnetic (such as a highly resistive ferrite) material. It is important to note that the insulating matrix material of this type of assembly 10 may have the same composition as the liquid organic component of the paste, except that it will already have been polymerized into a solid prior to disposal of the composite assembly 10 into the liquid organic component to form the paste. Examples of these composite assemblies 10 include Co/SiO2, Fe—Ni/SiO2, Fe/SiO2, Co/polymer, and Fe/NiFe2O4.
  • In one embodiment, at least a portion of the magnetic nanoparticles are coated with an insulating composition (not shown) prior to being dispersed into the insulating matrix 14. The composition of the insulating coat may be different from the composition of the insulating matrix 14.
  • A method to manufacture the composite assembly 10 comprises fabricating a precomposite from a precursor composition; forming magnetic nanostructured particles surrounded by, or coated with, a matrix layer from the precomposite; and passivating the surface of the surrounded nanostructured particles.
  • In another embodiment, the assembly is a microscale particle comprising a plurality of agglomerated nanoparticles. For example, a plurality of nanoparticles can be sintered to form a microscale particle. An exemplary microscale particle assembly 15 is shown in FIG. 2. The nanoparticles 12 used to form the microscale particle assembly 15 can be highly resistive magnetic materials or highly conductive magnetic materials. In addition, the nanoparticles 12 can be of the same or different compositions. The particle size of the microscale particle assembly 15 is about 0.5 to about 150 micrometers (μm).
  • In one embodiment, the microscale particle assemblies 15 (e.g., microscale particles comprising a plurality of sintered nanoparticles) are formed by mixing magnetic nanoparticles and/or nanocomposites with a polymeric binder in solution, ball milling the solution mixture to form a uniform slurry, agglomerating the nanoparticles from the slurry to form microscale particles, and plasma densifying the microscale particles. The process may further comprise separating the microscale particles by their size prior to the plasma densification. Making the paste comprises mixing the densified microscale particles with the liquid organic component.
  • Suitable organic binders for mixing the starting materials (i.e., the nanoparticles and/or nanocomposites) include commercially available polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), carboxymethyl cellulose (CMC), or other water soluble polymeric binders. The binder comprises about 0.5 to about 10 weight percent (wt %) of the total solution. More specifically, the binder comprises about 1 to about 5 wt % of the total solution. The balance of the solution is desirably deionized distilled water (DD water).
  • After sufficient mixing, the mixture is then ball milled, for example in a high-energy attrition mill, to “de-agglomerate” the particles and form a uniform slurry. The parameters that may be optimized during ball milling include the ball milling energy, time, and loading ratio of balls to powder to lubricant. These parameters may be readily determined by those skilled in the art in view of this disclosure without undue experimentation.
  • Depending on the desired characteristics of the final agglomerated or reconstituted microscale particles, a surfactant may also be added to the solution during ball milling to homogenize the dispersed nanoparticles in the slurry. The parameters to consider for optimization with respect to the surfactant include the solid ratio, solvent loading, and rheology of the slurry. Similarly, these parameters may be readily determined by those skilled in the art in view of this disclosure without undue experimentation.
  • Once a suitable slurry has been formed, the next step is the agglomeration or reconstitution of the individual nanoparticles into microscale particles wherein each microscale particle is an assembly of individual nanoparticles that are adhered by the organic binder. This may be accomplished using a spray drying process. The parameters to consider for optimization of the agglomeration process include slurry concentration, slurry delivery rate, drying temperature, and atomizing speed. These parameters also may be readily determined by those skilled in the art in view of this disclosure without undue experimentation.
  • During the spray drying process, agglomerated powders of different may be isolated by size range. In one embodiment, this is accomplished by using chamber and cyclone collectors. The chamber collects particles larger than about 15 micrometers through gravitational fall out. The cyclone collects fine particles (e.g., smaller than about 15 micrometers), which are carried by the hot gas that dries the slurry.
  • The reconstituted microscale powder is then densified by a flash sintering process. The flash sintering process burns-off the organic binder, sinters and/or melts the microscale particles to form dense bodies, and quenches the sintered and/or molten droplets for powder collection, all very rapidly. The densification should permit a rapid sintering followed by rapid quenching so as not to allow any particle growth.
  • The flash sintering process can be accomplished using any localized high energy heating source, such as a plasma torch (air plasma, microwave plasma, inductive plasma), or high velocity oxygen fuel (HVOF) torch. The agglomerated particles larger than about 1 μm collected by the cyclone or chamber collectors may be directly fed into an industrial plasma or HVOF feeder. However, particles smaller than about 1 μm require an additional feeding technique. In one embodiment, agglomerated particles of about 0.5 to about 1 μm are dispersed into DD water to form another slurry, which may then be fed into a plasma or HVOF torch directly via a liquid feeder. In this manner, water molecules rapidly evaporate and further heating of the solid results in the rapid sintering and/or melting of the particles into spherical droplets that are subjected to rapid quenching. As previously discussed, the particle size of the microscale particles are about 0.5 to about 150 μm.
  • In another embodiment, the microscale particle assemblies 15 are formed by fabricating a precursor composition, forming a spherical hydroxide from the precursor composition, converting the spherical hydroxide into a magnetic nanoparticle, and sintering a plurality of nanoparticles into densely packed microscale particles. Making the paste subsequently comprises mixing the densified microscale particles with the liquid organic component. This process is described in commonly assigned U.S. Pat. No. 6,162,530, which is incorporated herein in its entirety.
  • Fabricating the precursor composition comprises dissolving desired stoichiometric ratios of starting materials (e.g., metal salts) in DD water. Forming the spherical hydroxide comprises atomizing the precursor composition and a solution of a dilute hydroxide (e.g., NH4OH). Adding a controlled amount of solid seed material will result in the formation of nucleation centers for spherical particle growth at elevated temperatures. This is followed by the sintering step to form the desired final microscale product. These densely packed hydroxide microscale particles are then washed and filtered to obtain dry powders. Depending on the gaseous environment used in the heat treatment, particles of either metallic, metal/insulator nanocomposite, or ferrite can be formed. The parameters to consider for optimization are heating rate, dwell time, and cooling time. These parameters may be readily determined by those skilled in the art in view of this disclosure without undue experimentation.
  • Once the discrete nanoparticles and/or assemblies of nanoparticles have been formed the paste may formed. In one embodiment, formation of the paste comprises dispersal of the magnetic component (i.e., the plurality of discrete nanoparticles and/or the plurality of nanoparticle assemblies) into the liquid organic component followed by mixing for a sufficient period of time to form a uniform composite.
