US20070060011A1 - Magnetic joints and toy figurines made therefrom - Google Patents

Magnetic joints and toy figurines made therefrom Download PDF

Info

Publication number
US20070060011A1
US20070060011A1 US11/478,859 US47885906A US2007060011A1 US 20070060011 A1 US20070060011 A1 US 20070060011A1 US 47885906 A US47885906 A US 47885906A US 2007060011 A1 US2007060011 A1 US 2007060011A1
Authority
US
United States
Prior art keywords
figurine
ferromagnetic
component
hemispherical portion
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/478,859
Inventor
Parviz Daftari
Charles Kowalski
Ans Bealieu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mega Brands International SARL Luxembourg Zug Branch
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/478,859 priority Critical patent/US20070060011A1/en
Assigned to MEGA BRANDS INTERNATIONAL, LUXEMBOURG, ZUG BRANCH reassignment MEGA BRANDS INTERNATIONAL, LUXEMBOURG, ZUG BRANCH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEAULIEU, ANS, DAFTARI, PARVIZ, KOWALSKI, CHARLES J.
Publication of US20070060011A1 publication Critical patent/US20070060011A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/36Details; Accessories
    • A63H3/46Connections for limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/26Magnetic or electric toys

Definitions

  • the present invention relates to the field of toy figurines, and, more particularly, to toy figurines having magnetic joints.
  • Joints of various designs have, in the past, been developed for toy figurines to permit the selective attachment and removal of component parts, such as appendages and the like.
  • An example of a joint for a toy figurine can be found in U.S. Pat. No. 5,295,889 to Ejima, which discloses a toy figurine having magnetically-coupled, ball-and-socket joints that allow appendages to be selectively attached to the figurine as desired.
  • Another example of a joint for a toy figurine can be found in U.S. Patent Application Publication No. US 2004/0077259 to Barri, which discloses a toy figurine having joints in the form of magnetized pegs and corresponding sockets for receiving the pegs.
  • Other examples of joints include U.S. Pat.
  • the magnetic joint comprises a ball and a pair of sockets magnetically coupled to the ball, wherein the first socket is formed in a first figurine part and the second socket is formed in a second figurine part.
  • Each socket includes a magnet embedded in the socket for magnetically coupling the socket to the ball.
  • the joint allows for angulation and rotation of joined parts, as well as for quick and convenient assembly and disassembly of figurine components.
  • the ball “floats” between the sockets, and can be removed by the user and substituted with another ball, as desired.
  • a pair of friction inlays or O-rings can be provided between the ball and the sockets to provide sufficient friction when the joint is assembled to allow coupled figurine components to be retained in one or more desired positions.
  • the magnetic joint comprises a first socket formed in a first figurine component, a first hemispherical portion magnetically coupled with the first socket, a second hemispherical portion interconnected with the first hemispherical portion, and a second socket formed in a second figurine component and interconnected with the second hemispherical portion.
  • a friction inlay could be provided between the first socket and the first hemispherical portion to provide sufficient friction when the joint is assembled to allow the first figurine component to be retained in one or more desired positions.
  • the magnetic joint comprises a pair of complementary, generally planar joint surfaces that are magnetically coupled to each other using complementary magnets embedded in the joint surfaces.
  • Complementary central magnets could be embedded in central regions of the joint surfaces for coupling the joints together, and a plurality of satellite magnets could be disposed radially about each central magnet and embedded in the joint surfaces to allow coupled figurine components to be rotated and held in one or more predetermined positions (indexed).
  • Complementary conductive regions such as a central conductive region surrounded by an annular conductive region, could be provided on each joint surface for allowing electrical power to be transmitted through the joint.
  • the magnetic joint comprises a peg and corresponding socket construction that cooperate to permit rotation of coupled figurine components.
  • the peg and socket each include corresponding end magnets for retaining the peg in the socket.
  • a plurality of corresponding indexing magnets are embedded in the peg and the socket for allowing the joined parts to be retained in one or more predetermined positions (internally indexed) when the indexing magnets are rotated into alignment with each other.
  • the magnetic joint comprises a socket including a ring magnet, and a ferromagnetic, hemispherical portion magnetically coupled with the ring magnet.
  • the ring magnet is attached to a first figurine component in a recess formed therein, while the ferromagnetic, hemispherical portion is attached to a second figurine component.
  • the magnetic joint comprises a socket which includes a magnet having a recess, the magnet being attached to a first figurine component in a recess formed therein, a ferromagnetic, hemispherical portion attached to a second figurine component, and an O-ring positioned between the magnet and the ferromagnetic, hemispherical portion.
  • the O-ring provides frictional engagement with the ferromagnetic, hemispherical portion, so that the first figurine component is retained in a desired position with respect to the second figurine component.
  • the O-ring could be positioned in an annular channel formed in the magnet.
  • the magnetic joint comprises a flexible socket attached to a first figurine component and having a magnet positioned therein, and a ferromagnetic, hemispherical portion attached to a second figurine component and magnetically coupled with the flexible socket.
  • An inner surface of the flexible socket frictionally engages the ferromagnetic, hemispherical portion to retain the first figurine component in a desired position with respect to the second figurine component.
  • a coating could be provided on the ferromagnetic, hemispherical portion to facilitate frictional engagement with the socket.
  • the magnetic joint comprises a socket attached to a first figurine component, a ferromagnetic, hemispherical portion attached to a second figurine component and magnetically coupled with the socket, and a switch extending through an aperture formed in the ferromagnetic, hemispherical portion, wherein the switch is activated when the first figurine component is coupled to or uncoupled from the second figurine component.
  • the switch could be connected to an electrical circuit (e.g., a light-emitting diode (LED) and an associated flasher circuit), so that the electrical circuit is activated when the switch is activated.
  • an electrical circuit e.g., a light-emitting diode (LED) and an associated flasher circuit
  • FIG. 1 is a front elevational view of a toy figurine having magnetically-coupled joints according to a first embodiment of the present invention, wherein each joint includes a ball and a pair of sockets magnetically coupled to the ball;
  • FIG. 2 is a front elevational view of one of the magnetic joints for the toy figurine shown in FIG. 1 ;
  • FIG. 3 is a cross-sectional view, taken along section line 3 - 3 of FIG. 2 and looking in the direction of the arrows, of the magnetic joint shown in FIG. 2 ;
  • FIG. 4 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, wherein friction inlays are provided between the sockets and the ball;
  • FIG. 4 b is a perspective view of one of the friction inlays shown in FIG. 4 a;
  • FIG. 4 c is a cross-sectional view showing the components of FIG. 4 a assembled
  • FIG. 5 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, wherein O-rings are provided between the sockets and the ball;
  • FIG. 5 b is a cross-sectional view showing the components of FIG. 5 a assembled
  • FIG. 6 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, including a two-piece, ferromagnetic ball which is coupled to only one of two socket members;
  • FIG. 6 b is a cross-sectional view showing the components of FIG. 6 a assembled
  • FIG. 7 is a perspective view of a toy figurine having magnetic joints according to another embodiment of the present invention, wherein the joints include generally planar surfaces that allow for indexing;
  • FIG. 8 a is a perspective view of one of the magnetic joints for the toy figurine shown in FIG. 7 ;
  • FIG. 8 b is a front elevational view of the magnetic joint shown in FIG. 8 a;
  • FIG. 9 a is a perspective view of another embodiment of the magnetic joints of the present invention, wherein each joint includes generally planar surfaces having conductive areas for allowing power transmission through the joint;
  • FIG. 9 b is a front elevational view of the magnetic joint shown in FIG. 9 a;
  • FIG. 10 is a perspective view of a toy figurine having magnetic joints according to another embodiment of the present invention, wherein each joint comprises an internally-indexed, magnetically-coupled peg and socket;
  • FIG. 11 a is a perspective view of one of the magnetic joints for the toy figurine shown in FIG. 10 ;
  • FIG. 11 b is a front elevational view of the magnetic joint shown in FIG. 11 a;
  • FIG. 12 a is an exploded perspective view of another embodiment of the magnetic joints of the present invention, which embodiment includes a socket having an hemispherical portion;
  • FIG. 12 b is a cross-sectional view showing the components of FIG. 12 a assembled
  • FIG. 13 is a cross-sectional view of another embodiment of the magnetic joints of the present invention, which embodiment includes a magnet having a recess, an hemispherical portion coupled to the magnet, and an O-ring positioned between the magnet and the hemispherical portion;
  • FIG. 14 is a cross-sectional view of another embodiment of the magnetic joints of the present invention, which embodiment is similar to the one shown in FIG. 13 except that an O-ring is positioned within an annular channel formed in the magnet;
  • FIG. 15 is a cross-sectional view of another embodiment of the magnetic joints of the present invention, which embodiment includes a flexible socket having a magnet positioned therein and an hemispherical portion;
  • FIG. 16 is a cross-sectional view of another embodiment of the magnetic joints of the present invention, which embodiment is similar to that shown in FIG. 15 except that the hemispherical portion includes a rubber coating;
  • FIG. 17 is a front elevational view of a portion of a figurine equipped with a magnetic joint and a switch for activating a lighting circuit within the figurine component;
  • FIG. 18 is a schematic diagram showing the switch of FIG. 17 implemented in a light flasher circuit.
  • a toy figurine 10 which includes a head 12 , an upper torso 14 , a lower torso 16 , arms 18 , 20 , and legs 22 , 24 .
  • the arm 18 includes a bicep 26 , a forearm 28 , and a hand 30 .
  • the arm 20 includes a bicep 32 , a forearm 34 , and a hand 36 .
  • the leg 22 includes a thigh 38 , a shin 40 , and a foot 42 .
  • the leg 24 includes a thigh 44 , a shin 46 , and a foot 48 . All of the foregoing parts are movably coupled to their adjoining parts by magnetic joints 50 a - n.
  • FIG. 2 is a front elevational view of the magnetic joint 50 e shown in FIG. 1 , it being understood that each of the magnetic joints 50 a - d and 50 f - n of FIG. 1 has the same construction as the magnetic joint 50 e .
  • a ball 56 is positioned between a pair of magnetic sockets 52 a , 52 b (see FIG. 3 ) formed in the upper torso 14 and the bicep 26 , respectively.
  • the magnetic joint 50 e allows for both angulation (indicated generally by arrow A) and rotation (indicated generally by arrow B) of the bicep 26 relative to the upper torso 14 .
  • Each of the magnetic joints 50 a - d and 50 f - n shown in FIG. 1 is likewise adapted for such angulation and rotation.
  • the ball 56 can be completely disengaged from the upper torso 14 and the bicep 26 , and substituted with another ball having any desired color, pattern, or appearance, so as to enhance the entertainment value of the figurine.
  • more than two components can be joined to a single ball.
  • the ball 56 is positioned between the sockets 52 a , 52 b formed in the upper torso 14 and the bicep 26 , respectively.
  • the sockets 52 a , 52 b are generally cup-shaped so as to conform to the shape of the ball 56 , and include magnets 54 a , 54 b embedded in central portions of the sockets 52 a , 52 b .
  • the magnets 54 a , 54 b are magnetically attracted to the ball 56 , which can be manufactured from any suitable ferromagnetic material.
  • the magnetic attraction of the magnets 54 a , 54 b to the ball 56 retains the sockets 52 a , 52 b in position against the ball 56 so as to couple the upper torso 14 to the bicep 26 .
  • the sockets 52 a , 52 b can be disengaged from the ball 56 by pulling the upper torso 14 and the bicep 26 away from the ball 56 .
  • FIG. 4 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, indicated generally at 60 , for coupling a first figurine portion 62 a to a second figurine portion 62 b .
  • the joint 60 includes friction inlays 65 a , 65 b positioned between sockets 72 a , 72 b (formed in portions 62 a , 62 b , respectively) and a ball 66 .
  • the friction inlays 65 a , 65 b include cup-shaped portions 68 a , 68 b which conform to the shape of the ball 66 .
  • Magnets 64 a , 64 b extend through apertures 67 a , 67 b formed in the cup-shaped portions 68 a , 68 b , and are positionable within recesses 73 a , 73 b formed in the centers of the sockets 72 a , 72 b .
  • the magnets 64 a , 64 b could include rounded faces 69 a , 69 b , respectively, which conform to the shape of the ball 66 .
  • the inlays 65 a , 65 b could be interconnected with the sockets 72 a , 72 b in any known manner, such as by gluing or by means of a friction fit.
  • the inlays 65 a , 65 b provide sufficient friction against the ball 66 when the joint 60 is assembled (see FIG. 4 c ) to retain the figurine portions 62 a , 62 b in a desired position with respect to each other, while allowing for rotation and angulation.
  • FIG. 4 b which is a perspective view of one of the friction inlays 65 a (the opposite friction inlay 65 b being identical thereto)
  • the magnet 64 a extends through the aperture 67 a formed in the cup-shaped portion 68 a of the inlay 65 a .
  • the magnet 64 a could be permanently attached to the cup-shaped portion 68 a (e.g., by gluing), or could be removable therefrom.
  • the inlays 65 a , 65 b could be manufactured from rubber or other suitable material.
  • FIG. 5 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, indicated generally at 80 , wherein O-rings 88 a , 88 b are positioned between generally cup-shaped sockets 89 a , 89 b and a ball 86 .
  • the sockets 89 a , 89 b are formed in figurine components 82 a , 82 b (which could be any desired components of a figurine), and include magnets 84 a , 84 b positioned in recesses 83 a , 83 b formed in the sockets 89 a , 89 b .
  • the O-rings 88 a , 88 b bear against the ball 86 when the sockets 89 a , 89 b are coupled to the ball 86 , so that the figurine components 82 a , 82 b can be retained in a desired position with respect to each other after being moved by a user.
  • the O-rings 88 a , 88 b can be made from any suitable material.
  • FIG. 6 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, indicated generally at 90 , for joining first and second figurine components 91 a , 91 b (which could be any desired components of a figurine).
  • the joint 90 includes a first socket 92 a formed in the first figurine component 91 a , a second socket 92 b formed in the second figurine component 91 b , a friction inlay 94 , a first hemispherical portion 96 , and a second hemispherical portion 98 .
  • the socket 92 a includes a recess 93 a for receiving a magnet 95 formed in the friction inlay 94 , and the friction inlay 94 could be permanently attached to the socket 92 a (such as by gluing) or temporarily by means of a friction fit.
  • the socket 92 b includes a recess 93 b for receiving a protrusion 99 formed on the second hemispherical portion 98 .
  • the second hemispherical portion 98 can be permanently attached to the second socket 92 b in any suitable manner, such as by gluing, etc.
  • the first hemispherical portion 96 includes an annular lip 97 a that is configured to be received by an annular external recess 97 b formed on an external surface 98 a of the second hemispherical portion 98 .
  • the second hemispherical portion 98 includes an annular lip 97 c that is configured to be received by an annular recess 97 d formed on an internal surface 96 a of the first hemispherical portion 96 .
  • the lips 97 a , 97 c and recesses 97 b , 97 d cooperate to interconnect the first hemispherical portion 96 to the second hemispherical portion 98 .
  • the first hemispherical portion 96 is preferably manufactured from a ferromagnetic material, so as to facilitate magnetic attraction to the magnet 95 .
  • magnetic attraction between the magnet 95 and the first hemispherical portion 96 couples the first figurine component 91 a to the first hemispherical portion 96 , allowing for rotation and angulation of the first figurine component 91 a .
  • the friction inlay 94 provides sufficient friction to retain the first figurine component 91 a in a desired position.
  • FIG. 7 is a perspective view of a toy figurine, indicated generally at 100 , having a body portion 102 , a plurality of appendages 104 - 118 , and a plurality of magnetic joints 120 a - h made in accordance with another embodiment of the present invention for the purpose of coupling the appendages 104 - 118 to the body portion 102 .
  • the magnetic joints 120 a - h include complementary, generally planar (i.e., flat) joint surfaces 122 a , 122 b (see FIGS. 8 a - 8 b ) that allow for rotation and indexing.
  • the magnetic joints 120 a - h allow, for example, the plurality of appendages 104 - 118 to be selectively attached to and removed from the body portion 102 , and rotated and indexed when attached to the body portion 102 .
  • FIG. 8 a is perspective view of the magnetic joint 120 a shown in FIG. 7 , each of the magnetic joints 120 b - h of FIG. 7 having the same construction as the joint 120 a .
  • the complementary, generally planar joint surfaces 122 a , 122 b include complementary magnets 124 a , 124 b positioned within central regions of the joint surfaces 122 a , 122 b , such that attraction between the magnets 124 a , 124 b retains the joint surfaces 122 a , 122 b against each other when the joint 120 a is assembled.
  • indexing magnets 126 a , 126 b are positioned in a radial array about the magnets 124 a , 124 b to allow the appendage 104 and the body portion 102 to be indexed by means of magnetic attraction exerted between the magnets 126 a , 126 b when the magnets 126 a , 126 b are rotated into alignment (see arrow C in FIG. 8 b ).
  • the magnets 124 a , 124 b and 126 a , 126 b could be embedded in the joint surfaces 122 a , 122 b , or otherwise attached thereto. It should be noted that the magnets 126 a , 126 b could be substituted with protrusions and corresponding recesses to allow for indexing.
  • FIG. 9 a is a perspective view of another embodiment of the magnetic joints of the present invention, indicated generally at 130 , for coupling a first figurine component 132 to a second figurine component 134 .
  • the joint 130 comprises a pair of complementary, generally planar joint surfaces 136 a , 136 b having annular conductive regions 138 a , 138 b surrounding central conductive regions 140 a , 140 b .
  • the annular conductive regions 138 a , 138 b or the central conductive regions 140 a , 140 b , or both, could be magnetic to retain the joint surfaces 136 a , 136 b in position against each other.
  • An electrical circuit 142 in the first figurine component 132 (e.g., a battery positioned in a torso portion of a figurine) is in electrical communication with the annular conductive region 138 a and the central conductive region 140 a via leads 144 .
  • the annular conductive region 138 a makes electrical contact with the annular conductive region 138 b and the central conductive region 140 a makes electrical contact with the central conductive region 140 b to allow power to be transmitted from the circuit 142 through the joint 130 and into the second figurine component 134 .
  • Leads 146 in the second figurine component 134 are connected to the annular conductive region 138 b and the central conductive region 140 b to transfer electrical power to a circuit in the second figurine component 146 (e.g., to a light or motor).
  • the joint 130 allows for rotation of the second figurine part 134 with respect to the first figurine part 132 , indicated generally by arrow D.
  • the joint 130 allows for power transmission therethrough, while simultaneously allowing for rotation of the magnetically coupled parts.
  • the conductive regions 138 a , 138 b and 140 a , 140 b could be provided in any desired shapes and at any desired locations of the joint surfaces 136 a , 136 b without departing from the spirit or scope of the present invention.
  • FIG. 10 is a perspective view of a toy figurine, indicated generally at 150 , having a head 152 , an upper torso 154 , arms 156 , 158 , a lower torso 160 , legs 162 , 164 , magnetic joints 166 a , 166 b removably coupling the legs 162 , 164 to the lower torso 160 , and another set of magnetic joints 170 a , 170 b according to another embodiment of the present invention removably coupling the arms 156 , 158 to the upper torso 154 .
  • a magnetic joint 168 could be provided for removably coupling the head 152 to the upper torso 154 , or the head 152 could be permanently coupled to the upper torso 154 .
  • the magnetic joints 170 a , 170 b are internally indexed and allow for rotation and indexing of the arms 156 , 158 with respect to the upper torso 154 .
  • FIGS. 11 a - 11 b are perspective and front elevational views, respectively, of the magnetic joint 170 b shown in FIG. 10 , the magnetic joint 170 a being identical thereto in construction.
  • the joint 170 b comprises a peg 172 formed on the arm 158 , which is insertable into a socket 174 formed in the upper torso 154 .
  • a shoulder 176 surrounding the socket 174 abuts a shoulder 178 disposed about the peg 172 when the peg 172 is inserted into the socket 174 .
  • the socket 174 includes an end magnet 180 and a plurality of indexing magnets 182 disposed along the longitudinal axis of the socket 174 and about the circumference of the socket 174 .
  • the peg 172 includes a corresponding end magnet 184 and a plurality of corresponding indexing magnets 186 disposed along the longitudinal axis of the peg 172 and about the circumference of the peg 172 .