  • Isolated individual nanoparticles possess undesirable magnetic properties, owing to the high magnetic anisotropy of the individual particles. However, reducing the separation between neighboring nanoparticles down to the nanoscale leads to novel magnetic coupling phenomena resulting in higher permeability and lower magnetic anisotropy. Without being bound by theory, this enhancement in permeability is due to the inter-particle exchange coupling effect. The exchange interaction, which leads to magnetic ordering within a grain or assembly, extends out to neighboring environments (through either a spin polarization or super-exchange interaction mechanism) within a characteristic distance. The exchange interaction in the assembly also leads to a cancellation of magnetic anisotropy of the individual particles and a demagnetizing effect, leading to significantly superior magnetic properties. By choosing a system with high tunneling excitation energy, a huge increase in the resistivity can be achieved through the technique wherein formation of the assemblies of nanoparticles prior to their addition into a liquid organic component to form the paste occurs. Because of the nanoscale particles, the eddy currents produced within the assembly are also negligibly small, leading to much lower eddy current loss for closely packed discrete nanoparticles and/or assemblies of nanoparticles compared to that of existing microscale materials.
  • The pastes disclosed herein comprise greater than or equal to 40 volume percent (vol %) of the magnetic component. Specifically, the pastes comprise about 40 to about 92 vol % magnetic component and about 8 to about 60 vol % liquid organic component. Furthermore, the each assembly of the magnetic component may have a packing density greater than or equal to about 90% of the theoretical density.
  • In one embodiment, the magnetic component is multi-modal (i.e., the magnetic component can comprise two or more different sized groups of agglomerates or discrete nanoparticles). An exemplary magnetic paste 20 with a multi-modal magnetic component 22 in the liquid organic component 24 is shown in FIG. 3. The magnetic component comprises microscale assemblies of three different sizes 26, 28, and 30. The arrangement of these three particle size groups will be in such a way that the first group 26 comprising the largest particles will form the main body of the magnetic component. The second group 28 will fill the voids or interstices that are left vacant by the close packing of the particles of the first group 26. Finally, the third group 30 will fill the voids or interstices that are left vacant by the close packing of the particles of the first group 26 and the second group 28. The ratio of the size of the particles of the third group 30 to the size of the particles of the second group 28 is about 0.1:1 to about 0.8:1. Similarly, the ratio of the size of the particles of the second group 28 to the size of the particles of the first group 26 is about 0.1:1 to about 0.8:1. In this manner, a considerably greater volume percent and/or packing density of the magnetic component may be achieved than for pastes comprising uniformly sized assemblies 10.
  • Once the paste is formed, it can readily be deposited onto a substrate using known deposition or lithography techniques. For example, in one embodiment, the paste is screen printed onto the substrate. In another embodiment, the paste is inkjetted onto the substrate as tiny droplets.
  • Subsequent to depositing the paste onto the substrate, the liquid organic component of the paste may be cured, for example crosslinked, to form a magnetic device. The cure can be accomplished using methods suitable for the chosen resin, for example, in the presence of a catalyst, heat or radiation, for example infrared, ultraviolet or e-beam radiation. Combinations of cure mechanisms may also be used. If heat is used, it is particularly desirable for the temperature not to exceed a temperature at which the substrate is substantially adversely affected (e.g., melts, decomposes, pyrolyzes, and the like).
  • The pastes may be employed in numerous applications that require a magnetic device. The pastes may be deposited on PWBs/PCBs, silicon wafers, ceramic substrate materials, or the like. Suitable applications include antennae, power converters or switching power supplies (e.g., DC-DC converters), inductors, magnetic filters or noise filters, radiofrequency (RF) components (e.g., radiofrequency identification tags or transponders), microwave and millimeter wave circulators, broadband devices, electronic sensors, cellular phones, cable televisions (CATV), radar devices, sensors, telemetry devices, implantable medical devices, and the like. The cured or hardened pastes can replace the bulky donut-shaped and/or E-shaped inductors used in existing high-frequency applications.
  • Advantageously, the devices formed from the magnetic pastes disclosed herein have permeabilities greater than or equal to about 3, and even greater than or equal to 10, at frequencies greater than or equal to about 1 megaHertz. The devices formed from the magnetic pastes also have permitivities greater than or equal to about 3, and even greater than or equal to 10, and/or inductances greater than or equal to about 0.4 microHenry (μ-Henry), and even greater than or equal to about 1 μ-Henry, at frequencies greater than or equal to about 1 megaHertz. In addition, the devices formed from the magnetic pastes also have inductances that are at least two times, and even up to at least five times, higher than a device without the magnetic component such as a bare inductor (e.g., bare copper coil).
  • The disclosure is further illustrated by the following non-limiting examples.
  • EXAMPLE 1 Formation of a Microscale Particle Assembly
  • 10 pounds (lbs) of nickel-zinc ferrite (Ni0.5Zn0.5)Fe2O4 with a grain size of less than about 100 nm were blended with 45.4 grams (g) of a 10 weight percent (wt %) solution of PVA in deionized distilled water (DD water) and dispersed into DD water to form a mixture that was ball milled to obtain a homogeneous slurry. The ball milling was performed using a Union Process Stegvari Attritor System type 18 with a ball/powder-loading ratio of about 4:1, ball milling speed of 300 revolutions per minute (rpm), and time of 1 h.
  • The formed slurry was then spray dried to form agglomerated substantially spherical particles. Spray drying parameters included a feeding rate of 600 g/min, an inlet temperature of 475 degrees Fahrenheit (° F.), and outlet temperature of 125 degrees Celsius (° C.). Powders were collected using chamber and cyclone ports. The total powder collected at the chamber was about 6.5 lbs with about 2.5 lbs collected at the cyclone.
  • Next, these powders were fed into a plasma torch (Metco 9 MB thermal spray device) for sintering into the densified assemblies. The plasma spray process parameters included using Argon as the primary plasma working gas flowing at about 80-120 standard cubic feet per hour (SCFH), a plasma power of 25-45 KW and a powder feeding rate of about 2-5 lbs/hr). In the plasma densification process, powders were fed into a plasma torch via a powder injection port, subsequently heated to remove any organic binders, followed by rapid melting/sintering/quenching of these liquid droplets from over 2000° C. to room temperature in a few milliseconds. The resulting assemblies formed from spray dried powders collected from the cyclone (less than about 20 μm) and chamber (about 20 to about 80 μm) ports are listed in Table 1
    TABLE 1
    Densification power levels and tapping densities of assemblies
    Trial Plasma power Tapping density
    Plasma densification of chamber powders
    1 36 KW 3.07
    2 42 KW 3.0
    Plasma densification of cyclone powders
    3 27.5 KW   2.45
    3 27.5 KW   2.57
    4 36 KW 2.86
    5 27.5 KW   2.96
    6 36 KW 2.94
  • EXAMPLE 2 Fabrication of a Magnetic Paste
  • About 26 g of a plasma densified cyclone collected (Ni0.5Zn0.5)Fe2O4 power having a tapping density of 2.94 was hand mixed with 4.27 g of epoxy resin (ETC 30-3019R CLR obtained from Epoxies, ETC) in a beaker using a spatula for about 0.5 hours until a uniform paste was formed. The paste composition was 14.1 wt % epoxy with 85.9 wt % (Ni0.5Zn0.5)Fe2O4.
  • Similarly, about 20 g of plasma densified cyclone collected (Ni0.5Zn0.5)Fe2O4 powder having a tapping density of 2.94 was hand mixed with 23.5 g of Cat 105 (Epoxies, ETC) by hand mixing in a beaker using a spatula. It should be noted that the Cat 105 is used to initiate the hardening of the epoxy resin (ETC 30-3019CLR) described above under thermal heating during device fabrication, by mixing approximately 16 parts by wt of paste formed in Cat 105 with 100 parts by wt of the paste formed with the ETC 30-3019R CLR resin.
  • Different ratios of epoxy to ferrite were tried, and the resulting properties of films formed from various pastes are listed in Table 2.
    TABLE 2
    Properties of films formed from magnetic paste
    Tapping Particle Ferrite
    density size loading Inductance
    Trials (g/cc) (μm) wt % (μ-Henry)