  • the indexing magnets 182 of the socket 174 are magnetically attracted to the indexing magnets 186 of the peg 172 to allow the arm 158 to be rotated and held in one or more predetermined positions (i.e., indexed). It should be noted that the indexing magnets 182 , 186 could be replaced with corresponding protrusions and recesses to allow for indexing. Moreover, either set of the indexing magnets 182 , 186 could be replaced with a ferromagnetic material, so that only a single set of magnets is required to provide indexing.
  • one of the end magnets 180 , 184 could likewise be replaced with a ferromagnetic material so that only a single magnet is required to retain the peg 172 in the socket 174 .
  • the magnets could be poled (e.g., one set of magnets could correspond to a south magnetic pole, and another set of magnets could correspond to a north magnetic pole), so as to further facilitate indexing of the joined components.
  • the magnetic joints of the present invention could be used to couple figurine components in any desired configuration.
  • the arm 26 (see FIG. 1 ) could be formed by coupling the bicep 26 to the forearm 28 using the joint 50 f , and the forearm 28 to the hand 36 using the joint 50 g .
  • the arm 26 could then be coupled to upper torso 14 using the joint 50 e .
  • the arm 20 could be formed by coupling the bicep 32 to the forearm 34 using the joint 50 c , and the forearm 34 to the hand 36 using the joint 50 d .
  • the arm 20 could then be coupled to upper torso 14 using the joint 50 b .
  • the head 12 , upper torso 14 , and lower torso 16 could be interconnected using the joints 50 a and 50 h , respectively.
  • the legs 22 could be formed by coupling the thigh 38 to the shin 40 using the joint 50 m , and the shin 40 could be coupled to the feet 42 using the joint 50 n .
  • the leg 22 could then be coupled to the lower torso 16 using the joint 50 l .
  • the legs 24 could be formed by coupling the thigh 44 to the shin 46 using the joint 50 j , and the shin 46 could be coupled to the feet 48 using the joint 50 k .
  • the leg 24 could then be coupled to the lower torso 16 using the joint 50 i .
  • any desired combination of components could be interconnected in any desired fashion using the magnetic joints of the present invention.
  • any desired combination of the various embodiments of the magnetic joints of the present invention could be implemented in a toy figurine.
  • the joint 200 includes a hemispherical, ferromagnetic portion 202 , a socket 206 , and a ring magnet 204 positioned in the socket 206 .
  • the ring magnet 204 is mounted in a recess 216 of a first figurine component 208 (see FIG. 12 b ).
  • the ring magnet 204 is glued or otherwise permanently mounted to the first figurine component 208 .
  • the ferromagnetic, hemispherical portion 202 includes an annular lip 210 (see FIG.
  • the second figurine component 212 is molded about the ferromagnetic, hemispherical portion 202 .
  • the ferromagnetic, hemispherical portion 202 could be glued to the second figurine component 212 .
  • the ring magnet 204 couples the first figurine component 208 to the second figurine component 212 by means of magnetic attraction.
  • An aperture 214 of the ring magnet 204 receives a portion of the ferromagnetic, hemispherical portion 202 when the first figurine component 208 is coupled with the second figurine component 212 , so that the ferromagnetic, hemispherical portion 202 is “seated” within the aperture 214 . It should be noted that some amount of frictional engagement exists between the ring magnet 204 and the ferromagnetic, hemispherical portion 202 . If additional frictional engagement is desired, the hemispherical portion 202 could include a surface treatment or a coating, such as the coating discussed below with respect to FIG. 16 .
  • the joint 220 includes a ferromagnetic, hemispherical portion 222 ; a socket 226 , which includes a magnet 224 having a recess 232 ; and an O-ring 230 positioned between the ferromagnetic, hemispherical portion 222 and the magnet 224 .
  • the magnet 224 is mounted in a recess 227 of a first figurine component 228 .
  • the magnet 224 is glued or otherwise permanently mounted to the first figurine component 228 .
  • the ferromagnetic, hemispherical portion 222 includes an annular lip 236 which facilitates permanent attachment of the ferromagnetic, hemispherical portion 222 to a second figurine component 238 .
  • the second figurine component 238 is molded about the ferromagnetic, hemispherical portion 222 .
  • the ferromagnetic, hemispherical portion 222 could be glued to the second figurine component 238 .
  • the magnet 224 couples the first figurine component 228 to the second figurine component 238 by means of magnetic attraction.
  • the recess 232 of the magnet 224 receives a portion of the ferromagnetic, hemispherical portion 222 when the first figurine component 228 is coupled with the second figurine component 238 , so that the ferromagnetic, hemispherical portion 222 is “seated” in the recess 232 .
  • the O-ring 230 is positioned proximal to an annular bevel 234 formed in the first figurine component 228 .
  • the O-ring 230 facilitates frictional engagement between the first figurine component 228 and the ferromagnetic, hemispherical portion 222 , so that the first figurine component 228 is retained in a desired position with respect to the second figurine component 238 .
  • the joint 240 includes a ferromagnetic, hemispherical portion 242 ; a socket 246 , which includes a magnet 244 having a recess 256 and an annular channel 258 ; and an O-ring 250 positioned in the annular channel 258 between the ferromagnetic, hemispherical portion 242 and the magnet 244 .
  • the magnet 244 is mounted in a recess 249 of a first figurine component 248 .
  • the magnet 244 is glued or otherwise permanently mounted to the first figurine component 248 .
  • the ferromagnetic, hemispherical portion 242 includes an annular lip 252 which facilitates permanent attachment of the ferromagnetic, hemispherical portion 242 to a second figurine component 254 .
  • the second figurine component 254 is molded about the ferromagnetic, hemispherical portion 242 .
  • the ferromagnetic, hemispherical portion 242 could be glued to the second figurine component 254 .
  • the magnet 244 couples the first figurine component 248 to the second figurine component 254 by means of magnetic attraction.
  • the recess 256 of the magnet 244 receives a portion of the ferromagnetic, hemispherical portion 242 when the first figurine component 248 is coupled with the second figurine component 254 , so that the ferromagnetic, hemispherical portion 242 is “seated” in the recess 256 .
  • the O-ring 250 facilitates frictional engagement between the first figurine component 248 and the ferromagnetic, hemispherical portion 242 , so that the first figurine component 248 is retained in a desired position with respect to the second figurine component 254 .
  • the joint 260 includes a ferromagnetic, hemispherical portion 262 , a flexible socket 264 , and a magnet 270 positioned within the flexible socket 264 .
  • the socket 264 could be manufactured from a suitable, flexible material, such as plastic, rubber, polyvinyl chloride (PVC), and the like.
  • the socket 264 is mounted in a recess 268 formed in a first figurine component 266 (e.g., by gluing or other suitable means of attachment), and includes an inner surface 276 which bears against the ferromagnetic, hemispherical portion 262 to provide frictional engagement therewith.
  • Such engagement retains the first figurine component 266 in a desired position with respect to a second figurine component 274 .
  • the magnet 270 magnetically couples the first figurine component 266 to the second figurine component 274 .
  • the ferromagnetic, hemispherical portion 262 includes an annular lip 272 which facilitates permanent attachment of the ferromagnetic, hemispherical portion 262 to the second figurine component 274 .
  • the second figurine component 274 is molded about the ferromagnetic, hemispherical portion 262 .
  • the ferromagnetic, hemispherical portion 262 could be glued to the second figurine component 274 .
  • the joint 280 includes a ferromagnetic, hemispherical portion 282 , a flexible socket 284 , a magnet 290 positioned within the flexible socket 284 , and a coating 283 formed on the ferromagnetic, hemispherical portion 282 .
  • Both the coating 283 and the socket 284 could be manufactured from a suitable, flexible material, such as plastic, rubber, polyvinyl chloride (PVC) and the like.
  • the socket 284 is mounted in a recess 288 formed in a first figurine component 286 (e.g., by gluing or other suitable means of attachment).
  • the magnet 290 magnetically couples the first figurine component 286 to a second figurine component 294 .
  • the ferromagnetic, hemispherical portion 282 includes an annular lip 292 which facilitates permanent attachment of the ferromagnetic, hemispherical portion 282 to the second figurine component 294 .
  • the second figurine component 294 is molded about the ferromagnetic, hemispherical portion 292 .
  • the ferromagnetic, hemispherical portion 292 could be glued to the second figurine component 294 .
  • the coating 283 facilitates frictional engagement with the socket 284 , so as to retain the first figurine component 286 in a desired position with respect to the second figurine component 294 .
  • the joint 300 includes a ferromagnetic, hemispherical portion 304 attached to a head 302 of a figurine, an electrical switch 306 extending through an aperture in the ferromagnetic, hemispherical portion 304 , and a socket 308 attached to a torso 310 and magnetically coupled to the ferromagnetic, hemispherical portion 304 .
  • the head 302 can be removed from the torso 310 by pulling the head 302 away from the torso 310 , as shown by arrow A.
  • the switch 306 When the head 310 is removed from the torso 310 , the switch 306 is activated, causing the head 302 to light up. Illumination is facilitated by the circuit 320 shown in FIG. 18 , which is positioned within the head 302 .
  • a flasher circuit 324 powered by a battery 312 , is activated, causing the light emitting diode (LED) 326 to flash.
  • the LED 326 could be substituted with any other suitable light source, such as an incandescent lamp.
  • the flasher circuit 324 could include any suitable, commercially-available lamp or LED flasher circuit.
  • the switch 306 could be configured to activate any other circuit, such as a buzzer or sound effects circuit.
  • the circuit 320 could be configured so that both removal and attachment of the head 302 of FIG. 17 to the torso 310 causes the LED 326 to flash.
  • the joint 300 of FIG. 17 could be implemented in any desired location of a figurine, such as between an arm and a torso, a leg and a torso, etc.
  • the switch 306 of FIG. 17 and its associated circuitry shown in FIG. 18 could be implemented using any of the magnetic joints disclosed herein.
  • the hemispherical portion 304 (see FIG. 17 ) could include a coating or other surface treatment (such as the coating 283 discussed above with respect to FIG. 16 ) to provide additional frictional engagement between the hemispherical portion 304 and the socket 308 (see FIG. 17 ).
  • an O-ring or other frictional engagement means such as the friction inlays 65 a , 65 b shown in FIG. 4 a and described above) could be included to provide additional frictional engagement between the hemispherical portion 304 and the socket 308 of FIG. 17 .

Abstract

Magnetic joints for toy figurines are provided. In one embodiment, the magnetic joint comprises a socket which is formed in a first figurine component and includes a ring magnet, and a ferromagnetic, hemispherical portion attached to a second figurine component, wherein the ring magnet receives and is magnetically coupled to the ferromagnetic, hemispherical portion. In another embodiment, the magnetic joint comprises a socket which is formed in a first figurine component and includes a magnet having a recess, a ferromagnetic, hemispherical portion attached to a second figurine component, and an O-ring positioned between the magnet and the ferromagnetic, hemispherical portion. In another embodiment, the magnetic joint comprises a flexible socket attached to a first figurine component and having a magnet positioned therein, and a ferromagnetic, hemispherical portion attached to a second figurine component and magnetically coupled with the flexible socket. In another embodiment, the magnetic joint comprises a socket attached to a first figurine component, a ferromagnetic, hemispherical portion attached to a second figurine component and magnetically coupled with the socket, and a switch extending through an aperture formed in the ferromagnetic, hemispherical portion, wherein the switch is activated when the first figurine component is coupled to or uncoupled from the second figurine component.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 11/182,212 filed Jul. 15, 2005, which is a continuation-in-part of U.S. Design patent application Ser. No. 29/223,384 filed Feb. 10, 2005; U.S. Design patent application Ser. No. 29/223,389 filed Feb. 10, 2005; U.S. Design patent application Ser. No. 29/223,385 filed Feb. 10, 2005; U.S. Design patent application Ser. No. 29/223,387 filed Feb. 10, 2005; U.S. Design patent application Ser. No. 29/223,386 filed Feb. 10, 2005; U.S. Design patent application Ser. No. 29/223,383 filed Feb. 10, 2005; U.S. Design patent application Ser. No. 29/223,392 filed Feb. 11, 2005; U.S. Design patent application Ser. No. 29/223,391 filed Feb. 11, 2005; U.S. Design patent application Ser. No. 29/223,397 filed Feb. 11, 2005; U.S. Design patent application Ser. No. 29/223,388 filed Feb. 11, 2005; U.S. Design patent application Ser. No. 29/223,395 filed Feb. 11, 2005; and U.S. Design patent application Ser. No. 29/223,393 filed Feb. 11, 2005, the entire disclosures of which are all expressly incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to the field of toy figurines, and, more particularly, to toy figurines having magnetic joints.
  • BACKGROUND OF THE INVENTION
  • Joints of various designs have, in the past, been developed for toy figurines to permit the selective attachment and removal of component parts, such as appendages and the like. An example of a joint for a toy figurine can be found in U.S. Pat. No. 5,295,889 to Ejima, which discloses a toy figurine having magnetically-coupled, ball-and-socket joints that allow appendages to be selectively attached to the figurine as desired. Another example of a joint for a toy figurine can be found in U.S. Patent Application Publication No. US 2004/0077259 to Barri, which discloses a toy figurine having joints in the form of magnetized pegs and corresponding sockets for receiving the pegs. Other examples of joints include U.S. Pat. No. 6,203,396 to Asmussen, et al. and U.S. Pat. No. 6,705,794 to Varner, et al., which disclose magnetically-coupled joints for mannequins with generally flat joint surfaces that allow for indexing of parts using protrusions and corresponding recesses (see the Asmussen, et al. Patent) or a pin and corresponding apertures (see the Varner, et al. Patent).
  • Existing joint designs suffer from a number of disadvantages. For example, in the case of the magnetically-coupled, ball-and-socket joints currently available in toy figurines, only a single socket is provided, and the ball is attached to a component of the figurine (e.g., to an appendage or other part). Thus, the ball is neither removable from the figurine nor interchangeable with another ball. As such, the user cannot substitute balls of desired colors, patterns, or designs to achieve a desired appearance, nor can the user quickly and conveniently construct figurines using a multitude of interchangeable components.
  • Moreover, while existing joint designs allow for indexing of parts, such designs do not allow for indexing using magnets and completely planar (flat) joint surfaces. Rather, a pin and corresponding apertures or a protrusion and corresponding recesses (or other mechanical arrangement) are required to effectuate indexing. Further, current joint designs for toy figurines do not allow power to be transmitted through a completely planar or flat joint interface. Accordingly, there is a need to provide magnetic joints for toy figurines that address the foregoing limitations.
  • SUMMARY OF THE INVENTION
  • The present invention overcomes the disadvantages and shortcomings of the prior art discussed above by providing magnetic joints for toy figurines having various configurations that allow for the quick and easy assembly and disassembly of figurine components. In one embodiment of the present invention, the magnetic joint comprises a ball and a pair of sockets magnetically coupled to the ball, wherein the first socket is formed in a first figurine part and the second socket is formed in a second figurine part. Each socket includes a magnet embedded in the socket for magnetically coupling the socket to the ball. The joint allows for angulation and rotation of joined parts, as well as for quick and convenient assembly and disassembly of figurine components. The ball “floats” between the sockets, and can be removed by the user and substituted with another ball, as desired. A pair of friction inlays or O-rings can be provided between the ball and the sockets to provide sufficient friction when the joint is assembled to allow coupled figurine components to be retained in one or more desired positions.
  • In another embodiment of the present invention, the magnetic joint comprises a first socket formed in a first figurine component, a first hemispherical portion magnetically coupled with the first socket, a second hemispherical portion interconnected with the first hemispherical portion, and a second socket formed in a second figurine component and interconnected with the second hemispherical portion. A friction inlay could be provided between the first socket and the first hemispherical portion to provide sufficient friction when the joint is assembled to allow the first figurine component to be retained in one or more desired positions.
  • In another embodiment of the present invention, the magnetic joint comprises a pair of complementary, generally planar joint surfaces that are magnetically coupled to each other using complementary magnets embedded in the joint surfaces. Complementary central magnets could be embedded in central regions of the joint surfaces for coupling the joints together, and a plurality of satellite magnets could be disposed radially about each central magnet and embedded in the joint surfaces to allow coupled figurine components to be rotated and held in one or more predetermined positions (indexed). Complementary conductive regions, such as a central conductive region surrounded by an annular conductive region, could be provided on each joint surface for allowing electrical power to be transmitted through the joint.
  • In still another embodiment of the present invention, the magnetic joint comprises a peg and corresponding socket construction that cooperate to permit rotation of coupled figurine components. The peg and socket each include corresponding end magnets for retaining the peg in the socket. A plurality of corresponding indexing magnets are embedded in the peg and the socket for allowing the joined parts to be retained in one or more predetermined positions (internally indexed) when the indexing magnets are rotated into alignment with each other.
  • In another embodiment of the present invention, the magnetic joint comprises a socket including a ring magnet, and a ferromagnetic, hemispherical portion magnetically coupled with the ring magnet. The ring magnet is attached to a first figurine component in a recess formed therein, while the ferromagnetic, hemispherical portion is attached to a second figurine component.
  • In still another embodiment of the present invention, the magnetic joint comprises a socket which includes a magnet having a recess, the magnet being attached to a first figurine component in a recess formed therein, a ferromagnetic, hemispherical portion attached to a second figurine component, and an O-ring positioned between the magnet and the ferromagnetic, hemispherical portion. The O-ring provides frictional engagement with the ferromagnetic, hemispherical portion, so that the first figurine component is retained in a desired position with respect to the second figurine component. The O-ring could be positioned in an annular channel formed in the magnet.
  • In another embodiment of the present invention, the magnetic joint comprises a flexible socket attached to a first figurine component and having a magnet positioned therein, and a ferromagnetic, hemispherical portion attached to a second figurine component and magnetically coupled with the flexible socket. An inner surface of the flexible socket frictionally engages the ferromagnetic, hemispherical portion to retain the first figurine component in a desired position with respect to the second figurine component. A coating could be provided on the ferromagnetic, hemispherical portion to facilitate frictional engagement with the socket.
  • In still another embodiment of the present invention, the magnetic joint comprises a socket attached to a first figurine component, a ferromagnetic, hemispherical portion attached to a second figurine component and magnetically coupled with the socket, and a switch extending through an aperture formed in the ferromagnetic, hemispherical portion, wherein the switch is activated when the first figurine component is coupled to or uncoupled from the second figurine component. The switch could be connected to an electrical circuit (e.g., a light-emitting diode (LED) and an associated flasher circuit), so that the electrical circuit is activated when the switch is activated.
  • Further features and advantages of the invention will appear more clearly upon a reading of the following detailed description of various exemplary embodiments thereof, which are given below by way of example only with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the present invention, reference is made to the following detailed description of the exemplary embodiments considered in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a front elevational view of a toy figurine having magnetically-coupled joints according to a first embodiment of the present invention, wherein each joint includes a ball and a pair of sockets magnetically coupled to the ball;
  • FIG. 2 is a front elevational view of one of the magnetic joints for the toy figurine shown in FIG. 1;
  • FIG. 3 is a cross-sectional view, taken along section line 3-3 of FIG. 2 and looking in the direction of the arrows, of the magnetic joint shown in FIG. 2;
  • FIG. 4 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, wherein friction inlays are provided between the sockets and the ball;
  • FIG. 4 b is a perspective view of one of the friction inlays shown in FIG. 4 a;
  • FIG. 4 c is a cross-sectional view showing the components of FIG. 4 a assembled;
  • FIG. 5 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, wherein O-rings are provided between the sockets and the ball;
  • FIG. 5 b is a cross-sectional view showing the components of FIG. 5 a assembled;
  • FIG. 6 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, including a two-piece, ferromagnetic ball which is coupled to only one of two socket members;
  • FIG. 6 b is a cross-sectional view showing the components of FIG. 6 a assembled;
  • FIG. 7 is a perspective view of a toy figurine having magnetic joints according to another embodiment of the present invention, wherein the joints include generally planar surfaces that allow for indexing;
  • FIG. 8 a is a perspective view of one of the magnetic joints for the toy figurine shown in FIG. 7;
  • FIG. 8 b is a front elevational view of the magnetic joint shown in FIG. 8 a;
  • FIG. 9 a is a perspective view of another embodiment of the magnetic joints of the present invention, wherein each joint includes generally planar surfaces having conductive areas for allowing power transmission through the joint;
  • FIG. 9 b is a front elevational view of the magnetic joint shown in FIG. 9 a;
  • FIG. 10 is a perspective view of a toy figurine having magnetic joints according to another embodiment of the present invention, wherein each joint comprises an internally-indexed, magnetically-coupled peg and socket;
  • FIG. 11 a is a perspective view of one of the magnetic joints for the toy figurine shown in FIG. 10;
  • FIG. 11 b is a front elevational view of the magnetic joint shown in FIG. 11 a;
  • FIG. 12 a is an exploded perspective view of another embodiment of the magnetic joints of the present invention, which embodiment includes a socket having an hemispherical portion;