    Cyclone 1 2.453 2-10 75 0.40
    Cyclone 2 2.453 2-10 80 0.50
    Cyclone 3 2.8 2-10 84 0.675
    Cyclone 4 2.57 2-10 85 0.655
    Cyclone 5 2.96 2-10 86.5 0.70
    Cyclone 6 2.94 2-10 84.75 0.75
  • It is noted that pastes having higher ferrite loadings were associated with higher tapping densities of the powders and also resulted in higher inductance values for fabricated films as will be further illustrated below.
  • EXAMPLE 3 Fabrication of a Multi-Modal Magnetic Paste
  • About 29 g of chamber collected (Ni0.5Zn0.5)Fe2O4 powder having average particle size of about 30 micrometers were mixed with 9.45 g of cyclone (Ni0.5Zn0.5)Fe2O4 powders having an average particle size of about 3 micrometers. This powder mixture was then hand mixed with 2.8 g of epoxy resin (ETC 30-3019R CLR from Epoxies, ETC) in a beaker using a spatula for about 0.5 hours until a uniform paste was formed. The paste composition was 11.8 wt % epoxy with 88.2 wt % (Ni50Zn50)Fe2O4 loading.
  • Similarly, about 10 g of chamber collected (Ni0.5Zn0.5)Fe2O4 powder having an average particle size of about 30 micrometers were mixed with 3.75 g of cyclone collected (Ni0.5Zn0.5)Fe2O4 powders having an average particle size of about 3 micrometers. This powder mixture was then hand mixed with 1.9 grams of Cat 105 (Epoxies, ETC) by in a beaker using a spatula. The paste composition was 12 wt % Cat 105 with 88 wt % (Ni0.5Zn0.5)Fe2O4 loading. Again the Cat 105 is used to initiate the hardening of the epoxy resin (ETC 30-3019R CLR) under thermal heating during film fabrication, by mixing approximately 16 parts by weight of paste formed in Cat 105 with 100 parts by weight of the paste formed with ETC 30-3019R CLR.
  • EXAMPLE 4 Characterization of a Multi-Modal Magnetic Paste
  • Various multi-modal magnetic pastes of (Ni0.5Zn0.5)Fe2O4 was fabricated and characterized. FIG. 4 is a high resolution transmission electron microscope (TEM) image of the original nickel-zinc ferrite before agglomeration. As indicated in the micrograph, the average grain size is less than about 10 nm. For illustrative purposes, the arrow points to a grain boundary of two adjacent grains. Spray drying a slurry of the (Ni0.5Zn0.5)Fe2O4 produced substantially spherical agglomerates, as illustrated in the scanning electron microscope (SEM) image shown in FIG. 5. Agglomerates, each formed of a plurality of individual (Ni0.5Zn0.5)Fe2O4 grains, of various sizes were combined with an epoxy resin as described above to form densely packed pastes. A representative cross-sectional image of a multi-modal paste after curing of the epoxy is shown in the SEM image of FIG. 6.
  • The quality and/or the magnetic performance of the paste could be tailored by varying the loading of the magnetic particles. For example, tapping densities of about 2 g/cc to about 4 g/cc were observed by using different mixtures of agglomerates.
  • FIG. 7 highlights the variance in tapping density for so-called “bimodal” pastes made from different ratios of 35 micrometer and 2 micrometer sized agglomerates. As seen in the graph, the highest tapping densities were obtained for samples having about 40 wt % to about 60 wt %, and more specifically about 50 wt %, of the 35 μm agglomerates.
  • Analogously, when three different sized agglomerates were used to make pastes, an increased tapping density was observed. FIG. 8 illustrates the observed change in tapping density for unimodal, bimodal, and trimodal pastes. As indicated in the graph, a tapping density of about 4 g/cc, which represents about 80% of the theoretical density, was achieved for the trimodal paste.
  • By extension of the data in FIGS. 7 and 8, it should be understood that the use of additional groups of agglomerates and/or or different ratios of the groups of agglomerates can be used to increase the tapping density as would be desired for a particular application. The tapping densities of various (Ni0.5Zn0.5)Fe2O4 agglomerates are shown in Table 3.
    TABLE 3
    Tapping densities for different sized
    (Ni0.5Zn0.5)Fe2O4 agglomerates
    Agglomerate Size (μm)
    2 10 35 40
    Tapping density (g/cc) 2.157 2.948 2.946 2.897
  • EXAMPLE 5 Formation of an Inductor Using a Multimodal Paste
  • Several inductors were formed by screen-printing a multimodal paste of (Ni0.5Zn0.5)Fe2O4 onto a FR-4 (i.e., fire-resistant, woven glass reinforced epoxy) printed circuit board. Pastes having ferrite loadings of about 80 to about 90 wt %, with the balance being an epoxy binder, were used. FIG. 9 is a representative optical microscope image of an inductor, and illustrates the positional relationship between the substrate, thick film of (Ni0.5Zn0.5)Fe2O4, and the copper coil. Among the inductors that were fabricated, the bonding between the film and the patterned structure was excellent, and no delamination of the film from the substrate was observed.
  • The permeability of each inductor was measured from about 10 kHz to about 13 MHz. FIG. 10 illustrates the permeabilities of four samples made from pastes having from about 87 wt % to about 90 wt % ferrite. A permeability of about 19 was obtained. It should be emphasized that for each sample, the eddy current losses were quite small, and the Q factor was greater than about 70 throughout the entire frequency range.
  • The inductance of each sample was also measured. The uncoated (i.e., before screen printing and hardening of the (Ni0.5Zn0.5)Fe2O4 magnetic paste) patterned copper coil had an inductance of 0.183 μ-Henry for a 5 mm diameter, 100 micrometer thick coil at the measured frequency. After an approximately 1 mm thick magnetic paste was screened and hardened onto the copper coil, the inductance increased to greater than 1 μ-Henry.
  • FIG. 11 illustrates the inductance as a function of frequency for about 0.9 mm thick (Ni0.5Zn0.5)Fe2O4 film deposited on the coil. As illustrated in the graph, a fourfold increase, from about 200 nanoHenry to about 800-1000 nanoHenry, was observed upon deposition of the ferrite coating. FIG. 12 illustrates the inductance as a function of film thickness for a given coil. As seen in the graph, the inductance increases dramatically with film thickness up to about 1 mm. Finally, FIG. 13 illustrates the inductance as a function of overall inductor diameter for both 1 mm and 1.5 mm thick films.
  • In applications such as switch power supplies for cell phones, the required inductance is about 1 microHenry at 5 MHz. Thus, from the data in FIGS. 11-13, a film thickness of about 1 mm using the pastes disclosed herein would be sufficient to achieve the desired inductance.
  • EXAMPLE 6 Fabrication of a Magnetic Paste from Discrete Nanoparticles
  • Cobalt carbonyl was reduced to a Co nanoparticle dispersion at 110° C. in toluene. The average particle size of the cobalt nanoparticles were about 10 nm. Addition of benzocyclobutene (BCB) into the Co/toluene mixture resulted in the BCB coating the Co particles. A thick paste was then obtained after evaporation of the toluene under an argon atmosphere. FIG. 14 is a TEM image of the paste after curing of the BCB at 250° C. for 1 hour using a heating rate of 1° C./min under nitrogen.
  • EXAMPLE 7 Formation of an Inductor Using Discrete Nanoparticles Paste
  • The discrete Co nanoparticle paste of Example 6 was deposited onto a FR-4 printed circuit board via screen-printing or plotting, followed by curing of the BCB. FIG. 15 is a representative optical microscope image of an inductor, and illustrates the positional relationship between the substrate, thick film of Co, and the copper coil. Among the inductors that were fabricated, the bonding between the film and the patterned structure was excellent, and no delamination of the film from the substrate was observed.
  • The permeability of the inductors were measured from about 1 MHz to about 600 MHz. The inductors exhibited increased permeability of as a function of cobalt loading. With up to 90% cobalt loading, a permeability of about 6 was observed at about 600 MHz, as shown in FIG. 16. The top line in the graph represents μ′, or the real component of the complex permeability, and is indicative of the softness of the magnetization process in an alternating magnetic field. The bottom line in the graph represents μ″, or the imaginary component of the complex permeability, and is indicative of the loss of the energy in the magnetization process. It should be emphasized that for each sample, the eddy current losses were quite small, and the Q factor (which is represented by the quotient of μ′ divided by μ″) was greater than about 50 throughout the entire frequency range.
  • While the disclosure has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.