  • FIG. 12 b is a cross-sectional view showing the components of FIG. 12 a assembled;
  • FIG. 13 is a cross-sectional view of another embodiment of the magnetic joints of the present invention, which embodiment includes a magnet having a recess, an hemispherical portion coupled to the magnet, and an O-ring positioned between the magnet and the hemispherical portion;
  • FIG. 14 is a cross-sectional view of another embodiment of the magnetic joints of the present invention, which embodiment is similar to the one shown in FIG. 13 except that an O-ring is positioned within an annular channel formed in the magnet;
  • FIG. 15 is a cross-sectional view of another embodiment of the magnetic joints of the present invention, which embodiment includes a flexible socket having a magnet positioned therein and an hemispherical portion;
  • FIG. 16 is a cross-sectional view of another embodiment of the magnetic joints of the present invention, which embodiment is similar to that shown in FIG. 15 except that the hemispherical portion includes a rubber coating;
  • FIG. 17 is a front elevational view of a portion of a figurine equipped with a magnetic joint and a switch for activating a lighting circuit within the figurine component; and
  • FIG. 18 is a schematic diagram showing the switch of FIG. 17 implemented in a light flasher circuit.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Referring to FIG. 1, there is shown a toy figurine 10 which includes a head 12, an upper torso 14, a lower torso 16, arms 18, 20, and legs 22, 24. The arm 18 includes a bicep 26, a forearm 28, and a hand 30. Similarly, the arm 20 includes a bicep 32, a forearm 34, and a hand 36. The leg 22 includes a thigh 38, a shin 40, and a foot 42. Similarly, the leg 24 includes a thigh 44, a shin 46, and a foot 48. All of the foregoing parts are movably coupled to their adjoining parts by magnetic joints 50 a-n.
  • FIG. 2 is a front elevational view of the magnetic joint 50 e shown in FIG. 1, it being understood that each of the magnetic joints 50 a-d and 50 f-n of FIG. 1 has the same construction as the magnetic joint 50 e. With particular reference to FIGS. 2 and 3, a ball 56 is positioned between a pair of magnetic sockets 52 a, 52 b (see FIG. 3) formed in the upper torso 14 and the bicep 26, respectively. The magnetic joint 50 e allows for both angulation (indicated generally by arrow A) and rotation (indicated generally by arrow B) of the bicep 26 relative to the upper torso 14. Each of the magnetic joints 50 a-d and 50 f-n shown in FIG. 1 is likewise adapted for such angulation and rotation. Importantly, the ball 56 can be completely disengaged from the upper torso 14 and the bicep 26, and substituted with another ball having any desired color, pattern, or appearance, so as to enhance the entertainment value of the figurine. Further, it should be noted that more than two components can be joined to a single ball.
  • As shown in FIG. 3, the ball 56 is positioned between the sockets 52 a, 52 b formed in the upper torso 14 and the bicep 26, respectively. The sockets 52 a, 52 b are generally cup-shaped so as to conform to the shape of the ball 56, and include magnets 54 a, 54 b embedded in central portions of the sockets 52 a, 52 b. The magnets 54 a, 54 b are magnetically attracted to the ball 56, which can be manufactured from any suitable ferromagnetic material. The magnetic attraction of the magnets 54 a, 54 b to the ball 56 retains the sockets 52 a, 52 b in position against the ball 56 so as to couple the upper torso 14 to the bicep 26. The sockets 52 a, 52 b can be disengaged from the ball 56 by pulling the upper torso 14 and the bicep 26 away from the ball 56.
  • FIG. 4 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, indicated generally at 60, for coupling a first figurine portion 62 a to a second figurine portion 62 b. The joint 60 includes friction inlays 65 a, 65 b positioned between sockets 72 a, 72 b (formed in portions 62 a, 62 b, respectively) and a ball 66. The friction inlays 65 a, 65 b include cup-shaped portions 68 a, 68 b which conform to the shape of the ball 66. Magnets 64 a, 64 b extend through apertures 67 a, 67 b formed in the cup-shaped portions 68 a, 68 b, and are positionable within recesses 73 a, 73 b formed in the centers of the sockets 72 a, 72 b. The magnets 64 a, 64 b could include rounded faces 69 a, 69 b, respectively, which conform to the shape of the ball 66. The inlays 65 a, 65 b could be interconnected with the sockets 72 a, 72 b in any known manner, such as by gluing or by means of a friction fit. Importantly, the inlays 65 a, 65 b provide sufficient friction against the ball 66 when the joint 60 is assembled (see FIG. 4 c) to retain the figurine portions 62 a, 62 b in a desired position with respect to each other, while allowing for rotation and angulation. As shown in FIG. 4 b, which is a perspective view of one of the friction inlays 65 a (the opposite friction inlay 65 b being identical thereto), the magnet 64 a extends through the aperture 67 a formed in the cup-shaped portion 68 a of the inlay 65 a. The magnet 64 a could be permanently attached to the cup-shaped portion 68 a (e.g., by gluing), or could be removable therefrom. Further, it should be noted that the inlays 65 a, 65 b could be manufactured from rubber or other suitable material.
  • FIG. 5 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, indicated generally at 80, wherein O- rings 88 a, 88 b are positioned between generally cup-shaped sockets 89 a, 89 b and a ball 86. The sockets 89 a, 89 b are formed in figurine components 82 a, 82 b (which could be any desired components of a figurine), and include magnets 84 a, 84 b positioned in recesses 83 a, 83 b formed in the sockets 89 a, 89 b. When the magnetic joint 80 is assembled (see FIG. 5 b), the O- rings 88 a, 88 b bear against the ball 86 when the sockets 89 a, 89 b are coupled to the ball 86, so that the figurine components 82 a, 82 b can be retained in a desired position with respect to each other after being moved by a user. The O- rings 88 a, 88 b can be made from any suitable material.
  • FIG. 6 a is an exploded, cross-sectional view of another embodiment of the magnetic joints of the present invention, indicated generally at 90, for joining first and second figurine components 91 a, 91 b (which could be any desired components of a figurine). The joint 90 includes a first socket 92 a formed in the first figurine component 91 a, a second socket 92 b formed in the second figurine component 91 b, a friction inlay 94, a first hemispherical portion 96, and a second hemispherical portion 98. The socket 92 a includes a recess 93 a for receiving a magnet 95 formed in the friction inlay 94, and the friction inlay 94 could be permanently attached to the socket 92 a (such as by gluing) or temporarily by means of a friction fit. The socket 92 b includes a recess 93 b for receiving a protrusion 99 formed on the second hemispherical portion 98. The second hemispherical portion 98 can be permanently attached to the second socket 92 b in any suitable manner, such as by gluing, etc.
  • The first hemispherical portion 96 includes an annular lip 97 a that is configured to be received by an annular external recess 97 b formed on an external surface 98 a of the second hemispherical portion 98. Similarly, the second hemispherical portion 98 includes an annular lip 97 c that is configured to be received by an annular recess 97 d formed on an internal surface 96 a of the first hemispherical portion 96. The lips 97 a, 97 c and recesses 97 b, 97 d cooperate to interconnect the first hemispherical portion 96 to the second hemispherical portion 98. The first hemispherical portion 96 is preferably manufactured from a ferromagnetic material, so as to facilitate magnetic attraction to the magnet 95. When the joint 90 is assembled (see FIG. 6 b), magnetic attraction between the magnet 95 and the first hemispherical portion 96 couples the first figurine component 91 a to the first hemispherical portion 96, allowing for rotation and angulation of the first figurine component 91 a. The friction inlay 94 provides sufficient friction to retain the first figurine component 91 a in a desired position.
  • FIG. 7 is a perspective view of a toy figurine, indicated generally at 100, having a body portion 102, a plurality of appendages 104-118, and a plurality of magnetic joints 120 a-h made in accordance with another embodiment of the present invention for the purpose of coupling the appendages 104-118 to the body portion 102. The magnetic joints 120 a-h include complementary, generally planar (i.e., flat) joint surfaces 122 a, 122 b (see FIGS. 8 a-8 b) that allow for rotation and indexing. The magnetic joints 120 a-h allow, for example, the plurality of appendages 104-118 to be selectively attached to and removed from the body portion 102, and rotated and indexed when attached to the body portion 102.
  • FIG. 8 a is perspective view of the magnetic joint 120 a shown in FIG. 7, each of the magnetic joints 120 b-h of FIG. 7 having the same construction as the joint 120 a. The complementary, generally planar joint surfaces 122 a, 122 b include complementary magnets 124 a, 124 b positioned within central regions of the joint surfaces 122 a, 122 b, such that attraction between the magnets 124 a, 124 b retains the joint surfaces 122 a, 122 b against each other when the joint 120 a is assembled. Several indexing magnets 126 a, 126 b are positioned in a radial array about the magnets 124 a, 124 b to allow the appendage 104 and the body portion 102 to be indexed by means of magnetic attraction exerted between the magnets 126 a, 126 b when the magnets 126 a, 126 b are rotated into alignment (see arrow C in FIG. 8 b). The magnets 124 a, 124 b and 126 a, 126 b could be embedded in the joint surfaces 122 a, 122 b, or otherwise attached thereto. It should be noted that the magnets 126 a, 126 b could be substituted with protrusions and corresponding recesses to allow for indexing.
  • FIG. 9 a is a perspective view of another embodiment of the magnetic joints of the present invention, indicated generally at 130, for coupling a first figurine component 132 to a second figurine component 134. The joint 130 comprises a pair of complementary, generally planar joint surfaces 136 a, 136 b having annular conductive regions 138 a, 138 b surrounding central conductive regions 140 a, 140 b. The annular conductive regions 138 a, 138 b or the central conductive regions 140 a, 140 b, or both, could be magnetic to retain the joint surfaces 136 a, 136 b in position against each other. An electrical circuit 142 in the first figurine component 132 (e.g., a battery positioned in a torso portion of a figurine) is in electrical communication with the annular conductive region 138 a and the central conductive region 140 a via leads 144. When the joint surface 136 a is coupled with the joint surface 136 b, the annular conductive region 138 a makes electrical contact with the annular conductive region 138 b and the central conductive region 140 a makes electrical contact with the central conductive region 140 b to allow power to be transmitted from the circuit 142 through the joint 130 and into the second figurine component 134. Leads 146 in the second figurine component 134 are connected to the annular conductive region 138 b and the central conductive region 140 b to transfer electrical power to a circuit in the second figurine component 146 (e.g., to a light or motor). As shown in FIG. 9 b, the joint 130 allows for rotation of the second figurine part 134 with respect to the first figurine part 132, indicated generally by arrow D. Thus, the joint 130 allows for power transmission therethrough, while simultaneously allowing for rotation of the magnetically coupled parts. It should be noted that the conductive regions 138 a, 138 b and 140 a, 140 b could be provided in any desired shapes and at any desired locations of the joint surfaces 136 a, 136 b without departing from the spirit or scope of the present invention.
  • FIG. 10 is a perspective view of a toy figurine, indicated generally at 150, having a head 152, an upper torso 154, arms 156, 158, a lower torso 160, legs 162, 164, magnetic joints 166 a, 166 b removably coupling the legs 162, 164 to the lower torso 160, and another set of magnetic joints 170 a, 170 b according to another embodiment of the present invention removably coupling the arms 156, 158 to the upper torso 154. A magnetic joint 168 could be provided for removably coupling the head 152 to the upper torso 154, or the head 152 could be permanently coupled to the upper torso 154. The magnetic joints 170 a, 170 b are internally indexed and allow for rotation and indexing of the arms 156, 158 with respect to the upper torso 154.