Claims (40)

1. A magnetic paste, comprising:
a magnetic component and a liquid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
2. The magnetic paste of claim 1, wherein an assembly of the plurality of nanoparticle-containing assemblies is a solid composite comprising a plurality of separate conductive nanoparticles dispersed in an insulating matrix.
3. The magnetic paste of claim 2, wherein a nanoparticle-nanoparticle separation distance is about 1 to about 100 nanometers.
4. The magnetic paste of claim 2, wherein the insulating matrix comprises a high dielectric material.
5. The magnetic paste of claim 2, wherein at least a portion of the separate conductive nanoparticles is coated with an insulating composition.
6. The magnetic paste of claim 1, wherein an assembly of the plurality of nanoparticle-containing assemblies is a microscale particle comprising a plurality of agglomerated nanoparticles.
7. The magnetic paste of claim 1, wherein the liquid organic component is an epoxy, a polyimide, a polystyrene, ethyl cellulose, or benzocyclobutene.
8. The magnetic paste of claim 1, wherein the magnetic component is multi-modal.
9. The magnetic paste of claim 1, wherein the magnetic component comprises greater than or equal to about 40 volume percent of the magnetic paste.
10. The magnetic paste of claim 1, wherein the magnetic component comprises about 40 to about 92 volume percent of the magnetic paste.
11. The magnetic paste of claim 1, wherein each assembly of the plurality of assemblies has a packing density greater than or equal to about 75 percent of a theoretical density.
12. The magnetic paste of claim 1, wherein each of the plurality of nanoparticle-containing assemblies are in direct contact with an other of the plurality of nanoparticle-containing assemblies.
13. The magnetic paste of claim 1, wherein each of the plurality of discrete nanoparticles has a nanoparticle-nanoparticle separation distance of about 1 to about 100 nanometers.
14. A magnetic device, comprising:
a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
15. The magnetic device of claim 14, wherein the magnetic device is a power converter, antenna, inductor, magnetic filter, radiofrequency component, wave circulator, cellular phone, broadband device, cable television, radar device, sensor, telemetry device, or implantable medical device.
16. The magnetic device of claim 14, further comprising a substrate onto which the magnetic component and the solid organic component are disposed.
17. The magnetic device of claim 16, wherein the substrate is a printed circuit board, silicon wafer, or a ceramic material.
18. The magnetic device of claim 14, wherein the magnetic device has a permeability greater than or equal to about 3 at a frequency greater than or equal to about 1 megahertz.
19. The magnetic device of claim 14, wherein the magnetic device has a permeability greater than or equal to about 10 at a frequency greater than or equal to about 1 megahertz.
20. The magnetic device of claim 14, wherein the magnetic device has a permitivity greater than or equal to about 3.
21. The magnetic device of claim 14, wherein the magnetic device has an inductance greater than or equal to about 0.4 microHenry.
22. The magnetic device of claim 14, wherein the magnetic device has an inductance greater than or equal to about 1 microHenry.
23. The magnetic device of claim 14, wherein the magnetic device has an inductance at least two times greater than for the magnetic device without the magnetic component.
24. The magnetic device of claim 14, wherein an assembly of the plurality of nanoparticle-containing assemblies is a solid composite comprising a plurality of separate conductive nanoparticles dispersed in an insulating matrix.
25. The magnetic device of claim 14, wherein an assembly of the plurality of nanoparticle-containing assemblies is a microscale particle comprising a plurality of agglomerated nanoparticles.
26. The magnetic device of claim 14, wherein each of the plurality of discrete nanoparticles has a nanoparticle-nanoparticle separation distance of about 1 to about 100 nanometers.
27. A power converter, comprising:
a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and
a film disposed on the substrate of the power converter, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
28. The power converter of claim 27, wherein the power converter has a permeability greater than or equal to about 3 at a frequency greater than or equal to about 1 megahertz.
29. The power converter of claim 27, wherein an inductance of the power converter is greater than or equal to about 0.4 microHenry at a frequency greater than or equal to about 1 megahertz.
30. The power converter of claim 27, wherein an inductance of the power converter is at least two times greater than for the power converter without the film.
31. A transformer, comprising:
a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and
a film disposed on the substrate of the transformer, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
32. The transformer of claim 31, wherein a permeability of the transformer is greater than or equal to about 3 at a frequency greater than or equal to about 1 megahertz.
33. The transformer of claim 31, wherein an inductance of the transformer is greater than or equal to about 0.4 microHenry at a frequency greater than or equal to about 1 megahertz.
34. The transformer of claim 31, wherein an inductance of the transformer is at least two times greater than for the transformer without the film.
35. An inductor, comprising:
a substrate, wherein the substrate comprises a printed circuit board, silicon wafer, or a ceramic material; and
a film disposed on the substrate of the inductor, wherein the film comprises a magnetic component and a solid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
36. The inductor of claim 35, wherein an inductance of the inductor is at least two times greater than for the inductor without the film.
37. The inductor of claim 35, wherein a permeability of the inductor is greater than or equal to about 3 at a frequency greater than or equal to about 1 megahertz.
38. The inductor of claim 35, wherein the inductance of the inductor is greater than or equal to about 0.4 microHenry at a frequency greater than or equal to about 1 megahertz.
39. A method for making a magnetic paste, the method comprising:
combining a magnetic component and a liquid organic component, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both.
40. A method for making a magnetic device, the method comprising:
combining a magnetic component and a liquid organic component to form a paste, wherein the magnetic component comprises a plurality of discrete nanoparticles, a plurality of nanoparticle-containing assemblies, wherein each assembly of the plurality of nanoparticle-containing assemblies has an average longest dimension of about 0.5 to about 150 micrometers, or both;
disposing the paste onto a substrate; and
solidifying the paste.
US11/432,086 2005-05-11 2006-05-11 Magnetic composites and methods of making and using Expired - Fee Related US8377576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/432,086 US8377576B2 (en) 2005-05-11 2006-05-11 Magnetic composites and methods of making and using

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67985905P 2005-05-11 2005-05-11
US11/432,086 US8377576B2 (en) 2005-05-11 2006-05-11 Magnetic composites and methods of making and using

Publications (2)

Publication Number Publication Date
US20070102663A1 true US20070102663A1 (en) 2007-05-10
US8377576B2 US8377576B2 (en) 2013-02-19

Family

ID=36952502

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/432,086 Expired - Fee Related US8377576B2 (en) 2005-05-11 2006-05-11 Magnetic composites and methods of making and using

Country Status (3)

Country Link
US (1) US8377576B2 (en)
CN (1) CN101208165B (en)
WO (1) WO2006122195A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049608A2 (en) * 2007-10-20 2009-04-23 Schaeffler Kg Encoder element for displaying an adjustment or movement of a bearing constituent
US20090242826A1 (en) * 2008-03-28 2009-10-01 Kabushiki Kaisha Toshiba High-frequency magnetic material and method of manufacturing the same
EP2131373A1 (en) 2008-06-05 2009-12-09 TRIDELTA Weichferrite GmbH Soft magnetic material and method for producing objects from this soft magnetic material
DE102008026887A1 (en) * 2008-06-05 2009-12-10 Tridelta Weichferrite Gmbh Soft magnetic material i.e. manganese zinc ferrite for e.g. transformer, has nano-fraction of soft magnetic material particles with particle size in range of ten to two hundred nano meter, where material is produced by spray drying
US7879269B1 (en) * 2006-09-13 2011-02-01 Rf Micro Devices, Inc. Ferrite powder optimized for fabrication of ferrite features and related methods
WO2011060825A1 (en) * 2009-11-19 2011-05-26 Nokia Corporation Deformable apparatus
US20110151377A1 (en) * 2009-12-18 2011-06-23 Simon Fraser University Compositions Including Magnetic Materials
CN101847479B (en) * 2009-03-24 2012-08-15 中国科学院物理研究所 Microwave composite material and preparation method thereof
US20130087373A1 (en) * 2010-07-06 2013-04-11 Dexerials Corporation Anisotropic conductive adhesive, method of producing the same, connection structure and producing method thereof
US20160086728A1 (en) * 2014-09-19 2016-03-24 Kabushiki Kaisha Toshiba Method for producing magnetic material
KR20160084372A (en) * 2013-11-01 2016-07-13 도다 고교 가부시끼가이샤 Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power supply system
WO2017024283A1 (en) * 2015-08-06 2017-02-09 Thin Film Electronics Asa Wireless communication device with integrated ferrite shield and antenna, and methods of manufacturing the same
CN106601419A (en) * 2016-11-18 2017-04-26 成都新柯力化工科技有限公司 Magnetic material with interstitial structure and preparation method therefor
US20180145004A1 (en) * 2015-05-25 2018-05-24 Sony Corporation Wiring board, and manufacturing method
CN113358800A (en) * 2021-05-26 2021-09-07 吉林化工学院 Magnetic nitrogen-doped carbon material and method for extracting and analyzing phthalic acid ester in plastic bottled water by using same
EP3917290A1 (en) * 2020-05-26 2021-12-01 Ajinomoto Co., Inc. Resin composition
EP3771303A4 (en) * 2018-03-23 2021-12-22 Ajinomoto Co., Inc. Paste for through-hole filling