  • FIGS. 11 a-11 b are perspective and front elevational views, respectively, of the magnetic joint 170 b shown in FIG. 10, the magnetic joint 170 a being identical thereto in construction. The joint 170 b comprises a peg 172 formed on the arm 158, which is insertable into a socket 174 formed in the upper torso 154. A shoulder 176 surrounding the socket 174 abuts a shoulder 178 disposed about the peg 172 when the peg 172 is inserted into the socket 174. The socket 174 includes an end magnet 180 and a plurality of indexing magnets 182 disposed along the longitudinal axis of the socket 174 and about the circumference of the socket 174. The peg 172 includes a corresponding end magnet 184 and a plurality of corresponding indexing magnets 186 disposed along the longitudinal axis of the peg 172 and about the circumference of the peg 172. When the peg 172 is inserted into the socket 174, magnetic attraction between the end magnets 180, 184 retains the peg 172 in the socket 174, so as to couple the arm 158 to the upper torso 154 while allowing for rotation of the arm 158 with respect to the upper torso 154 (as indicated generally by arrow E).
  • The indexing magnets 182 of the socket 174 are magnetically attracted to the indexing magnets 186 of the peg 172 to allow the arm 158 to be rotated and held in one or more predetermined positions (i.e., indexed). It should be noted that the indexing magnets 182, 186 could be replaced with corresponding protrusions and recesses to allow for indexing. Moreover, either set of the indexing magnets 182, 186 could be replaced with a ferromagnetic material, so that only a single set of magnets is required to provide indexing. Still further, one of the end magnets 180, 184 could likewise be replaced with a ferromagnetic material so that only a single magnet is required to retain the peg 172 in the socket 174. Additionally, in each of the embodiments of the magnetic joints of the present invention, the magnets could be poled (e.g., one set of magnets could correspond to a south magnetic pole, and another set of magnets could correspond to a north magnetic pole), so as to further facilitate indexing of the joined components.
  • The magnetic joints of the present invention could be used to couple figurine components in any desired configuration. For example, the arm 26 (see FIG. 1) could be formed by coupling the bicep 26 to the forearm 28 using the joint 50 f, and the forearm 28 to the hand 36 using the joint 50 g. The arm 26 could then be coupled to upper torso 14 using the joint 50 e. Similarly, the arm 20 could be formed by coupling the bicep 32 to the forearm 34 using the joint 50 c, and the forearm 34 to the hand 36 using the joint 50 d. The arm 20 could then be coupled to upper torso 14 using the joint 50 b. The head 12, upper torso 14, and lower torso 16 could be interconnected using the joints 50 a and 50 h, respectively. The legs 22 could be formed by coupling the thigh 38 to the shin 40 using the joint 50 m, and the shin 40 could be coupled to the feet 42 using the joint 50 n. The leg 22 could then be coupled to the lower torso 16 using the joint 50 l. Similarly, the legs 24 could be formed by coupling the thigh 44 to the shin 46 using the joint 50 j, and the shin 46 could be coupled to the feet 48 using the joint 50 k. The leg 24 could then be coupled to the lower torso 16 using the joint 50 i. Thus, as can be readily appreciated, any desired combination of components could be interconnected in any desired fashion using the magnetic joints of the present invention. Further, any desired combination of the various embodiments of the magnetic joints of the present invention could be implemented in a toy figurine.
  • Referring now to FIGS. 12 a and 12 b, a magnetic joint 200 constructed in accordance with another embodiment of the present invention is shown. The joint 200 includes a hemispherical, ferromagnetic portion 202, a socket 206, and a ring magnet 204 positioned in the socket 206. The ring magnet 204 is mounted in a recess 216 of a first figurine component 208 (see FIG. 12 b). The ring magnet 204 is glued or otherwise permanently mounted to the first figurine component 208. The ferromagnetic, hemispherical portion 202 includes an annular lip 210 (see FIG. 12 b) which facilitates permanent attachment of the ferromagnetic, hemispherical portion 202 to a second figurine component 212. The second figurine component 212 is molded about the ferromagnetic, hemispherical portion 202. Optionally, the ferromagnetic, hemispherical portion 202 could be glued to the second figurine component 212. The ring magnet 204 couples the first figurine component 208 to the second figurine component 212 by means of magnetic attraction. An aperture 214 of the ring magnet 204 receives a portion of the ferromagnetic, hemispherical portion 202 when the first figurine component 208 is coupled with the second figurine component 212, so that the ferromagnetic, hemispherical portion 202 is “seated” within the aperture 214. It should be noted that some amount of frictional engagement exists between the ring magnet 204 and the ferromagnetic, hemispherical portion 202. If additional frictional engagement is desired, the hemispherical portion 202 could include a surface treatment or a coating, such as the coating discussed below with respect to FIG. 16.
  • Referring to FIG. 13, a magnetic joint 220 constructed in accordance with another embodiment of the present invention is shown. The joint 220 includes a ferromagnetic, hemispherical portion 222; a socket 226, which includes a magnet 224 having a recess 232; and an O-ring 230 positioned between the ferromagnetic, hemispherical portion 222 and the magnet 224. The magnet 224 is mounted in a recess 227 of a first figurine component 228. The magnet 224 is glued or otherwise permanently mounted to the first figurine component 228. The ferromagnetic, hemispherical portion 222 includes an annular lip 236 which facilitates permanent attachment of the ferromagnetic, hemispherical portion 222 to a second figurine component 238. The second figurine component 238 is molded about the ferromagnetic, hemispherical portion 222. Optionally, the ferromagnetic, hemispherical portion 222 could be glued to the second figurine component 238. The magnet 224 couples the first figurine component 228 to the second figurine component 238 by means of magnetic attraction. The recess 232 of the magnet 224 receives a portion of the ferromagnetic, hemispherical portion 222 when the first figurine component 228 is coupled with the second figurine component 238, so that the ferromagnetic, hemispherical portion 222 is “seated” in the recess 232. The O-ring 230 is positioned proximal to an annular bevel 234 formed in the first figurine component 228. The O-ring 230 facilitates frictional engagement between the first figurine component 228 and the ferromagnetic, hemispherical portion 222, so that the first figurine component 228 is retained in a desired position with respect to the second figurine component 238.
  • Referring to FIG. 14, a magnetic joint 240 constructed in accordance with another embodiment of the present invention is shown. The joint 240 includes a ferromagnetic, hemispherical portion 242; a socket 246, which includes a magnet 244 having a recess 256 and an annular channel 258; and an O-ring 250 positioned in the annular channel 258 between the ferromagnetic, hemispherical portion 242 and the magnet 244. The magnet 244 is mounted in a recess 249 of a first figurine component 248. The magnet 244 is glued or otherwise permanently mounted to the first figurine component 248. The ferromagnetic, hemispherical portion 242 includes an annular lip 252 which facilitates permanent attachment of the ferromagnetic, hemispherical portion 242 to a second figurine component 254. The second figurine component 254 is molded about the ferromagnetic, hemispherical portion 242. Optionally, the ferromagnetic, hemispherical portion 242 could be glued to the second figurine component 254. The magnet 244 couples the first figurine component 248 to the second figurine component 254 by means of magnetic attraction. The recess 256 of the magnet 244 receives a portion of the ferromagnetic, hemispherical portion 242 when the first figurine component 248 is coupled with the second figurine component 254, so that the ferromagnetic, hemispherical portion 242 is “seated” in the recess 256. The O-ring 250 facilitates frictional engagement between the first figurine component 248 and the ferromagnetic, hemispherical portion 242, so that the first figurine component 248 is retained in a desired position with respect to the second figurine component 254.
  • Referring to FIG. 15, a magnetic joint 260 constructed in accordance with another embodiment of the present invention is shown. The joint 260 includes a ferromagnetic, hemispherical portion 262, a flexible socket 264, and a magnet 270 positioned within the flexible socket 264. The socket 264 could be manufactured from a suitable, flexible material, such as plastic, rubber, polyvinyl chloride (PVC), and the like. The socket 264 is mounted in a recess 268 formed in a first figurine component 266 (e.g., by gluing or other suitable means of attachment), and includes an inner surface 276 which bears against the ferromagnetic, hemispherical portion 262 to provide frictional engagement therewith. Such engagement retains the first figurine component 266 in a desired position with respect to a second figurine component 274. The magnet 270 magnetically couples the first figurine component 266 to the second figurine component 274. The ferromagnetic, hemispherical portion 262 includes an annular lip 272 which facilitates permanent attachment of the ferromagnetic, hemispherical portion 262 to the second figurine component 274. The second figurine component 274 is molded about the ferromagnetic, hemispherical portion 262. Optionally, the ferromagnetic, hemispherical portion 262 could be glued to the second figurine component 274.
  • Referring to FIG. 16, a magnetic joint 280 constructed in accordance with another embodiment of the present invention is shown. The joint 280 includes a ferromagnetic, hemispherical portion 282, a flexible socket 284, a magnet 290 positioned within the flexible socket 284, and a coating 283 formed on the ferromagnetic, hemispherical portion 282. Both the coating 283 and the socket 284 could be manufactured from a suitable, flexible material, such as plastic, rubber, polyvinyl chloride (PVC) and the like. The socket 284 is mounted in a recess 288 formed in a first figurine component 286 (e.g., by gluing or other suitable means of attachment). The magnet 290 magnetically couples the first figurine component 286 to a second figurine component 294. The ferromagnetic, hemispherical portion 282 includes an annular lip 292 which facilitates permanent attachment of the ferromagnetic, hemispherical portion 282 to the second figurine component 294. The second figurine component 294 is molded about the ferromagnetic, hemispherical portion 292. Optionally, the ferromagnetic, hemispherical portion 292 could be glued to the second figurine component 294. The coating 283 facilitates frictional engagement with the socket 284, so as to retain the first figurine component 286 in a desired position with respect to the second figurine component 294.
  • Referring now to FIG. 17, a magnetic joint 300 constructed in accordance with another embodiment of the present invention is shown. The joint 300 includes a ferromagnetic, hemispherical portion 304 attached to a head 302 of a figurine, an electrical switch 306 extending through an aperture in the ferromagnetic, hemispherical portion 304, and a socket 308 attached to a torso 310 and magnetically coupled to the ferromagnetic, hemispherical portion 304. The head 302 can be removed from the torso 310 by pulling the head 302 away from the torso 310, as shown by arrow A. When the head 310 is removed from the torso 310, the switch 306 is activated, causing the head 302 to light up. Illumination is facilitated by the circuit 320 shown in FIG. 18, which is positioned within the head 302. When the switch 306 is activated, a flasher circuit 324, powered by a battery 312, is activated, causing the light emitting diode (LED) 326 to flash. The LED 326 could be substituted with any other suitable light source, such as an incandescent lamp. The flasher circuit 324 could include any suitable, commercially-available lamp or LED flasher circuit. Additionally, the switch 306 could be configured to activate any other circuit, such as a buzzer or sound effects circuit. Moreover, the circuit 320 could be configured so that both removal and attachment of the head 302 of FIG. 17 to the torso 310 causes the LED 326 to flash.
  • It should be noted that the joint 300 of FIG. 17 could be implemented in any desired location of a figurine, such as between an arm and a torso, a leg and a torso, etc. Additionally, the switch 306 of FIG. 17 and its associated circuitry shown in FIG. 18 could be implemented using any of the magnetic joints disclosed herein. Moreover, the hemispherical portion 304 (see FIG. 17) could include a coating or other surface treatment (such as the coating 283 discussed above with respect to FIG. 16) to provide additional frictional engagement between the hemispherical portion 304 and the socket 308 (see FIG. 17). Further, an O-ring or other frictional engagement means (such as the friction inlays 65 a, 65 b shown in FIG. 4 a and described above) could be included to provide additional frictional engagement between the hemispherical portion 304 and the socket 308 of FIG. 17.
  • It will be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make many variations and/or modifications without departing from the spirit and scope of the present invention. All such variations and modifications are intended to be included within the scope of the present invention.