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088535B1 (en) * 2007-02-12 2011-12-05 바쿰슈멜체 게엠베하 운트 코. 카게 Article for magnetic heat exchange and method of manufacturing the same
FR2915845B1 (en) * 2007-05-04 2010-09-17 Thales Sa POWER SUPPLY MODULE BASED ON MAGNETIC MATERIAL AND METHOD FOR MAKING THE SAME.
JP5846906B2 (en) 2008-04-01 2016-01-20 エヌエックスピー ビー ヴィNxp B.V. Vertical type phase change memory cell
CN106415742B (en) * 2014-07-22 2019-07-26 松下知识产权经营株式会社 Composite magnetic, using its coil component and composite magnetic manufacturing method
KR102093158B1 (en) * 2014-09-23 2020-03-25 삼성전기주식회사 Magnetic material for high-frequency electronic component and their manufacturing method
CN112133513A (en) * 2020-08-24 2020-12-25 天津大学 Low-temperature curing high-permeability magnetic composite material for power electronic integration and preparation method thereof

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237189A (en) * 1973-10-31 1980-12-02 Robert J. Deffeyes Polymodal magnetic recording media process for making and verifying the same and compositions useful therein
US4353958A (en) * 1979-02-22 1982-10-12 Narumi China Corporation Green ceramic tapes and method of producing them
US4719026A (en) * 1985-03-11 1988-01-12 Savin Corporation Electrophoretic method of producing high-density magnetic recording media and a composition and a suspension for practicing the same
US4837046A (en) * 1986-08-08 1989-06-06 Nippon Paint Co., Ltd. Method for forming ferrite film
US4911957A (en) * 1986-09-05 1990-03-27 Nippon Paint Co., Ltd. Method of forming ferrite film on particles or fibers
US5230729A (en) * 1989-11-09 1993-07-27 Rutgers, The State University Of New Jersey Carbothermic reaction process for making nanophase WC-Co powders
US5279994A (en) * 1993-02-11 1994-01-18 W. R. Grace & Co.-Conn. Aqueous processing of green ceramic tapes
US5460704A (en) * 1994-09-28 1995-10-24 Motorola, Inc. Method of depositing ferrite film
US5667715A (en) * 1996-04-08 1997-09-16 General Motors Corporation Magnetorheological fluids
US5667716A (en) * 1996-07-01 1997-09-16 Xerox Corporation High magnetization aqueous ferrofluids and processes for preparation and use thereof
US5851568A (en) * 1995-08-07 1998-12-22 Huang; Xiaodi Hex-directional press for consolidating powdered materials
US5868959A (en) * 1996-06-03 1999-02-09 Minnesota Mining And Manufacturing Company Surface modification of magnetic particle pigments
US5933116A (en) * 1996-06-05 1999-08-03 Murata Manufacturing Co., Ltd. Chip antenna
US5952040A (en) * 1996-10-11 1999-09-14 Nanomaterials Research Corporation Passive electronic components from nano-precision engineered materials
US6045925A (en) * 1997-08-05 2000-04-04 Kansas State University Research Foundation Encapsulated nanometer magnetic particles
US6048920A (en) * 1994-08-15 2000-04-11 Xerox Corporation Magnetic nanocomposite compositions and processes for the preparation and use thereof
US6162530A (en) * 1996-11-18 2000-12-19 University Of Connecticut Nanostructured oxides and hydroxides and methods of synthesis therefor
US6183568B1 (en) * 1989-01-26 2001-02-06 Fuji Photo Film Co., Ltd. Method for preparing a magnetic thin film
US6228904B1 (en) * 1996-09-03 2001-05-08 Nanomaterials Research Corporation Nanostructured fillers and carriers
US6392525B1 (en) * 1998-12-28 2002-05-21 Matsushita Electric Industrial Co., Ltd. Magnetic element and method of manufacturing the same
US6488908B1 (en) * 2000-02-14 2002-12-03 President Of Osaka University Spinel ferrite thin film and method of manufacturing the same
US20020193236A1 (en) * 2001-05-30 2002-12-19 Minoru Takaya Method for manufacturing spherical ceramic powder and spherical ceramic powder and composite material
US20030068496A1 (en) * 2001-08-14 2003-04-10 Alexander Wei Nanoparticle arrays and sensors using same
US20030099762A1 (en) * 2001-10-12 2003-05-29 Zongtao Zhang Coatings, coated articles and methods of manufacture thereof
US20030129405A1 (en) * 2000-10-26 2003-07-10 Yide Zhang Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof
US6632473B2 (en) * 2001-03-30 2003-10-14 Minebea Co. Ltd. Method of producing ferrite thin film
US20030202234A1 (en) * 2002-04-26 2003-10-30 Corning Intellisense Corporation Magnetically actuated microelectromechanical devices and method of manufacture
US6709966B1 (en) * 1999-06-29 2004-03-23 Kabushiki Kaisha Toshiba Semiconductor device, its manufacturing process, position matching mark, pattern forming method and pattern forming device
US6716488B2 (en) * 2001-06-22 2004-04-06 Agere Systems Inc. Ferrite film formation method
US6737463B2 (en) * 1996-09-03 2004-05-18 Nanoproducts Corporation Nanomaterials and magnetic media with coated nanostructured fillers and carriers
US6753033B2 (en) * 2000-03-16 2004-06-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing ceramic thick-film printed circuit board
US20040210289A1 (en) * 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
US6831543B2 (en) * 2000-02-28 2004-12-14 Kawatetsu Mining Co., Ltd. Surface mounting type planar magnetic device and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306733A (en) * 1999-04-19 2000-11-02 Kawatetsu Mining Co Ltd Ferrite magnetic film for magnetic element

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237189A (en) * 1973-10-31 1980-12-02 Robert J. Deffeyes Polymodal magnetic recording media process for making and verifying the same and compositions useful therein
US4353958A (en) * 1979-02-22 1982-10-12 Narumi China Corporation Green ceramic tapes and method of producing them
US4719026A (en) * 1985-03-11 1988-01-12 Savin Corporation Electrophoretic method of producing high-density magnetic recording media and a composition and a suspension for practicing the same
US4837046A (en) * 1986-08-08 1989-06-06 Nippon Paint Co., Ltd. Method for forming ferrite film
US4911957A (en) * 1986-09-05 1990-03-27 Nippon Paint Co., Ltd. Method of forming ferrite film on particles or fibers
US6183568B1 (en) * 1989-01-26 2001-02-06 Fuji Photo Film Co., Ltd. Method for preparing a magnetic thin film
US5230729A (en) * 1989-11-09 1993-07-27 Rutgers, The State University Of New Jersey Carbothermic reaction process for making nanophase WC-Co powders
US5279994A (en) * 1993-02-11 1994-01-18 W. R. Grace & Co.-Conn. Aqueous processing of green ceramic tapes
US6048920A (en) * 1994-08-15 2000-04-11 Xerox Corporation Magnetic nanocomposite compositions and processes for the preparation and use thereof
US5460704A (en) * 1994-09-28 1995-10-24 Motorola, Inc. Method of depositing ferrite film
US5851568A (en) * 1995-08-07 1998-12-22 Huang; Xiaodi Hex-directional press for consolidating powdered materials
US5667715A (en) * 1996-04-08 1997-09-16 General Motors Corporation Magnetorheological fluids
US5868959A (en) * 1996-06-03 1999-02-09 Minnesota Mining And Manufacturing Company Surface modification of magnetic particle pigments
US5933116A (en) * 1996-06-05 1999-08-03 Murata Manufacturing Co., Ltd. Chip antenna
US5667716A (en) * 1996-07-01 1997-09-16 Xerox Corporation High magnetization aqueous ferrofluids and processes for preparation and use thereof
US6737463B2 (en) * 1996-09-03 2004-05-18 Nanoproducts Corporation Nanomaterials and magnetic media with coated nanostructured fillers and carriers
US6228904B1 (en) * 1996-09-03 2001-05-08 Nanomaterials Research Corporation Nanostructured fillers and carriers
US5952040A (en) * 1996-10-11 1999-09-14 Nanomaterials Research Corporation Passive electronic components from nano-precision engineered materials
US6162530A (en) * 1996-11-18 2000-12-19 University Of Connecticut Nanostructured oxides and hydroxides and methods of synthesis therefor
US6045925A (en) * 1997-08-05 2000-04-04 Kansas State University Research Foundation Encapsulated nanometer magnetic particles
US6392525B1 (en) * 1998-12-28 2002-05-21 Matsushita Electric Industrial Co., Ltd. Magnetic element and method of manufacturing the same
US6709966B1 (en) * 1999-06-29 2004-03-23 Kabushiki Kaisha Toshiba Semiconductor device, its manufacturing process, position matching mark, pattern forming method and pattern forming device
US6488908B1 (en) * 2000-02-14 2002-12-03 President Of Osaka University Spinel ferrite thin film and method of manufacturing the same
US6831543B2 (en) * 2000-02-28 2004-12-14 Kawatetsu Mining Co., Ltd. Surface mounting type planar magnetic device and production method thereof
US6753033B2 (en) * 2000-03-16 2004-06-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing ceramic thick-film printed circuit board
US6720074B2 (en) * 2000-10-26 2004-04-13 Inframat Corporation Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof
US20030129405A1 (en) * 2000-10-26 2003-07-10 Yide Zhang Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof
US6632473B2 (en) * 2001-03-30 2003-10-14 Minebea Co. Ltd. Method of producing ferrite thin film
US20020193236A1 (en) * 2001-05-30 2002-12-19 Minoru Takaya Method for manufacturing spherical ceramic powder and spherical ceramic powder and composite material
US6716488B2 (en) * 2001-06-22 2004-04-06 Agere Systems Inc. Ferrite film formation method
US20030068496A1 (en) * 2001-08-14 2003-04-10 Alexander Wei Nanoparticle arrays and sensors using same
US20030099762A1 (en) * 2001-10-12 2003-05-29 Zongtao Zhang Coatings, coated articles and methods of manufacture thereof
US20040210289A1 (en) * 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
US20030202234A1 (en) * 2002-04-26 2003-10-30 Corning Intellisense Corporation Magnetically actuated microelectromechanical devices and method of manufacture