Claims (17)

1. A magnetically-coupled joint for a toy figurine, comprising a ferromagnetic, hemispherical portion attached to a first figurine component; a socket attached to a second figurine component, said socket including a magnet coupled to said ferromagnetic, hemispherical portion to thereby couple said first figurine component to said second figurine component; and means for frictional engagement positioned between said ferromagnetic, hemispherical portion and said socket, said means for frictional engagement retaining said first figurine component in a desired position with respect to said second figurine component.
2. The magnetically-coupled joint of claim 1, wherein said magnet further includes a recess formed therein.
3. The magnetically-coupled joint of claim 2, wherein a portion of said ferromagnetic, hemispherical portion extends into said recess when said ferromagnetic, hemispherical portion is coupled to said magnet.
4. The magnetically-coupled joint of claim 3, wherein said means for frictional engagement includes an O-ring.
5. The magnetically-coupled joint of claim 4, wherein said magnet further includes an annular channel and said O-ring is positioned in said annular channel.
6. The magnetically-coupled joint of claim 1, wherein said socket is flexible.
7. The magnetically-coupled joint of claim 6, wherein said means for frictional engagement further includes an inner surface of said socket which bears against said ferromagnetic, hemispherical portion.
8. The magnetically-coupled joint of claim 6, wherein said means for frictional engagement further includes a coating formed on said ferromagnetic, hemispherical portion, said coating positioned between said ferromagnetic, hemispherical portion and said socket.
9. The magnetically-coupled joint of claim 1, wherein said ferromagnetic, hemispherical portion further includes an annular lip extending about an end of said ferromagnetic, hemispherical portion.
10. The magnetically-coupled joint of claim 9, wherein said second figurine component is molded about said annular lip and a portion of said ferromagnetic, hemispherical portion.
11. The magnetically-coupled joint of claim 1, wherein said magnet includes a ring magnet.
12. The magnetically-coupled joint of claim 11, wherein said ring magnet further includes an aperture for receiving a portion of said ferromagnetic, hemispherical portion when said ring magnet contacts said ferromagnetic, hemispherical portion.
13. The magnetically-coupled joint of claim 1, wherein said ferromagnetic, hemispherical portion includes a switch extending through an aperture formed in said ferromagnetic, hemispherical portion.
14. The magnetically-coupled joint of claim 13, wherein said switch is activated when said first figurine component is coupled to or removed from said second figurine component.
15. The magnetically-coupled joint of claim 13, further comprising an electrical circuit connected to said switch.
16. The magnetically-coupled joint of claim 15, wherein said electrical circuit further includes a light-emitting diode and an associated flasher circuit, said light-emitting diode being flashed by said flasher circuit when said switch is activated.
17. The magnetically-coupled joint of claim 13, wherein said electrical circuit is positioned within said first figurine component.
US11/478,859 2005-02-10 2006-06-30 Magnetic joints and toy figurines made therefrom Abandoned US20070060011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/478,859 US20070060011A1 (en) 2005-02-10 2006-06-30 Magnetic joints and toy figurines made therefrom

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US29223384 2005-02-10
US29223386 2005-02-10
US29223389 2005-02-10
US29223385 2005-02-10
US29223383 2005-02-10
US29223387 2005-02-10
US29223388 2005-02-11
US29223392 2005-02-11
US29223393 2005-02-11
US29223391 2005-02-11
US29223397 2005-02-11
US29223395 2005-02-11
US11/182,212 US20060178081A1 (en) 2005-02-10 2005-07-15 Magnetic joints and toy figurines made therefrom
US11/478,859 US20070060011A1 (en) 2005-02-10 2006-06-30 Magnetic joints and toy figurines made therefrom

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/182,212 Continuation-In-Part US20060178081A1 (en) 2005-02-10 2005-07-15 Magnetic joints and toy figurines made therefrom

Publications (1)

Publication Number Publication Date
US20070060011A1 true US20070060011A1 (en) 2007-03-15

Family

ID=36793728

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/182,212 Abandoned US20060178081A1 (en) 2005-02-10 2005-07-15 Magnetic joints and toy figurines made therefrom
US11/478,859 Abandoned US20070060011A1 (en) 2005-02-10 2006-06-30 Magnetic joints and toy figurines made therefrom

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/182,212 Abandoned US20060178081A1 (en) 2005-02-10 2005-07-15 Magnetic joints and toy figurines made therefrom

Country Status (2)

Country Link
US (2) US20060178081A1 (en)
WO (1) WO2006086574A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003529A1 (en) * 2009-07-01 2011-01-06 Anna Ehrsam Magnetically coupled mannequin joint
US20120168593A1 (en) * 2011-01-05 2012-07-05 King Fahd University Of Petroleum And Minerals Kinematic platform
JP2015213542A (en) * 2014-05-07 2015-12-03 株式会社バンダイ model
US20170036129A1 (en) * 2015-08-07 2017-02-09 Tomy Company, Ltd. Input device
US20190038987A1 (en) * 2017-08-03 2019-02-07 Laser Pegs Ventures, Llc Lighted Toy Figurines and Related Systems and Methods
US20190108770A1 (en) * 2011-08-29 2019-04-11 Worcester Polytechnic Institute System and method of pervasive developmental disorder interventions
US10420386B1 (en) 2019-01-25 2019-09-24 Stryker Corporation Medical garment including a shield
US10632391B2 (en) * 2017-12-31 2020-04-28 Advins, Inc. Building block toy figurine and system
US10750800B2 (en) 2018-01-26 2020-08-25 Stryker Corporation Surgical apparel system
US10898788B2 (en) 2016-10-07 2021-01-26 The Upper Deck Company Game having personalized game pieces with selectively removable magnetized pieces and accessories
US20210259347A1 (en) * 2018-06-27 2021-08-26 Stryker Corporation A Protective Apparel System with a Lens Assembly
USD936909S1 (en) 2019-07-31 2021-11-23 Stryker Corporation Surgical face shield for a surgical hood
US11291265B2 (en) 2019-01-25 2022-04-05 Stryker Corporation Surgical garment
USD955651S1 (en) 2019-07-31 2022-06-21 Stryker Corporation Surgical helmet
US11566659B2 (en) * 2016-08-26 2023-01-31 Sandon Qld Pty Ltd Manikin with articulated joint
US11793261B2 (en) 2018-10-24 2023-10-24 Stryker Corporation Surgical helmet assembly having an adjustment mechanism
USD1017911S1 (en) 2022-05-09 2024-03-12 Stryker Corporation Chin bar for a surgical helmet