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879269B1 (en) * 2006-09-13 2011-02-01 Rf Micro Devices, Inc. Ferrite powder optimized for fabrication of ferrite features and related methods
US20100296759A1 (en) * 2007-10-20 2010-11-25 Schaeffler Technologies Gmbh & Co. Kg Encoder element for displaying an adjustment or movement of a bearing constituent
WO2009049608A3 (en) * 2007-10-20 2009-07-09 Schaeffler Kg Encoder element for displaying an adjustment or movement of a bearing constituent
WO2009049608A2 (en) * 2007-10-20 2009-04-23 Schaeffler Kg Encoder element for displaying an adjustment or movement of a bearing constituent
US20090242826A1 (en) * 2008-03-28 2009-10-01 Kabushiki Kaisha Toshiba High-frequency magnetic material and method of manufacturing the same
US8354037B2 (en) * 2008-03-28 2013-01-15 Kabushiki Kaisha Toshiba High-frequency magnetic material and method of manufacturing the same
EP2131373A1 (en) 2008-06-05 2009-12-09 TRIDELTA Weichferrite GmbH Soft magnetic material and method for producing objects from this soft magnetic material
US20090302512A1 (en) * 2008-06-05 2009-12-10 Tridelta Weichferrite Gmbh Soft-magnetic material and process for producing articles composed of this soft-magnetic material
US8070974B2 (en) 2008-06-05 2011-12-06 Tridelta Weichferrite Gmbh Soft-magnetic material and process for producing articles composed of this soft-magnetic material
DE102008026887B4 (en) * 2008-06-05 2012-02-23 Tridelta Weichferrite Gmbh Soft magnetic composite material
DE102008026887A1 (en) * 2008-06-05 2009-12-10 Tridelta Weichferrite Gmbh Soft magnetic material i.e. manganese zinc ferrite for e.g. transformer, has nano-fraction of soft magnetic material particles with particle size in range of ten to two hundred nano meter, where material is produced by spray drying
CN101847479B (en) * 2009-03-24 2012-08-15 中国科学院物理研究所 Microwave composite material and preparation method thereof
WO2011060825A1 (en) * 2009-11-19 2011-05-26 Nokia Corporation Deformable apparatus
US10020556B2 (en) 2009-11-19 2018-07-10 Nokia Technologies Oy Deformable apparatus
US20110151377A1 (en) * 2009-12-18 2011-06-23 Simon Fraser University Compositions Including Magnetic Materials
US20130087373A1 (en) * 2010-07-06 2013-04-11 Dexerials Corporation Anisotropic conductive adhesive, method of producing the same, connection structure and producing method thereof
US9279070B2 (en) * 2010-07-06 2016-03-08 Dexerials Corporation Anisotropic conductive adhesive, method of producing the same, connection structure and producing method thereof
KR102390020B1 (en) * 2013-11-01 2022-04-25 도다 고교 가부시끼가이샤 Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power supply system
KR20160084372A (en) * 2013-11-01 2016-07-13 도다 고교 가부시끼가이샤 Soft magnetic ferrite resin composition, soft magnetic ferrite resin composition molded body, and power transmission device for non-contact power supply system
US20160086728A1 (en) * 2014-09-19 2016-03-24 Kabushiki Kaisha Toshiba Method for producing magnetic material
US10513760B2 (en) * 2014-09-19 2019-12-24 Kabushiki Kaisha Toshiba Method for producing magnetic material
US20180145004A1 (en) * 2015-05-25 2018-05-24 Sony Corporation Wiring board, and manufacturing method
US10593606B2 (en) * 2015-05-25 2020-03-17 Sony Corporation Wiring board, and manufacturing method
WO2017024283A1 (en) * 2015-08-06 2017-02-09 Thin Film Electronics Asa Wireless communication device with integrated ferrite shield and antenna, and methods of manufacturing the same
US9947988B2 (en) 2015-08-06 2018-04-17 Thin Film Electronics Asa Wireless communication device with integrated ferrite shield and antenna, and methods of manufacturing the same
CN106601419A (en) * 2016-11-18 2017-04-26 成都新柯力化工科技有限公司 Magnetic material with interstitial structure and preparation method therefor
EP3771303A4 (en) * 2018-03-23 2021-12-22 Ajinomoto Co., Inc. Paste for through-hole filling
US11259412B2 (en) 2018-03-23 2022-02-22 Ajinomoto Co., Inc. Through hole filling paste
EP3917290A1 (en) * 2020-05-26 2021-12-01 Ajinomoto Co., Inc. Resin composition
CN113358800A (en) * 2021-05-26 2021-09-07 吉林化工学院 Magnetic nitrogen-doped carbon material and method for extracting and analyzing phthalic acid ester in plastic bottled water by using same

Also Published As

Publication number Publication date
CN101208165B (en) 2013-03-27
WO2006122195A2 (en) 2006-11-16
CN101208165A (en) 2008-06-25
US8377576B2 (en) 2013-02-19
WO2006122195A3 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US8377576B2 (en) Magnetic composites and methods of making and using
US5952040A (en) Passive electronic components from nano-precision engineered materials
US8070974B2 (en) Soft-magnetic material and process for producing articles composed of this soft-magnetic material
KR20090103951A (en) Composite magnetic body, its manufacturing method, circuit substrate using the same, and electronic device using the same
US20110017501A1 (en) Composite material and manufacturing method thereof
US20050074600A1 (en) Thick film magnetic nanopaticulate composites and method of manufacture thereof
EP3468326A1 (en) Ferrite particles, resin composition and electromagnetic shielding material
CN101620909B (en) Soft magnetic material and method for producing objects from this soft magnetic material
US20020193236A1 (en) Method for manufacturing spherical ceramic powder and spherical ceramic powder and composite material
Mürbe et al. Ni-Cu-Zn ferrites for low temperature firing: I. Ferrite composition and its effect on sintering behavior and permeability
Wang et al. Epsilon-negative behavior of BaTiO3/Ag metacomposites prepared by an in situ synthesis
JP2008263098A (en) Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
US6872251B2 (en) Method for manufacturing single crystal ceramic powder, and single crystal ceramic powder, composite material, and electronic element
EP3522179B1 (en) Ni-zn-cu ferrite particles, resin composition and resin molded body
KR100933371B1 (en) Electromagnetic wave absorber including soft magnetic layer imparted with function of dielectric layer and method of forming soft magnetic layer
JP2008311255A (en) Compound magnetic substance and its manufacturing method
Raj et al. Cobalt–polymer nanocomposite dielectrics for miniaturized antennas
KR20090089277A (en) Electromagnetic wave absorber compring magnetically soft body layer having function of dilectirc layer
US20210168974A1 (en) Composite particles, powder, resin composition and moulded body
JP2016529727A (en) Method of manufacturing monolithic electromagnetic components and related monolithic magnetic components
JP7338644B2 (en) Sintered compact and its manufacturing method
He et al. Greatly enhanced magneto-dielectric performance of the Ni 0.5 Zn 0.5 Fe 2 O 4/polyvinylidene fluoride composites with annealed ferrite powders for antenna applications
Raju Microwave processing of multilayer chip inductors using MgCuZn ferrites
Mathur et al. Processing of nano-crystallite spinel ferrite prepared by co-precipitation method
Murthy Copper/Nizn Ferrite Nanocomposite for Microinductor Applications

Legal Events

Date Code Title Description
AS Assignment

Owner name: INFRAMAT CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XIAO, T. DANNY;MA, XINQING;ZHANG, HENG;AND OTHERS;SIGNING DATES FROM 20060721 TO 20060802;REEL/FRAME:018045/0273

Owner name: INFRAMAT CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XIAO, T. DANNY;MA, XINQING;ZHANG, HENG;AND OTHERS;REEL/FRAME:018045/0273;SIGNING DATES FROM 20060721 TO 20060802

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170219