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736568B2 (en) * 2006-09-19 2010-06-15 Mattel, Inc. Systems and methods of incorporating preformed items into a molded article
US7507136B2 (en) * 2006-12-08 2009-03-24 Claire Jean Patton Construction set utilizing magnets
GB2447077A (en) * 2007-03-01 2008-09-03 Philip Hantman Magnetic construction toy
US7717767B2 (en) * 2007-04-16 2010-05-18 Ridemakerz, Llc Modular toy vehicle accessory mounts
JP2009247656A (en) * 2008-04-08 2009-10-29 Tomy Co Ltd Joint structure of toy
KR101377026B1 (en) * 2012-10-23 2014-03-20 (주)빅펌킨 Assembly toy block set
GB2531393B (en) * 2014-07-23 2017-10-04 Hangerlogic Far East Ltd Magnetically coupling manikin joints
WO2017031078A1 (en) * 2015-08-14 2017-02-23 StickyBones LLC Animation puppet
US10328355B2 (en) * 2016-02-11 2019-06-25 LaRose Industries, LLC Connector for magnetic modules and toy construction kits employing same
USD903779S1 (en) 2017-02-15 2020-12-01 LaRose Industries, LLC Toy construction element
US11241634B2 (en) * 2018-03-14 2022-02-08 Jeff Lawber Figurine with magnetic assembly components
US11224821B2 (en) 2019-06-24 2022-01-18 LaRose Industries, LLC Shell-within-a-shell magnetic toy construction block
US11207609B2 (en) 2019-06-27 2021-12-28 LaRose Industries, LLC Magnetic toy construction block with ring-type magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068615A (en) * 1959-08-17 1962-12-18 Nassour Edward Means for producing animated photographs
US3246422A (en) * 1964-01-14 1966-04-19 Eleanor M Teagarden Dolls having magnetically connected components
US3911613A (en) * 1974-02-15 1975-10-14 Marvin Glass & Associates Articulated figure toy and accessories
US5295889A (en) * 1992-07-06 1994-03-22 Takara Co., Ltd. Magnetically jointed toy for emitting stimuli
US6350076B1 (en) * 1999-05-10 2002-02-26 Richard Wolf Gmbh Ball-and-socket joint connection
US20050118926A1 (en) * 2003-10-21 2005-06-02 Roger Scott T. Construction toys with dimple-containing magnet

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970388A (en) * 1956-05-07 1961-02-07 Edward H Yonkers Education device
US3464146A (en) * 1967-03-13 1969-09-02 Lois M Mccurdy Doll with rotatable head having interchangeable front and back parts
US3611621A (en) * 1969-05-15 1971-10-12 Mattel Inc Building unit toy
JPS5157789U (en) * 1974-10-31 1976-05-07
ZA764146B (en) * 1975-09-17 1977-06-29 Ferrero & C Spa P Container usable as a toy construction element
USD246200S (en) * 1976-05-17 1977-10-25 Takara Co., Ltd. Articulated toy figure
USD246126S (en) * 1976-05-25 1977-10-18 Takara Co., Ltd. Articulated toy figure
US4118888A (en) * 1976-09-23 1978-10-10 Takara Co., Ltd. Articulated magnetic doll
USD252762S (en) * 1977-11-28 1979-08-28 Hasbro Industries, Inc. Toy figure
US4176492A (en) * 1977-12-23 1979-12-04 California R & D Center Magnetized toy with removable appendages
US4183173A (en) * 1978-03-28 1980-01-15 Takara Co., Ltd. Toy assembly with interchangeable parts and detachable appendages
US4235041A (en) * 1979-02-22 1980-11-25 Mattel, Inc. Figure toy
USD301727S (en) * 1986-02-18 1989-06-20 Brune David C Toy robot
US5071385A (en) * 1990-03-13 1991-12-10 Cox Colleen L Posable figure
US5727717A (en) * 1991-07-16 1998-03-17 Vigne; Patrick Magnetically coupled joints for mannequins and forms
US5277634A (en) * 1992-09-15 1994-01-11 Outboard Marine Corporation Lower unit torpedo configuration
US5855499A (en) * 1995-06-27 1999-01-05 Kabushiki Kaisha Bandai Packaging apparatus mounting a displayed article using a component of the article
USD389203S (en) * 1997-01-03 1998-01-13 Connector Set Limited Partnership Robot toy figure
US6478653B1 (en) * 1997-07-25 2002-11-12 Michael Langton Poseable figure and spine system for use therein
JP2003520639A (en) * 2000-01-26 2003-07-08 フュージョン スペシャルティーズ, インコーポレイテッド Display features having magnetically mountable components
US6203396B1 (en) * 2000-02-15 2001-03-20 Bernstein Display Magnetically coupled mannequin joint
USD446829S1 (en) * 2000-03-15 2001-08-21 Takara Co., Ltd. Toy robotic crab
USD460503S1 (en) * 2000-10-13 2002-07-16 Honda Giken Kogyo Kabushiki Kaisha Robot
USD460131S1 (en) * 2000-10-13 2002-07-09 Honda Giken Kogyo Kabushiki Kaisha Robot
US6575810B1 (en) * 2002-06-21 2003-06-10 Toynami, Inc. Illuminating toy figure
BR0313180A (en) * 2002-08-21 2007-07-24 Mattel Inc knuckle for a toy character, and, magnetized toy character
CN100438944C (en) * 2002-11-12 2008-12-03 马特尔公司 Frictional joint for toys
USD486864S1 (en) * 2003-05-15 2004-02-17 Eric Bresciani Pen stand
USD493850S1 (en) * 2003-12-23 2004-08-03 Marian J. Ward Action hero doll

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068615A (en) * 1959-08-17 1962-12-18 Nassour Edward Means for producing animated photographs
US3246422A (en) * 1964-01-14 1966-04-19 Eleanor M Teagarden Dolls having magnetically connected components
US3911613A (en) * 1974-02-15 1975-10-14 Marvin Glass & Associates Articulated figure toy and accessories
US5295889A (en) * 1992-07-06 1994-03-22 Takara Co., Ltd. Magnetically jointed toy for emitting stimuli
US6350076B1 (en) * 1999-05-10 2002-02-26 Richard Wolf Gmbh Ball-and-socket joint connection
US20050118926A1 (en) * 2003-10-21 2005-06-02 Roger Scott T. Construction toys with dimple-containing magnet

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003529A1 (en) * 2009-07-01 2011-01-06 Anna Ehrsam Magnetically coupled mannequin joint
US8684783B2 (en) 2009-07-01 2014-04-01 Anna Ehrsam Magnetically coupled mannequin joint
US20120168593A1 (en) * 2011-01-05 2012-07-05 King Fahd University Of Petroleum And Minerals Kinematic platform
US8956068B2 (en) * 2011-01-05 2015-02-17 King Fahd University Of Petroleum And Minerals Kinematic platform
US20190108770A1 (en) * 2011-08-29 2019-04-11 Worcester Polytechnic Institute System and method of pervasive developmental disorder interventions
JP2015213542A (en) * 2014-05-07 2015-12-03 株式会社バンダイ model
US20170036129A1 (en) * 2015-08-07 2017-02-09 Tomy Company, Ltd. Input device
US9737824B2 (en) * 2015-08-07 2017-08-22 Tomy Company, Ltd. Input device
US11566659B2 (en) * 2016-08-26 2023-01-31 Sandon Qld Pty Ltd Manikin with articulated joint
US10898788B2 (en) 2016-10-07 2021-01-26 The Upper Deck Company Game having personalized game pieces with selectively removable magnetized pieces and accessories
US10926186B2 (en) * 2017-08-03 2021-02-23 Charm Genius Limited Lighted toy figurines and related systems and methods
US20190038987A1 (en) * 2017-08-03 2019-02-07 Laser Pegs Ventures, Llc Lighted Toy Figurines and Related Systems and Methods
US10632391B2 (en) * 2017-12-31 2020-04-28 Advins, Inc. Building block toy figurine and system
US10750800B2 (en) 2018-01-26 2020-08-25 Stryker Corporation Surgical apparel system
US20210259347A1 (en) * 2018-06-27 2021-08-26 Stryker Corporation A Protective Apparel System with a Lens Assembly
US11793261B2 (en) 2018-10-24 2023-10-24 Stryker Corporation Surgical helmet assembly having an adjustment mechanism
US11547169B2 (en) 2019-01-25 2023-01-10 Stryker Corporation Surgical apparel system
US11291265B2 (en) 2019-01-25 2022-04-05 Stryker Corporation Surgical garment
US10420386B1 (en) 2019-01-25 2019-09-24 Stryker Corporation Medical garment including a shield
USD955651S1 (en) 2019-07-31 2022-06-21 Stryker Corporation Surgical helmet
USD936905S1 (en) 2019-07-31 2021-11-23 Stryker Corporation Surgical hood
USD936909S1 (en) 2019-07-31 2021-11-23 Stryker Corporation Surgical face shield for a surgical hood
USD979145S1 (en) 2019-07-31 2023-02-21 Stryker Corporation Surgical helmet
USD1017911S1 (en) 2022-05-09 2024-03-12 Stryker Corporation Chin bar for a surgical helmet

Also Published As

Publication number Publication date
WO2006086574A3 (en) 2007-12-13
WO2006086574A2 (en) 2006-08-17
US20060178081A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US20070060011A1 (en) Magnetic joints and toy figurines made therefrom
US6575810B1 (en) Illuminating toy figure
US6893315B2 (en) Toy figure with a magnetized joint
US20050020179A1 (en) Manipulative toy having interchangeable appendages
US20050191936A1 (en) Doll
US3988855A (en) Posable figure having one piece connector for torso, trunk and legs
US7036962B2 (en) Light-up accessory
JPS60137377A (en) Crotch joint structure for doll
EP1104535A1 (en) Jewelry piece
US7918708B2 (en) Illuminated magnetic module for toy construction kit
US20170276303A1 (en) Detachable solar powered lamp
US8864354B2 (en) Pompon having elongate light-emitting-objects
JPH0623152A (en) Link toy
TWI248826B (en) Connecting device and assembled structure using the same
US20130273805A1 (en) Stackable Humanoid Toy
US20170340980A1 (en) Imagination Blocks
EP1291051A3 (en) Three-dimensional toy built up with freely connectable parts
US7140754B2 (en) Transformable flashlight apparatus
CN208212511U (en) A kind of novel toy doll
KR200378821Y1 (en) A hulahoop with illuminator
US20170128853A1 (en) Electrical construction toy system
CN218106736U (en) Toy lamp ball
CN220070720U (en) Child enlightenment doll toy and control circuit thereof
WO2002052972A1 (en) Shoe accessory
US10517359B2 (en) Motion activated illuminated bracelet

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEGA BRANDS INTERNATIONAL, LUXEMBOURG, ZUG BRANCH,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAFTARI, PARVIZ;KOWALSKI, CHARLES J.;BEAULIEU, ANS;REEL/FRAME:018805/0178;SIGNING DATES FROM 20061219 TO 20070122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION